Sample records for microscopy tem technique

  1. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    NASA Astrophysics Data System (ADS)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-06-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.

  2. Chapter 14: Electron Microscopy on Thin Films for Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Manuel; Abou-Ras, Daniel; Nichterwitz, Melanie

    2016-07-22

    This chapter overviews the various techniques applied in scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and highlights their possibilities and also limitations. It gives the various imaging and analysis techniques applied on a scanning electron microscope. The chapter shows that imaging is divided into that making use of secondary electrons (SEs) and of backscattered electrons (BSEs), resulting in different contrasts in the images and thus providing information on compositions, microstructures, and surface potentials. Whenever aiming for imaging and analyses at scales of down to the angstroms range, TEM and its related techniques are appropriate tools. In many cases,more » also SEM techniques provide the access to various material properties of the individual layers, not requiring specimen preparation as time consuming as TEM techniques. Finally, the chapter dedicates to cross-sectional specimen preparation for electron microscopy. The preparation decides indeed on the quality of imaging and analyses.« less

  3. Electron tomography of whole cultured cells using novel transmission electron imaging technique.

    PubMed

    Okumura, Taiga; Shoji, Minami; Hisada, Akiko; Ominami, Yusuke; Ito, Sukehiro; Ushiki, Tatsuo; Nakajima, Masato; Ohshima, Takashi

    2018-01-01

    Since a three-dimensional (3D) cellular ultrastructure is significant for biological functions, it has been investigated using various electron microscopic techniques. Although transmission electron microscopy (TEM)-based techniques are traditionally used, cells must be embedded in resin and sliced into ultrathin sections in sample preparation processes. Block-face observation using a scanning electron microscope (SEM) has also been recently applied to 3D observation of cellular components, but this is a destructive inspection and does not allow re-examination. Therefore, we developed electron tomography using a transmission electron imaging technique called Plate-TEM. With Plate-TEM, the cells cultured directly on a scintillator plate are inserted into a conventional SEM equipped with a Plate-TEM observation system, and their internal structures are observed by detecting scintillation light produced by electrons passing through the cells. This technology has the following four advantages. First, the cells cultured on the plate can be observed at electron-microscopic resolution since they remain on the plate. Second, both surface and internal information can be obtained simultaneously by using electron- and photo-detectors, respectively, because a Plate-TEM detector is installed in an SEM. Third, the cells on the scintillator plate can also be inspected using light microscopy because the plate has transparent features. Finally, correlative observation with other techniques, such as conventional TEM, is possible after Plate-TEM observation because Plate-TEM is a non-destructive analysis technique. We also designed a sample stage to tilt the samples for tomography with Plate-TEM, by which 3D organization of cellular structures can be visualized as a whole cell. In the present study, Mm2T cells were investigated using our tomography system, resulting in 3D visualization of cell organelles such as mitochondria, lipid droplets, and microvilli. Correlative observations with various imaging techniques were also conducted by successive observations with light microscopy, SEM, Plate-TEM, and conventional TEM. Consequently, the Plate-TEM tomography technique encourages understanding of cellular structures at high resolution, which can contribute to cellular biological research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton

    PubMed Central

    Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya

    2017-01-01

    In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level. PMID:28828286

  5. Consecutive light microscopy, scanning-transmission electron microscopy and transmission electron microscopy of traumatic human brain oedema and ischaemic brain damage.

    PubMed

    Castejon, O J; Castejon, H V; Diaz, M; Castellano, A

    2001-10-01

    Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.

  6. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging†

    PubMed Central

    Patterson, Joseph P.; Sanchez, Ana M.; Petzetakis, Nikos; Smart, Thomas P.; Epps, Thomas H.; Portman, Ian

    2013-01-01

    Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies. PMID:24049544

  7. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    PubMed

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  8. Advantages and Disadvantages of using a Focused Ion Beam to Prepare TEM Samples From Irradiated U-10Mo Monolithic Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. D. Miller; J. Gan; J. Madden

    2012-05-01

    Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and focused ion beam (FIB) milling were performed on an irradiated U-10Mo monolithic fuel to understand its irradiation microstructure. This is the first reported TEM work of irradiated fuel sample prepared using a FIB. Advantages and disadvantages of using the FIB to create TEM samples from this irradiated fuel will be presented along with some results from the work. Sample preparation techniques used to create SEM and FIB samples from the brittle irradiated monolithic sample will also be discussed.

  9. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    DOE PAGES

    Ye, B.; Jamison, L.; Miao, Y.; ...

    2017-03-09

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  10. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  11. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms.

    PubMed

    Lawrence, J R; Swerhone, G D W; Leppard, G G; Araki, T; Zhang, X; West, M M; Hitchcock, A P

    2003-09-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.

  13. Advanced electron microscopy characterization of nanomaterials for catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dong

    Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. Themore » electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.« less

  14. Advanced electron microscopy characterization of nanomaterials for catalysis

    DOE PAGES

    Su, Dong

    2017-04-01

    Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. Themore » electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.« less

  15. Correlative microscopy of a carbide-free bainitic steel.

    PubMed

    Hofer, Christina; Bliznuk, Vitaliy; Verdiere, An; Petrov, Roumen; Winkelhofer, Florian; Clemens, Helmut; Primig, Sophie

    2016-02-01

    In this work a carbide-free bainitic steel was examined by a novel correlative microscopy approach using transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The individual microstructural constituents could be identified by TKD based on their different crystal structure for bainitic ferrite and retained austenite and by image quality for the martensite-austenite (M-A) constituent. Subsequently, the same area was investigated in the TEM and a good match of these two techniques regarding the identification of the area position and crystal orientation could be proven. Additionally, the M-A constituent was examined in the TEM for the first time after preceded unambiguous identification using a correlative microscopy approach. The selected area diffraction pattern showed satellites around the main reflexes which might indicate a structural modulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Applications of surface analytical techniques in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Qian, Gujie; Li, Yubiao; Gerson, Andrea R.

    2015-03-01

    This review covers a wide range of surface analytical techniques: X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), photoemission electron microscopy (PEEM), dynamic and static secondary ion mass spectroscopy (SIMS), electron backscatter diffraction (EBSD), atomic force microscopy (AFM). Others that are relatively less widely used but are also important to the Earth Sciences are also included: Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). All these techniques probe only the very top sample surface layers (sub-nm to several tens of nm). In addition, we also present several other techniques i.e. Raman microspectroscopy, reflection infrared (IR) microspectroscopy and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) that penetrate deeper into the sample, up to several μm, as all of them are fundamental analytical tools for the Earth Sciences. Grazing incidence synchrotron techniques, sensitive to surface measurements, are also briefly introduced at the end of this review. (Scanning) transmission electron microscopy (TEM/STEM) is a special case that can be applied to characterisation of mineralogical and geological sample surfaces. Since TEM/STEM is such an important technique for Earth Scientists, we have also included it to draw attention to the capability of TEM/STEM applied as a surface-equivalent tool. While this review presents most of the important techniques for the Earth Sciences, it is not an all-inclusive bibliography of those analytical techniques. Instead, for each technique that is discussed, we first give a very brief introduction about its principle and background, followed by a short section on approaches to sample preparation that are important for researchers to appreciate prior to the actual sample analysis. We then use examples from publications (and also some of our known unpublished results) within the Earth Sciences to show how each technique is applied and used to obtain specific information and to resolve real problems, which forms the central theme of this review. Although this review focuses on applications of these techniques to study mineralogical and geological samples, we also anticipate that researchers from other research areas such as Material and Environmental Sciences may benefit from this review.

  17. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Xiaoqing

    2015-06-30

    The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structuresmore » of BiFeO 3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.« less

  18. Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques.

    PubMed

    Chinthaka Silva, G W; Ma, Longzhou; Hemmers, Oliver; Lindle, Dennis

    2008-01-01

    Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.

  19. The ultrastructural features of the premalignant oral lesions.

    PubMed

    Olinici, Doiniţa; Cotrutz, Carmen Elena; Mihali, Ciprian Valentin; Grecu, Vasile Bogdan; Botez, Emanuela Ana; Stoica, Laura; Onofrei, Pavel; Condurache, Oana; Dimitriu, Daniela Cristina

    2018-01-01

    Premalignant oral lesions are among the most important risk factors for the development of oral squamocellular carcinoma. Recent population studies indicate a significant rise in the prevalence of leukoplakia, erythroplakia/erythroleukoplakia, actinic cheilitis, submucous fibrosis and erosive lichen planus. Since standard histopathological examination has numerous limitations regarding the accurate appreciation of potential malignant transformation, the present study aims to aid these evaluations using the transmission electron microscopy (TEM) technique, which emphasizes ultrastructural changes pertaining to this pathology. Oral mucosa fragments collected from 43 patients that were clinically and histopathologically diagnosed with leukoplakia, erosive actinic cheilitis and erosive lichen planus have been processed through the classic technique for the examination using TEM and were examined using a Philips CM100 transmission electron microscope. The electron microscopy study has confirmed the histopathological diagnosis of the tissue samples examined using photonic microscopy and has furthermore revealed a series of ultrastructural details that on the one hand indicate the tendency for malignant transformation, and on the other reveal characteristic features of tumor development. All the details furnished by TEM complete the overall picture of morphological changes, specific to these lesions, indicating the importance of using these techniques in establishing both a correct diagnosis and prognosis.

  20. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research.

    PubMed

    Moretti, Elena; Sutera, Gaetano; Collodel, Giulia

    2016-06-01

    This review is aimed at discussing the role of ultrastructural studies on human spermatozoa and evaluating transmission electron microscopy as a diagnostic tool that can complete andrology protocols. It is clear that morphological sperm defects may explain decreased fertilizing potential and acquire particular value in the field of male infertility. Electron microscopy is the best method to identify systematic or monomorphic and non-systematic or polymorphic sperm defects. The systematic defects are characterized by a particular anomaly that affects the vast majority of spermatozoa in a semen sample, whereas a heterogeneous combination of head and tail defects found in variable percentages are typically non-systematic or polymorphic sperm defects. A correct diagnosis of these specific sperm alterations is important for choosing the male infertility's therapy and for deciding to turn to assisted reproduction techniques. Transmission electron microscopy (TEM) also represents a valuable method to explore the in vitro effects of different compounds (for example drugs with potential spermicidal activity) on the morphology of human spermatozoa. Finally, TEM used in combination with immunohistochemical techniques, integrates structural and functional aspects that provide a wide horizon in the understanding of sperm physiology and pathology. transmission electron microscopy: TEM; World Health Organization: WHO; light microscopy: LM; motile sperm organelle morphology examination: MSOME; intracytoplasmic morphologically selected sperm injection: IMSI; intracytoplasmic sperm injection: ICSI; dysplasia of fibrous sheath: DFS; primary ciliary dyskinesia: PCD; outer dense fibers: ODF; assisted reproduction technologies: ART; scanning electron microscopy: SEM; polyvinylpirrolidone: PVP; tert-butylhydroperoxide: TBHP.

  1. Transmission Electron Microscopy of Minerals and Rocks

    NASA Astrophysics Data System (ADS)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  2. Magnetic mapping of iron in rodent spleen

    PubMed Central

    Blissett, Angela R.; Ollander, Brooke; Penn, Brittany; McTigue, Dana M.; Agarwal, Gunjan

    2016-01-01

    Evaluation of iron distribution and density in biological tissues is important to understand the pathogenesis of a variety of diseases and the fate of exogenously administered iron-based carriers and contrast agents. Iron distribution in tissues is typically characterized via histochemical (Perl’s) stains or immunohistochemistry for ferritin, the major iron storage protein. A more accurate mapping of iron can be achieved via ultrastructural transmission electron microscopy (TEM) based techniques, which involve stringent sample preparation conditions. In this study, we elucidate the capability of magnetic force microscopy (MFM) as a label-free technique to map iron at the nanoscale level in rodent spleen tissue. We complemented and compared our MFM results with those obtained using Perl’s staining and TEM. Our results show how MFM mapping corresponded to sizes of iron-rich lysosomes at a resolution comparable to that of TEM. In addition MFM is compatible with tissue sections commonly prepared for routine histology. PMID:27890658

  3. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    PubMed Central

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  4. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  5. Recent developments of the in situ wet cell technology for transmission electron microscopies.

    PubMed

    Chen, Xin; Li, Chang; Cao, Hongling

    2015-03-21

    In situ wet cells for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) allow studying structures and processes in a liquid environment with high temporal and spatial resolutions, and have been attracting increasing research interests in many fields. In this review, we highlight the structural and functional developments of the wet cells for TEM and STEM. One of the key features of the wet cells is the sealing technique used to isolate the liquid sample from the TEM/STEM vacuum environments, thus the existing in situ wet cells are grouped by different sealing methods. In this study, the advantages and shortcomings of each type of in situ wet cells are discussed, the functional developments of different wet cells are presented, and the future trends of the wet cell technology are addressed. It is suggested that in the future the in situ wet cell TEM/STEM technology will have an increasing impact on frontier nanoscale research.

  6. Nanoscale chromatin structure characterization for optical applications: a transmission electron microscopy study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yue; Cherkezyan, Lusik; Zhang, Di; Almassalha, Luay; Roth, Eric; Chandler, John; Bleher, Reiner; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2017-02-01

    Structural and biological origins of light scattering in cells and tissue are still poorly understood. We demonstrate how this problem might be addressed through the use of transmission electron microscopy (TEM). For biological samples, TEM image intensity is proportional to mass-density, and thus proportional to refractive index (RI). By calculating the autocorrelation function (ACF) of TEM image intensity of a thin-section of cells, we essentially maintain the nanoscale ACF of the 3D cellular RI distribution, given that the RI distribution is statistically isotropic. Using this nanoscale 3D RI ACF, we can simulate light scattering through biological samples, and thus guiding many optical techniques to quantify specific structures. In this work, we chose to use Partial Wave Spectroscopy (PWS) microscopy as a one of the nanoscale-sensitive optical techniques. Hela cells were prepared using standard protocol to preserve nanoscale ultrastructure, and a 50-nm slice was sectioned for TEM imaging at 6 nm resolution. The ACF was calculated for chromatin, and the PWS mean sigma was calculated by summing over the power spectral density in the visible light frequency of a random medium generated to match the ACF. A 1-µm slice adjacent to the 50-nm slice was sectioned for PWS measurement to guarantee identical chromatin structure. For 33 cells, we compared the calculated PWS mean sigma from TEM and the value measured directly, and obtained a strong correlation of 0.69. This example indicates the great potential of using TEM measured RI distribution to better understand the quantification of cellular nanostructure by optical methods.

  7. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  8. Cross-sectional TEM specimen preparation for W/B{sub 4}C multilayer sample using FIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Puspen, E-mail: puspen@rrcat.gov.in; Pradhan, P. C.; Tiwari, Pragya

    2016-05-23

    A recent emergence of a cross-beam scanning electron microscopy (SEM)/focused-ion-beam (FIB) system have given choice to fabricate cross-sectional transmission electron microscopy (TEM) specimen of thin film multilayer sample. A 300 layer pair thin film multilayer sample of W/B{sub 4}C was used to demonstrate the specimen lift-out technique in very short time as compared to conventional cross-sectional sample preparation technique. To get large area electron transparent sample, sample prepared by FIB is followed by Ar{sup +} ion polishing at 2 kV with grazing incident. The prepared cross-sectional sample was characterized by transmission electron microscope.

  9. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Johns, Steve; Shin, Wontak; Kane, Joshua J.; Windes, William E.; Ubic, Rick; Karthik, Chinnathambi

    2018-07-01

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. To ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ∼60 μm. Discs 3 mm in diameter were then oxidized at temperatures between 575 °C and 625 °C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575 °C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.

  10. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Steve; Shin, Wontak; Kane, Joshua J.

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less

  11. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    DOE PAGES

    Johns, Steve; Shin, Wontak; Kane, Joshua J.; ...

    2018-04-03

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less

  12. Inducing fluorescence of uranyl acetate as a dual-purpose contrast agent for correlative light-electron microscopy with nanometre precision.

    PubMed

    Tuijtel, Maarten W; Mulder, Aat A; Posthuma, Clara C; van der Hoeven, Barbara; Koster, Abraham J; Bárcena, Montserrat; Faas, Frank G A; Sharp, Thomas H

    2017-09-05

    Correlative light-electron microscopy (CLEM) combines the high spatial resolution of transmission electron microscopy (TEM) with the capability of fluorescence light microscopy (FLM) to locate rare or transient cellular events within a large field of view. CLEM is therefore a powerful technique to study cellular processes. Aligning images derived from both imaging modalities is a prerequisite to correlate the two microscopy data sets, and poor alignment can limit interpretability of the data. Here, we describe how uranyl acetate, a commonly-used contrast agent for TEM, can be induced to fluoresce brightly at cryogenic temperatures (-195 °C) and imaged by cryoFLM using standard filter sets. This dual-purpose contrast agent can be used as a general tool for CLEM, whereby the equivalent staining allows direct correlation between fluorescence and TEM images. We demonstrate the potential of this approach by performing multi-colour CLEM of cells containing equine arteritis virus proteins tagged with either green- or red-fluorescent protein, and achieve high-precision localization of virus-induced intracellular membrane modifications. Using uranyl acetate as a dual-purpose contrast agent, we achieve an image alignment precision of ~30 nm, twice as accurate as when using fiducial beads, which will be essential for combining TEM with the evolving field of super-resolution light microscopy.

  13. Quantification of transendothelial migration using three-dimensional confocal microscopy.

    PubMed

    Cain, Robert J; d'Água, Bárbara Borda; Ridley, Anne J

    2011-01-01

    Migration of cells across endothelial barriers, termed transendothelial migration (TEM), is an important cellular process that underpins the pathology of many disease states including chronic inflammation and cancer metastasis. While this process can be modeled in vitro using cultured cells, many model systems are unable to provide detailed visual information of cell morphologies and distribution of proteins such as junctional markers, as well as quantitative data on the rate of TEM. Improvements in imaging techniques have made microscopy-based assays an invaluable tool for studying this type of detailed cell movement in physiological processes. In this chapter, we describe a confocal microscopy-based method that can be used to assess TEM of both leukocytes and cancer cells across endothelial barriers in response to a chemotactic gradient, as well as providing information on their migration into a subendothelial extracellular matrix, designed to mimic that found in vivo.

  14. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  15. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  16. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  17. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    PubMed

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction

    NASA Technical Reports Server (NTRS)

    Daulton, Tyrone L.; Little, Brenda J.; Lowe, Kristine; Jones-Meehan, Joanne

    2002-01-01

    Electron energy loss spectroscopy (EELS) techniques were used to determine oxidation state, at high spatial resolution, of chromium associated with the metal-reducing bacteria, Shewanella oneidensis, in anaerobic cultures containing Cr(VI)O4(2-). These techniques were applied to fixed cells examined in thin section by conventional transmission electron microscopy (TEM) as well as unfixed, hydrated bacteria examined by environmental cell (EC)-TEM. Two distinct populations of bacteria were observed by TEM: bacteria exhibiting low image contrast and bacteria exhibiting high contrast in their cell membrane (or boundary) structure which was often encrusted with high-contrast precipitates. Measurements by EELS demonstrated that cell boundaries became saturated with low concentrations of Cr and the precipitates encrusting bacterial cells contained a reduced form of Cr in oxidation state + 3 or lower.

  19. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  20. Microstructural analysis of 800H steel exposed at test operation in HTHL by using FIB-SEM and HRTEM techniques

    NASA Astrophysics Data System (ADS)

    Marušáková, Daniela; Bublíková, Petra; Berka, Jan; Vávrovcová, Zuzana; Burda, Jaroslav

    2017-09-01

    To understand the degradation process of metal materials which are used in power engineering, appropriate evaluation procedure is necessary to ensure. In that order, the degradation of alloy 800H during the first period of test operation in High Temperature Helium Loop (HTHL) was tested. Experiment was carried out in atmosphere of pure technical helium with purity 4.6 containing only residual concentration of moisture up to 300 vppm. Parameters during the operation test were not constant, process was interrupted several times. The maximum temperature on specimens during this period was 750 °C, average temperature was 460 °C, gas pressure ranged from 3 to 6 MPa and gas flow from 3 to 9 gs-1. Total duration of the test was 264 h. After the exposure the degradation of specimens was investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Using the technique of Focused Ion Beam (FIB) integrated within SEM the transparent samples with quality surface parameters were obtained for TEM analysis. FIB technique in combination with High Resolution TEM ensured the guaranteed methodology of exposed sample preparation and precise description of changes in this kind of material.

  1. Detailed Investigation of Core-Shell Precipitates in a Cu-Containing High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Alam, T.; Gwalani, B.; Viswanathan, G.; Fraser, H.; Banerjee, R.

    2018-05-01

    Due to the competing influences of configurational entropy and enthalpy of mixing, in recent years, secondary (including intermetallic) phases have been reported in many high entropy alloy (HEA) systems. These secondary phases offer great potential in terms of strengthening the HEA beyond the solid solution strengthening effects, and as such are of great interest in regards to alloy design for engineering applications. The present research investigates novel nano-scale core-shell precipitates forming within the disordered bcc matrix phase of an Al2CrCuFeNi2 HEA, utilizing complementary high-resolution microscopy techniques of atom probe tomography (APT) and transmission electron microscopy (TEM). The size, morphology, and local chemistry of these core-shell precipitates was measured by APT, and the composition was further corroborated by high-resolution scanning transmission electron microscopy-energy dispersive spectroscopy in an aberration-corrected TEM. Furthermore, high-resolution TEM imaging of the core-shell structure indicates that the Cu-rich core exhibits a bcc crystal structure.

  2. Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich

    2006-01-01

    Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.

  3. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  4. Multi-class segmentation of neuronal electron microscopy images using deep learning

    NASA Astrophysics Data System (ADS)

    Khobragade, Nivedita; Agarwal, Chirag

    2018-03-01

    Study of connectivity of neural circuits is an essential step towards a better understanding of functioning of the nervous system. With the recent improvement in imaging techniques, high-resolution and high-volume images are being generated requiring automated segmentation techniques. We present a pixel-wise classification method based on Bayesian SegNet architecture. We carried out multi-class segmentation on serial section Transmission Electron Microscopy (ssTEM) images of Drosophila third instar larva ventral nerve cord, labeling the four classes of neuron membranes, neuron intracellular space, mitochondria and glia / extracellular space. Bayesian SegNet was trained using 256 ssTEM images of 256 x 256 pixels and tested on 64 different ssTEM images of the same size, from the same serial stack. Due to high class imbalance, we used a class-balanced version of Bayesian SegNet by re-weighting each class based on their relative frequency. We achieved an overall accuracy of 93% and a mean class accuracy of 88% for pixel-wise segmentation using this encoder-decoder approach. On evaluating the segmentation results using similarity metrics like SSIM and Dice Coefficient, we obtained scores of 0.994 and 0.886 respectively. Additionally, we used the network trained using the 256 ssTEM images of Drosophila third instar larva for multi-class labeling of ISBI 2012 challenge ssTEM dataset.

  5. Airborne asbestos in Colorado public schools.

    PubMed

    Chadwick, D A; Buchan, R M; Beaulieu, H J

    1985-02-01

    Levels of airborne asbestos for six Colorado public school facilities with sprayed-on asbestos materials were documented using three analytical techniques. Phase contrast microscopy showed levels up to the thousandths of a fiber per cubic centimeter (f/cc), scanning electron microscopy (SEM) up to the hundredths of a f/cc, and transmission electron microscopy coupled to selected area electron diffraction and energy dispersive X-ray analysis (TEM-SAED-EDXA) up to the tenths of an asbestos f/cc. Phase contrast microscopy was found to be an inadequate analytical technique for documenting the levels of airborne asbestos fibers in the schools: only large fibers which were not embedded in the filter were counted, and asbestos fibers were not distinguished from nonasbestos.

  6. High-Resolution Characterization of UMo Alloy Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less

  7. Counting Synapses Using FIB/SEM Microscopy: A True Revolution for Ultrastructural Volume Reconstruction.

    PubMed

    Merchán-Pérez, Angel; Rodriguez, José-Rodrigo; Alonso-Nanclares, Lidia; Schertel, Andreas; Defelipe, Javier

    2009-01-01

    The advent of transmission electron microscopy (TEM) in the 1950s represented a fundamental step in the study of neuronal circuits. The application of this technique soon led to the realization that the number of synapses changes during the course of normal life, as well as under certain pathological or experimental circumstances. Since then, one of the main goals in neurosciences has been to define simple and accurate methods to estimate the magnitude of these changes. Contrary to analysing single sections, TEM reconstructions are extremely time-consuming and difficult. Therefore, most quantitative studies use stereological methods to define the three-dimensional characteristics of synaptic junctions that are studied in two dimensions. Here, to count the exact number of synapses per unit of volume we have applied a new three-dimensional reconstruction method that involves the combination of focused ion beam milling and scanning electron microscopy (FIB/SEM). We show that the images obtained with FIB/SEM are similar to those obtained with TEM, but with the advantage that FIB/SEM permits serial reconstructions of large volumes of tissue to be generated rapidly and automatically. Furthermore, we compared the estimates of the number of synapses obtained with stereological methods with the values obtained by FIB/SEM reconstructions. We concluded that FIB/SEM not only provides the actual number of synapses per volume but it is also much easier and faster to use than other currently available TEM methods. More importantly, it also avoids most of the errors introduced by stereological methods and overcomes the difficulties associated with these techniques.

  8. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.

  9. A literature review of in situ transmission electron microscopy technique in corrosion studies.

    PubMed

    Song, Zhengwei; Xie, Zhi-Hui

    2018-06-18

    One of the biggest challenges in corrosion investigation is foreseeing precisely how and where materials will degenerate in a designated condition owing to scarceness of accurate corrosion mechanisms. Recent fast development of in situ transmission electron microscopy (TEM) technique makes it achievable to better understand the corrosion mechanism and physicochemical processes at the interfaces between samples and gases or electrolytes by dynamical capture the microstructural and chemical changes with high resolution within a realistic or near-realistic environment. However, a detailed and in-depth account summing up the development and latest achievements of in situ TEM techniques, especially the application of emerging liquid and electrochemical cells in the community of corrosion study in the last several years is lacking and is urgently needed for its heathy development. To fill this gap, this critical review summarizes firstly the key scientific issues in corrosion research, followed by introducing the configurations of several typical closed-type cells. Then, the achievements of in situ TEM using open-type or closed-type cells in corrosion study are presented in detail. The study directions in the future are commented finally in terms of spatial and temporal resolution, electron radiation, and linkage between microstructure and electrochemical performance in corrosion community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.

    A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less

  11. The study of 'microsurfaces' using thermal desorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Thomas, M. E.; Poppa, H.; Pound, G. M.

    1979-01-01

    The use of a newly combined ultrahigh vacuum technique for studying continuous and particulate evaporated thin films using thermal desorption spectroscopy (TDS), transmission electron microscopy (TEM), and transmission electron diffraction (TED) is discussed. It is shown that (1) CO thermal desorption energies of epitaxially deposited (111) Ni and (111) Pd surfaces agree perfectly with previously published data on bulk (111) single crystal, (2) contamination and surface structural differences can be detected using TDS as a surface probe and TEM as a complementary technique, and (3) CO desorption signals from deposited metal coverages of one-thousandth of a monolayer should be detectable. These results indicate that the chemisorption properties of supported 'microsurfaces' of metals can now be investigated with very high sensitivity. The combined use of TDS and TEM-TED experimental methods is a very powerful technique for fundamental studies in basic thin film physics and in catalysis.

  12. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H. G.; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu

    2016-06-01

    Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ~150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01908k

  13. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  14. Revelation of graphene-Au for direct write deposition and characterization

    NASA Astrophysics Data System (ADS)

    Bhandari, Shweta; Deepa, Melepurath; Joshi, Amish G.; Saxena, Aditya P.; Srivastava, Avanish K.

    2011-06-01

    Graphene nanosheets were prepared using a modified Hummer's method, and Au-graphene nanocomposites were fabricated by in situ reduction of a gold salt. The as-produced graphene was characterized by X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM). In particular, the HR-TEM demonstrated the layered crystallites of graphene with fringe spacing of about 0.32 nm in individual sheets and the ultrafine facetted structure of about 20 to 50 nm of Au particles in graphene composite. Scanning helium ion microscopy (HIM) technique was employed to demonstrate direct write deposition on graphene by lettering with gaps down to 7 nm within the chamber of the microscope. Bare graphene and graphene-gold nanocomposites were further characterized in terms of their composition and optical and electrical properties.

  15. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  18. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com

    2013-02-15

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less

  19. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds.

    PubMed

    Nagarajan, Sounderya; Pioche-Durieu, Catherine; Tizei, Luiz H G; Fang, Chia-Yi; Bertrand, Jean-Rémi; Le Cam, Eric; Chang, Huan-Cheng; Treussart, François; Kociak, Mathieu

    2016-06-02

    Light and Transmission Electron Microscopies (LM and TEM) hold potential in bioimaging owing to the advantages of fast imaging of multiple cells with LM and ultrastructure resolution offered by TEM. Integrated or correlated LM and TEM are the current approaches to combine the advantages of both techniques. Here we propose an alternative in which the electron beam of a scanning TEM (STEM) is used to excite concomitantly the luminescence of nanoparticle labels (a process known as cathodoluminescence, CL), and image the cell ultrastructure. This CL-STEM imaging allows obtaining luminescence spectra and imaging ultrastructure simultaneously. We present a proof of principle experiment, showing the potential of this technique in image cytometry of cell vesicular components. To label the vesicles we used fluorescent diamond nanocrystals (nanodiamonds, NDs) of size ≈150 nm coated with different cationic polymers, known to trigger different internalization pathways. Each polymer was associated with a type of ND with a different emission spectrum. With CL-STEM, for each individual vesicle, we were able to measure (i) their size with nanometric resolution, (ii) their content in different ND labels, and realize intracellular component cytometry. In contrast to the recently reported organelle flow cytometry technique that requires cell sonication, CL-STEM-based image cytometry preserves the cell integrity and provides a much higher resolution in size. Although this novel approach is still limited by a low throughput, the automatization of data acquisition and image analysis, combined with improved intracellular targeting, should facilitate applications in cell biology at the subcellular level.

  20. Transmission Electron Microscopy of Cometary Residues from Micron-Sized Craters in the Stardust Al-Foils

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Stroud, Rhonda M.; Dai, Zu Rong; Graham, Giles A.; Troadec, David; Bradley, John P.; Teslich, Nick; Borg, Janet; Kearsley, Anton T.; Horz, Friedrich

    2008-01-01

    We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.

  1. Pd-Ni-MWCNT nanocomposite thin films: preparation and structure

    NASA Astrophysics Data System (ADS)

    Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil

    2017-08-01

    The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.

  2. Spectroscopic study of Pbs nano-structured layer prepared by Pld utilized as a Hall-effect magnetic sensor

    NASA Astrophysics Data System (ADS)

    Atwa, D. M.; Aboulfotoh, N.; El-magd, A. Abo; Badr, Y.

    2013-10-01

    Lead sulfide (PbS) nano-structured films have been grown on quartz substrates using PLD technique. The deposited films were characterized by several structural techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Selected-area electron diffraction patterns (SAED). The results prove the formation of cubic phase of PbS nanocrystals. Elemental analysis of the deposited films compared to the bulk target was obtained via laser induced fluorescence of the produced plasma particles and the energy dispersive X-ray "EDX" technique. The Hall coefficient measurements indicate an efficient performance of the deposited films as a magnetic sensor.

  3. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.

    PubMed

    Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe

    2012-03-09

    III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.

  4. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  5. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy.

    PubMed

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D; Deperalta, Galahad; Wecksler, Aaron T

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. Graphical Abstract ᅟ.

  6. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-03-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz; Wei, Shanghai; Han, Jie

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientationmore » has been studied in detail.« less

  8. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    NASA Astrophysics Data System (ADS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  9. Evolution of the substructure of a novel 12% Cr steel under creep conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk

    2016-05-15

    In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less

  10. In situ TEM of radiation effects in complex ceramics.

    PubMed

    Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C

    2009-03-01

    In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions. (c) 2009 Wiley-Liss, Inc.

  11. Green synthesis and characterization of graphene nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductantmore » but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.« less

  12. FIB-SEM imaging of carbon nanotubes in mouse lung tissue.

    PubMed

    Købler, Carsten; Saber, Anne Thoustrup; Jacobsen, Nicklas Raun; Wallin, Håkan; Vogel, Ulla; Qvortrup, Klaus; Mølhave, Kristian

    2014-06-01

    Ultrastructural characterisation is important for understanding carbon nanotube (CNT) toxicity and how the CNTs interact with cells and tissues. The standard method for this involves using transmission electron microscopy (TEM). However, in particular, the sample preparation, using a microtome to cut thin sample sections for TEM, can be challenging for investigation of regions with agglomerations of large and stiff CNTs because the CNTs cut with difficulty. As a consequence, the sectioning diamond knife may be damaged and the uncut CNTs are left protruding from the embedded block surface excluding them from TEM analysis. To provide an alternative to ultramicrotomy and subsequent TEM imaging, we studied focused ion beam scanning electron microscopy (FIB-SEM) of CNTs in the lungs of mice, and we evaluated the applicability of the method compared to TEM. FIB-SEM can provide serial section volume imaging not easily obtained with TEM, but it is time-consuming to locate CNTs in the tissue. We demonstrate that protruding CNTs after ultramicrotomy can be used to locate the region of interest, and we present FIB-SEM images of CNTs in lung tissue. FIB-SEM imaging was applied to lung tissue from mice which had been intratracheally instilled with two different multiwalled CNTs; one being short and thin, and the other longer and thicker. FIB-SEM was found to be most suitable for detection of the large CNTs (Ø ca. 70 nm), and to be well suited for studying CNT agglomerates in biological samples which is challenging using standard TEM techniques.

  13. Calcium copper-titanate thin film growth: tailoring of the operational conditions through nanocharacterization and substrate nature effects.

    PubMed

    Lo Nigro, Raffaella; Toro, Roberta G; Malandrino, Graziella; Fragalà, Ignazio L; Losurdo, Maria; Giangregorio, Michelaria M; Bruno, Giovanni; Raineri, Vito; Fiorenza, Patrick

    2006-09-07

    A novel approach based on a molten multicomponent precursor source has been applied for the MOCVD fabrication of high-quality CaCu(3)Ti(4)O(12) (CCTO) thin films on various substrates. The adopted in situ strategy involves a molten mixture consisting of Ca(hfa)(2).tetraglyme, Ti(tmhd)(2)(O-iPr)(2), and Cu(tmhd)(2) [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = isopropoxide] precursors. Film structural and morphological characterizations have been carried out by several techniques [X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM)], and in particular the energy filtered TEM mapping and X-ray energy dispersive (EDX) analysis in TEM mode provided a suitable correlation between nanostructural properties of CCTO films and deposition conditions and/or the substrate nature. Correlation between the nanostructure and optical/dielectric properties has been investigated exploiting spectroscopic ellipsometry.

  14. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy.

    PubMed

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  15. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yihan; Ciston, Jim; Zheng, Bin; Miao, Xiaohe; Czarnik, Cory; Pan, Yichang; Sougrat, Rachid; Lai, Zhiping; Hsiung, Chia-En; Yao, Kexin; Pinnau, Ingo; Pan, Ming; Han, Yu

    2017-05-01

    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

  16. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications.

    PubMed

    Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John

    2005-10-01

    Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  17. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique

    NASA Astrophysics Data System (ADS)

    Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel

    2017-11-01

    The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.

  18. Static and dynamic structural characterization of nanomaterial catalysts

    NASA Astrophysics Data System (ADS)

    Masiel, Daniel Joseph

    Heterogeneous catalysts systems are pervasive in industry, technology and academia. These systems often involve nanostructured transition metal particles that have crucial interfaces with either their supports or solid products. Understanding the nature of these interfaces as well as the structure of the catalysts and support materials themselves is crucial for the advancement of catalysis in general. Recent developments in the field of transmission electron microscopy (TEM) including dynamic transmission electron microscopy (DTEM), electron tomography, and in situ techniques stand poised to provide fresh insight into nanostructured catalyst systems. Several electron microscopy techniques are applied in this study to elucidate the mechanism of silica nanocoil growth and to discern the role of the support material and catalyst size in carbon dioxide and steam reforming of methane. The growth of silica nanocoils by faceted cobalt nanoparticles is a process that was initially believed to take place via a vapor-liquid-solid growth mechanism similar to other nanowire growth techniques. The extensive TEM work described here suggests that the process may instead occur via transport of silicate and silica species over the nanoparticle surface. Electron tomography studies of the interface between the catalyst particles and the wire indicate that they grow from edges between facets. Studies on reduction of the Co 3O4 nanoparticle precursors to the faceted pure cobalt catalysts were carried out using DTEM and in situ heating. Supported catalyst systems for methane reforming were studied using dark field scanning TEM to better understand sintering effects and the increased activity of Ni/Co catalysts supported by carbon nanotubes. Several novel electron microscopy techniques are described including annular dark field DTEM and a metaheuristic algorithm for solving the phase problem of coherent diffractive imaging. By inserting an annular dark field aperture into the back focal plane of the objective lens in a DTEM, time-resolved dark field images can be produced that have vastly improved contrast for supported catalyst materials compared to bright field DTEM imaging. A new algorithm called swarm optimized phase retrieval is described that uses a population-based approach to solve for the missing phases of diffraction data from discrete particles.

  19. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM).

    PubMed

    Mu, X; Kobler, A; Wang, D; Chakravadhanula, V S K; Schlabach, S; Szabó, D V; Norby, P; Kübel, C

    2016-11-01

    Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy range from low-loss to core-loss) and a STEM diffraction technique (automated crystal orientation mapping (ACOM)), were applied to map the lithiation of the same location in the same sample. This enabled a direct comparison of the results. The maps obtained by all methods showed excellent agreement with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter three are crucial for the design of in-situ experiments with beam sensitive Li-ion battery materials. Furthermore, we demonstrated the power of STEM diffraction (ACOM-STEM) providing additional crystallographic information, which can be analyzed to gain a deeper understanding of the LFP/FP interface properties such as statistical information on phase boundary orientation and misorientation between domains. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. 3D contour fluorescence spectroscopy with Brus model: Determination of size and band gap of double stranded DNA templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.

    2018-01-01

    Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.

  1. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    NASA Astrophysics Data System (ADS)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  2. Nanoparticle Immobilization for Controllable Experiments in Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Robertson, Alex W; Zhu, Guomin; Mehdi, B Layla; Jacobs, Robert M J; De Yoreo, James; Browning, Nigel D

    2018-06-22

    We demonstrate that silanization can control the adhesion of nanostructures to the SiN windows compatible with liquid-cell transmission electron microscopy (LC-TEM). Formation of an (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayer on a SiN window, producing a surface decorated with amino groups, permits strong adhesion of Au nanoparticles to the window. Many of these nanoparticles remain static, undergoing minimal translation or rotation during LC-TEM up to high electron beam current densities due to the strong interaction between the APTES amino group and Au. We then use this technique to perform a direct comparative LC-TEM study on the behavior of ligand and nonligand-coated Au nanoparticles in a Au growth solution. While the ligand coated nanoparticles remain consistent even under high electron beam current densities, the naked nanoparticles acted as sites for secondary Au nucleation. These nucleated particles decorated the parent nanoparticle surface, forming consecutive monolayer assemblies of ∼2 nm diameter nanoparticles, which sinter into the parent particle when the electron beam was shut off. This method for facile immobilization of nanostructures for LC-TEM study will permit more sophisticated and controlled in situ experiments into the properties of solid-liquid interfaces in the future.

  3. Lithiation Mechanism of Tunnel-Structured MnO 2 Electrode Investigated by In Situ Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung-Yong; Wu, Lijun; Poyraz, Altug S.

    Manganese oxide (α-MnO 2) has been considered as a promising energy material, including as a lithium-based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α-MnO 2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium-based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α-MnO 2 nanowire by in situ transmission electron microscopy (TEM) ismore » reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium-ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li 2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α-MnO 2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α-MnO 2 material, in addition to the introduction of an improved in situ TEM biasing technique.« less

  4. Lithiation Mechanism of Tunnel-Structured MnO 2 Electrode Investigated by In Situ Transmission Electron Microscopy

    DOE PAGES

    Lee, Seung-Yong; Wu, Lijun; Poyraz, Altug S.; ...

    2017-10-06

    Manganese oxide (α-MnO 2) has been considered as a promising energy material, including as a lithium-based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α-MnO 2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium-based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α-MnO 2 nanowire by in situ transmission electron microscopy (TEM) ismore » reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium-ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li 2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α-MnO 2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α-MnO 2 material, in addition to the introduction of an improved in situ TEM biasing technique.« less

  5. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes.

    PubMed

    Gu, Meng; Parent, Lucas R; Mehdi, B Layla; Unocic, Raymond R; McDowell, Matthew T; Sacci, Robert L; Xu, Wu; Connell, Justin Grant; Xu, Pinghong; Abellan, Patricia; Chen, Xilin; Zhang, Yaohui; Perea, Daniel E; Evans, James E; Lauhon, Lincoln J; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D; Cui, Yi; Arslan, Ilke; Wang, Chong-Min

    2013-01-01

    Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.

  6. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  7. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  9. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    NASA Astrophysics Data System (ADS)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  10. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-01-01

    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.

  11. Subgrain boundary analyses in deformed orthopyroxene by TEM/STEM with EBSD-FIB sample preparation technique

    NASA Astrophysics Data System (ADS)

    Kogure, Toshihiro; Raimbourg, Hugues; Kumamoto, Akihito; Fujii, Eiko; Ikuhara, Yuichi

    2014-12-01

    High-resolution structure analyses using electron beam techniques have been performed for the investigation of subgrain boundaries (SGBs) in deformed orthopyroxene (Opx) in mylonite from Hidaka Metamorphic Belt, Hokkaido, Japan, to understand ductile deformation mechanism of silicate minerals in shear zones. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analysis of Opx porphyroclasts in the mylonitic rock indicated that the crystal orientation inside the Opx crystals gradually changes by rotation about the b-axis by SGBs and crystal folding. In order to observe the SGBs along the b-axis by transmission electron microscopy (TEM) or scanning TEM (STEM), the following sample preparation protocol was adopted. First, petrographic thin sections were slightly etched with hydrofluoric acid to identify SGBs in SEM. The Opx crystals whose b-axes were oriented close to the normal of the surface were identified by EBSD, and the areas containing SGBs were picked and thinned for (S) TEM analysis with a focused ion beam instrument with micro-sampling system. High-resolution TEM imaging of the SGBs in Opx revealed various boundary structures from a periodic array of dissociated (100) [001] edge dislocations to partially or completely incoherent crystals, depending on the misorientation angle. Atomic-resolution STEM imaging clearly confirmed the formation of clinopyroxene (Cpx) structure between the dissociated partial dislocations. Moreover, X-ray microanalysis in STEM revealed that the Cpx contains a considerable amount of calcium replacing iron. Such chemical inhomogeneity may limit glide motion of the dislocation and eventually the plastic deformation of the Opx porphyroclasts at a low temperature. Chemical profiles across the high-angle incoherent SGB also showed an enrichment of the latter in calcium at the boundary, suggesting that SGBs are an efficient diffusion pathway of calcium out of host Opx grain during cooling.

  12. Nanoparticle formation of deposited Agn-clusters on free-standing graphene

    NASA Astrophysics Data System (ADS)

    Al-Hada, M.; Peters, S.; Gregoratti, L.; Amati, M.; Sezen, H.; Parisse, P.; Selve, S.; Niermann, T.; Berger, D.; Neeb, M.; Eberhardt, W.

    2017-11-01

    Size-selected Agn-clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model.

  13. Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Zachman, Michael J.; Werner, Jörg G.

    Abstract Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstratemore » two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.« less

  14. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  15. Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy.

    PubMed

    Chemes, Hector E

    2013-01-01

    Transmission electron microscopy (TEM) studies have provided the basis for an in-depth understanding of the cell biology and normal functioning of the testis and male gametes and have opened the way to characterize the functional role played by specific organelles in spermatogenesis and sperm function. The development of the scanning electron microscope (SEM) extended these boundaries to the recognition of cell and organ surface features and the architectural array of cells and tissues. The merging of immunocytochemical and histochemical approaches with electron microscopy has completed a series of technical improvements that integrate structural and functional features to provide a broad understanding of cell biology in health and disease. With these advances the detailed study of the intricate structural and molecular organization as well as the chemical composition of cellular organelles is now possible. Immunocytochemistry is used to identify proteins or other components and localize them in specific cells or organelles with high specificity and sensitivity, and histochemistry can be used to understand their function (i.e., enzyme activity). When these techniques are used in conjunction with electron microscopy their resolving power is further increased to subcellular levels. In the present chapter we will describe in detail various ultrastructural techniques that are now available for basic or translational research in reproductive biology and reproductive medicine. These include TEM, ultrastructural immunocytochemistry, ultrastructural histochemistry, and SEM.

  16. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.

    PubMed

    Hauwiller, Matthew R; Ondry, Justin C; Alivisatos, A Paul

    2018-05-17

    Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.

  17. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2017-03-01

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enumerating viruses by using fluorescence and the nature of the nonviral background fraction.

    PubMed

    Pollard, Peter C

    2012-09-01

    Bulk fluorescence measurements could be a faster and cheaper way of enumerating viruses than epifluorescence microscopy, flow cytometry, or transmission electron microscopy (TEM). However, since viruses are not imaged, the background fluorescence compromises the signal, and we know little about its nature. In this paper the size ranges of nucleotides that fluoresce in the presence of SYBR gold were determined for wastewater and a range of freshwater samples using a differential filtration method. Fluorescence excitation-emission matrices (FEEMs) showed that >70% of the SYBR fluorescence was in the <10-nm size fraction (background) and was not associated with intact viruses. This was confirmed using TEM. The use of FEEMs to develop a fluorescence-based method for counting viruses is an approach that is fundamentally different from the epifluorescence microscopy technique used for enumerating viruses. This high fluorescence background is currently overlooked, yet it has had a most pervasive influence on the development of a simple fluorescence-based method for quantifying viral abundance in water.

  19. Co-axial Electrospun Polyacrylonitrile-Poly(methylmethacrylate) Nanofibers: Atomic Force Microscopy and Compositional Characterization

    PubMed Central

    Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.

    2011-01-01

    Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836

  20. Nanoscale deformation analysis with high-resolution transmission electron microscopy and digital image correlation

    DOE PAGES

    Wang, Xueju; Pan, Zhipeng; Fan, Feifei; ...

    2015-09-10

    We present an application of the digital image correlation (DIC) method to high-resolution transmission electron microscopy (HRTEM) images for nanoscale deformation analysis. The combination of DIC and HRTEM offers both the ultrahigh spatial resolution and high displacement detection sensitivity that are not possible with other microscope-based DIC techniques. We demonstrate the accuracy and utility of the HRTEM-DIC technique through displacement and strain analysis on amorphous silicon. Two types of error sources resulting from the transmission electron microscopy (TEM) image noise and electromagnetic-lens distortions are quantitatively investigated via rigid-body translation experiments. The local and global DIC approaches are applied for themore » analysis of diffusion- and reaction-induced deformation fields in electrochemically lithiated amorphous silicon. As a result, the DIC technique coupled with HRTEM provides a new avenue for the deformation analysis of materials at the nanometer length scales.« less

  1. Short review on chemical bath deposition of thin film and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  2. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): structure and electron irradiation effects.

    PubMed

    Gontard, Lionel C; Fernández, Asunción; Dunin-Borkowski, Rafal E; Kasama, Takeshi; Lozano-Pérez, Sergio; Lucas, Stéphane

    2014-12-01

    Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons, which is relevant for optical tuning and for understanding the degree to which such hybrid nanostructures are stable in the presence of biomedical radiation, is also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    PubMed

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  4. A correlative approach for combining microCT, light and transmission electron microscopy in a single 3D scenario

    PubMed Central

    2013-01-01

    Background In biomedical research, a huge variety of different techniques is currently available for the structural examination of small specimens, including conventional light microscopy (LM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), microscopic X-ray computed tomography (microCT), and many others. Since every imaging method is physically limited by certain parameters, a correlative use of complementary methods often yields a significant broader range of information. Here we demonstrate the advantages of the correlative use of microCT, light microscopy, and transmission electron microscopy for the analysis of small biological samples. Results We used a small juvenile bivalve mollusc (Mytilus galloprovincialis, approximately 0.8 mm length) to demonstrate the workflow of a correlative examination by microCT, LM serial section analysis, and TEM-re-sectioning. Initially these three datasets were analyzed separately, and subsequently they were fused in one 3D scene. This workflow is very straightforward. The specimen was processed as usual for transmission electron microscopy including post-fixation in osmium tetroxide and embedding in epoxy resin. Subsequently it was imaged with microCT. Post-fixation in osmium tetroxide yielded sufficient X-ray contrast for microCT imaging, since the X-ray absorption of epoxy resin is low. Thereafter, the same specimen was serially sectioned for LM investigation. The serial section images were aligned and specific organ systems were reconstructed based on manual segmentation and surface rendering. According to the region of interest (ROI), specific LM sections were detached from the slides, re-mounted on resin blocks and re-sectioned (ultrathin) for TEM. For analysis, image data from the three different modalities was co-registered into a single 3D scene using the software AMIRA®. We were able to register both the LM section series volume and TEM slices neatly to the microCT dataset, with small geometric deviations occurring only in the peripheral areas of the specimen. Based on co-registered datasets the excretory organs, which were chosen as ROI for this study, could be investigated regarding both their ultrastructure as well as their position in the organism and their spatial relationship to adjacent tissues. We found structures typical for mollusc excretory systems, including ultrafiltration sites at the pericardial wall, and ducts leading from the pericardium towards the kidneys, which exhibit a typical basal infolding system. Conclusions The presented approach allows a comprehensive analysis and presentation of small objects regarding both the overall organization as well as cellular and subcellular details. Although our protocol involves a variety of different equipment and procedures, we maintain that it offers savings in both effort and cost. Co-registration of datasets from different imaging modalities can be accomplished with high-end desktop computers and offers new opportunities for understanding and communicating structural relationships within organisms and tissues. In general, the correlative use of different microscopic imaging techniques will continue to become more widespread in morphological and structural research in zoology. Classical TEM serial section investigations are extremely time consuming, and modern methods for 3D analysis of ultrastructure such as SBF-SEM and FIB-SEM are limited to very small volumes for examination. Thus the re-sectioning of LM sections is suitable for speeding up TEM examination substantially, while microCT could become a key-method for complementing ultrastructural examinations. PMID:23915384

  5. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    PubMed

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  6. Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang

    2011-02-01

    It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).

  7. Microstructural investigation of nickel silicide thin films and the silicide-silicon interface using transmission electron microscopy.

    PubMed

    Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A

    2009-01-01

    This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.

  8. The role of electron irradiation history in liquid cell transmission electron microscopy.

    PubMed

    Moser, Trevor H; Mehta, Hardeep; Park, Chiwoo; Kelly, Ryan T; Shokuhfar, Tolou; Evans, James E

    2018-04-01

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.

  9. The role of electron irradiation history in liquid cell transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Trevor H.; Mehta, Hardeep; Park, Chiwoo

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC- TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the rolemore » of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.« less

  10. The role of electron irradiation history in liquid cell transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Trevor H.; Mehta, Hardeep; Park, Chiwoo

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role ofmore » cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. Lastly, these results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.« less

  11. Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic

    2009-12-21

    The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.

  12. The role of electron irradiation history in liquid cell transmission electron microscopy

    PubMed Central

    Mehta, Hardeep

    2018-01-01

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides. PMID:29725619

  13. The role of electron irradiation history in liquid cell transmission electron microscopy

    DOE PAGES

    Moser, Trevor H.; Mehta, Hardeep; Park, Chiwoo; ...

    2018-04-20

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC-TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role ofmore » cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. Lastly, these results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.« less

  14. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE PAGES

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    2018-04-27

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  15. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  16. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    NASA Technical Reports Server (NTRS)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  17. Frontiers of in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  18. STEM-HAADF electron microscopy analysis of the central dark line defect of human tooth enamel crystallites.

    PubMed

    Gasga, Jose Reyes; Carbajal-de-la-Torre, Georgina; Bres, Etienne; Gil-Chavarria, Ivet M; Rodríguez-Hernández, Ana G; Garcia-Garcia, Ramiro

    2008-02-01

    When human tooth enamel is observed with the Transmission Electron Microscope (TEM), a structural defect is registered in the central region of their nanometric grains or crystallites. This defect has been named as Central Dark Line (CDL) and its structure and function in the enamel structure have been unknown yet. In this work we present the TEM analysis to these crystallites using the High Angle Annular Dark Field (HAADF) technique. Our results suggest that the CDL region is the calcium richest part of the human tooth enamel crystallites.

  19. Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity.

    PubMed

    Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook

    2008-12-01

    Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.

  20. Phonon shift in chemically exfoliated WS2 nanosheet

    NASA Astrophysics Data System (ADS)

    Sarkar, Abdus Salam; Pal, Suman Kalyan

    2018-04-01

    We have synthesized few layer WS2 nanosheets in a low boiling point solvent. Few layer of WS2 sheets are characterized by various techniques such as UV-visible and Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). UV-Vis absorption spectra confirm the well dispersed in isopropyl alcohol. SEM and TEM images indicate the sheet like morphology of WS2. Atomic force microscopy image and room temperature Raman spectroscopy confirm the exfoliation of few layer (4-5 layer) of WS2. Further, Raman spectroscopy was used as a meteorology tool to determine the temperature co-efficient. We have systematically investigated the temperature dependent Raman spectroscopic behavior of few layer WS2. Our results depict the softening of the Raman modes E12g in plane vibration and A1g out of plane vibration with increasing the temperature from 77 K to 300 K. Softening of the Raman modes could be explained in terms of the double resonance which is active in the layered materials. The observed temperature coefficients for two Raman peaks E12g and A1g, are - 0.022 cm-1 and -0.009 cm-1, respectively.

  1. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  2. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  3. In situ sputter cleaning of thin film metal substrates for UHV-TEM corrosion studies.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1973-01-01

    A prerequisite for conducting valid corrosion experiments by in situ electron microscopy techniques is not only the achievement of UHV background pressure conditions at the site of the specimen but also the ability to clean the surface of the thin metal substrate specimen before initiation of the corrosive interaction. A miniaturized simple ion gun has been constructed for this purpose. The gun is small enough to be incorporated into an UHV electron microscope specimen chamber with hot stage in such a way as to permit bombardment of the substrate specimen while observing it by transmission electron microscopy TEM. It is shown that the ion beam generated is confined well enough to cause a sputtering removal of substrate material at a rate of approximately 5-10 A/min and to prevent the sputter deposition of contaminating material from the specimen holder.

  4. Synthesis and structural characterization of CdS nanoparticles using nitrogen adducts of mixed diisopropylthiourea and dithiolate derivatives of Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2015-07-01

    [Cd(diptu)2(ced)], [Cd(diptu)2(ced)(bpy)], [Cd(diptu)2(ced)(phen)], (where diptu = diisopropyl thiourea; ced = 1-cyano-1-carboethoxylethylene-2,2‧-dithiolate; bpy = 2,2‧-bipyridine and phen = 1,10-phenanthroline) have been prepared and used as single source precursors for the preparation of hexadecylamine capped CdS nanoparticles. The precursor complexes were characterized by elemental analysis, FTIR and TGA. The structural properties of the nanoparticles were investigated using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy techniques (SEM). The optical properties of the nanoparticles were studied using UV-Visible and photoluminescence spectroscopy. The XRD analysis showed that the nanoparticles were indexed to the hexagonal phase of CdS and the TEM results showed CdS nanoparticles with average crystallite sizes of 4.00-8.80 nm.

  5. Physicochemical properties of micelles of poly(styrene-b-[3-(methacryloylamino)propyl]trimethylammonium chloride-b-ethylene oxide) in aqueous solutions.

    PubMed

    Liu, Jingjing; Liu, Dian; Yokoyama, Yuuichi; Yusa, Shin-Ichi; Nakashima, Kenichi

    2009-01-20

    Polymeric micelles from a new triblock copolymer, polystyrene-block-poly[(3-(methacryloylamino)propyl)trimethylammonium chloride]-block-poly(ethylene oxide) (PS-b-PMAPTAC-b-PEO), were prepared in aqueous solutions and characterized by various techniques including dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The micelle consists of a PS core, PMAPTAC shell, and PEO corona. It was revealed by SEM and DLS measurements that the micelles have a spherical structure with a hydrodynamic diameter about 75 nm. The addition of tungstate to the micellar solution caused a morphological change in the micelles from extended to shrunken spheres, which can be attributed to the fact that electrostatic repulsion among the cationic PMAPTAC blocks is canceled by the negative charge of the bound tungstate ions. Effective incorporation of tungstate ions into the micelles were confirmed by TEM and zeta-potential measurements.

  6. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  7. A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.

    2010-05-01

    Nanoscale multilayered Al-TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al-TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers.

  8. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    NASA Astrophysics Data System (ADS)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  9. On the empirical determination of positron trapping coefficient at nano-scale helium bubbles in steels irradiated in spallation target

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong

    2018-06-01

    In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.

  10. Electron microscopy investigations of nanoparticles for cancer diagnostic applications

    NASA Astrophysics Data System (ADS)

    Koh, Ai Leen

    This dissertation concerns electron microscopy characterization of magnetic (MNP) and surface enhanced Raman scattering (SERS) nanoparticles for in-vitro cancer diagnostic applications. Electron microscopy is an essential characterization tool owing to its (sub) nanometer spatial resolution. Structural information about the nanoparticles can be obtained using transmission electron microscopy (TEM), which can in turn be correlated to their physical characteristics. The scanning electron microscope (SEM) has excellent depth of field and can be effectively utilized to obtain high resolution information about nanoparticles binding onto cell surfaces. Part One of this thesis focuses on MNPs for bio-sensing and detection applications. As a preliminary study, chemically-synthesized, commercially-available iron oxide nanoparticles were compared against their laboratory-synthesized counterparts to assess their suitability for this application. The motivation for this initial study came about due to the lack of published data on commercially available iron oxide nanoparticles. TEM studies show that the latter are "beads" composed of multiple iron oxide cores encapsulated by a polymer shell, with large standard deviations in core diameter. Laboratory-synthesized iron oxide nanoparticles, on the other hand, are single core particles with small variations in diameter and therefore are expected to be better candidates for the required application. A key limitation in iron oxide nanoparticles is their relatively weak magnetic signals. The development of high moment Synthetic Anti-Ferromagnetic (SAF) nanoparticles aims to overcome this issue. SAFs are a novel class of MNPs fabricated using nanoimprint lithography, direct deposition of multilayer structure and final suspension into liquid medium (water). TEM analyses of cross-section specimens reveal that the SAFs possess characteristics similar to those of sputtered magnetic multilayer thin films. Their layered structure is preserved after a chemical etch. Magnetic measurements show a slight decrease in magnetic moment after ion milling. From TEM characterization, the introduction of oxygen into the copper release layer, prior the film deposition process, can effectively control the topography of the oxidized-copper grains and, consequently, lead to the production of SAF nanoparticles with flatter layers. Size distribution studies performed on SAFs fabricated using self-assembled stamps show that it is possible to produce monodisperse nanoparticles with diameters from 70 nm up. Part Two of the dissertation describes structural characterization experiments performed on Composite Organic-Inorganic Nanoparticles (COINs), which are a novel type of SERS nanoclusters formed by aggregating silver nanoparticles with Raman molecules, and then encapsulating them with an organic coating that stabilizes the aggregates and promotes subsequent functionalization with antibodies. Part Three of this dissertation focuses on the development and application of electron microscopy-based techniques to characterize the nanomaterial-biology interactions, to assess how, or indeed whether, nanoparticles are attaching to the cancer cells. The technique of negative staining was applied to simultaneously visualize inorganic nanoparticles and their biofunctionalized entities under the TEM and to verify the successful functionalization of nanoparticles with antibodies. The interpretation of the negatively-stained COINs was consistent with the EFTEM data. Next, the localization and characterization of CD54-functionalized COINs on the apicolateral portions of U937 leukemia cell lines was determined using TEM, SEM and Scanning Auger Microscopy. The analyses show that CD54 antigens are localized at a specific region on U937 leukemia cell surfaces. SEM imaging and SER spectroscopy correlation studies of different antibody-conjugated COINs attached onto different cancer cell lines show a direct correlation between the number of COINs binding to cells and the corresponding SER intensity. Finally, TEM was used to locate intra-cellularly labeled COINs and to trace the phospho-stat6 signaling pathway in U937 leukemia cells, demonstrating that COINs can be used to detect intracellular phosphorylation signaling events. These experiments demonstrate the importance of electron microscopy for analyzing the material-biology interface and for validating the attachment of nanoparticles on and in cells. Thus, electron microscope provides complementary imaging and spectroscopic information to current magnetic and SERS bio-detection technologies. (Abstract shortened by UMI.)

  11. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  12. Ciliary body toxicities of systemic oxcarbazepine and valproic acid treatments: electron microscopic study.

    PubMed

    Göktaş, Güleser; Aktaş, Zeynep; Erdoğan, Deniz; Seymen, Cemile Merve; Karaca, Emine Esra; Cansu, Ali; Serdaroğlu, Ayşe; Kaplanoğlu, Gülnur Take

    2015-01-01

    Ciliary body is responsible for humour aqueous production in posterior chamber. Valproic acid (VPA) has been widely used for the treatment of epilepsy and other neuropsychiatric diseases such as bipolar disease and major depression. Oxcarbazepine (OXC) is a new anti-epileptic agent that has been used recently for childhood epilepsies such as VPA. In this study, we aimed to investigate the effects of VPA and OXC treatments used as antiepileptic in ciliary body by electron microscopy. In our study, 40 Wistar rats (21 days old) were divided equally into four groups which were applied saline (group 1), VPA (group 2), OXC (group 3) and VPA + OXC (group 4). The as-prepared ocular tissues were characterized by transmission electron microscopy (TEM) technique in scanning and transmission electron microscopy (SEM-TEM) (Carl Zeiss EVO LS10). The results confirmed that VPA caused dense ciliary body degeneration. Additionally, ciliary body degeneration in group 4 was supposed to be due to VPA treatment. Ciliary body damage and secondary outcomes should be considered in patients with long-term VPA therapy.

  13. Optical properties of template synthesized nanowalled ZnS microtubules

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  14. Pronounced effects of the nominal concentrations of WO3 and Ag: WO3 nano-plates (obtained by a co-precipitation method) on their structural, morphological and optical properties

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; Deepa, B.

    2018-03-01

    Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40-80 nm diameter and 1-1.5 mm length. Fluorescence (PL) and UV-visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron-phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet-blue, blue-green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.

  15. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique

    PubMed Central

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik

    2016-01-01

    This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique. PMID:28787838

  16. Synthesis and Characterization of Nanofibrous Polyaniline Thin Film Prepared by Novel Atmospheric Pressure Plasma Polymerization Technique.

    PubMed

    Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik

    2016-01-11

    This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight ( M w ), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.

  17. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  18. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  19. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  20. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. On the chemical homogeneity of In xGa 1–xN alloys – Electron microscopy at the edge of technical limits

    DOE PAGES

    Specht, Petra; Kisielowski, Christian

    2016-08-30

    Ternary In xGa 1–xN alloys became technologically attractive when p-doping was achieved to produce blue and green light emitting diodes (LED)s. Starting in the mid 1990th, investigations of their chemical homogeneity were driven by the need to understand carrier recombination mechanisms in optical device structures to optimize their performance. Transmission electron microscopy (TEM) is the technique of choice to complement optical data evaluations, which suggests the coexistence of local carrier recombination mechanisms based on piezoelectric field effects and on indium clustering in the quantum wells of LEDs. We summarize the historic context of homogeneity investigations using electron microscopy techniques thatmore » can principally resolve the question of indium segregation and clustering in In xGa 1–xN alloys if optimal sample preparation and electron dose-controlled imaging techniques are employed together with advanced data evaluation.« less

  2. Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide/Montmorillonite (MMT) Nanocomposites

    PubMed Central

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643

  3. Comparison of in situ polymerization and solution-dispersion techniques in the preparation of Polyimide/Montmorillonite (MMT) Nanocomposites.

    PubMed

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.

  4. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  5. Cryo-electron microscopy and cryo-electron tomography of nanoparticles.

    PubMed

    Stewart, Phoebe L

    2017-03-01

    Cryo-transmission electron microscopy (cryo-TEM or cryo-EM) and cryo-electron tomography (cryo-ET) offer robust and powerful ways to visualize nanoparticles. These techniques involve imaging of the sample in a frozen-hydrated state, allowing visualization of nanoparticles essentially as they exist in solution. Cryo-TEM grid preparation can be performed with the sample in aqueous solvents or in various organic and ionic solvents. Two-dimensional (2D) cryo-TEM provides a direct way to visualize the polydispersity within a nanoparticle preparation. Fourier transforms of cryo-TEM images can confirm the structural periodicity within a sample. While measurement of specimen parameters can be performed with 2D TEM images, determination of a three-dimensional (3D) structure often facilitates more spatially accurate quantization. 3D structures can be determined in one of two ways. If the nanoparticle has a homogeneous structure, then 2D projection images of different particles can be averaged using a computational process referred to as single particle reconstruction. Alternatively, if the nanoparticle has a heterogeneous structure, then a structure can be generated by cryo-ET. This involves collecting a tilt-series of 2D projection images for a defined region of the grid, which can be used to generate a 3D tomogram. Occasionally it is advantageous to calculate both a single particle reconstruction, to reveal the regular portions of a nanoparticle structure, and a cryo-electron tomogram, to reveal the irregular features. A sampling of 2D cryo-TEM images and 3D structures are presented for protein based, DNA based, lipid based, and polymer based nanoparticles. WIREs Nanomed Nanobiotechnol 2017, 9:e1417. doi: 10.1002/wnan.1417 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J.

    Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.

  7. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    PubMed

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  8. Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; Barthou, C.; El Mir, L.

    2012-06-01

    We report the synthesis of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterized by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.

  9. Mechanical characterization of TiO{sub 2} nanofibers produced by different electrospinning techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048

    2015-02-15

    In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less

  10. Thin film assembly of nanosized cobalt(II) bis(5-phenyl-azo-8-hydroxyquinolate) using static step-by-step soft surface reaction technique: Structural characterization and optical properties.

    PubMed

    Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E

    2017-09-05

    Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Strains on the nano- and microscale in nickel-titanium: An advanced TEM study

    NASA Astrophysics Data System (ADS)

    Tirry, Wim

    2007-12-01

    A general introduction to shape memory behavior and the martensitic transformation is given in chapter 1, with speck information concerning the NiTi material. The technique used to study the material is transmission electron microscopy (TEM) of which the basics are explained in chapter 2 as well as information concerning the NiTi material. The main goal was to apply more advanced TEM techniques in order to measure some aspects in a quantitative way rather than qualitative, which is mostly the case in conventional TEM. (1) Quantitative electron diffraction was used to refine the structure of Ni4Ti3 precipitates, this was done by using the MSLS method in combination with density functional theory (DFT) calculations. (2) These Ni4Ti3 precipitates are (semi-)coherent which results in a strain field in the matrix close to the precipitate. High resolution TEM (HRTEM) in combination with image processing techniques was used to measure these strain fields. The obtained results are compared to the Eshelby model for elliptical inclusions, and major difference is an underestimation of the strain magnitude by the model. One of the algorithms used to extract strain information from HRTEM images is the geometric phase method. (3) The Ni4Ti3-Ni4Ti3 and Ni4Ti3-precipitate interface was investigated with HRTEM showing that the Ni4Ti3-precipitate interface might be diffuse over a range of 3nm. (4) In-situ straining experiments were performed on single crystalline and superelastic polycrystalline NiTi samples. It seems that the strain induced martensite planes in the polycrystalline sample show no sign of twinning. This is in contradiction to what is expected and is discussed in the view of the crystallographic theory of martensite, in addition a first model explaining this behavior is proposed. In this dissertation the main attention is divided over the material aspects of NiTi and on how to apply these more advanced TEM techniques.

  12. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument.

    PubMed

    Geelen, Daniël; Thete, Aniket; Schaff, Oliver; Kaiser, Alexander; van der Molen, Sense Jan; Tromp, Rudolf

    2015-12-01

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. Copyright © 2015. Published by Elsevier B.V.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetaz, Laure; Lopez-Haro, M.; Escribano, S.

    Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present nomore » difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.« less

  14. In-situ Polymerization of Polyaniline/Polypyrrole Copolymer using Different Techniques

    NASA Astrophysics Data System (ADS)

    Hammad, A. S.; Noby, H.; Elkady, M. F.; El-Shazly, A. H.

    2018-01-01

    The morphology and surface area of the poly(aniline-co-pyrrole) copolymer (PANPY) are important properties which improve the efficiency of the copolymer in various applications. In this investigation, different techniques were employed to produce PANPY in different morphologies. Aniline and pyrrole were used as monomers, and ammonium peroxydisulfate (APS) was used as an oxidizer with uniform molar ratio. Rapid mixing, drop-wise mixing, and supercritical carbon dioxide (ScCO2) polymerization techniques were appointed. The chemical structure, crystallinity, porosity, and morphology of the composite were distinguished by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) analysis, and transmission electron microscopy (TEM) respectively. The characterization tests indicated that the polyaniline/polypyrrole copolymer was successfully prepared with different morphologies. Based on the obtained TEM, hollow nanospheres were formed using rapid mixing technique with acetic acid that have a diameter of 75 nm and thickness 26 nm approximately. Also, according to the XRD, the produced structures have a semi- crystalline structure. The synthesized copolymer with ScCO2-assisted polymerization technique showed improved surface area (38.1 m2/g) with HCl as dopant.

  15. Transfer and alignment of random single-walled carbon nanotube films by contact printing.

    PubMed

    Liu, Huaping; Takagi, Daisuke; Chiashi, Shohei; Homma, Yoshikazu

    2010-02-23

    We present a simple method to transfer large-area random single-walled carbon nanotube (SWCNT) films grown on SiO(2) substrates onto another surface through a simple contact printing process. The transferred random SWCNT films can be assembled into highly ordered, dense regular arrays with high uniformity and reproducibility by sliding the growth substrate during the transfer process. The position of the transferred SWCNT film can be controlled by predefined patterns on the receiver substrates. The process is compatible with a variety of substrates, and even metal meshes for transmission electron microscopy (TEM) can be used as receiver substrates. Thus, suspended web-like SWCNT networks and aligned SWCNT arrays can be formed over the grids of TEM meshes, so that the structures of the transferred SWCNTs can be directly observed by TEM. This simple technique can be used to controllably transfer SWCNTs for property studies, for the fabrication of devices, or even as support films for TEM meshes.

  16. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beammore » milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.« less

  17. Microstructure and composition analysis of low-Z/low-Z multilayers by combining hard and resonant soft X-ray reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.

    2016-06-28

    Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less

  18. Composition, speciation and distribution of iron minerals in Imperata cylindrica.

    PubMed

    Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús

    2007-05-01

    A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.

  19. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturrondobeitia, M., E-mail: maider.iturrondobeitia@ehu.es; Okariz, A.; Fernandez-Martinez, R.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement ofmore » the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graetz J.; Meng, Y.S.; McGilvray, T.

    Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is onemore » of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic liquid. To this end, we have developed a novel in situ instrumental system combining analytical electron microscopy with advanced spectroscopy to probe the dynamic phenomena in an all solid-state nano-battery. In situ electron microscopy is a versatile technique that yields insights into challenging questions that could not be obtained using other techniques. However, in order to fully exploit the capabilities, a very carefully thought-out plan of action is essential. It is important to recognize that this is not just a simple characterization tool, but a collection of tools that make up a complete experimental set-up: the choice of FIB operation conditions, specimen holder for biasing, grid materials and design as well as microscope environment must be thoroughly considered before performing an experiment.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  2. Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.

    PubMed

    Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien

    2018-06-04

    Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  3. The potentials and challenges of electron microscopy in the study of atomic chains

    NASA Astrophysics Data System (ADS)

    Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu

    2017-04-01

    The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud

  4. 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM).

    PubMed

    Drobne, Damjana

    2013-01-01

    Integration of a scanning electron microscope (SEM) and focused ion beam (FIB) technology into a single FIB/SEM system permits use of the FIB as a nano-scalpel to reveal site-specific subsurface microstructures which can be examined in great detail by SEM. The FIB/SEM technology is widely used in the semiconductor industry and material sciences, and recently its use in the life sciences has been initiated. Samples for FIB/SEM investigation can be either embedded in a plastic matrix, the traditional means of preparation of transmission electron microscopy (TEM) specimens, or simply dried as in samples prepared for SEM imaging. Currently, FIB/SEM is used in the life sciences for (a) preparation by the lift-out technique of lamella for TEM analysis, (b) tomography of samples embedded in a matrix, and (c) in situ site-specific FIB milling and SEM imaging using a wide range of magnifications. Site-specific milling and imaging has attracted wide interest as a technique in structural research of single eukaryotic and prokaryotic cells, small animals, and different animal tissue, but it still remains to be explored more thoroughly. In the past, preparation of samples for site-specific milling and imaging by FIB/SEM has typically adopted the embedding techniques used for TEM samples, and which have been very well described in the literature. Sample preparation protocols for the use of dried samples in FIB/SEM have been less well investigated. The aim of this chapter is to encourage application of FIB/SEM on dried biological samples. A detailed description of conventional dried sample preparation and FIB/SEM investigation of dried biological samples is presented. The important steps are described and illustrated, and direct comparison between embedded and dried samples of same tissues is provided. The ability to discover links between gross morphology of the tissue or organ, surface characteristics of any selected region, and intracellular structural details on the nanometer scale is an appealing application of electron microscopy in the life sciences and merits further exploration.

  5. Tem Observation of Precipitates in Ag-Added Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Nagai, Takeshi; Matsuda, Kenji; Nakamura, Junya; Kawabata, Tokimasa; Marioara, Calin; Andersen, Sigmund J.; Holmestad, Randi; Hirosawa, Shoichi; Horita, Zenji; Terada, Daisuke; Ikeno, Susumu

    The influence of addition of the small amount of transition metals to Al-Mg-Si alloy had reported by many researchers. In the previous our work, β' phase in alloys Al — 1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) were investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), in order to understand the effect of Ag. In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). One Ag-containing atomic column was observed per β' unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free β'. In this work, the microstructure of G.P. zone and β'' phase was investigated by TEM observation, which were formed before β' phase. The deformed sample by high pressure torsion (HPT) technique before aging was also investigated to understand its effect for aging in this alloy.

  6. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    DOE PAGES

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; ...

    2015-11-09

    Here, nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulatedmore » grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.« less

  7. Visible cathodoluminescence of Er ions in β-Ga(2)O(3) nanowires and microwires.

    PubMed

    Nogales, E; Méndez, B; Piqueras, J

    2008-01-23

    Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in the grown structures. Mapping of the main 555 nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.

  8. The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600.

    PubMed

    Burke, M G; Bertali, G; Prestat, E; Scenini, F; Haigh, S J

    2017-05-01

    In situ analytical transmission electron microscopy (TEM) can provide a unique perspective on dynamic reactions in a variety of environments, including liquids and gases. In this study, in situ analytical TEM techniques have been applied to examine the localised oxidation reactions that occur in a Ni-Cr-Fe alloy, Alloy 600, using a gas environmental cell at elevated temperatures. The initial stages of preferential intergranular oxidation, shown to be an important precursor phenomenon for intergranular stress corrosion cracking in pressurized water reactors (PWRs), have been successfully identified using the in situ approach. Furthermore, the detailed observations correspond to the ex situ results obtained from bulk specimens tested in hydrogenated steam and in high temperature PWR primary water. The excellent agreement between the in situ and ex situ oxidation studies demonstrates that this approach can be used to investigate the initial stages of preferential intergranular oxidation relevant to nuclear power systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Microstructural characterization of AA5183 aluminum clad AISI 1018 steel prepared by electro spark deposition

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Aghajani, H.; Kianvash, A.; Sorrell, C. C.

    2018-04-01

    The application of a simple and effective technique, electro spark deposition (ESD), to create aluminum clad steel plate has been studied. AA5183 aluminum rods were used as the rotating electrode for cladding of the AISI 1018 steel. The microstructure of the interfacial zone including the intermetallic compounds (IMC) layer and the clad metal have been investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM and STEM). According to the results sound aluminum clad with thickness up to 25–30 μm can be achieved. Very thin (<4 μm) IMC layer was formed at the Al/Fe interface and the structural (electron diffraction pattern) and chemical analysis (STEM) conducted by TEM confirmed that the layer is constituted of Fe rich phases, both implying a much improved mechanical properties. Investigation of the orientations of phases at the interfacial zone confirmed absence of any preferred orientation.

  10. Structure, Microsegregation, and Precipitates of an Alloy 690 ESR Ingot in Industrial Scale

    NASA Astrophysics Data System (ADS)

    Wang, Min; Zha, Xiangdong; Gao, Ming; Ma, Yingche; Liu, Kui; Li, Yiyi

    2015-11-01

    The structure, interdendritic, and intergranular segregation, and precipitates of an Alloy 690 electro-slag remelting (ESR) ingot in commercial scale (3t) were investigated by the optical microscopy, electroprobe microanalysis, scanning electron microscopy, and transmission electron microscopy (TEM) techniques. The results indicate that the central longitudinal section of the ESR ingot comprised the ramp-up, steady-state, and hot-top regions, which could be easily distinguished from each other through the macrostructures of them. In the interdendritic area, Cr and Ti were enriched, while Ni and Fe were depleted, and the nominal segregation indexes ( ζ i = C 0 i / C interdendritic i ) of Ti, Cr, and Ni were 0.40, 0.91, and 1.04, respectively, in the hot-top region where suffered the severest segregation. Nitrides, principally precipitated between dendrites, were identified as TiN by TEM and EDS. The morphology, size distribution, and volume fraction of them were determined as well. In terms of the intergranular area, Cr and C coexisted, while Ni and Fe were depleted. And the dendrite-like carbides continuously distributed on the interface between grains, which were identified as M23C6 by the selected area diffraction pattern.

  11. Perspectives on in situ electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haimei; Zhu, Yimei

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  12. Perspectives on in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei

    2017-03-29

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  13. An ultrahigh pressure homogenization technique for easily exfoliating few-layer phosphorene from bulk black phosphorus

    NASA Astrophysics Data System (ADS)

    Guan, Qing-Qing; Zhou, Hua-Jing; Ning, Ping; Lian, Pei-Chao; Wang, Bo; He, Liang; Chai, Xin-Sheng

    2018-05-01

    We have developed an easy and efficient method for exfoliating few-layer sheets of black phosphorus (BP) in N-methyl-2-pyrrolidone, using ultra-high pressure homogenization (UPH). The BP was first exfoliated into sheets that were a few atomic layers thick, using a homogenizer for only 30 min. Next, a double centrifugation procedure was used to separate the material into few-layer nanosheets that were examined by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) spectroscopy. The results show that the products are specimens of phosphorene that are only a few-layer thick.

  14. Catalyst-layer ionomer imaging of fuel cells

    DOE PAGES

    Guetaz, Laure; Lopez-Haro, M.; Escribano, S.; ...

    2015-09-14

    Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present nomore » difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.« less

  15. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  16. Observation of partial relaxation mechanisms via anisotropic strain relief on epitaxial islands using semiconductor nanomembranes

    NASA Astrophysics Data System (ADS)

    Rosa, Barbara L. T.; Marçal, Lucas A. B.; Ribeiro Andrade, Rodrigo; Dornellas Pinto, Luciana; Rodrigues, Wagner N.; Lustoza Souza, Patrícia; Pamplona Pires, Mauricio; Wagner Nunes, Ricardo; Malachias, Angelo

    2017-07-01

    In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the <110> directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.

  17. Observation of partial relaxation mechanisms via anisotropic strain relief on epitaxial islands using semiconductor nanomembranes.

    PubMed

    Rosa, Barbara L T; Marçal, Lucas A B; Andrade, Rodrigo Ribeiro; Pinto, Luciana Dornellas; Rodrigues, Wagner N; Souza, Patrícia Lustoza; Pires, Mauricio Pamplona; Nunes, Ricardo Wagner; Malachias, Angelo

    2017-07-28

    In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.

  18. Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Bakalis, Evangelos; Proetto, Maria; Li, Yiwen; Park, Chiwoo; Zerbetto, Francesco; Gianneschi, Nathan C

    2018-01-16

    Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.

  19. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  20. Quantitative characterization of nanoparticle agglomeration within biological media

    NASA Astrophysics Data System (ADS)

    Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy

    2012-07-01

    Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  2. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.

    PubMed

    Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B

    2016-03-17

    Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.

  3. Bactericidal Effects of Charged Silver Nanoparticles in Methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Romero-Urbina, Dulce; Velazquez-Salazar, J. Jesus; Lara, Humberto H.; Arellano-Jimenez, Josefina; Larios, Eduardo; Yuan, Tony T.; Hwang, Yoon; Desilva, Mauris N.; Jose-Yacaman, Miguel

    2015-03-01

    The increased number of infections due to antibiotic-resistant bacteria is a major concern to society. The objective of this work is to determine the effect of positively charged AgNPs on methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus(MRSA) cell wall using advanced electron microscopy techniques. Positively charged AgNPs suspensions were synthesized via a microwave heating technique. The suspensions were then characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) showing AgNPs size range from 5 to 30 nm. MSSA and MRSA were treated with positively charged AgNPs concentrations ranging from 0.06 mM to 31 mM. The MIC50 studies showed that viability of MSSA and MRSA could be reduced by 50% at a positively charged AgNPs concentration of 0.12 mM supported by Scanning-TEM (STEM) images demonstrating bacteria cell wall disruption leading to lysis after treatment with AgNPs. The results provide insights into one mechanism in which positively charged AgNPs are able to reduce the viability of MSSA and MRSA. This research is supported by National Institute on Minority Health and Health Disparities (G12MD007591) from NIH, NSF-PREM Grant No. DMR-0934218, The Welch Foundation and NAMRU-SA work number G1009.

  4. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique.

    PubMed

    Patel, Meghavi N; Lakkadwala, Sushant; Majrad, Mohamed S; Injeti, Elisha R; Gollmer, Steven M; Shah, Zahoor A; Boddu, Sai Hanuman Sagar; Nesamony, Jerry

    2014-12-01

    The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.

  5. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    NASA Astrophysics Data System (ADS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  6. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods.

    PubMed

    Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-07-01

    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.

  8. New innovations for contrast enhancement in electron microscopy

    NASA Astrophysics Data System (ADS)

    Mohan, A.

    In this study two techniques for producing and improving contrast in Electron Microscopy are discussed. The first technique deals with the production of secondary contrast in a Variable Pressure SEM under poor vacuum conditions using the specimen current signal. A review of the prior work in this field shows that the presence of the gas ions in the microscope column results in the amplification of the specimen current signal which is enriched in secondary content. The focus of this study is to establish practical conditions for imaging samples in the microscope using specimen current with gas amplification. This is done by understanding the different variables in the microscope which affect the image formation process and then finding out optimum conditions for obtaining the best possible image, i.e., the image most enhanced in secondary contrast. A few 'real life' samples analyzed using this technique show that the gas amplified specimen current images contain secondary information and, in some cases, provide clear advantages to imaging with conventional secondary and backscattered detectors. The second technique dealing with the production of phase contrast in the TEM for extremely thin, electron transparent samples, is analyzed. A review of the literature regarding prior work in the field shows that, while the theoretical aspects of production of phase contrast in the TEM using a phase plate are well understood, there have been problems in practically implementing this in the microscope. One major assumption with most of the studies is that a fiber, partially coated with gold, results in the formation of point charges which is an essential requirement for symmetrically shifting the phase of the electron beam. The focus of this portion of the dissertation is to image the type of fields associated with such a phase plate using the technique of electron holography. It is found that there are two types of fields associated with a phase plate of this sort. One is a cylindrical field which extends along the length of the fiber while the other is a localized spherically symmetric field. A series of simulations show that the spherical field can produce phase contrast in the TEM and also improve the contrast transfer properties of the microscope.

  9. Synthesis by sol-gel process, structural and optical properties of nanoparticles of zinc oxide doped vanadium

    NASA Astrophysics Data System (ADS)

    El Ghoul, J.; Barthou, C.; El Mir, L.

    2012-06-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at.% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterised by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.

  10. Green synthesis of silver nanoparticles using tannins

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  11. Electric shielding films for biased TEM samples and their application to in situ electron holography.

    PubMed

    Nomura, Yuki; Yamamoto, Kazuo; Hirayama, Tsukasa; Saitoh, Koh

    2018-06-01

    We developed a novel sample preparation method for transmission electron microscopy (TEM) to suppress superfluous electric fields leaked from biased TEM samples. In this method, a thin TEM sample is first coated with an insulating amorphous aluminum oxide (AlOx) film with a thickness of about 20 nm. Then, the sample is coated with a conductive amorphous carbon film with a thickness of about 10 nm, and the film is grounded. This technique was applied to a model sample of a metal electrode/Li-ion-conductive-solid-electrolyte/metal electrode for biasing electron holography. We found that AlOx film with a thickness of 10 nm has a large withstand voltage of about 8 V and that double layers of AlOx and carbon act as a 'nano-shield' to suppress 99% of the electric fields outside of the sample. We also found an asymmetry potential distribution between high and low potential electrodes in biased solid-electrolyte, indicating different accumulation behaviors of lithium-ions (Li+) and lithium-ion vacancies (VLi-) in the biased solid-electrolyte.

  12. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    PubMed

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangadurai, P.; Lumelsky, Yulia; Silverstein, Michael S.

    Transmission electron microscopy (TEM) cross-section specimens of PMMA in contact with gold and Si were prepared by focused ion beam (FIB) and compared with plan-view PMMA specimens prepared by a dip-coating technique. The specimens were characterized by TEM and electron energy loss spectroscopy (EELS). In the cross-section specimens, the thin films of PMMA were located in a Si-PMMA-Au multilayer. Different thicknesses of PMMA films were spin-coated on the Si substrates. The thickness of the TEM specimens prepared by FIB was estimated using EELS to be 0.65 of the plasmon mean-free-path. Along the PMMA-Au interface, Au particle diffusion into the PMMAmore » was observed, and the size of the Au particles was in the range of 2-4 nm. Dip-coating of PMMA directly on Cu TEM grids resulted in thin specimens with a granular morphology, with a thickness of 0.58 of the plasmon mean-free-path. The dip-coated specimens were free from ion milling induced artifacts, and thus serve as control specimens for comparison with the cross-sectioned specimens prepared by FIB.« less

  14. Quantitative strain and compositional studies of InxGa1-xAs Epilayer in a GaAs-based pHEMT device structure by TEM techniques.

    PubMed

    Sridhara Rao, Duggi V; Sankarasubramanian, Ramachandran; Muraleedharan, Kuttanellore; Mehrtens, Thorsten; Rosenauer, Andreas; Banerjee, Dipankar

    2014-08-01

    In GaAs-based pseudomorphic high-electron mobility transistor device structures, strain and composition of the In x Ga1-x As channel layer are very important as they influence the electronic properties of these devices. In this context, transmission electron microscopy techniques such as (002) dark-field imaging, high-resolution transmission electron microscopy (HRTEM) imaging, scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging and selected area diffraction, are useful. A quantitative comparative study using these techniques is relevant for assessing the merits and limitations of the respective techniques. In this article, we have investigated strain and composition of the In x Ga1-x As layer with the mentioned techniques and compared the results. The HRTEM images were investigated with strain state analysis. The indium content in this layer was quantified by HAADF imaging and correlated with STEM simulations. The studies showed that the In x Ga1-x As channel layer was pseudomorphically grown leading to tetragonal strain along the [001] growth direction and that the average indium content (x) in the epilayer is ~0.12. We found consistency in the results obtained using various methods of analysis.

  15. Transmission electron microscopy of polymer blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique Daniel

    Transmission electron microscopy (TEM) of soft matter is a field that warrants further investigation. Developments in sample preparation, imaging and spectroscopic techniques could lead to novel experiments that may further our understanding of the structure and the role structure plays in the functionality of various organic materials. Unlike most hard materials, TEM of organic molecules is limited by the amount of radiation damage the material can withstand without changing its structure. Despite this limitation, TEM has been and will be a powerful tool to study polymeric materials and other soft matter. In this dissertation, an introduction of TEM for polymer scientists is presented. The fundamentals of interactions of electrons with matter are described using the Schrodinger wave equation and scattering cross-sections to fully encompass coherent and incoherent scattering. The intensity, which is the product of the wave function and its complex conjugate, shows no perceptible change due to the sample. Instead, contrast is generated through the optical system of the microscope by removing scattered electrons or by generating interference due to material-induced phase changes. Perhaps the most challenging aspect of taking TEM images, however, is sample preparation, because TEM experiments require materials with approximately 50 nm thickness. Although ultramicrotomy is a well-established powerful tool for preparing biological and polymeric sections for TEM, the development of cryogenic Focused Ion Beam may enable unprecedented cross-sectional TEM studies of polymer thin films on arbitrary substrates with nanometer precision. Two examples of TEM experiments of polymeric materials are presented. The first involves quantifying the composition profile across a lamellar phase obtained in a multicomponent blend of saturated poly(butadiene) and poly(isobutylene), stabilized by a saturated poly(butadiene) copolymer serving as a surfactant, using TEM and self-consistent field theory (SCFT). The liquid-like nature of this system at room temperature makes traditional staining methods for the enhancement of contrast ineffective. As an alternative, we take advantage of the large inelastic scattering cross-section of soft materials to generate contrast in zero-loss TEM images. Independent spatially resolved thickness measurements enable quantification of electron scattering. This enabled a comparison between the TEM data and predictions based on SCFT without any adjustable parameters. The second example involves the utilization of energy-filtered transmission electron microscopy (EFTEM) to compute elemental maps by taking advantage of ionization events. Elemental mapping of lithium is used to determine the distribution of salt in nanostructured poly(styrene-block-ethylene oxide) (SEO) copolymer/lithium salt electrolytes. Surprisingly, the concentration of lithium within a poly(ethylene oxide) (PEO) domain is found to be inhomogeneous; the salt is localized to the middle of the channels. Self-consistent field theory simulations suggest that localization of lithium is due to chain stretching at the interface, which increases with molecular weight. EFTEM and SCFT results show that the segregation of lithium salt to the middle of the PEO lamellae is greater for higher molecular weight polymers. This is correlated with the ionic conductivity of the copolymer electrolyte, which is found to show a higher conductivity for thinner lithium lamellae.

  16. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions achievable with short intense pulses containing a large number of electrons, however, are limited to tens of nanometers and nanoseconds, respectively. This is because Coulomb repulsion is significant in such a pulse, and the electrons spread in space and time, thus limiting the beam coherence. It is therefore not possible to image the ultrafast elementary dynamics of complex transformations. The challenge was to retain the high spatial resolution of a conventional TEM while simultaneously enabling the temporal resolution required to visualize atomic-scale motions. In this Account, we discuss the development of four-dimensional ultrafast electron microscopy (4D UEM) and summarize techniques and applications that illustrate the power of the approach. In UEM, images are obtained either stroboscopically with coherent single-electron packets or with a single electron bunch. Coulomb repulsion is absent under the single-electron condition, thus permitting imaging, diffraction, and spectroscopy, all with high spatiotemporal resolution, the atomic scale (sub-nanometer and femtosecond). The time resolution is limited only by the laser pulse duration and energy carried by the electron packets; the CCD camera has no bearing on the temporal resolution. In the regime of single pulses of electrons, the temporal resolution of picoseconds can be attained when hundreds of electrons are in the bunch. The applications given here are selected to highlight phenomena of different length and time scales, from atomic motions during structural dynamics to phase transitions and nanomechanical oscillations. We conclude with a brief discussion of emerging methods, which include scanning ultrafast electron microscopy (S-UEM), scanning transmission ultrafast electron microscopy (ST-UEM) with convergent beams, and time-resolved imaging of biological structures at ambient conditions with environmental cells.

  17. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel

    NASA Astrophysics Data System (ADS)

    El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H. J.

    2008-05-01

    We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol-gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at% has been investigated. The obtained nanopowder was characterised by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range after thermal treatment at 500 °C in air. The energy position of the obtained PL band depends on the wavelength excitation and presents a blue shift with measurement temperature increase. Different possible attributions of this emission band will be discussed.

  18. Significant enhancement in volumetric and gravimetric capacitance of Cu-TiO2/PPY composite for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Purty, B.; Choudhary, R. B.

    2018-04-01

    Copper doped titanium dioxide-polypyrrole (Cu-TiO2/PPY) composite was successfully synthesized via chemical oxidative in-situ polymerization process. The structural and morphological properties of Cu-TiO2/PPY composite were investigated using X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and transmission electron microscopy(TEM) techniques. The electrochemical properties of as-synthesized composite were studied using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The novel Cu-TiO2/PPY composite showed enhanced volumetric capacitance ˜714 F cm-1 and gravimetric capacitance ˜674 F g-1 at 1 A g-1. In addition an excellent coulombic efficiency and comparabley low charge transfer resistance than pure PPY suggests improved supercapacitive performance of Cu-TiO2/PPY composite as an electrode material.

  19. Correlative Fluorescence and Electron Microscopy in 3D-Scanning Electron Microscope Perspective.

    PubMed

    Franks, Jonathan; Wallace, Callen T; Shibata, Masateru; Suga, Mitsuo; Erdman, Natasha; Stolz, Donna B; Watkins, Simon C

    2017-04-03

    The ability to correlate fluorescence microscopy (FM) and electron microscopy (EM) data obtained on biological (cell and tissue) specimens is essential to bridge the resolution gap between the data obtained by these different imaging techniques. In the past such correlations were limited to either EM navigation in two dimensions to the locations previously highlighted by fluorescence markers, or subsequent high-resolution acquisition of tomographic information using a TEM. We present a novel approach whereby a sample previously investigated by FM is embedded and subjected to sequential mechanical polishing and backscatter imaging by scanning electron microscope. The resulting three dimensional EM tomogram of the sample can be directly correlated to the FM data. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Egorov, V. V.; Gorshkov, A. N.; Murugova, T. N.; Vasin, A. V.; Lebedev, D. V.; Isaev-Ivanov, V. V.; Kiselev, O. I.

    2016-01-01

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551-560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are able to influence the protein oligomerization are discussed.

  1. A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide–imide) composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, I.R. Iran; Zadehnazari, Amin

    Multi-walled carbon nanotubes (MWCNTs) were functionalized by ascorbic acid by a fast strategy under microwave irradiation to improve interfacial interactions and dispersion of CNTs in a poly(amide–imide) (PAI) matrix. This technique provides a rapid and economically viable route to produce covalently functionalized CNTs. The as-prepared, new type of functionalized CNTs were analyzed by several techniques. The thermal stabilities and mechanical interfacial properties of CNT/PAI composites were investigated using several techniques. The dispersion state of CNTs in the PAI matrix was observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The mechanical interfacial property of the compositesmore » was significantly increased by the addition of ascorbic acid treated CNTs. The FE-SEM and TEM results showed that the separation and uniform dispersion of CNTs in the PAI matrix. The overview of these recent results is presented. -- Graphical abstract: Presentation of possible interactions of hydrogen bonding between the MWCNT-AS and the PAI chains. Highlights: • Surface functionalization of MWCNTs with ascorbic acid under microwave irradiation. • The MWCNT-AS/PAI composite films were fabricated by solution blending process. • Microstructure and MWCNT states in the composites were studied. • Thermal and mechanical properties of the composite films were evaluated. • Films of different contents of the MWCNTs-AS showed a superior tensile behavior.« less

  2. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  3. Cytocompatibility and uptake of halloysite clay nanotubes.

    PubMed

    Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano

    2010-03-08

    Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.

  4. Tissue and cellular localization of tannins in Tunisian dates (Phoenix dactylifera L.) by light and transmission electron microscopy.

    PubMed

    Hammouda, Hédi; Alvarado, Camille; Bouchet, Brigitte; Kalthoum-Chérif, Jamila; Trabelsi-Ayadi, Malika; Guyot, Sylvain

    2014-07-16

    A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 μm from the sclereid cells of the testa.

  5. Nanoscale insights on one- and two-dimensional material structures

    NASA Astrophysics Data System (ADS)

    Floresca, Herman Carlo

    The race for smaller, faster and more efficient devices has led researchers to explore the possibilities of utilizing nanostructures for scaling. These one-dimensional and two-dimensional materials have properties that are attractive for this purpose but are still not well controlled. Control comes with a complete understanding of the materials' electrical, thermal, optical and structural characteristics but is difficult to obtain due to their small scale. This work is intended to help researchers overcome the difficulty in studying nanostructures by providing techniques for analysis and insights of nanostructures that have not been previously available. Two nanostructures were studied: silicon nanowires and graphene. The nanowires were prepared for cross-section transmission electron microscopy (TEM) to discover the effects that controlled oxidation has on the dimensions and shape of the nanowires. Since cross-section TEM is not able to provide information about surface structure, a method for manipulating the wires with orientation control was developed. With this ability, all three orthogonal views of the nanowire were compiled for a comprehensive study on its structure in terms of shape and surface roughness. Graphene was used for a two-dimensional analytical technique that took advantage of customized computer programs for data acquisition, measurement and display. With the information provided, distinctions between grain boundary types in polycrystalline graphene were made and supported by statistical information from the software's output. It was also applied to a growth series of graphene samples in conjunction with scanning electron microscopy (SEM) images and electron backscatter diffraction (EBSD) maps. The results help point to origins of graphene's polycrystalline nature. This dissertation concludes with a thought towards the future by highlighting a method that can help analyze nanostructures, which may become incorporated into the structures of large devices. The fold-out method is a TEM sample preparation technique utilizing a focused ion beam (FIB) for site specific thinning across a large sample area. Its process is demonstrated along with advantages over conventional methods.

  6. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness

    NASA Astrophysics Data System (ADS)

    Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy

    2017-02-01

    Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.

  7. Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieliński, W., E-mail: wiziel@inmat.pw.edu.pl; Płociński, T.; Kurzydłowski, K.J.

    2015-06-15

    We present a study of the efficiency of the utility of scanning electron microscope (SEM)-based transmission methods for characterizing grain structure in thinned bulk metals. Foils of type 316 stainless steel were prepared by two methods commonly used for transmission electron microscopy — double-jet electropolishing and focused ion beam milling. A customized holder allowed positioning of the foils in a configuration appropriate for both transmission electron forward scatter diffraction, and for transmission imaging by the use of a forescatter detector with two diodes. We found that both crystallographic orientation maps and dark-field transmitted images could be obtained for specimens preparedmore » by either method. However, for both methods, preparation-induced artifacts may affect the quality or accuracy of transmission SEM data, especially those acquired by the use of transmission Kikuchi diffraction. Generally, the quality of orientation data was better for specimens prepared by electropolishing, due to the absence of ion-induced damage. - Highlights: • The transmission imaging and diffraction techniques are emerging in scanning electron microscopy (SEM) as promising new field of materials characterization. • The manuscript titled: “Transmission Kikuchi Diffraction and Transmission Electron Forescatter Imaging of Electropolished and FIB Manufactured TEM Specimens” documents how different specimen thinning procedures can effect efficiency of transmission Kikuchi diffraction and transmission electron forescatter imaging. • The abilities to make precision crystallographic orientation maps and dark-field images in transmission was studied on electropolished versus focus ion beam manufactured TEM specimens. • Depending on the need, electropolished and focused ion beam technique may produce suitable specimens for transmission imaging and diffraction in SEM.« less

  8. Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O nano-photocatalyst: structural, optical, magnetic and photocatalytic properties.

    PubMed

    Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar

    2015-02-25

    A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles

    PubMed Central

    Guggenheim, Emily J.; Khan, Abdullah; Pike, Jeremy; Chang, Lynne; Lynch, Iseult; Rappoport, Joshua Z.

    2016-01-01

    The potential for human exposure to manufactured nanoparticles (NPs) has increased in recent years, in part through the incorporation of engineered particles into a wide range of commercial goods and medical applications. NP are ideal candidates for use as therapeutic and diagnostic tools within biomedicine, however concern exists regarding their efficacy and safety. Thus, developing techniques for the investigation of NP uptake into cells is critically important. Current intracellular NP investigations rely on the use of either Transmission Electron Microscopy (TEM), which provides ultrahigh resolution, but involves cumbersome sample preparation rendering the technique incompatible with live cell imaging, or fluorescent labelling, which suffers from photobleaching, poor bioconjugation and, often, alteration of NP surface properties. Reflected light imaging provides an alternative non-destructive label free technique well suited, but not limited to, the visualisation of NP uptake within model systems, such as cells. Confocal reflectance microscopy provides optical sectioning and live imaging capabilities, with little sample preparation. However confocal microscopy is diffraction limited, thus the X-Y resolution is restricted to ~250 nm, substantially larger than the <100 nm size of NPs. Techniques such as super-resolution light microscopy overcome this fundamental limitation, providing increased X-Y resolution. The use of Reflectance SIM (R-SIM) for NP imaging has previously only been demonstrated on custom built microscopes, restricting the widespread use and limiting NP investigations. This paper demonstrates the use of a commercial SIM microscope for the acquisition of super-resolution reflectance data with X-Y resolution of 115 nm, a greater than two-fold increase compared to that attainable with RCM. This increase in resolution is advantageous for visualising small closely spaced structures, such as NP clusters, previously unresolvable by RCM. This is advantageous when investigating the subcellular trafficking of NP within fluorescently labelled cellular compartments. NP signal can be observed using RCM, R-SIM and TEM and a direct comparison is presented. Each of these techniques has its own benefits and limitations; RCM and R-SIM provide novel complementary information while the combination of modalities provides a unique opportunity to gain additional information regarding NP uptake. The use of multiple imaging methods therefore greatly enhances the range of NPs that can be studied under label-free conditions. PMID:27695038

  10. Matrix Dissolution Techniques Applied to Extract and Quantify Precipitates from a Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Lu, Junfang; Wiskel, J. Barry; Omotoso, Oladipo; Henein, Hani; Ivey, Douglas G.

    2011-07-01

    Microalloyed steels possess good strength and toughness, as well as excellent weldability; these attributes are necessary for oil and gas pipelines in northern climates. These properties are attributed in part to the presence of nanosized carbide and carbonitride precipitates. To understand the strengthening mechanisms and to optimize the strengthening effects, it is necessary to quantify the size distribution, volume fraction, and chemical speciation of these precipitates. However, characterization techniques suitable for quantifying fine precipitates are limited because of their fine sizes, wide particle size distributions, and low volume fractions. In this article, two matrix dissolution techniques have been developed to extract precipitates from a Grade100 (yield strength of 690 MPa) microalloyed steel. Relatively large volumes of material can be analyzed, and statistically significant quantities of precipitates of different sizes are collected. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are combined to analyze the chemical speciation of these precipitates. Rietveld refinement of XRD patterns is used to quantify fully the relative amounts of the precipitates. The size distribution of the nanosized precipitates is quantified using dark-field imaging in the TEM.

  11. Structure and phase composition of welded joints modified by different welding techniques

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksander; Popova, Natalya; Nikonenko, Elena; Ozhiganov, Eugeniy; Ababkov, Nikolay; Koneva, Nina

    2017-12-01

    The paper presents the results of transmission electron microscopy (TEM) during the study of structure and phase composition of heat-affected zone (HAZ) of welded joints modified via four welding techniques, namely: electrode welding and electropercussive welding both with and without artificial flaws. The artificial flows represent aluminum pieces. TEM studies are carried out within the heat-affected zone, i.e. between the deposited and base metal, at 0.5 mm distance to the former. The 0.09C-2Mn-1Si-Fe steel type is used for welding. It is shown how the type of welding affects steel morphology, phase composition, defect structure and its parameters. The type of carbide phase is detected as well as the shape and location of particles. Volume fractions are estimated for the structural steel components, alongside with such parameters as the size of α-phase fragments, scalar and excess dislocation densities, and bending-torsion amplitude of the crystal lattice. Based on these results, we determine the welding technique and the structural component thus launching a mechanism of microcrack nucleation.

  12. Thin-Film Phase Plates for Transmission Electron Microscopy Fabricated from Metallic Glasses.

    PubMed

    Dries, Manuel; Hettler, Simon; Schulze, Tina; Send, Winfried; Müller, Erich; Schneider, Reinhard; Gerthsen, Dagmar; Luo, Yuansu; Samwer, Konrad

    2016-10-01

    Thin-film phase plates (PPs) have become an interesting tool to enhance the contrast of weak-phase objects in transmission electron microscopy (TEM). The thin film usually consists of amorphous carbon, which suffers from quick degeneration under the intense electron-beam illumination. Recent investigations have focused on the search for alternative materials with an improved material stability. This work presents thin-film PPs fabricated from metallic glass alloys, which are characterized by a high electrical conductivity and an amorphous structure. Thin films of the zirconium-based alloy Zr65.0Al7.5Cu27.5 (ZAC) were fabricated and their phase-shifting properties were evaluated. The ZAC film was investigated by different TEM techniques, which reveal beneficial properties compared with amorphous carbon PPs. Particularly favorable is the small probability for inelastic plasmon scattering, which results from the combined effect of a moderate inelastic mean free path and a reduced film thickness due to a high mean inner potential. Small probability plasmon scattering improves contrast transfer at high spatial frequencies, which makes the ZAC alloy a promising material for PP fabrication.

  13. Bulk Heterojunction Solar Cell with Nitrogen-Doped Carbon Nanotubes in the Active Layer: Effect of Nanocomposite Synthesis Technique on Photovoltaic Properties

    PubMed Central

    Keru, Godfrey; Ndungu, Patrick G.; Mola, Genene T.; Nyamori, Vincent O.

    2015-01-01

    Nanocomposites of poly(3-hexylthiophene) (P3HT) and nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized by two methods; specifically, direct solution mixing and in situ polymerization. The nanocomposites were characterized by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray dispersive spectroscopy, UV-Vis spectrophotometry, photoluminescence spectrophotometry (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis, and dispersive surface energy analysis. The nanocomposites were used in the active layer of a bulk heterojunction organic solar cell with the composition ITO/PEDOT:PSS/P3HT:N-CNTS:PCBM/LiF/Al. TEM and SEM analysis showed that the polymer successfully wrapped the N-CNTs. FTIR results indicated good π-π interaction within the nanocomposite synthesized by in situ polymerization as opposed to samples made by direct solution mixing. Dispersive surface energies of the N-CNTs and nanocomposites supported the fact that polymer covered the N-CNTs well. J-V analysis show that good devices were formed from the two nanocomposites, however, the in situ polymerization nanocomposite showed better photovoltaic characteristics.

  14. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-03-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along <110>Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  15. Cytotoxicity Evaluation and Magnetic Characteristics of Mechano-thermally Synthesized CuNi Nanoparticles for Hyperthermia

    NASA Astrophysics Data System (ADS)

    Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.

    2015-03-01

    CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.

  16. Effect of Various Retrogression Regimes on Aging Behavior and Precipitates Characterization of a High Zn-Containing Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Kai; Xiong, Baiqing; Zhang, Yongan; Li, Zhihui; Li, Xiwu; Huang, Shuhui; Yan, Lizhen; Yan, Hongwei; Liu, Hongwei

    2018-05-01

    In the present work, the influence of various retrogression treatments on hardness, electrical conductivity and mechanical properties of a high Zn-containing Al-Zn-Mg-Cu alloy is investigated and several retrogression regimes subjected to a same strength level are proposed. The precipitates are qualitatively investigated by means of transmission electron microscopy (TEM) and high-resolution transmission electron microscopy techniques. Based on the matrix precipitate observations, the distributions of precipitate size and nearest inter-precipitate distance are extracted from bright-field TEM images projected along <110>Al orientation with the aid of an imaging analysis and an arithmetic method. The results show that GP zones and η' precipitates are the major precipitates and the precipitate size and its distribution range continuously enlarge with the retrogression regime expands to an extent of high temperature. The nearest inter-precipitate distance ranges obtained are quite the same and the average distance of nearest inter-precipitates show a slight increase. The influence of precipitates on mechanical properties is discussed through the interaction relationship between precipitates and dislocations.

  17. Non-Metal Doped Titania Photocatalysts for the Degradation of Neonicotinoid Insecticides Under Visible Light Irradiation.

    PubMed

    Joseph, Amala Infant Joice; Thiripuranthagan, Sivakumar

    2018-05-01

    Recombination of e-/h+ pair, the major issue of any titania based photocatalytic material, is addressed here by doping non-metals such as C, N, B, F into the lattice of nano TiO2. The as-synthesised catalysts were characterized by using various instrumental techniques such as X-ray diffraction (XRD), UV-Diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Nanosize of titania was confirmed by both XRD and TEM studies. Visible light inactivity of TiO2 is overcome by C, N, B, F doped titania catalysts in the degradation of neonicotinoid type insecticides namely imidacloprid (IMI) and thiamethoxam (TMX). The degradation efficiencies of the catalysts under different irradiations namely UV, visible and solar were compared. Among the catalysts, CNBF/TiO2 degraded IMI completely at 150, 240 and 330 min whereas TMX has been degraded completely at 210, 270 and 420 min under UV, solar and visible irradiations respectively. The recyclability test of CNBF/TiO2 confirmed its stability towards photocatalytic reaction.

  18. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  19. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.

    PubMed

    Obst, Martin; Grathwohl, Peter; Kappler, Andreas; Eibl, Oliver; Peranio, Nicola; Gocht, Tilman

    2011-09-01

    Sorption of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) particles has been the focus of numerous studies. Conclusions on sorption mechanisms of PAH on BC were mostly derived from studies of sorption isotherms and sorption kinetics, which are based on batch experiments. However, mechanistic modeling approaches consider processes at the subparticle scale, some including transport within the pore-space or different spatial pore-domains. Direct evidence based on analytical techniques operating at the submicrometer scale for the location of sorption sites and the adsorbed species is lacking. In this work, we identified, quantified, and mapped the sorption of PAHs on different BC particles (activated carbon, charcoal and diesel soot) on a 25-100 nm scale using scanning transmission X-ray microscopy (STXM). In addition, we visualized the pore structure of the particles by transmission electron microscopy (TEM) on the 1-10 nm-scale. The combination of the chemical information from STXM with the physical information from TEM revealed that phenanthrene accumulates in the interconnected pore-system along primary "cracks" in the particles, confirming an adsorption mechanism.

  20. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract

    NASA Astrophysics Data System (ADS)

    Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.

    2015-03-01

    Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.

  2. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  3. The Morphology of Titanium Dioxide Aerogels

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu

    The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.

  4. New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation.

    PubMed

    Massover, William H

    2011-02-01

    Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 Å (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level. Published by Elsevier Ltd.

  5. Electron microscopic diagnosis of human flavivirus encephalitis: use of confocal microscopy as an aid.

    PubMed

    Chu, C T; Howell, D N; Morgenlander, J C; Hulette, C M; McLendon, R E; Miller, S E

    1999-10-01

    The distinction between intracranial viral infections and inflammatory conditions requiring immunosuppression is important. Although specific laboratory reagents are readily available for some viruses, diagnosis of arbovirus infection is more difficult. Transmission electron microscopy (TEM) theoretically allows identification of viral particles independent of reagent availability, but it has limited sensitivity. We report two cases of human flavivirus encephalitis diagnosed by TEM. Laser scanning confocal microscopy (LSCM) was used in one case to survey unembedded tissue slices for focal abnormalities, from which fragments smaller than 1 mm2 were excised for epoxy embedding. This facilitated TEM identification of intracytoplasmic, budding, 35-40 nm spherical virus particles, confirmed by serology as St. Louis encephalitis. In contrast to mosquitoes and newborn mice, in which high viral loads are associated with minimal tissue responses, these biopsies showed florid angiodestructive inflammation and microgliosis, with rare virions in necrotic perivascular cells and astrocytes. To our knowledge, this represents the first ultrastructural study of St. Louis encephalitis in humans, indicating the potential value of LSCM-aided TEM.

  6. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy

    PubMed Central

    Su, Qingmei; Wang, Shixin; Yao, Libing; Li, Haojie; Du, Gaohui; Ye, Huiqun; Fang, Yunzhang

    2016-01-01

    A family of mixed transition–metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest that during the first lithiation process the ZnFe2O4 nanoparticles undergo a conversion process and generate a composite structure of 1–3 nm Fe and Zn nanograins within Li2O matrix. During the delithiation process, volume contraction and the conversion of Zn and Fe take place with the disappearance of Li2O, followed by the complete conversion to Fe2O3 and ZnO not the original phase ZnFe2O4. The following cycles are dominated by the full reversible phase conversion between Zn, Fe and ZnO, Fe2O3. The Fe valence evolution during cycles evidenced by electron energy–loss spectroscopy (EELS) techniques also exhibit the reversible conversion between Fe and Fe2O3 after the first lithiation, agreeing well with the in situ TEM results. Such in situ TEM observations provide valuable phenomenological insights into electrochemical reaction of MTMOs, which may help to optimize the composition of anode materials for further improved electrochemical performance. PMID:27306189

  7. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.

    PubMed

    Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze

    2015-04-01

    In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Using transmission electron microscopy and 3View® to determine collagen fibril size and three-dimensional organization

    PubMed Central

    Mironov, Aleksandr; Cootes, Timothy F.; Holmes, David F.; Kadler, Karl E.

    2017-01-01

    Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face-scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF-SEM (by 3View®). We demonstrate the power of 3View® for studying collagen fibril organization in vivo and show how to find and track individual fibrils. Time scale: ~8 days from isolating the tissue to having a 3D image stack. PMID:23807286

  9. First evidence of tyre debris characterization at the nanoscale by focused ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milani, M.; Pucillo, F.P.; Ballerini, M.

    2004-07-15

    In this paper, we present a novel technique for the nanoscale characterization of the outer and inner structure of tyre debris. Tyre debris is produced by the normal wear of tyres. In previous studies, the microcharacterization and identification were performed by analytical electron microscopy. This study is a development of the characterization of surface and microstructure of tyre debris. For the first time, tyre debris was analysed by focused ion beam (FIB), a technique with 2- to 5-nm resolution that does not require any sample preparation. We studied tyre debris produced in the laboratory. We made electron and ionic imagingmore » of the surface of the material, and after a ionic cut, we studied the internal microstructure of the same sample. The tyre debris was analysed by FIB without any sample preparations unlike the case of scanning and transmission electron microscopy (SEM and TEM). Useful information was derived to improve detection and monitoring techniques of pollution by tyre degradation processes.« less

  10. Resistive switching mechanism in the one diode-one resistor memory based on p+-Si/n-ZnO heterostructure revealed by in-situ TEM

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhu, Liang; Li, Xiaomei; Xu, Zhi; Wang, Wenlong; Bai, Xuedong

    2017-03-01

    One diode-one resistor (1D1R) memory is an effective architecture to suppress the crosstalk interference, realizing the crossbar network integration of resistive random access memory (RRAM). Herein, we designed a p+-Si/n-ZnO heterostructure with 1D1R function. Compared with the conventional multilayer 1D1R devices, the structure and fabrication technique can be largely simplified. The real-time imaging of formation/rupture process of conductive filament (CF) process demonstrated the RS mechanism by in-situ transmission electron microscopy (TEM). Meanwhile, we observed that the formed CF is only confined to the outside of depletion region of Si/ZnO pn junction, and the formation of CF does not degrade the diode performance, which allows the coexistence of RS and rectifying behaviors, revealing the 1D1R switching model. Furthermore, it has been confirmed that the CF is consisting of the oxygen vacancy by in-situ TEM characterization.

  11. (Project 13-5292) Correlating thermal and mechanical coupling based multiphysics behavior of nuclear materials through in-situ measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    Irradiations and post characterization experiments were performed first on Zr samples. This step will help understand the effect of the 2.5% alloying elements on the behavior of Zircaloy-4 (PWR cladding material) when compared to pure Zr. Irradiation flux measurements and sample temperature calibrations were performed at different energies prior to the irradiation experiments. Irradiations were performed with two different energy regimes1: non-displacment energies and displacement energies. Time was also dedicated to optimize transmission electron microscopy (TEM) sample preparation conditions via electropolishing technique. This step is crucial to prepare TEM samples for the in-situ TEM/irradiation experiments (Year 2). In addition, Zircaloy-4more » samples are being prepared for irradiation, and a setup is built by one of our collaborators (Dr. Mert Efe) to prepare ultrafine (UF) and nanocrystalline (NC) Zircaloy-4 samples for comparison with the commercial Zircaloy-4 samples.« less

  12. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    NASA Astrophysics Data System (ADS)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  13. Effects of Polyethylene Glycol and Citric Acid on Preparation and Hydrodechlorination Activity of Molybdenum Phosphide

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Lu, Shaoxiang; Xu, Hanghui; Ren, Lili

    2018-07-01

    Molybdenum phosphide (MoP), modified by polyethylene glycol (PEG) and citric acid (CA), exhibited 2 to 3 times superior activity than the MoP modified by CA alone. And the optimal activity temperature was reduced from 500 to 450oC. The catalyst was fully characterized by a variety of techniques including X-ray diffraction (XRD), N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the addition of PEG and CA increased the surface area of MoP and decreased the particle size of MoP. Furthermore, the reaction mechanism also has been discussed by combining the activity data and characterization results.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuning; Roy, Amitava; Lichtenberg, Henning

    The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into considerationmore » while evaluating the size-dependent visible emission of ZnO nanoparticles.« less

  15. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  16. Synthesis and characterization of CdO nano particles by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Vadgama, V. S.; Vyas, R. P.; Jogiya, B. V.; Joshi, M. J.

    2017-05-01

    Cadmium Oxide (CdO) is an inorganic compound and one of the main precursors to other cadmium compounds. It finds applications in cadmium plating, storage batteries, in transparent conducting film, etc. Here, an attempt is made to synthesize CdO nano particles by sol-gel technique. The gel was prepared using cadmium nitrate tetra hydrate (Cd(NO3)2.4H2O) and aqueous ammonium hydroxide (NH4OH) as a precursor. The synthesized powder is further characterized by techniques like Powder X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Thermal gravimetric analysis (TGA). Powder XRD analysis suggested the nano-crystalline nature of the sample with the cubic crystal system. Nano scaled particles of spherical morphology with the size ranging from 50-100 nm are observed from TEM images. While, FT-IR study is used to confirm the presence of different functional groups. Thermo-gravimetric analysis suggests the highly thermally stable nature of the samples. The results are discussed.

  17. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.

    PubMed

    Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro

    2012-08-08

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.

  18. Structural characterizations of pure SnS and In-doped SnS thin films using isotropic and anisotropic models

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein

    2018-04-01

    An electrochemical route has been employed to prepare pure SnS and indium-doped SnS thin films. Six samples including undoped SnS and In-doped SnS thin films deposited on the fluorine-doped tin oxide (FTO) glass substrates. An aqueous solution having SnCl2 and Na2S2O3 used as the primary electrolyte. Different In-doped SnS samples were prepared by adding a different amount of 1 mM InCl3 solution into the first electrolyte. The applied potential (E), time of deposition (t), pH and bath temperature (T) were kept at ‑1 V, 30 min, 2.1 and 60 °C, respectively. For all samples, except the In-dopant concentration, all the deposition parameters are the same. After preparation, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with an energy dispersive X-ray analyzer (EDX) attachment, atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to determine structural properties of as-deposited films. XRD patterns revealed that the synthesized undoped- and In-doped SnS thin films were crystallized in the orthorhombic structure. The shape of SnS crystals was spherical in the TEM image. X-ray peak broadening studies was done by applying Scherrer’s method, Williamson-Hall (W–H) models (including uniform deformation model (UDM), uniform strain deformation model (UDSM), and uniform deformation energy density model (UDEDM)), and size-strain plot (SSP) method. Using these techniques, the crystallite size and the lattice strains have been predicted. There was a good agreement in the particle size achieved by W–H- and SSP methods with TEM image.

  19. Antibody Conjugated, Raman Tagged Hollow Gold-Silver Nanospheres for Specific Targeting and Multimodal Dark-Field/SERS/Two Photon-FLIM Imaging of CD19(+) B Lymphoblasts.

    PubMed

    Nagy-Simon, Timea; Tatar, Andra-Sorina; Craciun, Ana-Maria; Vulpoi, Adriana; Jurj, Maria-Ancuta; Florea, Adrian; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana; Astilean, Simion; Boca, Sanda

    2017-06-28

    In this Research Article, we propose a new class of contrast agents for the detection and multimodal imaging of CD19(+) cancer lymphoblasts. The agents are based on NIR responsive hollow gold-silver nanospheres conjugated with antiCD19 monoclonal antibodies and marked with Nile Blue (NB) SERS active molecules (HNS-NB-PEG-antiCD19). Proof of concept experiments on specificity of the complex for the investigated cells was achieved by transmission electron microscopy (TEM). The microspectroscopic investigations via dark field (DF), surface-enhanced Raman spectroscopy (SERS), and two-photon excited fluorescence lifetime imaging microscopy (TPE-FLIM) corroborate with TEM and demonstrate successful and preferential internalization of the antibody-nanocomplex. The combination of the microspectroscopic techniques enables contrast and sensitivity that competes with more invasive and time demanding cell imaging modalities, while depth sectioning images provide real time localization of the nanoparticles in the whole cytoplasm at the entire depth of the cells. Our findings prove that HNS-NB-PEG-antiCD19 represent a promising type of new contrast agents with great possibility of being detected by multiple, non invasive, rapid and accessible microspectroscopic techniques and real applicability for specific targeting of CD19(+) cancer cells. Such versatile nanocomplexes combine in one single platform the detection and imaging of cancer lymphoblasts by DF, SERS, and TPE-FLIM microspectroscopy.

  20. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  1. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    PubMed

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al 3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar + ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  2. Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-11-01

    Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.

  3. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  4. First oxygen from lunar basalt

    NASA Technical Reports Server (NTRS)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  5. Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ina, Ginnosuke; Fujii, Tatsuya; Kozeki, Takahiro; Miura, Eri; Inoue, Shozo; Namazu, Takahiro

    2017-06-01

    In this study, we investigate the effects of focused ion beam (FIB)-induced damage and specimen size on the mechanical properties of Si nanowires (NWs) by a microelectromechanical system (MEMS)-based tensile testing technique. By an FIB fabrication technique, three types of Si NWs, which are as-FIB-fabricated, annealed, and FIB-implanted NWs, are prepared. A sacrificial-oxidized NW is also prepared to compare the mechanical properties of these FIB-based NWs. The quasi-static uniaxial tensile tests of all the NWs are conducted by scanning electron microscopy (SEM). The fabrication process and specimen size dependences on Young’s modulus and fracture strength are observed. Annealing is effective for improving the Young’s modulus of the FIB-damaged Si. Transmission electron microscopy (TEM) suggests that the mechanism behind the process dependence on the mechanical characteristics is related to the crystallinity of the FIB-damaged portion.

  6. Synthesis and characterization of Copper/Cobalt/Copper/Iron nanostructurated films with magnetoresistive properties

    NASA Astrophysics Data System (ADS)

    Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica

    2017-02-01

    Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    García, Abraham; Cotto, María; Duconge, José

    The use of hydrogen as replacement for fossil fuels, on which we depend today, is a matter of great relevance. The sustainable generation of hydrogen as fuel is relevant from an environmental and economic point of view. In this study we have explored new synthetic routes for developing new photocatalysts to be used in water splitting, for hydrogen production. Different techniques have been used to produce hydrogen, such as electrolysis, even though these processes have been found to be energetically non suitable. In this research various photocatalytic materials were presented as possible alternatives for using in water splitting processes. Characterizationmore » of the new synthesized materials has been done by using different experimental techniques including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), surface area BET, and X-ray Diffraction (XRD). The efficiency of the synthesized photocatalysts was determined by evaluating the hydrogen evolution by the photocatalytic water splitting reaction.« less

  8. The MOF+ Technique: A Significant Synergic Effect Enables High Performance Chromate Removal.

    PubMed

    Luo, Ming Biao; Xiong, Yang Yang; Wu, Hui Qiong; Feng, Xue Feng; Li, Jian Qiang; Luo, Feng

    2017-12-18

    A significant synergic effect between a metal-organic framework (MOF) and Fe 2 SO 4 , the so-called MOF + technique, is exploited for the first time to remove toxic chromate from aqueous solutions. The results show that relative to the pristine MOF samples (no detectable chromate removal), the MOF + method enables super performance, giving a 796 Cr mg g -1 adsorption capacity. The value is almost eight-fold higher than the best value of established MOF adsorbents, and the highest value of all reported porous adsorbents for such use. The adsorption mechanism, unlike the anion-exchange process that dominates chromate removal in all other MOF adsorbents, as unveiled by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), is due to the surface formation of Fe 0.75 Cr 0.25 (OH) 3 nanospheres on the MOF samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often advised, If you cant determine a specific optical property of a particle after two minutes, move onto another configuration. Since optical properties can be seen so very quickly and easily under polarized light, it is only necessary to spend a maximum of two minutes on a technique to determine a particular property, though often only a few seconds are required.

  10. Self-Cleaning Anticondensing Glass via Supersonic Spraying of Silver Nanowires, Silica, and Polystyrene Nanoparticles.

    PubMed

    Lee, Jong-Gun; An, Seongpil; Kim, Tae-Gun; Kim, Min-Woo; Jo, Hong-Seok; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2017-10-11

    We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO 2 ) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.

  11. Characterization of oligomerization of a peptide from the ebola virus glycoprotein by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, V. V., E-mail: vlaegur@omrb.pnpi.spb.ru; Gorshkov, A. N.; Murugova, T. N.

    2016-01-15

    Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) studies showed that model peptides QNALVCGLRQ (G33) and QNALVCGLRG (G31) corresponding to region 551–560 of the GP protein of the Sudan Ebola virus are prone to oligomerization in solution. Both peptides can form amyloid-like fibrills. The G33 peptide forms fibrils within one day of incubation, whereas the fibrillogenesis of the G31 peptide is observed only after incubation for several months. The possible role of the observed processes in the pathogenesis and the possibility of applying a combination of the TEM and SANS techniques to search for new compounds that are ablemore » to influence the protein oligomerization are discussed.« less

  12. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  13. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.

    PubMed

    Liu, Jingyue

    2005-06-01

    Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.

  14. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  15. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    PubMed Central

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel

    2017-01-01

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199

  16. Transrotational Crystals Revealed by TEM in Crystallizing Amorphous Films: New Solid State Order or Novel Extended Imperfection?

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir Yu.

    2011-03-01

    Uunusual transrotational structure is presented for crystal growth in thin amorphous films. Experimental results have been obtained for the microcrystals of different chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods. Basically we used transmission electron microscopy (TEM): our original bend contour technique combined with selected area diffraction (HREM, EDX and CBED used in due cases as well as AFM). The unusual phenomenon (also traced inside TEM in situ) resides in strong (up to the whole rotation per micrometer) regular internal bending of crystal lattice planes (transrotation) in a growing crystal. As a result permanent rotation of the lattice orientation (realized round an axis lying in the film plane) is revealed by TEM. Different geometries of transrotational nanostructures are described: cylindrical, ellipsoidal, etc. Such crystal with transrotational atom periodicity resembles ideal single crystal enclosed in a curved space. Transrotational crystals can be considered as endless 2.5 D analogy of nanotubes, nanonions. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement well known dislocations (in crystals) and disclinations (in liquid crystals). Support of RF Ministry of Education and Science is acknowledged.

  17. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less

  18. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE PAGES

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.; ...

    2017-10-23

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  19. Correlative Magnetic Imaging of Heat-Assisted Magnetic Recording Media in Cross Section Using Lorentz TEM and MFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeho Roy; Phatak, Charudatta; Petford-Long, Amanda K.

    In order to increase the storage density of hard disk drives, a detailed understanding of the magnetic structure of the granular magnetic layer is essential. Here, we demonstrate an experimental procedure of imaging recorded bits on heat-assisted magnetic recording (HAMR) media in cross section using Lorentz transmission electron microscopy (TEM). With magnetic force microscopy and focused ion beam (FIB), we successfully targeted a single track to prepare cross-sectional TEM specimens. Then, we characterized the magnetic structure of bits with their precise location and orientation using Fresnel mode of Lorentz TEM. Here, this method can promote understanding of the correlation betweenmore » bits and their material structure in HAMR media to design better the magnetic layer.« less

  20. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  1. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  2. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes,more » which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.« less

  3. Production of polyimide ceria nanocomposites by development of molecular hook technology in nano-sonochemistry.

    PubMed

    Hatami, Mehdi

    2018-06-01

    Poly(amic acid), the precursor of polyimide (PI), was used for the preparation of PI/CeO 2 nanocomposites (NC)s by ultrasonic assisted technique via insertion of the surface modified CeO 2 nanoparticles (NP)s into PI matrix. In the preparation stages, in the first, the modifications of CeO 2 NPs by using hexadecyltrimethoxysilane (HDTMS) as a binder were targeted using ultrasonic waves. In the second step, newly designed PI structure was formed from the sonochemical imidization process as a molecular hook. In this step two different reactions were occurred. The acetic acid elimination reaction in the main chain of macromolecule, and the acetylation reaction in the side chains of poly(amic acid) were accomplished. By acetylation process the hook structure was created for trapping of the modified nanoparticles. In the final step the preparation of PI NCs were achieved by sonochemical process. The structural and thermal properties of pure PI and PI/CeO 2 NCs were studied by several techniques such as fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal analyses. FT-IR and 1 H NMR spectra confirmed the success in preparation of PI matrix. The FE-SEM, TEM, and AFM analyses showed the uniform distribution of CeO 2 NPs in PI matrix. The XRD patterns of NCs show the presence of crystalline CeO 2 NPs in amorphous PI matrix. The thermal analysis results reveal that, with increases in the content of CeO 2 NPs in PI matrix, the thermally stability factors of samples were improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Electron Microscope Studies of Cadmium Mercury Telluride

    NASA Astrophysics Data System (ADS)

    Lyster, Martin

    Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.

  5. Static and Dynamic Electron Microscopy Investigations at the Atomic and Ultrafast Scales

    NASA Astrophysics Data System (ADS)

    Suri, Pranav Kumar

    Advancements in the electron microscopy capabilities - aberration-corrected imaging, monochromatic spectroscopy, direct-electron detectors - have enabled routine visualization of atomic-scale processes with millisecond temporal resolutions in this decade. This, combined with progress in the transmission electron microscopy (TEM) specimen holder technology and nanofabrication techniques, allows comprehensive experiments on a wide range of materials in various phases via in situ methods. The development of ultrafast (sub-nanosecond) time-resolved TEM with ultrafast electron microscopy (UEM) has further pushed the envelope of in situ TEM to sub-nanosecond temporal resolution while maintaining sub-nanometer spatial resolution. A plethora of materials phenomena - including electron-phonon coupling, phonon transport, first-order phase transitions, bond rotation, plasmon dynamics, melting, and dopant atoms arrangement - are not yet clearly understood and could be benefitted with the current in situ TEM capabilities having atomic-level and ultrafast precision. Better understanding of these phenomena and intrinsic material dynamics (e.g. how phonons propagate in a material, what time-scales are involved in a first-order phase transition, how fast a material melts, where dopant atoms sit in a crystal) in new-generation and technologically important materials (e.g. two-dimensional layered materials, semiconductor and magnetic devices, rare-earth-element-free permanent magnets, unconventional superconductors) could bring a paradigm shift in their electronic, structural, magnetic, thermal and optical applications. Present research efforts, employing cutting-edge static and dynamic in situ electron microscopy resources at the University of Minnesota, are directed towards understanding the atomic-scale crystallographic structural transition and phonon transport in an iron-pnictide parent compound LaFeAsO, studying the mechanical stability of fast moving hard-drive heads in heat-assisted magnetic recording (HAMR) technology, exploring the possibility of ductile ceramics in magnesium oxide (MgO) nanomaterials, and revealing the atomic-structure of newly discovered rare-earth-element-free iron nitride (FeN) magnetic materials. Via atomic-resolution imaging and electron diffraction coupled with in situ TEM cooling on LaFeAsO, it was found that additional effects not related to the structural transition, namely dynamical scattering and electron channeling, can give signatures reminiscent of those typically associated with the symmetry change. UEM studies on LaFeAsO revealed direct, real-space imaging of the emergence and evolution of acoustic phonons and resolved dispersion behavior during propagation and scattering. Via UEM bright-field imaging, megahertz vibrational frequencies were observed upon laser-illumination in TEM specimens made out of HAMR devices which could be detrimental to their long-term thermal and structural reliability. Compression testing of 100-350 nm single-crystal MgO nanocubes shows size-dependent stresses and engineering strains of 4-13.8 GPa and 0.046-0.221 respectively at the first signs of yield accompanied by an absence of brittle fracture, which is a significant increase in plasticity of a brittle ceramic material. Atomic-scale characterization of FeN phases show that it is possible to detect interstitial locations of low atomic-number nitrogen atoms in iron crystal and hints at a development of novel routes (without involving rare-earth elements) for bulk permanent magnet synthesis.

  6. Tandem High-pressure Freezing and Quick Freeze Substitution of Plant Tissues for Transmission Electron Microscopy

    PubMed Central

    Bobik, Krzysztof; Dunlap, John R.; Burch-Smith, Tessa M.

    2014-01-01

    Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality. PMID:25350384

  7. Multi Length Scale Imaging of Flocculated Estuarine Sediments; Insights into their Complex 3D Structure

    NASA Astrophysics Data System (ADS)

    Wheatland, Jonathan; Bushby, Andy; Droppo, Ian; Carr, Simon; Spencer, Kate

    2015-04-01

    Suspended estuarine sediments form flocs that are compositionally complex, fragile and irregularly shaped. The fate and transport of suspended particulate matter (SPM) is determined by the size, shape, density, porosity and stability of these flocs and prediction of SPM transport requires accurate measurements of these three-dimensional (3D) physical properties. However, the multi-scaled nature of flocs in addition to their fragility makes their characterisation in 3D problematic. Correlative microscopy is a strategy involving the spatial registration of information collected at different scales using several imaging modalities. Previously, conventional optical microscopy (COM) and transmission electron microscopy (TEM) have enabled 2-dimensional (2D) floc characterisation at the gross (> 1 µm) and sub-micron scales respectively. Whilst this has proven insightful there remains a critical spatial and dimensional gap preventing the accurate measurement of geometric properties and an understanding of how structures at different scales are related. Within life sciences volumetric imaging techniques such as 3D micro-computed tomography (3D µCT) and focused ion beam scanning electron microscopy [FIB-SEM (or FIB-tomography)] have been combined to characterise materials at the centimetre to micron scale. Combining these techniques with TEM enables an advanced correlative study, allowing material properties across multiple spatial and dimensional scales to be visualised. The aims of this study are; 1) to formulate an advanced correlative imaging strategy combining 3D µCT, FIB-tomography and TEM; 2) to acquire 3D datasets; 3) to produce a model allowing their co-visualisation; 4) to interpret 3D floc structure. To reduce the chance of structural alterations during analysis samples were first 'fixed' in 2.5% glutaraldehyde/2% formaldehyde before being embedding in Durcupan resin. Intermediate steps were implemented to improve contrast and remove pore water, achieved by the addition of heavy metal stains and washing samples in a series of ethanol solutions and acetone. Gross-scale characterisation involved scanning samples using a Nikon Metrology HM X 225 µCT. For micro-scale analysis a working surface was revealed by microtoming the sample. Ultrathin sections were then collected and analysed using a JEOL 1200 Ex II TEM, and FIB-tomography datasets obtained using an FEI Quanta 3D FIB-SEM. Finally, to locate the surface and relate TEM and FIB-tomography datasets to the original floc, samples were rescanned using the µCT. Image processing was initially conducted in ImageJ. Following this datasets were imported into Amira 5.5 where pixel intensity thresholding allowed particle-matrix boundaries to be defined. Using 'landmarks' datasets were then registered to enable their co-visualisation in 3D models. Analysis of registered datasets reveals the complex non-fractal nature of flocs, whose properties span several of orders of magnitude. Primary particles are organised into discrete 'bundles', the arrangement of which directly influences their gross morphology. This strategy, which allows the co-visualisation of spatially registered multi-scale 3D datasets, provides unique insights into the true nature floc which would other have been impossible.

  8. Correlated Optical Spectroscopy and Transmission Electron Microscopy of Individual Hollow Nanoparticles and their Dimers

    PubMed Central

    Yang, Linglu; Yan, Bo; Reinhard, Björn M.

    2009-01-01

    The optical spectra of individual Ag-Au alloy hollow particles were correlated with the particles’ structures obtained by transmission electron microscopy (TEM). The TEM provided direct experimental access to the dimension of the cavity, thickness of the metal shell, and the interparticle distance of hollow particle dimers with high spatial resolution. The analysis of correlated spectral and structural information enabled the quantification of the influence of the core-shell structure on the resonance energy, plasmon lifetime, and plasmon coupling efficiency. Electron beam exposure during TEM inspection was observed to affect plasmon wavelength and lifetime, making optical inspection prior to structural characterization mandatory. PMID:19768108

  9. Collaborative Research and Development (CR&D). Delivery Order 0051: Atomic Scale Transmission Electron Microscope Image Modeling and Application to Semiconductor Heterointerface Characterization

    DTIC Science & Technology

    2008-01-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...microscopy ( AEM ), to characterize a variety of III-V semiconductor thin films. The materials investigated include superlattices based on the InAs- GaSb...technique. TEM observations were performed using a Philips-CM 200 FEG transmission electron microscope equipped with a field emission gun, operated at an

  10. Focused Ion Beam (FIB) combined with SEM (FIB/SEM) and TEM: Advanced tools for nano-analysis in Geosciences

    NASA Astrophysics Data System (ADS)

    Wirth, R.; Morales, L. G.

    2011-12-01

    Focused ion beam (FIB) techniques have been successfully applied to the preparation of site-specific electron transparent membranes for transmission electron microscopy (TEM) investigations in Geosciences since several years. For example, systematic TEM studies of nano-inclusions in diamond foils prepared with FIB have improved our knowledge on diamond formation. However, FIB is not exclusively used for sample preparation for TEM application because it has been proved that one and the same TEM foil can also be used for Synchrotron IR, Synchrotron X-Ray fluorescence (XRF), scanning transmission X-Ray microscopy (STXM) and NanoSIMS analysis. In addition, FIB milling turned out to be very useful for sample preparation of Brillouin scattering experiments and has a strong potential for preparation of highly-polished, micrometer-scale samples. However, a real break through in FIB application was achieved combining a Ga-ion source of the FIB with an electron source of a scanning electron microscope (SEM) in one single instrument. The combination of FIB/SEM renders access to the third dimension of the sample possible. A cavity normal to the sample surface is sputtered with Ga-ions and this newly created inner surface is imaged with the electron beam. Alternating slicing and viewing along these cavities allow the acquisition of a sequence of images that allows the observation in 3 dimensions. Recently, this technique has been successfully applied to image the structure of grain or phase boundaries in metamorphic rocks as well as micro- and nanoporosity in shales, but its applicability goes far beyond these few examples. Combining slicing and viewing with X-Ray and electron backscatter diffraction (EBSD) analysis can provide 3D elemental mapping and 3D crystallographic orientation mapping of crystalline materials. Combined FIB/SEM devices also facilitate the preparation of substantially thinner and cleaner TEM foils (approximately 30 nm) because electron beam imaging controls the progress of the sputtering process without sputtering the sample during imaging. Electron induce sputtering is substantially smaller than ion induced sputtering. Finally, the amorphous layers created by Ga-ion sputtering and Ga-ion implantation can be removed from the foil surfaces by subsequent argon ion bombardment under a low angle of incidence and low acceleration voltage thus permitting TEM high-resolution imaging and electron energy-loss spectroscopy (EELS). Additionally, ultra-thin foils have the advantage that they are electron transparent even at 30 keV, the common operational voltage of a SEM. Therefore the electron column of the FIB/SEM system can be used as a TEM at low voltage and images can be made either in bright-field, dark field and through a high-angle annular dark field (HAADF) detector. The HAADF detector provides information about the chemical composition of the specimen with high spatial resolution because it is Z-contrast sensitive.

  11. Natural substrate lift-off technique for vertical light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen

    2014-04-01

    Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.

  12. Preparation and analysis of a two-components breath figure at the nanoscale

    NASA Astrophysics Data System (ADS)

    Kofman, R.; Allione, M.; Celestini, F.; Barkay, Z.; Lereah, Y.

    2008-12-01

    Solid/liquid two-components Ga-Pb structures in isolated nanometer sized particles have been produced and studied by electron microscopy. Production is based on the breath figure technique and we investigate the way the two components are distributed. We clearly identify two growth regimes associated with the two different ways a Pb atom incorporates into a Ga nanodrop. Using TEM and SEM, the shape and microstructure of the nanoparticles are studied and the results obtained are in good agreement with the proposed model. The experimental technique used appears to be appropriate to produce Pb nanocrystals in liquid Ga nano-containers.

  13. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  14. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

    PubMed Central

    Bittencourt, Carla; Van Tendeloo, Gustaaf

    2015-01-01

    Summary A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms. PMID:26425406

  15. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    NASA Astrophysics Data System (ADS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  16. Picosecond view of a martensitic transition and nucleation in the shape memory alloy M n50N i40S n10 by four-dimensional transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Sun, Shuaishuai; Li, Zhongwen; Li, Xingyuan; Guo, Cong; Li, Zian; Yang, Huaixin; Li, Jianqi

    2017-11-01

    The photoinduced martensitic (MT) transition and reverse transition in a shape memory alloy M n50N i40S n10 have been examined by using high spatiotemporal resolution four-dimensional transmission electron microscopy (4D-TEM), and the experimental results clearly demonstrate that the MT transition and reverse transition in this Heusler alloy contain a variety of structural dynamic features at picosecond time scales. The 4D-TEM imaging and diffraction observations clearly show that MT transition and MT domain nucleation, which are related to cooperative atomic motions, occur at between 10 and 20 ps, depending on the thickness of the sample. Moreover, a strong coupling between the MT transition and lattice breathing mode is discovered in this system, which can result in a periodic structural oscillation between the MT phase and austenitic (AUS) phase. This allows us to directly observe the MT nucleation and domain wall motions in transient states using high spatiotemporal imaging. A careful analysis of the ultrafast images demonstrates the presence of remarkable transient states, which exhibit the essential features of MT nucleation, lattice symmetry breaking, and a rapid growth of MT plates. These results not only provide insights into the time-resolved structural dynamics and elementary mechanisms that govern the MT transition but also contribute to the development of a novel technique for future 4D-TEM investigations.

  17. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  18. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  19. Effects of a common worldwide drink (Beer) on L-Phenylalanine and L-Tyrosine fibrillar assemblies

    NASA Astrophysics Data System (ADS)

    Banik, Debasis; Banerjee, Pavel; Sabeehuddin, Ghazi; Sarkar, Nilmoni

    2017-11-01

    In this letter, small amount of beer [0.42-2.08% (v/v)] is employed to investigate the fibril inhibition kinetics of 1 mM L-Phenylalanine and L-Tyrosine (relevant to disease condition) using Fluorescence Lifetime imaging Microscopy (FLIM), Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopic (HR-TEM) techniques. Our results indicate that 1.67 and 0.42% of beer is sufficient for effective breakdown of L-Phe and L-Tyr assemblies, respectively. Quantitative information about fibril inhibition is obtained from Fluorescence Correlation Spectroscopic (FCS) measurements. We have shown that the morphology of L-Phe changes to L-Tyr in presence of 2,2‧-Bipyridine-3,3‧-diol (BP(OH)2).

  20. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  1. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  2. Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology

    NASA Astrophysics Data System (ADS)

    Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua

    2013-04-01

    Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.

  3. Allorecognition triggers autophagy and subsequent necrosis in the cnidarian Hydractinia symbiolongicarpus.

    PubMed

    Buss, Leo W; Anderson, Christopher; Westerman, Erica; Kritzberger, Chad; Poudyal, Monita; Moreno, Maria A; Lakkis, Fadi G

    2012-01-01

    Transitory fusion is an allorecognition phenotype displayed by the colonial hydroid Hydractinia symbiolongicarpus when interacting colonies share some, but not all, loci within the allorecognition gene complex (ARC). The phenotype is characterized by an initial fusion followed by subsequent cell death resulting in separation of the two incompatible colonies. We here characterize this cell death process using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and continuous in vivo digital microscopy. These techniques reveal widespread autophagy and subsequent necrosis in both colony and grafted polyp assays. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays and ultrastructural observations revealed no evidence of apoptosis. Pharmacological inhibition of autophagy using 3-methyladenine (3-MA) completely suppressed transitory fusion in vivo in colony assays. Rapamycin did not have a significant effect in the same assays. These results establish the hydroid allorecognition system as a novel model for the study of cell death.

  4. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.

    PubMed

    Kobler, A; Kübel, C

    2017-02-01

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.

  5. CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendivil, M.I.; García, L.V.; Krishnan, B.

    2015-12-15

    Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electronmore » microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.« less

  6. Ultrasonically assisted solvothermal synthesis of novel Ni/Al layered double hydroxide for capturing of Cd(II) from contaminated water

    NASA Astrophysics Data System (ADS)

    Rahmanian, Omid; Maleki, Mohammad Hassan; Dinari, Mohammad

    2017-11-01

    A novel adsorbent of nickel aluminum layered double hydroxide (Ni/Al-LDH) was prepared through the precipitation of metal nitrates by ultrasonically assisted solvothermal method. The surface morphology, chemical structure and thermal properties of this compound were examined by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The XRD, TEM and FE-SEM results established that the synthesized LDH have a well-ordered layer structure with good crystalline nature. Then it was applied to remove excessive Cd(II) ions from water and the effects of contact time, pH and adsorbent dose were examined at initial Cd(II) concentration of 10 mg/L. Results show that the time required to reach equilibrium was fast (40 min) and working pH solution was neutral (pH 7). Langmuir and Freundlich model of adsorption isotherms were explored; the results show that the Freundlich model was better fitted than that Langmuir model. This results predicting a multilayer adsorption of Cd(II) on LDH. The equilibrium kinetic adsorption data were fixed to the pseudo-second order kinetic equation.

  7. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  8. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  9. Gill pathology in Scottish farmed Atlantic salmon, Salmo salar L., associated with the microsporidian Desmozoon lepeophtherii Freeman et Sommerville, 2009.

    PubMed

    Matthews, C G G; Richards, R H; Shinn, A P; Cox, D I

    2013-10-01

    Gill disorders have emerged in recent years as a significant problem in the production of marine-stage Atlantic salmon Salmo salar L. The multi-aetiological condition 'proliferative gill inflammation' (PGI) has been reported to cause heavy losses in western Norway, yet reports of Scottish cases of the disease have remained anecdotal. In the present study, histopathological material from a marine production site in the Scottish Highlands experiencing mortalities due to a seasonal gill disease with proliferative-type pathology was examined using light microscopy, special staining techniques and transmission electron microscopy (TEM). The microsporidian Desmozoon lepeophtherii Freeman et Sommerville, 2009 (syn. Paranucleospora theridion) was identified by staining using a Gram Twort method and TEM associated with distinctive proliferative and necrotic pathology confined to the interlamellar Malpighian cell areas of the primary filaments. Epitheliocystis was not a feature of the gill pathology observed. It is believed this is the first report of D. lepeophtherii being identified associated with pathology in a Scottish gill disease case, and supports anecdotal reports that a disease at least partly synonymous with PGI as described by Norwegian researchers is present in Scottish aquaculture. © 2013 John Wiley & Sons Ltd.

  10. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol.

    PubMed

    Narayanan, Kannan Badri; Park, Hyun Ho; Sakthivel, Natarajan

    2013-12-01

    Green synthesis of extracellular mycogenic silver nanoparticles using the fungus, Cylindrocladium floridanum is reported. The synthesized mycogenic silver nanoparticles were characterized using UV-Vis absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques. The nanoparticles exhibit fcc structure with Bragg's reflections of (111), (200), (220) and (311) was evidenced by XRD pattern, high-resolution TEM lattice fringes and circular rings in selected-area electron diffraction (SAED) pattern. The morphology of nanoparticles was roughly spherical in shape with an average size of ca. 25 nm. From FTIR spectrum, it was found that the biomolecules with amide I and II band were involved in the stabilization of nanoparticles. These mycogenic silver nanoparticles exhibited the homogeneous catalytic potential in the reduction of pollutant, 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using sodium borohydride, which followed a pseudo-first-order kinetic model. Thus, the synthesis of metal nanoparticles using sustainable microbial approach opens up possibilities in the usage of mycogenic metal nanoparticles as catalysts in various chemical reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. 3,4-Ethylenedioxythiophene functionalized graphene with palladium nanoparticles for enhanced electrocatalytic oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Choe, Ju Eun; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    Poly(3,4-ethylenedioxythiophene) functionalized graphene with palladium nanoparticles (denoted as Pd/PEDOT/rGO) has been synthesized for electrochemical oxygen reduction reaction (ORR) in alkaline solution. The structural features of catalyst are characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The TEM images suggest a well dispersed PdNPs onto PEDOT/rGO film. The ORR activity of Pd/PEDOT/rGO has been investigated via cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in 0.1 M KOH aqueous solution. Comparative CV analysis suggests a general approach of intermolecular charge-transfer in between graphene sheet and PdNPs via PEDOT which leads to the better PdNPs dispersion and subsequently superior ORR kinetics. The results from ORR measurements show that Pd/PEDOT/rGO has remarkable electrocatalytic activity and stability compared to Pd/rGO and state-of-the-art Pt/C. The Koutecky-Levich and Tafel analysis suggest that the proposed main path in the ORR mechanism has direct four-electron transfer process with faster transfer kinetic rate on the Pd/PEDOT/rGO.

  12. Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques.

    PubMed

    Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas

    2006-08-01

    The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.

  13. Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties

    NASA Astrophysics Data System (ADS)

    Bürck, Jochen; Aras, Onur; Bertinetti, Luca; Ilhan, Caner A.; Ermeydan, Mahmut A.; Schneider, Reinhard; Ulrich, Anne S.; Kazanci, Murat

    2018-01-01

    Collagen is a very popular natural biomaterial due to its high biocompatibility and bioactivity. Electrospinning is currently the only technique that allows the fabrication of continuous fibers with diameters down to a few nanometers. In order to regenerate collagen in the forms of nanofibers, it is necessary to dissolve it in suitable solvents. The solvents and electrospinning process cause unfolding of collagen nanofibers. It is proposed that acidic solvents preserve better the natural structure of collagen fibers. In this paper, the structures of collagen nanofibers were examined by using circular dichroism (CD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, differential scanning calorimetry (DSC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) methods in order to test this hypothesis. The increase in PP-II fraction, representing the triple helix structure in collagen, that was observed in CD analysis of HAc derived collagen nanofibers, for the first time was successfully confirmed and illustrated by using SEM and TEM methods. Furthermore, CD revealed the mostly detrimental effect of stabilization conditions such as heat, vacuum and UV treatment on the secondary structure of the collagen nanofibers.

  14. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties.

    PubMed

    Pan, Qin; Xie, Jian; Zhu, Tiejun; Cao, Gaoshao; Zhao, Xinbing; Zhang, Shichao

    2014-04-07

    Preparation of two-dimensional (2D) graphene-like materials is currently an emerging field in materials science since the discovery of single-atom-thick graphene prepared by mechanical cleavage. In this work, we proposed a new method to prepare 2D NiS, where reduced graphene oxide (rGO) was found to induce the recrystallization of NiS from nanorods to nanosheets in a hydrothermal process. The process and mechanism of recrystallization have been clarified by various characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS). The characterization of ex situ NiS/rGO products by SEM and EDS mapping indicates that the recrystallization of NiS from nanorods to nanosheets is realized actually through an exfoliation process, while the characterization of in situ NiS/rGO products by SEM, TEM, and EDS mapping reveals the exfoliation process. The XPS result demonstrates that hydrothermally assisted chemical bonding occurs between NiS and rGO, which induces the exfoliation of NiS nanorods into nanosheets. The obtained NiS/rGO composite shows promising Na-storage properties.

  15. Fabrication of PbS quantum dots and their applications in solar cells based on ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-05-01

    An efficient, inexpensive and large area scalable approach based on sol-gel technique is presented to fabricate quantum dots (QDs) of PbS. Size of the QDs is tuned by the varying the bath concentrations in the range of 50-200 mM. Transmission electron microscopy (TEM) studies confirm the growth of spherically shaped ˜5.6 nm QDs at 50 mM bath concentration. The optical bandgap of the QDs is found to be ˜0.9 eV and corresponds to the size obtained from TEM studies. ZnO/PbS solar cells are fabricated by sensitizing the ZnO nanorods with PbS QDs. The fabricated solar cells demonstrate the highest open circuit voltage ˜200 mV and short circuit current density ˜0.81 µA/cm2.

  16. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

  17. Multifarious applications of atomic force microscopy in forensic science investigations.

    PubMed

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    DTIC Science & Technology

    2015-03-30

    for the structural of the atomically sharp interface between hBN and Bi2Te3. Finally, we have developed unprecedentedly clean graphene supercoductor...crystals by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and...by MBE method. We also use transmission electron microscopy (TEM) analysis for the structural of the atomically sharp interface between hBN and Bi2Te3

  19. In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Wonmo, E-mail: wonmo.kang.ctr.ks@nrl.navy.mil; Beniam, Iyoel; Qidwai, Siddiq M.

    Electrically assisted deformation (EAD) is an emerging technique to enhance formability of metals by applying an electric current through them. Despite its increasing importance in manufacturing applications, there is still an unresolved debate on the nature of the fundamental deformation mechanisms underlying EAD, mainly between electroplasticity (non-thermal effects) and resistive heating (thermal effects). This status is due to two critical challenges: (1) a lack of experimental techniques to directly observe fundamental mechanisms of material deformation during EAD, and (2) intrinsic coupling between electric current and Joule heating giving rise to unwanted thermally activated mechanisms. To overcome these challenges, we havemore » developed a microdevice-based electromechanical testing system (MEMTS) to characterize nanoscale metal specimens in transmission electron microscopy (TEM). Our studies reveal that MEMTS eliminates the effect of Joule heating on material deformation, a critical advantage over macroscopic experiments, owing to its unique scale. For example, a negligible change in temperature (<0.02 °C) is predicted at ∼3500 A/mm{sup 2}. Utilizing the attractive features of MEMTS, we have directly investigated potential electron-dislocation interactions in single crystal copper (SCC) specimens that are simultaneously subjected to uniaxial loading and electric current density up to 5000 A/mm{sup 2}. Our in situ TEM studies indicate that for SCC, electroplasticity does not play a key role as no differences in dislocation activities, such as depinning and movement, are observed.« less

  20. To study the effect of dopant NiO concentration and duration of calcinations on structural and optical properties of MgO-NiO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana; Praveen,

    2016-05-06

    In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visiblemore » spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.« less

  1. Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages

    PubMed Central

    Plascencia-Villa, Germán; Bahena, Daniel; Rodríguez, Annette R.; Ponce, Arturo; José-Yacamán, Miguel

    2013-01-01

    Metallic nanoparticles have diverse applications in biomedicine, as diagnostics, image contrast agents, nanosensors and drug delivery systems. Anisotropic metallic nanoparticles possess potential applications in cell imaging and therapy+diagnostics (theranostics), but controlled synthesis and growth of these anisotropic or branched nanostructures has been challenging and usually require use of high concentrations of surfactants. Star-shaped gold nanoparticles were synthesized in high yield through a seed mediated route using HEPES as a precise shape-directing capping agent. Characterization was performed using advanced electron microscopy techniques including atomic resolution TEM, obtaining a detailed characterization of nanostructure and atomic arrangement. Spectroscopy techniques showed that particles have narrow size distribution, monodispersity and high colloidal stability, with absorbance into NIR region and high efficiency for SERS applications. Gold nanostars showed to be biocompatible and efficiently adsorbed and internalized by macrophages, as revealed by advanced FE-SEM and backscattered electron imaging techniques of complete unstained uncoated cells. Additionally, low voltage STEM and X-ray microanalysis revealed the ultra-structural location and confirmed stability of nanoparticles after endocytosis with high spatial resolution. PMID:23443314

  2. Twinning and martensite in a 304 austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yongfeng; Li, Xi; Sun, Xin

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyondmore » that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.« less

  3. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  4. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  5. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    PubMed Central

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  6. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    PubMed

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  7. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  8. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE PAGES

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; ...

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  9. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  10. Scanning EM of non-heavy metal stained biosamples: Large-field of view, high contrast and highly efficient immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuipers, Jeroen; Boer, Pascal de; Giepmans, Ben N.G., E-mail: b.n.g.giepmans@umcg.nl

    Scanning electron microscopy (SEM) is increasing its application in life sciences for electron density measurements of ultrathin sections. These are traditionally analyzed with transmission electron microscopy (TEM); by most labs, SEM analysis still is associated with surface imaging only. Here we report several advantages of SEM for thin sections over TEM, both for structural inspection, as well as analyzing immuno-targeted labels such as quantum dots (QDs) and gold, where we find that QD-labeling is ten times more efficient than gold-labeling. Furthermore, we find that omitting post-staining with uranyl and lead leads to QDs readily detectable over the ultrastructure, but undermore » these conditions ultrastructural contrast was even almost invisible in TEM examination. Importantly, imaging in SEM with STEM detection leads to both outstanding QDs and ultrastructural contrast. STEM imaging is superior over back-scattered electron imaging of these non-contrasted samples, whereas secondary electron detection cannot be used at all. We conclude that examination of ultrathin sections by SEM, which may be immunolabeled with QDs, will allow rapid and straightforward analysis of large fields with more efficient labeling than can be achieved with immunogold. The large fields of view routinely achieved with SEM, but not with TEM, allows straightforward raw data sharing using virtual microscopy, also known as nanotomy when this concerns EM data in the life sciences. - Highlights: • High resolution and large fields of view via nanotomy or virtual microscopy. • Highly relevant for EM‐datasets where information density is high. • Sample preparation with low contrast good for STEM, not TEM. • Quantum dots now stand out in STEM‐based detection. • 10 Times more efficient labeling with quantum dots compared to gold.« less

  11. Appendix B: Summary of TEM Particle Size Distribution Datasets

    EPA Pesticide Factsheets

    As discussed in the main text (see Section 5.3.2), calculation of the concentration of asbestos fibers in each of the bins of potential interest requires particle size distribution data derived using transmission electron microscopy (TEM).

  12. New Photocatalysts for Hydrogen Production; Nuevos Fotocatalizadores para la Producción de Hidrógeno

    DOE PAGES

    García, Abraham; Cotto, María; Duconge, José; ...

    2014-06-10

    The use of hydrogen as replacement for fossil fuels, on which we depend today, is a matter of great relevance. The sustainable generation of hydrogen as fuel is relevant from an environmental and economic point of view. In this study we have explored new synthetic routes for developing new photocatalysts to be used in water splitting, for hydrogen production. Different techniques have been used to produce hydrogen, such as electrolysis, even though these processes have been found to be energetically non suitable. In this research various photocatalytic materials were presented as possible alternatives for using in water splitting processes. Characterizationmore » of the new synthesized materials has been done by using different experimental techniques including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), surface area BET, and X-ray Diffraction (XRD). The efficiency of the synthesized photocatalysts was determined by evaluating the hydrogen evolution by the photocatalytic water splitting reaction.« less

  13. Influence of graphene quantum dots on electrical properties of polymer composites

    NASA Astrophysics Data System (ADS)

    Arthisree, D.; Joshi, Girish M.

    2017-07-01

    We successfully prepared synthetic nanocomposite (SNC) by dispersing graphene quantum dots (GQD) in cellulose acetate (CA) polymer system. The dispersion and occupied network of GQD were foreseen by microscopic techniques. The variation of plane to crossed linked array network was observed by the polarizing optical microscopic (POM) technique. The scanning electron microscopy (SEM) revealed the leaves like impressions of GQD in host polymer system. The series network of GQD occupied in CA at higher resolution was confirmed by transmission electron microscopy (TEM). The two dimensional (2D) topographic images demonstrated an entangled polymer network to plane morphology. The variation in surface roughness was evaluated from the dimensional (3D) topography. The influence of temperature on AC conductivity with highest value (4  ×  10-5 S cm-1), contributes to the decrease in activation energy. The DC conductivity obeys the percolation criteria co-related to the GQD loading by weight fraction. Furthermore, this synthetic nanocomposite is feasible for the development of sensing and electrical applications.

  14. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    PubMed Central

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  15. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-04-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.

  16. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution

    PubMed Central

    Schenk, Anna S.; Kim, Yi-Yeoun; Kulak, Alexander N.; Campbell, James M.; Nisbet, Gareth; Meldrum, Fiona C.; Robinson, Ian K.

    2015-01-01

    Atomic level defects such as dislocations play key roles in determining the macroscopic properties of crystalline materials 1,2. Their effects range from increased chemical reactivity 3,4 to enhanced mechanical properties 5,6. Dislocations have been widely studied using traditional techniques such as X-ray diffraction and optical imaging. Recent advances have enabled atomic force microscopy to study single dislocations 7 in two-dimensions (2D), while transmission electron microscopy (TEM) can now visualise strain fields in three-dimensions (3D) with near atomic resolution 8–10. However, these techniques cannot offer 3D imaging of the formation or movement of dislocations during dynamic processes. Here, we describe how Bragg Coherent Diffraction Imaging (BCDI) 11,12 can be used to visualize in 3D, the entire network of dislocations present within an individual calcite crystal during repeated growth and dissolution cycles. These investigations demonstrate the potential of BCDI for studying the mechanisms underlying the response of crystalline materials to external stimuli. PMID:26030304

  17. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    PubMed

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  18. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan Li; He Qiang; Max Planck Institute of Colloids and Interfaces, Golm/Potsdam D-14476

    2007-03-09

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabricationmore » remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules.« less

  19. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  20. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  1. Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.

    PubMed

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A

    2017-05-01

    Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preparation of high-quality planar FeRh thin films for in situ TEM investigations

    NASA Astrophysics Data System (ADS)

    Almeida, Trevor P.; McGrouther, Damien; Pivak, Yevheniy; Perez Garza, Hector Hugo; Temple, Rowan; Massey, Jamie; Marrows, Christopher H.; McVitie, Stephen

    2017-10-01

    The preparation of a planar FeRh thin film using a focused ion beam (FIB) secondary electron microscope (SEM) for the purpose of in situ transmission electron microscopy (TEM) is presented. A custom SEM stub with 45° faces allows for the transfer and milling of the sample on a TEM heating chip, whilst Fresnel imaging within the TEM revealed the presence of the magnetic domain walls, confirming the quality of the FIB-prepared sample.

  3. International Conference (4th) on Nanostructured Materials Held in Stockholm, Sweden on 14-19 June 1998. Special Volume - Part A. Volume 12, Numbers 1-4, 1999

    DTIC Science & Technology

    1998-06-19

    correlation was found between the X - ray grain size and the TEM grain size. Table 2 contains the hardness and density data for the nanocrystalline 5083...temperature with a Neophot hardness tester and a load of 0.2 N. RESULTS AND DISCUSSION X - ray diffraction and transmission electron microscopy combined with...For Single- Wall Carbon Nanotubes by Raman Scattering Technique Microstructure Change in Co46AI19035 Granular Thin Films by Annealing X - Ray

  4. Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Glucose.

    PubMed

    Pan, Hui; Liu, Ruiqi; Li, Guanglong; Wang, Xiaodong; Ding, Tao

    2018-05-01

    In this paper, we develop a simple and facile approach to prepare graphene nanosheets through chemical reduction with glucose as reducing agent and modification agent. The reduced and modified graphene by glucose (denoted as g-rGO) was characterized with techniques of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. It is found that, besides the desired reduction capability to graphene oxide (denoted as GO), glucose plays an important role as a modifying reagent in stabilizing the as-prepared graphene nanosheets simultaneously and the g-rGO exhibits good dispersibility and stability in water and waterborne polyurethane matrix (denoted as WPU). Moreover, the g-rGO can improve evidently the mechanical properties, weather ability and water resistance of WPU.

  5. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  6. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    PubMed

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  7. Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles

    PubMed Central

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578

  8. A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034

    NASA Technical Reports Server (NTRS)

    Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.

    2014-01-01

    The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.

  9. The nanoaquarium: A nanofluidic platform for in situ transmission electron microscopy in liquid media

    NASA Astrophysics Data System (ADS)

    Grogan, Joseph M.

    There are many scientifically interesting and technologically relevant nanoscale phenomena that take place in liquid media. Examples include aggregation and assembly of nanoparticles; colloidal crystal formation; liquid phase growth of structures such as nanowires; electrochemical deposition and etching for fabrication processes and battery applications; interfacial phenomena; boiling and cavitation; and biological interactions. Understanding of these fields would benefit greatly from real-time, in situ transmission electron microscope (TEM) imaging with nanoscale resolution. Most liquids cannot be imaged by traditional TEM due to evaporation in the high vacuum environment and the requirement that samples be very thin. Liquid-cell in situ TEM has emerged as an exciting new experimental technique that hermetically seals a thin slice of liquid between two electron transparent membranes to enable TEM imaging of liquid-based processes. This work presents details of the fabrication of a custom-made liquid-cell in situ TEM device, dubbed the nanoaquarium. The nanoaquarium's highlights include an exceptionally thin sample cross section (10s to 100s of nm); wafer scale processing that enables high-yield mass production; robust hermetic sealing that provides leak-free operation without use of glue, epoxy, or any polymers; compatibility with lab-on-chip technology; and on-chip integrated electrodes for sensing and actuation. The fabrication process is described, with an emphasis on direct wafer bonding. Experimental results involving direct observation of colloid aggregation using an aqueous solution of gold nanoparticles are presented. Quantitative analysis of the growth process agrees with prior results and theory, indicating that the experimental technique does not radically alter the observed phenomenon. For the first time, in situ observations of nanoparticles at a contact line and in an evaporating thin film of liquid are reported, with applications for techniques such as dip-coating and drop-casting, commonly used for depositing nanoparticles on a surface via convective-capillary assembly. Theoretical analysis suggests that the observed particle motion and aggregation are caused by gradients in surface tension and disjoining pressure in the thin liquid film.

  10. Attempt of correlative observation of morphological synaptic connectivity by combining confocal laser-scanning microscope and FIB-SEM for immunohistochemical staining technique.

    PubMed

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Honma, Satoru; Kaneko, Takeshi

    2014-11-01

    Ten years have passed since a serial block-face scanning electron microscopy (SBF-SEM) method was developed [1]. In this innovative method, samples were automatically sectioned with an ultramicrotome placed inside a scanning electron microscope column, and the block surfaces were imaged one after another by SEM to capture back-scattered electrons. The contrast-inverted images obtained by the SBF-SEM were very similar to those acquired using conventional TEM. SFB-SEM has made easy to acquire image stacks of the transmission electron microscopy (TEM) in the mesoscale, which is taken with the confocal laser-scanning microcopy(CF-LSM).Furthermore, serial-section SEM has been combined with the focused ion beam (FIB) milling method [2]. FIB-incorporated SEM (FIB-SEM) has enabled the acquisition of three-dimensional images with a higher z-axis resolution com- pared to ultramicrotome-equipped SEM.We tried immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in CF-LSM. Dendrites of neurons in the rat neostriatum were visualized using a recombinant viral vector. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively.We showed that conventional immuno-cytochemical staining for TEM was applicable to FIB-SEM. Furthermore, several synaptic contacts, which were thought to exist on the basis of CF-LSM findings, were confirmed with FIB-SEM, revealing the usefulness of the combined method of CF-LSM and FIB-SEM. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  12. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  13. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observedmore » at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.« less

  14. Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties.

    PubMed

    Kim, Ji Eun; Rensing, Kim H; Douglas, Carl J; Cheng, Kimberly M

    2010-02-01

    There have been few studies on quantifying carotenoid accumulation in carrots, and none have taken the comparative approach. The abundance and distribution of carotenes in carrot roots of three varieties, white, orange, and high carotene mass (HCM) were compared using light and transmission electron microscopy (TEM). Light microscopy has indicated that, in all three varieties, carotenes were most abundant in the secondary phloem and this area was selected for further TEM analysis. While carotenes were extracted during the fixation process for TEM, the high-pressure freezing technique we employed preserved the spaces (CS) left behind by the extracted carotene crystals. Chromoplasts from the HCM variety contained significantly (P < 0.05) more CS than chromoplasts from the orange variety. Chromoplasts from the white variety had few or no CS. There was no significant difference between the HCM and orange varieties in the number of chromoplasts per unit area, but the white variety had significantly (P < 0.05) fewer chromoplasts than the other two varieties. A large number of starch-filled amyloplasts was observed in secondary phloem of the white variety but these were not found in the other two varieties. The results from this comparative approach clearly define the subcellular localization of carotenoids in carrot roots and suggest that while the HCM genotype was selectively bred for increased carotene content, this selection did not lead to increased numbers of carotene-containing chromoplasts but rather greater accumulation of carotene per chromoplast. Furthermore, the results confirm that roots of the white carrot variety retain residual amounts of carotene.

  15. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    EPA Science Inventory

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamarian, Iman, E-mail: imanghamarian@yahoo.com; Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203; Samimi, Peyman

    The presence and interaction of nanotwins, geometrically necessary dislocations, and grain boundaries play a key role in the mechanical properties of nanostructured crystalline materials. Therefore, it is vital to determine the orientation, width and distance of nanotwins, the angle and axis of grain boundary misorientations as well as the type and the distributions of dislocations in an automatic and statistically meaningful fashion in a relatively large area. In this paper, such details are provided using a transmission electron microscope-based orientation microscopy technique called ASTAR™/precession electron diffraction. The remarkable spatial resolution of this technique (~ 2 nm) enables highly detailed characterizationmore » of nanotwins, grain boundaries and the configuration of dislocations. This orientation microscopy technique provides the raw data required for the determination of these parameters. The procedures to post-process the ASTAR™/PED datasets in order to obtain the important (and currently largely hidden) details of nanotwins as well as quantifications of dislocation density distributions are described in this study. - Highlights: • EBSD cannot characterize defects such as dislocations, grain boundaries and nanotwins in severely deformed metals. • TEM based orientation microscopy technique called ASTAR™/PED was used to resolve the problem. • Locations and orientations of nanotwins, dislocation density distribution and grain boundary characters can be resolved. • This work provides the bases for further studies on the interactions between dislocations, grain boundaries and nanotwins. • The computation part is explained sufficiently which helps the readers to post process their own data.« less

  17. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  18. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za; Olivier, E.J.; Neethling, J.H.

    2015-11-15

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we heremore » demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.« less

  19. Synthesis, characterization and photoluminescence properties of Bi³⁺ co-doped CaSiO₃:Eu³⁺ nanophosphor.

    PubMed

    Kumar, M Madesh; Krishna, R Hari; Nagabhushana, B M; Shivakumara, C

    2015-03-15

    Ceramic luminescent powders with the composition Ca(0.96-x)Eu0.04Bi(x)SiO3 (x=0.01-0.05) were prepared by solution combustion method. The nanopowders are characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) techniques. PXRD patterns of calcined (950°C for 3h) Ca(0.96-x)Eu0.04Bi(x)SiO3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 28 to 48 nm. SEM micrographs show the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. TEM micrograph shows the crystalline characteristics of the nanoparticles. Upon 280 nm excitation, the photoluminescence of the Ca(0.96-x)Eu0.04Bi(x)SiO3 particles show red emission at 611 nm corresponding to 5D0→7F2 transition. It is observed that PL intensity increases with Bi(3+) concentration. Our work demonstrates very interesting energy transfer from Bi(3+) to Eu(3+) in CaSiO3 host. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    PubMed

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  1. Nanoscale contact resistance of V2O5 xerogel films developed by nanostructured powder

    NASA Astrophysics Data System (ADS)

    Bera, Biswajit; Sekhar Das, Pradip; Bhattacharya, Manjima; Ghosh, Swapankumar; Mukhopadhyay, Anoop Kumar; Dey, Arjun

    2016-03-01

    Here we report the synthesis of V2O5 nanostructures by a fast, simple, cost-effective, low-temperature chemical process; followed by the deposition of V2O5 xerogel thin films on a glass substrate by a sol-gel route. Phase analysis, phase transition, microstructural and electronic characterization studies are carried out by x-ray diffraction, texture coefficient analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), related selected area electron diffraction pattern (SAED) analysis, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, and x-ray photoelectron spectroscopy techniques. Confirmatory TEM and SAED data analysis prove further that in this polycrystalline powder there is a unique localized existence of purely single crystalline V2O5 powder with a preferred orientation in the (0 1 0) direction. The most interesting result obtained in the present work is that the xerogel thin films exhibit an inherent capability to enhance the intrinsic resistance against contact induced deformations as more external load is applied during the nanoindentation experiments. In addition, both the nanohardness and Young’s modulus of the films are found to be insensitive to load variations (e.g. 1 to 7 mN). These results are explained in terms of microstructural parameters, e.g. porosity and structural configuration.

  2. Imaging the antimicrobial mechanism(s) of cathelicidin-2

    PubMed Central

    Schneider, Viktoria A. F.; Coorens, Maarten; Ordonez, Soledad R.; Tjeerdsma-van Bokhoven, Johanna L. M.; Posthuma, George; van Dijk, Albert; Haagsman, Henk P.; Veldhuizen, Edwin J. A.

    2016-01-01

    Host defence peptides (HDPs) have the potential to become alternatives to conventional antibiotics in human and veterinary medicine. The HDP chicken cathelicidin-2 (CATH-2) has immunomodulatory and direct killing activities at micromolar concentrations. In this study the mechanism of action of CATH-2 against Escherichia coli (E. coli) was investigated in great detail using a unique combination of imaging and biophysical techniques. Live-imaging with confocal fluorescence microscopy demonstrated that FITC-labelled CATH-2 mainly localized at the membrane of E. coli. Upon binding, the bacterial membrane was readily permeabilized as was shown by propidium iodide influx into the cell. Concentration- and time-dependent effects of the peptide on E. coli cells were examined by transmission electron microscopy (TEM). CATH-2 treatment was found to induce dose-dependent morphological changes in E. coli. At sub-minimal inhibitory concentrations (sub-MIC), intracellular granulation, enhanced vesicle release and wrinkled membranes were observed, while membrane breakage and cell lysis occurred at MIC values. These effects were visible within 1–5 minute of peptide exposure. Immuno-gold TEM showed CATH-2 binding to bacterial membranes. At sub-MIC values the peptide rapidly localized intracellularly without visible membrane permeabilization. It is concluded that CATH-2 has detrimental effects on E. coli at concentrations that do not immediately kill the bacteria. PMID:27624595

  3. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  4. A new approach for the delivery of artemisinin: formulation, characterization, and ex-vivo antileishmanial studies.

    PubMed

    Want, Muzamil Yaqub; Islamuddin, Mohammad; Chouhan, Garima; Dasgupta, Anjan Kumar; Chattopadhyay, Asoke Prasun; Afrin, Farhat

    2014-10-15

    Artemisinin, a potential antileishmanial compound with poor bioavailability and stability has limited efficacy in visceral leishmaniasis. Encapsulating artemisinin into poly lactic-co glycolic nanoparticles may improve its effectiveness and reduce toxicity. Artemisinin-loaded nanoparticles were prepared, optimized (using Box-Behnken design) and characterized by dynamic light scattering technique, Atomic force microscopy (AFM), Transmission electron microscopy (TEM) and Fourier Transform-Infra Red spectroscopy. Release kinetics of artemisinin from optimized nanoformulation was studied by dialysis method at pH 7.4 and 5.5. Cytotoxicity and antileishmanial activity of these nanoparticles was tested on murine macrophages by MTT assay and macrophage-infested Leishmania donovani amastigotes ex vivo, respectively. Artemisinin-loaded nanoparticles were 221±14nm in diameter, with polydispersity index, zeta potential, drug loading and entrapment efficiency of 0.1±0.015, -9.07±0.69mV, 28.03±1.14 and 68.48±1.97, respectively. AFM and TEM studies indicated that the particles were spherical in shape. These colloidal particles showed a sustained release pattern in vitro. Treatment with artemisinin-loaded nanoparticles significantly reduced the number of amastigotes per macrophage and percent infected macrophages ex vivo compared to free artemisinin. These nanoparticles were also non-toxic to macrophages compared to artemisinin alone. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    PubMed

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  6. Structural properties of GaAsN grown on (001) GaAs by metalorganic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ok, Young-Woo; Choi, Chel-Jong; Seong, Tae-Yeon; Uesugi, K.; Suemune, I.

    2001-07-01

    Detailed transmission electron microscopy (TEM) and transmission electron diffraction (TED) examination has been made of metalorganic molecular beam epitaxial GaAsN layers grown on (001) GaAs substrates. TEM results show that lateral composition modulation occurs in the GaAs1-xNx layer (x 6.75%). It is shown that increasing N composition and Se (dopant) concentration leads to poor crystallinity. It is also shown that the addition of Se increases N composition. Atomic force microscopy (AFM) results show that the surfaces of the samples experience a morphological change from faceting to islanding, as the N composition and Se concentration increase. Based on the TEM and AFM results, a simple model is given to explain the formation of the lateral composition modulation.

  7. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.

    PubMed

    Kurth, Thomas; Berger, Jürgen; Wilsch-Bräuninger, Michaela; Kretschmar, Susanne; Cerny, Robert; Schwarz, Heinz; Löfberg, Jan; Piendl, Thomas; Epperlein, Hans H

    2010-01-01

    In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. cisTEM, user-friendly software for single-particle image processing.

    PubMed

    Grant, Timothy; Rohou, Alexis; Grigorieff, Nikolaus

    2018-03-07

    We have developed new open-source software called cis TEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cis TEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cis TEM is available for download from cistem.org. © 2018, Grant et al.

  9. cisTEM, user-friendly software for single-particle image processing

    PubMed Central

    2018-01-01

    We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k – 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org. PMID:29513216

  10. Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.

    2012-06-15

    Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less

  11. Fabrication of MCM-41 fibers with well-ordered hexagonal mesostructure controlled in acidic and alkaline media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, A.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Zanjanchi, M.A.

    In this paper, synthesis and characterization of two type morphologies of the MCM-41mesoporous material, nano and microfibers, were investigated by electrospinning technique. The synthesis was performed in acidic and alkaline media, separately. The MCM-41 morphologies were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethylorthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) were used as silica and template sources for the synthesis of MCM-41 morphologies, respectively. The SEM results showed that MCM-41 nanofibers were spun in acidic media and microfibers of MCM-41 were produced in alkaline media. The XRD study revealed amore » long range structural ordering of mesoporous materials. The TEM results indicated rough surfaces with uniform average diameter 200 nm for nanofibers and 2 µm for microfibers. The pore diameter and surface area of calcined MCM-41 nanofibers were 2.2 nm and 970 m{sup 2}/g, respectively. For the MCM-41 microfibers, pore sizes of 2.7 nm and surface areas 420 m{sup 2}/g was measured. - Graphical abstract: Electrospinning method was used for fabricating of MCM-41 microfibers from TEOS in alkaline media (top) and MCM-41 nanofibers in acidic media (bottom). - Highlights: • Synthesis of MCM-41 nanofibers and microfibers by electrospinning technique. • MCM-41 nanofibers were synthesized in acidic media. • MCM-41 manofibers spun in alkaline media. • Electrospinning was a simple method for preparing of fibers with respect to chemical method.« less

  12. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Shankar, Esaki M; Wong, Kum Thong

    2017-01-01

    During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

  13. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed Central

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Wong, Kum Thong

    2017-01-01

    Background During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. Methods We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. Results TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. Conclusion B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection. PMID:28045926

  14. A Fast Response Ammonia Sensor Based on Coaxial PPy-PAN Nanofiber Yarn.

    PubMed

    Liu, Penghong; Wu, Shaohua; Zhang, Yue; Zhang, Hongnan; Qin, Xiaohong

    2016-06-23

    Highly orientated polypyrrole (PPy)-coated polyacrylonitrile (PAN) (PPy-PAN) nanofiber yarn was prepared with an electrospinning technique and in-situ chemical polymerization. The morphology and chemical structure of PPy-PAN nanofiber yarn was characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR), which indicated that the PPy as the shell layer was homogeneously and uniformly polymerized on the surface of PAN nanofiber. The effects of different concentration of doping acid on the responses of PPy-PAN nanofiber yarn sensor were investigated. The electrical responses of the gas sensor based on the PPy-PAN nanofiber yarn to ammonia were investigated at room temperature. The nanoyarn sensor composed of uniaxially aligned PPy-PAN nanofibers with a one-dimensional structure exhibited a transient response, and the response time was less than 1 s. The excellent sensing properties mentioned above give rise to good potential application prospects in the field of ammonia sensor.

  15. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plemmons, DA; Suri, PK; Flannigan, DJ

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasizemore » how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and application of the technique to solving seemingly intractable materials problems in addition to discovery-based research. Our goal with this Perspective is to bring the capabilities of TIEM to the-attention of materials scientists, chemists, physicists, and engineers in hopes that new,avenues of research emerge and to make clear the large parameter space that is opened by extending TEM, and the ability to readily manipulate electron trajectories and energies, into the ultrafast domain.« less

  16. Biologically inspired EM image alignment and neural reconstruction.

    PubMed

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  17. Recombination-related properties of a-screw dislocations in GaN: A combined CL, EBIC, TEM study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Mikhailovskii, V. Yu.; IRC for Nanotechnology, Research Park, St.-Petersburg State University

    2016-06-17

    Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conductionmore » band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The stacking fault ribbon in the core of dissociated a-screw dislocation which form a quantum well for electrons was proposed to play an important role both in DRL spectrum formation and in REDG.« less

  18. Microstructural change in electroformed copper liners of shaped charges upon plastic deformation at ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.

    2002-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.

  19. Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property

    NASA Astrophysics Data System (ADS)

    Shrivastava, Megha; Kumari, Reeta; Parra, Mohammad Ramzan; Pandey, Padmini; Siddiqui, Hafsa; Haque, Fozia Z.

    2017-11-01

    In this report we present the successful enhancement in electroluminescence (EL) in nanostructured n-type porous silicon (PS) with an idea of embedding luminophorous Molybdenum disulfide (MoS2) quantum dots (QD's). Electrochemical anodization technique was used for the formation of PS surface and MoS2 QD's were prepared using the electrochemical route. Spin coating technique was employed for the proper incorporation of MoS2 QD's within the PS nanostructures. The crystallographic analysis was performed using X-ray diffraction (XRD), Raman and Fourier transform infrared (FT-IR) spectroscopy techniques. However, surface morphology was determined using Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The optical measurements were performed on photoluminescence (PL) spectrophotometer; additionally for electroluminescence (EL) study special arrangement of instrumental setup was made at laboratory level which provides novelty to this work. A diode prototype was made comprising Ag/MoS2:PS/Silicon/Ag for EL study. The MoS2:PS shows a remarkable concentration dependent enhancement in PL as well as in EL intensities, which paves a way to better utilize this strategy in optoelectronic device applications.

  20. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    PubMed

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  1. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.

    2018-05-01

    Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.

  2. Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures

    NASA Astrophysics Data System (ADS)

    Godec, M.; Skobir Balantič, D. A.

    2016-07-01

    High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.

  3. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO-₂x Thin Films.

    PubMed

    Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay

    2015-08-14

    Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  4. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    NASA Astrophysics Data System (ADS)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  5. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.

    PubMed

    Ghows, Narjes; Entezari, Mohamad H

    2010-06-01

    A novel method has been developed for the preparation of nano-sized TiO(2) with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 degrees C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO(2) nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis spectroscopy. (c) 2010 Elsevier B.V. All rights reserved.

  6. SRF niobium characterization using SIMS and FIB-TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevie, F. A.

    2015-12-04

    Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen didmore » not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.« less

  7. Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents

    NASA Astrophysics Data System (ADS)

    Arulmozhi, K. T.; Mythili, N.

    2013-12-01

    Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.

  8. Synthesis and adsorption properties of flower-like layered double hydroxide by a facile one-pot reaction with an eggshell membrane as assistant

    NASA Astrophysics Data System (ADS)

    Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying

    In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.

  9. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. TEM study of 〈110〉-type 35.26° dislocations specially induced by polishing of SrTiO₃ single crystals.

    PubMed

    Jin, L; Guo, X; Jia, C L

    2013-11-01

    The dislocations created by mechanical polishing of SrTiO₃ (100) single crystals were investigated by means of transmission electron microscopy (TEM) techniques combined with scanning TEM (STEM) techniques. A high density of dislocations was observed in the surface layer with a thickness of about 5 μm. These dislocations were found to be straight and highly aligned along the 〈111〉 directions. In most cases they appear in pairs or as a bundle. The nature of the dislocations was determined as mixed 〈110〉-type with the line vector t=〈111〉. They are 〈110〉-type 35.26° dislocations. The isolated 〈110〉-type 35.26° dislocations possess a compact core structure with a core spreading of ~0.5 nm. Dissociation of the dislocation occurs on the {1−10} glide plane, leading to the formation of two b=a/2〈110〉 partials separated by a stacking fault. The separation of the two partials was estimated to be 2.53 ± 0.32 nm based on a cross-correlation analysis of atomic-resolution images. Our results provide a solid experimental evidence for this special type of dislocation in SrTiO₃. The high density of straight and highly 〈111〉-orientated dislocations is expected to have an important influence on the anisotropy in electrical and mass transport properties. © 2013 Elsevier B.V. All rights reserved.

  11. Characterization of ZnAl cast alloys with Na addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gancarz, Tomasz, E-mail: t.gancarz@imim.pl; Cempura, Grzegorz; Skuza, Wojciech

    2016-01-15

    This study was aimed at evaluating the microstructural change and thermal, electrical and mechanical properties with the addition of Na to eutectic ZnAl alloys. Solders based on eutectic ZnAl containing 0.2 to 3.0 (wt.%) of Na were developed for high temperature solder. Differential scanning calorimetry (DSC) measurements were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed over − 50 °C to 300 °C and 30 °C to 300 °C temperature ranges, respectively. The microstructure of the specimens was analyzed using scanning (SEM) and transmission electron microscopy (TEM) techniques. Chemical microanalysismore » was performed by energy-dispersive X-ray spectroscopy (EDS) on SEM and TEM. The precipitates of NaZn{sub 13} were confirmed by X-ray diffraction (XRD) measurements and selected area electron diffraction (SAED) techniques. The addition of Na to eutectic ZnAl alloy increased the electrical resistivity and reduced the coefficient of thermal expansion; however, the melting point did not change. The mechanical properties, strain and microhardness increased with Na content in alloys. - Highlights: • High temperature soldering materials of ZnAl with Na were designed and characterized. • Precipitates of NaZn{sub 13}were observed and confirmed using TEM and XRD. • Addition of Na to eutectic ZnAl cussed increased mechanical properties. • NaZn{sub 13} caused increased electrical resistivity and microhardness, and reduced the CTE.« less

  12. Microscopy based studies on the interaction of bio-based silver nanoparticles with Bombyx mori Nuclear Polyhedrosis virus.

    PubMed

    Tamilselvan, Selvaraj; Ashokkumar, Thirunavukkarasu; Govindaraju, Kasivelu

    2017-04-01

    In the present investigation, silver nanoparticles (AgNPs) interactions with Bombyx mori Nuclear Polyhedrosis virus (BmNPV) were characterized using High-Resolution Scanning Electron Microscopy (HR-SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Atomic Force Microcopy (AFM) and Confocal Microscope (CM). HR-SEM study reveals that the biosynthesized AgNPs have interacted with BmNPV and were found on the surface. TEM micrographs of normal and viral polyhedra treated with AgNPs showed that the nanoparticles were accumulated in the membrane and it was noted that some of the AgNPs successfully penetrated the membrane by reaching the capsid of BmNPV. AFM and confocal microscopy studies reveal that the disruption in the shell membrane tends to lose its stability due to exposure of AgNPs to BmNPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of gold nanochains via photoactivation technique and their catalytic applications.

    PubMed

    Sinha, Arun Kumar; Basu, Mrinmoyee; Sarkar, Sougata; Pradhan, Mukul; Pal, Tarasankar

    2013-05-15

    The article reports a simple photoactivation technique for the synthesis of chain like assembly of spherical Au nanocrystals using a nontoxic biochemical, β-cyclodextrin under ~365 nm UV-light irradiation. Under UV irradiation, β-cyclodextrin acts as a reducing as well as capping agent and eventually becomes a stabilizing linker for Au nanoparticles. The UV-visible spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopic techniques are employed to systematically characterize the Au nanochains. Additionally, it is shown that the Au nanocrystals act as an effective catalyst for the reduction in nitrobenzene to aniline and methylene blue to leuco methylene blue in presence of suitable reducing agent. The catalytic reduction reactions and kinetic parameters are evaluated from UV-visible spectroscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study

    USGS Publications Warehouse

    Kim, Jin-wook; Furukawa, Yoko; Daulton, Tyrone L.; Lavoie, Dawn L.; Newell, Steven W.

    2003-01-01

    Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, σ = 0.08 nm) and 1.26 nm (σ = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0–1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).

  15. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less

  16. High fluence swift heavy ion structure modification of the SiO2/Si interface and gate insulator in 65 nm MOSFETs

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Gao, Bo; Gong, Min; Willis, Maureen; Yang, Zhimei; Guan, Mingyue; Li, Yun

    2017-04-01

    In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO2/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO2 and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.

  17. Observation of thermally etched grain boundaries with the FIB/TEM technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palizdar, Y., E-mail: y.palizdar@merc.ac.ir; San Martin, D.; Ward, M.

    2013-10-15

    Thermal etching is a method which is able to reveal and characterize grain boundaries, twins or dislocation structures and determine parameters such as grain boundary energies, surface diffusivities or study phase transformations in steels, intermetallics or ceramic materials. This method relies on the preferential transfer of matter away from grain boundaries on a polished sample during heating at high temperatures in an inert/vacuum atmosphere. The evaporation/diffusion of atoms at high temperatures results in the formation of grooves at the intersections of the planes of grain/twin boundaries with the polished surface. This work describes how the combined use of Focussed Ionmore » Beam and Transmission Electron Microscopy can be used to characterize not only the grooves and their profile with the surface, but also the grain boundary line below the groove, this method being complementary to the commonly used scanning probe techniques. - Highlights: • Thermally etched low-carbon steel samples have been characterized by FIB/TEM • Grain boundary (GB) lines below the groove have been characterized in this way • Absence of ghost traces and large θ angle suggests that GB are not stationary but mobile • Observations correlate well with previous works and Mullins' investigations [22].« less

  18. New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials

    PubMed Central

    den Engelsen, Daniel; Fern, George R.; Harris, Paul G.; Ireland, Terry G.; Silver, Jack

    2017-01-01

    Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images. PMID:28772671

  19. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  20. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    NASA Astrophysics Data System (ADS)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  1. Preparation and drug release behavior of temperature-responsive mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Liu, Ping; Tian, Yong

    2011-06-01

    A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery.

  2. Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta

    2013-04-01

    In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followedmore » a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.« less

  3. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    PubMed

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH 4 - oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92Ag Pt -1 ) in comparison with a catalyst prepared in the presence of SDS (17766.15Ag Pt -1 ) in NaBH 4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH 4 and 2M H 2 O 2 (133.38mWcm -2 ). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Surface topography and ultrastructural changes of mucinous carcinoma breast cells.

    PubMed

    Voloudakis, G E; Baltatzis, G E; Agnantis, N J; Arnogianaki, N; Misitzis, J; Voloudakis-Baltatzis, I

    2007-01-01

    Mucinous carcinoma of the breast (MCB) is histologically classified into 2 groups: (1) pure MCB and (2) mixed MCB. Pure MCB carries a better diagnosis than mixed MCB. This research relates to the cell surface topography and ultrastructure of the cells in the above cases and aims to find the differences between them, by means of two methods: scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For the SEM examination, it was necessary to initially culture the MCB tissues and then proceed with the usual SEM method. In contrast, for the TEM technique, MCB tissues were initially fixed followed by the classic TEM method. The authors found the topography of pure MCB cases to be without nodes. The cell membrane was smooth, with numerous pores and small ruffles that covered the entire cell. The ultrastructural appearance of the same cases was with a normal cell membrane containing abundant collagen fibers. They also had many small vesicles containing mucin as well as secretory droplets. In contrast the mixed MCB had a number of lymph nodes and their cell surface topography showed stronger changes such as microvilli, numerous blebs, ruffles and many long projections. Their ultrastructure showed very long microvilli with large cytoplasmic inclusions and extracellular mucin collections, electron-dense material vacuoles, and many important cytoplasmic organelles. An important fact is that mixed MCB also contains areas of infiltrating ductal carcinoma. These cells of the cytoplasmic organelles are clearly responsible for the synthesis, storage, and secretion of the characteristic mucin of this tumor type. Evidently, this abnormal mucin production and the abundance of secretory granules along with the long projections observed in the topographical structure might be responsible for transferring tumor cells to neighboring organs, thus being responsible for metastatic disease.

  5. Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy.

    PubMed

    García Carrillo, Mercedes; Ferrario, Mariana; Guerrero, Sandra

    2018-08-01

    The aim of this study was to analyze the effectiveness of UV-C light (0-10.6 kJ/m 2 ) assisted by mild heat treatment (50 °C) on the inactivation of Saccharomyces cerevisiae KE 162 in peptone water and fresh carrot-orange juice blend (pH: 3.8; 9.8°Brix; 707 NTU; absorption coefficient: 0.17 cm -1 ). Yeast induced damage by single UV-C and mild heat (H) and the combined treatment UV-C/H, was investigated by flow cytometry (FC) and transmission electron microscopy (TEM). When studying induced damage by FC, cells were labeled with fluorescein diacetate (FDA) and propidium iodide (PI) to monitor membrane integrity and esterase activity. UV-C/H provoked up to 4.7 log-reductions of S. cerevisiae; whereas, only 2.6-3.3 log-reductions were achieved by single UV-C and H treatments. FC revealed a shift with treatment time from cells with esterase activity and intact membrane to cells with permeabilized membrane. This shift was more noticeable in peptone water and UV-C/H treated juice. In the UV-C treated juice, double stained cells were detected, suggesting the possibility of being sub-lethally damaged, with compromised membrane but still metabolically active. TEM images of treated cells revealed severe damage, encompassing coagulated inner content, disorganized lumen and cell debris. FC and TEM provided additional information regarding degree and type of damage, complementing information revealed by the traditional plate count technique. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effects of O 2 plasma and UV-O 3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH 4 sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humayun, Md Tanim; Sainato, Michela; Divan, Ralu

    We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less

  7. Graphene liquid cells for multi-technique analysis of biological cells in water environment

    NASA Astrophysics Data System (ADS)

    Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.

    2018-05-01

    In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.

  8. Effects of O 2 plasma and UV-O 3 assisted surface activation on high sensitivity metal oxide functionalized multiwalled carbon nanotube CH 4 sensors

    DOE PAGES

    Humayun, Md Tanim; Sainato, Michela; Divan, Ralu; ...

    2017-07-28

    We present a comparative analysis of UV-O 3 (UVO) and O 2 plasma-based surface activation processes of multi-walled carbon nanotubes (MWCNTs) enabling highly effective functionalization with metal oxide nanocrystals (MONCs). Experimental results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy show that by forming COOH (carboxyl), C-OH (hydroxyl), and C=O (carbonyl) groups on the MWCNT surface that act as active nucleation sites, O 2 plasma and UVO-based dry pre-treatment techniques greatly enhance the affinity between MWCNT surface and the functionalizing MONCs. MONCs, such as ZnO and SnO 2, deposited by atomic layermore » deposition (ALD) technique, were implemented as the functionalizing material following UVO and O 2 plasma activation of MWCNTs. In conclusion, a comparative study on the relative resistance changes of O 2 plasma and UVO activated MWCNT functionalized with MONC in the presence of 10 ppm methane (CH 4) in air, is presented as well.« less

  9. Magnetic {Mo72Fe30}-embedded hybrid nanocapsules.

    PubMed

    Cui, Jiwei; Fan, Dawei; Hao, Jingcheng

    2009-02-15

    Magnetic nanocapsules were constructed by fabricating nanometer scaled C(60)-like "Keplerate" type {Mo(72)Fe(30)} with molecular formula [Mo(72)(VI)Fe(30)(III)O(252)(CH(3)COO)(12){Mo(2)O(7)(H(2)O)}(2){H(2)Mo(2)O(8)(H(2)O)}(H(2)O)(91)] x ca.150 H(2)O into nanocapsule shells using the LbL technique. The morphology of the obtained hybrid nanocapsules was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Shell thickness of the {Mo(72)Fe(30)}-embedded nanocapsules can be tailored at the nanometer level more precisely than other nanoparticle-embedded capsules due to the homogeneous diameter and surface charges of {Mo(72)Fe(30)}. Interestingly, the {Mo(72)Fe(30)}-embedded nanocapsules could be separated and aligned under a circumstance of magnetic field, though {Mo(72)Fe(30)} is a paramagnetic molecule. This is the first time to fabricate hybrid magnetic materials containing {Mo(72)Fe(30)} using LbL technique. The obtained nanocapsules can be a good candidate for bioseparation as well as targeted delivery.

  10. Synthesis and characterization of fluorapatite-titania (FAp-TiO 2) nanocomposite via mechanochemical process

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar

    2010-09-01

    In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.

  11. Morphological and ultrastructural characterization of ionoregulatory cells in the teleost Oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique.

    PubMed

    Fridman, Sophie; Rana, Krishen J; Bron, James E

    2013-10-01

    Aspects of ionoregulatory or mitochondria-rich cell (MRC) differentiation and adaptation in Nile tilapia yolk-sac larvae following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt are described. Investigations using immunohistochemistry on whole-mount Nile tilapia larvae using anti- Na⁺/K⁺-ATPase as a primary antibody and Fluoronanogold™ (Nanoprobes) as a secondary immunoprobe allowed fluorescent labeling with the high resolution of confocal scanning laser microscopy combined with the detection of immunolabeled target molecules at an ultrastructural level using transmission electron microscopy (TEM). It reports, for the first time, various developmental stages of MRCs within the epithelial layer of the tail of yolk-sac larvae, corresponding to immature, developing, and mature MRCs, identifiable by their own characteristic ultrastructure and form. Following transfer to hyperosmotic salinities the density of immunogold particles and well as the intricacy of the tubular system appeared to increase. In addition, complementary confocal scanning laser microscopy allowed identification of immunopositive ramifying extensions that appeared to emanate from the basolateral portion of the cell that appeared to be correlated with the localization of subsurface tubular areas displaying immunogold labeled Na⁺/K⁺-ATPase. This integrated approach describes a reliable and repeatable prefixation immunogold labeling technique allowing precise visualization of NaK within target cells combined with a 3D imaging that offers valuable insights into MRC dynamics at an ultrastructural level. Copyright © 2013 Wiley Periodicals, Inc.

  12. Transmission Electron Microscopy of Vacuum Sensitive, Radiation Sensitive, and Structurally Delicate Materials

    NASA Astrophysics Data System (ADS)

    Levin, Barnaby

    The transmission electron microscope (TEM) is a powerful tool for characterizing the nanoscale and atomic structure of materials, offering insights into their fundamental physical properties. However, TEM characterization requires very thin samples of material to be placed in a high vacuum environment, and exposed to electron radiation. The high vacuum will induce some materials to evaporate or sublimate, preventing them from being accurately characterized, radiation may damage the sample, causing mass loss, or altering its structure, and structurally delicate samples may collapse and break apart when they are thinned for TEM imaging. This dissertation discusses three different projects in which each of these three difficulties pose challenges to TEM characterization of samples. Firstly, we outline strategies for minimizing radiation damage when characterizing materials in TEM at atomic resolution. We consider types of radiation damage, such as vacancy enhanced displacement, that are not included in some previous discussions of beam damage, and we consider how to minimize damage when using new imaging techniques such as annular bright-field scanning TEM. Our methodology emphasizes the general principle that variation of both signal strength and damage cross section must be considered when choosing an experimental electron beam voltage to minimize damage. Secondly, we consider samples containing sulfur, which is prone to sublimation in high vacuum. TEM is routinely used to attempt to characterize the sulfur distribution in lithium-sulfur battery electrodes, but sublimation artifacts can give misleading results. We demonstrate that sulfur sublimation can be suppressed by using cryogenic TEM to characterize sulfur at very low temperatures, or by using the recently developed airSEM to characterize sulfur without exposing it to vacuum. Finally, we discuss the characterization of aging cadmium yellow paint from early 20th century art masterpieces. The binding medium holding paint particles together bends and curls as sample thickness is reduced to 100 nm, making high resolution characterization challenging. We acquire lattice resolution images of the pigment particles through the binder using high voltage zero-loss energy filtered TEM, allowing us to measure the pigment particle size and determine the pigment crystal structure, providing insight into why the paint is aging and how it was synthesized.

  13. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov Websites

    imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z

  14. PROPOSED ASTM METHOD FOR THE DETERMINATION OF ASBESTOS IN AIR BY TEM AND INFORMATION ON INTERFERING FIBERS

    EPA Science Inventory

    The draft of the ASTM Test Method for air entitled: "Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)" (ASTM Z7077Z) is an adaptation of the International Standard, ISO 10312. It is currently...

  15. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl; Voogt, F. C.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament ismore » formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.« less

  16. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    NASA Astrophysics Data System (ADS)

    Oosthoek, J. L. M.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.; Kooi, B. J.

    2015-02-01

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  17. A portable cryo-plunger for on-site intact cryogenic microscopy sample preparation in natural environments.

    PubMed

    Comolli, Luis R; Duarte, Robert; Baum, Dennis; Luef, Birgit; Downing, Kenneth H; Larson, David M; Csencsits, Roseann; Banfield, Jillian F

    2012-06-01

    We present a modern, light portable device specifically designed for environmental samples for cryogenic transmission-electron microscopy (cryo-TEM) by on-site cryo-plunging. The power of cryo-TEM comes from preparation of artifact-free samples. However, in many studies, the samples must be collected at remote field locations, and the time involved in transporting samples back to the laboratory for cryogenic preservation can lead to severe degradation artifacts. Thus, going back to the basics, we developed a simple mechanical device that is light and easy to transport on foot yet effective. With the system design presented here we are able to obtain cryo-samples of microbes and microbial communities not possible to culture, in their near-intact environmental conditions as well as in routine laboratory work, and in real time. This methodology thus enables us to bring the power of cryo-TEM to microbial ecology. Copyright © 2011 Wiley Periodicals, Inc.

  18. Microstructural characterization of Ti-6Al-4V metal chips by focused ion beam (FIB) and transmission electron microscopy (TEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Judy; Dong, Lei; Howe, Jane Y

    2011-01-01

    The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less

  19. Interfacial microanalysis of rubber tyre-cord adhesion and the influence of cobalt

    NASA Astrophysics Data System (ADS)

    Fulton, W. Stephen; Smith, Graham C.; Titchener, Keith J.

    2004-01-01

    The effect of cobalt-containing adhesion promoters on the structure and morphology of rubber-brass and rubber-tyre-cord interfaces before and after ageing has been investigated by X-ray photoelectron spectroscopy (XPS) depth profiling, glancing incidence X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect the cobalt adhesion promoters had upon the interface morphology as they suppressed the growth of crystalline dendrites normally associated with the ageing process was imaged in TEM using samples prepared by the focused ion beam (FIB) milling technique. XPS depth profiling through the interfaces revealed that different types of adhesion promoter influenced the amount and distribution of cobalt ions in the bonding layer. XRD demonstrated the influence that cobalt had upon the structure of the interface and subsequent crystallinity, with a lesser degree of crystallinity being associated with better adhesion performance. From the results a model for the effect of the Co chemistry of the adhesion promotor has been developed.

  20. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Anderson, Travis J.; Koehler, Andrew D.

    2015-08-24

    Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10{sup 14} H{supmore » +}/cm{sup 2}, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively.« less

  1. Thermal stability and electrochemical properties of PVP-protected Ru nanoparticles synthesized at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Devi, Pooja; Shivling, V. D.

    2017-08-01

    Stable ruthenium nanoparticles (RuNPs) have been synthesized by the chemical reduction of ruthenium trichloride trihydrate (RuCl3 · 3H2O) using sodium borohydride (NaBH4) as a reductant and polyvinylpyrrolidone (PVP) as a protecting agent in the aqueous medium at room temperature. The nanoparticles thus prepared were characterized by their morphology and structural analysis from transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectroscopy, Fourier transformation infrared and thermogravimetric analysis (TGA) techniques. The TEM image suggested a homogeneous distribution of PVP-protected RuNPs having a small average diameter of 2-4 nm with a chain-like network structure. The XRD pattern also confirmed that a crystallite size is around 2 nm of PVP-protected RuNPs having a single broad peak. The thermal stability studied using TGA, indicated good stability and the electrochemical properties of these nanoparticles revealed that saturation current increases for PVP-protected RuNPs/GC.

  2. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed ( Kappaphycus alvarezii) Extract

    NASA Astrophysics Data System (ADS)

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-06-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii ( K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm-1, which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  3. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract.

    PubMed

    Yew, Yen Pin; Shameli, Kamyar; Miyake, Mikio; Kuwano, Noriyuki; Bt Ahmad Khairudin, Nurul Bahiyah; Bt Mohamad, Shaza Eva; Lee, Kar Xin

    2016-12-01

    In this study, a simple, rapid, and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. Seaweed Kappaphycus alvarezii (K. alvarezii) was employed as a green reducing and stabilizing agents. The synthesized Fe3O4-NPs were characterized with X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The X-ray diffraction planes at (220), (311), (400), (422), (511), (440), and (533) were corresponding to the standard Fe3O4 patterns, which showed the high purity and crystallinity of Fe3O4-NPs had been synthesized. Based on FT-IR analysis, two characteristic absorption peaks were observed at 556 and 423 cm(-1), which proved the existence of Fe3O4 in the prepared nanoparticles. TEM image displayed the synthesized Fe3O4-NPs were mostly in spherical shape with an average size of 14.7 nm.

  4. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques.

    PubMed

    Suzuki, Michio; Kameda, Jun; Sasaki, Takenori; Saruwatari, Kazuko; Nagasawa, Hiromichi; Kogure, Toshihiro

    2010-08-01

    The microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD). The five layers were termed as M+3, M+2, M+1, M, M-1 from the outside to the inside in previous works, where M means myostracum. The outmost M+3 layer consists of calcite with a "mosaic" structure; granular submicron sub-grains with small-angle grain boundaries often accompanying dislocation arrays. M+2 layer consists of flat prismatic aragonite crystals with a leaf-like cross section, stacked obliquely to the shell surface. It looks that the prismatic crystals are surrounded by organic sheets, forming a compartment structure. M+1 and M-1 layers adopt a crossed lamellar structure consisting of aragonite flat prisms with rectangular cross section. M layer has a prismatic structure of aragonite perpendicular to the shell surface and with irregular shaped cross sections. Distinct organic sheets were not observed between the crystals in M+1, M and M-1 layers. The {110} twins are common in all aragonite M+2, M+1, M and M-1 layers, with the twin boundaries parallel to the prisms. These results for the microstructure of each layer should be considered in the discussion of the formation mechanism of the limpet shell structure. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Chemical and constitutional influences in the self-assembly of functional supramolecular hydrogen-bonded nanoscopic fibres.

    PubMed

    Puigmartí-Luis, Josep; Minoia, Andrea; Pérez Del Pino, Angel; Ujaque, Gregori; Rovira, Concepció; Lledós, Agustí; Lazzaroni, Roberto; Amabilino, David B

    2006-12-13

    A new series of secondary amides bearing long alkyl chains with pi-electron-donor cores has been synthesized and characterised, and their self-assembly upon casting at surfaces has been studied. The different supramolecular assemblies of the materials have been visualized by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is possible to obtain well-defined fibres of these aromatic core molecules as a result of the hydrogen bonds between the amide groups. Indeed, by altering the alkyl-chain lengths, constitutions, concentrations and solvent, it is possible to form different rodlike aggregates on graphite. Aggregate sizes with a lower limit of 6-8 nm width have been reached for different amide derivatives, while others show larger aggregates with rodlike morphologies which are several micrometers in length. For one compound that forms nanofibres, doping was performed by using a chemical oxidant, and the resulting layer on graphite was shown to exhibit metallic-like spectroscopy curves when probed with current-sensing AFM. This technique also revealed current maps of the surface of the molecular material. Fibre formation not only takes place on the graphite surface: nanometre scale rods have been imaged by using TEM on a grid after evaporation of solutions of the compounds in chloroform. Molecular modelling proves the importance of the hydrogen bonds in the generation of the fibres, and indicates that the constitution of the molecules is vital for the formation of the desired columnar stacks, results that are consistent with the images obtained by microscopic techniques. The results show the power of noncovalent bonds in self-assembly processes that can lead to electrically conducting nanoscale supramolecular wires.

  7. Environmental scanning electron microscopy gold immunolabeling in cell biology.

    PubMed

    Rosso, Francesco; Papale, Ferdinando; Barbarisi, Alfonso

    2013-01-01

    Immunogold labeling (IGL) technique has been utilized by many authors in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain the identification/localization of receptors and antigens, both in cells and tissues. Environmental scanning electron microscopy (ESEM) represents an important tool in biomedical research, since it does not require any severe processing of the sample, lowering the risk of generating artifacts and interfere with the IGL procedure. The absence of metal coating could yield further advantages for our purpose as the labeling detection is based on the atomic number difference between nanogold spheres and the biological material. Using the gaseous secondary electron detector, compositional contrast is easily revealed by the backscattered electron component of the signal. In spite of this fact, only few published papers present a combination of ESEM and IGL. Hereby we present our method, optimized to improve the intensity and the specificity of the labeling signal, in order to obtain a semiquantitative evaluation of the labeling signal.In particular, we used a combination of IGL and ESEM to detect the presence of a protein on the cell surface. To achieve this purpose, we chose as an experimental system 3T3 Swiss albino mouse fibroblasts and galectin-3.

  8. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae

    NASA Astrophysics Data System (ADS)

    Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.

    2008-08-01

    Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.

  9. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  10. Electrodeposition of gold nanoparticles on mesoporous TiO{sub 2} photoelectrode to enhance visible region photocurrent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriyono,; Krisnandi, Yuni Krisyuningsih; Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id

    2016-04-19

    Electrodeposition of gold nanoparticles (Au NPs) on the mesoporous TiO{sub 2} photoelectrode to enchance visible region photocurrent have been investigated. Mesoporous TiO{sub 2} was prepared by a sol gel method and immobilized to the fluorine doped tin oxide (FTO) substrate by dip coating technique. Gold nanoparticles were electrodeposited on the TiO{sub 2} surface and the result FTO/TiO{sub 2}/Au was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The generated photocurrent was evaluated with an electrochemical workstation (e-DAQ/e-recorder 401) using 60 W wolfram lamp as visible lightmore » source. The photoelectrochemical evaluation indicated that the presence of gold nanoparticles on TiO{sub 2} photoelectrode shall enhance the photocurrent up to 50%.« less

  11. Tungsten-Doped TiO2 Nanolayers with Improved CO2 Gas Sensing Properties for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Saberi, Maliheh; Ashkarran, Ali Akbar

    Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.

  12. Influence of BN fiber coatings on the interfacial structure of sapphire fiber reinforced NiAl composites

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.

    2001-07-01

    A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.

  13. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge

    NASA Astrophysics Data System (ADS)

    Sugai, Toshiki; Omote, Hideki; Bandow, Shunji; Tanaka, Nobuo; Shinohara, Hisanori

    2000-04-01

    Fullerenes and single-wall carbon nanotubes (SWNTs) have been produced for the first time by the high-temperature pulsed arc-discharge technique, which has developed in this laboratory. Fullerenes are identified quantitatively by high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal a significant amount of production of bundles of SWNTs in soot. The pulse arc production of fullerenes and SWNTs favors the high-temperature (⩾1000 °C), long pulses (⩾1 ms) and a heavy rare gas such as Ar or Kr as a buffer gas. We have found that fullerenes and SWNTs have complementary relationships in their early stage of production. The details of the pulsed arc discharge have been obtained by observing the transition from the pulsed arc discharge to the steady arc discharge while increasing the pulse width.

  14. Occurrence of photoluminescence and onion like structures decorating graphene oxide with europium using sodium dodecyl sulfate surfactant

    NASA Astrophysics Data System (ADS)

    Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.

    2017-07-01

    Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.

  15. Nanostructured zirconium phosphate as ion exchanger: Synthesis, size dependent property and analytical application in radiochemical separation.

    PubMed

    Chakraborty, Rajesh; Bhattacharaya, Koustava; Chattopadhyay, Pabitra

    2014-02-01

    Nanostructured zirconium phosphates (ZPs) of different sizes were synthesized using Tritron X-100 (polyethylene glycol-p-isooctylphenyl ether) surfactant. The materials were characterized by FTIR and powdered X-ray diffraction (XRD). The structural and morphological details of the material were established by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM study was followed by energy dispersive spectroscopic analysis (EDS) for elemental analysis of the sample. The particle sizes were determined by dynamic light scattering (DLS) method. Ion exchange capacity of these nanomaterials towards different metal ions was measured and size-dependent ion exchange property of the materials was investigated thoroughly. The nanomaterial of the smallest size (ca. 21.04nm) was employed to separate carrier-free (137m)Ba from (137)Cs in column chromatographic technique using 1.0M HNO3 as eluting agent at pH=5. © 2013 Elsevier Ltd. All rights reserved.

  16. Interaction of highly charged ions with carbon nano membranes

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Wilhelm, Richard A.; Smejkal, Valerie; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Charge state and energy loss measurements of slow highly charged ions (HCIs) after transmission through nanometer and sub-nanometer thin membranes are presented. Direct transmission measurements through carbon nano membranes (CNMs) show an unexpected bimodal exit charge state distribution, accompanied by charge exchange dependent energy loss. The energy loss of ions in CNMs with large charge loss shows a quadratic dependency on the incident charge state, indicating charge state dependent stopping force values. Another access to the exit charge state distribution is given by irradiating stacks of CNMs and investigating each layer of the stack with high resolution imaging techniques like transmission electron microscopy (TEM) and helium ion microscopy (HIM) independently. The observation of pores created in all of the layers confirms the assumption derived from the transmission measurements that the two separated charge state distributions reflect two different impact parameter regimes, i.e. close collision with large charge exchange and distant collisions with weak ion-target interaction.

  17. Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Ahmed A.; Al-Hazmi, Faten; Al-Tuwirqi, R. M.; Alnowaiser, F.; Al-Hartomy, Omar A.; El-Tantawy, Farid; Yakuphanoglu, F.

    2013-05-01

    The superparamagnetic magnetite (Fe3O4) nanoparticles with an average size of 7 nm were synthesized using a rapid and facile microwave hydrothermal technique. The structure of the magnetite nanoparticles was characterized by X-ray diffraction (X-ray), field effect scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The prepared Fe3O4 was shown to have a cubic phase of pure magnetite. Magnetization hysteresis loop shows that the synthesized magnetite exhibits no hysteretic features with a superparamagnetic behavior. The ethanol gas sensing properties of the synthesized magnetite were investigated, and it was found that the responsibility time is less than 10 s with good reproducibility for ethanol sensor. Accordingly, it is evaluated that the magnetite nanoparticles can be effectively used as a solid state ethanol sensor in industrial commercial product applications.

  18. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  19. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment

    NASA Astrophysics Data System (ADS)

    Cerrato, Erik; Gionco, Chiara; Berruti, Ilaria; Sordello, Fabrizio; Calza, Paola; Paganini, Maria Cristina

    2018-08-01

    This work reports the effect of doping zinc oxide with lanthanide ions on structural, EPR and UV visible properties. Bare and doped samples were synthesized using the simple and green hydrothermal process. Different rare earth ions (RE = La, Ce, Pr, Er and Yb) with 1% molar ratio RE/Zn were used. The samples have been studied using X Ray Diffraction, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV visible diffuse reflectance spectroscopy. Finally, electron paramagnetic resonance (EPR) spectroscopy, was used to assess the materials photoactivity under UV irradiation, both in solid state, to see the charge carriers' generation and in solution, evaluating the OH• radical formation using the DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide) spin trapping technique. The results suggest that the synthesized materials could be interesting systems for the photocatalytic abatement of emerging organic persistent pollutants in wastewater treatment plants.

  20. STUDY ON SYNTHESIS AND EVOLUTION OF NANOCRYSTALLINE Mg4Ta2O9 BY AQUEOUS SOL-GEL PROCESS

    NASA Astrophysics Data System (ADS)

    Wu, H. T.; Yang, C. H.; Wu, W. B.; Yue, Y. L.

    2012-06-01

    Nanosized and highly reactive Mg4Ta2O9 were successfully synthesized by aqueous sol-gel method compared with conventional solid-state method. Ta-Mg-citric acid solution was first formed and then evaporated resulting in a dry gel for calcination in the temperature ranging from 600°C to 800°C for crystallization in oxygen atmosphere. The crystallization process from the gel to crystalline Mg4Ta2O9 was identified by thermal analysis and phase evolution of powders was studied using X-ray diffraction (XRD) technique during calcinations. Particle size and morphology were examined by transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HR-SEM). The results revealed that sol-gel process showed great advantages over conventional solid-state method and Mg4Ta2O9 nanopowders with the size of 20-30 nm were obtained at 800°C.

  1. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    PubMed

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  2. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability

    PubMed Central

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-01-01

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Changle; Qiao Xueliang; Luo Langli

    Flower-like ZnO nano/microstructures have been synthesized by thermal treatment of Zn(NH{sub 3}){sub 4}{sup 2+} precursor in aqueous solvent, using ammonia as the structure directing agent. A number of techniques, including X-ray diffraction (XRD), field emission scan electron microscopy (FESEM), transmission electron microscopy (TEM), thermal analysis, and photoluminescence (PL) were used to characterize the obtained ZnO structures. The photoluminescence (PL) measurements indicated that the as-synthesized ZnO structures showed UV ({approx}375 nm), blue ({approx}465 nm), and yellow ({approx}585 nm) emission bands when they were excited by a He-Gd laser using 320 nm as the excitation source. Furthermore, it has been interestingly foundmore » that the intensity of light emission at {approx}585 nm remarkably decreased when the obtained ZnO nanocrystals were annealed at 600 deg. C for 3 h in air. The reason might be the possible oxygen vacancies and interstitials in the sample decreased at high temperature.« less

  4. Effects of space environment on structural materials - A preliminary study and development of materials characterization protocols

    NASA Technical Reports Server (NTRS)

    Miglionico, C.; Stein, C.; Murr, L. E.

    1991-01-01

    A preliminary study of materials exposed in space in LEO for nearly six years in the NASA Long-Duration Exposure Facility is presented. It is demonstrated that it will be necessary to isolate surface debris and reaction products from materials exposed in space. Replication techniques originally designed for electron microscopy examination of surfaces can be applied to lift off and isolate such surface features. Debris and reaction products were examined through a variety of analytical techniques, including the surface morphology by SEM, and internal microstructures by STEM and TEM, EDS, and SAD. The results illustrate the role that atomic oxygen and micrometeorites play in surface alteration and reaction in LEO space environments, as well as the role of debris created from other proximate materials.

  5. Correlative Tomography

    PubMed Central

    Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.

    2014-01-01

    Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640

  6. Key factor affecting the structural and textural properties of ZSM-5/MCM-41 composite

    NASA Astrophysics Data System (ADS)

    Boukoussa, Bouhadjar; Aouad, Nafissa; Hamacha, Rachida; Bengueddach, Abdelkader

    2015-03-01

    ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel-Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.

  7. Preparation and physicochemical characterization of cellulose nanocrystals from industrial waste cotton

    NASA Astrophysics Data System (ADS)

    Thambiraj, S.; Ravi Shankaran, D.

    2017-08-01

    We aimed to develop a simple and low-cost method for the production of high-performance cellulose nanomaterials from renewable and sustainable resources. Here, cellulose microcrystals (CMCs) were prepared by controlled acidic and basic hydrolysis of cotton from textile industry wastes. The resulted CMCs were further converted into cellulose nanocrystals (CNCs) with high crystallinity by acidic hydrolysis. The physicochemical characteristics and morphological feature of CMCs and CNCs were studied by various analytical techniques such as UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Fluorescence spectroscopy, Atomic force microscopy (AFM), High-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The isolated CNCs possess a needle-like morphological structure with the longitudinal and lateral dimensions of 180 ± 60 nm, 10 ± 1 nm, respectively. The AFM result reveals that the CNCs have a high aspect ratio of 40 ± 14 nm and the average thickness of 6.5 nm. The XRD and TEM analysis indicate that the synthesized CNCs possess face-centered cubic crystal structure. Preliminary experiments were carried out to fabricate CNCs incorporated poly (vinyl alcohol) (PVA) film. The results suggest that the concept of waste to wealth could be well executed from the prepared CNCs, which have great potential for various applications including bio-sensors, food packaging and drug delivery applications.

  8. Preparation of N-doped ZnO-loaded halloysite nanotubes catalysts with high solar-light photocatalytic activity.

    PubMed

    Cheng, Zhi-Lin; Sun, Wei

    2015-01-01

    N-doped ZnO nanoparticles were successfully assembled into hollow halloysite nanotubes (HNTs) by using the impregnation method. The catalysts based on N-doped ZnO-loaded HNTs nanocomposites (N-doped ZnO/HNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), UV-vis and Fourier transform infrared spectroscopy (FT-IR) techniques. The XRD pattern showed ZnO nanoparticles with hexagonal structure loaded on HNTs. The TEM-EDX analysis indicated ZnO particles with the crystal size of ca.10 nm scattered in hollow structure of HNTs, and furthermore the concentration of N atom in nanocomposites was up to 2.31%. The SEM-EDX verified most of N-ZnO nanoparticles existing in hollow nanotubes of HNTs. Besides containing an obvious ultraviolet absorbance band, the UV-vis spectra of the N-doped ZnO/HNTs catalysts showed an available visible absorbance band by comparing to HNTs and non-doped ZnO/HNTs. The photocatalytic activity of the N-doped ZnO/HNTs catalysts was evaluated by the degradation of methyl orange (MO) solution with the concentration of 20 mg/L under the simulated solar-light irradiation. The result showed that the N-doped ZnO/HNTs catalyst exhibited a desirable solar-light photocatalytic activity.

  9. Synthesis of core-shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene

    NASA Astrophysics Data System (ADS)

    Du, Jinlong; Shi, Chunwei; Wu, Wenyuan; Bian, Xue; Chen, Ping; Cui, Qingzhu; Cui, Zhixuan

    2017-12-01

    Composite molecular sieves, FAU/SBA-15, having core-shell structure were synthesized. The synthesized composite sieves were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), pyrolysis fourier transform infrared (Py-FTIR) spectroscopy, temperature programmed desorption spectra (NH3-TPD), UV Raman spectroscopy, nuclear magnetic resonance (NMR) and other techniques. XRD, SEM, TEM, N2 adsorption-desorption, mass spectrometry, NMR and EDS results showed that the composite molecular sieve contained two pore channels. Py-FTIR results showed that the addition of HY molecular sieves improved the acidity of the composite zeolite. The crystallization mechanism during the growth of FAU/SBA-15 shell was deduced from the influence of crystallization time on the synthesis of FAU/SBA-15 core-shell structured composite molecular sieve. HY dissociated partially in H2SO4 solution, and consisted of secondary structural units. This framework structure was more stable than its presence in the isolated form on the same ring or in the absence of Al. Thus it played a guiding role and connected with SBA-15 closely through the Si-O bond. This resulted in the gradual covering of the exterior surface of FAU phase by SBA-15 molecular sieves. The presence of SBA-15 restricted the formation of the other high mass components and increased the selectivity towards ethylbenzene.

  10. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site-Working towards a toolbox for better assessment.

    PubMed

    Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.

  11. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site—Working towards a toolbox for better assessment

    PubMed Central

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)’s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete (“grab”) samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples. PMID:28759607

  12. Polymer Self-Assembly into Unique Fractal Nanostructures in Solution by a One-Shot Synthetic Procedure.

    PubMed

    Shin, Suyong; Gu, Ming-Long; Yu, Chin-Yang; Jeon, Jongseol; Lee, Eunji; Choi, Tae-Lim

    2018-01-10

    A fractal nanostructure having a high surface area is potentially useful in sensors, catalysts, functional coatings, and biomedical and electronic applications. Preparation of fractal nanostructures on solid substrates has been reported using various inorganic or organic compounds. However, achieving such a process using polymers in solution has been extremely challenging. Here, we report a simple one-shot preparation of polymer fractal nanostructures in solution via an unprecedented assembly mechanism controlled by polymerization and self-assembly kinetics. This was possible only because one monomer was significantly more reactive than the other, thereby easily forming a diblock copolymer microstructure. Then, the second insoluble block containing poly(p-phenylenevinylene) (PPV) without any side chains spontaneously underwent self-assembly during polymerization by an in situ nanoparticlization of conjugated polymers (INCP) method. The formation of fractal structures in solution was confirmed by various imaging techniques such as atomic force microscopy, transmission electron microscopy (TEM), and cryogenic TEM. The diffusion-limited aggregation theory was adopted to explain the branching patterns of the fractal nanostructures according to the changes in polymerization conditions such as the monomer concentration and the presence of additives. Finally, after detailed kinetic analyses, we proposed a plausible mechanism for the formation of unique fractal nanostructures, where the gradual formation and continuous growth of micelles in a chain-growth-like manner were accounted for.

  13. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent.

    PubMed

    Tamboli, Mohaseen S; Kulkarni, Milind V; Patil, Rajendra H; Gade, Wasudev N; Navale, Shalaka C; Kale, Bharat B

    2012-04-01

    Silver-polyaniline (Ag-PANI) nanocomposite was synthesized by in situ polymerization method using ammonium persulfate (APS) as an oxidizing agent in the presence of dodecylbenzene sulfonic acid (DBSA) and silver nitrate (AgNO(3)). The as synthesized Ag-PANI nanocomposite was characterized by using different analytical techniques such as UV-visible (UV-vis) and Fourier transform Infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV-visible spectra of the synthesized nanocomposite showed a sharp peak at ~420 nm corresponding to the surface plasmon resonance (SPR) of the silver nanoparticles (AgNPs) embedded in the polymer matrix which is overlapped by the polaronic peak of polyaniline appearing at that wavelength. Nanowires of Ag-PANI nanocomposite with diameter 50-70 nm were observed in FE-SEM and TEM. TGA has indicated an enhanced thermal stability of nanocomposite as compared to that of pure polymer. The Ag-PANI nanocomposite has shown an antibacterial activity against model organisms, a gram positive Bacillus subtilis NCIM 6633 in Mueller-Hinton (MH) medium, which is hitherto unattempted. The Ag-PANI nanocomposite with monodispersed AgNPs is considered to have potential applications in sensors, catalysis, batteries and electronic devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Analysis of Peroxisome Biogenesis in Pollen by Confocal Microscopy and Transmission Electron Microscopy.

    PubMed

    Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai

    2017-01-01

    Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).

  15. Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques.

    PubMed

    Gauquelin, N; van den Bos, K H W; Béché, A; Krause, F F; Lobato, I; Lazar, S; Rosenauer, A; Van Aert, S; Verbeeck, J

    2017-10-01

    Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO 3 -La 0.67 Sr 0.33 MnO 3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Systemic and Microvascular Effects of Resuscitation with Blood Products After Severe Hemorrhage in Rats

    DTIC Science & Technology

    2014-01-01

    thickness, blood flow, and microvascular permeability were studied using intravital microscopy. Hemodynamics and coagulation tests (rotational...Microcirculation; packed red blood cells; intravital microscopy; ROTEM; plasma proteins; rats. Current US military guidance for the resuscitation of warfighters...was used for coagulation assays (rotational thromboelast- ometry [ROTEM], TEM Innovations GmbH, Germany). Intravital Microscopy and Animal Preparation

  17. Evolution of Immiscibly Blended Functionalized Polymers with Respect to Cure Parameters and Formulation

    NASA Astrophysics Data System (ADS)

    Heller, Nicholas Walter Medicus

    Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in powder form. TEM analysis additionally revealed the encapsulation of pigment particles by the domains, which helped explain the interaction between phase separation and pigment materials. The knowledge gained from fundamental characterization could be used to enable future generations of durable powder coatings with dead matte finishes.

  18. Post-ion beam induced degradation of copper layers in transmission electron microscopy specimens

    NASA Astrophysics Data System (ADS)

    Seidel, F.; Richard, O.; Bender, H.; Vandervorst, W.

    2015-11-01

    Copper containing transmission electron microscopy (TEM) specimens frequently show corrosion after focused ion beam (FIB) preparation. This paper reveals that the corrosion product is a Cu-S phase growing over the specimen surface. The layer is identified by energy-dispersive x-ray spectroscopy, and lattice spacing indexing of power spectra patterns. The corrosion process is further studied by TEM on cone-shaped specimens, which are intentionally stored after FIB preparation with S flakes for short time. Furthermore, a protective method against corrosion is developed by varying the time in the FIB vacuum and the duration of a subsequent plasma cleaning.

  19. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM.

    PubMed

    Shimanuki, Junichi; Takahashi, Shinichi; Tohma, Hajime; Ohma, Atsushi; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-06-01

    In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Electron and Fluorescence Microscopy of Extracellular Glucan and Aryl-Alcohol Oxidase during Wheat-Straw Degradation by Pleurotus eryngii

    PubMed Central

    Barrasa, J. M.; Gutiérrez, A.; Escaso, V.; Guillén, F.; Martínez, M. J.; Martínez, A. T.

    1998-01-01

    The ligninolytic fungus Pleurotus eryngii grown in liquid medium secreted extracellular polysaccharide (87% glucose) and the H2O2-producing enzyme aryl-alcohol oxidase (AAO). The production of both was stimulated by wheat-straw. Polyclonal antibodies against purified AAO were obtained, and a complex of glucanase and colloidal gold was prepared. With these tools, the localization of AAO and extracellular glucan in mycelium from liquid medium and straw degraded under solid-state fermentation conditions was investigated by transmission electron microscopy (TEM) and fluorescence microscopy. These studies revealed that P. eryngii produces a hyphal sheath consisting of a thin glucan layer. This sheath appeared to be involved in both mycelial adhesion to the straw cell wall during degradation and AAO immobilization on hyphal surfaces, with the latter evidenced by double labeling. AAO distribution during differential degradation of straw tissues was observed by immunofluorescence microscopy. Finally, TEM immunogold studies confirmed that AAO penetrates the plant cell wall during P. eryngii degradation of wheat straw. PMID:9435085

  1. Novel method for measurement of transistor gate length using energy-filtered transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sungho; Kim, Tae-Hoon; Kang, Jonghyuk; Yang, Cheol-Woong

    2016-12-01

    As the feature size of devices continues to decrease, transmission electron microscopy (TEM) is becoming indispensable for measuring the critical dimension (CD) of structures. Semiconductors consist primarily of silicon-based materials such as silicon, silicon dioxide, and silicon nitride, and the electrons transmitted through a plan-view TEM sample provide diverse information about various overlapped silicon-based materials. This information is exceedingly complex, which makes it difficult to clarify the boundary to be measured. Therefore, we propose a simple measurement method using energy-filtered TEM (EF-TEM). A precise and effective measurement condition was obtained by determining the maximum value of the integrated area ratio of the electron energy loss spectrum at the boundary to be measured. This method employs an adjustable slit allowing only electrons with a certain energy range to pass. EF-TEM imaging showed a sharp transition at the boundary when the energy-filter’s passband centre was set at 90 eV, with a slit width of 40 eV. This was the optimum condition for the CD measurement of silicon-based materials involving silicon nitride. Electron energy loss spectroscopy (EELS) and EF-TEM images were used to verify this method, which makes it possible to measure the transistor gate length in a dynamic random access memory manufactured using 35 nm process technology. This method can be adapted to measure the CD of other non-silicon-based materials using the EELS area ratio of the boundary materials.

  2. In Situ Electron Microscopy of Lactomicroselenium Particles in Probiotic Bacteria.

    PubMed

    Nagy, Gabor; Pinczes, Gyula; Pinter, Gabor; Pocsi, Istvan; Prokisch, Jozsef; Banfalvi, Gaspar

    2016-06-30

    Electron microscopy was used to test whether or not (a) in statu nascendi synthesized, and in situ measured, nanoparticle size does not differ significantly from the size of nanoparticles after their purification; and (b) the generation of selenium is detrimental to the bacterial strains that produce them. Elemental nano-sized selenium produced by probiotic latic acid bacteria was used as a lactomicroselenium (lactomicroSel) inhibitor of cell growth in the presence of lactomicroSel, and was followed by time-lapse microscopy. The size of lactomicroSel produced by probiotic bacteria was measured in situ and after isolation and purification. For these measurements the TESLA BS 540 transmission electron microscope was converted from analog (aTEM) to digital processing (dTEM), and further to remote-access internet electron microscopy (iTEM). Lactobacillus acidophilus produced fewer, but larger, lactomicroSel nanoparticles (200-350 nm) than Lactobacillus casei (L. casei), which generated many, smaller lactomicroSel particles (85-200 nm) and grains as a cloudy, less electrodense material. Streptococcus thermophilus cells generated selenoparticles (60-280 nm) in a suicidic manner. The size determined in situ in lactic acid bacteria was significantly lower than those measured by scanning electron microscopy after the isolation of lactomicroSel particles obtained from lactobacilli (100-500 nm), but higher relative to those isolated from Streptococcus thermopilus (50-100 nm). These differences indicate that smaller lactomicroSel particles could be more toxic to the producing bacteria themselves and discrepancies in size could have implications with respect to the applications of selenium nanoparticles as prebiotics.

  3. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers

    NASA Astrophysics Data System (ADS)

    Yu, Jingjing; Zhao, Wenjie; Wu, Yinghao; Wang, Deliang; Feng, Ruotao

    2018-03-01

    A series of epoxy resin (EP) composite coatings reinforced with functionalized cubic boron nitride (FC-BN) and functionalized hexagonal boron nitride (FH-BN) were fabricated successfully on 316L stainless steel by hand lay-up technique. The structure properties were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The morphologies were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, UMT-3 tribometer and surface profiler were used to investigate tribological behaviors of as-prepared composite coatings under dry friction and seawater conditions respectively. The results demonstrated that the presence of FC-BN or FH-BN fillers could greatly decrease the friction coefficient (COF) and wear rate of epoxy, in addition, composite coatings possess better tribological properties under seawater condition which was attributed to the lubricating effect of seawater. Moreover, FC-BN endows the composite coatings the highest wear resistance, and FH-BN /EP composite coatings exhibited the best friction reduction performance which is attributed to the self-lubricating performance of lamella structure for FH-BN sheet.

  4. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.

    PubMed

    Wang, Bo; Zhang, Zhenyu; Cui, Junfeng; Jiang, Nan; Lyu, Jilei; Chen, Guoxin; Wang, Jia; Liu, Zhiduo; Yu, Jinhong; Lin, Chengte; Ye, Fei; Guo, Dongming

    2017-09-06

    Nanotwinned (nt) materials exhibit excellent mechanical properties, and have been attracting much more attention of late. Nevertheless, the fundamental mechanism of interaction between dislocations and a single nanotwin is not understood. In this study, in situ transmission electron microscopy (TEM) nanoindentation is performed, on a specimen of a nickel (Ni) alloy containing a single nanotwin of 89 nm in thickness. The specimen is prepared using focused ion beam (FIB) technique from an nt surface, which is formed by a novel approach under indentation using a developed diamond panel with tips array. The stiffness of the specimen is ten times that of the pristine counterparts during loading. The ultrahigh stiffness is attributed to the generation of nanotwins and the impediment of the single twin to the dislocations. Two peak loads are induced by the activation of a new slip system and the penetration of dislocations over the single nanotwin, respectively. One slip band is parallel to the single nanotwin, indicating the slip of dislocations along the nanotwin. In situ TEM observation of nanoindentation reveals a new insight for the interaction between dislocations and a single nanotwin. This paves the way for design and preparation of high-performance nt surfaces of Ni alloys used for aircraft engines, gas turbines, turbocharger components, ducts, and absorbers.

  5. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; de Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-11-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2-3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620-950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  6. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide.

    PubMed

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L

    2013-10-15

    An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  8. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.

    PubMed

    Sadeghi, Babak; Gholamhoseinpoor, F

    2015-01-05

    Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (NH₂), carbonyl group, -OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.

    PubMed

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang

    2015-10-14

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    PubMed Central

    Alaidi, Osama; Rames, Matthew J.

    2016-01-01

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941

  11. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique.

    PubMed

    Patil, Pallavi Kisan; Luna, Esperanza; Matsuda, Teruyoshi; Yamada, Kohki; Kamiya, Keisuke; Ishikawa, Fumitaro; Shimomura, Satoshi

    2017-03-10

    We report a GaAs 0.96 Bi 0.04 /GaAs multiple quantum well (MQW) light emitting diode (LED) grown by molecular beam epitaxy using a two-substrate-temperature (TST) technique. In particular, the QWs and the barriers in the intrinsic region were grown at the different temperatures of [Formula: see text] = 350 °C and [Formula: see text] respectively. Investigations of the microstructure using transmission electron microscopy (TEM) reveal homogeneous MQWs free of extended defects. Furthermore, the local determination of the Bi distribution profile across the MQWs region using TEM techniques confirm the uniform Bi distribution, while revealing a slightly chemically graded GaAs-on-GaAsBi interface due to Bi surface segregation. Despite this small broadening, we found that Bi segregation is significantly reduced (up to 18% reduction) compared to previous reports on Bi segregation in GaAsBi/GaAs MQWs. Hence, the TST procedure proves as a very efficient method to reduce Bi segregation and thus increase the quality of the layers and interfaces. These improvements positively reflect in the optical properties. Room temperature photoluminescence and electroluminescence (EL) at 1.23 μm emission wavelength are successfully demonstrated using TST MQWs containing less Bi content than in previous reports. Finally, LED fabricated using the present TST technique show current-voltage (I-V) curves with a forward voltage of 3.3 V at an injection current of 130 mA under 1.0 kA cm -2 current excitation. These results not only demonstrate that TST technique provides optical device quality GaAsBi/GaAs MQWs but highlight the relevance of TST-based growth techniques on the fabrication of future heterostructure devices based on dilute bismides.

  12. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique

    NASA Astrophysics Data System (ADS)

    Kisan Patil, Pallavi; Luna, Esperanza; Matsuda, Teruyoshi; Yamada, Kohki; Kamiya, Keisuke; Ishikawa, Fumitaro; Shimomura, Satoshi

    2017-03-01

    We report a GaAs0.96Bi0.04/GaAs multiple quantum well (MQW) light emitting diode (LED) grown by molecular beam epitaxy using a two-substrate-temperature (TST) technique. In particular, the QWs and the barriers in the intrinsic region were grown at the different temperatures of {T}{{GaAsBi}} = 350 °C and {T}{{GaAs}} = 550 ^\\circ {{C}}, respectively. Investigations of the microstructure using transmission electron microscopy (TEM) reveal homogeneous MQWs free of extended defects. Furthermore, the local determination of the Bi distribution profile across the MQWs region using TEM techniques confirm the uniform Bi distribution, while revealing a slightly chemically graded GaAs-on-GaAsBi interface due to Bi surface segregation. Despite this small broadening, we found that Bi segregation is significantly reduced (up to 18% reduction) compared to previous reports on Bi segregation in GaAsBi/GaAs MQWs. Hence, the TST procedure proves as a very efficient method to reduce Bi segregation and thus increase the quality of the layers and interfaces. These improvements positively reflect in the optical properties. Room temperature photoluminescence and electroluminescence (EL) at 1.23 μm emission wavelength are successfully demonstrated using TST MQWs containing less Bi content than in previous reports. Finally, LED fabricated using the present TST technique show current-voltage (I-V) curves with a forward voltage of 3.3 V at an injection current of 130 mA under 1.0 kA cm-2 current excitation. These results not only demonstrate that TST technique provides optical device quality GaAsBi/GaAs MQWs but highlight the relevance of TST-based growth techniques on the fabrication of future heterostructure devices based on dilute bismides.

  13. Applications of emerging transmission electron microscopy technology in PCD research and diagnosis.

    PubMed

    Shoemark, Amelia

    2017-01-01

    Primary Ciliary Dyskinesia (PCD) is a heterogeneous genetic condition characterized by dysfunction of motile cilia. Patients suffer from chronic infection and inflammation of the upper and lower respiratory tract. Diagnosis of PCD is confirmed by identification of a hallmark defect of ciliary ultrastructure or by identification of biallelic pathogenic mutations in a known PCD gene. Since the first description of PCD in 1976, assessment of ciliary ultrastructure by transmission electron microscopy (TEM) has been central to diagnosis and research. Electron tomography is a technique whereby a series of transmission electron micrographs are collected at different angles and reconstructed into a single 3D model of a specimen. Electron tomography provides improved spatial information and resolution compared to a single micrograph. Research by electron tomography has revealed new insight into ciliary ultrastructure and consequently ciliary function at a molecular and cellular level. Gene discovery studies in PCD have utilized electron tomography to define the structural consequences of variants in cilia genes. Modern transmission electron microscopes capable of electron tomography are increasingly being installed in clinical laboratories. This presents the possibility for the use of tomography technique in a diagnostic setting. This review describes the electron tomography technique, the contribution tomography has made to the understanding of basic cilia structure and function and finally the potential of the technique for use in PCD diagnosis.

  14. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  15. Investigation of the properties of Sb doping on tin oxide SNO2 materials for technological applications

    NASA Astrophysics Data System (ADS)

    Hachoun, Z.; Ouerdane, A.; Bouslama, M.; Ghaffour, M.; Abdellaoui, A.; Caudano, Y.; benamara, A. Ali

    2016-04-01

    The conductivities of the oxide SnO2 is dependent on the nature of the surrounding gas. This property stems from the adsorption or desorption on the surface of oxide grains. These phenomena are usually accompanied by electronic transfer between the adsorbed molecule and the semiconductor material, changing its conductivity. Tin oxidation and Sb doping were realized without and with heating process. The XPS technique and the TEM microscopy showed the synthesized nanocrystals. Simulated Monte Carlo program Casino is used for a scanning its profile. The surface characteristics are highlighted in the aim to be used as spatial gas sensors.

  16. Frabicating hydroxyapatite nanorods using a biomacromolecule template

    NASA Astrophysics Data System (ADS)

    Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  17. Determination of dextrose in peritoneal dialysis solution by localized surface plasmon resonance technique based on silver nanoparticles formation

    NASA Astrophysics Data System (ADS)

    Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari

    2017-07-01

    Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.

  18. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  19. Crystallization behavior of polyamide-6 microcellular nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi

    2004-09-01

    The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...

  20. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  1. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Double-tilt in situ TEM holder with ultra-high stability.

    PubMed

    Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing

    2018-05-06

    A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques.

    PubMed

    Maldonado, J; Solé, A; Puyen, Z M; Esteve, I

    2011-07-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers.

    PubMed

    de Jonge, Niels

    2018-04-01

    The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  6. Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM).

    PubMed

    Kobler, Aaron; Kübel, Christian

    2018-01-01

    To relate the internal structure of a volume (crystallite and phase boundaries) to properties (electrical, magnetic, mechanical, thermal), a full 3D reconstruction in combination with in situ testing is desirable. In situ testing allows the crystallographic changes in a material to be followed by tracking and comparing the individual crystals and phases. Standard transmission electron microscopy (TEM) delivers a projection image through the 3D volume of an electron-transparent TEM sample lamella. Only with the help of a dedicated TEM tomography sample holder is an accurate 3D reconstruction of the TEM lamella currently possible. 2D crystal orientation mapping has become a standard method for crystal orientation and phase determination while 3D crystal orientation mapping have been reported only a few times. The combination of in situ testing with 3D crystal orientation mapping remains a challenge in terms of stability and accuracy. Here, we outline a method to 3D reconstruct the crystal orientation from a superimposed diffraction pattern of overlapping crystals without sample tilt. Avoiding the typically required tilt series for 3D reconstruction enables not only faster in situ tests but also opens the possibility for more stable and more accurate in situ mechanical testing. The approach laid out here should serve as an inspiration for further research and does not make a claim to be complete.

  7. [Architectural ultrastructure of the human urinary transitional epithelium].

    PubMed

    Takayama, H; Konishi, T

    1984-07-01

    Human urinary bladder mucosa, confirmed to be normal by cystoscopic, histologic and bacteriologic examination, were obtained from four patients at prostatectomy and from two patients at an anti-VUR procedure. The luminal surface and the three dimensional architecture of the bladder mucosa were observed by scanning electron microscopy (SEM) after cryofracture of specimen and by transmission electron microscopy (TEM). The epithelium consists of superficial, intermediate and basal cells, and SEM and TEM showed that it was stratified. Intermediate cells reached the basal lamina by slender cytoplasmic processes but superficial cells were not directly in contact with the basal lamina. No pleomorphic or long microvilli were observed but short microvilli or granular protrusions were sparsely seen on the luminal surface of superficial cells. SEM of cryofractured surfaces revealed that cells from each cell layer were in contact with cellular junctions such as ridges, plicated projections and septum-like walls. Their junctions were more complicated with increasing depth of the cell layer. No pleomorphic or long microvilli were observed on any cell surface of the intermediate or basal cell layer. Under TEM, however, these junctional structures of ridges, plicated projections and septal walls appeared to be microvilli under TEM. Microvilli-like structures on TEM, therefore, have to be carefully distinguished from real microvilli. Careful observation is required when the presence of cells covered with microvilli is described as a sign of malignancy.

  8. The Investigation of New Magnetic Materials and Their Phenomena Using Ultrafast Fresnel Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Schliep, Karl B.

    State-of-the-art technology drives scientific progress, pushing the boundaries of our current understanding of fundamental processes and mechanisms. Our continual scientific advancement is hindered only by what we can observe and experimentally verify; thus, it is reasonable to assert that instrument development and improvement is the cornerstone for technological and intellectual growth. For example, the invention of transmission electron microscopy (TEM) allowed us to observe nanoscale phenomena for the first time in the 1930s and even now it is invaluable in the development of smaller, faster electronics. As we uncover more about the fundamentals of nanoscale phenomena, we have realized that images alone reveal only a snapshot of the story; to continue progressing we need a way to observe the entire scene unfold (e.g. how defects affect the flow of current across a transistor or how thermal energy propagates in nanoscale systems like graphene). Recently, by combining the spatial resolution of a TEM with the temporal resolution of ultrafast lasers, ultrafast electron microscopy ? or microscope ? (UEM) has allowed us to simultaneously observe transient nanoscale phenomena at ultrafast timescales. Ultrafast characterization techniques allow for the investigation of a new realm of previously unseen phenomenon inherent to the transient electronic, magnetic, and structural properties of materials. However, despite the progress made in ultrafast techniques, capturing the nanoscale spatial sub-ns temporal mechanisms and phenomenon at play in magnetic materials (especially during the operation of magnetic devices) has only recently become possible using UEM. With only a handful of instruments available, magnetic characterization using UEM is far from commonplace and any advances made are sparsely reported, and further, specific to the individual instrument. In this dissertation, I outline the development of novel magnetic materials and the establishment of a UEM lab at the University of Minnesota and how I explored the application of it toward the investigation of magnetic materials. In my discussion of UEM, I have made a concerted effort to highlight the unique challenges faced when getting a UEM lab running so that new researchers may circumvent these challenges. Of note in my graduate studies, I assisted in the development of three different magnetic material systems, strained Fe nanoparticles for permanent magnetic applications, FePd for applications in spintronic devices, and a rare-earth transition-metal (RE-TM) alloy that exhibits new magneto-optic phenomena. In studying the morphological and magnetic effects of lasers on these RE-TM alloys using the in situ laser irradiation capabilities of UEM along with standard TEM techniques and computational modeling, I uncovered a possible limitation in their utility for memory applications. Furthermore, with the aid of particle tracing software, I was able to optimize our UEM system for magnetic imaging and demonstrate the resolution of ultrafast demagnetization using UEM.

  9. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  10. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1986-01-01

    Achievement of higher efficiency cells by directing efforts toward identifying carrier loss mechanisms; design of cell structures; and development of processing techniques are described. Use of techniques such as deep-level transient spectroscopy (DLTS), laser-beam-induced current (LBIC), and transmission electron microscopy (TEM) indicated that dislocations in web material rather than twin planes were primarily responsible for limiting diffusion lengths in the web. Lifetimes and cell efficiencies can be improved from 19 to 120 microns, and 8 to 10.3% (no AR), respectively, by implanting hydrogen at 1500 eV and a beam current density of 2.0 mA/sq cm. Some of the processing improvements included use of a double-layer AR coating (ZnS and MgF2) and an addition of an aluminum back surface reflectors. Cells of more than 16% efficiency were achieved.

  11. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    PubMed

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  12. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  13. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Benjamin, Christopher J.; Wright, Kyle J.; Bolton, Scott C.; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L.; Jiang, Wen; Thompson, David H.

    2016-10-01

    We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with Nα, Nα-dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His6-T7 bacteriophage and His6-GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His6-GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.

  14. Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.

    2017-07-01

    The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.

  15. AAO-based nanoreservoir arrays: A quick and easy support for TEM characterization

    NASA Astrophysics Data System (ADS)

    Mace, M.; Sahaf, H.; Moyen, E.; Bedu, F.; Masson, L.; Hanbücken, M.

    2010-12-01

    Large-scale arrays of calibrated, nanometer sized reservoirs are prepared by adapting the well-established electrochemical method used so far for the preparation of anodic aluminium oxide (AAO) membranes. The bottom plane of the assembly is prepared to be transparent for high-energy electrons, enabling their use as a universal sample support for transmission electron microscopy studies of nanoparticles. The nanoreservoir substrates can be cleaned under ultra-high-vacuum conditions and filled, by evaporating different materials. Filled nanoreservoirs can locally be sealed with a thin carbon layer using focused-ion-beam-induced deposition (FIBID). Nanoparticles, grow at various adsorption places on the walls and bottom planes inside the nanoreservoirs. They can be characterized by transmission electron microscopy (TEM) without further sample preparation in different crystallographic directions. Due to the dense array-arrangement of the reservoirs, very good statistics can already be obtained on one single sample. The controlled fabrication of the nanoreservoir array and first TEM results obtained on Au nanoparticles before and after sealing of the reservoirs, are presented.

  16. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast.

    PubMed

    Crimp, Martin A

    2006-05-01

    The imaging and characterization of dislocations is commonly carried out by thin foil transmission electron microscopy (TEM) using diffraction contrast imaging. However, the thin foil approach is limited by difficult sample preparation, thin foil artifacts, relatively small viewable areas, and constraints on carrying out in situ studies. Electron channeling imaging of electron channeling contrast imaging (ECCI) offers an alternative approach for imaging crystalline defects, including dislocations. Because ECCI is carried out with field emission gun scanning electron microscope (FEG-SEM) using bulk specimens, many of the limitations of TEM thin foil analysis are overcome. This paper outlines the development of electron channeling patterns and channeling imaging to the current state of the art. The experimental parameters and set up necessary to carry out routine channeling imaging are reviewed. A number of examples that illustrate some of the advantages of ECCI over thin foil TEM are presented along with a discussion of some of the limitations on carrying out channeling contrast analysis of defect structures. Copyright (c) 2006 Wiley-Liss, Inc.

  17. Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide.

    PubMed

    Benjamin, Christopher J; Wright, Kyle J; Bolton, Scott C; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L; Jiang, Wen; Thompson, David H

    2016-10-17

    We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with N α , N α -dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His 6 -T7 bacteriophage and His 6 -GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His 6 -GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.

  18. Size distribution and volume fraction of T(1) phase precipitates from TEM images: Direct measurements and related correction.

    PubMed

    Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis

    2015-11-01

    Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    NASA Astrophysics Data System (ADS)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  20. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  1. Fabrication of plasmonic nanopore by using electron beam irradiation for optical bio-sensor

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Oh, Seh Joong; Park, Nam Kyou; Park, Doo Jae; Choi, Soo Bong; Kim, Yong-Sang

    2017-05-01

    The Au nano-hole surrounded by the periodic nano-patterns would provide the enhanced optical intensity. Hence, the nano-hole surrounded with periodic groove patterns can be utilized as single molecule nanobio optical sensor device. In this report, the nano-hole on the electron beam induced membrane surrounded by periodic groove patterns were fabricated by focused ion beam technique (FIB), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Initially, the Au films with three different thickness of 40 nm, 60 nm, and 200 nm were deposited on the SiN film by using an electron beam sputter-deposition technique, followed by removal of the supporting SiN film. The nanopore was formed on the electron beam induced membrane under the FESEM electron beam irradiation. Nanopore formation inside the Au aperture was controlled down to a few nanometer, by electron beam irradiations. The optical intensities from the biomolecules on the surfaces including Au coated pyramid with periodic groove patterns were investigated via surface enhanced Raman spectroscopy (SERS). The fabricated nanopore surrounded by periodic patterns can be utilized as a next generation single molecule bio optical sensor.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M.

    We report synthesis of CdSe and CdTe quantum dots (QDs) from the bulk CdSe and CdTe material by evaporation/co-condensation using the solvated metal atom dispersion (SMAD) technique and refined digestive ripening. The outcomes of this new process are (1) the reduction of digestive ripening time by employing ligands (trioctylphosphine oxide (TOPO) and oleylamine (OA)) as capping agent as well as digestive ripening solvent, (2) ability to tune the photoluminescence (PL) from 410 nm to 670 nm, (3) demonstrate the ability of SMAD synthesis technique for other semiconductors (CdTe), (4) direct comparison of CdSe QDs growth with CdTe QDs growth based on digestivemore » ripening times, and (5) enhanced PL quantum yield (QY) of CdSe QDs and CdTe QDs upon covering with a ZnS shell. Further, the merit of this synthesis is the use of bulk CdSe and CdTe as the starting materials, which avoids usage of toxic organometallic compounds, eliminates the hot injection procedure, and size selective precipitation processes. It also allows the possibility of scale up. These QDs were characterized by UV-vis, photoluminescence (PL), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and powder XRD.« less

  3. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Nelson, R. S.; Levan, G. W.; Harvey, P. R.

    1992-01-01

    This Final Report covers the activities completed under the optional program of the NASA HOST Contract, NAS3-23288. The initial effort of the optional program was report-in NASA CR189221, which consisted of high temperature strain controlled fatigue tests to study the effects of thermomechanical fatigue, multiaxial loading, reactive environments, and imposed stresses. The baseline alloy used in the tests included B1900+Hf (with or without coating) and wrought INCO 718. Tests conducted on B1900+Hf included environmental tests using various atmospheres (75 psig oxygen, purified argon, or block exposures) and specimen tests of wrought INCO 718 included tensile, creep, stress rupture, TMF, multiaxial, and mean stress tests. Results of these testings were used to calibrate a CDA model for INCO 718 alloy and to develop modifications or corrections to the CDA model to handle additional failure mechanisms. The Socie parameter was found to provide the best correlation for INCO multiaxial loading. Microstructural evaluations consisting of optical, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) techniques, and surface replication techniques to determine crack initiation lives provided data which were used to develop life prediction models.

  4. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure.

    PubMed

    Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-06-03

    In this work, Au-Bi(2)Te(3) nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi(2)Te(3) nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi(2)Te(3) nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.

  5. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  6. Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study.

    PubMed

    Miot, J; Maclellan, K; Benzerara, K; Boisset, N

    2011-11-01

    Iron-oxidizing bacteria are important actors of the geochemical cycle of iron in modern environments and may have played a key role all over Earth's history. However, in order to better assess that role on the modern and the past Earth, there is a need for better understanding the mechanisms of bacterial iron oxidation and for defining potential biosignatures to be looked for in the geologic record. In this study, we investigated experimentally and at the nanometre scale the mineralization of iron-oxidizing bacteria with a combination of synchrotron-based scanning transmission X-ray microscopy (STXM), scanning transmission electron microscopy (STEM) and cryo-transmission electron microscopy (cryo-TEM). We show that the use of cryo-TEM instead of conventional microscopy provides detailed information of the successive iron biomineralization stages in anaerobic nitrate-reducing iron-oxidizing bacteria. These results suggest the existence of preferential Fe-binding and Fe-oxidizing sites on the outer face of the plasma membrane leading to the nucleation and growth of Fe minerals within the periplasm of these cells that eventually become completely encrusted. In contrast, the septa of dividing cells remain nonmineralized. In addition, the use of cryo-TEM offers a detailed view of the exceptional preservation of protein globules and the peptidoglycan within the Fe-mineralized cell walls of these bacteria. These organic molecules and ultrastructural details might be protected from further degradation by entrapment in the mineral matrix down to the nanometre scale. This is discussed in the light of previous studies on the properties of Fe-organic interactions and more generally on the fossilization of mineral-organic assemblies. © 2011 Blackwell Publishing Ltd.

  7. Tattoo Pigments Are Observed in the Kupffer Cells of the Liver Indicating Blood-Borne Distribution of Tattoo Ink.

    PubMed

    Sepehri, Mitra; Sejersen, Tobias; Qvortrup, Klaus; Lerche, Catharina M; Serup, Jørgen

    2017-01-01

    Tattoo pigments are deposited in the skin and known to distribute to regional lymph nodes. Tattoo pigments are small particles and may be hypothesized to reach the blood stream and become distributed to peripheral organs. This has not been studied in the past. The aim of the study was to trace tattoo pigments in internal organs in mice extensively tattooed with 2 different tattoo ink products. Three groups of mice were studied, i.e., 10 tattooed black, 10 tattooed red, and 5 untreated controls. They were tattooed on the entire back with commercial tattoo inks, black and red. Mice were sacrificed after 1 year. Samples were isolated from tattooed skin, lymph nodes, liver, spleen, kidney, and lung. Samples were examined for deposits of tattoo pigments by light microscopy and transmission electron microscopy (TEM). TEM identified intracellular tattoo pigments in the skin and in lymph nodes. TEM in both groups of tattooed mice showed tattoo pigment deposits in the Kupffer cells in the liver, which is a new observation. TEM detected no pigment in other internal organs. Light microscopy showed dense pigment in the skin and in lymph nodes but not in internal organs. The study demonstrated black and red tattoo pigment deposits in the liver; thus, tattoo pigment distributed from the tattooed skin via the blood stream to this important organ of detoxification. The finding adds a new dimension to tattoo pigment distribution in the body, i.e., as observed via the blood in addition to the lymphatic pathway. © 2017 S. Karger AG, Basel.

  8. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure canmore » be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.« less

  9. High-energy ball milling technique for ZnO nanoparticles as antibacterial material

    PubMed Central

    Salah, Numan; Habib, Sami S; Khan, Zishan H; Memic, Adnan; Azam, Ameer; Alarfaj, Esam; Zahed, Nabeel; Al-Hamedi, Salim

    2011-01-01

    Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose. PMID:21720499

  10. γ-Fe{sub 2}O{sub 3} nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Amit Kumar; Maji, Swarup Kumar; Adhikary, Bibhutosh, E-mail: bibhutoshadhikary@yahoo.in

    2014-01-01

    Graphical abstract: - Highlights: • γ-Fe{sub 2}O{sub 3} NPs from a single-source precursor and characterized by XRD, TEM, UV–vis spectra. • The NPs were tested as effective photocatalyst toward degradation of RB and MB dyes. • The possible pathway of the photocatalytic decomposition process has been discussed. • The active species, OH·, was detected by TA photoluminescence probing techniques. - Abstract: γ-Fe{sub 2}O{sub 3} nanoparticles (NPs) were synthesized from a single-source precursor complex [Fe{sub 3}O(C{sub 6}H{sub 5}COO){sub 6}(H{sub 2}O){sub 3}]NO{sub 3} by a simple thermal decomposition process and have been characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM)more » and UV–vis spectroscopic techniques. The NPs were highly pure and well crystallized having hexagonal morphology with an average particle size of 35 nm. The prepared γ-Fe{sub 2}O{sub 3} (maghemite) NPs show effective photo-catalytic activity toward the degradation of rose bengal (RB) and methylene blue (MB) dyes under visible light irradiation and can easily be recoverable in the presence of magnetic field for successive re-uses. The possible photo-catalytic decomposition mechanism is discussed through the detection of hydroxyl radical (OH·) by terephthalic acid photo-luminescence probing technique.« less

  11. An improved FIB sample preparation technique for site-specific plan-view specimens: A new cutting geometry.

    PubMed

    Li, Chen; Habler, Gerlinde; Baldwin, Lisa C; Abart, Rainer

    2018-01-01

    Focused ion beam (FIB) sample preparation technique in plan-view geometry allows direct correlations of the atomic structure study via transmission electron microscopy with micrometer-scale property measurements. However, one main technical difficulty is that a large amount of material must be removed underneath the specimen. Furthermore, directly monitoring the milling process is difficult unless very large material volumes surrounding the TEM specimen site are removed. In this paper, a new cutting geometry is introduced for FIB lift-out sample preparation with plan-view geometry. Firstly, an "isolated" cuboid shaped specimen is cut out, leaving a "bridge" connecting it with the bulk material. Subsequently the two long sides of the "isolated" cuboid are wedged, forming a triangular prism shape. A micromanipulator needle is used for in-situ transfer of the specimen to a FIB TEM grid, which has been mounted parallel with the specimen surface using a simple custom-made sample slit. Finally, the grid is transferred to the standard FIB grid holder for final thinning with standard procedures. This new cutting geometry provides clear viewing angles for monitoring the milling process, which solves the difficulty of judging whether the specimen has been entirely detached from the bulk material, with the least possible damage to the surrounding materials. With an improved success rate and efficiency, this plan-view FIB lift-out specimen preparation technique should have a wide application for material science. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy.

    PubMed

    Skowron, Stephen T; Chamberlain, Thomas W; Biskupek, Johannes; Kaiser, Ute; Besley, Elena; Khlobystov, Andrei N

    2017-08-15

    The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

  13. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Confocal laser scanning microscopy coupled to a spectrofluorometric detector as a rapid tool for determining the in vivo effect of metals on phototrophic bacteria.

    PubMed

    Burnat, Mireia; Diestra, Elia; Esteve, Isabel; Solé, Antonio

    2010-01-01

    In this paper, we determine for the first time the in vivo effect of heavy metals in a phototrophic bacterium. We used Confocal Laser Scanning Microscopy coupled to a spectrofluorometric detector as a rapid technique to measure pigment response to heavy-metal exposure. To this end, we selected lead and copper (toxic and essential metals) and Microcoleus sp. as the phototrophic bacterium because it would be feasible to see this cyanobacterium as a good biomarker, since it covers large extensions of coastal sediments. The results obtained demonstrate that, while cells are still viable, pigment peak decreases whereas metal concentration increases (from 0.1 to 1 mM Pb). Pigments are totally degraded when cultures were polluted with lead and copper at the maximum doses used (25 mM Pb(NO(3))(2) and 10 mM CuSO(4)). The aim of this study was also to identify the place of metal accumulation in Microcoleus cells. Element analysis of this cyanobacterium in the above mentioned conditions determined by Energy Dispersive X-ray microanalysis (EDX) coupled to Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), shows that Pb (but not Cu) accumulates externally and internally in cells.

  15. Synthesis of carbon-encapsulated metal nanoparticles from wood char

    Treesearch

    Yicheng Du; Chuji Wang; Hossein Toghiani; Zhiyong Cai; Xiaojian Liu; Jilei Zhang; Qiangu Yan

    2010-01-01

    Carbon-encapsulated metal nanoparticles were synthesized by thermal treatment of wood char, with or without transition metal ions pre-impregnated, at 900ºC to 1,100ºC. Nanoparticles with concentric multilayer shells were observed. The nanoparticles were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction...

  16. Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy

    ERIC Educational Resources Information Center

    Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.

    2009-01-01

    The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…

  17. Ultrastructural characterization of tooth-biomaterial interfaces prepared with broad and focused ion beams.

    PubMed

    Coutinho, E; Jarmar, T; Svahn, F; Neves, A A; Verlinden, B; Van Meerbeek, B; Engqvist, H

    2009-11-01

    Current available techniques for transmission electron microscopy (TEM) of tooth-biomaterial interfaces are mostly ineffective for brittle phases and impair integrated chemical and morphological characterization. The aims of this study were (1) to determine the applicability of new focused ion beam (FIB) and broad ion beam (BIB) techniques for TEM preparation of tooth-biomaterial interfaces; (2) to characterize the interfacial interaction with enamel and dentin of a conventional glass-ionomer (Chemfil Superior, DeTrey Dentsply, Germany), a 2-step self-etch (Clearfil SE, Kuraray, Japan) and a 3-step etch-and-rinse (OptiBond FL, Kerr, USA) adhesives; and (3) to characterize clinically relevant interfaces obtained from actual Class-I cavities. After bonding to freshly extracted human third molars, non-demineralized and non-stained sections were obtained using the FIB/BIB techniques and examined under TEM. The main structures generally disclosed in conventional ultramicrotomy samples were recognized in FIB/BIB-based ones. There were not any major differences between FIB and BIB concerning the resulting ultrastructural morphology. FIB/BIB-sections enabled to clearly resolve sub-micron hydroxyapatite crystals on top of hard tissues and the interface between matrix and filler in all materials, even at nano-scale. Some investigated interfaces disclosed areas with a distinct "fog" or "melted look", which is probably an artifact due to surface damage caused by the high-energy beam. Interfaces with enamel clearly disclosed the distinct "keyhole" shape of enamel rods sectioned at 90 degrees , delimited by a thin electron-lucent layer of inter-rod enamel. At regions where enamel crystals ran parallel with the interface, we observed a lack of interaction and some de-bonding along with interfacial void formation. The FIB/BIB methods are viable and reliable alternatives to conventional ultramicrotomy for preparation of thin sections of brittle and thus difficult to cut biomaterial-hard tissue interfaces. They disclose additional ultrastructural information about both substrates and are more suitable for advanced analytic procedures.

  18. Improving Biomaterials Imaging for Nanotechnology: Rapid Methods for Protein Localization at Ultrastructural Level.

    PubMed

    Cano-Garrido, Olivia; Garcia-Fruitós, Elena; Villaverde, Antonio; Sánchez-Chardi, Alejandro

    2018-04-01

    The preparation of biological samples for electron microscopy is material- and time-consuming because it is often based on long protocols that also may produce artifacts. Protein labeling for transmission electron microscopy (TEM) is such an example, taking several days. However, for protein-based nanotechnology, high resolution imaging techniques are unique and crucial tools for studying the spatial distribution of these molecules, either alone or as components of biomaterials. In this paper, we tested two new short methods of immunolocalization for TEM, and compared them with a standard protocol in qualitative and quantitative approaches by using four protein-based nanoparticles. We reported a significant increase of labeling per area of nanoparticle in both new methodologies (H = 19.811; p < 0.001) with all the model antigens tested: GFP (H = 22.115; p < 0.001), MMP-2 (H = 19.579; p < 0.001), MMP-9 (H = 7.567; p < 0.023), and IFN-γ (H = 62.110; p < 0.001). We also found that the most suitable protocol for labeling depends on the nanoparticle's tendency to aggregate. Moreover, the shorter methods reduce artifacts, time (by 30%), residues, and reagents hindering, losing, or altering antigens, and obtaining a significant increase of protein localization (of about 200%). Overall, this study makes a step forward in the development of optimized protocols for the nanoscale localization of peptides and proteins within new biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. 'Yueyoukang 1').

    PubMed

    Pan, Xiao; Yang, Xiao; Lin, Guimei; Zou, Ru; Chen, Houbin; Samaj, Jozef; Xu, Chunxiang

    2011-08-01

    A better understanding of somatic embryogenesis in banana (Musa spp.) may provide a practical way to improve regeneration of banana plants. In this study, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to visualize the ultrastructural changes during somatic embryogenesis of banana (Musa AAA cv. 'Yueyoukang 1'). We also used histological and immunohistochemical techniques with 16 monoclonal antibodies to study the spatial distribution and cellular/subcellular localization of different arabinogalactan protein (AGP) components of the cell wall during somatic embryogenesis. Histological study with periodic acid-Schiff staining documented diverse embryogenic stages from embryogenic cells (ECs) to the late embryos. SEM revealed a mesh-like structure on the surface of proembryos which represented an early structural marker of somatic embryogenesis. TEM showed that ECs were rich in juvenile mitochondria, endoplasmic reticulum and Golgi stacks. Cells in proembryos and early globular embryos resembled ECs, but they were more vacuolated, showed more regular nuclei and slightly more developed organelles. Immunocytochemical study revealed that the signal of most AGP epitopes was stronger in starch-rich cells when compared with typical ECs. The main AGP component in the extracellular matrix surface network of banana proembryos was the MAC204 epitope. Later, AGP immunolabelling patterns varied with the developmental stages of the embryos. These results about developmental regulation of AGP epitopes along with developmental changes in the ultrastructure of cells are providing new insights into the somatic embryogenesis of banana. Copyright © Physiologia Plantarum 2011.

  20. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

Top