Sample records for microsecond molecular dynamics

  1. Analyzing ion distributions around DNA: sequence-dependence of potassium ion distributions from microsecond molecular dynamics

    PubMed Central

    Pasi, Marco; Maddocks, John H.; Lavery, Richard

    2015-01-01

    Microsecond molecular dynamics simulations of B-DNA oligomers carried out in an aqueous environment with a physiological salt concentration enable us to perform a detailed analysis of how potassium ions interact with the double helix. The oligomers studied contain all 136 distinct tetranucleotides and we are thus able to make a comprehensive analysis of base sequence effects. Using a recently developed curvilinear helicoidal coordinate method we are able to analyze the details of ion populations and densities within the major and minor grooves and in the space surrounding DNA. The results show higher ion populations than have typically been observed in earlier studies and sequence effects that go beyond the nature of individual base pairs or base pair steps. We also show that, in some special cases, ion distributions converge very slowly and, on a microsecond timescale, do not reflect the symmetry of the corresponding base sequence. PMID:25662221

  2. Increasing the power of accelerated molecular dynamics methods and plans to exploit the coming exascale

    NASA Astrophysics Data System (ADS)

    Voter, Arthur

    Many important materials processes take place on time scales that far exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. In the accelerated molecular dynamics (AMD) methodology, known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. We have recently made advances in all three of the basic AMD methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics (TAD)), exploiting both algorithmic advances and novel parallelization approaches. I will describe these advances, present some examples of our latest results, and discuss what should be possible when exascale computing arrives in roughly five years. Funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Los Alamos Laboratory Directed Research and Development program.

  3. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis.

    PubMed

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F; Cohen, Itay; Henin, Rachel D; Hockla, Alexandra; Soares, Alexei S; Papo, Niv; Caulfield, Thomas R; Radisky, Evette S

    2016-12-16

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Atomistic details of protein dynamics and the role of hydration water

    DOE PAGES

    Khodadadi, Sheila; Sokolov, Alexei P.

    2016-05-04

    The importance of protein dynamics for their biological activity is nowwell recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. But, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. Internal protein dynamics spread overmore » a wide time range fromfaster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10 100 ps time scale. Our process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.« less

  5. Atomistic details of protein dynamics and the role of hydration water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodadadi, Sheila; Sokolov, Alexei P.

    The importance of protein dynamics for their biological activity is nowwell recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. But, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. Internal protein dynamics spread overmore » a wide time range fromfaster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10 100 ps time scale. Our process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.« less

  6. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis*

    PubMed Central

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; Cohen, Itay; Henin, Rachel D.; Hockla, Alexandra; Soares, Alexei S.; Papo, Niv; Caulfield, Thomas R.; Radisky, Evette S.

    2016-01-01

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. PMID:27810896

  7. Sequence-specific backbone resonance assignments and microsecond timescale molecular dynamics simulation of human eosinophil-derived neurotoxin.

    PubMed

    Gagné, Donald; Narayanan, Chitra; Bafna, Khushboo; Charest, Laurie-Anne; Agarwal, Pratul K; Doucet, Nicolas

    2017-10-01

    Eight active canonical members of the pancreatic-like ribonuclease A (RNase A) superfamily have been identified in human. All structural homologs share similar RNA-degrading functions, while also cumulating other various biological activities in different tissues. The functional homologs eosinophil-derived neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3) are known to be expressed and secreted by eosinophils in response to infection, and have thus been postulated to play an important role in host defense and inflammatory response. We recently initiated the biophysical and dynamical investigation of several vertebrate RNase homologs and observed that clustering residue dynamics appear to be linked with the phylogeny and biological specificity of several members. Here we report the 1 H, 13 C and 15 N backbone resonance assignments of human EDN (RNase 2) and its molecular dynamics simulation on the microsecond timescale, providing means to pursue this comparative atomic-scale functional and dynamical analysis by NMR and computation over multiple time frames.

  8. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE PAGES

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×10 9 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  9. Peptide kinetics from picoseconds to microseconds using boxed molecular dynamics: Power law rate coefficients in cyclisation reactions

    NASA Astrophysics Data System (ADS)

    Shalashilin, Dmitrii V.; Beddard, Godfrey S.; Paci, Emanuele; Glowacki, David R.

    2012-10-01

    Molecular dynamics (MD) methods are increasingly widespread, but simulation of rare events in complex molecular systems remains a challenge. We recently introduced the boxed molecular dynamics (BXD) method, which accelerates rare events, and simultaneously provides both kinetic and thermodynamic information. We illustrate how the BXD method may be used to obtain high-resolution kinetic data from explicit MD simulations, spanning picoseconds to microseconds. The method is applied to investigate the loop formation dynamics and kinetics of cyclisation for a range of polypeptides, and recovers a power law dependence of the instantaneous rate coefficient over six orders of magnitude in time, in good agreement with experimental observations. Analysis of our BXD results shows that this power law behaviour arises when there is a broad and nearly uniform spectrum of reaction rate coefficients. For the systems investigated in this work, where the free energy surfaces have relatively small barriers, the kinetics is very sensitive to the initial conditions: strongly non-equilibrium conditions give rise to power law kinetics, while equilibrium initial conditions result in a rate coefficient with only a weak dependence on time. These results suggest that BXD may offer us a powerful and general algorithm for describing kinetics and thermodynamics in chemical and biochemical systems.

  10. Pancreatic Ribonucleases Superfamily Dynamics

    DOE Data Explorer

    Agarwal, Pratul

    2016-01-01

    This data set consists of molecular dynamics simulations based flexibility/dynamics derived for family members of pancreatic ribonucleases. The results are based on two independent 0.5 microsecond trajectories for each of the 23 members. The flexibility is computed at aggregation of first ten quasi-harmonic modes, and indicated in the temperature factor column of PDB (protein data bank) file format.

  11. Microsecond protein dynamics observed at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-07-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.

  12. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  13. Prediction, Refinement and Persistency of Transmembrane Helix Dimers in Lipid Bilayers using Implicit and Explicit Solvent/Lipid Representations: Microsecond Molecular Dynamics Simulations of ErbB1/B2 and EphA1

    PubMed Central

    Zhang, Liqun; Sodt, Alexander J.; Venable, Richard M.; Pastor, Richard W.; Buck, Matthias

    2012-01-01

    All-atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the great majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all-atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles and dimer contacts approximate those of the NMR derived structure, although the detailed contact surface remains off-set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling. PMID:23042146

  14. Water Dynamics in the Hydration Shells of Biomolecules

    PubMed Central

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  15. Diagnosis of a short-pulse dielectric barrier discharge at atmospheric pressure in helium with hydrogen-methane admixtures

    NASA Astrophysics Data System (ADS)

    Nastuta, A. V.; Pohoata, V.; Mihaila, I.; Topala, I.

    2018-04-01

    In this study, we present results from electrical, optical, and spectroscopic diagnosis of a short-pulse (250 ns) high-power impulse (up to 11 kW) dielectric barrier discharge at atmospheric pressure running in a helium/helium-hydrogen/helium-hydrogen-methane gas mixture. This plasma source is able to generate up to 20 cm3 of plasma volume, pulsed in kilohertz range. The plasma spatio-temporal dynamics are found to be developed in three distinct phases. All the experimental observations reveal a similar dynamic to medium power microsecond barrier discharges, although the power per pulse and current density are up to two orders of magnitude higher than the case of microsecond barrier discharges. This might open the possibility for new applications in the field of gas or surface processing, and even life science. These devices can be used in laboratory experiments relevant for molecular astrophysics.

  16. Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.

    PubMed

    Kubitzki, Marcus B; de Groot, Bert L

    2007-06-15

    Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of the system staying at a reference temperature, T(0). This selective excitation along with the replica framework permits efficient approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas, thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving as references.

  17. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  18. Free-energy landscape of a hyperstable RNA tetraloop.

    PubMed

    Miner, Jacob C; Chen, Alan A; García, Angel E

    2016-06-14

    We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif.

  19. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale.

    PubMed

    Chavent, Matthieu; Duncan, Anna L; Sansom, Mark Sp

    2016-10-01

    Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein-lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Molecular Dynamics Study of Twister Ribozyme: Role of Mg(2+) Ions and the Hydrogen-Bonding Network in the Active Site.

    PubMed

    Ucisik, Melek N; Bevilacqua, Philip C; Hammes-Schiffer, Sharon

    2016-07-12

    The recently discovered twister ribozyme is thought to utilize general acid-base catalysis in its self-cleavage mechanism, but the roles of nucleobases and metal ions in the mechanism are unclear. Herein, molecular dynamics simulations of the env22 twister ribozyme are performed to elucidate the structural and equilibrium dynamical properties, as well as to examine the role of Mg(2+) ions and possible candidates for the general base and acid in the self-cleavage mechanism. The active site region and the ends of the pseudoknots were found to be less mobile than other regions of the ribozyme, most likely providing structural stability and possibly facilitating catalysis. A purported catalytic Mg(2+) ion and the closest neighboring Mg(2+) ion remained chelated and relatively immobile throughout the microsecond trajectories, although removal of these Mg(2+) ions did not lead to any significant changes in the structure or equilibrium motions of the ribozyme on the microsecond time scale. In addition, a third metal ion, a Na(+) ion remained close to A1(O5'), the leaving group atom, during the majority of the microsecond trajectories, suggesting that it might stabilize the negative charge on A1(O5') during self-cleavage. The locations of these cations and their interactions with key nucleotides in the active site suggest that they may be catalytically relevant. The P1 stem is partially melted at its top and bottom in the crystal structure and further unwinds in the trajectories. The simulations also revealed an interconnected network comprised of hydrogen-bonding and π-stacking interactions that create a relatively rigid network around the self-cleavage site. The nucleotides involved in this network are among the highly conserved nucleotides in twister ribozymes, suggesting that this interaction network may be important to structure and function.

  1. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.

    PubMed

    Chen, Charles H; Wiedman, Gregory; Khan, Ayesha; Ulmschneider, Martin B

    2014-09-01

    Unbiased molecular simulation is a powerful tool to study the atomic details driving functional structural changes or folding pathways of highly fluid systems, which present great challenges experimentally. Here we apply unbiased long-timescale molecular dynamics simulation to study the ab initio folding and partitioning of melittin, a template amphiphilic membrane active peptide. The simulations reveal that the peptide binds strongly to the lipid bilayer in an unstructured configuration. Interfacial folding results in a localized bilayer deformation. Akin to purely hydrophobic transmembrane segments the surface bound native helical conformer is highly resistant against thermal denaturation. Circular dichroism spectroscopy experiments confirm the strong binding and thermostability of the peptide. The study highlights the utility of molecular dynamics simulations for studying transient mechanisms in fluid lipid bilayer systems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014. Published by Elsevier B.V.

  2. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    NASA Astrophysics Data System (ADS)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  3. One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue

    PubMed Central

    Nury, Hugues; Poitevin, Frédéric; Van Renterghem, Catherine; Changeux, Jean-Pierre; Corringer, Pierre-Jean; Delarue, Marc; Baaden, Marc

    2010-01-01

    Recently discovered bacterial homologues of eukaryotic pentameric ligand-gated ion channels, such as the Gloeobacter violaceus receptor (GLIC), are increasingly used as structural and functional models of signal transduction in the nervous system. Here we present a one-microsecond-long molecular dynamics simulation of the GLIC channel pH stimulated gating mechanism. The crystal structure of GLIC obtained at acidic pH in an open-channel form is equilibrated in a membrane environment and then instantly set to neutral pH. The simulation shows a channel closure that rapidly takes place at the level of the hydrophobic furrow and a progressively increasing quaternary twist. Two major events are captured during the simulation. They are initiated by local but large fluctuations in the pore, taking place at the top of the M2 helix, followed by a global tertiary relaxation. The two-step transition of the first subunit starts within the first 50 ns of the simulation and is followed at 450 ns by its immediate neighbor in the pentamer, which proceeds with a similar scenario. This observation suggests a possible two-step domino-like tertiary mechanism that takes place between adjacent subunits. In addition, the dynamical properties of GLIC described here offer an interpretation of the paradoxical properties of a permeable A13′F mutant whose crystal structure determined at 3.15 Å shows a pore too narrow to conduct ions. PMID:20308576

  4. Hierarchical Biomolecular Dynamics: Picosecond Hydrogen Bonding Regulates Microsecond Conformational Transitions.

    PubMed

    Buchenberg, Sebastian; Schaudinnus, Norbert; Stock, Gerhard

    2015-03-10

    Biomolecules exhibit structural dynamics on a number of time scales, including picosecond (ps) motions of a few atoms, nanosecond (ns) local conformational transitions, and microsecond (μs) global conformational rearrangements. Despite this substantial separation of time scales, fast and slow degrees of freedom appear to be coupled in a nonlinear manner; for example, there is theoretical and experimental evidence that fast structural fluctuations are required for slow functional motion to happen. To elucidate a microscopic mechanism of this multiscale behavior, Aib peptide is adopted as a simple model system. Combining extensive molecular dynamics simulations with principal component analysis techniques, a hierarchy of (at least) three tiers of the molecule's free energy landscape is discovered. They correspond to chiral left- to right-handed transitions of the entire peptide that happen on a μs time scale, conformational transitions of individual residues that take about 1 ns, and the opening and closing of structure-stabilizing hydrogen bonds that occur within tens of ps and are triggered by sub-ps structural fluctuations. Providing a simple mechanism of hierarchical dynamics, fast hydrogen bond dynamics is found to be a prerequisite for the ns local conformational transitions, which in turn are a prerequisite for the slow global conformational rearrangement of the peptide. As a consequence of the hierarchical coupling, the various processes exhibit a similar temperature behavior which may be interpreted as a dynamic transition.

  5. Concerted Dynamic Motions of an FABP4 Model and Its Ligands Revealed by Microsecond Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4–ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level. PMID:25231537

  6. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations.

    PubMed

    Li, Yan; Li, Xiang; Dong, Zigang

    2014-10-14

    In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4-ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level.

  7. Coarse-Grained Models Reveal Functional Dynamics – II. Molecular Dynamics Simulation at the Coarse-Grained Level – Theories and Biological Applications

    PubMed Central

    Chng, Choon-Peng; Yang, Lee-Wei

    2008-01-01

    Molecular dynamics (MD) simulation has remained the most indispensable tool in studying equilibrium/non-equilibrium conformational dynamics since its advent 30 years ago. With advances in spectroscopy accompanying solved biocomplexes in growing sizes, sampling their dynamics that occur at biologically interesting spatial/temporal scales becomes computationally intractable; this motivated the use of coarse-grained (CG) approaches. CG-MD models are used to study folding and conformational transitions in reduced resolution and can employ enlarged time steps due to the absence of some of the fastest motions in the system. The Boltzmann-Inversion technique, heavily used in parameterizing these models, provides a smoothed-out effective potential on which molecular conformation evolves at a faster pace thus stretching simulations into tens of microseconds. As a result, a complete catalytic cycle of HIV-1 protease or the assembly of lipid-protein mixtures could be investigated by CG-MD to gain biological insights. In this review, we survey the theories developed in recent years, which are categorized into Folding-based and Molecular-Mechanics-based. In addition, physical bases in the selection of CG beads/time-step, the choice of effective potentials, representation of solvent, and restoration of molecular representations back to their atomic details are systematically discussed. PMID:19812774

  8. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data.

    PubMed

    Caulfield, Thomas R; Devkota, Batsal; Rollins, Geoffrey C

    2011-01-01

    We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.

  9. Free-energy landscape of a hyperstable RNA tetraloop

    PubMed Central

    Miner, Jacob C.; Chen, Alan A.; García, Angel E.

    2016-01-01

    We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif. PMID:27233937

  10. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning.

    PubMed

    Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea

    2015-01-27

    The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.

  11. Fully Anisotropic Rotational Diffusion Tensor from Molecular Dynamics Simulations.

    PubMed

    Linke, Max; Köfinger, Jürgen; Hummer, Gerhard

    2018-05-31

    We present a method to calculate the fully anisotropic rotational diffusion tensor from molecular dynamics simulations. Our approach is based on fitting the time-dependent covariance matrix of the quaternions that describe the rigid-body rotational dynamics. Explicit analytical expressions have been derived for the covariances by Favro, which are valid irrespective of the degree of anisotropy. We use these expressions to determine an optimal rotational diffusion tensor from trajectory data. The molecular structures are aligned against a reference by optimal rigid-body superposition. The quaternion covariances can then be obtained directly from the rotation matrices used in the alignment. The rotational diffusion tensor is determined by a fit to the time-dependent quaternion covariances, or directly by Laplace transformation and matrix diagonalization. To quantify uncertainties in the fit, we derive analytical expressions and compare them with the results of Brownian dynamics simulations of anisotropic rotational diffusion. We apply the method to microsecond long trajectories of the Dickerson-Drew B-DNA dodecamer and of horse heart myoglobin. The anisotropic rotational diffusion tensors calculated from simulations agree well with predictions from hydrodynamics.

  12. Single Biomolecules at Cryogenic Temperatures: From Structure to Dynamics

    NASA Astrophysics Data System (ADS)

    Hofmann, Clemens; Kulzer, Florian; Zondervan, Rob; Köhler, Jürgen; Orrit, Michel

    Elucidating the dynamics of proteins remains a central and daunting challenge of molecular biology. In our contribution we discuss the relevance of lowtemperature observations not only to structure, but also to dynamics, and thereby to the function of proteins. We first review investigations on light-harvesting complexes to illustrate how increased photostability at low temperatures and spectral selection provide a deeper insight into the excitonic interactions of the chromophores and the dynamics of the protein scaffold. Furthermore, we introduce a novel technique that achieves controlled, reproducible temperature cycles of a microscopic sample on microsecond timescales. We discuss the potential of this technique as a tool to achieve repeatable single-molecule freeze-trapping and to overcome some of the limitations of single-molecule experiments at room temperature.

  13. Microsecond Molecular Dynamics Simulations of Lipid Mixing

    PubMed Central

    2015-01-01

    Molecular dynamics (MD) simulations of membranes are often hindered by the slow lateral diffusion of lipids and the limited time scale of MD. In order to study the dynamics of mixing and characterize the lateral distribution of lipids in converged mixtures, we report microsecond-long all-atom MD simulations performed on the special-purpose machine Anton. Two types of mixed bilayers, POPE:POPG (3:1) and POPC:cholesterol (2:1), as well as a pure POPC bilayer, were each simulated for up to 2 μs. These simulations show that POPE:POPG and POPC:cholesterol are each fully miscible at the simulated conditions, with the final states of the mixed bilayers similar to a random mixture. By simulating three POPE:POPG bilayers at different NaCl concentrations (0, 0.15, and 1 M), we also examined the effect of salt concentration on lipid mixing. While an increase in NaCl concentration is shown to affect the area per lipid, tail order, and lipid lateral diffusion, the final states of mixing remain unaltered, which is explained by the largely uniform increase in Na+ ions around POPE and POPG. Direct measurement of water permeation reveals that the POPE:POPG bilayer with 1 M NaCl has reduced water permeability compared with those at zero or low salt concentration. Our calculations provide a benchmark to estimate the convergence time scale of all-atom MD simulations of lipid mixing. Additionally, equilibrated structures of POPE:POPG and POPC:cholesterol, which are frequently used to mimic bacterial and mammalian membranes, respectively, can be used as starting points of simulations involving these membranes. PMID:25237736

  14. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  15. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data

    PubMed Central

    Caulfield, Thomas R.; Devkota, Batsal; Rollins, Geoffrey C.

    2011-01-01

    We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16. PMID:21716650

  16. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ˜0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  17. Microsecond kinetics in model single- and double-stranded amylose polymers.

    PubMed

    Sattelle, Benedict M; Almond, Andrew

    2014-05-07

    Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated multi-microsecond aqueous simulations are employed to explore conformational kinetics in model single- and double-stranded amylose. The all-atom dynamics concur with prior X-ray and NMR data while surprising and previously overlooked microsecond helix-coil, glycosidic linkage and pyranose ring exchange are hypothesized. In a dodecasaccharide, single-helical collapse was correlated with linkages and rings transitioning from their expected syn and (4)C1 chair conformers. The associated microsecond exchange rates were dependent on proximity to the termini and chain length (comparing hexa- and trisaccharides), while kinetic features of dodecasaccharide linkage and ring flexing are proposed to be a good model for polymers. Similar length double-helices were stable on microsecond timescales but the parallel configuration was sturdier than the antiparallel equivalent. In both, tertiary organization restricted local chain dynamics, implying that simulations of single amylose strands cannot be extrapolated to dimers. Unbiased multi-microsecond simulations of amylose are proposed as a valuable route to probing macromolecular kinetics in water, assessing the impact of chemical modifications on helical stability and accelerating the development of new biotechnologies.

  18. Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations.

    PubMed

    Lei, Hongxing; Wu, Chun; Liu, Haiguang; Duan, Yong

    2007-03-20

    High-accuracy ab initio folding has remained an elusive objective despite decades of effort. To explore the folding landscape of villin headpiece subdomain HP35, we conducted two sets of replica exchange molecular dynamics for 200 ns each and three sets of conventional microsecond-long molecular dynamics simulations, using AMBER FF03 force field and a generalized-Born solvation model. The protein folded consistently to the native state; the lowest C(alpha)-rmsd from the x-ray structure was 0.46 A, and the C(alpha)- rmsd of the center of the most populated cluster was 1.78 A at 300 K. ab initio simulations have previously not reached this level. The folding landscape of HP35 can be partitioned into the native, denatured, and two intermediate-state regions. The native state is separated from the major folding intermediate state by a small barrier, whereas a large barrier exists between the major folding intermediate and the denatured states. The melting temperature T(m) = 339 K extracted from the heat-capacity profile was in close agreement with the experimentally derived T(m) = 342 K. A comprehensive picture of the kinetics and thermodynamics of HP35 folding emerges when the results from replica exchange and conventional molecular dynamics simulations are combined.

  19. Molecular Dynamics Simulations of the [2Fe-2S] Cluster-Binding Domain of NEET Proteins Reveal Key Molecular Determinants That Induce Their Cluster Transfer/Release.

    PubMed

    Pesce, Luca; Calandrini, Vania; Marjault, Henri-Baptiste; Lipper, Colin H; Rossetti, Gulia; Mittler, Ron; Jennings, Patricia A; Bauer, Andreas; Nechushtai, Rachel; Carloni, Paolo

    2017-11-30

    The NEET proteins are a novel family of iron-sulfur proteins characterized by an unusual three cysteine and one histidine coordinated [2Fe-2S] cluster. Aberrant cluster release, facilitated by the breakage of the Fe-N bond, is implicated in a variety of human diseases, including cancer. Here, the molecular dynamics in the multi-microsecond timescale, along with quantum chemical calculations, on two representative members of the family (the human NAF-1 and mitoNEET proteins), show that the loss of the cluster is associated with a dramatic decrease in secondary and tertiary structure. In addition, the calculations provide a mechanism for cluster release and clarify, for the first time, crucial differences existing between the two proteins, which are reflected in the experimentally observed difference in the pH-dependent cluster reactivity. The reliability of our conclusions is established by an extensive comparison with the NMR data of the solution proteins, in part measured in this work.

  20. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Roland; Lindner, Benjamin; Petridis, Loukas

    2009-01-01

    A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors,more » other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million atom biological systems scale well up to 30k cores, producing 30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.« less

  1. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.

    PubMed

    Schulz, Roland; Lindner, Benjamin; Petridis, Loukas; Smith, Jeremy C

    2009-10-13

    A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

  2. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations.

    PubMed

    Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Shaw, David E

    2016-01-01

    Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  3. Comparing Molecular Dynamics Force Fields in the Essential Subspace

    PubMed Central

    Gomez-Puertas, Paulino; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-01-01

    The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data. To complement the comparison to experiments, we have performed a structural analysis of and comparison between these simulations, thereby providing insight into the relationship between force-field parameterization, the resulting ensemble of conformations and the agreement with experiments. In particular, our results show that, at a coarse level, many of the motional properties are preserved across several, though not all, force fields. At a finer level of detail, however, there are distinct differences in both the structure and dynamics of the two proteins, which can, together with comparison with experimental data, help to select force fields for simulations of proteins. A noteworthy observation is that force fields that have been reparameterized and improved to provide a more accurate energetic description of the balance between helical and coil structures are difficult to distinguish from their “unbalanced” counterparts in these simulations. This observation implies that simulations of stable, folded proteins, even those reaching 10 microseconds in length, may provide relatively little information that can be used to modify torsion parameters to achieve an accurate balance between different secondary structural elements. PMID:25811178

  4. Which similarity measure is better for analyzing protein structures in a molecular dynamics trajectory?

    PubMed

    Cossio, Pilar; Laio, Alessandro; Pietrucci, Fabio

    2011-06-14

    An important step in the computer simulation of the dynamics of biomolecules is the comparison of structures in a trajectory by exploiting a measure of distance. This allows distinguishing structures which are geometrically similar from those which are different. By analyzing microseconds-long all-atom molecular dynamics simulations of a polypeptide, we find that a distance based on backbone dihedral angles performs very well in distinguishing structures that are kinetically correlated from those that are not, while the widely used C(α) root mean square distance performs more poorly. The root mean square difference between contact matrices turns out instead to be the metric providing the highest clustering coefficient, namely, according to this similarity measure, the neighbors of a structure are also, on average, neighbors among themselves. We also propose a combined distance measure which, for the system considered here, performs well both for distinguishing structures which are distant in time and for giving a consistent cluster analysis. This journal is © the Owner Societies 2011

  5. Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D.; Krasik, Ya. E.

    2011-09-15

    Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecondmore » timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.« less

  6. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  7. Enhanced sampling by multiple molecular dynamics trajectories: carbonmonoxy myoglobin 10 micros A0-->A(1-3) transition from ten 400 picosecond simulations.

    PubMed

    Loccisano, Anne E; Acevedo, Orlando; DeChancie, Jason; Schulze, Brita G; Evanseck, Jeffrey D

    2004-05-01

    The utility of multiple trajectories to extend the time scale of molecular dynamics simulations is reported for the spectroscopic A-states of carbonmonoxy myoglobin (MbCO). Experimentally, the A0-->A(1-3) transition has been observed to be 10 micros at 300 K, which is beyond the time scale of standard molecular dynamics simulations. To simulate this transition, 10 short (400 ps) and two longer time (1.2 ns) molecular dynamics trajectories, starting from five different crystallographic and solution phase structures with random initial velocities centered in a 37 A radius sphere of water, have been used to sample the native-fold of MbCO. Analysis of the ensemble of structures gathered over the cumulative 5.6 ns reveals two biomolecular motions involving the side chains of His64 and Arg45 to explain the spectroscopic states of MbCO. The 10 micros A0-->A(1-3) transition involves the motion of His64, where distance between His64 and CO is found to vary up to 8.8 +/- 1.0 A during the transition of His64 from the ligand (A(1-3)) to bulk solvent (A0). The His64 motion occurs within a single trajectory only once, however the multiple trajectories populate the spectroscopic A-states fully. Consequently, multiple independent molecular dynamics simulations have been found to extend biomolecular motion from 5 ns of total simulation to experimental phenomena on the microsecond time scale.

  8. Allosteric Fine-Tuning of the Binding Pocket Dynamics in the ITK SH2 Domain by a Distal Molecular Switch: An Atomistic Perspective.

    PubMed

    Momin, Mohamed; Xin, Yao; Hamelberg, Donald

    2017-06-29

    Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 μs. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.

  9. Understanding the structural and dynamic consequences of DNA epigenetic modifications: Computational insights into cytosine methylation and hydroxymethylation

    PubMed Central

    Carvalho, Alexandra T P; Gouveia, Leonor; Kanna, Charan Raju; Wärmländer, Sebastian K T S; Platts, Jamie A; Kamerlin, Shina Caroline Lynn

    2014-01-01

    We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding. PMID:25625845

  10. Allosteric response and substrate sensitivity in peptide binding of the signal recognition particle.

    PubMed

    Wang, Connie Y; Miller, Thomas F

    2014-10-31

    We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with alpha and alpha+beta Proteins.

    PubMed

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A

    2009-03-10

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster.

  12. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with α and α+β Proteins

    PubMed Central

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452

  13. Accelerated molecular dynamics simulations of protein folding.

    PubMed

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.

  14. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations

    PubMed Central

    Miao, Yinglong; Walker, Ross C.; Jinek, Martin; McCammon, J. Andrew

    2017-01-01

    CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature, 527, 110–113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9. PMID:28652374

  15. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.

    PubMed

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2017-07-11

    CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature , 527 , 110-113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9.

  16. Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations.

    PubMed

    Kortkhonjia, Ekaterine; Brandman, Relly; Zhou, Joe Zhongxiang; Voelz, Vincent A; Chorny, Ilya; Kabakoff, Bruce; Patapoff, Thomas W; Dill, Ken A; Swartz, Trevor E

    2013-01-01

    The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous simulations. We analyze the correlated motions with a mutual information entropy quantity, and examine state transition rates in a Markov-state model, to give coarse-grained descriptors of the motions. Our MD simulations show that while there are many strongly correlated motions, antibodies are highly flexible, with F(ab) and F(c) domains constantly forming and breaking contacts, both polar and non-polar. We find that salt bridges break and reform, and not always with the same partners. While the MD simulations in explicit water give the right time scales for the motions, the simulated motions are about 3-fold faster than the experiments. Overall, the picture that emerges is that antibodies do not simply fluctuate around a single state of atomic contacts. Rather, in these large molecules, different atoms come in contact during different motions.

  17. Long-timescale molecular dynamics simulations elucidate the dynamics and kinetics of exposure of the hydrophobic patch in troponin C.

    PubMed

    Lindert, Steffen; Kekenes-Huskey, Peter M; McCammon, J Andrew

    2012-10-17

    Troponin (Tn) is an important regulatory protein in the thin-filament complex of cardiomyocytes. Calcium binding to the troponin C (TnC) subunit causes a change in its dynamics that leads to the transient opening of a hydrophobic patch on TnC's surface, to which a helix of another subunit, troponin I (TnI), binds. This process initiates contraction, making it an important target for studies investigating the detailed molecular processes that underlie contraction. Here we use microsecond-timescale Anton molecular dynamics simulations to investigate the dynamics and kinetics of the opening transition of the TnC hydrophobic patch. Free-energy differences for opening are calculated for wild-type Ca(2+)-bound TnC (∼8 kcal/mol), V44Q Ca(2+)-bound TnC (3.2 kcal/mol), E40A Ca(2+)-bound TnC (∼12 kcal/mol), and wild-type apo TnC (∼20 kcal/mol). These results suggest that the mutations have a profound impact on the frequency with which the hydrophobic patch presents to TnI. In addition, these simulations corroborate that cardiac wild-type TnC does not open on timescales relevant to contraction without calcium being bound. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Equilibrium thermodynamics and folding kinetics of a short, fast-folding, beta-hairpin.

    PubMed

    Jimenez-Cruz, Camilo A; Garcia, Angel E

    2014-04-14

    Equilibrium thermodynamics of a short beta-hairpin are studied using unbiased all-atom replica exchange molecular dynamics simulations in explicit solvent. An exploratory analysis of the free energy landscape of the system is provided in terms of various structural characteristics, for both the folded and unfolded ensembles. We find that the favorable interactions between the ends introduced by the tryptophan cap, along with the flexibility of the turn region, explain the remarkable stability of the folded state. Charging of the N termini results in effective roughening of the free energy landscape and stabilization of non-native contacts. Folding-unfolding dynamics are further discussed using a set of 2413 independent molecular dynamics simulations, 2 ns to 20 ns long, at the melting temperature of the beta-hairpin. A novel method for the construction of Markov models consisting of an iterative refinement of the discretization in reduced dimensionality is presented and used to generate a detailed kinetic network of the system. The hairpin is found to fold heterogeneously on sub-microsecond timescales, with the relative position of the tryptophan side chains driving the selection of the specific pathway.

  19. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations.

    PubMed

    Pan, Xiaoliang; Schwartz, Steven D

    2015-04-30

    It has long been recognized that the structure of a protein creates a hierarchy of conformations interconverting on multiple time scales. The conformational heterogeneity of the Michaelis complex is of particular interest in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD(+)). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they show a strong variance in their propensity toward the on-enzyme chemical step. In this study, microsecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network of the Michaelis complex and the structures of the substates at atomistic scales. They also shed light on the complete picture of the catalytic mechanism of LDH.

  20. Evidence for percolation diffusion of cations and reordering in disordered pyrochlore from accelerated molecular dynamics

    DOE PAGES

    Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.; ...

    2017-09-20

    Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less

  1. Scrutinizing Molecular Mechanics Force Fields on the Submicrosecond Timescale with NMR Data

    PubMed Central

    Lange, Oliver F.; van der Spoel, David; de Groot, Bert L.

    2010-01-01

    Abstract Protein dynamics on the atomic level and on the microsecond timescale has recently become accessible from both computation and experiment. To validate molecular dynamics (MD) at the submicrosecond timescale against experiment we present microsecond MD simulations in 10 different force-field configurations for two globular proteins, ubiquitin and the gb3 domain of protein G, for which extensive NMR data is available. We find that the reproduction of the measured NMR data strongly depends on the chosen force field and electrostatics treatment. Generally, particle-mesh Ewald outperforms cut-off and reaction-field approaches. A comparison to measured J-couplings across hydrogen bonds suggests that there is room for improvement in the force-field description of hydrogen bonds in most modern force fields. Our results show that with current force fields, simulations beyond hundreds of nanoseconds run an increased risk of undergoing transitions to nonnative conformational states or will persist within states of high free energy for too long, thus skewing the obtained population frequencies. Only for the AMBER99sb force field have such transitions not been observed. Thus, our results have significance for the interpretation of data obtained with long MD simulations, for the selection of force fields for MD studies and for force-field development. We hope that this comprehensive benchmark based on NMR data applied to many popular MD force fields will serve as a useful resource to the MD community. Finally, we find that for gb3, the force-field AMBER99sb reaches comparable accuracy in back-calculated residual dipolar couplings and J-couplings across hydrogen bonds to ensembles obtained by refinement against NMR data. PMID:20643085

  2. Microsecond time-scale kinetics of transient biochemical reactions

    PubMed Central

    Mitić, Sandra; Strampraad, Marc J. F.; de Vries, Simon

    2017-01-01

    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs integrated with a 30 mm long flow-cell of 109 μm optical path length constructed from two parallel sheets of silver foil; it produces ultraviolet-visible spectra that are linear in absorbance up to 3.5 with a spectral resolution of 0.4 nm. Each spectrum corresponds to a different reaction time determined by the distance from the mixer outlet, and by the fluid flow rate. The reaction progress is monitored in steps of 0.35 μs for a total duration of ~600 μs. As a proof of principle the instrument was used to study spontaneous protein refolding of pH-denatured cytochrome c. Three folding intermediates were determined: after a novel, extremely rapid initial phase with τ = 4.7 μs, presumably reflecting histidine re-binding to the iron, refolding proceeds with time constants of 83 μs and 345 μs to a coordinatively saturated low-spin iron form in quasi steady state. The time-resolution specifications of our spectrometer for the first time open up the general possibility for comparison of real data and molecular dynamics calculations of biomacromolecules on overlapping time scales. PMID:28973014

  3. Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel

    PubMed Central

    Bjelkmar, Pär; Niemelä, Perttu S.; Vattulainen, Ilpo; Lindahl, Erik

    2009-01-01

    Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 310 helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5–1 µs). Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations. PMID:19229308

  4. GPI-anchored protein organization and dynamics at the cell surface.

    PubMed

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-02-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotomayor, Marcos

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictionsmore » must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.« less

  6. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations

    PubMed Central

    Henriksen, Niel M.; Roe, Daniel R.; Cheatham, Thomas E.

    2013-01-01

    Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 microseconds of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations. PMID:23477537

  7. Parallel replica dynamics with a heterogeneous distribution of barriers: Application to n-hexadecane pyrolysis

    NASA Astrophysics Data System (ADS)

    Kum, Oyeon; Dickson, Brad M.; Stuart, Steven J.; Uberuaga, Blas P.; Voter, Arthur F.

    2004-11-01

    Parallel replica dynamics simulation methods appropriate for the simulation of chemical reactions in molecular systems with many conformational degrees of freedom have been developed and applied to study the microsecond-scale pyrolysis of n-hexadecane in the temperature range of 2100-2500 K. The algorithm uses a transition detection scheme that is based on molecular topology, rather than energetic basins. This algorithm allows efficient parallelization of small systems even when using more processors than particles (in contrast to more traditional parallelization algorithms), and even when there are frequent conformational transitions (in contrast to previous implementations of the parallel replica algorithm). The parallel efficiency for pyrolysis initiation reactions was over 90% on 61 processors for this 50-atom system. The parallel replica dynamics technique results in reaction probabilities that are statistically indistinguishable from those obtained from direct molecular dynamics, under conditions where both are feasible, but allows simulations at temperatures as much as 1000 K lower than direct molecular dynamics simulations. The rate of initiation displayed Arrhenius behavior over the entire temperature range, with an activation energy and frequency factor of Ea=79.7 kcal/mol and log A/s-1=14.8, respectively, in reasonable agreement with experiment and empirical kinetic models. Several interesting unimolecular reaction mechanisms were observed in simulations of the chain propagation reactions above 2000 K, which are not included in most coarse-grained kinetic models. More studies are needed in order to determine whether these mechanisms are experimentally relevant, or specific to the potential energy surface used.

  8. Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.

    PubMed

    Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru

    2017-04-18

    Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.

  9. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein.

    PubMed

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-21

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  10. Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein

    NASA Astrophysics Data System (ADS)

    Zosel, Franziska; Haenni, Dominik; Soranno, Andrea; Nettels, Daniel; Schuler, Benjamin

    2017-10-01

    Intrinsically disordered proteins (IDPs) are increasingly recognized as a class of molecules that can exert essential biological functions even in the absence of a well-defined three-dimensional structure. Understanding the conformational distributions and dynamics of these highly flexible proteins is thus essential for explaining the molecular mechanisms underlying their function. Single-molecule fluorescence spectroscopy in combination with Förster resonance energy transfer (FRET) is a powerful tool for probing intramolecular distances and the rapid long-range distance dynamics in IDPs. To complement the information from FRET, we combine it with photoinduced electron transfer (PET) quenching to monitor local loop-closure kinetics at the same time and in the same molecule. Here we employed this combination to investigate the intrinsically disordered N-terminal domain of HIV-1 integrase. The results show that both long-range dynamics and loop closure kinetics on the sub-microsecond time scale can be obtained reliably from a single set of measurements by the analysis with a comprehensive model of the underlying photon statistics including both FRET and PET. A more detailed molecular interpretation of the results is enabled by direct comparison with a recent extensive atomistic molecular dynamics simulation of integrase. The simulations are in good agreement with experiment and can explain the deviation from simple models of chain dynamics by the formation of persistent local secondary structure. The results illustrate the power of a close combination of single-molecule spectroscopy and simulations for advancing our understanding of the dynamics and detailed mechanisms in unfolded and intrinsically disordered proteins.

  11. Rapid freezing of water under dynamic compression

    NASA Astrophysics Data System (ADS)

    Myint, Philip C.; Belof, Jonathan L.

    2018-06-01

    Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.

  12. Rapid freezing of water under dynamic compression.

    PubMed

    Myint, Philip C; Belof, Jonathan L

    2018-06-13

    Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid-ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.

  13. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy

    PubMed Central

    Snow, Christopher D.; Qiu, Linlin; Du, Deguo; Gai, Feng; Hagen, Stephen J.; Pande, Vijay S.

    2004-01-01

    We studied the microsecond folding dynamics of three β hairpins (Trp zippers 1–3, TZ1–TZ3) by using temperature-jump fluorescence and atomistic molecular dynamics in implicit solvent. In addition, we studied TZ2 by using time-resolved IR spectroscopy. By using distributed computing, we obtained an aggregate simulation time of 22 ms. The simulations included 150, 212, and 48 folding events at room temperature for TZ1, TZ2, and TZ3, respectively. The all-atom optimized potentials for liquid simulations (OPLSaa) potential set predicted TZ1 and TZ2 properties well; the estimated folding rates agreed with the experimentally determined folding rates and native conformations were the global potential-energy minimum. The simulations also predicted reasonable unfolding activation enthalpies. This work, directly comparing large simulated folding ensembles with multiple spectroscopic probes, revealed both the surprising predictive ability of current models as well as their shortcomings. Specifically, for TZ1–TZ3, OPLS for united atom models had a nonnative free-energy minimum, and the folding rate for OPLSaa TZ3 was sensitive to the initial conformation. Finally, we characterized the transition state; all TZs fold by means of similar, native-like transition-state conformations. PMID:15020773

  14. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy

    NASA Astrophysics Data System (ADS)

    Snow, Christopher D.; Qiu, Linlin; Du, Deguo; Gai, Feng; Hagen, Stephen J.; Pande, Vijay S.

    2004-03-01

    We studied the microsecond folding dynamics of three hairpins (Trp zippers 1-3, TZ1-TZ3) by using temperature-jump fluorescence and atomistic molecular dynamics in implicit solvent. In addition, we studied TZ2 by using time-resolved IR spectroscopy. By using distributed computing, we obtained an aggregate simulation time of 22 ms. The simulations included 150, 212, and 48 folding events at room temperature for TZ1, TZ2, and TZ3, respectively. The all-atom optimized potentials for liquid simulations (OPLSaa) potential set predicted TZ1 and TZ2 properties well; the estimated folding rates agreed with the experimentally determined folding rates and native conformations were the global potential-energy minimum. The simulations also predicted reasonable unfolding activation enthalpies. This work, directly comparing large simulated folding ensembles with multiple spectroscopic probes, revealed both the surprising predictive ability of current models as well as their shortcomings. Specifically, for TZ1-TZ3, OPLS for united atom models had a nonnative free-energy minimum, and the folding rate for OPLSaa TZ3 was sensitive to the initial conformation. Finally, we characterized the transition state; all TZs fold by means of similar, native-like transition-state conformations.

  15. Unraveling protein catalysis through neutron diffraction

    NASA Astrophysics Data System (ADS)

    Myles, Dean

    Neutron scattering and diffraction are exquisitely sensitive to the location, concentration and dynamics of hydrogen atoms in materials and provide a powerful tool for the characterization of structure-function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, non-destructive suite of instruments for biophysical characterization that provide spatial and dynamic information spanning from Angstroms to microns and from picoseconds to microseconds, respectively. Applications range from atomic-resolution analysis of individual hydrogen atoms in enzymes, through to multi-scale analysis of hierarchical structures and assemblies in biological complexes, membranes and in living cells. Here we describe how the precise location of protein and water hydrogen atoms using neutron diffraction provides a more complete description of the atomic and electronic structures of proteins, enabling key questions concerning enzyme reaction mechanisms, molecular recognition and binding and protein-water interactions to be addressed. Current work is focused on understanding how molecular structure and dynamics control function in photosynthetic, cell signaling and DNA repair proteins. We will highlight recent studies that provide detailed understanding of the physiochemical mechanisms through which proteins recognize ligands and catalyze reactions, and help to define and understand the key principles involved.

  16. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations.

    PubMed

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar

    2015-08-24

    Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.

  17. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses

    PubMed Central

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-01-01

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697

  18. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    PubMed

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  19. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    PubMed

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  20. Windowed R-PDLF recoupling: a flexible and reliable tool to characterize molecular dynamics.

    PubMed

    Gansmüller, Axel; Simorre, Jean-Pierre; Hediger, Sabine

    2013-09-01

    This work focuses on the improvement of the R-PDLF heteronuclear recoupling scheme, a method that allows quantification of molecular dynamics up to the microsecond timescale in heterogeneous materials. We show how the stability of the sequence towards rf-imperfections, one of the main sources of error of this technique, can be improved by the insertion of windows without irradiation into the basic elements of the symmetry-based recoupling sequence. The impact of this modification on the overall performance of the sequence in terms of scaling factor and homonuclear decoupling efficiency is evaluated. This study indicates the experimental conditions for which precise and reliable measurement of dipolar couplings can be obtained using the popular R18(1)(7) recoupling sequence, as well as alternative symmetry-based R sequences suited for fast MAS conditions. An analytical expression for the recoupled dipolar modulation has been derived that applies to a whole class of sequences with similar recoupling properties as R18(1)(7). This analytical expression provides an efficient and precise way to extract dipolar couplings from the experimental dipolar modulation curves. We hereby provide helpful tools and information for tailoring R-PDLF recoupling schemes to specific sample properties and hardware capabilities. This approach is particularly well suited for the study of materials with strong and heterogeneous molecular dynamics where a precise measurement of dipolar couplings is crucial. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Protein Allostery and Conformational Dynamics.

    PubMed

    Guo, Jingjing; Zhou, Huan-Xiang

    2016-06-08

    The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.

  2. Molecular details of dimerization kinetics reveal negligible populations of transient µ-opioid receptor homodimers at physiological concentrations.

    PubMed

    Meral, Derya; Provasi, Davide; Prada-Gracia, Diego; Möller, Jan; Marino, Kristen; Lohse, Martin J; Filizola, Marta

    2018-05-16

    Various experimental and computational techniques have been employed over the past decade to provide structural and thermodynamic insights into G Protein-Coupled Receptor (GPCR) dimerization. Here, we use multiple microsecond-long, coarse-grained, biased and unbiased molecular dynamics simulations (a total of ~4 milliseconds) combined with multi-ensemble Markov state models to elucidate the kinetics of homodimerization of a prototypic GPCR, the µ-opioid receptor (MOR), embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol lipid bilayer. Analysis of these computations identifies kinetically distinct macrostates comprising several different short-lived dimeric configurations of either inactive or activated MOR. Calculated kinetic rates and fractions of dimers at different MOR concentrations suggest a negligible population of MOR homodimers at physiological concentrations, which is supported by acceptor photobleaching fluorescence resonance energy transfer (FRET) experiments. This study provides a rigorous, quantitative explanation for some conflicting experimental data on GPCR oligomerization.

  3. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2014-03-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  4. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  5. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    PubMed

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Garate, José-A.

    2016-08-01

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ˜0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  7. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics.

    PubMed

    English, Niall J; Garate, José-A

    2016-08-28

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region.

  8. The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics

    PubMed Central

    Jiménez-Osés, Gonzalo; Osuna, Sílvia; Gao, Xue; Sawaya, Michael R.; Gilson, Lynne; Collier, Steven J.; Huisman, Gjalt W.; Yeates, Todd O.; Tang, Yi; Houk, K. N.

    2014-01-01

    Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF. PMID:24727900

  9. Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity Fluctuations in High Speed Jets

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2001-01-01

    A flow diagnostic technique based on the molecular Rayleigh scattering of laser light is used to obtain dynamic density and velocity data in a high speed flow. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. An analysis is presented that established a lower bound for measurement uncertainty of about 20 m/sec for individual velocity measurements obtained in a 100 microsecond time interval. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition. The signals from three photomultiplier tubes were simultaneously recorded using photon counting at a 10 kHz sampling rate and 10 second recording periods. Density and velocity data, including distribution functions and power spectra, taken in a Mach 0.8 free jet, are presented.

  10. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state

    PubMed Central

    Warfield, Becka M.

    2017-01-01

    RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473

  11. Free energy landscape remodeling of the cardiac pacemaker channel explains the molecular basis of familial sinus bradycardia

    PubMed Central

    Boulton, Stephen; Akimoto, Madoka; Akbarizadeh, Sam; Melacini, Giuseppe

    2017-01-01

    The hyperpolarization-activated and cyclic nucleotide-modulated ion channel (HCN) drives the pacemaker activity in the heart, and its malfunction can result in heart disorders. One such disorder, familial sinus bradycardia, is caused by the S672R mutation in HCN, whose electrophysiological phenotypes include a negative shift in the channel activation voltage and an accelerated HCN deactivation. The outcomes of these changes are abnormally low resting heart rates. However, the molecular mechanism underlying these electrophysiological changes is currently not fully understood. Crystallographic investigations indicate that the S672R mutation causes limited changes in the structure of the HCN intracellular gating tetramer, but its effects on protein dynamics are unknown. Here, we utilize comparative S672R versus WT NMR analyses to show that the S672R mutation results in extensive perturbations of the dynamics in both apo- and holo-forms of the HCN4 isoform, reflecting how S672R remodels the free energy landscape for the modulation of HCN4 by cAMP, i.e. the primary cyclic nucleotide modulator of HCN channels. We show that the S672R mutation results in a constitutive shift of the dynamic auto-inhibitory equilibrium toward inactive states of HCN4 and broadens the free-energy well of the apo-form, enhancing the millisecond to microsecond dynamics of the holo-form at sites critical for gating cAMP binding. These S672R-induced variations in dynamics provide a molecular basis for the electrophysiological phenotypes of this mutation and demonstrate that the pathogenic effects of the S672R mutation can be rationalized primarily in terms of modulations of protein dynamics. PMID:28174302

  12. Microsecond MD Simulations of Nano-patterned Polymer Brushes on Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Buie, Creighton; Qiu, Liming; Cheng, Kwan; Park, Soyeun

    2010-03-01

    Nano-patterned polymer brushes end-grafted onto self-assembled monolayers have gained increasing research interests due to their unique thermodynamic properties and their chemical and biomedical applications in colloids, biosensing and tissue engineering. So far, the interactions between the polymer brushes with the surrounding environments such as the floor and solvent at the nanometer length scale and microsecond time scale are still difficult to obtained experimentally and computationally. Using a Coarse-Grained MD approach, polymer brushes of different monomeric lengths, grafting density and hydrophobicity of the monomers grafted on self-assembled monolayers and in explicit solvent were studied. Molecular level information, such as lateral diffusion, transverse height and volume contour of the brushes, were calculated from our microsecond-MD simulations. Our results demonstrated the significance of the hydration of the polymer in controlling the conformational arrangement of the polymer brushes.

  13. Elucidating energy and electron transfer dynamics within molecular assemblies for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Morseth, Zachary Aaron

    The use of sunlight to make chemical fuels (i.e. solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on timescales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span nine orders of magnitude to follow the excited-state evolution within single-site and polymer-based molecular assemblies. We complement experimental observations with electronic structure calculations, molecular dynamics simulations, and kinetic modeling to develop a microscopic view of these dynamics. This thesis provides an overview of work on single-site molecular assemblies and polymers decorated with pendant chromophores, both in solution and on surfaces. This work was made possible through extensive collaboration with Dr. Kirk Schanze's and Dr. John Reynolds' research groups who synthesized the samples for study.

  14. A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase

    PubMed Central

    Da, Lin-Tai; Pardo Avila, Fátima; Wang, Dong; Huang, Xuhui

    2013-01-01

    The dynamics of the PPi release during the transcription elongation of bacterial RNA polymerase and its effects on the Trigger Loop (TL) opening motion are still elusive. Here, we built a Markov State Model (MSM) from extensive all-atom molecular dynamics (MD) simulations to investigate the mechanism of the PPi release. Our MSM has identified a simple two-state mechanism for the PPi release instead of a more complex four-state mechanism observed in RNA polymerase II (Pol II). We observed that the PPi release in bacterial RNA polymerase occurs at sub-microsecond timescale, which is ∼3-fold faster than that in Pol II. After escaping from the active site, the (Mg-PPi)2− group passes through a single elongated metastable region where several positively charged residues on the secondary channel provide favorable interactions. Surprisingly, we found that the PPi release is not coupled with the TL unfolding but correlates tightly with the side-chain rotation of the TL residue R1239. Our work sheds light on the dynamics underlying the transcription elongation of the bacterial RNA polymerase. PMID:23592966

  15. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    PubMed

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  16. Ubiquitin dynamics in complexes reveal molecular recognition mechanisms beyond induced fit and conformational selection.

    PubMed

    Peters, Jan H; de Groot, Bert L

    2012-01-01

    Protein-protein interactions play an important role in all biological processes. However, the principles underlying these interactions are only beginning to be understood. Ubiquitin is a small signalling protein that is covalently attached to different proteins to mark them for degradation, regulate transport and other functions. As such, it interacts with and is recognised by a multitude of other proteins. We have conducted molecular dynamics simulations of ubiquitin in complex with 11 different binding partners on a microsecond timescale and compared them with ensembles of unbound ubiquitin to investigate the principles of their interaction and determine the influence of complex formation on the dynamic properties of this protein. Along the main mode of fluctuation of ubiquitin, binding in most cases reduces the conformational space available to ubiquitin to a subspace of that covered by unbound ubiquitin. This behaviour can be well explained using the model of conformational selection. For lower amplitude collective modes, a spectrum of zero to almost complete coverage of bound by unbound ensembles was observed. The significant differences between bound and unbound structures are exclusively situated at the binding interface. Overall, the findings correspond neither to a complete conformational selection nor induced fit scenario. Instead, we introduce a model of conformational restriction, extension and shift, which describes the full range of observed effects.

  17. Conformational dynamics of Peb4 exhibit "mother's arms" chain model: a molecular dynamics study.

    PubMed

    Dantu, Sarath Chandra; Khavnekar, Sagar; Kale, Avinash

    2017-08-01

    Peb4 from Campylobacter jejuni is an intertwined dimeric, periplasmic holdase, which also exhibits peptidyl prolyl cis/trans isomerase (PPIase) activity. Peb4 gene deletion alters the outer membrane protein profile and impairs cellular adhesion and biofilm formation for C. jejuni. Earlier crystallographic study has proposed that the PPIase domains are flexible and might form a cradle for holding the substrate and these aspects of Peb4 were explored using sub-microsecond molecular dynamics simulations in solution environment. Our simulations have revealed that PPIase domains are highly flexible and undergo a large structural change where they move apart from each other by 8 nm starting at .5 nm. Further, this large conformational change renders Peb4 as a compact protein with crossed-over conformation, forms a central cavity, which can "cradle" the target substrate. As reported for other chaperone proteins, flexibility of linker region connecting the chaperone and PPIase domains is key to forming the "crossed-over" conformation. The conformational transition of the Peb4 protein from the X-ray structure to the crossed-over conformation follows the "mother's arms" chain model proposed for the FkpA chaperone protein. Our results offer insights into how Peb4 and similar chaperones can use the conformational heterogeneity at their disposal to perform its much-revered biological function.

  18. Calculational investigation of impact cratering dynamics - Material motions during the crater growth period

    NASA Technical Reports Server (NTRS)

    Austin, M. G.; Thomsen, J. M.; Ruhl, S. F.; Orphal, D. L.; Schultz, P. H.

    1980-01-01

    The considered investigation was conducted in connection with studies which are to provide a better understanding of the detailed dynamics of impact cratering processes. Such an understanding is vital for a comprehension of planetary surfaces. The investigation is the continuation of a study of impact dynamics in a uniform, nongeologic material at impact velocities achievable in laboratory-scale experiments conducted by Thomsen et al. (1979). A calculation of a 6 km/sec impact of a 0.3 g spherical 2024 aluminum projectile into low strength (50 kPa) homogeneous plasticene clay has been continued from 18 microseconds to past 600 microseconds. The cratering flow field, defined as the material flow field in the target beyond the transient cavity but well behind the outgoing shock wave, has been analyzed in detail to see how applicable the Maxwell Z-Model, developed from analysis of near-surface explosion cratering calculations, is to impact cratering

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rumeng; Wang, Lifeng, E-mail: walfe@nuaa.edu.cn

    The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the periodmore » of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.« less

  20. Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics.

    PubMed

    Haldar, Susanta; Kührová, Petra; Banáš, Pavel; Spiwok, Vojtěch; Šponer, Jiří; Hobza, Pavel; Otyepka, Michal

    2015-08-11

    RNA hairpins capped by 5'-GNRA-3' or 5'-UNCG-3' tetraloops (TLs) are prominent RNA structural motifs. Despite their small size, a wealth of experimental data, and recent progress in theoretical simulations of their structural dynamics and folding, our understanding of the folding and unfolding processes of these small RNA elements is still limited. Theoretical description of the folding and unfolding processes requires robust sampling, which can be achieved by either an exhaustive time scale in standard molecular dynamics simulations or sophisticated enhanced sampling methods, using temperature acceleration or biasing potentials. Here, we study structural dynamics of 5'-GNRA-3' and 5'-UNCG-3' TLs by 15-μs-long standard simulations and a series of well-tempered metadynamics, attempting to accelerate sampling by bias in a few chosen collective variables (CVs). Both methods provide useful insights. The unfolding and refolding mechanisms of the GNRA TL observed by well-tempered metadynamics agree with the (reverse) folding mechanism suggested by recent replica exchange molecular dynamics simulations. The orientation of the glycosidic bond of the GL4 nucleobase is critical for the UUCG TL folding pathway, and our data strongly support the hypothesis that GL4-anti forms a kinetic trap along the folding pathway. Along with giving useful insight, our study also demonstrates that using only a few CVs apparently does not capture the full folding landscape of the RNA TLs. Despite using several sophisticated selections of the CVs, formation of the loop appears to remain a hidden variable, preventing a full convergence of the metadynamics. Finally, our data suggest that the unfolded state might be overstabilized by the force fields used.

  1. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source.

    PubMed

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J; Chance, Mark R; Ralston, Corie

    2014-07-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.

  2. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin

    NASA Astrophysics Data System (ADS)

    Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.

  3. Atomic-level description of ubiquitin folding

    PubMed Central

    Piana, Stefano; Lindorff-Larsen, Kresten; Shaw, David E.

    2013-01-01

    Equilibrium molecular dynamics simulations, in which proteins spontaneously and repeatedly fold and unfold, have recently been used to help elucidate the mechanistic principles that underlie the folding of fast-folding proteins. The extent to which the conclusions drawn from the analysis of such proteins, which fold on the microsecond timescale, apply to the millisecond or slower folding of naturally occurring proteins is, however, unclear. As a first attempt to address this outstanding issue, we examine here the folding of ubiquitin, a 76-residue-long protein found in all eukaryotes that is known experimentally to fold on a millisecond timescale. Ubiquitin folding has been the subject of many experimental studies, but its slow folding rate has made it difficult to observe and characterize the folding process through all-atom molecular dynamics simulations. Here we determine the mechanism, thermodynamics, and kinetics of ubiquitin folding through equilibrium atomistic simulations. The picture emerging from the simulations is in agreement with a view of ubiquitin folding suggested from previous experiments. Our findings related to the folding of ubiquitin are also consistent, for the most part, with the folding principles derived from the simulation of fast-folding proteins, suggesting that these principles may be applicable to a wider range of proteins. PMID:23503848

  4. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew

    2015-11-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.

  5. Rotational dynamics of spin-labeled F-actin during activation of myosin S1 ATPase using caged ATP.

    PubMed Central

    Ostap, E. M.; Thomas, D. D.

    1991-01-01

    The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor. At normal ionic strength (micro = 186 mM), a decrease in ST-EPR intensity (increase in microsecond F-actin mobility) was clearly indicated upon photolysis of 1 mM caged ATP with a 50-ms, 351-nm laser pulse. This increase in mobility is due to the complete dissociation of Si from the actin filament. At low ionic strength (micro, = 36 mM), when about half the Si heads remain bound during ATP hydrolysis, no change in the actin mobility was detected, despite much faster motions of labeled S1 bound to actin. Therefore, we conclude that the active interaction of Si, actin,and ATP induces rotation of myosin heads relative to actin, but does not affect the microsecond rotational motion of actin itself, as detected at cys-374 of actin. PMID:1651780

  6. Investigations of large area electron beam diodes for excimer lasers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    This report summarizes the results of a one year research program at the University of Michigan to investigate the physics and technology of microsecond electron beam diodes. These experiments were performed on the Michigan Electron Long Beam Accelerator (MELBA) at parameters: Voltage {equals} {minus}0.65 to {minus}0.9 MV, current {equals} 1 {minus}50 kA, and pulselength {equals} 0.5 {minus} 5 microseconds. Major accomplishments include: (1) the first two-wavelength (CO2 and HeNe) laser deflection measurements of diode plasma and neutrals; (2) measurements of the effects on magnetic field gradient on microsecond diode closure; (3) demonstration of good fidelity of processed x-ray signals asmore » a diagnostic of beam voltage; (4) extended-pulselength scaling of electron beam diode arcing and diode closure; and (5) innovative Cerenkov plate diagnostics of e-beam dynamics.« less

  7. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  8. Mechanisms of molecular transport through the urea channel of Helicobacter pylori

    PubMed Central

    McNulty, Reginald; Ulmschneider, Jakob P.; Luecke, Hartmut; Ulmschneider, Martin B.

    2013-01-01

    Helicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen’s periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori. The crystal structure of HpUreI describes a static snapshot of the channel with two constriction sites near the center of the bilayer that are too narrow to allow passage of urea or even water. Here we describe the urea transport mechanism at atomic resolution, revealed by unrestrained microsecond equilibrium molecular dynamics simulations of the hexameric channel assembly. Two consecutive constrictions open to allow conduction of urea, which is guided through the channel by interplay between conserved residues that determine proton rejection and solute selectivity. Remarkably, HpUreI conducts water at rates equivalent to aquaporins, which might be essential for efficient transport of urea at small concentration gradients. PMID:24305683

  9. Mechanisms of molecular transport through the urea channel of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    McNulty, Reginald; Ulmschneider, Jakob P.; Luecke, Hartmut; Ulmschneider, Martin B.

    2013-12-01

    Helicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen’s periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori. The crystal structure of HpUreI describes a static snapshot of the channel with two constriction sites near the center of the bilayer that are too narrow to allow passage of urea or even water. Here we describe the urea transport mechanism at atomic resolution, revealed by unrestrained microsecond equilibrium molecular dynamics simulations of the hexameric channel assembly. Two consecutive constrictions open to allow conduction of urea, which is guided through the channel by interplay between conserved residues that determine proton rejection and solute selectivity. Remarkably, HpUreI conducts water at rates equivalent to aquaporins, which might be essential for efficient transport of urea at small concentration gradients.

  10. Modeling of optical mirror and electromechanical behavior

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Lu, Chao; Liu, Zishun; Liu, Ai Q.; Zhang, Xu M.

    2001-10-01

    This paper presents finite element (FE) simulation and theoretical analysis of novel MEMS fiber-optical switches actuated by electrostatic attraction. FE simulation for the switches under static and dynamic loading are first carried out to reveal the mechanical characteristics of the minimum or critical switching voltages, the natural frequencies, mode shapes and response under different levels of electrostatic attraction load. To validate the FE simulation results, a theoretical (or analytical) model is then developed for one specific switch, i.e., Plate_40_104. Good agreement is found between the FE simulation and the analytical results. From both FE simulation and theoretical analysis, the critical switching voltage for Plate_40_104 is derived to be 238 V for the switching angel of 12 degree(s). The critical switching on and off times are 431 microsecond(s) and 67 microsecond(s) , respectively. The present study not only develops good FE and analytical models, but also demonstrates step by step a method to simplify a real optical switch structure with reference to the FE simulation results for analytical purpose. With the FE and analytical models, it is easy to obtain any information about the mechanical behaviors of the optical switches, which are helpful in yielding optimized design.

  11. Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface

    DOE PAGES

    Lopez, Cesar A.; Travers, Timothy; Pos, Klaas M.; ...

    2017-11-28

    Antibiotic efflux is one of the most critical mechanisms leading to bacterial multidrug resistance. Antibiotics are effluxed out of the bacterial cell by a tripartite efflux pump, a complex machinery comprised of outer membrane, periplasmic adaptor, and inner membrane protein components. Understanding the mechanism of efflux pump assembly and its dynamics could facilitate discovery of novel approaches to counteract antibiotic resistance in bacteria. We built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negative membrane model that contained both inner and outer membranes separated by a periplasmic space. All-atom molecular dynamics (MD) simulations confirm thatmore » the fully assembled pump is stable in the microsecond timescale. Using a combination of all-atom and coarse-grained MD simulations and sequence covariation analysis, we characterized the interface between MexA and OprM in the context of the entire efflux pump. These analyses suggest a plausible mechanism by which OprM is activated via opening of its periplasmic aperture through a concerted interaction with MexA.« less

  12. Dynamics of Intact MexAB-OprM Efflux Pump: Focusing on the MexA-OprM Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Cesar A.; Travers, Timothy; Pos, Klaas M.

    Antibiotic efflux is one of the most critical mechanisms leading to bacterial multidrug resistance. Antibiotics are effluxed out of the bacterial cell by a tripartite efflux pump, a complex machinery comprised of outer membrane, periplasmic adaptor, and inner membrane protein components. Understanding the mechanism of efflux pump assembly and its dynamics could facilitate discovery of novel approaches to counteract antibiotic resistance in bacteria. We built here an intact atomistic model of the Pseudomonas aeruginosa MexAB-OprM pump in a Gram-negative membrane model that contained both inner and outer membranes separated by a periplasmic space. All-atom molecular dynamics (MD) simulations confirm thatmore » the fully assembled pump is stable in the microsecond timescale. Using a combination of all-atom and coarse-grained MD simulations and sequence covariation analysis, we characterized the interface between MexA and OprM in the context of the entire efflux pump. These analyses suggest a plausible mechanism by which OprM is activated via opening of its periplasmic aperture through a concerted interaction with MexA.« less

  13. Absolute comparison of simulated and experimental protein-folding dynamics

    NASA Astrophysics Data System (ADS)

    Snow, Christopher D.; Nguyen, Houbi; Pande, Vijay S.; Gruebele, Martin

    2002-11-01

    Protein folding is difficult to simulate with classical molecular dynamics. Secondary structure motifs such as α-helices and β-hairpins can form in 0.1-10µs (ref. 1), whereas small proteins have been shown to fold completely in tens of microseconds. The longest folding simulation to date is a single 1-µs simulation of the villin headpiece; however, such single runs may miss many features of the folding process as it is a heterogeneous reaction involving an ensemble of transition states. Here, we have used a distributed computing implementation to produce tens of thousands of 5-20-ns trajectories (700µs) to simulate mutants of the designed mini-protein BBA5. The fast relaxation dynamics these predict were compared with the results of laser temperature-jump experiments. Our computational predictions are in excellent agreement with the experimentally determined mean folding times and equilibrium constants. The rapid folding of BBA5 is due to the swift formation of secondary structure. The convergence of experimentally and computationally accessible timescales will allow the comparison of absolute quantities characterizing in vitro and in silico (computed) protein folding.

  14. Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling.

    PubMed

    Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun

    2016-09-13

    Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa.

  15. Microsecond Simulations of DNA and Ion Transport in Nanopores with Novel Ion-Ion and Ion-Nucleotides Effective Potentials

    PubMed Central

    De Biase, Pablo M.; Markosyan, Suren; Noskov, Sergei

    2014-01-01

    We developed a novel scheme based on the Grand-Canonical Monte-Carlo/Brownian Dynamics (GCMC/BD) simulations and have extended it to studies of ion currents across three nanopores with the potential for ssDNA sequencing: solid-state nanopore Si3N4, α-hemolysin, and E111N/M113Y/K147N mutant. To describe nucleotide-specific ion dynamics compatible with ssDNA coarse-grained model, we used the Inverse Monte-Carlo protocol, which maps the relevant ion-nucleotide distribution functions from an all-atom MD simulations. Combined with the previously developed simulation platform for Brownian Dynamic (BD) simulations of ion transport, it allows for microsecond- and millisecond-long simulations of ssDNA dynamics in nanopore with a conductance computation accuracy that equals or exceeds that of all-atom MD simulations. In spite of the simplifications, the protocol produces results that agree with the results of previous studies on ion conductance across open channels and provide direct correlations with experimentally measured blockade currents and ion conductances that have been estimated from all-atom MD simulations. PMID:24738152

  16. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; ...

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  17. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    PubMed Central

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-01-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071

  18. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering.

    PubMed

    Wall, Michael E

    2018-03-01

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structure to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.

  19. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less

  20. Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.

    2018-01-25

    Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less

  1. Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation

    PubMed Central

    Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald

    2016-01-01

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107

  2. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.

    PubMed

    Phelps, Carey; Israels, Brett; Marsh, Morgan C; von Hippel, Peter H; Marcus, Andrew H

    2016-12-29

    Recent advances in single-molecule fluorescence imaging have made it possible to perform measurements on microsecond time scales. Such experiments have the potential to reveal detailed information about the conformational changes in biological macromolecules, including the reaction pathways and dynamics of the rearrangements involved in processes, such as sequence-specific DNA "breathing" and the assembly of protein-nucleic acid complexes. Because microsecond-resolved single-molecule trajectories often involve "sparse" data, that is, they contain relatively few data points per unit time, they cannot be easily analyzed using the standard protocols that were developed for single-molecule experiments carried out with tens-of-millisecond time resolution and high "data density." Here, we describe a generalized approach, based on time-correlation functions, to obtain kinetic information from microsecond-resolved single-molecule fluorescence measurements. This approach can be used to identify short-lived intermediates that lie on reaction pathways connecting relatively long-lived reactant and product states. As a concrete illustration of the potential of this methodology for analyzing specific macromolecular systems, we accompany the theoretical presentation with the description of a specific biologically relevant example drawn from studies of reaction mechanisms of the assembly of the single-stranded DNA binding protein of the T4 bacteriophage replication complex onto a model DNA replication fork.

  4. Nanosecond to submillisecond dynamics in dye-labeled single-stranded DNA, as revealed by ensemble measurements and photon statistics at single-molecule level.

    PubMed

    Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi

    2009-10-22

    Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.

  5. Molecular View of CO2 Capture by Polyethylenimine: Role of Structural and Dynamical Heterogeneity.

    PubMed

    Sharma, Pragati; Chakrabarty, Suman; Roy, Sudip; Kumar, Rajnish

    2018-05-01

    The molecular thermodynamics and kinetics of CO 2 sorption in Polyethylenimine (PEI) melt have been investigated systematically using GCMC and MD simulations. We elucidate presence of significant structural and dynamic heterogeneity associated with the overall absorption process. CO 2 adsorption in a PEI membrane shows a distinct two-stage process of a rapid CO 2 adsorption at the interfaces (hundreds of picoseconds) followed by a significantly slower diffusion limited release toward the interior bulk regions of PEI melt (hundreds of nanoseconds to microseconds). The spatial heterogeneity of local structural features of the PEI chains lead to significantly heterogeneous absorption characterized by clustering and trapping of CO 2 molecules that then lead to subdiffusive motion of CO 2 . In the complex interplay of interaction and entropy, the latter emerges out to be the major determining factor with significantly higher solubility of CO 2 near the interfaces despite having lower density of binding amine groups. Regions having higher free-volume (entropically favorable) viz. interfaces, pores and loops demonstrate higher CO 2 capture ability. Various local structural features of PEI conformations, for example, inter- and intrachain loops, pores of different radii, and di- or tricoordinated pores are explored for their effects on the varying CO 2 adsorption abilities.

  6. Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein-Protein Interface.

    PubMed

    Rivalta, Ivan; Lisi, George P; Snoeberger, Ning-Shiuan; Manley, Gregory; Loria, J Patrick; Batista, Victor S

    2016-11-29

    Allosteric enzymes regulate a wide range of catalytic transformations, including biosynthetic mechanisms of important human pathogens, upon binding of substrate molecules to an orthosteric (or active) site and effector ligands at distant (allosteric) sites. We find that enzymatic activity can be impaired by small molecules that bind along the allosteric pathway connecting the orthosteric and allosteric sites, without competing with endogenous ligands. Noncompetitive allosteric inhibitors disrupted allostery in the imidazole glycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima as evidenced by nuclear magnetic resonance, microsecond time-scale molecular dynamics simulations, isothermal titration calorimetry, and kinetic assays. The findings are particularly relevant for the development of allosteric antibiotics, herbicides, and antifungal compounds because IGPS is absent in mammals but provides an entry point to fundamental biosynthetic pathways in plants, fungi, and bacteria.

  7. Observation of Complete Pressure-Jump Protein Refolding in Molecular Dynamics Simulation and Experiment

    PubMed Central

    2015-01-01

    Density is an easily adjusted variable in molecular dynamics (MD) simulations. Thus, pressure-jump (P-jump)-induced protein refolding, if it could be made fast enough, would be ideally suited for comparison with MD. Although pressure denaturation perturbs secondary structure less than temperature denaturation, protein refolding after a fast P-jump is not necessarily faster than that after a temperature jump. Recent P-jump refolding experiments on the helix bundle λ-repressor have shown evidence of a <3 μs burst phase, but also of a ∼1.5 ms “slow” phase of refolding, attributed to non-native helical structure frustrating microsecond refolding. Here we show that a λ-repressor mutant is nonetheless capable of refolding in a single explicit solvent MD trajectory in about 19 μs, indicating that the burst phase observed in experiments on the same mutant could produce native protein. The simulation reveals that after about 18.5 μs of conformational sampling, the productive structural rearrangement to the native state does not occur in a single swift step but is spread out over a brief series of helix and loop rearrangements that take about 0.9 μs. Our results support the molecular time scale inferred for λ-repressor from near-downhill folding experiments, where transition-state population can be seen experimentally, and also agrees with the transition-state transit time observed in slower folding proteins by single-molecule spectroscopy. PMID:24437525

  8. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  9. Dynamic Response of Reinforced Soil Systems. Volume 2. Appendices

    DTIC Science & Technology

    1993-03-01

    by a burster slab. These protection measures are costly, time consuming to construct, and sensitive to multiple strikes. Soil has been used to...load--deflection behavior of the reinforced soi I Dynamic puilout tests were then performed using the same parameters as the static tests. A standard...system was capable cf loading the sample in just a few micro-seconds to simulate a blast load. Dynamic load-deflection behavior was characterized and

  10. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  11. Conformational Analysis on structural perturbations of the zinc finger NEMO

    NASA Astrophysics Data System (ADS)

    Godwin, Ryan; Salsbury, Freddie; Salsbury Group Team

    2014-03-01

    The NEMO (NF-kB Essential Modulator) Zinc Finger protein (2jvx) is a functional Ubiquitin-binding domain, and plays a role in signaling pathways for immune/inflammatory responses, apoptosis, and oncogenesis [Cordier et al., 2008]. Characterized by 3 cysteines and 1 histidine residue at the active site, the biologically occurring, bound zinc configuration is a stable structural motif. Perturbations of the zinc binding residues suggest conformational changes in the 423-atom protein characterized via analysis of all-atom molecular dynamics simulations. Structural perturbations include simulations with and without a zinc ion and with and without de-protonated cysteines, resulting in four distinct configurations. Simulations of various time scales show consistent results, yet the longest, GPU driven, microsecond runs show more drastic structural and dynamic fluctuations when compared to shorter duration time-scales. The last cysteine residue (26 of 28) and the helix on which it resides exhibit a secondary, locally unfolded conformation in addition to its normal bound conformation. Combined analytics elucidate how the presence of zinc and/or protonated cysteines impact the dynamics and energetic fluctuations of NEMO. Comprehensive Cancer Center of Wake Forest University Computational Biosciences shared resource supported by NCI CCSG P30CA012197.

  12. Slow-Down in Diffusion in Crowded Protein Solutions Correlates with Transient Cluster Formation.

    PubMed

    Nawrocki, Grzegorz; Wang, Po-Hung; Yu, Isseki; Sugita, Yuji; Feig, Michael

    2017-12-14

    For a long time, the effect of a crowded cellular environment on protein dynamics has been largely ignored. Recent experiments indicate that proteins diffuse more slowly in a living cell than in a diluted solution, and further studies suggest that the diffusion depends on the local surroundings. Here, detailed insight into how diffusion depends on protein-protein contacts is presented based on extensive all-atom molecular dynamics simulations of concentrated villin headpiece solutions. After force field adjustments in the form of increased protein-water interactions to reproduce experimental data, translational and rotational diffusion was analyzed in detail. Although internal protein dynamics remained largely unaltered, rotational diffusion was found to slow down more significantly than translational diffusion as the protein concentration increased. The decrease in diffusion is interpreted in terms of a transient formation of protein clusters. These clusters persist on sub-microsecond time scales and follow distributions that increasingly shift toward larger cluster size with increasing protein concentrations. Weighting diffusion coefficients estimated for different clusters extracted from the simulations with the distribution of clusters largely reproduces the overall observed diffusion rates, suggesting that transient cluster formation is a primary cause for a slow-down in diffusion upon crowding with other proteins.

  13. A Kinetic Model of Trp-Cage Folding from Multiple Biased Molecular Dynamics Simulations

    PubMed Central

    Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro; Piana, Stefano

    2009-01-01

    Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins. Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For the Trp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap. Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at of 4.4 Å from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the and chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data. PMID:19662155

  14. Insights into the folding pathway of the Engrailed Homeodomain protein using replica exchange molecular dynamics simulations.

    PubMed

    Koulgi, Shruti; Sonavane, Uddhavesh; Joshi, Rajendra

    2010-11-01

    Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 Å. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 Å while HTH motif had an RMSD of 1.81 Å. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.

    PubMed

    Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro; Piana, Stefano

    2009-08-01

    Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.

  16. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Romano, Pablo; Guenza, Marina

    2014-03-01

    We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.

  18. Acoustic transients in pulsed holmium laser ablation: effects of pulse duration

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Delacretaz, Guy P.; Jansen, E. Duco; Welch, Ashley J.; Frenz, Martin

    1995-01-01

    The goal of this work was to study the influence of pulse duration on acoustic transient generation in holmium laser ablation. For this, the generation and collapse of cavitation bubbles induced by Q-switched and free-running laser pulses delivered under water were investigated. Polyacrylamide gel of 84% water content served as a model for soft tissue. This gel is a more realistic tissue phantom than water because it mimics not only the optical properties but also the mechanical properties of tissue. The dynamics of bubble formation inside the clear gel were observed by 1 ns time resolved flash videography. A polyvinylidenefluoride (PVDF) needle probe transducer measured absolute values of pressure amplitudes. Pressure wave generation by cavitation bubble collapse was observed in all phantoms used. Maximum pressures of more than 180 bars at 1 mm from the collapse center were observed in water and high water-contents gels with a pulse energy of 200 mJ and a 400 micrometers fiber. A strong dependency of the bubble collapse pressure on the pulse duration for constant pulse energy was observed in gel as well as in water. For pulse durations longer than 400 microsecond(s) a 90% reduction of pressure amplitudes relative to 100 microsecond(s) pulses was found. This suggests that optimization of pulse duration offers a degree of freedom allowing us to minimize the risk of acoustical damage in medical applications like arthroscopy and angioplasty.

  19. Apparatus for laser slowing and cooling of molecules

    DTIC Science & Technology

    2016-10-09

    cooling of a new molecular species, TlF. We have also successfully acquired and assembled the parts for a custom laser system, which produces long...preliminary work on laser cooling of a new molecular species, TlF. We have also successfully acquired and assembled the parts for a custom laser system, which... custom laser system, which produces long (~200 microsecond), single-frequency pulses with energy ~1.1 Joules at 1064 nm and/or ~0.4 Joules at 532 nm

  20. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).

    PubMed

    Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A A

    2010-12-01

    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 ± 0.5) × 10(3) per second (i.e., τ(ex) = 64.7 ± 1.9 μs). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by (1)H CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone (15)N relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins.

  1. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    PubMed Central

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-01-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10–30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo. PMID:26602160

  2. Retinal Ligand Mobility Explains Internal Hydration and Reconciles Active Rhodopsin Structures

    PubMed Central

    Leioatts, Nicholas; Mertz, Blake; Martínez-Mayorga, Karina; Romo, Tod D.; Pitman, Michael C.; Feller, Scott E.; Grossfield, Alan; Brown, Michael F.

    2014-01-01

    Rhodopsin, the mammalian dim-light receptor, is one of the best-characterized G-protein-coupled receptors, a pharmaceutically important class of membrane proteins that has garnered a great deal of attention because of the recent availability of structural information. Yet the mechanism of rhodopsin activation is not fully understood. Here, we use microsecond-scale all-atom molecular dynamics simulations, validated by solid-state 2H nuclear magnetic resonance spectroscopy, to understand the transition between the dark and metarhodopsin I (Meta I) states. Our analysis of these simulations reveals striking differences in ligand flexibility between the two states. Retinal is much more dynamic in Meta I, adopting an elongated conformation similar to that seen in the recent activelike crystal structures. Surprisingly, this elongation corresponds to both a dramatic influx of bulk water into the hydrophobic core of the protein and a concerted transition in the highly conserved Trp2656.48 residue. In addition, enhanced ligand flexibility upon light activation provides an explanation for the different retinal orientations observed in X-ray crystal structures of active rhodopsin. PMID:24328554

  3. Solid state replacement of rotating mirror cameras

    NASA Astrophysics Data System (ADS)

    Frank, Alan M.; Bartolick, Joseph M.

    2007-01-01

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed 'In-situ Storage Image Sensor' or 'ISIS', by Prof. Goji Etoh has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  4. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model.

    PubMed

    Jämbeck, Joakim P M; Eriksson, Emma S E; Laaksonen, Aatto; Lyubartsev, Alexander P; Eriksson, Leif A

    2014-01-14

    Liposomes are proposed as drug delivery systems and can in principle be designed so as to cohere with specific tissue types or local environments. However, little detail is known about the exact mechanisms for drug delivery and the distributions of drug molecules inside the lipid carrier. In the current work, a coarse-grained (CG) liposome model is developed, consisting of over 2500 lipids, with varying degrees of drug loading. For the drug molecule, we chose hypericin, a natural compound proposed for use in photodynamic therapy, for which a CG model was derived and benchmarked against corresponding atomistic membrane bilayer model simulations. Liposomes with 21-84 hypericin molecules were generated and subjected to 10 microsecond simulations. Distribution of the hypericins, their orientations within the lipid bilayer, and the potential of mean force for transferring a hypericin molecule from the interior aqueous "droplet" through the liposome bilayer are reported herein.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.

    Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less

  6. Bioactivity of electric field-pulsed human recombinant interleukin-2 and its encapsulation into erythrocyte carriers.

    PubMed

    Mitchell, D H; James, G T; Kruse, C A

    1990-06-01

    The molecular integrity of human recombinant interleukin-2 (rIL-2), as measured by size exclusion chromatography, was not altered when exposed to high electrical field intensities. In addition, the biological activity was unaffected, as evidenced by the ability of the rIL-2 to stimulate the proliferation (by cell growth assays and tritiated thymidine uptake) and differentiation (by cytotoxicity assay) of human lymphocytes into killer cells. Electroporation conditions chosen for the loading of rIL-2, based upon those which provided for good recovery of carriers and minimal hemoglobin release, involved a lower field intensity (i.e., 6 kV/cm instead of 7 or 8 kV/cm) and multiple pulses (eight pulses, 5 microseconds) rather than a single pulse (40 microseconds). Human erythrocyte carriers consistently encapsulated 5-7.5% of the rIL-2 by electroporation (6 kV/cm, eight pulses, 5 microseconds duration). A rIL-2 concentration of 600,000 U/ml surrounding the erythrocytes during loading resulted in ca. 245,000 U/ml carriers, which represents a therapeutically significant quantity. Thus, rIL-2 shows potential as an encapsulated agent for slow release in the erythrocyte carrier system.

  7. Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations.

    PubMed

    Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre

    2015-06-19

    Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft-tissue contrast in clinical magnetic resonance imaging.

  9. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.

  10. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  11. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics.

    PubMed

    Alibay, Irfan; Burusco, Kepa K; Bruce, Neil J; Bryce, Richard A

    2018-03-08

    Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4 C 1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.

  12. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemicalmore » potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.« less

  13. Spin-diffusions and diffusive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  14. The role of conformational selection in the molecular recognition of the wild type and mutants XPA67-80 peptides by ERCC1.

    PubMed

    Fadda, Elisa

    2015-07-01

    Molecular recognition is a fundamental step in the coordination of biomolecular pathways. Understanding how recognition and binding occur between highly flexible protein domains is a complex task. The conformational selection theory provides an elegant rationalization of the recognition mechanism, especially valid in cases when unstructured protein regions are involved. The recognition of a poorly structured peptide, namely XPA67-80 , by its target receptor ERCC1, falls in this challenging study category. The microsecond molecular dynamics (MD) simulations, discussed in this work, show that the conformational propensity of the wild type XPA67-80 peptide in solution supports conformational selection as the key mechanism driving its molecular recognition by ERCC1. Moreover, all the mutations of the XPA67-80 peptide studied here cause a significant increase of its conformational disorder, relative to the wild type. Comparison to experimental data suggests that the loss of the recognized structural motifs at the microscopic time scale can contribute to the critical decrease in binding observed for one of the mutants, further substantiating the key role of conformational selection in recognition. Ultimately, because of the high sequence identity and analogy in binding, it is conceivable that the conclusions of this study on the XPA67-80 peptide also apply to the ERCC1-binding domain of the XPA protein. © 2015 Wiley Periodicals, Inc.

  15. Quantitative comparison of inflammatory infiltrate and linear contraction in human skin treated with 90-microsecond pulsed and 900-microsecond dwell time carbon dioxide lasers.

    PubMed

    Bucalo, B D; Moy, R L

    1998-12-01

    Skin resurfacing with 90-microsecond pulse duration carbon dioxide (CO2) resurfacing lasers has been reported to have shorter duration of erythema compared with skin resurfacing with 900-microsecond dwell time lasers. The presence of inflammatory infiltrate following resurfacing may correlate with the persistence of this erythema. Furthermore, skin treated with the 90-microsecond pulse duration laser and the 900-microsecond dwell time lasers both result in equivalent improvement of rhytids in the treated skin. To quantitative the inflammatory cell infiltrate and linear contraction of skin treated with the 90-microsecond pulsed and 900-microsecond dwell time CO2 lasers at intervals of 2 and 4 weeks after treatment. Volunteers were recruited from patients who were planning to undergo full face laser resurfacing under general anesthesia. Informed consent was obtained from all volunteers. In the posterior auricular areas of all volunteers, four separate rectangular areas were marked using a skin marking pen and a template. Two rectangular areas behind the right ear were treated with 6 passes of the 90-microsecond laser and two rectangular areas behind the left ear were treated with the 900-microsecond dwell time laser. The resurfaced areas were wiped with a moist cotton swab and then patted dry with dry gauze between passes. Contraction measurements of the resurfaced areas were taken before and immediately after laser treatment and again at 2 and 4 weeks following treatment. Punch biopsies were also performed at 2 and 4 weeks after treatment in an area of skin different from where contraction measurements were taken. The number of inflammatory cells present in the skin at 2 and 4 weeks after laser resurfacing are greater for skin resurfaced with a 900-microsecond dwell time laser than a 90-microsecond pulse time laser. Linear contraction of skin immediately after treatment was 18% greater with the 900-microsecond dwell time laser than with the 90-microsecond pulsed laser. The difference in the amount of contraction produced by the lasers tended to decrease over time. At 4 weeks there was a 10% difference in mean linear contraction between the two laser types. Increased numbers of inflammatory cells in skin resurfaced with the 900-microsecond dwell time laser may explain the observed persistence of erythema associated with the 900-microsecond dwell time laser. Measurable linear contraction produced by the 900-microsecond dwell time laser was initially 18% greater than the 90-microsecond pulse laser. This difference tends to decrease over time.

  16. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising applications in drug delivery and has been extensively studied experimentally. Sub-microsecond multiscale simulations at 310 K on the vault revealed the opening and closing of fractures near the shoulder while preserving the overall structure. This fracture mechanism could explain the uptake and release of small drugs while maintaining the overall structure. Higher temperature simulations show the generation of large fractures near the waist, which enables interaction of the external medium with the inner vault residues. Simulation results agreed with microscopy and spectroscopy measurements, and revealed new structures and mechanisms.

  17. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

    PubMed Central

    Skolnick, Jeffrey

    2016-01-01

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes. PMID:27634243

  18. Troponin structure: its modulation by Ca(2+) and phosphorylation studied by molecular dynamics simulations.

    PubMed

    Zamora, Juan Eiros; Papadaki, Maria; Messer, Andrew E; Marston, Steven B; Gould, Ian R

    2016-07-27

    The only available crystal structure of the human cardiac troponin molecule (cTn) in the Ca(2+) activated state does not include crucial segments, including the N-terminus of the cTn inhibitory subunit (cTnI). We have applied all-atom molecular dynamics (MD) simulations to study the structure and dynamics of cTn, both in the unphosphorylated and bis-phosphorylated states at Ser23/Ser24 of cTnI. We performed multiple microsecond MD simulations of wild type (WT) cTn (6, 5 μs) and bisphosphorylated (SP23/SP24) cTn (9 μs) on a 419 amino acid cTn model containing human sequence cTnC (1-161), cTnI (1-171) and cTnT (212-298), including residues not present in the crystal structure. We have compared our results to previous computational studies, and proven that longer simulations and a water box of at least 25 Å are needed to sample the interesting conformational shifts both in the native and bis-phosphorylated states. As a consequence of the introduction into the model of the C-terminus of cTnT that was missing in previous studies, cTnC-cTnI interactions that are responsible for the cTn dynamics are altered. We have also shown that phosphorylation does not increase cTn fluctuations, and its effects on the protein-protein interaction profiles cannot be assessed in a significant way. Finally, we propose that phosphorylation could provoke a loss of Ca(2+) by stabilizing out-of-coordination distances of the cTnC's EF hand II residues, and in particular Ser 69.

  19. Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation.

    PubMed Central

    Heitbrink, Dirk; Sigurdson, Håkan; Bolwien, Carsten; Brzezinski, Peter; Heberle, Joachim

    2002-01-01

    The redox-driven proton pump cytochrome c oxidase is that enzymatic machinery of the respiratory chain that transfers electrons from cytochrome c to molecular oxygen and thereby splits molecular oxygen to form water. To investigate the reaction mechanism of cytochrome c oxidase on the single vibrational level, we used time-resolved step-scan Fourier transform infrared spectroscopy and studied the dynamics of the reduced enzyme after photodissociation of bound carbon monoxide across the mid-infrared range (2300-950 cm(-1)). Difference spectra of the bovine complex were obtained at -20 degrees C with 5 micros time resolution. The data demonstrate a dynamic link between the transient binding of CO to Cu(B) and changes in hydrogen bonding at the functionally important residue E(I-286). Variation of the pH revealed that the pK(a) of E(I-286) is >9.3 in the fully reduced CO-bound oxidase. Difference spectra of cytochrome c oxidase from beef heart are compared with those of the oxidase isolated from Rhodobacter sphaeroides. The bacterial enzyme does not show the environmental change in the vicinity of E(I-286) upon CO dissociation. The characteristic band shape appears, however, in redox-induced difference spectra of the bacterial enzyme but is absent in redox-induced difference spectra of mammalian enzyme. In conclusion, it is demonstrated that the dynamics of a large protein complex such as cytochrome c oxidase can be resolved on the single vibrational level with microsecond Fourier transform infrared spectroscopy. The applied methodology provides the basis for future investigations of the physiological reaction steps of this important enzyme. PMID:11751290

  20. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments.

    PubMed

    Kimmich, Rainer; Fatkullin, Nail

    2017-08-01

    Field-cycling NMR relaxometry is a well-established technique for probing molecular dynamics in a frequency range from typically a few kHz up to several tens of MHz. For the interpretation of relaxometry data, it is quite often assumed that the spin-lattice relaxation process is of an intra-molecular nature so that rotational fluctuations dominate. However, dipolar interactions as the main type of couplings between protons and other dipolar species without quadrupole moments can imply appreciable inter-molecular contributions. These fluctuate due to translational displacements and to a lesser degree also by rotational reorientations in the short-range limit. The analysis of the inter-molecular proton spin-lattice relaxation rate thus permits one to evaluate self-diffusion variables such as the diffusion coefficient or the mean square displacement on a time scale from nanoseconds to several hundreds of microseconds. Numerous applications to solvents, plastic crystals and polymers will be reviewed. The technique is of particular interest for polymer dynamics since inter-molecular spin-lattice relaxation diffusometry bridges the time scales of quasi-elastic neutron scattering and field-gradient NMR diffusometry. This is just the range where model-specific intra-coil mechanisms are assumed to occur. They are expected to reveal themselves by characteristic power laws for the time-dependence of the mean-square segment displacement. These can be favorably tested on this basis. Results reported in the literature will be compared with theoretical predictions. On the other hand, there is a second way for translational diffusion phenomena to affect the spin-lattice relaxation dispersion. If rotational diffusion of molecules is restricted, translational diffusion properties can be deduced even from molecular reorientation dynamics detected by intra-molecular spin-lattice relaxation. This sort of scenario will be relevant for adsorbates on surfaces or polymer segments under entanglement and chain connectivity constraints. Under such conditions, reorientations will be correlated with translational displacements leading to the so-called RMTD relaxation process (reorientation mediated by translational displacements). Applications to porous glasses, protein solutions, lipid bilayers, and clays will be discussed. Finally, we will address the intriguing fact that the various time limits of the segment mean-square displacement of polymers in some cases perfectly reproduce predictions of the tube/reptation model whereas the reorientation dynamics suggests strongly deviating power laws. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Event Detection and Sub-state Discovery from Bio-molecular Simulations Using Higher-Order Statistics: Application To Enzyme Adenylate Kinase

    PubMed Central

    Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2012-01-01

    Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562

  2. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born

    PubMed Central

    2012-01-01

    We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031

  3. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.

    PubMed

    Zhang, Liqun

    2017-04-01

    Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD-3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD-3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD-3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD-3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD-3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD-3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD-3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665-681. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.

    2004-07-01

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  5. Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction

    PubMed Central

    Mnpotra, Jagjeet S.; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L.; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P.; Pitman, Michael C.; Song, Zhao-Hui; Reggio, Patricia H.

    2014-01-01

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. PMID:24855641

  6. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  7. Proceeding of the 1999 Particle Accelerator Conference. Volume 1

    DTIC Science & Technology

    1999-04-02

    protons -e.6 within a 35-ns wide pulse . Dynamic shots of high - explosive (HE) during detonation usually had pulses spaced at 1-microsecond intervals... protons per pulse could be obtained by 800 Radiography on a Dynamic Object," 1 1th Biennial Nuclear Explosives MeV H’ injection from the existing 800 MeV...3713 Pondermotive Acceleration of Ions By Relativistically Self-Focused High- Intensity Short Pulse Laser -- A.Maksimchuky, S.Gu, K.Flippo,

  8. An Investigation of the Sub-Microsecond Features of Dynamic Crack Propagation in PMMA and the Rdx-Based Explosive PBX 9205

    NASA Astrophysics Data System (ADS)

    Washabaugh, P. D.; Hill, L. G.

    2007-12-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  9. An initial investigation of the sub-microsecond features of dynamic crack propagation in PMMA and the RDX-based explosive PBX 9205

    NASA Astrophysics Data System (ADS)

    Washabaugh, Peter; Hill, Larry

    2007-06-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  10. Experimental investigations of the use of an erbium:YAG laser on temporomandibular joint (TMJ) structures: first experimental results

    NASA Astrophysics Data System (ADS)

    Nuebler-Moritz, Michael; Niederdellmann, Herbert; Hering, Peter; Deuerling, Christian; Dammer, Ralf; Behr, M.

    1995-04-01

    The following paper introduces the results of an interdisciplinary research project. With the aid of photomacroscopic examination, light and scanning electron microscope investigations, changes to temporomandibular joint structures were detected in vitro after irradiation with an Erbium:YAG laser system. The solid-state Erbium:YAG laser, operating at a wavelength of 2.94 micrometers was used in the normal- spiking mode. The free-running laser beam was focussed onto freshly excised porcine tissue samples using a 108-mm sapphire lens. In this study the output was generally pulsed at a repetition rate of 4 Hz, with a pulse duration varying from 120 microsecond(s) to 500 microsecond(s) . Between 50 mJ and 500 mJ per pulse were applied to create pinpoint lesions. The optimum average energy density and pulse duration of the Erbium:YAG laser radiation for the purpose of TMJ-surgery (as far as it concerns meniscus and articulating facets) - which means efficient etch rate and minimal adjacent injury - seems to be about 24-42 J/cm2 and 120 microsecond(s) -240 microsecond(s) , respectively.

  11. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  12. Dynamics of Surfactant Clustering at Interfaces and Its Influence on the Interfacial Tension: Atomistic Simulation of a Sodium Hexadecane-Benzene Sulfonate-Tetradecane-Water System.

    PubMed

    Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier

    2018-03-06

    The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.

  13. Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent

    NASA Astrophysics Data System (ADS)

    Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu

    2011-10-01

    A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.

  14. Photophysical dynamics of the efficient emission and photosensitization of [Ir(pqi)2(NN)]+ complexes.

    PubMed

    Zanoni, Kassio P S; Ito, Akitaka; Grüner, Malte; Murakami Iha, Neyde Y; de Camargo, Andrea S S

    2018-01-23

    The photophysical dynamics of three complexes in the highly-emissive [Ir(pqi) 2 (NN)] + series were investigated aiming at unique photophysical features and applications in light-emitting and singlet oxygen sensitizing research fields. Rational elucidation and Franck-Condon analyses of the observed emission spectra in nitrile solutions at 298 and 77 K reveal the true emissive nature of the lowest-lying triplet excited state (T 1 ), consisting of a hybrid 3 MLCT/LC Ir(pqi)→pqi state. Emissive deactivations from T 1 occur mainly by very intense, yellow-orange phosphorescence with high quantum yields and radiative rates. The emission nature experimentally verified is corroborated by theoretical calculations (TD-DFT), with T 1 arising from a mixing of several transitions induced by the spin-orbit coupling, majorly ascribed to 3 MLCT/LC Ir(pqi)→pqi and increasing contributions of 3 MLCT/LLCT Ir(pqi)→NN . The microsecond-lived emission of T 1 is rapidly quenched by molecular oxygen, with an efficient generation of singlet oxygen. Our findings show that the photophysics of [Ir(pqi) 2 (NN)][PF 6 ] complexes is suitable for many applications, from the active layer of electroluminescent devices to photosensitizers for photodynamic therapy and theranostics.

  15. Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration.

    PubMed

    Roberts, Christopher C; Chang, Chia-en A

    2015-01-13

    Colocalized multistep enzymatic reaction pathways within biological catabolic and metabolic processes occur with high yield and specificity. Spatial organization on membranes or surfaces may be associated with increased efficiency of intermediate substrate transfer. Using a new Brownian dynamics package, GeomBD, we explored the geometric features of a surface-anchored enzyme system by parallel coarse-grained Brownian dynamics simulations of substrate diffusion over microsecond (μs) to millisecond (ms) time scales. We focused on a recently developed glucose oxidase (GOx), horseradish peroxidase (HRP), and DNA origami-scaffold enzyme system, where the H2O2 substrate of HRP is produced by GOx. The results revealed and explained a significant advantage in catalytic enhancement by optimizing interenzyme distance and orientation in the presence of the scaffold model. The planar scaffold colocalized the enzymes and provided a diffusive barrier that enhanced substrate transfer probability, becoming more relevant with increasing interenzyme distance. The results highlight the importance of protein geometry in the proper assessment of distance and orientation dependence on the probability of substrate transfer. They shed light on strategies for engineering multienzyme complexes and further investigation of enhanced catalytic efficiency for substrate diffusion between membrane-anchoring proteins.

  16. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  17. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.

    PubMed

    Salomon-Ferrer, Romelia; Götz, Andreas W; Poole, Duncan; Le Grand, Scott; Walker, Ross C

    2013-09-10

    We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Götz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.

  18. A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor*

    PubMed Central

    Hurst, Dow P.; Grossfield, Alan; Lynch, Diane L.; Feller, Scott; Romo, Tod D.; Gawrisch, Klaus; Pitman, Michael C.; Reggio, Patricia H.

    2010-01-01

    Recent isothiocyanate covalent labeling studies have suggested that a classical cannabinoid, (−)-7′-isothiocyanato-11-hydroxy-1′,1′dimethylheptyl-hexahydrocannabinol (AM841), enters the cannabinoid CB2 receptor via the lipid bilayer (Pei, Y., Mercier, R. W., Anday, J. K., Thakur, G. A., Zvonok, A. M., Hurst, D., Reggio, P. H., Janero, D. R., and Makriyannis, A. (2008) Chem. Biol. 15, 1207–1219). However, the sequence of steps involved in such a lipid pathway entry has not yet been elucidated. Here, we test the hypothesis that the endogenous cannabinoid sn-2-arachidonoylglycerol (2-AG) attains access to the CB2 receptor via the lipid bilayer. To this end, we have employed microsecond time scale all-atom molecular dynamics (MD) simulations of the interaction of 2-AG with CB2 via a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. Results suggest the following: 1) 2-AG first partitions out of bulk lipid at the transmembrane α-helix (TMH) 6/7 interface; 2) 2-AG then enters the CB2 receptor binding pocket by passing between TMH6 and TMH7; 3) the entrance of the 2-AG headgroup into the CB2 binding pocket is sufficient to trigger breaking of the intracellular TMH3/6 ionic lock and the movement of the TMH6 intracellular end away from TMH3; and 4) subsequent to protonation at D3.49/D6.30, further 2-AG entry into the ligand binding pocket results in both a W6.48 toggle switch change and a large influx of water. To our knowledge, this is the first demonstration via unbiased molecular dynamics that a ligand can access the binding pocket of a class A G protein-coupled receptor via the lipid bilayer and the first demonstration via molecular dynamics of G protein-coupled receptor activation triggered by a ligand binding event. PMID:20220143

  19. Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associated with the Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulations*

    PubMed Central

    Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre

    2015-01-01

    Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar1,Ile8]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. PMID:25934394

  20. Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.

    PubMed

    Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L

    2018-06-13

    The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.

  1. Peptide crystal simulations reveal hidden dynamics

    PubMed Central

    Janowski, Pawel A.; Cerutti, David S.; Holton, James; Case, David A.

    2013-01-01

    Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in the X-ray diffraction data. We present here 9.6 microseconds of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom rmsd; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom rmsd. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(−) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data, as well as to validate computational chemistry methods. PMID:23631449

  2. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations.

    PubMed

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2016-10-26

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.

  3. Effect of nickel on point defects diffusion in Fe – Ni alloys

    DOE PAGES

    Anento, Napoleon; Serra, Anna; Osetsky, Yury N.

    2017-05-05

    Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the additionmore » of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.« less

  4. Atomistic and coarse-grained computer simulations of raft-like lipid mixtures.

    PubMed

    Pandit, Sagar A; Scott, H Larry

    2007-01-01

    Computer modeling can provide insights into the existence, structure, size, and thermodynamic stability of localized raft-like regions in membranes. However, the challenges in the construction and simulation of accurate models of heterogeneous membranes are great. The primary obstacle in modeling the lateral organization within a membrane is the relatively slow lateral diffusion rate for lipid molecules. Microsecond or longer time-scales are needed to fully model the formation and stability of a raft in a membra ne. Atomistic simulations currently are not able to reach this scale, but they do provide quantitative information on the intermolecular forces and correlations that are involved in lateral organization. In this chapter, the steps needed to carry out and analyze atomistic simulations of hydrated lipid bilayers having heterogeneous composition are outlined. It is then shown how the data from a molecular dynamics simulation can be used to construct a coarse-grained model for the heterogeneous bilayer that can predict the lateral organization and stability of rafts at up to millisecond time-scales.

  5. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    PubMed Central

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  6. Going beyond Clustering in MD Trajectory Analysis: An Application to Villin Headpiece Folding

    PubMed Central

    Rajan, Aruna; Freddolino, Peter L.; Schulten, Klaus

    2010-01-01

    Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous. PMID:20419160

  7. Going beyond clustering in MD trajectory analysis: an application to villin headpiece folding.

    PubMed

    Rajan, Aruna; Freddolino, Peter L; Schulten, Klaus

    2010-04-15

    Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous.

  8. Microsecond Resolution of Single-Molecule Rotation Catalyzed by Molecular Motors

    PubMed Central

    Hornung, Tassilo; Martin, James; Spetzler, David; Ishmukhametov, Robert; Frasch, Wayne D.

    2017-01-01

    Single-molecule measurements of rotation catalyzed by the F1-ATPase or the FoF1 ATP synthase have provided new insights into the molecular mechanisms of the F1 and Fo molecular motors. We recently developed a method to record ATPase-driven rotation of F1 or FoF1 in a manner that solves several technical limitations of earlier approaches that were significantly hampered by time and angular resolution, and restricted the duration of data collection. With our approach it is possible to collect data for hours and obtain statistically significant quantities of data on each molecule examined with a time resolution of up to 5 μs at unprecedented signal-to-noise. PMID:21809213

  9. Enhancing coherence in molecular spin qubits via atomic clock transitions

    NASA Astrophysics Data System (ADS)

    Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2016-03-01

    Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.

  10. Glycinergic inhibition tunes coincidence detection in the auditory brainstem

    PubMed Central

    Myoga, Michael H.; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt

    2014-01-01

    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing. PMID:24804642

  11. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    NASA Astrophysics Data System (ADS)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  12. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  13. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE PAGES

    None, None

    2016-03-22

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  14. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  15. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    PubMed

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  16. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage mini protein

    PubMed Central

    Day, Ryan; Paschek, Dietmar; Garcia, Angel E.

    2012-01-01

    We study the unbiased folding/unfolding thermodynamics of the Trp-cage miniprotein using detailed molecular dynamics simulations of an all-atom model of the protein in explicit solvent, using the Amberff99SB force field. Replica-exchange molecular dynamics (REMD) simulations are used to sample the protein ensembles over a broad range of temperatures covering the folded and unfolded states, and at two densities. The obtained ensembles are shown to reach equilibrium in the 1 μs per replica timescale. The total simulation time employed in the calculations exceeds 100 μs. Ensemble averages of the fraction folded, pressure, and energy differences between the folded and unfolded states as a function of temperature are used to model the free energy of the folding transition, ΔG(P,T), over the whole region of temperature and pressures sampled in the simulations. The ΔG(P,T) diagram describes an ellipse over the range of temperatures and pressures sampled, predicting that the system can undergo pressure induced unfolding and cold denaturation at low temperatures and high pressures, and unfolding at low pressures and high temperatures. The calculated free energy function exhibits remarkably good agreement with the experimental folding transition temperature (Tf = 321 K), free energy and specific heat changes. However, changes in enthalpy and entropy are significantly different than the experimental values. We speculate that these differences may be due to the simplicity of the semi-empirical force field used in the simulations and that more elaborate force fields may be required to describe appropriately the thermodynamics of proteins. PMID:20408169

  17. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. © 2016 Wiley Periodicals, Inc.

  18. Examination of Mechanisms and Fuel-Molecular Effects on Soot Formation.

    DTIC Science & Technology

    1988-02-13

    atoms. Since the k[acetone]/ki[C 2H2]2 ratios as previ6usly calculated are significantly greater than one, production of H-atoms via acetone...Reactant decay and product formation as determined using this analysis are described below. Acetylene was calculated to decay principally by three...times of 500 to 700 microseconds. Gas samples of reactant, intermediate, and final products were collected and analyzed using gas chromatography

  19. Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent

    PubMed Central

    Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu

    2011-01-01

    A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into “alpha helix” and “beta sheet” structures. The 5-residue polyalanine displays a substantial increase in the “beta strand” fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling. PMID:22029338

  20. Imaging the small animal cardiovascular system in real-time with multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis

    2011-03-01

    Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.

  1. Diagnostics for Hypersonic Engine Control

    DTIC Science & Technology

    2013-02-01

    weredirected across the flow at the entrance to the isolator just downstream of the facility nozzle . The near-infrared beams were frequency tuned across...the facility nozzle were used to study the dynamics of the shock train structure during these transient combustor events. They revealed the...entropy fluctuations in supersonic boundary layers can be quite short in time – on the order of tens of microseconds. We therefore sought data

  2. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields.

    PubMed

    Casciola, Maura; Tarek, Mounir

    2016-10-01

    The transport of chemical compounds across the plasma membrane into the cell is relevant for several biological and medical applications. One of the most efficient techniques to enhance this uptake is reversible electroporation. Nevertheless, the detailed molecular mechanism of transport of chemical species (dyes, drugs, genetic materials, …) following the application of electric pulses is not yet fully elucidated. In the past decade, molecular dynamics (MD) simulations have been conducted to model the effect of pulsed electric fields on membranes, describing several aspects of this phenomenon. Here, we first present a comprehensive review of the results obtained so far modeling the electroporation of lipid membranes, then we extend these findings to study the electrotransfer across lipid bilayers subject to microsecond pulsed electric fields of Tat11, a small hydrophilic charged peptide, and of siRNA. We use in particular a MD simulation protocol that allows to characterize the transport of charged species through stable pores. Unexpectedly, our results show that for an electroporated bilayer subject to transmembrane voltages in the order of 500mV, i.e. consistent with experimental conditions, both Tat11 and siRNA can translocate through nanoelectropores within tens of ns. We discuss these results in comparison to experiments in order to rationalize the mechanism of drug uptake by cells. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Efficiently sampling conformations and pathways using the concurrent adaptive sampling (CAS) algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.

    2017-08-01

    Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties' efficiently because we need to run microseconds or longer simulations using femtosecond time steps. To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However, the WE method requires an appropriate partitioning of phase space into discrete macrostates, which can be problematic when we have a high-dimensional collective space or when little is known a priori about the molecular system. Hence, we developed a new WE-based method, called the "Concurrent Adaptive Sampling (CAS) algorithm," to tackle these issues. The CAS algorithm is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the high-dimensional space. This is especially useful for systems in which we do not know what the right reaction coordinates are, in which case we can use many collective variables to sample conformations and pathways. In addition, a clustering technique based on the committor function is used to accelerate sampling the slowest process in the molecular system. In this paper, we introduce the new method and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a triazine trimer.

  4. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  5. Statistical-Mechanical Study of Polyvinylidene Fluoride.

    DTIC Science & Technology

    1984-06-01

    been thoroughly investigated. The time-dependence and microscopic origin of the poling . over... .DO 9 0nt7 OF I 1oNOV GS IS OSMLETE UNCLASSIFIED 84 07...8217% ._-.’.\\ ,’a ,> . m - _’ . - . -. . ...--- , .:-. - 3 The dynamics of the process, known as poling , by which piezoelectric activity is induced...was also studied theoretically. The very short poling times, of the order of microseconds, predicted by the theory have since been confirmed

  6. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    NASA Astrophysics Data System (ADS)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  7. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  8. Ultrafast hopping dynamics of 5f electrons in the Mott insulator UO₂ studied by femtosecond pump-probe spectroscopy.

    PubMed

    An, Yong Q; Taylor, Antoinette J; Conradson, Steven D; Trugman, Stuart A; Durakiewicz, Tomasz; Rodriguez, George

    2011-05-20

    We describe a femtosecond pump-probe study of ultrafast hopping dynamics of 5f electrons in the Mott insulator UO₂ following Mott-gap excitation at temperatures of 5-300 K. Hopping-induced response of the lattice and electrons is probed by transient reflectivity at mid- and above-gap photon energies, respectively. These measurements show an instantaneous hop, subsequent picosecond lattice deformation, followed by acoustic phonon emission and microsecond relaxation. Temperature-dependent studies indicate that the slow relaxation results from Hubbard excitons formed by U³⁺-U⁵⁺ pairs.

  9. Structural Ensemble of CD4 Cytoplasmic Tail (402-419) Reveals a Nearly Flat Free-Energy Landscape with Local α-Helical Order in Aqueous Solution.

    PubMed

    Ahalawat, Navjeet; Arora, Simran; Murarka, Rajesh K

    2015-08-27

    The human cluster determinant 4 (CD4), expressed primarily on the surface of T helper cells, serves as a coreceptor in T-cell receptor recognition of MHC II antigen complexes. Besides its cellular functions, CD4 serves as a primary receptor of human immunodeficiency virus (HIV) type 1. The cytoplasmic tail of CD4 (residues 402-419) is known to be involved in direct interaction with the HIV-1 proteins Vpu and Nef. These two viral accessory proteins (Vpu and Nef) downregulate CD4 in HIV-1 infected cells by multiple strategies and make the body susceptible to all forms of infections. In this work, we carried out extensive replica exchange molecular dynamics simulations in explicit water with three popular protein force fields Amber ff99SB, Amber ff99SB*-ILDN, and CHARMM36 to characterize the equilibrium conformational ensemble of CD4-tail (402-419) and further validated the simulated ensembles with known NMR data. We found that ff99SB*-ILDN gives a better description of the structural ensemble of this peptide compared with ff99SB and CHARMM36. The peptide adopts multiple distinct conformations with varying degree of residual secondary structures. In particular, we observed 28, 7, and 5% average α-helical, β-strand, and 3(10)-helix content, respectively, for ff99SB*-ILDN. The peptide chain shows the tendency of helix formation in a cooperative manner, seeding at residues 407-410, and subsequently extending toward both ends of the chain. Furthermore, we constructed Markov state model (MSM) from large-scale molecular dynamics simulations to study the dynamics of transitions between different metastable states explored by this peptide. The mean first passage times computed from MSM indicate rapid interconversion of these states, and the time scales of transitions range from several nanoseconds to hundreds of microseconds. Our results show good agreement with experimental data and could help to understand the key molecular mechanisms of T-cell activation and HIV-mediated receptor interference.

  10. Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Gouissem, Afif; Guduru, Pradeep R.; Sharma, Pradeep

    2017-10-01

    Amorphous lithium-silicon (a-Li-Si), especially in nanostructure form, is an attractive high-capacity anode material for next-generation Li-ion batteries. During cycles of charging and discharging, a-Li-Si undergoes substantive inelastic deformation and exhibits microcracking. The mechanical response to repeated lithiation-delithiation eventually results in the loss of electrical contact and consequent decrease of capacity, thus underscoring the importance of studying the plasticity of a-Li-Si nanostructures. In recent years, a variety of phenomenological continuum theories have been introduced that purport to model plasticity and the electro-chemo-mechanical behavior of a-Li-Si. Unfortunately, the micromechanisms and atomistic considerations underlying plasticity in Li-Si material are not yet fully understood and this impedes the development of physics-based constitutive models. Conventional molecular dynamics, although extensively used to study this material, is grossly inadequate to resolve this matter. As is well known, conventional molecular dynamics simulations can only address phenomena with characteristic time scales of (at most) a microsecond. Accordingly, in such simulations, the mechanical behavior is deduced under conditions of very high strain rates (usually, 108s-1 or even higher). This limitation severely impacts a realistic assessment of rate-dependent effects. In this work, we attempt to circumvent the time-scale bottleneck of conventional molecular dynamics and provide novel insights into the mechanisms underpinning plastic deformation of Li-Si nanostructures. We utilize an approach that allows imposition of slow strain rates and involves the employment of a new and recently developed potential energy surface sampling method—the so-called autonomous basin climbing—to identify the local minima in the potential energy surface. Combined with other techniques, such as nudged elastic band, kinetic Monte Carlo and transition state theory, we assess the behavior of a-Li-Si nanostructures under tensile strain rates ranging from 103 to 108s-1 . We find significant differences in the deformation behavior across the strain rates and discover that the well-known shear transformation zones (widely discussed in the context of amorphous materials) are formed by a "diffusionlike" process. We identify the rotation of the shear transformation zone as a key dissipation mechanism.

  11. Binding, Thermodynamics, and Selectivity of a Non-peptide Antagonist to the Melanocortin-4 Receptor

    PubMed Central

    Saleh, Noureldin; Kleinau, Gunnar; Heyder, Nicolas; Clark, Timothy; Hildebrand, Peter W.; Scheerer, Patrick

    2018-01-01

    The melanocortin-4 receptor (MC4R) is a potential drug target for treatment of obesity, anxiety, depression, and sexual dysfunction. Crystal structures for MC4R are not yet available, which has hindered successful structure-based drug design. Using microsecond-scale molecular-dynamics simulations, we have investigated selective binding of the non-peptide antagonist MCL0129 to a homology model of human MC4R (hMC4R). This approach revealed that, at the end of a multi-step binding process, MCL0129 spontaneously adopts a binding mode in which it blocks the agonistic-binding site. This binding mode was confirmed in subsequent metadynamics simulations, which gave an affinity for human hMC4R that matches the experimentally determined value. Extending our simulations of MCL0129 binding to hMC1R and hMC3R, we find that receptor subtype selectivity for hMC4R depends on few amino acids located in various structural elements of the receptor. These insights may support rational drug design targeting the melanocortin systems.

  12. The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches.

    PubMed

    Richards, Christopher; Albin, John S; Demir, Özlem; Shaban, Nadine M; Luengas, Elizabeth M; Land, Allison M; Anderson, Brett D; Holten, John R; Anderson, John S; Harki, Daniel A; Amaro, Rommie E; Harris, Reuben S

    2015-12-01

    APOBEC3 family DNA cytosine deaminases provide overlapping defenses against pathogen infections. However, most viruses have elaborate evasion mechanisms such as the HIV-1 Vif protein, which subverts cellular CBF-β and a polyubiquitin ligase complex to neutralize these enzymes. Despite advances in APOBEC3 and Vif biology, a full understanding of this direct host-pathogen conflict has been elusive. We combine virus adaptation and computational studies to interrogate the APOBEC3F-Vif interface and build a robust structural model. A recurring compensatory amino acid substitution from adaptation experiments provided an initial docking constraint, and microsecond molecular dynamic simulations optimized interface contacts. Virus infectivity experiments validated a long-lasting electrostatic interaction between APOBEC3F E289 and HIV-1 Vif R15. Taken together with mutagenesis results, we propose a wobble model to explain how HIV-1 Vif has evolved to bind different APOBEC3 enzymes and, more generally, how pathogens may evolve to escape innate host defenses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Folding cooperativity in a three-stranded beta-sheet model.

    PubMed

    Roe, Daniel R; Hornak, Viktor; Simmerling, Carlos

    2005-09-16

    The thermodynamic behavior of a previously designed three-stranded beta-sheet was studied via several microseconds of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including two partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual beta-hairpins that comprise the three-stranded beta-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperativity than has been performed on the basis of experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously.

  14. Defining the Nature of Thermal Intermediate in 3 State Folding Proteins: Apoflavodoxin, a Study Case

    PubMed Central

    García-Fandiño, Rebeca; Bernadó, Pau; Ayuso-Tejedor, Sara; Sancho, Javier; Orozco, Modesto

    2012-01-01

    The early stages of the thermal unfolding of apoflavodoxin have been determined by using atomistic multi microsecond-scale molecular dynamics (MD) simulations complemented with a variety of experimental techniques. Results strongly suggest that the intermediate is reached very early in the thermal unfolding process and that it has the properties of an “activated” form of the native state, where thermal fluctuations in the loops break loop-loop contacts. The unrestrained loops gain then kinetic energy corrupting short secondary structure elements without corrupting the core of the protein. The MD-derived ensembles agree with experimental observables and draw a picture of the intermediate state inconsistent with a well-defined structure and characteristic of a typical partially disordered protein. Our results allow us to speculate that proteins with a well packed core connected by long loops might behave as partially disordered proteins under native conditions, or alternatively behave as three state folders. Small details in the sequence, easily tunable by evolution, can yield to one or the other type of proteins. PMID:22927805

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle; Danyal, Karamatullah; Raugei, Simone

    Mo-dependent nitrogenase catalyzes the biological reduction of N 2 to 2NH 3 at the FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N 2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized sub-microsecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel notmore » previously reported. The viability of the proposed channel was tested by examining the free energy of passage of N 2 from the surface through the channel to FeMo-cofactor, with discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment that approaches a face of FeMo-cofactor earlier implicated in substrate binding.« less

  16. Integrated experimental platforms to study blast injuries: a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.

    2014-05-01

    We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.

  17. Specific features of defect and mass transport in concentrated fcc alloys

    DOE PAGES

    Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.

    2016-06-15

    We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less

  18. Conformational dynamics of bacterial trigger factor in apo and ribosome-bound states.

    PubMed

    Can, Mehmet Tarik; Kurkcuoglu, Zeynep; Ezeroglu, Gokce; Uyar, Arzu; Kurkcuoglu, Ozge; Doruker, Pemra

    2017-01-01

    The chaperone trigger factor (TF) binds to the ribosome exit tunnel and helps cotranslational folding of nascent chains (NC) in bacterial cells and chloroplasts. In this study, we aim to investigate the functional dynamics of fully-atomistic apo TF and its complex with 50S. As TF accomodates a high percentage of charged residues on its surface, the effect of ionic strength on TF dynamics is assessed here by performing five independent molecular dynamics (MD) simulations (total of 1.3 micro-second duration) at 29 mM and 150 mM ionic strengths. At both concentrations, TF exhibits high inter- and intra-domain flexibility related to its binding (BD), core (CD), and head (HD) domains. Even though large oscillations in gyration radius exist during each run, we do not detect the so-called 'fully collapsed' state with both HD and BD collapsed upon the core. In fact, the extended conformers with relatively open HD and BD are highly populated at the physiological concentration of 150 mM. More importantly, extended TF snapshots stand out in terms of favorable docking onto the 50S subunit. Elastic network modeling (ENM) indicates significant changes in TF's functional dynamics and domain decomposition depending on its conformation and positioning on the 50S. The most dominant slow motions are the lateral sweeping and vertical opening/closing of HD relative to 50S. Finally, our ENM-based efficient technique -ClustENM- is used to sample atomistic conformers starting with an extended TF-50S complex. Specifically, BD and CD motions are restricted near the tunnel exit, while HD is highly mobile. The atomistic conformers generated without an NC are in agreement with the cryo-EM maps available for TF-ribosome-NC complex.

  19. Mapping the Dynamics Landscape of Conformational Transitions in Enzyme: The Adenylate Kinase Case

    PubMed Central

    Li, Dechang; Liu, Ming S.; Ji, Baohua

    2015-01-01

    Conformational transition describes the essential dynamics and mechanism of enzymes in pursuing their various functions. The fundamental and practical challenge to researchers is to quantitatively describe the roles of large-scale dynamic transitions for regulating the catalytic processes. In this study, we tackled this challenge by exploring the pathways and free energy landscape of conformational changes in adenylate kinase (AdK), a key ubiquitous enzyme for cellular energy homeostasis. Using explicit long-timescale (up to microseconds) molecular dynamics and bias-exchange metadynamics simulations, we determined at the atomistic level the intermediate conformational states and mapped the transition pathways of AdK in the presence and absence of ligands. There is clearly chronological operation of the functional domains of AdK. Specifically in the ligand-free AdK, there is no significant energy barrier in the free energy landscape separating the open and closed states. Instead there are multiple intermediate conformational states, which facilitate the rapid transitions of AdK. In the ligand-bound AdK, the closed conformation is energetically most favored with a large energy barrier to open it up, and the conformational population prefers to shift to the closed form coupled with transitions. The results suggest a perspective for a hybrid of conformational selection and induced fit operations of ligand binding to AdK. These observations, depicted in the most comprehensive and quantitative way to date, to our knowledge, emphasize the underlying intrinsic dynamics of AdK and reveal the sophisticated conformational transitions of AdK in fulfilling its enzymatic functions. The developed methodology can also apply to other proteins and biomolecular systems. PMID:26244746

  20. A new multifunction acousto-optic signal processor

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.

    1984-01-01

    An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.

  1. Molecular dynamics correctly models the unusual major conformation of the GAGU RNA internal loop and with NMR reveals an unusual minor conformation.

    PubMed

    Spasic, Aleksandar; Kennedy, Scott D; Needham, Laura; Manoharan, Muthiah; Kierzek, Ryszard; Turner, Douglas H; Mathews, David H

    2018-05-01

    The RNA "GAGU" duplex, (5'GAC GAGU GUCA) 2 , contains the internal loop (5'-GAGU-3') 2 , which has two conformations in solution as determined by NMR spectroscopy. The major conformation has a loop structure consisting of trans -Watson-Crick/Hoogsteen GG pairs, A residues stacked on each other, U residues bulged outside the helix, and all sugars with a C2'- endo conformation. This differs markedly from the internal loops, (5'-G AG C-3') 2 , (5'-A AG U-3') 2 , and (5'-UAGG-3') 2 , which all have cis -Watson-Crick/Watson-Crick AG "imino" pairs flanked by cis -Watson-Crick/Watson-Crick canonical pairs resulting in maximal hydrogen bonding. Here, molecular dynamics was used to test whether the Amber force field (ff99 + bsc0 + OL3) approximates molecular interactions well enough to keep stable the unexpected conformation of the GAGU major duplex structure and the NMR structures of the duplexes containing (5'-G AG C-3') 2 , (5'-A AG U-3') 2 , and (5'-U AG G-3') 2 internal loops. One-microsecond simulations were repeated four times for each of the duplexes starting in their NMR conformations. With the exception of (5'-UAGG-3') 2 , equivalent simulations were also run starting with alternative conformations. Results indicate that the Amber force field keeps the NMR conformations of the duplexes stable for at least 1 µsec. They also demonstrate an unexpected minor conformation for the (5'-GAGU-3') 2 loop that is consistent with newly measured NMR spectra of duplexes with natural and modified nucleotides. Thus, unrestrained simulations led to the determination of the previously unknown minor conformation. The stability of the native (5'-GAGU-3') 2 internal loop as compared to other loops can be explained by changes in hydrogen bonding and stacking as the flanking bases are changed. © 2018 Spasic et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Structural and Dynamical Characterization of DNA and RNA Quadruplexes Obtained from the GGGGCC and GGGCCT Hexanucleotide Repeats Associated with C9FTD/ALS and SCA36 Diseases.

    PubMed

    Zhang, Yuan; Roland, Christopher; Sagui, Celeste

    2018-05-16

    A (GGGGCC) hexanucleotide repeat (HR) expansion in the C9ORF72 gene has been considered the major cause behind both frontotemporal dementia and amyotrophic lateral sclerosis, while a (GGGCCT) is associated with spinocerebellar ataxia 36. Recent experiments involving NMR, CD, optical melting and 1D 1 H NMR spectroscopy, suggest that the r(GGGGCC) HR can adopt a hairpin structure with G-G mismatches in equilibrium with a G-quadruplex structure. G-Quadruplexes have also been identified for d(GGGGCC). As these experiments lack molecular resolution, we have used molecular dynamics microsecond simulations to obtain a structural characterization of the G-quadruplexes associated with both HRs. All DNA G-quadruplexes, parallel or antiparallel, with or without loops are stable, while only parallel and one antiparallel (stabilized by diagonal loops) RNA G-quadruplexes are stable. It is known that antiparallel G-quadruplexes require alternating guanines to be in a syn conformation that is hindered by the C3'-endo pucker preferred by RNA. Initial RNA antiparallel quadruplexes built with C2'-endo sugars evolve such that the transition (C2'-endo)-to-(C3'-endo) triggers unwinding and buckling of the flat G-tetrads, resulting in the unfolding of the RNA antiparallel quadruplex. Finally, a parallel G-quadruplex stabilizes an adjacent C-tetrad in both DNA and RNA (thus effectively becoming a mixed quadruplex of 5 layers). The C-tetrad is stabilized by the stacking interactions with the preceding G-tetrad, by cyclical hydrogen bonds C(N4)-(O2), and by an ion between the G-tetrad and the C-tetrad. In addition, antiparallel DNA G-quadruplexes also stabilize flat C-layers at the ends of the quadruplexes.

  3. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    PubMed

    Huber, Roland G; Fan, Hao; Bond, Peter J

    2015-10-01

    ZAP-70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  4. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain

    PubMed Central

    Huber, Roland G.; Fan, Hao; Bond, Peter J.

    2015-01-01

    ZAP–70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP–70 causes selective T cell deficiency that in turn results in persistent infections. ZAP–70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP–70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP–70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP–70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an “active-like” conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans. PMID:26473606

  5. Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma.

    PubMed

    Sawle, Lucas; Ghosh, Kingshuk

    2016-02-09

    All-atom molecular dynamics simulations need convergence tests to evaluate the quality of data. The notion of "true" convergence is elusive, and one can only hope to satisfy self-consistency checks (SCC). There are multiple SCC criteria, and their assessment of all-atom simulations of the native state for real globular proteins is sparse. Here, we present a systematic study of different SCC algorithms, both in terms of their ability to detect the lack of self-consistency and their computational demand, for the all-atom native state simulations of four globular proteins (CSP, CheA, CheW, and BPTI). Somewhat surprisingly, we notice some of the most stringent SCC criteria, e.g., the criteria demanding similarity of the cluster probability distribution between the first and the second halves of the trajectory or the comparison of fluctuations between different blocks using covariance overlap measure, can require tens of microseconds of simulation even for proteins with less than 100 amino acids. We notice such long simulation times can sometimes be associated with traps, but these traps cannot be detected by some of the common SCC methods. We suggest an additional, and simple, SCC algorithm to quickly detect such traps by monitoring the constancy of the cluster entropy (CCE). CCE is a necessary but not sufficient criteria, and additional SCC algorithms must be combined with it. Furthermore, as seen in the explicit solvent simulation of 1 ms long trajectory of BPTI,1 passing self-consistency checks at an earlier stage may be misleading due to conformational changes taking place later in the simulation, resulting in different, but segregated regions of SCC. Although there is a hierarchy of complex SCC algorithms, caution must be exercised in their application with the knowledge of their limitations and computational expense.

  6. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    PubMed

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  7. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  8. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.

    PubMed

    Bennett, W F Drew; Hong, Chun Kit; Wang, Yi; Tieleman, D Peter

    2016-09-13

    Due to antimicrobial resistance, the development of new drugs to combat bacterial and fungal infections is an important area of research. Nature uses short, charged, and amphipathic peptides for antimicrobial defense, many of which disrupt the lipid membrane in addition to other possible targets inside the cell. Computer simulations have revealed atomistic details for the interactions of antimicrobial peptides and cell-penetrating peptides with lipid bilayers. Strong interactions between the polar interface and the charged peptides can induce bilayer deformations - including membrane rupture and peptide stabilization of a hydrophilic pore. Here, we performed microsecond-long simulations of the antimicrobial peptide CM15 in a POPC bilayer expecting to observe pore formation (based on previous molecular dynamics simulations). We show that caution is needed when interpreting results of equilibrium peptide-membrane simulations, given the length of time single trajectories can dwell in local energy minima for 100's of ns to microseconds. While we did record significant membrane perturbations from the CM15 peptide, pores were not observed. We explain this discrepancy by computing the free energy for pore formation with different force fields. Our results show a large difference in the free energy barrier (ca. 40 kJ/mol) against pore formation predicted by the different force fields that would result in orders of magnitude differences in the simulation time required to observe spontaneous pore formation. This explains why previous simulations using the Berger lipid parameters reported pores induced by charged peptides, while with CHARMM based models pores were not observed in our long time-scale simulations. We reconcile some of the differences in the distance dependent free energies by shifting the free energy profiles to account for thickness differences between force fields. The shifted curves show that all the models describe small defects in lipid bilayers in a consistent manner, suggesting a common physical basis.

  9. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, K; Seymour, R; Wang, W

    2009-02-17

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based onmore » hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).« less

  10. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches

    PubMed Central

    Muñoz, Victor; Cerminara, Michele

    2016-01-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico. All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. PMID:27574021

  11. Ultrafast dynamics in multifunctional Ru(II)-loaded polymers for solar energy conversion.

    PubMed

    Morseth, Zachary A; Wang, Li; Puodziukynaite, Egle; Leem, Gyu; Gilligan, Alexander T; Meyer, Thomas J; Schanze, Kirk S; Reynolds, John R; Papanikolas, John M

    2015-03-17

    The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2, these assemblies exhibit multifunctional behavior in which photon absorption is followed by energy transport to the surface and electron injection to produce an oxidized metal complex. The oxidizing equivalent is then transferred to the conjugated polymer, giving rise to a long-lived charge-separated state.

  12. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters*

    PubMed Central

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. PMID:25869126

  13. Mechanism of the association between Na + binding and conformations at the intracellular gate in neurotransmitter:sodium symporters

    DOE PAGES

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; ...

    2015-04-13

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na +-dependent reuptake of released neurotransmitters. Previous studies suggested that Na +-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT,more » two different perturbations disrupting Na+ binding and transport ( i.e. replacing Na + with Li + or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na + cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na + dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na + binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na + binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na +-dependent reuptake of released neurotransmitters. Previous studies suggested that Na +-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT,more » two different perturbations disrupting Na+ binding and transport ( i.e. replacing Na + with Li + or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na + cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na + dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na + binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na + binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less

  15. On the photoresponse of several novel functionalized oligoacene and anthradithiophene derivatives

    NASA Astrophysics Data System (ADS)

    Day, Jonathan

    The results of an investigation into carrier dynamics in several novel functionalized and solution-processable pentacene and anthradithiophene derivatives are reported. Measurements were made of real-time photoresponse of polycrystalline thin films of these materials to ultrafast laser pulses, on picosecond to microsecond time-scales, as well as measurements of dark current and current under steady illumination. This data was taken over varied field-strength, light intensity and temperature. The results support a model for carrier generation and transport with the following features. Carrier photo-generation is assisted weakly, if it is assisted at all, thermally or by applied fields. Carriers are initially (picosecond to nanosecond time-scales) in extended states and transport is "bandlike." Carriers then relax into more localized states, transported via thermally assisted hopping (nanosecond to second time-scales). This model was supported by further experiments with the electric behavior of films prepared from a pure anthradithophene derivative, doped with either the buckminsterfullerene C60 or with other molecular dopants. These results also show that samples with traps of known density and depth can be prepared, as a means of manipulating transport dynamics. The electronic and photo-electronic behaviors of films with self-anodized aluminum and of films with gold electrodes were compared, and a model of the particular energy profile and dynamics which exist at the different interfaces between the films and the different contacts was developed. This model views the metal-organic-metal system as an anode-to-anode Schottky strucure, whose I-V relation is shaped both by the nature of the interface dynamics for different metal contacts, and by the different distributions of space-charge in the thin film between different electrodes.

  16. Use of Patterned CNT Arrays for Display Purposes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2009-01-01

    Method and system for providing a dynamically reconfigurable display having nanometer-scale resolution, using a patterned array of multi-wall carbon nanotube (MWCNT) clusters. A diode, phosphor or other light source on each MWCNT cluster is independently activated, and different color light sources (e.g., red, green, blue, grey scale, infrared) can be mixed if desired. Resolution is estimated to be 40-100 nm, and reconfiguration time for each MWCNT cluster is no greater than one microsecond.

  17. Characterizing the structural ensemble of γ-secretase using a multiscale molecular dynamics approach† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00980a Click here for additional data file.

    PubMed Central

    Aguayo-Ortiz, Rodrigo; Chávez-García, Cecilia; Straub, John E.

    2017-01-01

    γ-Secretase is an intramembrane-cleaving aspartyl protease that plays an essential role in the processing of a variety of integral membrane proteins. Its role in the ultimate cleavage step in the processing of amyloid precursor protein to form amyloid-β (Aβ) peptide makes it an important therapeutic target in Alzheimer's disease research. Significant recent advances have been made in structural studies of this critical membrane protein complex. However, details of the mechanism of activation of the enzyme complex remain unclear. Using a multiscale computational modeling approach, combining multiple coarse-grained microsecond dynamic trajectories with all-atom models, the structure and two conformational states of the γ-secretase complex were evaluated. The transition between enzymatic state 1 and state 2 is shown to critically depend on the protonation states of the key catalytic residues Asp257 and Asp385 in the active site domain. The active site formation, related to our γ-secretase state 2, is observed to involve a concerted movement of four transmembrane helices from the catalytic subunit, resulting in the required localization of the catalytic residues. Global analysis of the structural ensemble of the enzyme complex was used to identify collective fluctuations important to the mechanism of substrate recognition and demonstrate that the corresponding fluctuations observed were uncorrelated with structural changes associated with enzyme activation. Overall, this computational study provides essential insight into the role of structure and dynamics in the activation and function of γ-secretase. PMID:28970936

  18. A simple backscattering microscope for fast tracking of biological molecules

    PubMed Central

    Sowa, Yoshiyuki; Steel, Bradley C.; Berry, Richard M.

    2010-01-01

    Recent developments in techniques for observing single molecules under light microscopes have helped reveal the mechanisms by which molecular machines work. A wide range of markers can be used to detect molecules, from single fluorophores to micron sized markers, depending on the research interest. Here, we present a new and simple objective-type backscattering microscope to track gold nanoparticles with nanometer and microsecond resolution. The total noise of our system in a 55 kHz bandwidth is ∼0.6 nm per axis, sufficient to measure molecular movement. We found our backscattering microscopy to be useful not only for in vitro but also for in vivo experiments because of lower background scattering from cells than in conventional dark-field microscopy. We demonstrate the application of this technique to measuring the motion of a biological rotary molecular motor, the bacterial flagellar motor, in live Escherichia coli cells. PMID:21133475

  19. Novel control system of the high-voltage IGBT-switch

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Mamontov, Y. I.; Gusev, A. I.; Pedos, M. S.

    2017-05-01

    HV solid-state switch control circuit was developed and tested. The switch was made with series connection IGBT-transistors. The distinctive feature of the circuit is an ability to fine-tune the switching time of every transistor. Simultaneous switching provides balancing of the dynamic voltage at all switch elements. A separate control board switches on and off every transistor. On and off signals from the main conductor are sent to the board by current pulses of different polarity. A positive pulse provides the transistor switch-on, while a negative pulse provides their switch-off. The time interval between pulses defines the time when the switch is turned on. The minimum time when the switch is turned on equals to a few microseconds, while the maximum time is not limited. This paper shows the test results of 4 kV switch prototype. The switch was used to produce rectangular pulses of a microsecond range under resistive load. The possibility to generate the damped harmonic oscillations was also tested. On the basis of this approach, positive testing results open up a possibility to design switches under an operating voltage of tens kilovolts.

  20. Introduction to State Estimation of High-Rate System Dynamics.

    PubMed

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  1. Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2) mechanical tissue damage is reduced significantly by using longer pulse durations (> 460 microsecond(s) , for the pulse energy used).

  2. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  3. Dynamical test of Davydov-type solitons in acetanilide using a picosecond free-electron laser

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain; Rothberg, Lewis; Roberson, Mark; Benson, Steve; Madey, John; Etemad, Shahab; Austin, Robert

    1990-01-01

    Picosecond infrared excitation experiments on acetanilide, an α-helix protein analog, indicate that the anomalous 1650-cm-1 band which appears on cooling of acetanilide crystals persists for at least several microseconds following rapid pulsed heating. The ground-state recovery time is 15+/-5 psec, consistent with a conventional mode strongly coupled to the phonon bath. We therefore suggest that the unusual temperature-dependent spectroscopy of acetanilide can be accounted for by slightly nondegenerate hydrogen atom configurations in the crystal.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.W.; Labouriau, A.; Taylor, C.M.

    Dynamics and structure of tri-n-butyltin fluoride in n-hexane solutions were probed using (tin-119) nuclear magnetic resonance spin relaxation methodologies. Significant relaxation-induced polarization transfer effects were observed and exploited. The experimental observations indicate that the tri-n-butyl fluoride exists in a polymeric form in solution. For a 0.10% (w/w) solution at 25 [degree]C, NMR reveals significant orientational/exchange relaxation on both the microsecond and nanosecond time scales. Solution-state and solid-state parameters are compared and contrasted. 26 refs., 3 figs., 1 tab.

  5. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl.

    PubMed

    Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José

    2015-07-02

    The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.

  6. Computational and Experimental Study of Neuroglobin and Mutants

    NASA Astrophysics Data System (ADS)

    Nelson, Lauren; Cho, Samuel; Kim-Shaprio, Daniel

    Neuroglobin (Ngb) is a hexacoordinated heme protein that is closely related to hemoglobin and myoglobin and normally found in the brain and nervous systems. It is involved in cellular oxygen homeostasis and reversibly binds to oxygen with a higher binding affinity than hemoglobin. To protect the brain tissue from hypoxic or ischemic conditions, Ngb increases oxygen availability. We have previously shown that a mutant form of Ngb reduces nitrite to nitric oxide 50x faster than myoglobin and 500x faster than hemoglobin. It also tightly binds to carbon monoxide (CO) with an association rate that is 500x faster than hemoglobin. To analyze the structure of neuroglobin and the characteristics causing these phenomena, we performed 3 sets of 1 microsecond molecular dynamic (MD) simulations of wild-type oxidized and reduced human Ngb and their C46A, C55A, H64L, and H64Q mutants. We also directly compare our MD simulations with time-resolved absorption spectroscopy. These studies will help identify treatments for diseases involving low nitric oxide availability and carbon monoxide poisoning. This research was supported by an NIH NSRA predoctoral fellowship in the Structural and Computational Biophysics Program training Grant (T32GM095440-05).

  7. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome

    PubMed Central

    Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  8. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    PubMed

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  9. Improved side-chain torsion potentials for the Amber ff99SB protein force field

    PubMed Central

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-01-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171

  10. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  11. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel

    PubMed Central

    Yazdi, Samira; Stein, Matthias; Elinder, Fredrik; Andersson, Magnus; Lindahl, Erik

    2016-01-01

    Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins. PMID:26751683

  12. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  13. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands

    PubMed Central

    Das, Payel; King, Jonathan A.; Zhou, Ruhong

    2011-01-01

    The prevalent eye disease age-onset cataract is associated with aggregation of human γD-crystallins, one of the longest-lived proteins. Identification of the γ-crystallin precursors to aggregates is crucial for developing strategies to prevent and reverse cataract. Our microseconds of atomistic molecular dynamics simulations uncover the molecular structure of the experimentally detected aggregation-prone folding intermediate species of monomeric native γD-crystallin with a largely folded C-terminal domain and a mostly unfolded N-terminal domain. About 30 residues including a, b, and c strands from the Greek Key motif 4 of the C-terminal domain experience strong solvent exposure of hydrophobic residues as well as partial unstructuring upon N-terminal domain unfolding. Those strands comprise the domain–domain interface crucial for unusually high stability of γD-crystallin. We further simulate the intermolecular linkage of these monomeric aggregation precursors, which reveals domain-swapped dimeric structures. In the simulated dimeric structures, the N-terminal domain of one monomer is frequently found in contact with residues 135–164 encompassing the a, b, and c strands of the Greek Key motif 4 of the second molecule. The present results suggest that γD-crystallin may polymerize through successive domain swapping of those three C-terminal β-strands leading to age-onset cataract, as an evolutionary cost of its very high stability. Alanine substitutions of the hydrophobic residues in those aggregation-prone β-strands, such as L145 and M147, hinder domain swapping as a pathway toward dimerization. These findings thus provide critical molecular insights onto the initial stages of age-onset cataract, which is important for understanding protein aggregation diseases. PMID:21670251

  14. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: Excited-state dynamics in 1-nitronaphthalene.

    PubMed

    Reichardt, Christian; Vogt, R Aaron; Crespo-Hernández, Carlos E

    2009-12-14

    The electronic energy relaxation of 1-nitronaphthalene was studied in nonpolar, aprotic, and protic solvents in the time window from femtoseconds to microseconds. Excitation at 340 or 360 nm populates the Franck-Condon S(1)(pipi( *)) state, which is proposed to bifurcate into two essentially barrierless nonradiative decay channels with sub-200 fs lifetimes. The first main decay channel connects the S(1) state with a receiver T(n) state that has considerable npi( *) character. The receiver T(n) state undergoes internal conversion to populate the vibrationally excited T(1)(pipi( *)) state in 2-4 ps. It is shown that vibrational cooling dynamics in the T(1) state depends on the solvent used, with average lifetimes in the range from 6 to 12 ps. Furthermore, solvation dynamics competes effectively with vibrational cooling in the triplet manifold in primary alcohols. The relaxed T(1) state undergoes intersystem crossing back to the ground state within a few microseconds in N(2)-saturated solutions in all the solvents studied. The second minor channel involves conformational relaxation of the bright S(1) state (primarily rotation of the NO(2)-group) to populate a dissociative singlet state with significant charge-transfer character and negligible oscillator strength. This dissociative channel is proposed to be responsible for the observed photochemistry in 1-nitronaphthalene. Ground- and excited-state calculations at the density functional level of theory that include bulk and explicit solvent effects lend support to the proposed mechanism where the fluorescent S(1) state decays rapidly and irreversibly to dark excited states. A four-state kinetic model is proposed that satisfactorily explains the origin of the nonradiative electronic relaxation pathways in 1-nitronaphthalene.

  15. Airborne Network Camera Standard

    DTIC Science & Technology

    2015-06-01

    SS is the second in the minute from 0 to 59; TTT is the millisecond from 0 to 999; UUU are the microseconds. 5.3.5.7 Trigger Delay Enable Feature...to 59; SS is the second in the minute from 0 to 59; TTT is the millisecond from 0 to 999; UUU are the microseconds. 5.3.5.12 Acquisition Start Time...0 to 59; SS is the second in the minute from 0 to 59; TTT is the millisecond from 0 to 999; UUU are the microseconds. 5.3.5.13 Acquisition Arm

  16. Very High Frequency Radio Emissions Associated With the Production of Terrestrial Gamma-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Lyu, Fanchao; Cummer, Steven A.; Krehbiel, Paul R.; Rison, William; Briggs, Michael S.; Cramer, Eric; Roberts, Oliver; Stanbro, Matthew

    2018-02-01

    Recent studies of the close association between terrestrial gamma-ray flashes (TGFs) production and simultaneous lightning processes have shown that many TGFs are produced during the initial leader of intracloud flashes and that some low-frequency (LF) radio emissions may directly come from TGF itself. Measurements of any simultaneous very high frequency (VHF) radio emissions would give important insight into any lightning leader dynamics that are associated with TGF generation, and thus, such measurements are needed. Here we report on coordinated observations of TGFs detected simultaneously by Fermi Gamma-ray Burst Monitor, two VHF lightning mapping arrays, and Duke ground-based LF radio sensors to investigate more on the close association between TGFs and LF and VHF radio emissions. Three TGFs are analyzed here and confirm previous findings on the close association between TGF generation and lightning processes and, for the first time, provide time-aligned measurements of the VHF radio signature within a few tens of microseconds of TGF generation. Strong VHF emissions were observed essentially simultaneously with two TGFs and within a few tens of microseconds of a third TGF. Equally importantly, the VHF measurement details indicate that the TGF-associated emissions are nonimpulsive and extended in time. We conclude that the TGF-producing process is at least sometimes closely associated with strong VHF emissions, and thus, there may be a link between the generation of TGFs and active lightning streamer dynamics.

  17. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.

    PubMed

    Muñoz, Victor; Cerminara, Michele

    2016-09-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).

  18. Effects of pulsed mid-IR lasers on bovine knee joint tissues

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; Pergadia, Vani R.; Duffy, J. T.; Miller, J. M.; van der Veen, Maurits J.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    We investigated the effect of varying Tm:YAG (2.014 micrometers ) and Ho:YAG (2.130 micrometers ) laser parameters on ablation rate and consequent thermal damage. Mid-infrared wavelengths are strongly absorbed by most biological tissues due to the tissue's high water content. The ablation rate of fresh bovine knee joint tissues (fibrous cartilage, hyaline cartilage, and bone) in saline was assessed as a function of radiant exposure (160 - 950 J/cm2), at pulse widths of 200 microsecond(s) ec for Tm:YAG and 250 microsecond(s) ec for Ho:YAG and a repetition rate of 2 Hz. All tissues used in this study could be efficiently ablated using two micron lasers. The mechanism of action is likely related to the formation and collapse of cavitation bubbles, associated with mid-infrared lasers. We concluded that the Tm:YAG and Ho:YAG lasers are capable of effective knee joint tissue ablation.

  19. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.

    2015-06-28

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp{sup 2} sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  20. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  1. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE PAGES

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; ...

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution,more » provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  2. Introduction to State Estimation of High-Rate System Dynamics

    PubMed Central

    Dodson, Jacob; Joyce, Bryan

    2018-01-01

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model. PMID:29342855

  3. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.

  4. GPI-anchored protein organization and dynamics at the cell surface

    PubMed Central

    Saha, Suvrajit; Anilkumar, Anupama Ambika; Mayor, Satyajit

    2016-01-01

    The surface of eukaryotic cells is a multi-component fluid bilayer in which glycosylphosphatidylinositol (GPI)-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, single particle tracking, and a number of super resolution methods. Major insights into the organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by fluorescence (or Förster) resonance energy transfer microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite. PMID:26394904

  5. Event detection and sub-state discovery from biomolecular simulations using higher-order statistics: application to enzyme adenylate kinase.

    PubMed

    Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S

    2012-11-01

    Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. Copyright © 2012 Wiley Periodicals, Inc.

  6. Long-time atomistic simulations with the Parallel Replica Dynamics method

    NASA Astrophysics Data System (ADS)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions

    NASA Astrophysics Data System (ADS)

    Arrazola, I.; Casanova, J.; Pedernales, J. S.; Wang, Z.-Y.; Solano, E.; Plenio, M. B.

    2018-05-01

    We propose a pulsed dynamical decoupling protocol as the generator of tunable, fast, and robust quantum phase gates between two microwave-driven trapped-ion hyperfine qubits. The protocol consists of sequences of π pulses acting on ions that are oriented along an externally applied magnetic-field gradient. In contrast to existing approaches, in our design the two vibrational modes of the ion chain cooperate under the influence of the external microwave driving to achieve significantly increased gate speeds. Our scheme is robust against the dominant noise sources, which are errors on the magnetic-field and microwave pulse intensities, as well as motional heating, predicting two-qubit gates with fidelities above 99.9% in tens of microseconds.

  8. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    PubMed Central

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  9. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex.

    PubMed

    Chandra Dantu, Sarath; Nathubhai Kachariya, Nitin; Kumar, Ashutosh

    2016-01-01

    Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. © 2015 Wiley Periodicals, Inc.

  10. Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes.

    PubMed

    Hartel, Andreas J W; Ong, Peijie; Schroeder, Indra; Giese, M Hunter; Shekar, Siddharth; Clarke, Oliver B; Zalk, Ran; Marks, Andrew R; Hendrickson, Wayne A; Shepard, Kenneth L

    2018-02-20

    Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca 2+ -activated intracellular Ca 2+ -release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca 2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.

  11. Simulation results of corkscrew motion in DARHT-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less

  12. CH4 Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations.

    PubMed

    He, Zhongjin; Linga, Praveen; Jiang, Jianwen

    2017-10-31

    Microsecond simulations have been performed to investigate CH 4 hydrate formation from gas/water two-phase systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH 4 hydrate formation. The graphite surface adsorbs CH 4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH 4 concentration, and hydrate nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be hydrated by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH 4 concentration and hydrate nucleation in the bulk region; during hydrate growth, the nanobubble is gradually covered by hydrate solid and separated from the water phase, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and hydrate cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the hydrate solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH 4 aqueous concentrations near the surface. To further explore hydrate formation between graphite surfaces, CH 4 /water homogeneous solution systems are also simulated. CH 4 molecules in the solution are adsorbed onto graphite and hydrate nucleation occurs in the bulk region. During hydrate growth, the adsorbed CH 4 molecules are gradually converted into hydrate solid. It is found that the hydrate-like ordering of interfacial water induced by graphite promotes the contact between hydrate solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient hydrate solid, as well as the ability of graphite to adsorb CH 4 molecules and induce hydrate-like ordering of the interfacial water, are the key factors to affect CH 4 hydrate formation between silica and graphite surfaces.

  13. Development of a 1000V, 200A, low-loss, fast-switching, gate-assisted turn-off thyristor

    NASA Technical Reports Server (NTRS)

    Schlegel, E. S.; Lowry, L. R.; Moore, D. L.

    1977-01-01

    The results of a program to develop a fast high power thyristor that can operate in switching circuits at frequencies of 10 to 20 kHz with very low power loss are given. Feasibility was demonstrated for a thyristor that blocks 1000V forward and reverse, conducts 200A, turns on in little more than 2 more microseconds with only 2A of gate drive, turns off in 3 microseconds with 2A of gate assist current and has an energy dissipation of only 12 mJ per pulse for a 20 microsecond half sine wave 200A pulse. Data were generated that clearly showed the tradeoffs that can be made between the turn off time and forward drop. The understanding of this relationship is necessary in the selection of deliverable thyristors with turn off times up to 7 microseconds to give improved efficiency in a series resonant dc to dc inverter application.

  14. Noise analysis of antibiotic permeation through bacterial channels

    NASA Astrophysics Data System (ADS)

    Nestorovich, Ekaterina M.; Danelon, Christophe; Winterhalter, Mathias; Bezrukov, Sergey M.

    2003-05-01

    Statistical analysis of high-resolution current recordings from a single ion channel reconstituted into a planar lipid membrane allows us to study transport of antibiotics at the molecular detail. Working with the general bacterial porin, OmpF, we demonstrate that addition of zwitterionic β-lactam antibiotics to the membrane-bathing solution introduces transient interruptions in the small-ion current through the channel. Time-resolved measurements reveal that one antibiotic molecule blocks one of the monomers in the OmpF trimer for characteristic times from microseconds to hundreds of microseconds. Spectral noise analysis enables us to perform measurements over a wide range of changing parameters. In all cases studied, the residence time of an antibiotic molecule in the channel exceeds the estimated time for free diffusion by orders of magnitude. This demonstrates that, in analogy to substrate-specific channels that evolved to bind specific metabolite molecules, antibiotics have 'evolved' to be channel-specific. The charge distribution of an efficient antibiotic complements the charge distribution at the narrowest part of the bacterial porin. Interaction of these charges creates a zone of attraction inside the channel and compensates the penetrating molecule's entropy loss and desolvation energy. This facilitates antibiotic translocation through the narrowest part of the channel and accounts for higher antibiotic permeability rates.

  15. Design of micro-second pulsed laser mode for ophthalmological CW self-raman laser

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; Ortega, Tiago A.; Costal, Glauco Z.; Fontes, Yuri C.; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.; Paiva, Maria S. V.

    2011-02-01

    This work presents the mechanisms adopted for the design of micro-second pulsed laser mode for a CW Self-Raman laser cavity in 586nm and 4W output power. The new technique for retina disease treatment discharges laser pulses on the retina tissue, in laser sequences of 200 μs pulse duration at each 2ms. This operation mode requires the laser to discharge fast electric pulses, making the system control velocity of the electronic system cavity vital. The control procedures to keep the laser output power stable and the laser head behavior in micro-second pulse mode are presented.

  16. Inverting dynamic force microscopy: From signals to time-resolved interaction forces

    PubMed Central

    Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard

    2002-01-01

    Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341

  17. Cavitation propagation in water under tension

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team

    2012-11-01

    Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.

  18. NMR studies of double proton transfer in hydrogen bonded cyclic N,N'-diarylformamidine dimers: conformational control, kinetic HH/HD/DD isotope effects and tunneling.

    PubMed

    Lopez, Juan Miguel; Männle, Ferdinand; Wawer, Iwona; Buntkowsky, Gerd; Limbach, Hans-Heinrich

    2007-08-28

    Using dynamic NMR spectroscopy, the kinetics of the degenerate double proton transfer in cyclic dimers of polycrystalline (15)N,(15)N'-di-(4-bromophenyl)-formamidine (DBrFA) have been studied including the kinetic HH/HD/DD isotope effects in a wide temperature range. This transfer is controlled by intermolecular interactions, which in turn are controlled by the molecular conformation and hence the molecular structure. At low temperatures, rate constants were determined by line shape analysis of (15)N NMR spectra obtained using cross-polarization (CP) and magic angle spinning (MAS). At higher temperatures, in the microsecond time scale, rate constants and kinetic isotope effects were obtained by a combination of longitudinal (15)N and (2)H relaxation measurements. (15)N CPMAS line shape analysis was also employed to study the non-degenerate double proton transfer of polycrystalline (15)N,(15)N'-diphenyl-formamidine (DPFA). The kinetic results are in excellent agreement with the kinetics of DPFA and (15)N,(15)N'-di-(4-fluorophenyl)-formamidine (DFFA) studied previously for solutions in tetrahydrofuran. Two large HH/HD and HD/DD isotope effects are observed in the whole temperature range which indicates a concerted double proton transfer mechanism in the domain of the reaction energy surface. The Arrhenius curves are non-linear indicating a tunneling mechanism. Arrhenius curve simulations were performed using the Bell-Limbach tunneling model. The role of the phenyl group conformation and hydrogen bond compression on the barrier of the proton transfer is discussed.

  19. AMP-Activated Protein Kinase β-Subunit Requires Internal Motion for Optimal Carbohydrate Binding

    PubMed Central

    Bieri, Michael; Mobbs, Jesse I.; Koay, Ann; Louey, Gavin; Mok, Yee-Foong; Hatters, Danny M.; Park, Jong-Tae; Park, Kwan-Hwa; Neumann, Dietbert; Stapleton, David; Gooley, Paul R.

    2012-01-01

    AMP-activated protein kinase interacts with oligosaccharides and glycogen through the carbohydrate-binding module (CBM) containing the β-subunit, for which there are two isoforms (β1 and β2). Muscle-specific β2-CBM, either as an isolated domain or in the intact enzyme, binds carbohydrates more tightly than the ubiquitous β1-CBM. Although residues that contact carbohydrate are strictly conserved, an additional threonine in a loop of β2-CBM is concurrent with an increase in flexibility in β2-CBM, which may account for the affinity differences between the two isoforms. In contrast to β1-CBM, unbound β2-CBM showed microsecond-to-millisecond motion at the base of a β-hairpin that contains residues that make critical contacts with carbohydrate. Upon binding to carbohydrate, similar microsecond-to-millisecond motion was observed in this β-hairpin and the loop that contains the threonine insertion. Deletion of the threonine from β2-CBM resulted in reduced carbohydrate affinity. Although motion was retained in the unbound state, a significant loss of motion was observed in the bound state of the β2-CBM mutant. Insertion of a threonine into the background of β1-CBM resulted in increased ligand affinity and flexibility in these loops when bound to carbohydrate. However, these mutations indicate that the additional threonine is not solely responsible for the differences in carbohydrate affinity and protein dynamics. Nevertheless, these results suggest that altered protein dynamics may contribute to differences in the ligand affinity of the two naturally occurring CBM isoforms. PMID:22339867

  20. Parallel line raster eliminates ambiguities in reading timing of pulses less than 500 microseconds apart

    NASA Technical Reports Server (NTRS)

    Horne, A. P.

    1966-01-01

    Parallel horizontal line raster is used for precision timing of events occurring less than 500 microseconds apart for observation of hypervelocity phenomena. The raster uses a staircase vertical deflection and eliminates ambiguities in reading timing of pulses close to the end of each line.

  1. Sub-microsecond-resolution probe microscopy

    DOEpatents

    Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah

    2014-04-01

    Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.

  2. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    PubMed

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an aqueous microenvironment surrounding the protein.

  3. Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.

    PubMed

    Rydzewski, J; Nowak, W

    2017-08-10

    Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.

  4. Efficiently sampling conformations and pathways using the concurrent adaptive sampling (CAS) algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.

    Molecular dynamics (MD) simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules but are limited by the timescale barrier, i.e., we may be unable to efficiently obtain properties because we need to run microseconds or longer simulations using femtoseconds time steps. While there are several existing methods to overcome this timescale barrier and efficiently sample thermodynamic and/or kinetic properties, problems remain in regard to being able to sample un- known systems, deal with high-dimensional space of collective variables, and focus the computational effort on slow timescales. Hence, a new sampling method, called the “Concurrent Adaptive Sampling (CAS) algorithm,”more » has been developed to tackle these three issues and efficiently obtain conformations and pathways. The method is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective vari- ables and uses macrostates (a partition of the collective variable space) to enhance the sampling. The exploration is done by running a large number of short simula- tions, and a clustering technique is used to accelerate the sampling. In this paper, we introduce the new methodology and show results from two-dimensional models and bio-molecules, such as penta-alanine and triazine polymer« less

  5. Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations

    PubMed Central

    Mitra, Sayantan; Zhu, Wanlong; Qin, Haina; Pasquale, Elena B.; Song, Jianxing

    2013-01-01

    The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs. PMID:24086308

  6. Transition Metal Compounds Towards Holography

    PubMed Central

    Dieckmann, Volker; Eicke, Sebastian; Springfeld, Kristin; Imlau, Mirco

    2012-01-01

    We have successfully proposed the application of transition metal compounds in holographic recording media. Such compounds feature an ultra-fast light-induced linkage isomerization of the transition-metal–ligand bond with switching times in the sub-picosecond regime and lifetimes from microseconds up to hours at room temperature. This article highlights the photofunctionality of two of the most promising transition metal compounds and the photophysical mechanisms that are underlying the hologram recording. We present the latest progress with respect to the key measures of holographic media assembled from transition metal compounds, the molecular embedding in a dielectric matrix and their impressive potential for modern holographic applications. PMID:28817028

  7. Resolving Single Molecule Lysozyme Dynamics with a Carbon Nanotube Electronic Circuit

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Moody, Issa S.; Perez, Israel; Sheps, Tatyana; Weiss, Gregory A.; Collins, Philip G.

    2011-03-01

    High resolution, real-time monitoring of a single lysozyme molecule is demonstrated by fabricating nanoscale electronic devices based on single-walled carbon nanotubes (SWCNT). In this sensor platform, a biomolecule of interest is attached to a single SWCNT device. The electrical conductance transduces chemical events with single molecule sensitivity and 10 microsecond resolution. In this work, enzymatic turnover by lysozyme is investigated, because the mechanistic details for its processivity and dynamics remain incompletely understood. Stochastically distributed binding events between a lysozyme and its binding substrate, peptidoglycan, are monitored via the sensor conductance. Furthermore, the magnitude and repetition rate of these events varies with pH and the presence of inhibitors or denaturation agents. Changes in the conductance signal are analyzed in terms of lysozyme's internal hinge motion, binding events, and enzymatic processing.

  8. Role of substrate dynamics in protein prenylation reactions.

    PubMed

    Chakravorty, Dhruva K; Merz, Kenneth M

    2015-02-17

    CONSPECTUS: The role dynamics plays in proteins is of intense contemporary interest. Fundamental insights into how dynamics affects reactivity and product distributions will facilitate the design of novel catalysts that can produce high quality compounds that can be employed, for example, as fuels and life saving drugs. We have used molecular dynamics (MD) methods and combined quantum mechanical/molecular mechanical (QM/MM) methods to study a series of proteins either whose substrates are too far away from the catalytic center or whose experimentally resolved substrate binding modes cannot explain the observed product distribution. In particular, we describe studies of farnesyl transferase (FTase) where the farnesyl pyrophosphate (FPP) substrate is ∼8 Å from the zinc-bound peptide in the active site of FTase. Using MD and QM/MM studies, we explain how the FPP substrate spans the gulf between it and the active site, and we have elucidated the nature of the transition state (TS) and offered an alternate explanation of experimentally observed kinetic isotope effects (KIEs). Our second story focuses on the nature of substrate dynamics in the aromatic prenyltransferase (APTase) protein NphB and how substrate dynamics affects the observed product distribution. Through the examples chosen we show the power of MD and QM/MM methods to provide unique insights into how protein substrate dynamics affects catalytic efficiency. We also illustrate how complex these reactions are and highlight the challenges faced when attempting to design de novo catalysts. While the methods used in our previous studies provided useful insights, several clear challenges still remain. In particular, we have utilized a semiempirical QM model (self-consistent charge density functional tight binding, SCC-DFTB) in our QM/MM studies since the problems we were addressing required extensive sampling. For the problems illustrated, this approach performed admirably (we estimate for these systems an uncertainty of ∼2 kcal/mol), but it is still a semiempirical model, and studies of this type would benefit greatly from more accurate ab initio or DFT models. However, the challenge with these methods is to reach the level of sampling needed to study systems where large conformational changes happen in the many nanoseconds to microsecond time regimes. Hence, how to couple expensive and accurate QM methods with sophisticated sampling algorithms is an important future challenge especially when large-scale studies of catalyst design become of interest. The use of MD and QM/MM models to elucidate enzyme catalytic pathways and to design novel catalytic agents is in its infancy but shows tremendous promise. While this Account summarizes where we have been, we also discuss briefly future directions that improve our fundamental ability to understand enzyme catalysis.

  9. In vitro study of the variable square pulse Er:YAG laser cutting efficacy for apicectomy.

    PubMed

    Grgurević, Josko; Grgurević, Lovro; Miletić, Ivana; Karlović, Zoran; Krmek, Silvana Jukić; Anić, Ivica

    2005-06-01

    Variable square pulse (VSP) Er:YAG laser should be quicker than older Er:YAG lasers. The objectives were: (1) comparison of VSP laser and mechanical handpiece efficacy for apicectomy and (2) determination of optimal pulse width/energy/frequency combination. Sixty extracted, single-rooted mature human teeth with round apical parts were instrumented, root filled, cleaned, and divided into four groups. Apical 2 mm of each root were apicectomized with mechanical handpiece and Er:YAG laser with three different settings (LaserA = 200 mJ/300 microseconds/ 8 Hz; LaserB = 200 mJ/100 microseconds/8 Hz; LaserC = 380 mJ/100 microseconds/20 Hz). Timing results were statistically compared. LaserC was the most efficient setting. Differences between groups were significant except between LaserC-Mechanical and LaserA-LaserC (P < 0.05). VSP Er:YAG laser used for apicectomy is slower by a factor of 7-31 than mechanical handpiece, but treatment outcome is acceptable. Optimal settings for apicectomy with VSP laser are 380 mJ/100 microseconds/20 Hz. Copyright 2005 Wiley-Liss, Inc.

  10. Low Dose X-Ray Speckle Visibility Spectroscopy Reveals Nanoscale Dynamics in Radiation Sensitive Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Verwohlt, Jan; Reiser, Mario; Randolph, Lisa; Matic, Aleksandar; Medina, Luis Aguilera; Madsen, Anders; Sprung, Michael; Zozulya, Alexey; Gutt, Christian

    2018-04-01

    X-ray radiation damage provides a serious bottleneck for investigating microsecond to second dynamics on nanometer length scales employing x-ray photon correlation spectroscopy. This limitation hinders the investigation of real time dynamics in most soft matter and biological materials which can tolerate only x-ray doses of kGy and below. Here, we show that this bottleneck can be overcome by low dose x-ray speckle visibility spectroscopy. Employing x-ray doses of 22-438 kGy and analyzing the sparse speckle pattern of count rates as low as 6.7 ×10-3 per pixel, we follow the slow nanoscale dynamics of an ionic liquid (IL) at the glass transition. At the prepeak of nanoscale order in the IL, we observe complex dynamics upon approaching the glass transition temperature TG with a freezing in of the alpha relaxation and a multitude of millisecond local relaxations existing well below TG . We identify this fast relaxation as being responsible for the increasing development of nanoscale order observed in ILs at temperatures below TG .

  11. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.

    PubMed

    Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T

    2013-05-21

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.

  12. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Arias, Dylan H.; Blackburn, Jeffrey L.

    We have prepared a series of samples with the ligand 6,13-bistri(iso-propyl)silylethynyl tetracene 2-carboxylic acid (TIPS-Tc-COOH) attached to PbS quantum dot (QD) samples of three different sizes in order to monitor and control the extent and time scales of energy flow after photoexcitation. Fast energy transfer (~1 ps) to the PbS QD occurs upon direct excitation of the ligand for all samples. The largest size QD maintains the microsecond exciton lifetime characteristic of the as-prepared oleate terminated PbS QDs. However, two smaller QD sizes with lowest exciton energies similar to or larger than the TIPS-Tc-COO- triplet energy undergo energy transfer betweenmore » QD core and ligand triplet on nanosecond to microsecond timescales. For the intermediate size QDs in particular, energy can be recycled many times between ligand and core, but the triplet remains the dominant excited species at long times, living for ~3 us for fully exchanged QDs and up to 30 us for partial ligand exchange, which is revealed as a method for controlling the triplet lifetime. A unique upconverted luminescence spectrum is observed that results from annihilation of triplets after exclusive excitation of the QD core.« less

  13. Control of Energy Flow Dynamics between Tetracene Ligands and PbS Quantum Dots by Size Tuning and Ligand Coverage

    DOE PAGES

    Kroupa, Daniel M.; Arias, Dylan H.; Blackburn, Jeffrey L.; ...

    2018-01-24

    We have prepared a series of samples with the ligand 6,13-bistri(iso-propyl)silylethynyl tetracene 2-carboxylic acid (TIPS-Tc-COOH) attached to PbS quantum dot (QD) samples of three different sizes in order to monitor and control the extent and time scales of energy flow after photoexcitation. Fast energy transfer (~1 ps) to the PbS QD occurs upon direct excitation of the ligand for all samples. The largest size QD maintains the microsecond exciton lifetime characteristic of the as-prepared oleate terminated PbS QDs. However, two smaller QD sizes with lowest exciton energies similar to or larger than the TIPS-Tc-COO- triplet energy undergo energy transfer betweenmore » QD core and ligand triplet on nanosecond to microsecond timescales. For the intermediate size QDs in particular, energy can be recycled many times between ligand and core, but the triplet remains the dominant excited species at long times, living for ~3 us for fully exchanged QDs and up to 30 us for partial ligand exchange, which is revealed as a method for controlling the triplet lifetime. A unique upconverted luminescence spectrum is observed that results from annihilation of triplets after exclusive excitation of the QD core.« less

  14. Revisiting the Least Force Required to Keep a Block from Sliding

    ERIC Educational Resources Information Center

    De, Subhranil

    2013-01-01

    This article pertains to a problem on static friction that concerns a block of mass "M" resting on a rough inclined plane. The coefficient of static friction is microsecond and the inclination angle theta is greater than tan[superscript -1] microsecond. This means that some force "F" must be applied (see Fig. 1) to keep the…

  15. 14 CFR 171.311 - Signal format requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...

  16. 14 CFR 171.311 - Signal format requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...

  17. 14 CFR 171.311 - Signal format requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...

  18. 14 CFR 171.311 - Signal format requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...

  19. Ablation of steel by microsecond pulse trains

    NASA Astrophysics Data System (ADS)

    Windeler, Matthew Karl Ross

    Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material removal process.

  20. A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications

    NASA Technical Reports Server (NTRS)

    Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James

    2014-01-01

    An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.

  1. Rheological and nuclear magnetic resonance (NMR) study of the hydration and heating of undeveloped wheat doughs.

    PubMed

    Lopes-da-Silva, J A; Santos, Dora M J; Freitas, Andreia; Brites, Carla; Gil, Ana M

    2007-07-11

    The undeveloped doughs of two wheat flours differing in technological performance were characterized at the supramolecular level, by fundamental small-deformation oscillatory rheology and shear viscometry, and at the molecular level, by nuclear magnetic resonance (NMR) spectroscopy. For the harder variety, the higher storage moduli indicated lower mobility of the protein/water matrix in the 0.001-100 s range. Conversely, 1H NMR indicated higher molecular mobility in the sub-microsecond range for protein/water, whereas starch was found to be generally more hindered. It is suggested that faster protein/water motions are at the basis of the higher structural rearrangement indicated by tan delta for the harder variety. Rheological effects of heating-cooling reflect mainly starch behavior, whereas 1H NMR spectra and relaxation times give additional information on component mixing and molecular mobility. The heated softer variety dough formed a rigid lattice and, although a similar tendency was seen for the hard variety, all of its components remained more mobile. About 60% of starch crystallizes in both varieties, which may explain their similar rheological behaviors upon cooling.

  2. Highly Polarized Fluorescent Illumination Using Liquid Crystal Phase.

    PubMed

    Gim, Min-Jun; Turlapati, Srikanth; Debnath, Somen; Rao, Nandiraju V S; Yoon, Dong Ki

    2016-02-10

    Liquid crystal (LC) materials are currently the dominant electronic materials in display technology because of the ease of control of molecular orientation using an electric field. However, this technology requires the fabrication of two polarizers to create operational displays, reducing light transmission efficiency below 10%. It is therefore desirable to develop new technologies to enhance the light efficiency while maintaining or improving other properties such as the modulation speed of the molecular orientation. Here we report a uniaxial-oriented B7 smectic liquid crystalline film, using fluorescent bent-core LC molecules, a chemically modified substrate, and an in-plane electric field. A LC droplet under homeotropic boundary conditions of air/LC as well as LC/substrate exhibits large focal conic like optical textures. The in-plane electric field induced uniaxial orientation of the LC molecules, in which molecular polar directors are aligned in the direction of the electric field. This highly oriented LC film exhibits linearly polarized luminescence and microsecond time-scale modulation characteristics. The resultant device is both cheap and easy to fabricate and thus has great potential for electro-optic applications, including LC displays, bioimaging systems, and optical communications.

  3. Detection of non-absorbing charge dynamics via refractive index change in dye-sensitized solar cells.

    PubMed

    Kuwahara, Shota; Hata, Hiroaki; Taya, Soichiro; Maeda, Naotaka; Shen, Qing; Toyoda, Taro; Katayama, Kenji

    2013-04-28

    The carrier dynamics in dye-sensitized solar cells was investigated by using the transient grating, in addition to the transient absorption method and transient photocurrent method on the order of microseconds to seconds. The signals for the same sample were obtained under a short-circuit condition to compare the carrier dynamics via refractive index change with the transient photocurrent measurement. Optically silent carrier dynamics by transient absorption have been successfully observed via a refractive index change. The corresponding signal components were originated from the charge dynamics at the solid/liquid interface, especially on the liquid side; rearrangement or diffusion motion of charged redox species occurred when the injected electrons were trapped at the TiO2 surface and when the electron-electrolyte recombination occurred at the interface. The assignments were confirmed from the dependence on the viscosity of the solvent and the presence of 4-tert-butyl pyridine. As the viscosity of the solvent increased, the rearrangement and the motion of the charged redox species were delayed. Since the rearrangement dynamics was changed by the presence of 4-tert-butyl pyridine, it affected not only the TiO2 surface but also the redox species close to the interface.

  4. Sandia Dynamic Materials Program Strategic Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicker, Dawn Gustine; Benage, John F.; Desjarlais, Michael P.

    2017-05-01

    Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed bymore » adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.« less

  5. Charge carrier recombination dynamics in perovskite and polymer solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regardmore » to the mechanism and time scale of free carrier recombination.« less

  6. Electron Flow through Proteins

    PubMed Central

    Gray, Harry B.; Winkler, Jay R.

    2009-01-01

    Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Employing laser flash-quench triggering methods, we have shown that 20-Å, coupling-limited FeII to RuIII and CuI to RuIII electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. Our work has established that 20-Å hole hopping through an intervening tryptophan is two orders of magnitude faster than single-step electron tunneling in a Re-modified blue copper protein. PMID:20161522

  7. Slightly uneven electric field trigatron employed in tens of microseconds charging time.

    PubMed

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Zhang, Huibo; Yang, Xiao

    2014-09-01

    To solve the issue of operation instability for the trigatron switch in the application of tens of microseconds or even less charging time, a novel trigatron spark gap with slightly uneven electric field was presented. Compared with the conventional trigatron, the novel trigatron was constructed with an obvious field enhancement on the edge of the opposite electrode. The selection of the field enhancement was analyzed based on the theory introduced by Martin. A low voltage trigatron model was constructed and tested on the tens of microseconds charging time platform. The results show that the character of relative range was improved while the trigger character still held a high level. This slightly uneven electric field typed trigatron is willing to be employed in the Tesla transformer - pulse forming line system.

  8. Study of Bulk and Elementary Screw Dislocation Assisted Reverse Breakdown in Low-Voltage (< 250 V) 4H-SiC p(sup +)n Junction Diodes--Part II: Dynamic Breakdown Properties. Part 2; Dynamic Breakdown Properties

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1999-01-01

    This paper outlines the dynamic reverse-breakdown characteristics of low-voltage (<250 V) small-area <5 x 10(exp -4) sq cm 4H-SiC p(sup +)n diodes subjected to nonadiabatic breakdown-bias pulsewidths ranging from 0.1 to 20 microseconds. 4H-SiC diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities approximately five times larger than the average failure power density of reliable silicon pn rectifiers. This result indicates that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations. However, the impact of elementary screw dislocations on other more useful 4H-SiC power device structures, such as high-voltage (>1 kV) pn junction and Schottky rectifiers, and bipolar gain devices (thyristors, IGBT's, etc.) remains to be investigated.

  9. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Dong, Danan

    1994-01-01

    We discuss the determination of diurnal and semidiurnal variations in the rotation rate and the direction of rotation axis of Earth from the analysis of 8 years of very long baseline interferometry (VLBI) data. This analysis clearly show that these variations are largely periodic and tidally driven; that is, the periods of the variations correspond to the periods of the largest lunar and solar tides. For rotation rate variations, expressed in terms of changes in universal time (UT), the tidal lines with the largest observed signals are O1 (amplitude 23.5 microseconds in time (microseconds), period 25.82 solar hours); KL (18.9 microseconds, 23.93 hours); M2 (17.9 microseconds, 12.54 hours); and S2 (8.6 microseconds, 12.00 hours). For variations in the direction of the rotation axis (polar motion), significant signals exist in the retrograde semidiurnal band at the M2 and S2 tides (amplitudes 265 and 119 microarc seconds (microarc seconds, respectively); the prograde diurnal band at the O1, K1, and P1 tides (amplitudes 199, 152, and 60 microarc seconds, respectively); and the prograde semidiurnal band at the M2 and K2 tides (amplitudes 58 and 39 microarc seconds, respectively). Variations in the retrograde diurnal band are represented by corrections with previous estimates except that a previously noted discrepancy in the 13.66-day nutation (corresponding to the O1 tide) is largely removed in this new analysis. We estimate that the standard deviations of these estimates are 1.0 microseconds for the UT1 variations and 14-16 microarc seconds for the polar motion terms. These uncertainties correspond to surface displacements of approximately 0.5 mm. From the analysis of atmospheric angular momentum data we conclude that variations in UT1 excited by the atmosphere with subdaily periods are small (approximately 1 microsecond). We find that the average radial tidal displacements of the VLBI sites in the diurnal band are largely consistent with known deficiencies in current tidal models, i.e., deficiencies of up to 0.9 mm in the treatment of the free core nutation resonance. In the semidiurnal band, our analysis yields estimates of the second-degree harmonic radial Love number h(sub 2) at the M2 tide of 0.604 + i0.005 +/- 0.002. The most likely explanation for the rotational variations are the effects of ocean tides, but there may also be some contributions from atmospheric tides, the effects of triaxiality of Earth, and the equatorial second-degree-harmonic components of the core- mantle boundary.

  10. Studying dynamic processes in liquids by TEM/STEM/DTEM

    NASA Astrophysics Data System (ADS)

    Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration

    2013-03-01

    In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny

    A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usuallymore » involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.« less

  12. A Survey of High Explosive-Induced Damage and Spall in Selected Metals Using Proton Radiography

    NASA Astrophysics Data System (ADS)

    Holtkamp, D. B.; Clark, D. A.; Ferm, E. N.; Gallegos, R. A.; Hammon, D.; Hemsing, W. F.; Hogan, G. E.; Holmes, V. H.; King, N. S. P.; Liljestrand, R.; Lopez, R. P.; Merrill, F. E.; Morris, C. L.; Morley, K. B.; Murray, M. M.; Pazuchanics, P. D.; Prestridge, K. P.; Quintana, J. P.; Saunders, A.; Schafer, T.; Shinas, M. A.; Stacy, H. L.

    2004-07-01

    Multiple spall and damage layers can be created in metal when the free surface reflects a Taylor wave generated by high explosives. These phenomena have been explored in different thicknesses of several metals (tantalum, copper, 6061 T6-aluminum, and tin) using high-energy proton radiography. Multiple images (up to 21) can be produced of the dynamic evolution of damaged material on the microsecond time scale with a <50 ns "shutter" time. Movies and multiframe still images of areal and (Abel inverted) volume densities are presented. An example of material that is likely melted on release (tin) is also presented.

  13. Automatic laser welding and milling with in situ inline coherent imaging.

    PubMed

    Webster, P J L; Wright, L G; Ji, Y; Galbraith, C M; Kinross, A W; Van Vlack, C; Fraser, J M

    2014-11-01

    Although new affordable high-power laser technologies enable many processing applications in science and industry, depth control remains a serious technical challenge. In this Letter we show that inline coherent imaging (ICI), with line rates up to 312 kHz and microsecond-duration capture times, is capable of directly measuring laser penetration depth, in a process as violent as kW-class keyhole welding. We exploit ICI's high speed, high dynamic range, and robustness to interference from other optical sources to achieve automatic, adaptive control of laser welding, as well as ablation, achieving 3D micron-scale sculpting in vastly different heterogeneous biological materials.

  14. Mechanistic Insights into the Allosteric Modulation of Opioid Receptors by Sodium Ions

    PubMed Central

    2015-01-01

    The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation. PMID:25073009

  15. Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions.

    PubMed

    Shang, Yi; LeRouzic, Valerie; Schneider, Sebastian; Bisignano, Paola; Pasternak, Gavril W; Filizola, Marta

    2014-08-12

    The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation.

  16. Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of Aβ40 and Aβ42

    PubMed Central

    2014-01-01

    The self-assembly of the amyloid beta (Aβ) peptides into senile plaques is the hallmark of Alzheimer’s disease. Recent experiments have shown that the English familial disease mutation (H6R) speeds up the fibril formation process of alloforms Aβ40 and Aβ42 peptides altering their toxicity to cells. We used all-atom molecular dynamics simulations at microsecond time scales with the OPLS-AA force field and TIP4P explicit water model to study the structural dynamics of the monomer and dimer of H6R sequences of both peptides. The reason behind the self-assembly acceleration is common that upon mutation the net charge is reduced leading to the weaker repulsive interaction between chains that facilitates the peptide association. In addition, our estimation of the solvation free energy shows that the mutation enhances the hydrophobicity of both peptides speeding up their aggregation. However, we can show that the acceleration mechanisms are different for different peptides: the rate of fibril formation of Aβ42 increases due to increased β-structure at the C-terminal in both monomer and dimer and enhanced stability of salt bridge Asp23-Lys28 in monomer, while the enhancement of turn at residues 25–29 and reduction of coil in regions 10–13, 26–19, and 30–34 would play the key role for Aβ40. Overall, our study provides a detailed atomistic picture of the H6R-mediated conformational changes that are consistent with the experimental findings and highlights the important role of the N-terminal in Aβ peptide aggregation. PMID:24949887

  17. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase.

    PubMed

    La Sala, Giuseppina; Riccardi, Laura; Gaspari, Roberto; Cavalli, Andrea; Hantschel, Oliver; De Vivo, Marco

    2016-11-08

    A number of structural factors modulate the activity of Abelson (Abl) tyrosine kinase, whose deregulation is often related to oncogenic processes. First, only the open conformation of the Abl kinase domain's activation loop (A-loop) favors ATP binding to the catalytic cleft. In this regard, the trans-autophosphorylation of the Y412 residue, which is located along the A-loop, favors the stability of the open conformation, in turn enhancing Abl activity. Another key factor for full Abl activity is the formation of active conformations of the catalytic DFG motif in the Abl kinase domain. Furthermore, binding of the SH2 domain to the N-lobe of the Abl kinase was recently demonstrated to have a long-range allosteric effect on the stabilization of the A-loop open state. Intriguingly, these distinct structural factors imply a complex signal transmission network for controlling the A-loop's flexibility and conformational preference for optimal Abl function. However, the exact dynamical features of this signal transmission network structure remain unclear. Here, we report on microsecond-long molecular dynamics coupled with enhanced sampling simulations of multiple Abl model systems, in the presence or absence of the SH2 domain and with the DFG motif flipped in two ways (in or out conformation). Through comparative analysis, our simulations augment the interpretation of the existing Abl experimental data, revealing a dynamical network of interactions that interconnect SH2 domain binding with A-loop plasticity and Y412 autophosphorylation in Abl. This signaling network engages the DFG motif and, importantly, other conserved structural elements of the kinase domain, namely, the EPK-ELK H-bond network and the HRD motif. Our results show that the signal propagation for modulating the A-loop spatial localization is highly dependent on the HRD motif conformation, which thus acts as the central hub of this (allosteric) signaling network controlling Abl activation and function.

  18. Of mice and men: Dissecting the interaction between Listeria monocytogenes Internalin A and E-cadherin

    PubMed Central

    Genheden, Samuel; Eriksson, Leif A

    2013-01-01

    We report a study of the interaction between internalin A (inlA) and human or murine E-cadherin (Ecad). inlA is used by Listeria monocytogenes to internalize itself into host cell, but the bacterium is unable to invade murine cells, which has been attributed to the difference in sequence between hEcad and mEcad. Using molecular dynamics simulations, MM/GBSA free energy calculations, hydrogen bond analysis, water characterization and umbrella sampling, we provide a complete atomistic picture of the binding between inlA and Ecad. We dissect key residues in the protein–protein interface and analyze the energetics using MM/GBSA. From this analysis it is clear that the binding of inlA–mEcad is weaker than inlA–hEcad, on par with the experimentally observed inability of inlA to bind to mEcad. However, extended MD simulations of 200 ns in length show no destabilization of the inlA–mEcad complex and the estimation of the potential of mean force (PMF) using umbrella sampling corroborates this conclusion. The binding strength computed from the PMFs show no significant difference between the two protein complexes. Hence, our study suggests that the inability of L. monocytogenes to invade murine cells cannot be explained by processes at the nanosecond to sub-microsecond time scale probed by the simulations performed here. PMID:24688730

  19. Of mice and men: Dissecting the interaction between Listeria monocytogenes Internalin A and E-cadherin.

    PubMed

    Genheden, Samuel; Eriksson, Leif A

    2013-01-01

    We report a study of the interaction between internalin A (inlA) and human or murine E-cadherin (Ecad). inlA is used by Listeria monocytogenes to internalize itself into host cell, but the bacterium is unable to invade murine cells, which has been attributed to the difference in sequence between hEcad and mEcad. Using molecular dynamics simulations, MM/GBSA free energy calculations, hydrogen bond analysis, water characterization and umbrella sampling, we provide a complete atomistic picture of the binding between inlA and Ecad. We dissect key residues in the protein-protein interface and analyze the energetics using MM/GBSA. From this analysis it is clear that the binding of inlA-mEcad is weaker than inlA-hEcad, on par with the experimentally observed inability of inlA to bind to mEcad. However, extended MD simulations of 200 ns in length show no destabilization of the inlA-mEcad complex and the estimation of the potential of mean force (PMF) using umbrella sampling corroborates this conclusion. The binding strength computed from the PMFs show no significant difference between the two protein complexes. Hence, our study suggests that the inability of L. monocytogenes to invade murine cells cannot be explained by processes at the nanosecond to sub-microsecond time scale probed by the simulations performed here.

  20. Network and Atomistic Simulations Unveil the Structural Determinants of Mutations Linked to Retinal Diseases

    PubMed Central

    Mariani, Simona; Dell'Orco, Daniele; Felline, Angelo; Raimondi, Francesco; Fanelli, Francesca

    2013-01-01

    A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEγ binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions. PMID:24009494

  1. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.

  2. A review of satellite time-transfer technology: Accomplishments and future applications

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Chi, A. R.

    1978-01-01

    The research accomplishments by NASA in meeting the needs of the space program for precise time in satellite tracking are presented. As a major user of precise time signals for clock synchronization of NASA's worldwide satellite tracking networks, the agency provides much of the necessary impetus for the development of stable frequency sources and time synchronization technology. The precision time required for both satellite tracking and space science experiments has increased at a rate of about one order of magnitude per decade from 1 millisecond in the 1950's to 100 microseconds during the Apollo era in the 1960's to 10 microseconds in the 1970's. For the Tracking and Data Relay Satellite System, satellite timing requirements will be extended to 1 microsecond and below. These requirements are needed for spacecraft autonomy and data packeting.

  3. Evaluation of electrical conductivity of Cu and Al through sub microsecond underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.

    2012-03-01

    Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.

  4. Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure.

    PubMed

    Schmidt, Elliot; Shi, Sha; Ruden, P Paul; Frisbie, C Daniel

    2016-06-15

    Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.

  5. Changes in actin structural transitions associated with oxidative inhibition of muscle contraction.

    PubMed

    Prochniewicz, Ewa; Spakowicz, Daniel; Thomas, David D

    2008-11-11

    We have used transient phosphorescence anisotropy (TPA) to detect changes in actin structural dynamics associated with oxidative inhibition of muscle contraction. Contractility of skinned rabbit psoas muscle fibers was inhibited by treatment with 50 mM H 2O 2, which induced oxidative modifications in the myosin head and in actin, as previously reported. Using proteins purified from oxidized and unoxidized muscle, we used TPA to measure the effects of weakly (+ATP) and strongly (no ATP) bound myosin heads (S1) on the microsecond dynamics of actin labeled at Cys374 with erythrosine iodoacetamide. Oxidative modification of S1 had no effect on actin dynamics in the absence of ATP (strong binding complex), but restricted the dynamics in the presence of ATP (weakly bound complex). In contrast, oxidative modification of actin did not have a significant effect on the weak-to-strong transitions. Thus, we concluded that (1) the effects of oxidation on the dynamics of actin in the actomyosin complex are predominantly determined by oxidation-induced changes in S1, and (2) changes in weak-to-strong structural transitions in actin and myosin are coupled to each other and are associated with oxidative inhibition of muscle contractility.

  6. Changes in actin structural transitions associated with oxidative inhibition of muscle contraction

    PubMed Central

    Prochniewicz, Ewa; Spakowicz, Daniel; Thomas, David D.

    2011-01-01

    We have used transient phosphorescence anisotropy (TPA) to detect changes in actin structural dynamics associated with oxidative inhibition of muscle contraction. Contractility of skinned rabbit psoas muscle fibers was inhibited by treatment with 50 mM H2O2, which induced oxidative modifications in the myosin head and in actin, as previously reported. Using proteins purified from oxidized and unoxidized muscle, we used TPA to measure the effects of weakly (+ATP) and strongly (no ATP) bound myosin heads (S1) on the microsecond dynamics of actin labeled at Cys374 with erythrosine iodoacetamide. Oxidative modification of S1 had no effect on actin dynamics in the absence of ATP (strong binding complex), but restricted the dynamics in the presence of ATP (weakly bound complex). In contrast, oxidative modification of actin did not have a significant effect on the weak-to-strong transitions. Thus, we concluded that (1) the effects of oxidation on the dynamics of actin in the actomyosin complex are predominantly determined by oxidation-induced changes in S1, and (2) changes in weak-to-strong structural transitions in actin and myosin are coupled to each other and are associated with oxidative inhibition of muscle contractility. PMID:18855423

  7. Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale

    PubMed Central

    Sahoo, Bikash Ranjan; Fujiwara, Toshimichi

    2016-01-01

    The cathelicidin derived bovine antimicrobial peptide BMAP27 exhibits an effective microbicidal activity and moderate cytotoxicity towards erythrocytes. Irrespective of its therapeutic and multidimensional potentiality, the structural studies are still elusive. Moreover, the mechanism of BMAP27 mediated pore formation in heterogeneous lipid membrane systems is poorly explored. Here, we studied the effect of BMAP27 in model cell-membrane systems such as zwitterionic, anionic, thymocytes-like (TLM) and leukemia-like membranes (LLM) by performing molecular dynamics (MD) simulation longer than 100 μs. All-atom MD studies revealed a stable helical conformation in the presence of anionic lipids, however, significant loss of helicity was identified in TLM and zwitterionic systems. A peptide tilt (~45˚) and central kink (at residue F10) was found in anionic and LLM models, respectively, with an average membrane penetration of < 0.5 nm. Coarse-grained (CG) MD analysis on a multi-μs scale shed light on the membrane-dependent peptide and lipid organization. Stable micelle and end-to-end like oligomers were formed in zwitterionic and TLM models, respectively. In contrast, unstable oligomer formation and monomeric BMAP27 penetration were observed in anionic and LLM systems with selective anionic lipid aggregation (in LLM). Peptide penetration up to ~1.5 nm was observed in CG-MD systems with the BMAP27 C-terminal oriented towards the bilayer core. Structural inspection suggested membrane penetration by micelle/end-to-end like peptide oligomers (carpet-model like) in the zwitterionic/TLM systems, and transmembrane-mode (toroidal-pore like) in the anionic/LLM systems, respectively. Structural insights and energetic interpretation in BMAP27 mutant highlighted the role of F10 and hydrophobic residues in mediating a membrane-specific peptide interaction. Free energy profiling showed a favorable (-4.58 kcal mol-1 for LLM) and unfavorable (+0.17 kcal mol-1 for TLM) peptide insertion in anionic and neutral systems, respectively. This determination can be exploited to regulate cell-specific BMAP27 cytotoxicity for the development of potential drugs and antibiotics. PMID:27391304

  8. Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme

    PubMed Central

    Ahalawat, Navjeet; Pandit, Subhendu; Kay, Lewis E.

    2018-01-01

    Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access, this work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary to the common perception of a single dominant pathway for ligand binding. PMID:29775455

  9. Detailed microscopic unfolding pathways of an α-helix and a β-hairpin: direct observation and molecular dynamics.

    PubMed

    Jas, Gouri S; Hegefeld, Wendy A; Middaugh, C Russell; Johnson, Carey K; Kuczera, Krzysztof

    2014-07-03

    We present a combined experimental and computational study of unfolding pathways of a model 21-residue α-helical heteropeptide (W1H5-21) and a 16-residue β-hairpin (GB41-56). Experimentally, we measured fluorescence energy transfer efficiency as a function of temperature, employing natural tryptophans as donors and dansylated lysines as acceptors. Secondary structural analysis was performed with circular dichroism and Fourier transform infrared spectroscopy. Our studies present markedly different unfolding pathways of the two elementary secondary structural elements. During thermal denaturation, the helical peptide exhibits an initial decrease in length, followed by an increase, while the hairpin undergoes a systematic increase in length. In the complementary computational part of the project, we performed microsecond length replica-exchange molecular dynamics simulations of the peptides in explicit solvent, yielding a detailed microscopic picture of the unfolding processes. For the α-helical peptide, we found a large heterogeneous population of intermediates that are primarily frayed single helices or helix-turn-helix motifs. Unfolding starts at the termini and proceeds through a stable helical region in the interior of the peptide but shifted off-center toward the C-terminus. The simulations explain the experimentally observed non-monotonic variation of helix length with temperature as due primarily to the presence of frayed-end single-helix intermediate structures. For the β-hairpin peptide, our simulations indicate that folding is initiated at the turn, followed by formation of the hairpin in zipper-like fashion, with Cα···Cα contacts propagating from the turn to termini and hairpin hydrogen bonds forming in parallel with these contacts. In the early stages of hairpin formation, the hydrophobic side-chain contacts are only partly populated. Intermediate structures with low numbers of β-hairpin hydrogen bonds have very low populations. This is in accord with the "broken zipper" model of Scheraga. The monotonic increase in length with temperature may be explained by the zipper-like breaking of the hairpin hydrogen bonds and backbone contacts.

  10. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ˜10kA and 50μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  11. Pulsed Electron Beam Water Radiolysis for Sub-Microsecond Hydroxyl Radical Protein Footprinting

    PubMed Central

    Watson, Caroline; Janik, Ireneusz; Zhuang, Tiandi; Charvátová, Olga; Woods, Robert J.; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a valuable technique for studying protein structure, but care must be taken to ensure that the protein does not unfold during the labeling process due to oxidative damage. Footprinting methods based on sub-microsecond laser photolysis of peroxide that complete the labeling process faster than the protein can unfold have been recently described; however, the mere presence of large amounts of hydrogen peroxide can also cause uncontrolled oxidation and minor conformational changes. We have developed a novel method for sub-microsecond hydroxyl radical protein footprinting using a pulsed electron beam from a 2 MeV Van de Graaff electron accelerator to generate a high concentration of hydroxyl radicals by radiolysis of water. The amount of oxidation can be controlled by buffer composition, pulsewidth, dose, and dissolved nitrous oxide gas in the sample. Our results with ubiquitin and β-lactoglobulin A demonstrate that one sub-microsecond electron beam pulse produces extensive protein surface modifications. Highly reactive residues that are buried within the protein structure are not oxidized, indicating that the protein retains its folded structure during the labeling process. Time-resolved spectroscopy indicates that the major part of protein oxidation is complete in a timescale shorter than that of large scale protein motions. PMID:19265387

  12. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz; Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk; Zhukov, Vladimir P.

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when allmore » motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.« less

  13. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Arequipa station obtained a total of 31,989 quick-look range observations on 719 passes in the six months. Data were acquired from Metsahovi, San Fernando, Kootwijk, Wettzell, Grasse, Simosato, Graz, Dodaira and Herstmonceux. Work progressed on the setup of SAO 1. Discussions were also initiated with the Israelis on the relocation of SAO-3 to a site in southern Israel in FY-1984. Arequipa and the cooperating stations continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, earth and ocean tides, and the general development of precision orbit determination. SAO completed the revisions to its field software as a part of its recent upgrading program. With cesium standards Omega receivers, and other timekeeping aids, the station was able to maintain a timing accuracy of better than plus or minus 6 to 8 microseconds.

  14. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-02-27

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  15. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  16. Studying Townsend and glow modes in an atmospheric-pressure DBD using mass spectrometry

    NASA Astrophysics Data System (ADS)

    McKay, Kirsty; Donaghy, David; He, Feng; Bradley, James W.

    2018-01-01

    Ambient molecular beam mass spectrometry has been employed to examine the effects of the mode of operation and the excitation waveform on the ionic content of a helium-based atmospheric-pressure parallel plate dielectric barrier discharge. By applying 10 kHz microsecond voltage pulses with a nanosecond rise times and 10 kHz sinusoidal voltage waveforms, distinctly different glow and Townsend modes were produced, respectively. Results showed a significant difference in the dominant ion species between the two modes. In the Townsend mode, molecular oxygen ions, atomic oxygen anions and nitric oxide anions are the most abundant species, however, in the glow mode water clusters ions and hydrated nitric oxygen anions dominate. Several hypotheses are put forward to explain these differences, including low electron densities and energies in the Townsend mode, more efficient ionization of water molecules through penning ionization and charge exchange with other species in glow mode, and large temperature gradients due to the pulsed nature of the glow mode, leading to more favorable conditions for cluster formation.

  17. Adaptive real-time dual-comb spectroscopy

    PubMed Central

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  18. Modifying the photoelectric behavior of bacteriorhodopsin by site-directed mutagenesis: electrochemical and genetic engineering approaches to molecular devices

    NASA Astrophysics Data System (ADS)

    Hong, F. T.; Hong, F. H.; Needleman, R. B.; Ni, B.; Chang, M.

    1992-07-01

    Bacteriorhodopsins (bR's) modified by substitution of the chromophore with synthetic vitamin A analogues or by spontaneous mutation have been reported as successful examples of using biomaterials to construct molecular optoelectronic devices. The operation of these devices depends on desirable optical properties derived from molecular engineering. This report examines the effect of site-directed mutagenesis on the photoelectric behavior of bR thin films with an emphasis on their application to the construction of molecular devices based on their unique photoelectric behavior. We examine the photoelectric signals induced by a microsecond light pulse in thin films which contain reconstituted oriented purple membrane sheets isolated from several mutant strains of Halobacterium halobium. A recently developed expression system is used to synthesize mutant bR's in their natural host, H. halobium. We then use a unique analytical method (tunable voltage clamp method) to investigate the effect of pH on the relaxation of two components of the photoelectric signals, B1 and B2. We found that for the four mutant bR's examined, the pH dependence of the B2 component varies significantly. Our results suggest that genetic engineering approaches can produce mutant bR's with altered photoelectric characteristics that can be exploited in the construction of devices.

  19. Wavelet Domain Characterization & Localization of Modal Acoustic Emissions in Aircraft Aluminum

    DTIC Science & Technology

    1996-04-01

    50 100 0 50 100 S0.5 05 •0.51777W W W-0ý5F: < 0 50 100 0 50 100 0.5 05 0KI ~A4 -0 oH 0 -0 50 100 0 50 100 Time (microseconds) Time (microseconds...of frequency with time. novel approach based on wide band processing. The method can be considered a time domain spectroscopy ( TDS ) technique where the

  20. High efficiency laser-assisted H - charge exchange for microsecond duration beams

    DOE PAGES

    Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin; ...

    2017-12-26

    Laser-assisted stripping is a novel approach to H - charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. In conclusion,more » the experiment was performed on the Spallation Neutron Source 1 GeV H - beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.« less

  1. High efficiency laser-assisted H - charge exchange for microsecond duration beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin

    Laser-assisted stripping is a novel approach to H - charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. In conclusion,more » the experiment was performed on the Spallation Neutron Source 1 GeV H - beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.« less

  2. Low-power low-noise mixed-mode VLSI ASIC for infinite dynamic range imaging applications

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato; Hu, Y.; Zinzius, Y.; Colledani, C.; Loge, A.

    1998-11-01

    Solid state solutions for imaging are mainly represented by CCDs and, more recently, by CMOS imagers. Both devices are based on the integration of the total charge generated by the impinging radiation, with no processing of the single photon information. The dynamic range of these devices is intrinsically limited by the finite value of noise. Here we present the design of an architecture which allows efficient, in-pixel, noise reduction to a practically zero level, thus allowing infinite dynamic range imaging. A detailed calculation of the dynamic range is worked out, showing that noise is efficiently suppressed. This architecture is based on the concept of single-photon counting. In each pixel, we integrate both the front-end, low-noise, low-power analog part and the digital part. The former consists of a charge preamplifier, an active filter for optimal noise bandwidth reduction, a buffer and a threshold comparator, and the latter is simply a counter, which can be programmed to act as a normal shift register for the readout of the counters' contents. Two different ASIC's based on this concept have been designed for different applications. The first one has been optimized for silicon edge-on microstrips detectors, used in a digital mammography R and D project. It is a 32-channel circuit, with a 16-bit binary static counter.It has been optimized for a relatively large detector capacitance of 5 pF. Noise has been measured to be equal to 100 + 7*Cd (pF) electron rms with the digital part, showing no degradation of the noise performances with respect to the design values. The power consumption is 3.8mW/channel for a peaking time of about 1 microsecond(s) . The second circuit is a prototype for pixel imaging. The total active area is about (250 micrometers )**2. The main differences of the electronic architecture with respect to the first prototype are: i) different optimization of the analog front-end part for low-capacitance detectors, ii) in- pixel 4-bit comparator-offset compensation, iii) 15-bit pseudo-random counter. The power consumption is 255 (mu) W/channel for a peaking time of 300 ns and an equivalent noise charge of 185 + 97*Cd electrons rms. Simulation and experimental result as well as imaging results will be presented.

  3. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.

    PubMed

    Jesus, Catarina S H; Cruz, Pedro F; Arnaut, Luis G; Brito, Rui M M; Serpa, Carlos

    2018-04-12

    The understanding of fast folding dynamics of single α-helices comes mostly from studies on rationally designed peptides displaying sequences with high helical propensity. The folding/unfolding dynamics and energetics of α-helix conformations in naturally occurring peptides remains largely unexplored. Here we report the study of a protein fragment analogue of the C-peptide from bovine pancreatic ribonuclease-A, RN80, a 13-amino acid residue peptide that adopts a highly populated helical conformation in aqueous solution. 1 H NMR and CD structural studies of RN80 showed that α-helix formation displays a pH-dependent bell-shaped curve, with a maximum near pH 5, and a large decrease in helical content in alkaline pH. The main forces stabilizing this short α-helix were identified as a salt bridge formed between Glu-2 and Arg-10 and the cation-π interaction involving Tyr-8 and His-12. Thus, deprotonation of Glu-2 or protonation of His-12 are essential for the RN80 α-helix stability. In the present study, RN80 folding and unfolding were triggered by laser-induced pH jumps and detected by time-resolved photoacoustic calorimetry (PAC). The photoacid proton release, amino acid residue protonation, and unfolding/folding events occur at different time scales and were clearly distinguished using time-resolved PAC. The partial unfolding of the RN80 α-helix, due to protonation of Glu-2 and consequent breaking of the stabilizing salt bridge between Glu-2 and Arg-10, is characterized by a concentration-independent volume expansion in the sub-microsecond time range (0.8 mL mol -1 , 369 ns). This small volume expansion reports the cost of peptide backbone rehydration upon disruption of a solvent-exposed salt bridge, as well as backbone intrinsic expansion. On the other hand, RN80 α-helix folding triggered by His-12 protonation and subsequent formation of a cation-π interaction leads to a microsecond volume contraction (-6.0 mL mol -1 , ∼1.7 μs). The essential role of two discrete side chain interactions, a salt bridge, and in particular a single cation-π interaction in the folding dynamics of a naturally occurring α-helix peptide is uniquely revealed by these data.

  4. Towards traceable transient pressure metrology

    NASA Astrophysics Data System (ADS)

    Hanson, Edward; Olson, Douglas A.; Liu, Haijun; Ahmed, Zeeshan; Douglass, Kevin O.

    2018-04-01

    We describe our progress in developing the infrastructure for traceable transient measurements of pressure. Towards that end, we have built and characterized a dual diaphragm shock tube that allows us to achieve shock amplitude reproducibility of approximately 2.3% for shocks with Mach speeds ranging from 1.26-1.5. In this proof-of-concept study we use our shock tube to characterize the dynamic response of photonic sensors embedded in polydimethylsiloxane (PDMS), a material of choice for soft tissue phantoms. Our results indicate that the PDMS-embedded photonic sensors response to shock evolves over a tens to hundreds of microseconds time scale making it a useful system for studying transient pressures in soft tissue.

  5. Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Haw; Luo, Guobin; Karnchanaphanurach, Pallop; Louie, Tai-Man; Rech, Ivan; Cova, Sergio; Xun, Luying; Xie, X. Sunney

    2003-10-01

    Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.

  6. Bubble formation during pulsed laser ablation: mechanism and implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius

    1993-07-01

    Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.

  7. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  8. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    PubMed

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP, a noncatalytic arrangement of the catalytic triad is dominant. Unnatural truncated substrates are inactive because of the lack of protein-protein interactions provided by the ACP. Directed evolution is able to gradually restore the catalytic organization of the active site by motion of the protein backbone that alters the active site geometry. In the third case, we demonstrate the key role of MD in combination with crystallography to identify the origins of substrate-dependent stereoselectivities in a number of Codexis-engineered ketoreductases, one of which is used commercially for the production of the antibiotic sulopenem. Here, mutations alter the shape of the active site as well as the accessibility of water to different regions of it. Each of these examples reveals something different about how mutations can influence enzyme activity and shows that directed evolution, like natural evolution, can increase catalytic activity in a variety of remarkable and often subtle ways.

  9. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  10. Jack Rabbit Pretest 2021E PT3 Photonic Doppler Velocimetry Data Volume 3 Section 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest (PT) 2021E PT3 was fired on March 12, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT3, 120 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on the centralmore » axis and at 10, 20, 25, 30, 35, 40, 50 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The earliest PDV signal extinction was 41.7 microseconds at 30 millimeters. The latest PDV signal extinction time was 65.0 microseconds at 10 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 40 millimeters at 10.9 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1636 meters per second. At 40 millimeters the last measured velocity was 2056 meters per second. The low-to-high velocity ratio was 0.80. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 64.6 kilobars at 15.7 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 2.2 microseconds.« less

  11. Jack Rabbit Pretest 2021E PT4 Photonic Doppler Velocimetry Data Volume 4 Section 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest (PT) 2021E PT4 was fired on March 19, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT4, 120 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on the centralmore » axis and at 10, 20, 25, 30, 35, 40, 50 millimeters from the central axis. The experiment was shot at an ambient room temperature of 64 degrees Fahrenheit. The earliest PDV signal extinction was 44.9 microseconds at 30 millimeters. The latest PDV signal extinction time was 69.5 microseconds at 10 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 50 millimeters at 13.3 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1558 meters per second. At 40 millimeters the last measured velocity was 2019 meters per second. The low-to-high velocity ratio was 0.77. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 98.6 kilobars at 15.0 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 0.7 microseconds.« less

  12. Jack Rabbit Pretest 2021E PT6 Photonic Doppler Velocimetry Data Volume 6 Section 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest (PT) 2021E PT6 experiment was fired on April 1, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT6, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on themore » central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The earliest PDV signal extinction was 54.2 microseconds at 30 millimeters. The latest PDV signal extinction time was 64.5 microseconds at the central axis. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters at 14.1 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1860 meters per second. At 55 millimeters the last measured velocity was 2408 meters per second. The low-to-high velocity ratio was 0.77. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 227 kilobars at 20.1 microseconds, indicating a late time chemical reaction in the LX-17 dead-zone. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 1.7 microseconds.« less

  13. Jack Rabbit Pretest 2021E PT5 Photonic Doppler Velocimetry Data Volume 5 Section 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest (PT) 2021E PT5 was fired on March 17, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT5, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on the centralmore » axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The earliest PDV signal extinction was 40.0 microseconds at 45 millimeters. The latest PDV signal extinction time was 64.9 microseconds at 20 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters at 12.8 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1877 meters per second. At 65 millimeters the last measured velocity was 2277 meters per second. The low-to-high velocity ratio was 0.82. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 78 kilobars at 11.9 and 21.2 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 4.1 microseconds.« less

  14. Jack Rabbit Pretest 2021E PT7 Photonic Doppler Velocimetry Data Volume 7 Section 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M M; Strand, O T; Bosson, S T

    The Jack Rabbit Pretest (PT) 2021E PT7 experiment was fired on April 3, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT7, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on themore » central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The PDV earliest signal extinction was 50.7 microseconds at 45 millimeters. The latest PDV signal extinction time was 65.0 microseconds at 20 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters and at 15.2 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1447 meters per second. At 65 millimeters the last measured velocity was 2360 meters per second. The low-to-high velocity ratio was 0.61. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 49 kilobars at 23.3 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 4.6 microseconds.« less

  15. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamy, H.; Hamann, F.; Lassalle, F.

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim ofmore » giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.« less

  16. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  17. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less

  18. Grating-based real-time smart optics for biomedicine and communications

    NASA Astrophysics Data System (ADS)

    Yaqoob, Zahid

    Novel photonic systems are proposed and experimentally validated using active as well as passive wavelength dispersive optical devices in unique fashions to solve important system level application problems in biomedicine and laser communications. Specifically for the first time are proposed, high dynamic range variable optical attenuators (VOAs) using bulk acousto-optics (AO). These AO-based architectures have excellent characteristics such as high laser damage threshold (e.g., 1 Watt CW laser power operations), large (e.g., >40 dB) dynamic range, and microsecond domain attenuation setting speed. The demonstrated architectures show potentials for compact, low static insertion loss, and low power VOA designs for wavelength division multiplexed (WDM) fiber-optic communication networks and high speed photonic signal processing for optical and radio frequency (RF) radar and electronic warfare (EW). Acoustic diffraction of light in isotropic media has been manipulated to design and demonstrate on a proof-of-principle basis, the first bulk AO-based optical coherence tomography (OCT) system for high-resolution sub-surface tissue diagnostics. As opposed to the current OCT systems that use mechanical means to generate optical delays, both free-space as well as fiber-optic AO-based OCT systems utilize unique electronically-controlled acousto-optically switched no-moving parts optical delay lines and therefore promise microsecond speed OCT data acquisition rates. The proposed OCT systems also feature high (e.g., >100 MHz) intermediate frequency for low 1/f noise heterodyne detection. For the first time, two agile laser beam steering schemes that are members of a new beam steering technology known as Multiplexed-Optical Scanner Technology (MOST) are theoretically investigated and experimentally demonstrated. The new scanner technologies are based on wavelength and space manipulations and possess remarkable features such as a no-moving parts fast (e.g., microseconds domain or less) beam switching speed option, large (e.g., several centimeters) scanner apertures for high-resolution scans, and large (e.g., >10°) angular scans in more than one dimensions. These incredible features make these scanners excellent candidates for high-end applications. Specifically discussed and experimentally analyzed for the first time are novel MOST-based systems for agile free-space lasercom links, internal and external cavity scanning biomedical probes, and high-speed optical data handling such as barcode scanners. In addition, a novel low sidelobe wavelength selection filter based on a single bulk crystal acousto-optic tunable filter device is theoretically analyzed and experimentally demonstrated showing its versatility as a scanner control fiber-optic component for interfacing with the proposed wavelength based optical scanners. In conclusion, this thesis has shown how powerful photonic systems can be realized via novel architectures using active and passive wavelength sensitive optics leading to advanced solutions for the biomedical and laser communications research communities.

  19. The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch

    PubMed Central

    Huang, Wei; Kim, Joohyun; Jha, Shantenu; Aboul-ela, Fareed

    2013-01-01

    Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally. PMID:23704854

  20. Virtual substitution scan via single-step free energy perturbation.

    PubMed

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  1. Bioactive Conformations of Two Seminal Delta Opioid Receptor Penta-peptides Inferred from Free-Energy Profiles

    PubMed Central

    Scarabelli, Guido; Provasi, Davide; Negri, Ana; Filizola, Marta

    2013-01-01

    Delta-opioid (DOP) receptors are members of the G protein-coupled receptor (GPCR) sub-family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu-opioid (MOP), kappa-opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr-D-Ala-GlyPhe-D-Leu) and DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta-peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over-simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond-scale molecular dynamics and bias-exchange metadynamics simulations. Free-energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. PMID:23564013

  2. Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations

    PubMed Central

    Xiong, Kan; Zwier, Matthew C.; Myshakina, Nataliya S.; Burger, Virginia M.; Asher, Sanford A.; Chong, Lillian T.

    2011-01-01

    We report the first experimental measurements of Ramachandran Ψ-angle distributions for intrinsically disordered peptides: the N-terminal peptide fragment of tumor suppressor p53 and its P27 mutant form. To provide atomically detailed views of the conformational distributions, we performed classical, explicit-solvent molecular dynamics simulations on the microsecond timescale. Upon binding its partner protein, MDM2, wild-type p53 peptide adopts an α-helical conformation. Mutation of Pro27 to serine results in the highest affinity yet observed for MDM2-binding of the p53 peptide. Both UV resonance Raman spectroscopy (UVRR) and simulations reveal that the P27S mutation decreases the extent of PPII helical content and increases the probability for conformations that are similar to the α-helical MDM2-bound conformation. In addition, UVRR measurements were performed on peptides that were isotopically labeled at the Leu26 residue preceding the Pro27 in order to determine the conformational distributions of Leu26 in the wild-type and mutant peptides. The UVRR and simulation results are in quantitative agreement in terms of the change in the population of non-PPII conformations involving Leu26 upon mutation of Pro27 to serine. Finally, our simulations reveal that the MDM2-bound conformation of the peptide is significantly populated in both the wild-type and mutant isolated peptide ensembles in their unbound states, suggesting that MDM2 binding of the p53 peptides may involve conformational selection. PMID:21528875

  3. Acrylonitrile Quenching of Trp Phosphorescence in Proteins: A Probe of the Internal Flexibility of the Globular Fold

    PubMed Central

    Strambini, Giovanni B.; Gonnelli, Margherita

    2010-01-01

    Quenching of Trp phosphorescence in proteins by diffusion of solutes of various molecular sizes unveils the frequency-amplitude of structural fluctuations. To cover the sizes gap between O2 and acrylamide, we examined the potential of acrylonitrile to probe conformational flexibility of proteins. The distance dependence of the through-space acrylonitrile quenching rate was determined in a glass at 77 K, with the indole analog 2-(3-indoyl) ethyl phenyl ketone. Intensity and decay kinetics data were fitted to a rate, k(r) = k0 exp[−(r − r0)/re], with an attenuation length re = 0.03 nm and a contact rate k0 = 3.6 × 1010 s−1. At ambient temperature, the bimolecular quenching rate constant (kq) was determined for a series of proteins, appositely selected to test the importance of factors such as the degree of Trp burial and structural rigidity. Relative to kq = 1.9 × 109 M−1s−1 for free Trp in water, in proteins kq ranged from 6.5 × 106 M−1s−1 for superficial sites to 1.3 × 102 M−1s−1 for deep cores. The short-range nature of the interaction and the direct correlation between kq and structural flexibility attest that in the microsecond-second timescale of phosphorescence acrylonitrile readily penetrates even compact protein cores and exhibits significant sensitivity to variations in dynamical structure of the globular fold. PMID:20682273

  4. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  5. Effectiveness of External Electric Field Treatment of Conjugated Polymers in Bulk-Heterojunction Solar Cells.

    PubMed

    Solanki, Ankur; Bagui, Anirban; Long, Guankui; Wu, Bo; Salim, Teddy; Chen, Yongsheng; Lam, Yeng Ming; Sum, Tze Chien

    2016-11-30

    External electric field treatment (EFT) on P3HT:PCBM bulk heterojunction (BHJ) devices was recently found to be a viable approach for improving the power conversion efficiencies (PCEs) through modulating the blend nanomorphology. However, its effectiveness over the broad family of polymer-fullerene blends remains unclear. Herein, we investigate the effects of external EFT on various polymer-fullerene blends with distinct morphologies stemming from the difference in molecular structure of the polymers (i.e., semicrystalline vs amorphous) in a bid to establish a clear morphology-function-charge dynamics relationship to the photovoltaic performance. Our findings reveal that EFT promotes self-organization of the semicrystalline thiophene-based conjugated polymers (i.e., P3HT and P3BT) while it was ineffective for the amorphous polymers (i.e., PTB7 and PCPDTBT) even at the maximum applied E-field of 8 kV cm -1 . Transient absorption spectroscopy shows an improvement in the initial charge-carrier and polaron formation from delocalized excitons in the E-field treated semicrystalline blends compared to their untreated reference samples. Interfacial trap-assisted monomolecular and trap-free bimolecular recombination at nanosecond-microsecond time scale in the E-field treated P3BT:PC60BM devices are significantly suppressed. Importantly, our findings shed new light and provide guidelines on the effectiveness of utilizing external EFT to enhance the PCEs of a larger family of conjugated polymer-based BHJ OSCs.

  6. Concerted Interconversion between Ionic Lock Substates of the β2 Adrenergic Receptor Revealed by Microsecond Timescale Molecular Dynamics

    PubMed Central

    Romo, Tod D.; Grossfield, Alan; Pitman, Michael C.

    2010-01-01

    Abstract The recently solved crystallographic structures for the A2A adenosine receptor and the β1 and β2 adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 μs all-atom simulation of an apo-β2 adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for ∼200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation. PMID:20074514

  7. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 um

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Ragadio, Jerome N.; Akrivou, Maria; Featherstone, John D.; Murray, Michael W.; Dickenson, Kevin M.

    2001-04-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed transverse excited atmospheric pressure (TEA) laser systems optimally tuned to the highly absorbed 9.6 micrometers wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce an initial high energy spike at the beginning of the laser pulse of submicrosecond duration followed by a long tail of about 1 - 4 microsecond(s) . The pulse duration is well matched to the 1 - 2 microsecond(s) thermal relaxation time of the deposited laser energy at 9.6 micrometers and effectively heats the enamel to the temperatures required for surface modification at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk of pulpal necrosis from excessive heat accumulation is minimized. At higher fluences, the high peak power of the laser pulse rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By lengthening the laser pulse to reduce the energy distributed in the initial high energy spike, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  8. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0059: Molecular Dynamics Modeling Support

    DTIC Science & Technology

    2008-03-01

    Molecular Dynamics Simulations 5 Theory: Equilibrium Molecular Dynamics Simulations 6 Theory: Non...Equilibrium Molecular Dynamics Simulations 8 Carbon Nanotube Simulations : Approach and results from equilibrium and non-equilibrium molecular dynamics ...touched from the perspective of molecular dynamics simulations . However, ordered systems such as “Carbon Nanotubes” have been investigated in terms

  9. Differentiation of black writing ink on paper using luminescence lifetime by time-resolved luminescence spectroscopy.

    PubMed

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2017-10-01

    The time-resolved luminescence spectra and the lifetimes of eighteen black writing inks were measured to differentiate pen ink on altered documents. The spectra and lifetimes depended on the samples. About half of the samples only exhibited short-lived luminescence components on the nanosecond time scale. On the other hand, the other samples exhibited short- and long-lived components on the microsecond time scale. The samples could be classified into fifteen groups based on the luminescence spectra and dynamics. Therefore, luminescence lifetime can be used for the differentiation of writing inks, and luminescence lifetime imaging can be applied for the examination of altered documents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mesoscopic Simulations of Crosslinked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  11. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  12. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

    NASA Astrophysics Data System (ADS)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.; Ketterson, John B.; Chang, Robert P. H.

    2016-09-01

    Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.

  13. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis

    PubMed Central

    Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura

    2011-01-01

    Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214

  14. Surface State-Dominated Photoconduction and THz Generation in Topological Bi2Te2Se Nanowires

    PubMed Central

    2017-01-01

    Topological insulators constitute a fascinating class of quantum materials with nontrivial, gapless states on the surface and insulating bulk states. By revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se nanowires allows us to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface and bulk states dynamics on the different time scales gives rise to a surprising physical property of Bi2Te2Se nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se nanowires can be used as THz generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se nanowires as active modules in optoelectronic high-frequency and THz circuits. PMID:28081604

  15. Characterizing detonator output using dynamic witness plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Michael John; Adrian, Ronald J

    2009-01-01

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of themore » shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.« less

  16. Dynamic shear jamming in granular suspensions

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Majumdar, Sayantan; Jaeger, Heinrich

    2014-11-01

    Jamming by shear allows a frictional granular packing to transition from an unjammed state into a jammed state while keeping the system volume and average packing fraction constant. Shear jamming of dry granular media can occur quasi-statically, but boundaries are crucial to confine the material. We perform experiments in aqueous starch suspension where we apply shear using a rheometer with a large volume (400 ml) cylindrical Couette cell. In our suspensions the packing fraction is sufficiently low that quasi-static deformation does not induce a shear jammed state. Applying a shock-like deformation however, will turn the suspension into a jammed solid. A fully jammed state is reached within tens of microseconds, and can be sustained for at least several seconds. High speed imaging of the initial process reveals a jamming front propagating radially outward through the suspension, while the suspension near the outer boundary remains quiescent. This indicates that granular suspensions can be shear jammed without the need of confining solid boundaries. Instead, confinement is most likely provided by the dynamics in the front region.

  17. Tantalum capacitor behavior under fast transient overvoltages. [circuit protection against lightning

    NASA Technical Reports Server (NTRS)

    Zill, J. A.; Castle, K. D.

    1974-01-01

    Tantalum capacitors were tested to determine failure time when subjected to short-duration, high-voltage surges caused by lightning strikes. Lightning is of concern to NASA because of possible damage to critical spacecraft circuits. The test was designed to determine the minimum time for tantalum capacitor failure and the amount of overvoltage a capacitor could survive, without permanent damage, in 100 microseconds. All tested exhibited good recovery from the transient one-shot pulses with no failure at any voltage, forward or reverse, in less than 25 microseconds.

  18. Coupling of Gaussian electromagnetic pulse into a muscle-bone model of biological structure.

    PubMed

    Lin, J C; Lam, C K

    1976-03-01

    The effect of angle of incidence on the transmission electromagnetic pulse with Gaussion character in biological material is studied. The model assumed is a layer of soft tissue over a semi-infinite medium of boney structure governed by alpha dispersion. The numerical results demonstrate that the transmitted pulse strength is the greatest when the pulse is incident normally on the air-tissue interface. The coupling efficiency for a one microsecond pulse is three times as big as that for a ten microsecond pulse.

  19. A highly optimized vectorized code for Monte Carlo simulations of SU(3) lattice gauge theories

    NASA Technical Reports Server (NTRS)

    Barkai, D.; Moriarty, K. J. M.; Rebbi, C.

    1984-01-01

    New methods are introduced for improving the performance of the vectorized Monte Carlo SU(3) lattice gauge theory algorithm using the CDC CYBER 205. Structure, algorithm and programming considerations are discussed. The performance achieved for a 16(4) lattice on a 2-pipe system may be phrased in terms of the link update time or overall MFLOPS rates. For 32-bit arithmetic, it is 36.3 microsecond/link for 8 hits per iteration (40.9 microsecond for 10 hits) or 101.5 MFLOPS.

  20. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  1. A concurrent multiscale micromorphic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less

  2. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.

    PubMed

    Maisuradze, Gia G; Senet, Patrick; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2010-04-08

    Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 residues can be obtained in days. A straightforward application of canonical UNRES/MD simulations, demonstrated with the example of the N-terminal part of the B-domain of staphylococcal protein A (PDB code: 1BDD, a three-alpha-helix bundle), discerns the folding mechanism and determines kinetic parameters by parallel simulations of several hundred or more trajectories. Use of generalized-ensemble techniques, of which the multiplexed replica exchange method proved to be the most effective, enables us to compute thermodynamics of folding and carry out fully physics-based prediction of protein structure, in which the predicted structure is determined as a mean over the most populated ensemble below the folding-transition temperature. By using principal component analysis of the UNRES folding trajectories of the formin-binding protein WW domain (PDB code: 1E0L; a three-stranded antiparallel beta-sheet) and 1BDD, we identified representative structures along the folding pathways and demonstrated that only a few (low-indexed) principal components can capture the main structural features of a protein-folding trajectory; the potentials of mean force calculated along these essential modes exhibit multiple minima, as opposed to those along the remaining modes that are unimodal. In addition, a comparison between the structures that are representative of the minima in the free-energy profile along the essential collective coordinates of protein folding (computed by principal component analysis) and the free-energy profile projected along the virtual-bond dihedral angles gamma of the backbone revealed the key residues involved in the transitions between the different basins of the folding free-energy profile, in agreement with existing experimental data for 1E0L .

  3. Short latency vestibular evoked potentials in the Japanese quail (Coturnix coturnix japonica)

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.; Shukla, R.

    1997-01-01

    Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms-1 ranged from 1265 +/- 208 microseconds (P1, N = 18) to 4802 +/- 441 microseconds (N4, N = 13). Amplitudes ranged from 3.72 +/- 1.51 microV (P1/N1, N = 18) to 1.49 +/- 0.77 microV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from -38.7 +/- 7.3 microseconds dB-1 (P1, N = 18) to -71.6 +/- 21.9 microseconds dB-1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 +/- 0.08 microV dB-1 (P1/N1, N = 18) to 0.07 +/- 0.04 microV dB-1 (P3/N3, N = 11). The mean response threshold across all animals was -21.83 +/- 3.34 dB re: 1.0 g ms-1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail.

  4. A Three-protein Charge Zipper Stabilizes a Complex Modulating Bacterial Gene Silencing*

    PubMed Central

    Cordeiro, Tiago N.; García, Jesús; Bernadó, Pau; Millet, Oscar; Pons, Miquel

    2015-01-01

    The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related. PMID:26085102

  5. Laser drive development for the APS Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Lagrange, Thomas; Swift, Damian; Reed, Bryan; Bernier, Joel; Kumar, Mukul; Hawreliak, James; Eggert, Jon; Dixit, Sham; Collins, Gilbert

    2013-06-01

    The Dynamic Compression Sector (DCS) at the APS synchrotron offers unprecedented possibilities for x-ray diffraction and scattering measurements in-situ during dynamic loading, including single-shot data collection with x-ray energies high enough (tens of kV) to study high-Z samples in transmission as well as reflection. Dynamic loading induced by laser ablation is an important component of load generation, as the duration, strain rate, and pressure can be controlled via the energy, spot size, and pulse shape. Using radiation hydrodynamics simulations, validated by experiments at several laser facilities, we have investigated the relationship between irradiance history and pressure for ablative loads designed to induce shock and ramp loading in the nanosecond to microsecond range, and including free ablation and also ablation confined by a transparent substrate. We have investigated the effects of lateral release, which constrains the minimum diameter of the focal spot for a given drive duration. In this way, we are able to relate the desired drive conditions to the total laser energy needed, which dictates the laser technologies suitable for a given type of experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE PAGES

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.; ...

    2015-04-22

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  7. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  8. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation

    NASA Astrophysics Data System (ADS)

    Remington, Bruce A.; Rudd, Robert E.; Wark, Justin S.

    2015-09-01

    Over the past 3 decades, there has been an exponential increase in work done in the newly emerging field of matter at extreme states of deformation and compression. This accelerating progress is due to the confluence of new experimental facilities, experimental techniques, theory, and simulations. Regimes of science hitherto thought out of reach in terrestrial settings are now being accessed routinely. High-pressure macroscopic states of matter are being experimentally studied on high-power lasers and pulsed power facilities, and next-generation light sources are probing the quantum response of matter at the atomic level. Combined, this gives experimental access to the properties and dynamics of matter from femtoseconds to microseconds in time scale and from kilobars to gigabars in pressure. There are a multitude of new regimes of science that are now accessible in laboratory settings. Examples include planetary formation dynamics, asteroid and meteor impact dynamics, space hardware response to hypervelocity dust and debris impacts, nuclear reactor component response to prolonged exposure to radiation damage, advanced research into light weight armor, capsule dynamics in inertial confinement fusion research, and the basic high energy density properties of matter. We review highlights and advances in this rapidly developing area of science and research.

  9. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  10. Precise timing correlation in telemetry recording and processing systems

    NASA Technical Reports Server (NTRS)

    Pickett, R. B.; Matthews, F. L.

    1973-01-01

    Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.

  11. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  12. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy

    PubMed Central

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R.; Müller-Späth, Sonja; Pfeil, Shawn H.; Hoffmann, Armin; Lipman, Everett A.; Makarov, Dmitrii E.; Schuler, Benjamin

    2012-01-01

    Internal friction, which reflects the “roughness” of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners. PMID:22492978

  13. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy.

    PubMed

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R; Müller-Späth, Sonja; Pfeil, Shawn H; Hoffmann, Armin; Lipman, Everett A; Makarov, Dmitrii E; Schuler, Benjamin

    2012-10-30

    Internal friction, which reflects the "roughness" of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners.

  14. Site-Specific Dynamics of β-Sheet Peptides with (D) Pro-Gly Turns Probed by Laser-Excited Temperature-Jump Infrared Spectroscopy.

    PubMed

    Popp, Alexander; Scheerer, David; Chi, Heng; Keiderling, Timothy A; Hauser, Karin

    2016-05-04

    Turn residues and side-chain interactions play an important role for the folding of β-sheets. We investigated the conformational dynamics of a three-stranded β-sheet peptide ((D) P(D) P) and a two-stranded β-hairpin (WVYY-(D) P) by time-resolved temperature-jump (T-jump) infrared spectroscopy. Both peptide sequences contain (D) Pro-Gly residues that favor a tight β-turn. The three-stranded β-sheet (Ac-VFITS(D) PGKTYTEV(D) PGOKILQ-NH2 ) is stabilized by the turn sequences, whereas the β-hairpin (SWTVE(D) PGKYTYK-NH2 ) folding is assisted by both the turn sequence and hydrophobic cross-strand interactions. Relaxation times after the T-jump were monitored as a function of temperature and occur on a sub-microsecond time scale, (D) P(D) P being faster than WVYY-(D) P. The Xxx-(D) Pro tertiary amide provides a detectable IR band, allowing us to probe the dynamics site-specifically. The relative importance of the turn versus the intrastrand stability in β-sheet formation is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Exploring the universe through discovery science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2016-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples providing a compelling vision for frontier science on NIF in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  16. Twinning in magnesium under dynamic loading

    NASA Astrophysics Data System (ADS)

    Dixit, Neha; Hazeli, Kavan; Ramesh, Kaliat T.

    2015-09-01

    Twinning is an important mode of deformation in magnesium (Mg) and its alloys at high strain rates. Twinning in this material leads to important effects such as mechanical anisotropy, texture evolution, tension-compression asymmetry, and sometimes non-Schmid effects. Extension twins in Mg can accommodate significant plastic deformation as they grow, and thus twinning affects the overall rate of plastic deformation. We use an experimental approach to study the deformation twinning mechanism under dynamic loading. We perform normal plate impact recovery experiments (with microsecond pulse durations) on pure polycrystalline Mg specimens. Estimates of average TB velocity under the known impact stress are obtained by characterization of twin sizes and aspect ratios developed within the target during the loading pulse. The measured average TB velocities in our experiments are of the order of several m s-1. These velocities are several orders of magnitude higher than those so far measured in Mg under quasi-static loading conditions. Electron back-scattered diffraction (EBSD) is then used to characterize the nature of the twins and the microstructural evolution. Detailed crystallographic analysis of the twins enables us to understand twin nucleation and growth of twin variants under dynamic loading.

  17. Exploring the universe through Discovery Science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2017-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics (relevant to the exoplanets) are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples of frontier research through NIF Discovery Science in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  18. Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit

    DOE PAGES

    Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...

    2016-01-06

    We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.

  19. Commutated automatic gain control system

    NASA Technical Reports Server (NTRS)

    Yost, S. R.

    1982-01-01

    A commutated automatic gain control (AGC) system was designed and built for a prototype Loran C receiver. The receiver uses a microcomputer to control a memory aided phase-locked loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The circuit designed for the AGC is described, and bench and flight test results are presented. The AGC circuit described actually samples starting at a point 40 microseconds after a zero crossing determined by the software lock pulse ultimately generated by a 30 microsecond delay and add network in the receiver front end envelope detector.

  20. Synchro-ballistic recording of detonation phenomena

    NASA Astrophysics Data System (ADS)

    Critchfield, Robert R.; Asay, Blaine W.; Bdzil, John B.; Davis, William C.; Ferm, Eric N.; Idar, Deanne J.

    1997-12-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic detonation shock dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film's spatial dimension and the phase velocity is adjusted to provide synchronization at the camera's maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to- diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric denotation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  1. Synchro-ballistic recording of detonation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.

    1997-09-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of themore » events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.« less

  2. Exploring Molecular Mechanisms of Ligand Recognition by Opioid Receptors with Metadynamics†

    PubMed Central

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible entry pathways of the non-selective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the β2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates), and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs. PMID:19785461

  3. Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics.

    PubMed

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-10-27

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible pathways for entry of the nonselective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the beta2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates) and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs.

  4. Single Molecule Measurement, a Tool for Exploring the Dynamic Mechanism of Biomolecules

    NASA Astrophysics Data System (ADS)

    Yanagida, Toshio

    Biomolecules fluctuate in response to thermal agitation. These fluctuations are present at various biological levels ranging from single molecules to more complicated systems like perception. Despite thermal fluctuation often being considered noise, in some cases biomolecules actually utilize them to achieve function. How biomolecules do this is necessary to understand the mechanism underlying their function. Thermal noise causes fast, local motion in the time range of picosecond to nanosecond, which drives slower, collective motions [1]. These large, collective motions and conformational transitions are achieved in the time range of microsecond to millisecond, which is the time needed for a biomolecule to exceed its energy barrier in order to switch between two coordinates in its free-energy landscape. These slower conformational or state changes are likely rate limiting for biomolecule function.

  5. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less

  6. Preface

    NASA Astrophysics Data System (ADS)

    Buthelezi, Zinhle; Cleymans, Jean; Dietel, Tom; Förtsch, Siegfried; Horowitz, W. A.; Steinberg, Peter; Weigert, Heribert

    2014-12-01

    From November 4th-8th 2013, South Africa hosted the "6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2013)" in the beautiful Cape Winelands at the Stellenbosch Institute for Advanced Studies. This is the preëminent conference series for scientists from around the world to disseminate, discuss, and collaborate on their research on the Hard Probes of heavy ion collisions. The goal is a quantitative understanding of the nontrivial, emergent, many-body dynamics of hot and dense non-Abelian Quantum Chromodynamics (QCD), the quark-gluon plasma (QGP). This matter permeated the universe a microsecond after the Big Bang and is produced at facilities such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in New York and at the Large Hadron Collider (LHC) at CERN in Geneva.

  7. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.

    PubMed

    Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom

    2014-10-10

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.

  8. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    PubMed Central

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  9. Photoluminescence quenching by OH in Er- and Pr-doped glasses for 1.5 and 1.3 μm optical amplifiers

    NASA Astrophysics Data System (ADS)

    Faber, Anne J.; Simons, Dennis R.; Yan, Yingchao; de Waal, Henk

    1994-09-01

    In this paper we report on the effect of hydroxyl (OH) groups on the photoluminescence in the near IR (1.5 and 1.3 micrometers ) in rare earth (Er, Pr)-doped glasses. The 1.5 micrometers emission of Er-doped phosphate glasses was studied, before and after a special heat treatment. The luminescent lifetime of the 1.5 micrometers emission increases substantially, typically from 3 ms up to 7.2 ms for a 2 mole% Er2O3-doped phosphate glass, due to the controlled heat treatment. The increase in lifetime is ascribed to a decrease in OH- concentration, which is confirmed by IR-absorption spectroscopy. The quenching by OH is described by a simplified quenching model, which predicts the 1.5 micrometers emission lifetime as a function of Er- concentration with the OH-concentration as parameter. It appears that the larger part of the OH groups is coupled to Er ions and thus acts as quenching center. Photoluminescence quenching by OH groups is also reported for the 1.3 micrometers emission of Pr in GeS2-glasses: In pure OH-free GeS2 glass the 1.3 micrometers emission lifetime is as high as 350 microsecond(s) , for a 400 ppm dopant level. In GeS2 glasses containing only small amounts of OH (approximately 100 ppm), this lifetime is less than 200 microsecond(s) . Both examples demonstrate that for the fabrication of efficient glass optical amplifiers at the telecommunication windows 1.3 and 1.5 micrometers , the OH-impurity level of the host glass must be kept as low as possible.

  10. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  11. The free energy landscape of pseudorotation in 3'-5' and 2'-5' linked nucleic acids.

    PubMed

    Li, Li; Szostak, Jack W

    2014-02-19

    The five-membered furanose ring is a central component of the chemical structure of biological nucleic acids. The conformations of the furanose ring can be analytically described using the concept of pseudorotation, and for RNA and DNA they are dominated by the C2'-endo and C3'-endo conformers. While the free energy difference between these two conformers can be inferred from NMR measurements, a free energy landscape of the complete pseudorotation cycle of nucleic acids in solution has remained elusive. Here, we describe a new free energy calculation method for molecular dynamics (MD) simulations using the two pseudorotation parameters directly as the collective variables. To validate our approach, we calculated the free energy surface of ribose pseudorotation in guanosine and 2'-deoxyguanosine. The calculated free energy landscape reveals not only the relative stability of the different pseudorotation conformers, but also the main transition path between the stable conformations. Applying this method to a standard A-form RNA duplex uncovered the expected minimum at the C3'-endo state. However, at a 2'-5' linkage, the minimum shifts to the C2'-endo conformation. The free energy of the C3'-endo conformation is 3 kcal/mol higher due to a weaker hydrogen bond and a reduced base stacking interaction. Unrestrained MD simulations suggest that the conversion from C3'-endo to C2'-endo and vice versa is on the nanosecond and microsecond time scale, respectively. These calculations suggest that 2'-5' linkages may enable folded RNAs to sample a wider spectrum of their pseudorotation conformations.

  12. Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics

    PubMed Central

    Granata, Daniele; Camilloni, Carlo; Vendruscolo, Michele; Laio, Alessandro

    2013-01-01

    The use of free-energy landscapes rationalizes a wide range of aspects of protein behavior by providing a clear illustration of the different states accessible to these molecules, as well as of their populations and pathways of interconversion. The determination of the free-energy landscapes of proteins by computational methods is, however, very challenging as it requires an extensive sampling of their conformational spaces. We describe here a technique to achieve this goal with relatively limited computational resources by incorporating nuclear magnetic resonance (NMR) chemical shifts as collective variables in metadynamics simulations. As in this approach the chemical shifts are not used as structural restraints, the resulting free-energy landscapes correspond to the force fields used in the simulations. We illustrate this approach in the case of the third Ig-binding domain of protein G from streptococcal bacteria (GB3). Our calculations reveal the existence of a folding intermediate of GB3 with nonnative structural elements. Furthermore, the availability of the free-energy landscape enables the folding mechanism of GB3 to be elucidated by analyzing the conformational ensembles corresponding to the native, intermediate, and unfolded states, as well as the transition states between them. Taken together, these results show that, by incorporating experimental data as collective variables in metadynamics simulations, it is possible to enhance the sampling efficiency by two or more orders of magnitude with respect to standard molecular dynamics simulations, and thus to estimate free-energy differences among the different states of a protein with a kBT accuracy by generating trajectories of just a few microseconds. PMID:23572592

  13. The influence of flash lamp annealing on the minority carrier lifetime of Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Kissinger, G.; Kot, D.; Sattler, A.

    2014-02-01

    Flash lamp annealing of moderately B-doped CZ silicon wafers for 20 ms with a normalized irradiance of about 0.9 was used to efficiently suppress oxygen precipitation during subsequent thermal processing. In this way, the minority carrier lifetime measured at high injection level by microwave-detected photo-conductance decay (μ-PCD) was increased from about 30 microseconds to about 300 microseconds after a thermal process consisting of 780 °C 3 h + 1000 °C 16 h. The grown-in oxide precipitate nuclei were shrunken to a subcritical size during the flash lamp anneal which prevents further growth during subsequent thermal processing.

  14. Analysis of Spark-Ignition Engine Knock as Seen in Photographs Taken at 200,000 Frames Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D; Olsen, H Lowell; Logan, Walter O , Jr; Osterstrom, Gordon E

    1946-01-01

    A motion picture of the development of knock in a spark-ignition engine is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs per second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs per second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second.

  15. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  16. Time dependent and temperature dependent properties of the forward voltage characteristic of InGaN high power LEDs

    NASA Astrophysics Data System (ADS)

    Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.

    2017-03-01

    Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate (IMS), giving a comprehensive picture of the transient behavior of the forward voltage of this type of high power LED.

  17. The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure.

    PubMed

    Lu, J; Lin, C L; Tang, C; Ponder, J W; Kao, J L; Cistola, D P; Li, E

    1999-03-05

    The structure and dynamics of rat apo-cellular retinol binding protein II (apo-CRBP II) in solution has been determined by multidimensional NMR analysis of uniformly enriched recombinant rat 13C, 15N-apo-CRBP II and 15N-apo-CRBP II. The final ensemble of 24 NMR structures has been calculated from 3274 conformational restraints or 24.4 restraints/residue. The average root-mean-square deviation of the backbone atoms for the final 24 structures relative to their mean structure is 1.06 A. Although the average solution structure is very similar to the crystal structure, it differs at the putative entrance to the binding cavity, which is formed by the helix-turn-helix motif, the betaC-betaD turn and the betaE-betaF turn. The mean coordinates of the main-chain atoms of amino acid residues 28-38 are displaced in the solution structure relative to the crystal structure. The side-chain of F58, located on the betaC-betaD turn, is reoriented such that it interacts with L37 and no longer blocks entry into the ligand-binding pocket. Residues 28-35, which form the second helix of the helix-turn-helix motif in the crystal structure, do not exhibit a helical conformation in the solution structure. The solution structure of apo-CRBP II exhibits discrete regions of backbone disorder which are most pronounced at residues 28-32, 37-38 and 73-76 in the betaE-betaF turn as evaluated by the consensus chemical shift index, the root-mean-square deviation, amide 1H exchange rates and 15N relaxation studies. These studies indicate that fluctuations in protein conformation occur on the microseconds to ms time-scale in these regions of the protein. Some of these exchange processes can be directly observed in the three-dimensional 15N-resolved NOESY spectrum. These results suggest that in solution, apo-CRBP II undergoes conformational changes on the microseconds to ms time-scale which result in increased access to the binding cavity. Copyright 1999 Academic Press.

  18. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.

    PubMed

    Geng, Yan; D'Aleo, Anthony; Inada, Ko; Cui, Lin-Song; Kim, Jong Uk; Nakanotani, Hajime; Adachi, Chihaya

    2017-12-22

    A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state ( 3 LE) and charge-transfer triplet state ( 3 CT) to the charge-transfer singlet state ( 1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct single-molecule dynamic detection of chemical reactions.

    PubMed

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  20. The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien

    2014-11-01

    Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.

  1. Local conformational dynamics in alpha-helices measured by fast triplet transfer.

    PubMed

    Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas

    2009-01-27

    Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.

  2. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  3. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests

  4. Improvements in High Speed, High Resolution Dynamic Digital Image Correlation for Experimental Evaluation of Composite Drive System Components

    NASA Technical Reports Server (NTRS)

    Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert

    2013-01-01

    Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.

  5. Dynamic Fault Detection Chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primarymore » turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.« less

  6. Effect of the N-terminal residues on the quaternary dynamics of human adult hemoglobin

    NASA Astrophysics Data System (ADS)

    Chang, Shanyan; Mizuno, Misao; Ishikawa, Haruto; Mizutani, Yasuhisa

    2016-05-01

    The protein dynamics of human hemoglobin following ligand photolysis was studied by time-resolved resonance Raman spectroscopy. The time-resolved spectra of two kinds of recombinant hemoglobin expressed in Escherichia coli, normal recombinant hemoglobin and the α(V1M)/β(V1M) double mutant, were compared with those of human adult hemoglobin (HbA) purified from blood. A frequency shift of the iron-histidine stretching [ν(Fe-His)] band was observed in the time-resolved spectra of all three hemoglobin samples, indicative of tertiary and quaternary changes in the protein following photolysis. The spectral changes of the α(V1M)/β(V1M) double mutant were distinct from those of HbA in the tens of microseconds region, whereas the spectral changes of normal recombinant hemoglobin were similar to those of HbA isolated from blood. These results demonstrated that a structural change in the N-termini is involved in the second step of the quaternary structure change of hemoglobin. We discuss the implications of these results for understanding the allosteric pathway of HbA.

  7. Surface state-dominated photoconduction and THz-generation in topological Bi2Te2Se-nanowires

    NASA Astrophysics Data System (ADS)

    Seifert, Paul; Vaklinova, Kristina; Kern, Klaus; Burghard, Marko; Holleitner, Alexander

    Topological insulators constitute a fascinating class of quantum materials with non-trivial, gapless states on the surface and trivial, insulating bulk states. In revealing the optoelectronic dynamics in the whole range from femto- to microseconds, we demonstrate that the long surface lifetime of Bi2Te2Se-nanowires allows to access the surface states by a pulsed photoconduction scheme and that there is a prevailing bolometric response of the surface states. The interplay of the surface state dynamics on the different timescales gives rise to a surprising physical property of Bi2Te2Se-nanowires: their pulsed photoconductance changes polarity as a function of laser power. Moreover, we show that single Bi2Te2Se-nanowires can be used as THz-generators for on-chip high-frequency circuits at room temperature. Our results open the avenue for single Bi2Te2Se-nanowires as active modules in optoelectronic high-frequency and THz-circuits. We acknowledge financial support by the ERC Grant NanoReal (n306754).

  8. Direct single-molecule dynamic detection of chemical reactions

    PubMed Central

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N.; Zhang, Deqing; Guo, Xuefeng

    2018-01-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry. PMID:29487914

  9. Ion Dynamic Capture Experiments With The High Performance Antiproton Trap (HiPAT)

    NASA Technical Reports Server (NTRS)

    Martin, James; Lewis, Raymond; Chakrabarti, Suman; Sims, William H.; Pearson, J. Boise; Fant, Wallace E.

    2002-01-01

    To take the first step towards using the energy produced from the matter-antimatter annihilation for propulsion applications, the NASA Marshall Space Flight Center (MSFC) Propulsion Research Center (PRC) has initiated a research activity examining the storage of low energy antiprotons. The High Performance Antiproton Trap (HiPAT) is an electromagnetic system (Penning-Malmberg design) consisting of a 4 Tesla superconductor, a high voltage electrode confinement system, and an ultra high vacuum test section. It has been designed with an ultimate goal of maintaining 10(exp 12) charged particles with a half-life of 18 days. Currently, this system is being evaluated experimentally using normal matter ions that are cheap to produce, relatively easy to handle, and provide a good indication of overall trap behavior (with the exception of assessing annihilation losses). The ions are produced via a positive hydrogen ion source and transported to HiPAT in a beam line equipped with electrostatic optics. The optics serve to both focus and gate the incoming ions, providing microsecond-timed beam pulses that are dynamically captured by cycling the HiPAT forward containment field like a "trap door". Initial dynamic capture experiments have been successfully performed with beam energy and currents set to 1.9 kV and 23 micro-amps, respectively. At these settings up to 2x10(exp 9) ions have been trapped during a single dynamic cycle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Min; Yu, Yun; Hu, Keke

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less

  11. Design and application of a new control system for tokamak ECRH power supply

    NASA Astrophysics Data System (ADS)

    Hao, Xu; Zhang, Jian; Huang, Yiyun

    2016-03-01

    The biggest challenge of designing and building tokamak electron cyclotron resonance heating (ECRH) pulse step modulation (PSM) power supply is satisfying its required output voltage rising time to be less than 100 µs while suppressing the voltage overshoot to be no more than 1%. To fulfill the two requirements, a new control strategy with startup time in microsecond range is proposed in this paper, and a new control system to realize the control strategy is introduced. The control system was built and tested on 60 kV/50 A ECRH power supply. The experimental results indicate that the control system can restrain the overshoot effectively, increase response speed, and obviously improve the dynamic characteristics of the PSM power supply system. Thus, the proposed control system helps the PSM power supply to meet the design specifications.

  12. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule.

    PubMed

    Shi, Haosen; Song, Youjian; Wang, Chingyue; Zhao, Luming; Hu, Minglie

    2018-04-01

    In this work, we study the timing instability of a scalar twin-pulse soliton molecule generated by a passively mode-locked Er-fiber laser. Subfemtosecond precision relative timing jitter characterization between the two solitons composing the molecule is enabled by the balanced optical cross-correlation (BOC) method. Jitter spectral density reveals a short-term (on the microsecond to millisecond timescale) random fluctuation of the pulse separation even in the robust stationary soliton molecules. The root-mean-square (rms) timing jitter is on the order of femtoseconds depending on the pulse separation and the mode-locking regime. The lowest rms timing jitter is 0.83 fs, which is observed in the dispersion managed mode-locking regime. Moreover, the BOC method has proved to be capable of resolving the soliton interaction dynamics in various vibrating soliton molecules.

  13. High voltage and current, gate assisted, turn-off thyristor development

    NASA Technical Reports Server (NTRS)

    Nowalk, T. P.; Brewster, J. B.; Kao, Y. C.

    1972-01-01

    An improved high speed power switch with unique turn-off capability was developed. This gate assisted turn-off thyristor (GATT) was rated 1000 volts and 100 amperes with turn-off times of 2 microseconds. Fifty units were delivered for evaluation. In addition, test circuits designed to relate to the series inverter application were built and demonstrated. In the course of this work it was determined that the basic device design is adequate to meet the static characteristics and dynamic turn-off specification. It was further determined that the turn-on specification is critically dependent on the gate drive circuit due to the distributive nature of the cathode-gate geometry. Future work should emphasize design modifications which reduce the gate current required for fast turn-on, thereby opening the way to higher power (current) devices.

  14. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    PubMed

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Toll-Like Receptor-9-Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2011-07-01

    Molecular Dynamics Simulations. Theoretical structural models were obtained from molecular dynamics simulations using explicit solvation by...with AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance restraints with a molecular dynamic ...Overlay of NMR restrained structure (red) with theoretical molecular dynamic simulated annealing structure (blue). Energetic stability of the 9-mer

  16. Current-limiting and ultrafast system for the characterization of resistive random access memories.

    PubMed

    Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X

    2016-06-01

    A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.

  17. Burn Propagation in a PBX 9501 Thermal Explosion

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  18. Comparison of three different laser systems for application in dentistry

    NASA Astrophysics Data System (ADS)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  19. Joshua Vermaas | NREL

    Science.gov Websites

    molecular dynamics simulations to explore biological interfaces, such as those found at the cell membrane or in lignocellulosic biomass. In particular, molecular dynamics can see in molecular detail the research toward fruitful results. Areas of Expertise Molecular dynamics Compound parameterization

  20. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent

    DTIC Science & Technology

    2012-01-01

    molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water

  1. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.

    PubMed

    Carvalho, Henrique F; Barbosa, Arménio J M; Roque, Ana C A; Iranzo, Olga; Branco, Ricardo J F

    2017-01-01

    Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be introduced to some useful open-source computational tools, including the GROMACS molecular dynamics simulation software package and ProDy for protein structural dynamics analysis.

  2. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    DTIC Science & Technology

    2009-11-01

    dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics

  3. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    NASA Astrophysics Data System (ADS)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  4. Analysis of Spark-Ignition Engine Knock as Seen in Photographs Taken at 200,000 Frames Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D.; Olsen, H. Lowell; Logan, Walter O., Jr.; Osterstrom, Gordon E

    1946-01-01

    A motion picture of the development of knock in a spark-ignition engine, is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs a second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs a second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second. The photographs taken at 200,000 frames per second are analyzed and the conclusion is made that the type of knock in the spark-ignition engine involving violent gas vibration originates as self-propagating disturbance starting at a point in the.burn1ig or autoigniting gases and spreading out from that point through the incompletely burned gases at a rate as high as 6800 feet per second, or about twice the speed of sound in the burned gases. Apparent formation of free carbon particles in both the burning and the burned gas is observed within 10 microseconds after passage of the knock disturbance through the gases.

  5. The "Collisions Cube" Molecular Dynamics Simulator.

    ERIC Educational Resources Information Center

    Nash, John J.; Smith, Paul E.

    1995-01-01

    Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)

  6. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange

    DTIC Science & Technology

    2010-01-01

    formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All

  7. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Membrane insertion profiles of peptides probed by molecular dynamics simulations In-Chul Yeh,* Mark A. Olson,# Michael S. Lee,*#§ and Anders...a methodology based on molecular dynamics simulation techniques to probe the insertion profiles of small peptides across the membrane interface. The...profiles of peptides probed by molecular dynamics simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  8. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J

  9. Two independent measurements of Debye lengths in doped nonpolar liquids.

    PubMed

    Prieve, D C; Hoggard, J D; Fu, R; Sides, P J; Bethea, R

    2008-02-19

    Electric current measurements were performed between 2.5 cm x 7.5 cm parallel-plate electrodes separated by 1.2 mm of heptane doped with 0-15% w/w poly(isobutylene succinimide) (PIBS) having a molecular weight of about 1700. The rapid (microsecond) initial charging of the capacitor can be used to infer the dielectric constant of the solution. The much slower decay of current arising from the polarization of electrodes depends on the differential capacitance of the diffuse clouds of charge carriers accumulating next to each electrode and on the ohmic resistance of the fluid. Using the Gouy-Chapman model for the differential capacitance, Debye lengths of 80-600 nm were deduced that decrease with increasing concentration of PIBS. Values of the Debye lengths were confirmed by performing independent measurements of double-layer repulsion between a 6 microm polystyrene (PS) latex sphere and a PS-coated glass plate using total internal reflection microscopy in the same solutions. The charge carriers appear to be inverted PIBS micelles having apparent Stokes diameters of 20-40 nm. Dynamic light scattering reveals a broad distribution of sizes having an intensity-averaged diameter of 15 nm. This smaller size might arise (1) from overestimating the electrophoretic mobility of micelles by treating them as point charges or (2) because charged micelles are larger on average than uncharged micelles. When Faradaic reactions and zeta potentials on the electrodes can be neglected, such current versus time experiments yield values for the Debye length and ionic strength with less effort than force measurements. To obtain the concentration of charge carriers from measurements of conductivity, the mobility of the charge carriers must be known.

  10. 2011 Quantum Control of Light & Matter Gordon Research Conference (July 31-August 5, 2011, Mount Holyoke College, South Hadley, MA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Weinacht

    2011-08-05

    Quantum control of light and matter is the quest to steer a physical process to a desirable outcome, employing constructive and destructive interference. Three basic questions address feasibility of quantum control: (1) The problem of controllability, does a control field exist for a preset initial and target state; (2) Synthesis, constructively finding the field that leads to the target; and (3) Optimal Control Theory - optimizing the field that carries out this task. These continue to be the fundamental theoretical questions to be addressed in the conference. How to realize control fields in the laboratory is an ongoing challenge. Thismore » task is very diverse viewing the emergence of control scenarios ranging from attoseconds to microseconds. How do the experimental observations reflect on the theoretical framework? The typical arena of quantum control is an open environment where much of the control is indirect. How are control scenarios realized in dissipative open systems? Can new control opportunities emerge? Can one null decoherence effects? An ideal setting for control is ultracold matter. The initial and final state can be defined more precisely. Coherent control unifies many fields of physical science. A lesson learned in one field can reflect on another. Currently quantum information processing has emerged as a primary target of control where the key issue is controlling quantum gate operation. Modern nonlinear spectroscopy has emerged as another primary field. The challenge is to unravel the dynamics of molecular systems undergoing strong interactions with the environment. Quantum optics where non-classical fields are to be generated and employed. Finally, coherent control is the basis for quantum engineering. These issues will be under the limelight of the Gordon conference on Quantum Control of Light and Matter.« less

  11. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.

    PubMed

    Reid, Keon A; Davis, Caitlin M; Dyer, R Brian; Kindt, James T

    2018-03-01

    Antimicrobial peptides (AMPs) act as host defenses against microbial pathogens. Here we investigate the interactions of SVS-1 (KVKVKVKV d P l PTKVKVKVK), an engineered AMP and anti-cancer β-hairpin peptide, with lipid bilayers using spectroscopic studies and atomistic molecular dynamics simulations. In agreement with literature reports, simulation and experiment show preferential binding of SVS-1 peptides to anionic over neutral bilayers. Fluorescence and circular dichroism studies of a Trp-substituted SVS-1 analogue indicate, however, that it will bind to a zwitterionic DPPC bilayer under high-curvature conditions and folds into a hairpin. In bilayers formed from a 1:1 mixture of DPPC and anionic DPPG lipids, curvature and lipid fluidity are also observed to promote deeper insertion of the fluorescent peptide. Simulations using the CHARMM C36m force field offer complementary insight into timescales and mechanisms of folding and insertion. SVS-1 simulated at an anionic mixed POPC/POPG bilayer folded into a hairpin over a microsecond, the final stage in folding coinciding with the establishment of contact between the peptide's valine sidechains and the lipid tails through a "flip and dip" mechanism. Partial, transient folding and superficial bilayer contact are seen in simulation of the peptide at a zwitterionic POPC bilayer. Only when external surface tension is applied does the peptide establish lasting contact with the POPC bilayer. Our findings reveal the influence of disruption to lipid headgroup packing (via curvature or surface tension) on the pathway of binding and insertion, highlighting the collaborative effort of electrostatic and hydrophobic interactions on interaction of SVS-1 with lipid bilayers. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Free Energy Landscape of Pseudorotation in 3′–5′ and 2′–5′ Linked Nucleic Acids

    PubMed Central

    2014-01-01

    The five-membered furanose ring is a central component of the chemical structure of biological nucleic acids. The conformations of the furanose ring can be analytically described using the concept of pseudorotation, and for RNA and DNA they are dominated by the C2′-endo and C3′-endo conformers. While the free energy difference between these two conformers can be inferred from NMR measurements, a free energy landscape of the complete pseudorotation cycle of nucleic acids in solution has remained elusive. Here, we describe a new free energy calculation method for molecular dynamics (MD) simulations using the two pseudorotation parameters directly as the collective variables. To validate our approach, we calculated the free energy surface of ribose pseudorotation in guanosine and 2′-deoxyguanosine. The calculated free energy landscape reveals not only the relative stability of the different pseudorotation conformers, but also the main transition path between the stable conformations. Applying this method to a standard A-form RNA duplex uncovered the expected minimum at the C3′-endo state. However, at a 2′–5′ linkage, the minimum shifts to the C2′-endo conformation. The free energy of the C3′-endo conformation is 3 kcal/mol higher due to a weaker hydrogen bond and a reduced base stacking interaction. Unrestrained MD simulations suggest that the conversion from C3′-endo to C2′-endo and vice versa is on the nanosecond and microsecond time scale, respectively. These calculations suggest that 2′–5′ linkages may enable folded RNAs to sample a wider spectrum of their pseudorotation conformations. PMID:24499340

  13. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.

    PubMed

    Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-09-13

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.

  14. Small Ion Channel Linking Molecular Simulations and Electrophysiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2017-01-01

    Ion channels are pore-forming protein assemblies that mediate the transport of small ions across cell membranes. Otherwise, membrane bilayers would be almost impermeable to ions incapable to traverse the low dielectric constant, hydrophobic membrane core. Ion channels are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses, cardiac functions, muscle contraction and apoptosis. On the other extreme of biological complexity, viral ion channels (viroporins) influence many stages of the virus infection cycle either through regulating virus replication, such as entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. Ion channels were crucial components of protocells. Their emergence facilitated adaptation of nascent life to different environmental conditions. The earliest ion channels must have been much simpler than most of their modern ancestors. Viral channels are among only a few naturally occurring models to study the structure, function and evolution of primordial channels. Experimental studies of these properties are difficult and often unreliable. In principle, computational methods, and molecular dynamics (MD) simulations in particular, can aid in providing information about both the structure and the function of ion channels. However, MD suffers from its own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. It is, therefore, essential to determine the reliability of MD simulations. We propose to do so on the basis of two criteria. One is channel stability on time scales that extend for several microseconds or longer. The other is the ability to reproduce the measured ionic conductance as a function of applied voltage. If both the stability and the calculated ionic conductance are satisfactory it will greatly increase our confidence that the structure and the function of a channel are described sufficiently accurately. To our knowledge, long time scale stability (approx.10 micro-sec) and the correct electrophysiology have been shown so far for only one channel - the synthetic LS3 hexamer). In this presentation, this approach will be discussed in application to two viral channels - Vpu, encoded by the HIV-1 genome and p7 of hepatitis C.

  15. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  16. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  17. Parallel Fast Multipole Method For Molecular Dynamics

    DTIC Science & Technology

    2007-06-01

    Parallel Fast Multipole Method For Molecular Dynamics THESIS Reid G. Ormseth, Captain, USAF AFIT/GAP/ENP/07-J02 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GAP/ENP/07-J02 Parallel Fast Multipole Method For Molecular Dynamics THESIS Presented to the Faculty Department of...has also been provided by ‘The Art of Molecular Dynamics Simulation ’ by Dennis Rapaport. This work is the clearest treatment of the Fast Multipole

  18. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom

  19. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  20. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  1. Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex

    PubMed Central

    Prochniewicz, Ewa; Chin, Harvey F.; Henn, Arnon; Hannemann, Diane E.; Olivares, Adrian O.; Thomas, David D.; De La Cruz, Enrique M.

    2010-01-01

    SUMMARY We have used transient phosphorescence anisotropy (TPA) to detect the microsecond rotational dynamics of erythrosin iodoacetamide (ErIA)-labeled actin strongly bound to single-headed fragments of muscle myosin (muscle S1) and non-muscle myosin V (MV). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at sub-stoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects; muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly, and muscle myosin more slowly, to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound ErIA; while muscle S1 increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex is determined by the isoform of the bound myosin, in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. PMID:19962990

  2. Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle.

    PubMed

    Zhou, Min; Yu, Yun; Hu, Keke; Xin, Huolin L; Mirkin, Michael V

    2017-03-07

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrO x NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. High-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.

  3. Interstellar scintillation observations for PSR B0355+54

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Lee, K. J.; Hao, L. F.; Wang, H. G.; Liu, Z. Y.; Yue, Y. L.; Yuan, J. P.; Li, Z. X.; Wang, M.; Dong, J.; Tan, J. J.; Chen, W.; Bai, J. M.

    2018-06-01

    In this paper, we report our investigation of pulsar scintillation phenomena by monitoring PSR B0355+54 at 2.25 GHz for three successive months using the Kunming 40-m radio telescope. We measured the dynamic spectrum, the two-dimensional correlation function and the secondary spectrum. These observations have a high signal-to-noise ratio (S/N ≥ 100). We detected scintillation arcs, which are rarely observable using such a small telescope. The sub-microsecond scale width of the scintillation arc indicates that the transverse scale of the structures on the scattering screen is as compact as astronomical unit size. Our monitoring shows that the scintillation bandwidth, the time-scale and the arc curvature of PSR B0355+54 were varying temporally. A plausible explanation would need to invoke a multiple-scattering-screen or multiple-scattering-structure scenario, in which different screens or ray paths dominate the scintillation process at different epochs.

  4. Collisions of Ir oxide nanoparticles with carbon nanopipettes: Experiments with one nanoparticle

    DOE PAGES

    Zhou, Min; Yu, Yun; Hu, Keke; ...

    2017-02-03

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less

  5. Submillisecond Dynamics of Mastoparan X Insertion into Lipid Membranes.

    PubMed

    Schuler, Erin E; Nagarajan, Sureshbabu; Dyer, R Brian

    2016-09-01

    The mechanism of protein insertion into a lipid bilayer is poorly understood because the kinetics of this process is difficult to measure. We developed a new approach to study insertion of the antimicrobial peptide Mastoparan X into zwitterionic lipid vesicles, using a laser-induced temperature-jump to initiate insertion on the microsecond time scale and infrared and fluorescence spectroscopies to follow the kinetics. Infrared probes the desolvation of the peptide backbone and yields biphasic kinetics with relaxation lifetimes of 12 and 117 μs, whereas fluorescence probes the intrinsic tryptophan residue located near the N-terminus and yields a single exponential phase with a lifetime of 440 μs. Arrhenius analysis of the temperature-dependent rates yields an activation energy for insertion of 96 kJ/mol. These results demonstrate the complexity of the insertion process and provide mechanistic insight into the interplay between peptides and the lipid bilayer required for peptide transport across cellular membranes.

  6. Vibration Measurement Method of a String in Transversal Motion by Using a PSD.

    PubMed

    Yang, Che-Hua; Wu, Tai-Chieh

    2017-07-17

    A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string's natural frequency, increase while the speed of motion increases.

  7. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  8. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  9. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <

  10. Measurement of resistance switching dynamics in copper sulfide memristor structures

    NASA Astrophysics Data System (ADS)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  11. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema

    Lagrange, Thomas; Reed, Bryan

    2018-01-26

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  12. Solution NMR studies of Chlorella virus DNA ligase-adenylate.

    PubMed

    Piserchio, Andrea; Nair, Pravin A; Shuman, Stewart; Ghose, Ranajeet

    2010-01-15

    DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3'-OH/5'-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone (15)N spin relaxation and (15)N,(1)H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5'-phosphate. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagrange, Thomas; Reed, Bryan

    2014-04-03

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shapemore » real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.« less

  14. Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins

    NASA Astrophysics Data System (ADS)

    Seyler, Sean L.

    In a typical living cell, millions to billions of proteins--nanomachines that fluctuate and cycle among many conformational states--convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)--an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project--developing a hybrid atomistic-continuum method--is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.

  15. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  16. Dynamic Structure of a Molecular Liquid S0.5Cl0.5: Ab initio Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Shimakura, Hironori; Kawakita, Yukinobu; Shimojo, Fuyuki; Yao, Makoto

    2013-07-01

    The static and dynamic structures of a molecular liquid S0.5Cl0.5 consisting of Cl--S--S--Cl (S2Cl2) type molecules are studied by means of ab initio molecular dynamics simulations. Both the calculated static and dynamic structure factors are in good agreement with experimental results. The dynamic structures are discussed based on van-Hove distinct correlation functions, molecular translational mean-square displacements (TMSD) and rotational mean-square displacements (RMSD). In the TMSD and RMSD, there are ballistic and diffusive regimes in the sub-picosecond and picosecond time regions, respectively. These time scales are consistent with the decay time observed experimentally. The interaction between molecules in the liquid is also discussed in comparison with that in another liquid chalcogen--halogen system Se0.5Cl0.5.

  17. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study

    NASA Astrophysics Data System (ADS)

    Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.

    2005-03-01

    The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.

  18. The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations

    PubMed Central

    Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka

    2011-01-01

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  19. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  20. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  1. Dynamical Phase Transition in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Mallick, Ritam

    2018-05-01

    We have studied the dynamical evolution of the shock in a neutron star (NS). The conversion of nuclear to quark matter (QM) is assumed to take place at the shock discontinuity. The density and pressure discontinuity is studied both spatially and temporally as it starts near the center of the star and moves toward the surface. Polytropic equations of state (EoS), which mimic original nuclear and QM EoS, are used to study such dynamical phase transition (PT). Solving relativistic hydrodynamic equations for a spherically symmetric star, we study the PT, assuming a considerable density discontinuity near the center. We find that as the shock wave propagates outward, its intensity decreases with time; however, the shock velocity peaks up and reaches a value close to that of light. Such fast shock velocity indicates rapid PT in NS taking place on a timescale of some 10s of microseconds. Such a result is quite interesting, and it differs from previous calculations that the PT in NSs takes at least some 10s of milliseconds. Rapid PT can have significant observational significance, because such fast PT would imply rather strong gravitational wave (GW) signals that are rather short lived. Such short-lived GW signals would be accompanied with short-lived gamma-ray bursts and neutrino signals originating from the neutrino and gamma-ray generation from the PT of nuclear matter to QM.

  2. Conformational exchange in pseudoazurin: different kinds of microsecond to millisecond dynamics characterized by their pH and buffer dependence using 15N NMR relaxation.

    PubMed

    Hass, Mathias A S; Vlasie, Monica D; Ubbink, Marcellus; Led, Jens J

    2009-01-13

    The dynamics of the reduced form of the blue copper protein pseudoazurin from Alcaligenes faecalis S-6 was investigated using (15)N relaxation measurements with a focus on the dynamics of the micro- to millisecond time scale. Different types of conformational exchange processes are observed in the protein on this time scale. At low pH, the protonation of the C-terminal copper-ligated histidine, His81, is observed. A comparison of the exchange rates in the presence and absence of added buffers shows that the protonation is the rate-limiting step at low buffer concentrations. This finding agrees with previous observations for other blue copper proteins, e.g., amicyanin and plastocyanin. However, in contrast to plastocyanin but similar to amicyanin, a second conformational exchange between different conformations of the protonated copper site is observed at low pH, most likely triggered by the protonation of His81. This process has been further characterized using CPMG dispersion methods and is found to occur with a rate of a few thousands per second. Finally, micro- to millisecond motions are observed in one of the loop regions and in the alpha-helical regions. These motions are unaffected by pH and are unrelated to the conformational changes in the active site of pseudoazurin.

  3. Development of non-volatile semiconductor memory

    NASA Technical Reports Server (NTRS)

    Heikkila, W. W.

    1979-01-01

    A 256 word by 8-bit random access memory chip was developed utilizing p channel, metal gate metal-nitride-oxide-silicon (MNOS) technology; with operational characteristics of a 2.5 microsecond read cycle, a 6.0 microsecond write cycle, 800 milliwatts of power dissipation; and retention characteristics of 10 to the 8th power read cycles before data refresh and 5000 hours of no power retention. Design changes were implemented to reduce switching currents that caused parasitic bipolar transistors inherent in the MNOS structure to turn on. Final wafer runs exhibited acceptable yields for a die 250 mils on a side. Evaluation testing was performed on the device in order to determine the maturity of the device. A fixed gate breakdown mechanism was found when operated continuously at high temperature.

  4. Benchmarking hardware architecture candidates for the NFIRAOS real-time controller

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre

    2014-07-01

    As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.

  5. Precise terrestrial time: A means for improved ballistic missile guidance analysis

    NASA Technical Reports Server (NTRS)

    Ehrsam, E. E.; Cresswell, S. A.; Mckelvey, G. R.; Matthews, F. L.

    1978-01-01

    An approach developed to improve the ground instrumentation time tagging accuracy and adapted to support the Minuteman ICBM program is desired. The Timing Insertion Unit (TIU) technique produces a telemetry data time tagging resolution of one tenth of a microsecond, with a relative intersite accuracy after corrections and velocity data (range, azimuth, elevation and range rate) also used in missile guidance system analysis can be correlated to within ten microseconds of the telemetry guidance data. This requires precise timing synchronization between the metric and telemetry instrumentation sites. The timing synchronization can be achieved by using the radar automatic phasing system time correlation methods. Other time correlation techniques such as Television (TV) Line-10 and the Geostationary Operational Environmental Satellites (GEOS) terrestial timing receivers are also considered.

  6. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  7. Facial skin resurfacing with a very short-pulsed CO2 laser: beam characterization and initial histological results

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Bell, Thomas; From, Lynn; Schachter, Daniel

    1996-05-01

    The beam characteristics and spot geometry of a short pulsed (15 - 1000 microsecond) carbon- dioxide, multimode laser were measured. At a distance of 1.0 - 3.0 cm from the handpiece the laser produced a 5 mm2 square spot with an even fluence across the entire spot area (Mesa Mode). Human eyelid skin was irradiated both in vivo and ex-vivo immediately after excision with 1, 2, 3, or 4 pulses, a pulse duration of 62.5 microseconds, and at a fluence of 6 J/cm2. H&E stained sections showed an even removal of tissue across the impact site. The depth of thermal damage was measured as 38 micrometer plus or minus 22.7 with a range of 0 - 100 micrometer.

  8. Near-saturated red emitters: four-coordinate copper(i) halide complexes containing 8-(diphenylphosphino)quinoline and 1-(diphenylphosphino)naphthalene ligands.

    PubMed

    Liu, Li-Ping; Li, Qian; Xiang, Song-Po; Liu, Li; Zhong, Xin-Xin; Liang, Chen; Li, Guang Hua; Hayat, Tasawar; Alharbi, Njud S; Li, Fa-Bao; Zhu, Nian-Yong; Wong, Wai-Yeung; Qin, Hai-Mei; Wang, Lei

    2018-06-07

    Recently, highly emissive neutral copper halide complexes have received much attention. Here, a series of four-coordinate mononuclear Cu(i) halide complexes, [CuX(dpqu)(dpna)] (dpqu = 8-(diphenylphosphino)quinoline, dpna = 1-(diphenylphosphino)naphthalene, X = I (1), Br (2) and Cl (3)), were synthesized, and their molecular structures and photophysical properties were investigated. These complexes exhibit near-saturated red emission in the solid state at room temperature and have peak emission wavelengths at 669-691 nm with microsecond lifetimes (τ = 0.46-1.80 μs). Small S1-T1 energy gaps in the solid state indicate that the emission occurs from a thermally activated excited singlet state at ambient temperature. The emission of the complexes 1-3 mainly originates from MLCT transition. The solution-processed devices of complex 1 exhibit stable red emission with a CIE(x, y) of (0.62, 0.38) for a doped device and (0.63, 0.37) for a non-doped device.

  9. Integrated nanopore sensing platform with sub-microsecond temporal resolution

    PubMed Central

    Rosenstein, Jacob K; Wanunu, Meni; Merchant, Christopher A; Drndic, Marija; Shepard, Kenneth L

    2012-01-01

    Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. PMID:22426489

  10. Structure and Dynamics of End-to-End Loop Formation of the Penta-Peptide Cys-Ala-Gly-Gln-Trp in Implicit Solvents

    DTIC Science & Technology

    2009-01-01

    implicit solvents on peptide structure and dynamics , we performed extensive molecular dynamics simulations on the penta-peptide Cys-Ala-Gly-Gln-Trp. Two...end-to-end distances and dihedral angles obtained from molecular dynamics simulations with implicit solvent models were in a good agreement with those...to maintain the temperature of the systems. Introduction Molecular dynamics (MD) simulation techniques are widely used to study structure and

  11. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  12. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  13. How Dynamic Visualization Technology Can Support Molecular Reasoning

    ERIC Educational Resources Information Center

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  14. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC).

    PubMed

    Galindo-Murillo, Rodrigo; Roe, Daniel R; Cheatham, Thomas E

    2015-05-01

    The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  15. Molecular motors interacting with their own tracks

    NASA Astrophysics Data System (ADS)

    Artyomov, Max N.; Morozov, Alexander Yu.; Kolomeisky, Anatoly B.

    2008-04-01

    Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.

  16. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  17. Easy GROMACS: A Graphical User Interface for GROMACS Molecular Dynamics Simulation Package

    NASA Astrophysics Data System (ADS)

    Dizkirici, Ayten; Tekpinar, Mustafa

    2015-03-01

    GROMACS is a widely used molecular dynamics simulation package. Since it is a command driven program, it is difficult to use this program for molecular biologists, biochemists, new graduate students and undergraduate researchers who are interested in molecular dynamics simulations. To alleviate the problem for those researchers, we wrote a graphical user interface that simplifies protein preparation for a classical molecular dynamics simulation. Our program can work with various GROMACS versions and it can perform essential analyses of GROMACS trajectories as well as protein preparation. We named our open source program `Easy GROMACS'. Easy GROMACS can give researchers more time for scientific research instead of dealing with technical intricacies.

  18. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  19. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527

  20. Molecular dynamics simulations of large macromolecular complexes.

    PubMed

    Perilla, Juan R; Goh, Boon Chong; Cassidy, C Keith; Liu, Bo; Bernardi, Rafael C; Rudack, Till; Yu, Hang; Wu, Zhe; Schulten, Klaus

    2015-04-01

    Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

Top