Sample records for microsphere selective internal

  1. Patient Selection and Activity Planning Guide for Selective Internal Radiotherapy With Yttrium-90 Resin Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wan-Yee, E-mail: josephlau@surgery.cuhk.edu.hk; Kennedy, Andrew S.; Department of Biomedical Engineering, North Carolina State University, Raleigh, NC

    Purpose: Selective internal radiotherapy (SIRT) with yttrium-90 ({sup 90}Y) resin microspheres can improve the clinical outcomes for selected patients with inoperable liver cancer. This technique involves intra-arterial delivery of {beta}-emitting microspheres into hepatocellular carcinomas or liver metastases while sparing uninvolved structures. Its unique mode of action, including both {sup 90}Y brachytherapy and embolization of neoplastic microvasculature, necessitates activity planning methods specific to SIRT. Methods and Materials: A panel of clinicians experienced in {sup 90}Y resin microsphere SIRT was convened to integrate clinical experience with the published data to propose an activity planning pathway for radioembolization. Results: Accurate planning is essentialmore » to minimize potentially fatal sequelae such as radiation-induced liver disease while delivering tumoricidal {sup 90}Y activity. Planning methods have included empiric dosing according to degree of tumor involvement, empiric dosing adjusted for the body surface area, and partition model calculations using Medical Internal Radiation Dose principles. It has been recommended that at least two of these methods be compared when calculating the microsphere activity for each patient. Conclusions: Many factors inform {sup 90}Y resin microsphere SIRT activity planning, including the therapeutic intent, tissue and vasculature imaging, tumor and uninvolved liver characteristics, previous therapies, and localization of the microsphere infusion. The influence of each of these factors has been discussed.« less

  2. Current Role of Selective Internal Irradiation With Yttrium-90 Microspheres in the Management of Hepatocellular Carcinoma: A Systematic Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Wan Yee, E-mail: josephlau@cuhk.edu.hk; Lai, Eric C.H.; Leung, Thomas W.T.

    2011-10-01

    Purpose: This article reviews the role of selective internal irradiation (SIR) with yttrium-90 ({sup 90}Y) microspheres for hepatocellular carcinoma (HCC). Methods and Materials: Studies were identified by searching Medline and PubMed databases for articles from 1990 to 2009 using the keywords 'selective internal irradiation,' 'hepatocellular carcinoma,' 'therapeutic embolization,' and 'yttrium-90.' Results: {sup 90}Y microspheres are a safe and well-tolerated therapy for unresectable HCC (median survival range, 7 -21.6 months). The evidence was limited to cohort studies and comparative studies with historical control. {sup 90}Y microspheres have been reported to downstage unresectable HCC to allow for salvage treatments with curative intent,more » act as a bridging therapy before liver transplantation, and treat HCC with curative intent for patients who are not surgical candidates because of comorbidities. Conclusions: {sup 90}Y microsphere is recommended as an option of palliative therapy for large or multifocal HCC without major portal vein invasion or extrahepatic spread. It can also be used for recurrent unresectable HCC, as a bridging therapy before liver transplantation, as a tumor downstaging treatment, and as a curative treatment for patients with associated comorbidities who are not candidates for surgery.« less

  3. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide addedmore » to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO 2 powders indicated that air-dried and sintered spheres were pure CeO 2.« less

  4. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

    PubMed

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-06-01

    ⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.

  5. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on 99mTc-MAA Imaging and Correlation With Treatment Efficacy

    PubMed Central

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-01-01

    Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99mTc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on 99mTc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on 90Y-microsphere PET/CT is an effective method to predict treatment efficacy. PMID:26061323

  6. Road to Silicon Microsphere Fabrication and Mode Coupling

    DTIC Science & Technology

    2014-07-01

    from optical fiber onto a microsphere in whispering gallery mode (courtesy of B. Butkus, Biophotonics International [2...Butkus, Biophotonics International [5]). 2 BACKGROUND SILICON MICROSPHERE FABRICATION METHODS Processes for forming spherical structures exist in...Sensitive DNA Detection.” October 2003. Biophotonics International. http://www.rowland.org/rjf/vollmer/images/biophotonics.pdf [6] James E. McDonald

  7. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal-Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  8. Production of monodisperse cerium oxide microspheres with diameters near 100 µm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  9. Preoperative Y-90 microsphere selective internal radiation treatment for tumor downsizing and future liver remnant recruitment: a novel approach to improving the safety of major hepatic resections.

    PubMed

    Gulec, Seza A; Pennington, Kenneth; Hall, Michael; Fong, Yuman

    2009-01-08

    Extended liver resections are being performed more liberally than ever. The extent of resection of liver metastases, however, is restricted by the volume of the future liver remnant (FLR). An intervention that would both accomplish tumor control and induce compensatory hypertrophy, with good patient tolerability, could improve clinical outcomes. A 53-year-old woman with a history of cervical cancer presented with a large liver mass. Subsequent biopsy indicated poorly differentiated carcinoma with necrosis suggestive of squamous cell origin. A decision was made to proceed with pre-operative chemotherapy and Y-90 microsphere SIRT with the intent to obtain systemic control over the disease, downsize the hepatic lesion, and improve the FLR. A surgical exploration was performed six months after the first SIRT (three months after the second). There was no extrahepatic disease. The tumor was found to be significantly decreased in size with central and peripheral scarring. The left lobe was satisfactorily hypertrophied. A formal right hepatic lobectomy was performed with macroscopic negative margins. Selective internal radiation treatment (SIRT) with yttrium-90 (Y-90) microspheres has emerged as an effective liver-directed therapy with a favorable therapeutic ratio. We present this case report to suggest that the portal vein radiation dose can be substantially increased with the intent of inducing portal/periportal fibrosis. Such a therapeutic manipulation in lobar Y-90 microsphere treatment could accomplish the end points of PVE with avoidance of the concern regarding tumor progression.

  10. Detection of inflammatory cytokines using a fiber optic microsphere immunoassay array

    NASA Astrophysics Data System (ADS)

    Blicharz, Timothy M.; Walt, David R.

    2006-10-01

    A multiplexed fiber optic microsphere-based immunoassay array capable of simultaneously measuring five inflammatory cytokines has been developed. Five groups of amine-functionalized 3.1 micron microspheres were internally encoded with five distinct concentrations of a europium dye and converted to cytokine probes by covalently coupling monoclonal capture antibodies specific for human VEGF, IFN-gamma, RANTES, IP-10, and Eotaxin-3 to the microspheres via glutaraldehyde chemistry. The microspheres were pooled and loaded into a 1 mm diameter fiber optic bundle containing ~50,000 individual etched microwells, producing the multiplexed cytokine immunoassay array. Multiple arrays can be created from a single microsphere pool for high throughput sample analysis. Sandwich fluoroimmunoassays were performed by incubating the probe array in a sample, followed by incubation in a mixture of biotin-labeled detection antibodies that are complementary to the five cytokines. Finally, universal detection of each protein was performed using a fluorescence imaging system after briefly immersing the array in a solution of fluorophore-labeled streptavidin. The multiplexed cytokine array has been shown to respond selectively to VEGF, IFNgamma, RANTES, IP-10, and Eotaxin-3, permitting multiplexed quantitative analysis. Ultimately, the multiplexed cytokine array will be utilized to evaluate the potential of using saliva as a noninvasive diagnostic fluid for pulmonary inflammatory diseases such as asthma.

  11. Bioassay and biomolecular identification, sorting, and collection methods using magnetic microspheres

    DOEpatents

    Kraus, Jr., Robert H.; Zhou, Feng [Los Alamos, NM; Nolan, John P [Santa Fe, NM

    2007-06-19

    The present invention is directed to processes of separating, analyzing and/or collecting selected species within a target sample by use of magnetic microspheres including magnetic particles, the magnetic microspheres adapted for attachment to a receptor agent that can subsequently bind to selected species within the target sample. The magnetic microspheres can be sorted into a number of distinct populations, each population with a specific range of magnetic moments and different receptor agents can be attached to each distinct population of magnetic microsphere.

  12. Production of monodisperse cerium oxide microspheres with diameters near 100 μm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  13. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  14. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres.

    PubMed

    El-Bary, Ahmed Abd; Aboelwafa, Ahmed A; Al Sharabi, Ibrahim M

    2012-03-01

    The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.

  15. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Selective internal radiation therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, James S.; Kennedy, Andrew S.; Thomadsen, Bruce

    2006-10-01

    Introduction: Selective internal radiation therapy (SIRT) is a relatively new commercially available microbrachytherapy technique for treatment of malignant hepatic lesions using {sup 9}Y embedded in resin microspheres, which are infused directly into the hepatic arterial circulation. It is FDA approved for liver metastases secondary to colorectal carcinoma and is under investigation for treatment of other liver malignancies, such as hepatocellular carcinoma and neuroendocrine malignancies. Materials/Methods: A modest number of clinical trials, preclinical animal studies, and dosimetric studies have been reported. Here we review several of the more important results. Results: High doses of beta radiation can be selectively delivered tomore » tumors, resulting in impressive local control and survival rates. Ex vivo analyses have shown that microspheres preferentially cluster around the periphery of tumor nodules with a high tumor:normal tissue ratio of up to 200:1. Toxicity is usually mild, featuring fatigue, anorexia, nausea, abdominal discomfort, and slight elevations of liver function tests. Conclusions: Selective internal radiation therapy represents an effective means of controlling liver metastases from colorectal adenocarcinoma. Clinical trials have demonstrated improved local control of disease and survival with relatively low toxicity. Investigations of SIRT for other hepatic malignancies and in combination with newer chemotherapy agents and targeted biologic therapies are under way or in planning. A well-integrated team involving interventional radiology, nuclear medicine, medical oncology, surgical oncology, medical physics, and radiation oncology is essential for a successful program. Careful selection of patients through the combined expertise of the team can maximize therapeutic efficacy and reduce the potential for adverse effects.« less

  17. Production of 75–150 µm and <75 µm of cerium dioxide microspheres in high yield and throughput using the internal gelation process

    DOE PAGES

    Hunt, Rodney D.; Collins, Jack L.; Johnson, Jared A.; ...

    2017-03-17

    Hundreds of grams of calcined cerium dioxide (CeO 2) microspheres were produced in this paper using the internal gelation process with a focus on 75–150 µm and <75 µm diameter sizes. To achieve these small sizes, a modified internal gelation system was employed, which utilized a two-fluid nozzle, two static mixers for turbulent flow, and 2-ethyl-1-hexanol as the medium for gel formation at 333–338 K. This effort generated over 400 g of 75–150 µm and 300 g of <75 µm CeO 2 microspheres. The typical product yields for the 75–150 µm and <75 µm microspheres that were collected and processedmore » were 72 and 99%, respectively, with a typical throughput of 66–73 g of CeO 2 microspheres per test, which could generate a maximum of 78.6 g of CeO 2. The higher yield of very small cerium spheres led to challenges and modifications, which are discussed in detail. Finally, as expected, when the <75 µm microspheres were targeted, losses to the system increased significantly.« less

  18. Production of 75–150 µm and <75 µm of cerium dioxide microspheres in high yield and throughput using the internal gelation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Rodney D.; Collins, Jack L.; Johnson, Jared A.

    Hundreds of grams of calcined cerium dioxide (CeO 2) microspheres were produced in this paper using the internal gelation process with a focus on 75–150 µm and <75 µm diameter sizes. To achieve these small sizes, a modified internal gelation system was employed, which utilized a two-fluid nozzle, two static mixers for turbulent flow, and 2-ethyl-1-hexanol as the medium for gel formation at 333–338 K. This effort generated over 400 g of 75–150 µm and 300 g of <75 µm CeO 2 microspheres. The typical product yields for the 75–150 µm and <75 µm microspheres that were collected and processedmore » were 72 and 99%, respectively, with a typical throughput of 66–73 g of CeO 2 microspheres per test, which could generate a maximum of 78.6 g of CeO 2. The higher yield of very small cerium spheres led to challenges and modifications, which are discussed in detail. Finally, as expected, when the <75 µm microspheres were targeted, losses to the system increased significantly.« less

  19. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Liu, Li; Li, Hui; Yao, Shouzhuo

    2009-09-01

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  20. Key process parameters to modify the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE PAGES

    Hunt, Rodney Dale; Collins, Jack Lee; Reif, Tyler J.; ...

    2017-08-04

    Recently, an internal gelation study demonstrated that the use of heated urea and hexamethylenetetramine can have a pronounced impact on the porosity and sintering characteristics of cerium dioxide (CeO 2) microspheres. This effort has identified process variables that can significantly change the initial porosity of the CeO 2 microspheres with slight modifications. A relatively small difference in the sample preparation of cerium ammonium nitrate and ammonium hydroxide solution had a large reproducible impact on the porosity and slow pour density of the produced microspheres. Increases in the gelation temperature as small as 0.5 K also produced a noticeable increase inmore » the slow pour density. If the gelation temperature was increased too high, the use of the heated hexamethylenetetramine and urea was no longer observed to be effective in increasing the porosity of the CeO 2 microspheres. In conclusion, the final process variable was the amount of dispersing agent, Span™ 80, which can increase the slow pour density and produce significantly smaller microspheres.« less

  1. Key process parameters to modify the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Rodney Dale; Collins, Jack Lee; Reif, Tyler J.

    Recently, an internal gelation study demonstrated that the use of heated urea and hexamethylenetetramine can have a pronounced impact on the porosity and sintering characteristics of cerium dioxide (CeO 2) microspheres. This effort has identified process variables that can significantly change the initial porosity of the CeO 2 microspheres with slight modifications. A relatively small difference in the sample preparation of cerium ammonium nitrate and ammonium hydroxide solution had a large reproducible impact on the porosity and slow pour density of the produced microspheres. Increases in the gelation temperature as small as 0.5 K also produced a noticeable increase inmore » the slow pour density. If the gelation temperature was increased too high, the use of the heated hexamethylenetetramine and urea was no longer observed to be effective in increasing the porosity of the CeO 2 microspheres. In conclusion, the final process variable was the amount of dispersing agent, Span™ 80, which can increase the slow pour density and produce significantly smaller microspheres.« less

  2. Coupling system to a microsphere cavity

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir (Inventor); Maleki, Lute (Inventor); Yao, Steve (Inventor); Wu, Chi (Inventor)

    2002-01-01

    A system of coupling optical energy in a waveguide mode, into a resonator that operates in a whispering gallery mode. A first part of the operation uses a fiber in its waveguide mode to couple information into a resonator e.g. a microsphere. The fiber is cleaved at an angle .PHI. which causes total internal reflection within the fiber. The energy in the fiber then forms an evanescent field and a microsphere is placed in the area of the evanescent field. If the microsphere resonance is resonant with energy in the fiber, then the information in the fiber is effectively transferred to the microsphere.

  3. Characterization of a Polyamine Microsphere and Its Adsorption for Protein

    PubMed Central

    Wang, Feng; Liu, Pei; Nie, Tingting; Wei, Huixian; Cui, Zhenggang

    2013-01-01

    A novel polyamine microsphere, prepared from the water-in-oil emulsion of polyethylenimine, was characterized. The investigation of scanning electron microscopy showed that the polyamine microsphere is a regular ball with a smooth surface. The diameter distribution of the microsphere is 0.37–4.29 μm. The isoelectric point of the microsphere is 10.6. The microsphere can adsorb proteins through the co-effect of electrostatic and hydrophobic interactions. Among the proteins tested, the highest value of adsorption of microsphere, 127.8 mg·g−1 microsphere, was obtained with lipase. In comparison with other proteins, the hydrophobic force is more important in promoting the adsorption of lipase. The microsphere can preferentially adsorb lipase from an even mixture of proteins. The optimum temperature and pH for the selective adsorption of lipase by the microsphere was 35 °C and pH 7.0. PMID:23344018

  4. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    NASA Astrophysics Data System (ADS)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  5. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  6. Selective transport of microparticles across Peyer's patch follicle-associated M cells from mice and rats.

    PubMed

    Smith, M W; Thomas, N W; Jenkins, P G; Miller, N G; Cremaschi, D; Porta, C

    1995-09-01

    M cells are specialized structures in the Peyer's patch follicle-associated epithelium capable of taking up bacteria, viruses and other pathogens for later presentation to the gut-associated lymphoid tissue. The present work studies how coating microspheres with different proteins affects their ability to be taken up by M cells under near physiological conditions in vivo. The later appearance of microspheres in intestinal lymph has also been measured by flow cytometry. The protein preparations used in these experiments included bovine serum albumin (bSA), human immunoglobulin G (hIgG), secretory immunoglobulin A (hIgA), bovine growth hormone (bGH) and bGH complexed with an IgG antibody raised against bGH (bGH-Ab). Selectivity in binding of these microspheres to M cells, determined by confocal microscopy, was bGH < bSA < hIgG (mice) and bGH < bGH-Ab (rats and mice). A similar selectivity was seen for microsphere entry into M cells (bGH < bSA < hIgG; bGH < bGH-Ab). The appearance of protein-coated microspheres in rat mesenteric lymph showed a similar selectivity to that found for binding and entry into M cells (bGH < bGH-Ab). This latter selectivity was also found for hIgA-coated microspheres (bSA < hIgA). Preservation of transport selectivity throughout transcytosis highlights the unique importance of the M cell surface as being the primary site determining which type of antigen can be presented subsequently to the gut immune system. The possibility that this is a transient or phasic property of the M cell surface and that this could have physiological relevance is also discussed.

  7. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Three Variations in Rabbit Angiographic Stroke Models

    PubMed Central

    Culp, William C.; Woods, Sean D.; Brown, Aliza T.; Lowery, John D.; Hennings, Leah J.; Skinner, Robert D.; Borrelli, Michael J.; Roberson, Paula K.

    2012-01-01

    Purpose To develop angiographic models of embolic stroke in the rabbit using pre-formed clot or microspheres to model clinical situations ranging from transient ischemic events to severe ischemic stroke. Materials and Methods New Zealand White rabbits (N=151) received angiographic access to the internal carotid artery (ICA) from a femoral approach. Variations of emboli type and quantity of emboli were tested by injection into the ICA. These included fresh clots (1.0-mm length, 3–6 h), larger aged clots (4.0-mm length, 3 days), and 2 or 3 insoluble microspheres (700–900 μm). Neurological assessment scores (NAS) were based on motor, sensory, balance, and reflex measures. Rabbits were euthanized at 4, 7, or 24 hours after embolization, and infarct volume was measured as a percent of total brain volume using 2,3,5-triphenyltetrazolium chloride (TTC). Results Infarct volume percent at 24 hours after stroke was lower for rabbits embolized with fresh clot (0.45% ± 0.14%), compared with aged clot (3.52% ± 1.31%) and insoluble microspheres (3.39% ± 1.04%). Overall NAS (including posterior vessel occlusions) were positively correlated to infarct volume percent measurements in the fresh clot (r=0.50), aged clot (r=0.65) and microsphere (r=0.62) models (p<0.001). Conclusion The three basic angiographic stroke models may be similar to human transient ischemic attacks (TIA) (fresh clot), major strokes that can be thrombolysed (aged clot), or major strokes with insoluble emboli such as atheromata (microspheres). Model selection can be tailored to specific research needs. PMID:23142182

  9. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  10. Treatment Parameters and Outcome in 680 Treatments of Internal Radiation With Resin {sup 90}Y-Microspheres for Unresectable Hepatic Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Andrew S.; McNeillie, Patrick M.S.; Dezarn, William A.

    Purpose: Radioembolization (RE) using {sup 90}Y-microspheres is an effective and safe treatment for patients with unresectable liver malignancies. Radiation-induced liver disease (RILD) is rare after RE; however, greater understanding of radiation-related factors leading to serious liver toxicity is needed. Methods and Materials: Retrospective review of radiation parameters was performed. All data pertaining to demographics, tumor, radiation, and outcomes were analyzed for significance and dependencies to develop a predictive model for RILD. Toxicity was scored using the National Cancer Institute Common Toxicity Criteria Adverse Events Version 3.0 scale. Results: A total of 515 patients (287 men; 228 women) from 14 USmore » and 2 EU centers underwent 680 separate RE treatments with resin {sup 90}Y-microspheres in 2003-2006. Multifactorial analyses identified factors related to toxicity, including activity (GBq) Selective Internal Radiation Therapy delivered (p < 0.0001), prescribed (GBq) activity (p < 0.0001), percentage of empiric activity (GBq) delivered (p < 0.0001), number of prior liver treatments (p < 0.0008), and medical center (p < 0.0001). The RILD was diagnosed in 28 of 680 treatments (4%), with 21 of 28 cases (75%) from one center, which used the empiric method. Conclusions: There was an association between the empiric method, percentage of calculated activity delivered to the patient, and the most severe toxicity, RILD. A predictive model for RILD is not yet possible given the large variance in these data.« less

  11. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    PubMed

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  12. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  13. Use of boiled hexamethylenetetramine and urea to increase the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R. D.; Collins, J. L.; Cowell, B. S.

    Cerium dioxide (CeO 2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in a mixed uranium (U) and Pu oxide [(U, Pu)O 2] in nuclear fuel development. This effort developed CeO 2 microspheres with different porosities and diameters for use in a crush-strength study. The internal gelation technique has produced CeO 2 microspheres with limited initial porosity. When an equal molar solution of urea and hexamethylenetetramine (HMTA) is gently boiling for 1 hr and used in the gelation process, the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O 2more » microspheres increased significantly. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1 to 3 volume ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced CeO 2 microspheres with much higher initial porosities. Intermediate porosities were possible when the heated HMTA/urea was aged prior to use.« less

  14. Use of boiled hexamethylenetetramine and urea to increase the porosity of cerium dioxide microspheres formed in the internal gelation process

    DOE PAGES

    Hunt, R. D.; Collins, J. L.; Cowell, B. S.

    2017-05-13

    Cerium dioxide (CeO 2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in a mixed uranium (U) and Pu oxide [(U, Pu)O 2] in nuclear fuel development. This effort developed CeO 2 microspheres with different porosities and diameters for use in a crush-strength study. The internal gelation technique has produced CeO 2 microspheres with limited initial porosity. When an equal molar solution of urea and hexamethylenetetramine (HMTA) is gently boiling for 1 hr and used in the gelation process, the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O 2more » microspheres increased significantly. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1 to 3 volume ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced CeO 2 microspheres with much higher initial porosities. Intermediate porosities were possible when the heated HMTA/urea was aged prior to use.« less

  15. Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking

    NASA Astrophysics Data System (ADS)

    Wawrzeńczyk, Jerzy; Molendowska, Agnieszka

    2017-10-01

    This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.

  16. Method for selecting hollow microspheres for use in laser fusion targets

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  17. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  18. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    PubMed Central

    van Manen, Henk-Jan; van Apeldoorn, Aart A; Verrijk, Ruud; van Blitterswijk, Clemens A; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering. PMID:17722552

  19. Contributions of experimental protobiogenesis to the theory of evolution

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1976-01-01

    Inferences from experiments in protobiogenesis are examined as a forward extension of the theory of evolutionary biology. A nondiscontinuous, intraconsistent theory of general evolution embracing both protobiology and biology is outlined. This overview emphasizes Darwinian selection in the later stages of evolution, and stereochemical molecular selection in some of its earlier stages. It incorporates the concept of limitation of the scope of evolution by internal constraints on variation, based on the argument that internally limiting constraints observed in experiments with molecules are operative in organisms, if chemical processes occur within biological processes and biological processes are assumed to be exponentializations of chemical processes. Major evolutionary events might have occurred by rapid self-assembly processes analogous to those observed in the formation of phase-separated microspheres from amorphous powder or supersaturated solutions.

  20. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  1. Amorphous Ni(OH)2/CQDs microspheres for highly sensitive non-enzymatic glucose detection prepared via CQDs induced aggregation process

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Yin, Haoyong; Cui, Zhenzhen; Qin, Dongyu; Gong, Jianying; Nie, Qiulin

    2017-10-01

    Non-enzymatic electrochemical sensors for the detection of glucose were designed based on amorphous Ni(OH)2/CQDs microspheres. The amorphous Ni(OH)2/CQDs microspheres were prepared by a CQDs assistant crystallization inhibition process. The morphologies and composition of the microspheres were characterized by SEM, TEM, XRD, EDS, and TG/DSC. The results showed that the microspheres had uniform heterogeneous phases with amorphous Ni(OH)2 and CQDs. The sensor based on amorphous Ni(OH)2/CQDs microspheres showed remarkable electrocatalytic activity towards glucose oxidation comparing to the conventional crystalline Ni(OH)2, which included two linear range (20 μM-350 μM and 0.45mM-2.5 mM) with high selectivity of 2760.05 and 1853.64 μA mM-1cm-2. Moreover, the interference from the commonly interfering species such as urea, ascorbic acid, NaCl, L-proline and L-Valine, can be effectively avoided. The high sensitivity, wide glucose detection range and good selectivity of the electrode may be due to their synergistic effect of amorphous phase and CQDs incorporation. These findings may promote the application of amorphous Ni(OH)2 as advanced electrochemical glucose sensing materials.

  2. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Jiang, Jing; Li, Yizhi; Liang, Jing; Wan, Xiaochun; Ko, Sanghoon

    2017-08-01

    In this work, we report a novel type of thiol-functionalized magnetic core-shell metal-organic framework (MOF) microspheres that can be potentially used for selective removal of Hg2+ and Pb2+ in the presence of other background ions from wastewater. The monodisperse Fe3O4@Cu3(btc)2 core-shell magnetic microspheres have been fabricated by a versatile step-by-step assembly strategy. Further, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres were successfully synthesized by utilizing a facile postsynthetic strategy. Significantly, the thiol-functionalized Fe3O4@Cu3(btc)2 magnetic microspheres exhibit remarkably selective adsorption affinity for Hg2+ (Kd = 5.98 × 104 mL g-1) and Pb2+ (Kd = 1.23 × 104 mL g-1), while a weaker binding affinity occurred for the other background ions such as Ni2+, Na+, Mg2+, Ca2+, Zn2+ and Cd2+. The adsorption kinetics follow the pseudo-second-order rate equation and with an almost complete removal of Hg2+ and Pb2+ from the mixed heavy metal ions wastewater (0.5 mM) within 120 min. Moreover, this adsorbent can be easily recycled because of the presence of the magnetic Fe3O4 core. This work provides a promising functionalized porous magnetic Fe3O4@MOF-based adsorbent with easy recycling property for the selective removal of heavy metal ions from wastewater.

  3. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    NASA Astrophysics Data System (ADS)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  4. X- And y-axis driver for rotating microspheres

    DOEpatents

    Weinstein, Berthold W.

    1979-01-01

    Apparatus for precise control of the motion and position of microspheres for examination of their interior and/or exterior. The apparatus includes an x- and y-axis driver mechanism controlled, for example, by a minicomputer for selectively rotating microspheres retained between a pair of manipulator arms having flat, smooth end surfaces. The driver mechanism includes an apertured plate and ball arrangement which provided for coupled equal and opposite movement of the manipulator arms in two perpendicular directions.

  5. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform.

    PubMed

    Zhao, Qian; Piao, Jiafang; Peng, Weipan; Wang, Yang; Zhang, Bo; Gong, Xiaoqun; Chang, Jin

    2018-01-31

    Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.

  6. Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice

    PubMed Central

    Ma, Chi

    2017-01-01

    Nanofibrous architecture presents unique biophysical cues to facilitate cellular responses and is considered an indispensable feature of a biomimetic three-dimensional (3D) scaffold and cell carrier. While electrospinning is a widely used method to prepare natural extracellular matrix-like nanofibers, it faces significant challenges to incorporate nanofibrous architecture into well-defined macroporous 3D scaffolds or injectable microspheres. Here we report a nonelectrospinning approach that is effective at generating nanofibers from a variety of synthetic and natural biodegradable polymers and integrating these nanofibers into (1) 3D scaffolds with constructive geometry and designed internal macropore structures; and (2) injectable microspheres. Our approach to generating polymer nanofibers is based on the control of polymer–solvent interaction parameter χp-s. We obtained the χp-s and solvent composition phase diagrams of different temperatures according to the Flory–Huggins classic lattice model and the Hildebrand-Scott solubility parameter equation. A critical polymer–solvent interaction parameter χcrit was introduced as a criterion to predict phase separation and nanofiber formation. To test the effectiveness of our approach, a total of 15 widely used biodegradable polymers were selected and successfully fabricated into nanofibrous matrices. Furthermore, macroporous nanofibrous 3D scaffolds with complex architecture and nanofibrous injectable microspheres were generated from those biodegradable polymers by combining our method with other processes. Our approach is universally effective to fabricate nanofibrous matrices from any polymeric materials. This work, therefore, greatly expands our ability to design appropriate biomimetic 3D scaffolds and injectable cell carriers for advanced regenerative therapies. PMID:27923327

  7. Liver Resection for Colorectal Hepatic Metastases after Systemic Chemotherapy and Selective Internal Radiation Therapy with Yttrium-90 Microspheres: A Systematic Review.

    PubMed

    Baltatzis, Minas; Siriwardena, Ajith K

    2018-06-08

    Selective internal radiation therapy (SIRT) using yttrium-90 resin microspheres has been used together with systemic chemotherapy to treat patients with unresectable liver metastases. This study undertook the first systematic pooled assessment of the case profile, treatment and outcome in patients with initially inoperable colorectal hepatic metastases undergoing resection after systemic chemotherapy and SIRT. A systematic review of the literature was performed using Medline and Embase for publications between January 1998 and August 2017. Keywords and MESH headings "SIRT", "Yttrium-99 radio embolization" and "liver metastases" were used. Reports on patients undergoing liver resection after SIRT for colorectal liver metastases were included. Case reports, reviews and papers without original data were excluded. The study protocol was registered with PROSPERO, (registration number: CRD42017072374). The study population comprised of 120 patients undergoing liver resection after chemotherapy and SIRT. The conversion rate to hepatectomy in previously unresectable patients was 13.6% (109 of 802). All studies report a single application of SIRT. The interval from SIRT to surgery ranged from 39 days to 9 months. Overall, there were 4 (3.3%) deaths after hepatectomy in patients treated by chemotherapy and SIRT. This large pooled report of patients undergoing hepatectomy for colorectal liver metastases after chemotherapy and SIRT shows that 13.6% of patients with initially inoperable disease undergo resection with low procedure-related mortality. © 2018 S. Karger AG, Basel.

  8. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    PubMed

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  9. Novel PLA modification of organic microcontainers based on ring opening polymerization: synthesis, characterization, biocompatibility and drug loading/release properties.

    PubMed

    Efthimiadou, E K; Tziveleka, L-A; Bilalis, P; Kordas, G

    2012-05-30

    In the current study, poly lactic acid (PLA) modified hollow crosslinked poly(hydroxyethyl methacrylate) (PHEMA) microspheres have been prepared, in order to obtain a stimulus-responsive, biocompatible carrier with sustained drug release properties. The synthetical process consisted of the preparation of poly(methacrylic acid)@poly(hydroxyethyl methacrylate-co-N,N'-methylene bis(acrylamide)) microspheres by a two stage distillation-precipitation polymerization technique using 2,2'-azobisisobutyronitrile as initiator. Following core removal, a PLA coating of the microspheres was formed, after ring opening polymerization of DL-lactide, attributing the initiator's role to the active hydroxyl groups of PHEMA. The anticancer drug daunorubicin (DNR) was selected for the study of loading and release behavior of the coated microspheres. The loading capacity of the PLA modified microspheres was found to be four times higher than that of the parent ones (16% compared to 4%). This coated microspherical carrier exhibited a moderate pH responsive drug release behavior due to the pH dependent water uptake of PHEMA, and PLA hydrolysis. The in vitro cytotoxicity of both the parent and the DNR-loaded or empty modified hollow microspheres has been also examined on MCF-7 breast cancer cells. The results showed that although the empty microspheres were moderately cytotoxic, the DNR-loaded microspheres had more potent anti-tumor effect than the free drug. Therefore, the prepared coated microspheres are interesting drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Development of Internal Controls for the Luminex Instrument as Part of a Multiplex Seven-Analyte Viral Respiratory Antibody Profile

    PubMed Central

    Martins, Thomas B.

    2002-01-01

    The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument’s ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument’s multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay. PMID:11777827

  11. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile.

    PubMed

    Martins, Thomas B

    2002-01-01

    The ability of the Luminex system to simultaneously quantitate multiple analytes from a single sample source has proven to be a feasible and cost-effective technology for assay development. In previous studies, my colleagues and I introduced two multiplex profiles consisting of 20 individual assays into the clinical laboratory. With the Luminex instrument's ability to classify up to 100 distinct microspheres, however, we have only begun to realize the enormous potential of this technology. By utilizing additional microspheres, it is now possible to add true internal controls to each individual sample. During the development of a seven-analyte serologic viral respiratory antibody profile, internal controls for detecting sample addition and interfering rheumatoid factor (RF) were investigated. To determine if the correct sample was added, distinct microspheres were developed for measuring the presence of sufficient quantities of immunoglobulin G (IgG) or IgM in the diluted patient sample. In a multiplex assay of 82 samples, the IgM verification control correctly identified 23 out of 23 samples with low levels (<20 mg/dl) of this antibody isotype. An internal control microsphere for RF detected 30 out of 30 samples with significant levels (>10 IU/ml) of IgM RF. Additionally, RF-positive samples causing false-positive adenovirus and influenza A virus IgM results were correctly identified. By exploiting the Luminex instrument's multiplexing capabilities, I have developed true internal controls to ensure correct sample addition and identify interfering RF as part of a respiratory viral serologic profile that includes influenza A and B viruses, adenovirus, parainfluenza viruses 1, 2, and 3, and respiratory syncytial virus. Since these controls are not assay specific, they can be incorporated into any serologic multiplex assay.

  12. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au; Mackie, Simon; Aslan, Peter

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extentmore » of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.« less

  13. Diameter of fluorescent microspheres determines their distribution throughout the cortical watershed area in mice.

    PubMed

    Tsukada, Naoki; Katsumata, Masahiro; Oki, Koichi; Minami, Kazushi; Abe, Takato; Takahashi, Shinichi; Itoh, Yoshiaki; Suzuki, Norihiro

    2018-01-15

    A hemodynamic mechanism has long been assumed to play an important role in watershed infarction. In recent years, however, clinical evidence has indicated that an embolic mechanism is involved. The mechanism by which emboli are trapped preferentially in watershed areas remains unclear. In the present study, we developed a mouse embolus model using fluorescent microspheres with different diameters and evaluated the role of the microspheres' diameters in the generation of a watershed-patterned distribution. We injected fluorescent microspheres of four different diameters (i.e., 13, 24, 40, and 69 μm) into the internal carotid artery of C57BL/6 mice either (1) without ligation of the common carotid artery (normal perfusion pressure model: NPPM) or (2) with ligation of the common carotid artery (low perfusion pressure model: LPPM). Left common carotid artery ligation induced reductions in local cerebral blood flow in both the periphery and the core area of the left middle cerebral artery. A greater reduction in the border-zone area between the left anterior cerebral artery and the middle cerebral artery was also noted. After 24 h, the brains were removed and the distribution of the microspheres in the brain was evaluated using a fluorescence microscope. The 24-μm microspheres were distributed in the watershed area more frequently than the other microsphere sizes (P < .05, ANOVA followed by Tukey's test). Meanwhile, the distribution rates were similar between the NPPM and LPPM models for all microsphere sizes. This study suggested that the distribution pattern of the microspheres was only affected by the microspheres' diameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative.

    PubMed

    Sonawane, Savita; Bhalekar, Mangesh; Shimpi, Shamkant

    2014-08-01

    Xyloglucan is a natural polymer reported to possess mucoadhesive properties. To enhance the mucoadhesion potential, xyloglucan was thiolated with cysteine. The microspheres of xyloglucan were prepared using a biocompatible crosslinker sodium trimetaphosphate and it was optimized for formulation variables, namely polymer concentration, internal:external phase ratio and stirring speed using a Box-Behnken experimental design. The formulation was also optimized for performance parameters like entrapment, t80 and % mucoadhesion. The microspheres were characterized by Fourier transform infrared spectroscopy, DSC and SEM for the optimum formula and then were reproduced by replacing the xyloglucan with thiomer. The microspheres formed showed entrapment efficiency of about 80%, t80 of about 400min and % mucoadhesion of 60% while same for thiomer were 90%, 500min and 80% respectively. In oral glucose tolerance test protocol the thiomer microspheres showed significant reduction in blood glucose levels. Thus thiolated xyloglucan offers a better polymer for multiparticulate drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Superstructures of chiral nematic microspheres as all-optical switchable distributors of light

    PubMed Central

    Aβhoff, Sarah J.; Sukas, Sertan; Yamaguchi, Tadatsugu; Hommersom, Catharina A.; Le Gac, Séverine; Katsonis, Nathalie

    2015-01-01

    Light technology is based on generating, detecting and controlling the wavelength, polarization and direction of light. Emerging applications range from electronics and telecommunication to health, defence and security. In particular, data transmission and communication technologies are currently asking for increasingly complex and fast devices, and therefore there is a growing interest in materials that can be used to transmit light and also to control the distribution of light in space and time. Here, we design chiral nematic microspheres whose shape enables them to reflect light of different wavelengths and handedness in all directions. Assembled in organized hexagonal superstructures, these microspheres of well-defined sizes communicate optically with high selectivity for the colour and chirality of light. Importantly, when the microspheres are doped with photo-responsive molecular switches, their chiroptical communication can be tuned, both gradually in wavelength and reversibly in polarization. Since the kinetics of the “on” and “off” switching can be adjusted by molecular engineering of the dopants and because the photonic cross-communication is selective with respect to the chirality of the incoming light, these photo-responsive microspheres show potential for chiroptical all-optical distributors and switches, in which wavelength, chirality and direction of the reflected light can be controlled independently and reversibly. PMID:26400584

  16. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection.

    PubMed

    Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-11-09

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.

  17. Fabrication of Polymer Microspheres for Optical Resonator and Laser Applications.

    PubMed

    Yamamoto, Yohei; Okada, Daichi; Kushida, Soh; Ngara, Zakarias Seba; Oki, Osamu

    2017-06-02

    This paper describes three methods of preparing fluorescent microspheres comprising π-conjugated or non-conjugated polymers: vapor diffusion, interface precipitation, and mini-emulsion. In all methods, well-defined, micrometer-sized spheres are obtained from a self-assembling process in solution. The vapor diffusion method can result in spheres with the highest sphericity and surface smoothness, yet the types of the polymers able to form these spheres are limited. On the other hand, in the mini-emulsion method, microspheres can be made from various types of polymers, even from highly crystalline polymers with coplanar, π-conjugated backbones. The photoluminescent (PL) properties from single isolated microspheres are unusual: the PL is confined inside the spheres, propagates at the circumference of the spheres via the total internal reflection at the polymer/air interface, and self-interferes to show sharp and periodic resonant PL lines. These resonating modes are so-called "whispering gallery modes" (WGMs). This work demonstrates how to measure WGM PL from single isolated spheres using the micro-photoluminescence (µ-PL) technique. In this technique, a focused laser beam irradiates a single microsphere, and the luminescence is detected by a spectrometer. A micromanipulation technique is then used to connect the microspheres one by one and to demonstrate the intersphere PL propagation and color conversion from coupled microspheres upon excitation at the perimeter of one sphere and detection of PL from the other microsphere. These techniques, µ-PL and micromanipulation, are useful for experiments on micro-optic application using polymer materials.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S; Green, G; Sehgal, V

    Purpose: The purpose of this study is to assess the dose response of radioembolization using yttrium-90 (Y-90) microspheres in patients treated for unresectable cholangiocarcinoma. This study utilized partition dosimetry model for the dose calculation. The results show survival benefit with dose escalation. Methods: Between February 2009 and March 2013, ten patients with pathology proven unresectable cholangiocarcinoma were radioembolized with Y-90 microspheres. Patients underwent initial pre-treatment angiographic assessment for blood flow and 99mTc- MAA for lung shunt evaluation. Activity of Y-90 administration was calculated using the Body Surface Area (BSA) and target volumes which were determined by contouring the pre-treatment MRI/CTmore » images using a radiation therapy treatment planning system. Medical Internal Radiation Dose (MIRD) method was used to assess the dosimetric results of Y90. Partition model based on the tumor to-liver activity uptake estimated from pretreatment 99mTc- MAA study was used to calculate the dose delivered to the target. The variables assessed included: administered dose, toxicity based on clinical changes, imaging based tumor response, and survival. Results: Ten patients were radioembolized with Y-90 microspheres to either one hepatic lobe or both left and right lobes. Patients were stratified by dose. Four patients who received dose greater than 140Gy (p < 0.05) all survived. The corresponding activity they received was greater than 35 mCi. Six out of ten patients died of disease with median survival of 18 weeks (range 12–81wks). Conclusion: Given the growing body of data for Y-90 microspheres in the context of cholangiocarcinoma, radioembolization may become an important treatment modality for an appropriately selected group of patients. Our study further substantiates past studies and shows additional evidence of a survival benefit with dose escalation.« less

  19. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    PubMed

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  20. Vacuum injection of hydrogen micro-sphere beams

    NASA Astrophysics Data System (ADS)

    Trostell, Bertil

    1995-02-01

    The design, construction and operation of a facility producing hydrogen micro-sphere beams in vacuum are summarized. A scheme is utilized, where a liquid hydrogen jet is broken up into droplets, which are injected into vacuum through a capillary at continuum gas flow conditions. In a typical beam, 40 μm diameter micro-spheres, generated at a frequency of 70 kHz, travel at free flight speeds of 60 m/s. The angular divergence of the beam amounts to ±0.04°. The intention is to use the micro-sphere beams as high luminosity internal targets in the WASA experimental station at the CELSIUS cooler storage ring in Uppsala. A time averaged target density profile, having a FWHM and peak density of 3.5 mm and 5 × 10 16 atoms/cm 2, respectively, is obtained 2.5 m downstream of the capillary exit.

  1. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior

    NASA Astrophysics Data System (ADS)

    Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.

    2018-02-01

    Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.

  2. Preparation of UC0.07-0.10N0.90-0.93 spheres for TRISO coated fuel particles

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Silva, C. M.; Lindemer, T. B.; Johnson, J. A.; Collins, J. L.

    2014-05-01

    The US Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with dense uranium nitride (UN) kernels with diameters of 650 or 800 μm. The objectives of this effort are to make uranium oxide microspheres with adequately dispersed carbon nanoparticles and to convert these microspheres into UN spheres, which could be then sintered into kernels. Recent improvements to the internal gelation process were successfully applied to the production of uranium gel spheres with different concentrations of carbon black. After the spheres were washed and dried, a simple two-step heat profile was used to produce porous microspheres with a chemical composition of UC0.07-0.10N0.90-0.93. The first step involved heating the microspheres to 2023 K in a vacuum, and in the second step, the microspheres were held at 1873 K for 6 h in flowing nitrogen.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basaldella, E.I.; Bonetto, R.; Tara, J.C.

    The synthesis of NaY zeolite was carried out on fired kaolinite microspheres. Changes in porosity, chemical composition, and crystallinity of the solid show zeolite growth on both internal and external microsphere surfaces. It was also observed that, as a consequence of the alkaline treatment, the SiO[sub 2]/Al[sub 2]O[sub 3] ratio in the solid diminishes prior to the appearance of the zeolite, but increases when the zeolite begins to crystallize.

  4. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics.

    PubMed

    Zhou, Xing; Zhao, Yang; Chen, Siyu; Han, Songling; Xu, Xiaoqiu; Guo, Jiawei; Liu, Mengyu; Che, Ling; Li, Xiaohui; Zhang, Jianxiang

    2016-08-08

    Targeted delivery of therapeutics to the intestine is preferred for the management of many diseases due to its diverse advantages. Currently, there are still challenges in creating cost-effective and translational pH-responsive microspheres for intestinal delivery of various hydrophobic drugs. Herein we report a multiple noncovalent interactions-mediated assembly strategy in which carboxyl-bearing compounds (CBCs) are guest molecules, while poly(N-isopropylacrylamide) (PNIPAm) serves as a host polymer. Formation of microparticles and therapeutic packaging can be achieved simultaneously by this assembly approach, leading to well-shaped microspheres with extremely higher drug loading capacity as compared to microspheres based on two FDA-approved materials of poly(d,l-lactide-co-glycolide) (PLGA) and an enteric coating polymer EudragitS 100 (S100). Also, carboxyl-deficient hydrophobic drugs can be effectively entrapped. These assembled microspheres, with excellent reconstitution capability as well as desirable scalability, could selectively release drug molecules under intestinal conditions. By significantly enhancing drug dissolution/release in the intestine, these pH-responsive assemblies may notably improve the oral bioavailability of loaded therapeutics. Moreover, the assembled microspheres possessed superior therapeutic performance in rodent models of inflammation and tumor over the control microspheres derived from PLGA and S100. Therapy with newly developed microspheres did not cause undesirable side effects. Furthermore, in vivo evaluation in mice revealed the carrier material PNIPAm was safe for oral delivery at doses as high as 10 g/kg. Collectively, our findings demonstrated that this type of pH-responsive microsphere may function as superior and translational intestine-directed delivery systems for a diverse array of therapeutics.

  5. Effects of immersion depth on super-resolution properties of index-different microsphere-assisted nanoimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; He, Yu; Liu, Xi; Hu, Song

    2018-03-01

    In related applications of microsphere-assisted super-resolution imaging in biomedical visualization and microfluidic detection, liquids are widely used as background media. For the first time, we quantitatively demonstrate that the maximum irradiances, focal lengths, and waists of photonic nanojets (PNJs) will logically vary with different immersion depths (IMDs). The experimental observations also numerically illustrate the trends of the lateral magnification and field of view (FOV) with the gradual evaporation of ethyl alcohol. This work can provide exact quantitative information for the proper selection of microspheres and IMD for the high-quality discernment of nanostructures.

  6. Control of silk microsphere formation using polyethylene glycol (PEG).

    PubMed

    Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin

    2016-07-15

    A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk microspheres have been reported previously using spray-drying, liposome-templating, polyvinyl alcohol (PVA) emulsification, etc., applications were hindered due to harsh conditions (temperature, solvents, etc.) and complicated procedures used as well as low yield and less controllable particle size (usually <10μm). Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.

    PubMed

    Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz

    2017-01-01

    Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.

  8. [Preparation of citrulline microspheres by spray drying technique for colonic targeting].

    PubMed

    Bahri, S; Zerrouk, N; Lassoued, M-A; Tsapis, N; Chaumeil, J-C; Sfar, S

    2014-03-01

    Citrulline is an amino acid that becomes essential in situations of intestinal insufficiency such as short bowel syndrome. It is therefore interesting to provide the patients with dosage forms for routing citrulline to the colon. The aim of this work is to formulate microspheres of citrulline for colonic targeting by the technique of spray drying. Eudragit(®) FS 30D was selected as polymer to encapsulate citrulline using the spray drying technique. Citrulline and Eudragit(®) FS 30D were dissolved in water and ethanol, respectively. The aqueous and the ethanolic solutions were then mixed in 1:2 (v/v) ratio. Microspheres were obtained by nebulizing the citrulline-Eudragit(®) FS 30D solution using a Mini spray dryer equipped with a 0.7mm nozzle. The microspheres have been formulated using citrulline and Eudragit(®) FS 30D. The size distribution of microspheres was determined by light diffraction. The morphology of the microspheres was studied by electron microscopy. Manufacturing yields, encapsulation rate and dissolution profiles were also studied. The microspheres obtained had a spherical shape with a smooth surface and a homogeneous size except for the microspheres containing the highest concentration of polymer (90 %). The formulation showed that the size and morphology of the microspheres are influenced by the polymer concentration. Manufacturing yields were about 51 % but encapsulation rate were always very high (above 90 %). The in vitro dissolution study showed that the use of the Eudragit(®) FS 30D under these conditions is not appropriate to change the dissolution profile of the citrulline. This technique has led to the formulation of microspheres with good physical properties in terms of morphology and size. The compression of the microspheres should help to control citrulline release for colonic targeting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Cephradin-plaga microspheres for sustained delivery to cattle.

    PubMed

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were related to microsphere morphology.

  10. A Novel Sensitive Luminescence Probe Microspheres for Rapid and Efficient Detection of τ-Fluvalinate in Taihu Lake

    PubMed Central

    Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng

    2017-01-01

    Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402

  11. QbD-enabled systematic development of gastroretentive multiple-unit microballoons of itopride hydrochloride.

    PubMed

    Bansal, Sanjay; Beg, Sarwar; Asthana, Abhay; Garg, Babita; Asthana, Gyati Shilakari; Kapil, Rishi; Singh, Bhupinder

    2016-01-01

    The objectives of present studies were to develop the systematically optimized multiple-unit gastroretentive microballoons, i.e. hollow microspheres of itopride hydrochloride (ITH) employing quality by design (QbD)-based approach. Initially, the patient-centric QTPP and CQAs were earmarked, and preliminary studies were conducted to screen the suitable polymer, solvent, solvent ratio, pH and temperature conditions. Microspheres were prepared by non-aqueous solvent evaporation method employing Eudragit S-100. Risk assessment studies carried out by constructing Ishikawa cause-effect fish-bone diagram, and techniques like risk estimation matrix (REM) and failure mode effect analysis (FMEA) facilitated the selection of plausible factors affecting the drug product CQAs, i.e. percent yield, entrapment efficiency (EE) and percent buoyancy. A 3(3) Box-Behnken design (BBD) was employed for optimizing CMAs and CPPs selected during factor screening studies employing Taguchi design, i.e. drug-polymer ratio (X1), stirring temperature (X2) and stirring speed (X3). The hollow microspheres, as per BBD, were evaluated for EE, particle size and drug release characteristics. The optimum formulation was embarked upon using numerical desirability function yielding excellent floatation characteristics along with adequate drug release control. Drug-excipient compatibility studies employing FT-IR, DSC and powder XRD revealed absence of significant interaction among the formulation excipients. The SEM studies on the optimized formulation showed hollow and spherical nature of the prepared microspheres. In vivo X-ray imaging studies in rabbits confirmed the buoyant nature of the hollow microspheres for 8 h in the upper GI tract. In a nutshell, the current investigations report the successful development of gastroretentive floating microspheres for once-a-day administration of ITH.

  12. Fiber-optic microsensor array based on fluorescent bulk optode microspheres for the trace analysis of silver ions.

    PubMed

    Wygladacz, Katarzyna; Radu, Aleksandar; Xu, Chao; Qin, Yu; Bakker, Eric

    2005-08-01

    An optical microsensor array is described for the rapid analysis of silver ions at low parts per trillion levels. Because the ionophore o-xylylenebis(N,N-diisobutyldithiocarbamate) (Cu-I) was reevaluated and shown to exhibit excellent selectivity for silver ions, ion-selective electrode (ISE) membranes were optimized and found to exhibit the lowest reported detection limit so far (3 x 10(-10) M). A corresponding Ag+-selective fluorescent optical microsensor array for the rapid sensing of trace level Ag+ was then developed. It was fabricated using plasticized PVC-based micrometer-scale fluorescent microspheres that were produced via a sonic particle casting device. They contained 156 mmol/kg Cu-I, 10 mmol/kg 9-(diethylamino)-5-[4-(15-butyl-1,13-dioxo-2,14-dioxanodecyl) phenylimino]benzo[a]phenoxazine (chromoionophore VII, ETH 5418), 2.3 mmol/kg 1,1' '-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (internal reference dye), and 14 mmol/kg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and were deposited onto the etched distal end of a 3200-microm-diameter optical fiber bundle. The microarray was characterized by fluorescence spectroscopy in samples containing 10(-12)-10(-8) M AgNO3 at pH 7.4, with selectivity characteristics comparable to the corresponding ISEs. The response time of the microsensor array was found to be less than 15 min for 10(-9) M AgNO3, which is drastically shorter than earlier data on optode films (8 h) and corresponding ISEs (30 min). A detection limit of 4 x 10(-11) M for Ag+ was observed, lower than any previously reported optode or silver-selective ISE. The microsensor array was applied for measurement of free silver levels in buffered pond water samples.

  13. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn; Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002; Xu, Jingjing

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4}more » prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.« less

  14. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    PubMed

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  15. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  16. Recovery and recycling of uranium from rejected coated particles for compact high temperature reactors

    NASA Astrophysics Data System (ADS)

    Pai, Rajesh V.; Mollick, P. K.; Kumar, Ashok; Banerjee, J.; Radhakrishna, J.; Chakravartty, J. K.

    2016-05-01

    UO2 microspheres prepared by internal gelation technique were coated with pyrolytic carbon and silicon carbide using CVD technique. The particles which were not meeting the specifications were rejected. The rejected/failed UO2 based coated particles prepared by CVD technique was used for oxidation and recovery and recycling. The oxidation behaviour of sintered UO2 microspheres coated with different layers of carbon and SiC was studied by thermal techniques to develop a method for recycling and recovery of uranium from the failed/rejected coated particles. It was observed that the complete removal of outer carbon from the spheres is difficult. The crushing of microspheres enabled easier accessibility of oxygen and oxidation of carbon and uranium at 800-1000 °C. With the optimized process of multiple crushing using die & plunger and sieving the broken coated layers, we could recycle around fifty percent of the UO2 microspheres which could be directly recoated. The rest of the particles were recycled using a wet recycling method.

  17. Validation of fluorescent-labeled microspheres for measurement of relative blood flow in severely injured lungs

    NASA Technical Reports Server (NTRS)

    Hubler, M.; Souders, J. E.; Shade, E. D.; Hlastala, M. P.; Polissar, N. L.; Glenny, R. W.

    1999-01-01

    The aim of the study was to validate a nonradioactive method for relative blood flow measurements in severely injured lungs that avoids labor-intensive tissue processing. The use of fluorescent-labeled microspheres was compared with the standard radiolabeled-microsphere method. In seven sheep, lung injury was established by using oleic acid. Five pairs of radio- and fluorescent-labeled microspheres were injected before and after established lung injury. Across all animals, 175 pieces were selected randomly. The radioactivity of each piece was determined by using a scintillation counter. The fluorescent dye was extracted from each piece with a solvent without digestion or filtering. The fluorescence was determined with an automated fluorescent spectrophotometer. Perfusion was calculated for each piece from both the radioactivity and fluorescence and volume normalized. Correlations between flow determined by the two methods were in the range from 0.987 +/- 0.007 (SD) to 0.991 +/- 0.002 (SD) after 9 days of soaking. Thus the fluorescent microsphere technique is a valuable tool for investigating regional perfusion in severely injured lungs and can replace radioactivity.

  18. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.

    PubMed

    Yin, Di; Xu, Gangwei; Wang, Mengyuan; Shen, Mingwu; Xu, Tiegang; Zhu, Xiaoyue; Shi, Xiangyang

    2017-09-01

    We present a facile particle-based cell manipulation method using acoustic radiation forces. In this work, we selected several representative particles including poly(lactic-co-glycolic acid) (PLGA) microspheres, silica-coated magnetic microbeads, polydimethylsiloxane (PDMS) microspheres and investigated the responses of these particle systems to ultrasonic standing waves (USWs) in a microfluidic chip. We show that depending on the nature (positive or negative acoustic contrast factors) of the particles, these particle systems display different alignment behaviors along the microfluidic channel under USWs. Specifically, PLGA microspheres and silica-coated magnetic microbeads are able to be aligned in the middle of the microfluidic channel, while PDMS microspheres are translocated to the side walls of the channel, which is beneficial for cell trapping and manipulation. Further results demonstrate that the functional PDMS microspheres with a negative acoustic contrast factor can be used to trap cells to the pressure antinodes in the acoustofluidic chip. Cell viability tests reveal that the ultrasonic manipulation does not exert any harmful effect to the cells. This acoustic-based particle and cell manipulation technique may hold a great promise for the development of rapid, noninvasive, continuous assays for detecting of cells and separation of biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microsphere integrated microfluidic disk: synergy of two techniques for rapid and ultrasensitive dengue detection

    PubMed Central

    Hosseini, Samira; Aeinehvand, Mohammad M.; Uddin, Shah M.; Benzina, Abderazak; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Madou, Marc J.; Djordjevic, Ivan; Ibrahim, Fatimah

    2015-01-01

    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres’ specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness. PMID:26548806

  20. Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.

    PubMed

    Yu, Huijuan; Huang, Qiangxian; Zhao, Jian

    2014-06-25

    A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.

  1. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilbao, Jose I., E-mail: Jibilbao@unav.e; Martino, Alba de; Luis, Esther de

    2009-07-15

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization wasmore » defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 {mu}m in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and portal space fibrosis were not observed. In conclusion, resin microspheres (15-30 {mu}m diameter) trigger virtually no inflammatory response in target tissues (liver and kidney). Clusters rather than individual microspheres were associated with a mild to moderate perivascular inflammatory reaction. There was no evidence of either a prolonged inflammatory reaction or fibrosis in the liver parenchyma following recannalization.« less

  2. Injectable hydrogels embedded with alginate microspheres for controlled delivery of bone morphogenetic protein-2.

    PubMed

    Zhu, Youjia; Wang, Jiulong; Wu, Jingjing; Zhang, Jun; Wan, Ying; Wu, Hua

    2016-03-23

    Some delivery carriers with injectable characteristics were built using the thermosensitive chitosan/dextran-polylactide/glycerophosphate hydrogel and selected alginate microspheres for the controllable release of bone morphogenetic protein-2 (BMP-2). BMP-2 was first loaded into the microspheres with an average size of around 20 μm and the resulting microspheres were then embedded into the gel in order to achieve well-controlled BMP-2 release. The microsphere-embedded gels show their incipient gelation temperature at around 32 °C and pH at about 7.1. Some gels had their elastic modulus close to 1400 Pa and the ratio of elastic modulus to viscous modulus at around 34, revealing that they behaved like mechanically strong gels. Optimized microsphere-embedded gels were found to be able to administer the BMP-2 release without significant initial burst release in an approximately linear manner over a period of time longer than four weeks. The release rate and the released amount of BMP-2 from these gels could be regulated individually or cooperatively by the initial BMP-2 load and the dextran-polylactide content in the gels. Measurements of the BMP-2 induced alkaline phosphatase activity in C2C12 cells confirmed that C2C12 cells responded to BMP-2 in a dose-dependent way and the released BMP-2 from the microsphere-embedded gels well retained their bioactivity. In vivo assessment of some gels revealed that the released BMP-2 maintained its osteogenesis functions.

  3. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, M; Saboury, B

    Purpose: Selective-internal-radiation-therapy (SIRT) and transarterial-chemoembolization (TACE) are commonly used for treatment of liver tumors. The use of TACE, which is macroembolic, prior to SIRT may cause hemodynamic changes in tumor vasculature that impair yttrium-90 (90Y) microsphere delivery to the targeted lesions. This work aims to quantify dosimetric tumor coverage using 90Y positron emission tomography (PET) dosimetry after SIRT alone compared to TACE followed by SIRT. Methods: A total of 40 consecutive hepatocellular carcinoma (HCC) SIRT patients who had a post-SIRT 90Y PET/CT scan were evaluated. The patient-specific-3D-dose was reconstructed from the PET images. Patients were categorized into two groups: patientsmore » received TACE prior SIRT procedure (n=18) and patient received SIRT alone (n=22). The lesions and liver were delineated by a senior radiologist. We evaluated both the lesion-specific dose-volume-histogram (DVH) and the selectivity index (SI) defined as the ratio of the average dose inside the total lesion(s) and the average dose of the normal liver. The SI values of patients were compared based on whether TACE was previously used. Results: A wide spectrum was observed in the lesion-specific DVH-evaluation and SI appeared to be suitable of evaluating the quality of each SIRT infusion. The average SI of the entire patient group was 3.0, i.e. targeted lesion receiving three times higher dose than normal liver. The average SI was 1.8 for patients who had prior TACE and 3.9 for patients who did not have prior TACE (p=0.008). 85% of the patients with prior TACE demonstrated poor 90Y-microsphere delivery (SI <2) while none demonstrated excellent delivery (SI >4). On the other hand, the incidence SI >4 among patients with no prior TACE was 37%. Conclusion: 3D dose evaluation using post-SIRT PET suggests that 90Y microsphere delivery to liver tumors is impaired among patients who received prior TACE compared to those who receive SIRT alone.« less

  5. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.

  6. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking

    NASA Astrophysics Data System (ADS)

    Ryu, Inkeon; Kim, Daekeun

    2018-04-01

    A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.

  8. Development of implants composed of bioactive materials for bone repair

    NASA Astrophysics Data System (ADS)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  9. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, Zachary D.; Padilla Cintron, Cristina

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology createsmore » monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.« less

  10. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  11. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  12. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release.

    PubMed

    Della Porta, G; Adami, R; Del Gaudio, P; Prota, L; Aquino, R; Reverchon, E

    2010-11-01

    In this work, the supercritical assisted atomization (SAA) is proposed, for the first time, not only as a micronization technology but also as a thermal coagulation process for the production of bovine serum albumin (BSA) microspheres charged with Gentamicin sulfate (GS). Particularly, different water solutions of BSA/GS were processed by SAA to produce protein microspheres with different size and antibiotic content. SAA precipitation temperature was selected in the range 100-130 °C to generate protein coagulation and to recover micronized BSA in form of hydrophobic aggregates; GS loading was varied between 10% and 50% (w/w) with an encapsulation efficiency which often reached 100%. In all cases, spherical and noncoalescing particles were successfully produced with a mean particle size of 2 µm and with a standard deviation of about ±1 µm. The microspheres also showed a good stability and constant water content after 60 days of storage. The release profiles of the entrapped drug were monitored using Franz cells to evaluate the possible application of the produced microspheres in wound dressing formulations. Particularly, the microspheres with a BSA/GS ratio of 4:1 after the first burst effect (of 40% of GS loaded) were able to release the GS continuously over 10 days. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  13. Aptamer Based Microsphere Biosensor for Thrombin Detection

    PubMed Central

    Zhu, Hongying; Suter, Jonathan D.; White, Ian M.; Fan, Xudong

    2006-01-01

    We have developed an optical microsphere resonator biosensor using aptamer as receptor for the measurement of the important biomolecule thrombin. The sphere surface is modified with anti-thrombin aptamer, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the sphere surface is monitored by the spectral position of the microsphere's whispering gallery mode resonances. A detection limit on the order of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptamer oligonucleotide and BSA are also carried out to confirm the specific binding between aptamer and thrombin. We expect that this demonstration will lead to the development of highly sensitive biomarker sensors based on aptamer with lower cost and higher throughput than current technology.

  14. [Prolonged-release drug formulations for parenteral administration. Part II. Microspheres and implants for injection].

    PubMed

    Płaczek, Margin; Jacyna, Julia; Sznitowska, Małgorzata

    2014-01-01

    Microspheres and implants are injectable drug forms, which by special design and selection of appropriate excipients, provide for a long time constant release rate of an active substance in the body. Development of both would not be possible without advances in polymer technology and invention of safe and biocompatible polymers such as: polyesters, vinyl acetate derivatives or silicones. Polymeric matrices provide retardation of drug release--for some implants up to a few years. In addition, this paper presents examples of all commercially available medicinal products containing microspheres and implants, currently registered in Poland, together with their characteristics: composition, time course and frequency of administration. Comments are also enclosed on frequently occurring inconsistent terminology in pharmaceutical forms.

  15. Influence of time delay on the estimated lung shunt fraction on 99mTc-labeled MAA scintigraphy for 90Y microsphere treatment planning.

    PubMed

    De Gersem, Ruth; Maleux, Geert; Vanbilloen, Hubert; Baete, Kristof; Verslype, Chris; Haustermans, Karin; Verbruggen, Alfons; Van Cutsem, Eric; Deroose, Christophe Michel

    2013-12-01

    90Y-microspheres therapy is used to treat selected patients with primary or metastatic liver tumors in a safe and effective way. As a preparation for 90Y-microspheres treatment, a 99mTc-macroaggregated albumin (99mTc-MAA) simulation procedure is essential to evaluate particle shunting to the lung or gastrointestinal tract. We investigated the effect of interval between injection of 99mTc-MAA and time of scanning on the lung shunt fraction (LSF). In 4 patients with secondary hepatic malignancies who underwent repeated whole-body scintigraphy up to 5 hours after injection of 99mTc-MAA, a marked change in LSF was observed. It appears that tracer degradation leads to an important overestimation of LSF at later time points. An overestimation of LSF can lead to dose reduction or canceling of the planned 90Y-microspheres treatment. It is concluded that the interval between injection and scanning should be kept as short as possible.

  16. Use of phenyl/tetrazolyl-functionalized magnetic microspheres and stable isotope labeled internal standards for significant reduction of matrix effect in determination of nine fluoroquinolones by liquid chromatography-quadrupole linear ion trap mass spectrometry.

    PubMed

    Xu, Fei; Liu, Feng; Wang, Chaozhan; Wei, Yinmao

    2018-02-01

    In this study, the strategy of unique adsorbent combined with isotope labeled internal standards was used to significantly reduce the matrix effect for the enrichment and analysis of nine fluoroquinolones in a complex sample by liquid chromatography coupled to quadrupole linear ion trap mass spectrometry (LC-QqQ LIT -MS/MS). The adsorbent was prepared conveniently by functionalizing Fe 3 O 4 @SiO 2 microspheres with phenyl and tetrazolyl groups, which could adsorb fluoroquinolones selectively via hydrophobic, electrostatic, and π-π interactions. The established magnetic solid-phase extraction (MSPE) method as well as using stable isotope labeled internal standards in the next MS/MS detection was able to reduce the matrix effect significantly. In the process of LC-QqQ LIT -MS/MS analysis, the precursor and product ions of the analytes were monitored quantitatively and qualitatively on a QTrap system equipped simultaneously with the multiple reaction monitoring (MRM) and enhanced product ion (EPI) scan. Subsequently, the enrichment method combined with LC-QqQ LIT -MS/MS demonstrated good analytical features in terms of linearity (7.5-100.0 ng mL -1 , r > 0.9960), satisfactory recoveries (88.6%-118.3%) with RSDs < 12.0%, LODs = 0.5 μg kg -1 and LOQs = 1.5 μg kg -1 for all tested analytes. Finally, the developed MSPE-LC-QqQ LIT -MS/MS method had been successfully applied to real pork samples for food-safety risk monitoring in Ningxia Province, China. Graphical abstract Mechanism of reducing matrix effect through the as-prepared adsorbent.

  17. BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate diameters, and prevention of aseptic inflammation for bone tissue engineering.

    PubMed

    Ji, Ye; Xu, Gong Ping; Zhang, Zhi Peng; Xia, Jing Jun; Yan, Jing Long; Pan, Shang Ha

    2010-03-01

    Autogenous bone grafts are widely used in the repair of bone defects. Growth factors such as bone morphogenetic protein 2 (BMP-2) can induce bone regeneration and enhance bone growth. The combination of an autogenous bone graft and BMP-2 may provide a better osteogenic effect than either treatment alone, but BMP-2 is easily inactivated in body fluid. The objective of this study was to develop a technique that can better preserve the in vivo activity of BMP-2 incorporated in bone grafts. In this study, we first prepared BMP-2/poly(lactic-co-glycolic acid) (PLGA) delayed-release microspheres, and then combined collagen, the delayed-release microspheres, and rat autologous bone particulates to form four groups of composite grafts with different combinations: collagen in group A; collagen combined with bone particulates in group B; collagen combined with BMP-2/PLGA delayed-release microspheres in group C; and collagen combined with both bone particulates and BMP-2/PLGA delayed-release microspheres in group D. The four groups of composite grafts were implanted into the gluteus maximus pockets in rats. The ectopic osteogenesis and ALP level in group D (experimental group) were compared with those in groups A, B, and C (control groups) to study whether it had higher osteogenic capability. Results showed that the composite graft design increased the utility of BMP-2 and reduced the required dose of BMP-2 and volume of autologous bone. The selection of bone particulate diameter had an impact on the osteogenetic potential of bone grafts. Collagen prevented the occurrence of aseptic inflammation and improved the osteoinductivity of BMP-2. These results showed that this composite graft design is effective and feasible for use in bone repair.

  18. The selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene by solid-phase extraction with MgO microspheres as sorbents.

    PubMed

    Jin, Jing; Li, Yun; Zhang, Zhiping; Su, Fan; Qi, Peipei; Lu, Xianbo; Chen, Jiping

    2011-12-23

    A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.

  20. Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell.

    PubMed

    Zhang, Yu; Yue, Qin; Yu, Lei; Yang, Xuanyu; Hou, Xiu-Feng; Zhao, Dongyuan; Cheng, Xiaowei; Deng, Yonghui

    2018-05-11

    Core-shell magnetic porous microspheres have wide applications in drug delivery, catalysis and bioseparation, and so on. However, it is great challenge to controllably synthesize magnetic porous microspheres with uniform well-aligned accessible large mesopores (>10 nm) which are highly desired for applications involving immobilization or adsorption of large guest molecules or nanoobjects. In this study, a facile and general amphiphilic block copolymer directed interfacial coassembly strategy is developed to synthesize core-shell magnetic mesoporous microspheres with a monolayer of mesoporous shell of different composition, such as core-shell magnetic mesoporous aluminosilicate (CS-MMAS), silica (CS-MMS), and zirconia-silica (CS-MMZS), open and large pores by employing polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) as an interface structure directing agent and aluminum acetylacetonate (Al(acac) 3 ), zirconium acetylacetonate, and tetraethyl orthosilicate as shell precursors. The obtained CS-MMAS microspheres possess magnetic core, perpendicular mesopores (20-32 nm) in the shell, high surface area (244.7 m 2 g -1 ), and abundant acid sites (0.44 mmol g -1 ), and as a result, they exhibit superior performance in removal of organophosphorus pesticides (fenthion) with a fast adsorption dynamics and high adsorption capacity. CS-MMAS microspheres loaded with Au nanoparticles (≈3.5 nm) behavior as a highly active heterogeneous nanocatalyst for N-alkylation reaction for producing N-phenylbenzylamine with a selectivity and yields of over 90% and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  2. Cost-efficient magnetic nanoporous carbon derived from citrus peel for the selective adsorption of seven insecticides.

    PubMed

    Zhou, Yuantao; Cao, Shurui; Xi, Cunxian; Chen, Jiuyan; Zhang, Lei; Li, Xianliang; Wang, Guomin; Chen, Zhiqiong

    2018-05-18

    A magnetic solid-phase extraction adsorbent that consisted of citrus peel-derived nanoporous carbon and silica-coated Fe 3 O 4 microspheres (C/SiO 2 @Fe 3 O 4 ) was successfully fabricated by co-precipitation. As a modifier for magnetic microspheres, citrus peel-derived nanoporous carbon was not only economical and renewable for its raw material, but exerted enormous nanosized pore structure, which could directly influence the type of adsorbed analytes. The C/SiO 2 @Fe 3 O 4 also possessed the advantages of Fe 3 O 4 microspheres like superparamagnetism, that could be easily separated magnetically after adsorption. Integrating the superior of biomass-derived nanoporous carbon and Fe 3 O 4 microspheres, the as-prepared C/SiO 2 @Fe 3 O 4 showed high extraction efficiency for target analytes. The obtained material was characterized by scanning electron microscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy and the Brunauer-Emmett-Teller method, which demonstrated that C/SiO 2 @Fe 3 O 4 was successfully synthesized. Under the optimal conditions, the adsorbent was selected for the selective adsorption of seven insecticides before gas chromatography with mass spectrometry detection, good linearity was obtained in the concentration range of 2-200 μg/kg with the correlation coefficient ranging from 0.9952 to 0.9997. The limits of detection were in the range of 0.03-0.39 μg/kg. The proposed method has been successfully applied to the enrichment and detection of seven insecticides in real vegetable samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Peng-Yuan; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    Highlights: • Preparation of nanostructured In{sub 2}O{sub 3} microspheres. • Morphology and phase control of In{sub 2}O{sub 3}. • Gas sensors based on the In{sub 2}O{sub 3} microspheres exhibit excellent sensing properties for the detection of formaldehyde. - Abstract: Urchin-like InOOH microspheres were successfully prepared by a convenient and controllable method. Such experimental parameters as solvents and complexing reagents on the formation of the urchin-like InOOH microspheres were investigated. Scanning electron microscopy, X-ray diffraction and infrared spectroscopy were employed to investigate the evolution process of the urchin-like InOOH precursors. Furthermore, the formation mechanism of the urchin-like InOOH microspheres was proposed.more » By annealing the urchin-like InOOH precursor at different temperatures under ambient pressure, rhombohedral corundum-type indium oxide (rh-In{sub 2}O{sub 3}), cubic bixbyite-type indium oxide (c-In{sub 2}O{sub 3}) and mixed phases of rh-In{sub 2}O{sub 3} and c-In{sub 2}O{sub 3} were obtained. The gas sensing properties of the prepared In{sub 2}O{sub 3} samples were examined. It was found that the sensors based on the prepared In{sub 2}O{sub 3} samples exhibited excellent response and selectivity to formaldehyde.« less

  4. A MAA-based dosimetric study in patients with intrahepatic cholangiocarcinoma treated with a combination of chemotherapy and 90Y-loaded glass microsphere selective internal radiation therapy.

    PubMed

    Manceau, Vincent; Palard, Xavier; Rolland, Yan; Pracht, March; Le Sourd, Samuel; Laffont, Sophie; Boudjema, Karim; Lievre, Astride; Mesbah, Habiba; Haumont, Laure-Anne; Lenoir, Laurence; Brun, Vanessa; Uguen, Thomas; Edeline, Julien; Garin, Etienne

    2018-03-20

    Selective internal radiation therapy (SIRT) appears to be an interesting treatment possibility for locally-advanced intrahepatic cholangiocarcinoma (ICC), yet the appropriate dosimetry has never been evaluated in this context. We retrospectively studied data from 40 patients treated at our institution with 90 Y-loaded glass microsphere SIRT combined with chemotherapy for inoperable ICC as first-line treatment. Macroaggregated albumin (MAA)-based single-photon emission computed tomography (SPECT)/computed tomography (CT) quantitative analysis was used to calculate the tumor dose (TD), healthy-injected liver dose (HILD), and injected liver dose (ILD). Response was evaluated at 3 months using the European Association for the Study of the Liver criteria. Factors associated with response and toxicity were analyzed using univariate analysis. We assessed a total of 35 patients (five excluded) receiving 55 injections. Mean TD was 322 ± 165Gy and mean HILD was 74 ± 24Gy for a mean ILD of 128 ± 28Gy. All but two lesions responded, with a minimal TD for responding lesions of 158Gy. Six Grade 3-4 permanent liver toxicities were observed. Mean HILD was not associated with liver toxicity (73.2 ± 25.8Gy for patients with liver toxicity and 77.8 ± 16.9Gy for patients without, ns). Only underlying Child-Pugh status (p = 0.0014) and underlying cirrhosis (p = 0.0021) were associated with liver toxicity. Median progression-free survival was 12.7 months and median overall survival (OS) was 28.6 months. Median OS was 52.7 months for patients with Child-Pugh A5 status. When combined with chemotherapy, SIRT is highly effective, with a TD > 158Gy. Tolerance was good except for the few patients with cirrhosis or Child-Pugh status ≥A6, who exhibited some liver toxicity. Prospective studies are warranted to confirm.

  5. Integration of Microsphere Resonators with Bioassay Fluidics for Whispering Gallery Mode Imaging

    PubMed Central

    Kim, Daniel C.; Armendariz, Kevin P.

    2013-01-01

    Whispering gallery mode resonators are small, radially symmetric dielectrics that trap light through continuous total internal reflection. The resonant condition at which light is efficiently confined within the structure is linked with refractive index, which has led to the development of sensitive label-free sensing schemes based on whispering gallery mode resonators. One resonator design uses inexpensive high index glass microspheres that offer intrinsically superior optical characteristics, but have proven difficult to multiplex and integrate with the fluidics for sample delivery and fluid exchange necessary for assay development. Recently, we introduced a fluorescence imaging approach that enables large scale multiplexing with microsphere resonators, thus removing one obstacle for assay development. Here we report an approach for microsphere immobilization that overcomes limitations arising from their integration with fluidic delivery. The approach is an adaptation of a calcium-assisted glass bonding method originally developed for microfluidic glass chip fabrication. Microspheres bonded to glass using this technique are shown to be stable with respect to fluid flow and show no detectable loss in optical performance. Measured Q-factors, for example, remain unchanged following sphere bonding to the substrate. The stability of the immobilized resonators is further demonstrated by transferring lipid films onto the immobilized spheres using the Langmuir-Blodgett technique. Bilayers of DOPC doped with GM1 were transferred onto immobilized resonators to detect the binding of cholera toxin to GM1. Binding curves generated from shifts in the whispering gallery mode resonance result in a measured Kd of 1.5 × 10−11 with a limit of detection of 3.3 pM. These results are discussed in terms of future assay development using microsphere resonators. PMID:23615457

  6. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer.

    PubMed

    Hamami, Monia E; Poeppel, Thorsten D; Müller, Stephan; Heusner, Till; Bockisch, Andreas; Hilgard, Philipp; Antoch, Gerald

    2009-05-01

    Radioembolization with (90)Y microspheres is a novel treatment for hepatic tumors. Generally, hepatic arteriography and (99m)Tc-macroaggregated albumin (MAA) scanning are performed before selective internal radiation therapy to detect extrahepatic shunting to the lung or the gastrointestinal tract. Whereas previous studies have used only planar or SPECT scans, the present study used (99m)Tc-MAA SPECT/CT scintigraphy (SPECT with integrated low-dose CT) to evaluate whether SPECT/CT and additional diagnostic contrast-enhanced CT before radioembolization with (90)Y microspheres are superior to SPECT or planar imaging alone for detection of gastrointestinal shunting. In a prospective study, we enrolled 58 patients (mean age, 66 y; SD, 12 y; 10 women and 48 men) with hepatocellular carcinoma who underwent hepatic arteriography and scintigraphy with (99m)Tc-MAA using planar imaging, SPECT, and SPECT with integrated low-dose CT of the upper abdomen (acquired with a hybrid SPECT/CT camera). The ability of the different imaging modalities to detect extrahepatic MAA shunting was compared. Patient follow-up of a mean of 180 d served as the standard of reference. Gastrointestinal shunting was revealed by planar imaging in 4, by SPECT in 9, and by SPECT/CT in 16 of the 68 examinations. For planar imaging, the sensitivity for detection of gastrointestinal shunting was 25%, the specificity 87%, and the accuracy 72%. For SPECT without CT, the sensitivity was 56%, the specificity 87%, and the accuracy 79%. SPECT with CT fusion had a sensitivity of 100%, a specificity of 94%, and an accuracy of 96%. In 3 patients, MAA deposits in the portal vein could accurately be attributed to tumor thrombus only with additional information from contrast-enhanced CT. The follow-up did not show any gastrointestinal complications. SPECT with integrated low-dose CT using (99m)Tc-MAA is beneficial in radioembolization with (90)Y microspheres because it increases the sensitivity and specificity of (99m)Tc-MAA SPECT when detecting extrahepatic arterial shunting. The overall low risk of gastrointestinal complications in radioembolization may therefore be further reduced by SPECT/CT.

  7. Photochemical Targeting Of Phagocytic Trabecular Meshwork Cells Using Chlorin E6 Coupled Microspheres

    NASA Astrophysics Data System (ADS)

    Latina, M. A.; Kobsa, P. H.; Rakestraw, S. L.; Crean, E. A.; Hasan, T.; Yarmush, M. L.

    1989-03-01

    We have investigated a novel and efficient delivery system utilizing photosensitizer-coupled-latex microspheres to photochemically target and kill phagocytic trabecular meshwork (TM) cells. TM cells are the most actively phagocytic cells within the anterior chamber of the eye and are located within an optically accessible discrete band. This delivery system, along with the property of cell photocytosis, will achieve double selectivity by combining preferential localization of the photosensitizer to the target cells with spatial localization of illumination on the target cells. All experiments were performed with preconfluent bovine TM cells, 3rd to 4th passage, plated in 15 mm wells. Chlorin e6 monoethylene diamine monoamide was conjugated to the surface of 1.0 Am MX Duke Scientific fluorescent latex microspheres. Spectroscopic analysis revealed an average of 1.3 x 10 -17 moles of chlorin e6 per microsphere. TM cells were incubated for 18 hours with 5 x 10 7 microspheres/ml in MEM with 10% FCS, washed with MEM, and irradiated through fresh media using an argon-pumped dye laser emitting .2 W at 660 nm. A dose-survival study indicated that energy doses of 10 J/cm2 or greater resulted in greater than 95% cell death as determined by ethidium bromide exclusion. Cell death could be demonstrated as early as 4 hours post-irradiation. TM cells incubated with a solution of chlorin e6 at a concentration equal to that conjugated to the microspheres showed no cell death. Unirradiated controls also showed no cell death.

  8. Controlled, sustained release of proteins via an injectable, mineral-coated microsphere delivery vehicle

    NASA Astrophysics Data System (ADS)

    Franklin-Ford, Travelle

    Hydroxyapatite interfaces have demonstrated strong protein binding and protein selection from a passing solution and can serve as a biocompatible carrier for controlled protein delivery. Hydroxyapatite is a major component of long bones and tooth enamel and is the most stable of all calcium phosphate isoforms in aqueous solutions at physiologic pH, providing a sensitive chromatographic mechanism for separating proteins. Here we describe an approach to create a synthetic hydroxyapatite coating through a biomimetic, heterogeneous nucleation from a modified simulated body fluid--supersaturated with calcium and phosphate ions on the surface of injectable polymer microspheres. We are able to bind and release bioactive growth factors into a variety of in vitro and in vivo conditions, demonstrating the functionality and advantage of the biomaterial. Creating a hydroxyapatite layer on the Poly(D,L-lactide-co-glycolide) (PLG) microsphere surface, avails the microsphere interior for another application that will not compete with protein binding and release. Encapsulating an imaging agent within the aqueous phase of the emulsion provides a visual reference for the injectable therapy upon microsphere fabrication. Another advantage of this system is that the mineral coating and subsequent protein binding is not compromised by the encapsulated imaging agent. This dual function delivery vehicle is not only advantageous for spatial tracking therapeutic applications, but also determining the longevity of the delivery vehicle once injected. In the broader sense, providing a mechanism to image and track our temporally controlled, sustained delivery system gives more evidence to support the effects of released protein on in vivo responses (bioactivity) and locate microspheres within different biological systems.

  9. Early Dose Response to Yttrium-90 Microsphere Treatment of Metastatic Liver Cancer by a Patient-Specific Method Using Single Photon Emission Computed Tomography and Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver

    2009-05-01

    Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less

  10. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  11. Synergism of Dewetting and Self-Wrinkling To Create Two-Dimensional Ordered Arrays of Functional Microspheres.

    PubMed

    Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth

    2016-06-29

    Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities.

  12. An effective novel delivery strategy of rasagiline for Parkinson's disease.

    PubMed

    Fernández, Marcos; Negro, Sofía; Slowing, Karla; Fernández-Carballido, Ana; Barcia, Emilia

    2011-10-31

    This is the first report on the efficacy of a new controlled release system developed for rasagiline mesylate (RM) in a rotenone-induced rat model of Parkinson's disease (PD). PLGA microspheres in vitro released RM at a constant rate of 62.3 μg/day for two weeks. Intraperitoneal injection of rotenone (2 mg/kg/day) to Wistar rats produced typical PD symptoms. Catalepsy, akinesia and swim tests outcomes in animals receiving RM either in solution or within microspheres showed a reversal in descent latency when compared to rotenone-treated animals, being this reversal specially pronounced in animals receiving RM microspheres (dose equivalent to 1 mg/kg/day RM injected i.p. every 15 days). Nissl-staining of brain sections showed selective degeneration of the substantia nigra (SNc) dopaminergic neurons in rotenone-treated animals which was markedly reverted by RM microspheres. PET/CT with (18)F-DG resulted in mean increases of accumulation of radiotracer in striatum and SNc of around 40% in animals treated with RM microspheres which also had significant beneficial effects on Bcl-2, Bax, TNF-α mRNA and SOD2 levels as detected by real-time RT-PCR. Our results confirm the robust effect achieved by the new controlled release system developed for RM which exhibited better in vivo efficacy than RM given in solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.

    PubMed

    Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A

    2013-12-01

    The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    NASA Astrophysics Data System (ADS)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2014-06-01

    The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances.

  16. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%). Electronic supplementary information (ESI) available: Experimental details, XRD, SEM-EDS, UV-vis spectra and photovoltaic parameters of devices. See DOI: 10.1039/c3nr05705d

  17. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis.

    PubMed

    Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C

    2015-05-01

    In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation-polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip) 3 ]Cl 2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29-21.54 μM (20-80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber-optic microarrays paving the way for a new generation of biomimetic sensors.

  18. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres.

    PubMed

    Wei, Yi; Wang, Yu Xia; Wang, Wei; Ho, Sa V; Qi, Feng; Ma, Guang Hui; Su, Zhi Guo

    2012-10-02

    The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were employed to prepare microspheres exhibiting a narrow size distribution using a combined double emulsion and premix membrane emulsification method. The morphology, rhGH encapsulation efficiency, in vitro release profile, and rhGH stability of PELA microspheres during the release were characterized and compared in detail. It was found that increasing amounts of PLA enhanced the encapsulation efficiency of PELA microspheres but reduced both the release rate of rhGH and its stability. Contact angle, atomic force microscope (AFM), and quartz crystal microbalance with dissipation (QCM-D) techniques were first combined to elucidate the microcosmic mechanism of incomplete release by measuring the hydrophilicity of the PELA film and its interaction with rhGH. In addition, the pH change within the microsphere microenvironment was monitored by confocal laser scanning microscopy (CLSM) employing a pH-sensitive dye, which clarified the stability of rhGH during the release. These results suggested that PELA hydrophilicity played an important role in rhGH incomplete release and stability. Thus, the selection of suitable hydrophilic polymers with adequate PEG lengths is critical in the preparation of optimum protein drug sustained release systems. This present work is a first report elucidating the microcosmic mechanisms responsible for rhGH stability and its interaction with the microspheres. Importantly, this research demonstrated the application of promising new experimental methods in investigating the interaction between biomaterials and biomacromolecules, thus opening up a range of exciting potential applications in the biomedical field including drug delivery and tissue regeneration.

  19. Nanoporous Microsphere Assembly of Iodine-Functionalised Silver Nanoparticles as a Novel Mini-Substrate for Enriching and Sensing

    NASA Astrophysics Data System (ADS)

    Wu, X.-L.; Wu, H.; Wang, Z.-M.; Aizawa, H.; Guo, J.; Chu, Y.-H.

    2017-04-01

    Herein, debris particulates of nanoporous silver (np-Ag) were synthesised by a dealloying method, and their integration behaviour and surface-enhanced Raman scattering (SERS) properties during iodine functionalisation were examined. It was found that the dealloyed np-Ag debris particulates gradually assembled to form rigid nanoporous microspheres comprising Ag nano-ligaments due to mechanical collisions during iodine treatment. High-resolution transmission electron microscopy and X-ray photoelectron microscopy clearly showed the iodide surface of np-Ag, which was dotted with iodine or iodide ‘nanoislands’. The exceptional, and unexpected, integration and surface structures result in a highly enhanced localised surface plasmon resonance. Furthermore, the robust nanoporous microspheres can be employed individually as as-produced miniaturised electrodes to electrically enrich target molecules at parts-per-trillion levels, so as to achieve charge selectivity and superior detectability compared with the ordinary SERS effect.

  20. Molybdenum-base cermet fuel development

    NASA Astrophysics Data System (ADS)

    Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080; Zhu, Qingshan, E-mail: qszhu@home.ipe.ac.cn

    {beta}-Ni(OH){sub 2} hierarchical micro-flowers, hierarchical hollow microspheres and nanosheets were synthesized via a facile, single-step and selected-control hydrothermal method. Both hierarchical micro-flowers and hierarchical hollow microspheres were built from two-dimensional nanosheets with thickness of 50-100 nm. The as-obtained products were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). It was observed that marked morphological changes in {beta}-Ni(OH){sub 2} depended on the initial concentrations of Ni{sup 2+} ions and glycine. A possible growth mechanism was proposed based on experimental results. In addition, the effect of morphology on the electrochemical properties wasmore » also investigated. Both hierarchical micro-flowers and hierarchical hollow microspheres exhibited enhanced specific capacity and high-rate discharge ability as compared with pure Ni(OH){sub 2} nanosheets. Investigations confirmed that hierarchical structures had a pronounced influence upon the electrochemical performance of nickel hydroxide.« less

  2. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    PubMed Central

    Panigrahi, Ritwik; Srivastava, Suneel K.

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59–23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported. PMID:25560384

  3. Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine.

    PubMed

    Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit

    2017-09-01

    In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  4. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.

    PubMed

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-03-21

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).

  5. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    PubMed Central

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications. PMID:28059153

  6. Cellulose Nanofibril Based-Aerogel Microreactors: A High Efficiency and Easy Recoverable W/O/W Membrane Separation System

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin

    2017-01-01

    Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications.

  7. The field representation language.

    PubMed

    Tsafnat, Guy

    2008-02-01

    The complexity of quantitative biomedical models, and the rate at which they are published, is increasing to a point where managing the information has become all but impossible without automation. International efforts are underway to standardise representation languages for a number of mathematical entities that represent a wide variety of physiological systems. This paper presents the Field Representation Language (FRL), a portable representation of values that change over space and/or time. FRL is an extensible mark-up language (XML) derivative with support for large numeric data sets in Hierarchical Data Format version 5 (HDF5). Components of FRL can be reused through unified resource identifiers (URI) that point to external resources such as custom basis functions, boundary geometries and numerical data. To demonstrate the use of FRL as an interchange we present three models that study hyperthermia cancer treatment: a fractal model of liver tumour microvasculature; a probabilistic model simulating the deposition of magnetic microspheres throughout it; and a finite element model of hyperthermic treatment. The microsphere distribution field was used to compute the heat generation rate field around the tumour. We used FRL to convey results from the microsphere simulation to the treatment model. FRL facilitated the conversion of the coordinate systems and approximated the integral over regions of the microsphere deposition field.

  8. Subcritical CO2 Sintering of Microspheres of Different Polymeric Materials to Fabricate Scaffolds for Tissue Engineering

    PubMed Central

    Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M; Detamore, Michael S.

    2013-01-01

    The aim of this study was to use CO2 at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage Tissue Engineering Porous scaffolds composed of ~200 µm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO2 sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO2-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO2 sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. PMID:24094202

  9. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    PubMed

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  10. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    PubMed

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  11. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    PubMed

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  12. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.

    PubMed

    Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-01-15

    Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon cancer therapy were simultaneously incorporated in the microspheres. The prepared microspheres prevented the premature release of the loaded drugs after exposure to the harsh conditions of the gastrointestinal tract, but allowed their simultaneously fast release, and enhanced the drug permeability and the inhibition of colon cancer cell proliferation in response to the colon pH. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    PubMed

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.

  14. Magnetically directed poly(lactic acid) [sup 90]Y-microspheres: Novel agents for targeted intracavitary radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.

    1994-08-01

    High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity ismore » completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.« less

  15. Effect of a controlled release device containing minocycline microspheres on the treatment of chronic periodontitis: A comparative study

    PubMed Central

    Gopinath, V.; Ramakrishnan, T.; Emmadi, Pamela; Ambalavanan, N.; Mammen, Biju; Vijayalakshmi

    2009-01-01

    Introduction: Adjunctive therapy with locally delivered antimicrobials has resulted in improved clinical outcomes. The aim of this study was to evaluate the efficacy and safety of locally administered minocycline microspheres (Arestin™) in the treatment of chronic periodontitis. Materials and Methods: A total of 60 sites from 15 patients in the age group of 35-50 years, who had periodontal pockets measuring 5-8 mm and had been diagnosed with chronic periodontitis, were selected for the study. The selected groups were randomly assigned to either the control group (group A) or the treatment/test group (group B). Only scaling and root planing were done at the base line visit for the control sites followed by local application of Arestin™ (1 mg). Clinical parameters such as plaque index, gingival index, and gingival bleeding index were recorded at baseline, day 30, day 90, and day 180 in the selected sites of both the groups. Probing pocket depth also was recorded at baseline, day 90, and day 180 for both the groups. Results: A statistically significant reduction was observed in both groups. Group B showed better results than Group A and these differences were statistically significant. Conclusion: The results of this study clearly indicate that treatment with scaling and root planing plus minocycline microspheres (Arestin™) is more effective and safer than scaling and root planing alone in reducing the signs of chronic periodontitis. PMID:20407655

  16. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres.

    PubMed

    Romano, Edwin F; Holdsworth, Clovia I; Quirino, Joselito P; So, Regina C

    2018-01-01

    Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing. Copyright © 2017 John Wiley & Sons, Ltd.

  17. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  18. Dispersive solid-phase extraction based on magnetic dummy molecularly imprinted microspheres for selective screening of phthalates in plastic bottled beverages.

    PubMed

    Qiao, Jindong; Wang, Mingyu; Yan, Hongyuan; Yang, Gengliang

    2014-04-02

    A new magnetic dummy molecularly imprinted dispersive solid-phase extraction (MAG-MIM-dSPE) coupled with gas chromatography-FID was developed for selective determination of phthalates in plastic bottled beverages. The new magnetic dummy molecularly imprinted microspheres (MAG-MIM) using diisononyl phthalate as a template mimic were synthesized by coprecipitation coupled with aqueous suspension polymerization and were successfully applied as the adsorbents for MAG-MIM-dSPE to extract and isolate five phthalates from plastic bottled beverages. Validation experiments showed that the MAG-MIM-dSPE method had good linearity at 0.0040-0.40 μg/mL (0.9991-0.9998), good precision (3.1-6.9%), and high recovery (89.5-101.3%), and limits of detection were obtained in a range of 0.53-1.2 μg/L. The presented MAG-MIM-dSPE method combines the quick separation of magnetic particles, special selectivity of MIM, and high extraction efficiency of dSPE, which could potentially be applied to selective screening of phthalates in beverage products.

  19. Characterization of polymeric solutions as injectable vehicles for hydroxyapatite microspheres.

    PubMed

    Oliveira, Serafim M; Almeida, Isabel F; Costa, Paulo C; Barrias, Cristina C; Ferreira, M Rosa Pena; Bahia, M Fernanda; Barbosa, Mário A

    2010-06-01

    A polymeric solution and a reinforcement phase can work as an injectable material to fill up bone defects. However, the properties of the solution should be suitable to enable the transport of that extra phase. Additionally, the use of biocompatible materials is a requirement for tissue regeneration. Thus, we intended to optimize a biocompatible polymeric solution able to carry hydroxyapatite microspheres into bone defects using an orthopedic injectable device. To achieve that goal, polymers usually regarded as biocompatible were selected, namely sodium carboxymethylcellulose, hydroxypropylmethylcellulose, and Na-alginate (ALG). The rheological properties of the polymeric solutions at different concentrations were assessed by viscosimetry before and after moist heat sterilization. In order to correlate rheological properties with injectability, solutions were tested using an orthopedic device applied for minimal invasive surgeries. Among the three polymers, ALG solutions presented the most suitable properties for our goal and a non-sterile ALG 6% solution was successfully used to perform preliminary injection tests of hydroxyapatite microspheres. Sterile ALG 7.25% solution was found to closely match non-sterile ALG 6% properties and it was selected as the optimal vehicle. Finally, sterile ALG 7.25% physical stability was studied at different temperatures over a 3-month period. It was observed that its rheological properties presented minor changes when stored at 25 degrees C or at 4 degrees C.

  20. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  1. Complete eradication of hepatic metastasis from colorectal cancer by Yttrium-90 SIRT

    PubMed Central

    Garrean, Sean; Muhs, Amanda; Bui, James T; Blend, Michael J; Owens, Charles; Helton, William S; Espat, N Joseph

    2007-01-01

    Yttrium-90 (Y-90) radioembolization, also known as selective internal radiation therapy (SIRT), is a regional hepatic therapy used in the treatment of unresectable colorectal cancer (CRC) liver metastases. In SIRT, Y-90 impregnated microspheres are injected into the VASCULAR SUPPLY of hepatic tumor, leading to selective irradiation and necrosis of tumor TISSUE. While several studies demonstrate improved local control and survival with SIRT, the specific indications for this therapy have yet to be defined. Typically, SIRT is given in combination with chemotherapy as multimodal treatment for unresectable hepatic CRC. However, it HAS ALSO FOUND INCREASING USE as a salvage therapy in chemo-refractory patients. Herein, the authors describe their experience with SIRT as “stand alone” therapy in a surgically-prohibitive, chemotherapy naive patient with hepatic CRC metastasis. The results suggest that Y-90 SIRT may have potential applications beyond its usual role as a palliative or salvage therapy for unresectable hepatic CRC. PMID:17589957

  2. Comparative Study Using 100-300 Versus 300-500 μm Microspheres for Symptomatic Patients Due to Enlarged-BPH Prostates.

    PubMed

    Gonçalves, Octavio Meneghelli; Carnevale, Francisco Cesar; Moreira, Airton Mota; Antunes, Alberto Azoubel; Rodrigues, Vanessa Cristina; Srougi, Miguel

    2016-10-01

    The purpose of the study was to compare safety and efficacy outcomes following prostate artery embolization (PAE) for the treatment of lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) with 100-300 versus 300-500 μm tris-acryl gelatin microspheres. Patients were prospectively treated between August 2011 and June 2013 to receive PAE with 100-300 μm (group A) or 300-500 μm (group B) tris-acryl gelatin microspheres. Patients were followed for a minimum of 12 months and were assessed for changes in International Prostate Symptom Score (IPSS), quality of life (QoL) index, prostate volume determined by magnetic resonance imaging, serum prostate specific antigen (PSA), and maximum urine flow rate (Qmax), as well as any treatment-related adverse events. Fifteen patients were included in each group, and PAE was technically successful in all cases. Both groups experienced significant improvement in mean IPSS, QoL, prostate volume, PSA, and Qmax (p < 0.05 for all). The differences observed between the two groups included a marginally insignificant more adverse events (p = 0.066) and greater mean serum PSA reduction at 3 months of follow-up (p = 0.056) in group A. Both 100-300 and 300-500 μm microspheres are safe and effective embolic agents for PAE to treat LUTS-related to BPH. Although functional and imaging outcomes did not differ significantly following use of the two embolic sizes, the greater incidence of adverse events with 100-300 μm microspheres suggests that 300-500 μm embolic materials may be more appropriate.

  3. Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice.

    PubMed

    Huang, Sha; Wu, Yan; Gao, Dongyun; Fu, Xiaobing

    2015-07-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) participate in wound healing to favor tissue regeneration and inhibit fibrotic tissue formation. However, the evidence of MSCs to suppress cutaneous scar is extremely rare, and the mechanism remains unidentified. This study aimed to demonstrate whether MSCs-as the result of their paracrine actions on damaged tissues-would accelerate wound healing and prevent cutaneous fibrosis. For efficient delivery of MSCs to skin wounds, microspheres were used to maintain MSC potency. Whether MSCs can accelerate wound healing and alleviate cutaneous fibrosis through paracrine action was investigated with the use of a Transwell co-culture system in vitro and a murine model in vivo. MSCs cultured on gelatin microspheres fully retained their cell surface marker expression profile, proliferation, differentiation and paracrine potential. Co-cultures of MSCs and fibroblasts indicated that the benefits of MSCs on suppressing fibroblast proliferation and its fibrotic behavior induced by inflammatory cytokines probably were caused by paracrine actions. Importantly, microspheres successfully delivered MSCs into wound margins and significantly accelerated wound healing and concomitantly reduced the fibrotic activities of cells within the wounds and excessive accumulation of extracellular matrix as well as the transforming growth factor-β1/transforming growth factor-β3 ratio. This study provides insight into what we believe to be a previously undescribed, multifaceted role of MSC-released protein in reducing cutaneous fibrotic formation. Paracrine action of MSCs delivered by microspheres may thus qualify as a promising strategy to enhance tissue repair and to prevent excessive fibrosis during cutaneous wound healing. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Preparation of "dummy" l-phenylalanine molecularly imprinted microspheres by using ionic liquid as a template and functional monomer.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Song, Dongmen; Qian, Liwei; Du, Chunbao; Song, Renyuan; Wang, Chaoli

    2015-07-07

    In this study, dummy imprinting technology was employed for the preparation of l-phenylalanine-imprinted microspheres. Ionic liquids were utilized as both a "dummy" template and functional monomer, and 4-vinylpyridine and ethylene glycol dimethacrylate were used as the assistant monomer and cross-linker, respectively, for preparing a surface-imprinted polymer on poly(divinylbenzene) microspheres. By the results obtained by theoretical investigation, the interaction between the template and monomer complex was improved as compared with that between the template and the traditional l-phenylalanine-imprinted polymer. The batch experiments indicated that the imprinting factor reached 2.5. Scatchard analysis demonstrated that the obtained "dummy" molecularly imprinted microspheres exhibited an affinity of 77.4 M·10 -4 , significantly higher that of a traditional polymer directly prepared by l-phenylalanine, which is in agreement with theoretical results. Competitive adsorption experiments also showed that the molecularly imprinted polymer with the dummy template effectively isolated l-phenylalanine from l-histidine and l-tryptophan with separation factors of 5.68 and 2.68, respectively. All these results demonstrated that the polymerizable ionic liquid as the dummy template could enhance the affinity and selectivity of molecularly imprinted polymer, thereby promoting the development of imprinting technology for biomolecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hierarchical Porous Interlocked Polymeric Microcapsules: Sulfonic Acid Functionalization as Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Gu, Jinyan; Tian, Lei; Zhang, Xu

    2017-03-01

    Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h-1), moreover, exhibits superior activity, selectivity and recyclability.

  6. Remote activation of a microactuator using a photo-responsive nanoparticle-polymer composite

    NASA Astrophysics Data System (ADS)

    Zeberoff, Anthony

    Stimulus response materials are a class of novel materials that are currently being explored in various technologies, including biomedical devices and components, food packaging, fabrics, energy harvesting and conversion, and other elementary components such as sensors and actuators. Hybrid organic-inorganic materials such as nanoparticle-polymer composites are attractive candidates as their properties can be significantly tuned for particular applications where selectivity and localized responses are critical factors. In this work we developed and optimized a photo-responsive microactuator that can operate selectively to a specific wavelength of light. The photo-responsive microactuator is comprised of monodispersed microspheres that contain gold nanoparticles. Upon irradiation, these microspheres transduce optical energy to thermal energy, driving a localized phase change in the matrix in which they are embedded. Our remotely powered microactuator can be further realized in applications where decoupling the physical connection of the energy/control source from the actuating component is necessary.

  7. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    PubMed

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  10. A study of factors affecting properties of AM/AMPS/NVP terpolymeric microspheres prepared by inverse suspension polymerization

    NASA Astrophysics Data System (ADS)

    Jiang, J. F.; Zhao, Q.; Lin, M. Q.; Wang, Y. F.; Dang, S. M.; Sun, F. F.

    2015-12-01

    Terpolymeric microspheres were synthesized by the inverse suspension polymerization of functional monomers including AMPS, NVP, and AM. The morphology and size of the obtained microspheres were measured by scanning electron microscopy (SEM) and optical microscopy. Furthermore, the swelling performances of the obtained microspheres were measured with alaser particle analyzer (LPA), and the thermal stability of the microspheres obtained was measured by differential thermal analysis (DSC-TG) and high temperature experiments involving microsphere/water dispersion. The results revealed that the extreme value of the microsphere size distribution decreased from 280 μm to 20 μm as the stirring rate increased from 175 rpm to 500 rpm. At temperatures below 25°C, the maximum achieved swelling ratio of the microspheres was 21, and the thermal stability of the terpolymer microspheres was significantly higher than that of the dipolymer microspheres. The terpolymer/water dispersions were kept at 120°C for 19d before any damage was observed.

  11. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  12. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  13. Preparation of Tea Tree Oil/Poly(styrene-butyl methacrylate) Microspheres with Sustained Release and Anti-Bacterial Properties

    PubMed Central

    Lin, Guanquan; Chen, Huayao; Zhou, Hongjun; Zhou, Xinhua; Xu, Hua

    2018-01-01

    Using butyl methacrylate (BMA) and styrene (St) as monomers and divinylbenzene (DVB) as a crosslinking agent, P(St-BMA) microspheres were prepared by suspension polymerization. Tea tree oil (TTO) microspheres were prepared by adsorbing TTO on P(St-BMA) microspheres. The structure and surface morphology of P(St-BMA) microspheres and TTO microspheres were characterized by Fourier transformed infrared spectroscopy (FTIR), optical microscopy, and Thermogravimetric analysis (TGA). In doing so, the structural effect of P(St-BMA) microspheres on oil absorption and sustained release properties could be investigated. The results show that the surface of the P(St-BMA) microspheres in the process of TTO microsphere formation changed from initially concave to convex. The TTO microspheres significantly improved the stability of TTO, which was found to completely decompose as the temperature of the TTO increased from about 110 °C to 150 °C. The oil absorption behavior, which was up to 3.85 g/g, could be controlled by adjusting the monomer ratio and the amount of crosslinking agent. Based on Fickian diffusion, the sustained release behavior of TTO microspheres was consistent with the Korsmeyer-Pappas kinetic model. After 13 h of natural release, the anti-bacterial effect of the TTO microspheres was found to be significantly improved compared to TTO. PMID:29723967

  14. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  15. Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds.

    PubMed

    Yan, Hongyuan; Qiao, Jindong; Pei, Yuning; Long, Tao; Ding, Wen; Xie, Kun

    2012-05-01

    New molecularly imprinted microspheres synthesized by suspension polymerisation using phenylamine and naphthol as mimic template were successfully applied as selective sorbents for the solid-phase extraction used for the simultaneous determination of four Sudan dyes from preserved beancurd products. The obtained imprinted microspheres showed good recognition and selectivity to the four Sudan dyes in aqueous solution and the affinity could be easily controlled by adjusting the property of the solution. Under the selected experimental condition, the recoveries of the Sudan dyes in preserved beancurds at three spiked levels were ranged between 90.2-104.5% with the relative standard deviation of less than 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) based on a signal-to-noise of 3 and 10 were in the range of 0.005-0.009μgg(-1) and 0.015-0.030μgg(-1), respectively. Comparing with alumina and C18-based extraction, the selectivity and repeatability of molecularly imprinted solid-phase extraction (MISPE) were obviously improved. This method could be potentially applied for the determination of Sudan dyes in complicated food samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  17. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    PubMed

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory.

    PubMed

    Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J

    2007-06-07

    The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.

  19. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: Inmore » situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.« less

  20. Release of a wound-healing agent from PLGA microspheres in a thermosensitive gel.

    PubMed

    Machado, H A; Abercrombie, J J; You, T; Deluca, P P; Leung, K P

    2013-01-01

    The purpose of this research was to develop a topical microsphere delivery system in a thermosensitive 20% poloxamer 407 gel (Pluronic F127) to control release of KSL-W, a cationic antimicrobial decapeptide, for a period of 4-7 days for potential application in combat related injuries. KSL-W loaded microsphere formulations were prepared by a solvent extraction-evaporation method (water-oil-water), with poly (D,L-lactic-co-glycolic acid) (PLGA) (50 : 50, low-weight, and hydrophilic end) as the polymeric system. After optimization of the process, three formulations (A, B, and C) were prepared with different organic to water ratio of the primary emulsion while maintaining other components and manufacturing parameters constant. Formulations were characterized for surface morphology, porous nature, drug loading, in vitro drug release, and antimicrobial activity. Microspheres containing 20% peptide with porous surfaces and internal structure were prepared in satisfactory yields and in sizes varying from 25 to 50 μm. Gels of 20% Pluronic F127, which were liquid at or below 24.6°C and formed transparent films at body temperature, were used as carriers for the microspheres. Rheological studies showed a gelation temperature of 24.6°C for the 20% Pluronic F127 gel alone. Gelation temperature and viscosity of formulations A, B, and C as a function of temperature were very close to those of the carrier. A Franz diffusion cell system was used to study the release of peptide from the microspheres suspended in both, phosphate-buffered saline (PBS) and a 20% Pluronic F127 gel. In vitro release of greater than 50% peptide was found in all formulations in both PBS and the gel, and in one formulation there was a release of 75% in both PBS and the gel. Fractions collected from the release process were also tested for bactericidal activity against Staphylococcus epidermidis using the broth microdilution method and found to provide effective antimicrobial activity to warrant consideration and testing in animal wound models for treating combat-related injuries.

  1. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays.

    PubMed

    Steemers, F J; Ferguson, J A; Walt, D R

    2000-01-01

    We have developed a randomly ordered fiber-optic gene array for rapid, parallel detection of unlabeled DNA targets with surface immobilized molecular beacons (MB) that undergo a conformational change accompanied by a fluorescence change in the presence of a complementary DNA target. Microarrays are prepared by randomly distributing MB-functionalized 3-microm diameter microspheres in an array of wells etched in a 500-microm diameter optical imaging fiber. Using several MBs, each designed to recognize a different target, we demonstrate the selective detection of genomic cystic fibrosis related targets. Positional registration and fluorescence response monitoring of the microspheres was performed using an optical encoding scheme and an imaging fluorescence microscope system.

  2. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    PubMed

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  3. A novel accelerated in vitro release method to evaluate the release of thymopentin from PLGA microspheres.

    PubMed

    Xie, Xiangyang; Li, Zhiping; Zhang, Ling; Chi, Qiang; Yang, Yanfang; Zhang, Hui; Yang, Yang; Mei, Xingguo

    2015-01-01

    A novel accelerated method of good correlations with "real-time" release to evaluate in vitro thymopentin release from poly (D, L-lactide-co-glycolide) (PLGA) microsphere was developed. Thymopentin-loaded microspheres were made from three types of PLGA, and peptide release was studied in various conditions. Incomplete release of peptide (<60%) from microspheres was found in accelerated testing with two typical release media. This problem was circumvented by adding organic solvents to the release media and varying the temperature in the media heating process. Release media containing three kinds of organic solvents at 50 °C were tested, respectively, and hydro-alcoholic solution was selected for further study. After the surfactant concentration (0.06%, W/V) and ethanol concentration (20%, V/V) were fixed, a gradient heating program, consisting of three stages and each stage with a different temperature, was introduced to enhance the correlations between the short- and long-term release. After adjusting the heating time of each stage, a good correlation (R(2) = 9896, formulation 8 K; R(2) = 0.9898, formulation 13 K; R(2) = 0.9886, formulation 28 K) between accelerated and "real-time" release was obtained. By optimizing the conditions as ethanol concentration and temperature gradients, this accelerated method may be appropriate for similar peptide formulations that not well correlate with "real-time" release.

  4. Experimental study on microsphere assisted nanoscope in non-contact mode

    NASA Astrophysics Data System (ADS)

    Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui

    2018-07-01

    Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.

  5. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion

    NASA Astrophysics Data System (ADS)

    Wang, Fengge; Yang, Songlin; Ma, Huifeng; Shen, Ping; Wei, Nan; Wang, Meng; Xia, Yang; Deng, Yun; Ye, Yong-Hong

    2018-01-01

    Microsphere-assisted imaging is an extraordinary simple technology that can obtain optical super-resolution under white-light illumination. Here, we introduce a method to improve the resolution of a microsphere lens by increasing its numerical aperture. In our proposed structure, BaTiO3 glass (BTG) microsphere lenses are semi-immersed in a S1805 layer with a refractive index of 1.65, and then, the semi-immersed microspheres are fully embedded in an elastomer with an index of 1.4. We experimentally demonstrate that this structure, in combination with a conventional optical microscope, can clearly resolve a two-dimensional 200-nm-diameter hexagonally close-packed (hcp) silica microsphere array. On the contrary, the widely used structure where BTG microsphere lenses are fully immersed in a liquid or elastomer cannot even resolve a 250-nm-diameter hcp silica microsphere array. The improvement in resolution through the proposed structure is due to an increase in the effective numerical aperture by semi-immersing BTG microsphere lenses in a high-refractive-index S1805 layer. Our results will inform on the design of microsphere-based high-resolution imaging systems.

  6. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    PubMed

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.

  7. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres.

    PubMed

    Sivakumar, M; Panduranga Rao, K

    2002-08-01

    Composite microspheres have been prepared from bioactive ceramics such as coralline hydroxyapatite [CHA, Ca10(PO4)6(OH)2] granules, a biodegradable polymer, gelatin and an antibiotic, gentamicin. In our earlier work, we have shown a gentamicin release from CHA granules--chitosan composite microspheres. In the present investigation, an attempt was made to prepare the composite microspheres containing coralline hydroxyapatite and gelatin (CHA-G), which were prepared by the dispersion polymerization technique and the gentamicin was incorporated by the absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. The Fourier transformed infrared spectrum clearly indicated the presence of amide and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs show that the composite microspheres are spherical in shape and porous in nature. The particle size of composite microspheres was analyzed and the average size was found to be 16 microm. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  8. Morphogenesis and crystallization of ZnS microspheres by a soft template-assisted hydrothermal route: synthesis, growth mechanism, and oxygen sensitivity.

    PubMed

    Yang, Liangbao; Han, Jun; Luo, Tao; Li, Minqiang; Huang, Jiarui; Meng, Fanli; Liu, Jinhuai

    2009-01-05

    Almost monodisperse ZnS microspheres have been synthesized on a large scale by a hydrothermal route, in which tungstosilicate acid (TSA) was used as a soft template. By controlling the reaction conditions, such as reaction temperature, pH value of the solutions, and the reaction medium, almost monodisperse microspheres can be synthesized. The structure of these microspheres is sensitive to the reaction conditions. The growth mechanism of these nearly monodisperse microspheres was examined. Oxygen sensing is realized from ZnS microspheres. The current through the ZnS microspheres under UV illumination increases as the oxygen concentration decreases.

  9. Effect of medium-chain triglycerides on the release behavior of Endostar encapsulated PLGA microspheres.

    PubMed

    Meng, Boyu; Li, Ling; Hua, Su; Wang, Qingsong; Liu, Chunhui; Xu, Xiangyang; Yin, Xiaojin

    2010-09-15

    The incomplete release of Endostar from PLGA microspheres was observed in our previous study. In the present study, we focused on the effect of medium-chain triglycerides (MCT) on the in vitro/in vivo release behavior of Endostar encapsulated PLGA microspheres, which were prepared by a water-in-oil-in-water (W/O/W) double-emulsion method with or without MCT. The in vitro accumulated release of Endostar from microspheres co-encapsulated with 30% MCT was found to be 79.04% after a 30-day incubation period in PBS (pH 7.4) at 37 degrees C. However, the accumulated release of Endostar from MCT-free microspheres was found to be only 32.22%. Pouches containing Endostar encapsulated PLGA microspheres were implanted subcutaneously in rats. The effect of MCT on the in vivo release showed a similar trend to the in vitro release. After 30 days, only 9.87% of the total encapsulated Endostar was retained in microspheres co-encapsulated with 30% MCT, while 42.25% of Endostar was retained in MCT-free microspheres. The co-encapsulation of MCT provided the microspheres with a porous surface, which significantly improved the in vitro/in vivo release of Endostar from PLGA microspheres. In addition, in vitro experiments showed that MCT co-encapsulated PLGA microspheres had more inter-connected pores, faster degradation of PLGA, and faster swelling of microspheres, which helped to explain the mechanism of the effect of MCT on improving the release of Endostar from PLGA microspheres. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    NASA Astrophysics Data System (ADS)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  11. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  12. FORMULATION AND EVALUATION OF MICROSPHERES CONTAINING LOSARTAN POTASSIUM BY SPRAY-DRYING TECHNIQUE.

    PubMed

    Balwierz, Radoslaw; Jankowski, Andrzej; Jasinska, Agata; Marciniak, Dominik; Pluta, Janusz

    2016-09-01

    Despite numerous applications of microspheres, few works devoted to the preparation of microspheres containing cardiac medications have been published. This study presents the potential of receiving microspheres containing losartan potassium, based on a matrix containing Eudragit L30D55. The study focuses on the possibilities of controlled release of losartan potassium from microspheres in order to reduce the dosage frequency, and also provides information on the effect of the addition of excipients to the quality of the microspheres. Microspheres are monolithic, porous or smooth microparticles ranging from 1 to 500 microns in size. For the preparation of microspheres containing losartan potassium, the spray-drying method was used. The performed study confirmed that the spray-drying technology used to obtain microspheres meets the criteria of size and morphology of the microparticles. The assessment of the kinetics of losartan potassium release from the examined microspheres demonstrated that the release profile followed the first- and/or zero-order kinetics. The use of spray-drying techniques as well as Eudragit L30D55 polymer matrix to obtain the microspheres containing losartan potassium makes it possible to obtain a product with the required particle morphology and particle size ensuring the release of the active substance up to 12 h.

  13. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  14. 5-Fluorouracil:carnauba wax microspheres for chemoembolization: an in vitro evaluation.

    PubMed

    Benita, S; Zouai, O; Benoit, J P

    1986-09-01

    5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.

  15. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  16. Topological Transformation of Defects in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Pagel, Zachary; Atherton, Timothy; Guasto, Jeffrey; Cebe, Peggy

    A topological transformation around silica microsphere inclusions in nematic liquid crystal cells (LCC) is experimentally studied. Silica microspheres are coated to induce homeotropic LC anchoring to the spheres. Parallel rub directions of the alignment polymer during LCC construction create a splay wall that traps the microspheres. Application of an out-of-plane electric field then permits a transformation of hedgehog defects, reversing the orientation of the defect around microspheres. The transformation controllably reverses the microsphere's direction of travel during AC electrophoresis due to defect-dependent velocity anisotropy. A similar transformation is studied on chains of microspheres with hedgehog defects, where the defect orientation is reversed on the entire chain. Polarized and confocal microscopies are used to study the defect structures. Results contribute to recent developments in microsphere electrokinetics in nematic LCs, as the transformation adds an additional degree of control in the electrophoretic motion of microspheres and chains of microspheres with dipolar defects. The author thanks NSF Grant DMR-1608126 for funding reseearch and Tufts University for funding travel.

  17. The use of polymethyl-methacrylate (Artecoll) as an adjunct to facial reconstruction

    PubMed Central

    Mok, David; Schwarz, Jorge

    2004-01-01

    BACKGROUND: Injectable polymethyl-methacrylate (PMMA) microspheres, or Artecoll, has been used for the last few years in aesthetic surgery as long-term tissue filler for the correction of wrinkles and for lip augmentation. This paper presents three cases of the use of PMMA microsphere injection for reconstructive patients with defects of varying etiologies. These cases provide examples of a novel adjunct to the repertoire of the reconstructive surgeon. OBJECTIVES: To evaluate the effectiveness (short- and long-term) of PMMA injection for the correction of small soft tissue defects of the face. METHODS: Three case histories are presented. They include the origin of the defect; previous reconstructions of the defect; and area, volume, timing and technical particularities of PMMA administration. RESULTS: All three cases showed improvement of the defect with the PMMA injection with respect to both objective evidence and patient satisfaction. The improvements can still be seen after several years. CONCLUSIONS: PMMA microsphere injection can be effectively used to correct selected small facial defects in reconstructive cases and the results are long lasting. PMID:24115873

  18. Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles

    NASA Astrophysics Data System (ADS)

    Nachman, Paul; Pinnick, R. G.; Hill, Steven C.; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1996-03-01

    We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles.

  19. Fabrication and characterization of novel microsphere-embedded optical devices for enhancing microscopy resolution

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash

    2018-02-01

    Microsphere-assisted imaging can be incorporated onto conventional light microscopes allowing wide-field and flourescence imaging with enhanced resolution. We demonstrated that imaging of specimens containing subdiffraction-limited features is achievable through high-index microspheres embedded in a transparent thin film placed over the specimen. We fabricated novel microsphere-embedded microscope slides composed of barium titanate glass microspheres (with diameter 10-100 μm and refractive index 1.9-2.2) embedded in a transparent polydimethylsiloxane (PDMS) elastomer layer with controllable thickness. We characterized the imaging performance of such microsphere-embedded devices in white-light microscopies, by measuring the imaging resolution, field-of-view, and magnification as a function of microsphere size. Our results inform on the design of novel optical devices, such as microsphere-embedded microscope slides for imaging applications.

  20. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    PubMed

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.

    PubMed

    Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry

    2014-08-01

    Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-05

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the biocompatibility of the platform in vivo.

  3. Development and evaluation of a novel biodegradable sustained release microsphere formulation of paclitaxel intended to treat breast cancer

    PubMed Central

    Shiny, Jacob; Ramchander, Thadkapally; Goverdhan, Puchchakayala; Habibuddin, Mohammad; Aukunuru, Jithan Venkata

    2013-01-01

    Objective: The objective of this study was to develop a novel 1 month depot paclitaxel (PTX) microspheres that give a sustained and complete drug release. Materials and Methods: PTX loaded microspheres were prepared by o/w emulsion solvent evaporation technique using the blends of poly(lactic-co-glycolic acid) (PLGA) 75/25, polycaprolactone 14,000 and polycaprolactone 80,000. Fourier transform infrared spectroscopy was used to investigate drug excipient compatibility. Compatible blends were used to prepare F1-F6 microspheres, the process was characterised and the optimum formulation was selected based on the release. Optimised formulation was characterised for solid state of the drug using the differential scanning calorimetry (DSC) studies, surface morphology using the scanning electron microscopy (SEM), in vivo drug release, in vitro in vivo correlation (IVIVC) and anticancer activity. Anticancer activity of release medium was determined using the cell viability assay in Michigan Cancer Foundation (MCF-7) cell line. Results: Blend of PLGA with polycaprolactone (Mwt 14,000) at a ratio of 1:1 (F5) resulted in complete release of the drug in a time frame of 30 days. F5 was considered as the optimised formulation. Incomplete release of the drug resulted from other formulations. The surface of the optimised formulation was smooth and the drug changed its solid state upon fabrication. The formulation also resulted in 1-month drug release in vivo. The released drug from F5 demonstrated anticancer activity for 1-month. Cell viability was reduced drastically with the release medium from F5 formulation. A 100% IVIVC was obtained with F5 formulation suggesting the authenticity of in vitro release, in vivo release and the use of the formulation in breast cancer. Conclusions: From our study, it was concluded that with careful selection of different polymers and their combinations, PTX 1 month depot formulation with 100% drug release and that can be used in breast cancer was developed. PMID:24167783

  4. Pluronic F127/chitosan blend microspheres for mucoadhesive drug delivery

    NASA Astrophysics Data System (ADS)

    Gu, W. Z.; Hu, X. F.

    2017-01-01

    Pluronic F127/chitosan blend microspheres were prepared via emulsification and cross-linking process using glutaraldehyde as a cross-linker. Compared with chitosan microspheres fabricated under the same experimental conditions, blend microspheres exhibited better physical stability and higher swelling capacity. Puerarin, a traditional Chinese medicine, was incorporated into microparticlesas the model drug. The in vitro release of puerarin from blend microspheres was reduced because of the improved compatibility of the drug with the matrices. According to the results from in vitro adhesion experiments, mucoadhesive behavior of blend microspheres on a mucosa-like surface was similar to that of chitosan microspheres, despite their good ability of anti-protein absorption in solution.

  5. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing.

    PubMed

    Schrier, J A; Fink, B F; Rodgers, J B; Vasconez, H C; DeLuca, P P

    2001-10-07

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization, matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well, allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days, with the unembedded microspheres releasing faster than those embedded in CMC. In vivo, the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2/PLGA microspheres in CMC was an effective implantable protein-delivery system for use in bone repair.

  6. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.

    PubMed

    Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D

    2008-02-01

    Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.

  7. Microspheres for the oral delivery of insulin: preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats.

    PubMed

    Zhang, Huan; Wang, Weimei; Li, Haoran; Peng, Yi; Zhang, Zhiqing

    2018-01-01

    Insulin-loaded microspheres were prepared by alternating deposition film layers that were composed of insulin and poly(vinyl sulfate) potassium on the surface of poly(lactic acid) (PLA) microspheres. The preparation of the insulin-loaded microspheres was optimized by an orthogonal test design, and the relationship between drug loading (DL) and film layers was studied. The particle size, DL and encapsulation efficiency of the obtained insulin-loaded microspheres with 10 films were 5.25 ± 0.15 µm, 111.33 ± 1.15 mg/g and 33.7 ± 0.19%, respectively. Following this, the physical characteristics of the insulin-loaded microspheres were investigated. The results from scanning electron microscopy and a laser particle size analyzer (LPSA) indicated the spherical morphology, rough surface and increasing particle sizes of the insulin-loaded microspheres, which were compared to those of PLA microspheres. An in vitro release study showed that the insulin-loaded microspheres were stable in HCl solution (pH 1.0) and released insulin slowly in phosphate-buffered solution (pH 6.8). Finally, the drug efficacy of the prepared insulin-loaded microspheres via oral administration was evaluated in rats with diabetes induced by streptozotocin, and an obvious dose-dependent hypoglycemic effect was observed. This preliminary data could illustrate the prospect of using microspheres for the oral delivery of insulin.

  8. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  9. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  10. Comparative Study Using 100–300 Versus 300–500 μm Microspheres for Symptomatic Patients Due to Enlarged-BPH Prostates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Octavio Meneghelli, E-mail: octaviogalvao@hotmail.com; Carnevale, Francisco Cesar, E-mail: francisco.carnevale@criep.com.br; Moreira, Airton Mota, E-mail: motamoreira@gmail.com

    PurposeThe purpose of the study was to compare safety and efficacy outcomes following prostate artery embolization (PAE) for the treatment of lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) with 100–300 versus 300–500 μm tris-acryl gelatin microspheres.Materials and MethodsPatients were prospectively treated between August 2011 and June 2013 to receive PAE with 100–300 μm (group A) or 300–500 μm (group B) tris-acryl gelatin microspheres. Patients were followed for a minimum of 12 months and were assessed for changes in International Prostate Symptom Score (IPSS), quality of life (QoL) index, prostate volume determined by magnetic resonance imaging, serum prostate specific antigen (PSA),more » and maximum urine flow rate (Q{sub max}), as well as any treatment-related adverse events.ResultsFifteen patients were included in each group, and PAE was technically successful in all cases. Both groups experienced significant improvement in mean IPSS, QoL, prostate volume, PSA, and Q{sub max} (p < 0.05 for all). The differences observed between the two groups included a marginally insignificant more adverse events (p = 0.066) and greater mean serum PSA reduction at 3 months of follow-up (p = 0.056) in group A.ConclusionsBoth 100–300 and 300–500 μm microspheres are safe and effective embolic agents for PAE to treat LUTS-related to BPH. Although functional and imaging outcomes did not differ significantly following use of the two embolic sizes, the greater incidence of adverse events with 100–300 μm microspheres suggests that 300–500 μm embolic materials may be more appropriate.« less

  11. Multipurpose Fiber Injected-micro-spherical LIDAR System

    NASA Technical Reports Server (NTRS)

    Abdelayem, Hossin; Jamison, Tracee

    2005-01-01

    A technological revolution is occurring in the field of fiber lasers. Over the past two years, the level of power has increased from approx. 100 watts to nearly 1 kilowatt. We are developing a novel fiber laser system, which is a satellite-based LIDAR transmitter of multi-lines. The system is made of a hollow fiber filled with micro-spheres doped with lasing materials. Each sphere has its inherent optical cavity, which makes the system a cavity free and in the same time, emits multi-laser lines for simultaneous multi-task operations. The system is also rugged, compact, lightweight, and durable. Our earlier studies on micro-spheres doped with different laser dyes demonstrated the emission of extremely fine laser lines of less than 3 A line-width, which are of interest for spectroscopic applications, sensing, imaging, and optical communications. Individual dye-doped micro-spheres demonstrated a lasing resonance peaks phenomenon in their fluorescence spectra of linear and nonlinear features that do not exist in the bulk dye solutions. Each individual micro-sphere acts as a laser system with inherent cavity, where the fluorescence line suffers multiple internal reflections within the micro-sphere and gains enough energy to become a laser line. Such resonance peaks are dependent on the sphere's morphology, size, shape, and its refractive index. These resonance peaks are named structural resonance, whispering modes or whispering gallery modes, creeping waves, circumferential waves, surfaces modes, and virtual modes. All of these names refer to the same phenomenon of morphology dependent resonance (MDR), which has already been described and predicted precisely by electromagnetic theory and Lorentz-Mie theory since 1908. The resonance peaks become more obvious when the particle size approaches and exceeds the wavelength of the laser used and the relative index of the particle is greater than that of the surrounding medium. Additional information is included in the original extended abstract.

  12. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.

    PubMed

    Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa

    2008-09-15

    The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.

  13. Implications of a Multi-well Tracer Test in the Transport of Pathogens at a Riverbank Filtration Experiment Site.

    NASA Astrophysics Data System (ADS)

    Langford, R. P.; Pillai, S.; Schulze-Makuch, D.; Widmer, K.; Abdel-Fattah, A.; Lerhner, T.

    2003-12-01

    This study tracks the transport of bromide and microspheres mimicking pathogens in an arid environment. The study site uses the Rio Grande that experiences significant annual fluctuations in both water quantity and quality. The pumping well is 17 m from the stream bank and the water table was 2 m below the stream surface. The aquifer is medium and fine-grained sand comprising two flow units. Observation wells are screened over 1 or 1.5 m intervals. The average hydraulic conductivity was about 2 x 10-3 m/s based on a test analysis, however, the responses indicated that sediment heterogeneities affected the hydraulic behavior. A 427 hour tracer test using bromide and fluorescent microspheres provides initial results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. Bromide was injected into an observation well at the channel margin. Differently colored fluorescent microspheres (0.25nm, 1?m, 6?m and 10?m) were injected into the stream bottom and into two observation wells. Conclusions from the tracer test are: 1) Both bromide and microspheres continued to be observed throughout the 18 days of the experiment. 2) The bromide recovery in the pumping well and in the deeper observation wells showed early and late peaks with a long tails indicating that the geological medium at the field site behaves like a double-porosity medium allowing the tracer to move relatively quickly through the higher conductivity units while being significantly retarded in the low hydraulic conductivity units. 3) Some wells showed consistently higher concentrations of bromide. 4) The 1? micospheres were abundant in the observation wells and allowed tracing of flowpaths. These showed multiple peaks similar to the bromide results. This indicates highly preferential transport paths in the sediment. 5) Microspheres from the three injection sites had distinctly different transport paths and rates. 6) Both bromide and microspheres appeared in the stream soon after injection, moving apparently against an 2-m head difference. 7) The 6 ? and 10 ? microspheres were observed in low concentrations and were episodically detected in the stream and in two widely spaced observation wells. The significance of these results is that: 1) Inorganic microspheres may mimic the episodic occurrence of microorganisms in wells. 2) Even in this relatively homogeneous aquifer, preferential transport within the aquifer results in highly divergent transport paths and rates. Microspheres from one of the injection sites traveled essentially perpendicular to the expected transport direction. 3) Even small variations in the sand grain size can effectively compartmentalize the aquifer. The next steps of this project will include field studies to observe the migration and persistence of selected organisms (E.coli, enterococci, coliphages, cysts, oocysts and enteroviruses) in the pumping well and observation wells under different pumping rates. Continued combined chemical sampling along with the microbial sampling will document the whether changes in water chemistry alter the behavior of the organisms.

  14. The 400 microsphere per piece "rule" does not apply to all blood flow studies.

    PubMed

    Polissar, N L; Stanford, D C; Glenny, R W

    2000-01-01

    Microsphere experiments are useful in measuring regional organ perfusion as well as heterogeneity of blood flow within organs and correlation of perfusion between organ pieces at different time points. A 400 microspheres/piece "rule" is often used in planning experiments or to determine whether experiments are valid. This rule is based on the statement that 400 microspheres must lodge in a region for 95% confidence that the observed flow in the region is within 10% of the true flow. The 400 microspheres precision rule, however, only applies to measurements of perfusion to a single region or organ piece. Examples, simulations, and an animal experiment were carried out to show that good precision for measurements of heterogeneity and correlation can be obtained from many experiments with <400 microspheres/piece. Furthermore, methods were developed and tested for correcting the observed heterogeneity and correlation to remove the Poisson "noise" due to discrete microsphere measurements. The animal experiment shows adjusted values of heterogeneity and correlation that are in close agreement for measurements made with many or few microspheres/piece. Simulations demonstrate that the adjusted values are accurate for a variety of experiments with far fewer than 400 microspheres/piece. Thus the 400 microspheres rule does not apply to many experiments. A "rule of thumb" is that experiments with a total of at least 15,000 microspheres, for all pieces combined, are very likely to yield accurate estimates of heterogeneity. Experiments with a total of at least 25,000 microspheres are very likely to yield accurate estimates of correlation coefficients.

  15. Thermal oxidation synthesis hollow MoO{sub 3} microspheres and their applications in lithium storage and gas-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinyu; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003; Cao, Minhua, E-mail: caomh@bit.edu.cn

    2013-06-01

    Graphical abstract: MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres exhibit an improved lithium storage and gas-sensing performance. Highlights: ► Hollow MoO{sub 3} microspheres were synthesized by thermal oxidation of hollow MoO{sub 2}. ► The MoO{sub 3} hollow microspheres have a relatively high specific surface area. ► The MoO{sub 3} hollow microspheres exhibit improved lithium storage performance. ► The MoO{sub 3} hollow microspheres show good responses to ammonia gas. - Abstract: In this paper, MoO{sub 3} hollow microspheres were synthesized via a facile andmore » template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO{sub 3} hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO{sub 3} hollow microspheres show a higher discharge capacity of 1377.1 mA h g{sup −1} in the first discharge and a high reversible capacity of 780 mA h g{sup −1} after 100 cycles at a rate of 1 C. Furthermore, as a gas sensing material, the MoO{sub 3} hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.« less

  16. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  17. Novel smart chiral magnetic microspheres for enantioselective adsorption of tryptophan enantiomers

    NASA Astrophysics Data System (ADS)

    Guo, Lian-Di; Song, Ya-Ya; Yu, Hai-Rong; Pan, Li-Ting; Cheng, Chang-Jing

    2017-06-01

    Multifunctional microspheres simultaneously possessing chirality, magnetism and thermosensitivity show great potentials in direct enantiomeric separation. Herein we report a novel type of smart chiral magnetic microspheres with core/shell/shell structures (Fe3O4@SiO2@PNCD) and its application in enantioselective adsorption of tryptophan (Trp) enantiomers. The prepared Fe3O4@SiO2@PNCD are composed of a Fe3O4 nanoparticle core, an acidic-resistant SiO2 middle shell and a thermosensitive microgel functional shell (PNCD). The PNCD plays an important role in the enantioselective adsorption of Trp enantiomers. The β-cyclodextrin (β-CD) molecules on the PNCD act as smart receptors or chiral selectors, and can selectively recognize and bind L-Trp enantiomers into their cavities by forming host-guest inclusion complexes. The poly(N-isopropylacrylamide) (PNIPAM) chains on the PNCD serve as microenvironmental adjustors for the association constants of β-CD/L-Trp complexes. The fabricated Fe3O4@SiO2@PNCD demonstrate fascinating temperature-responsive chiral recognition and adsorption selectivity toward Trp enantiomers. Most importantly, the desorption of Trp enantiomers and the regeneration of the Fe3O4@SiO2@PNCD can be easily achieved via simply changing the operation temperature. Moreover, the regenerated Fe3O4@SiO2@PNCD can be readily recovered from the amino acids enantiomeric solution under an external magnetic field for reuse. The present study provides a novel strategy for the direct enantioselective adsorption and separation of various enantiomeric compounds.

  18. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides.

    PubMed

    Fan, Hua; Chen, Peihong; Wang, Chaozhan; Wei, Yinmao

    2016-05-27

    Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Chang-Yun; Yang, Hongta, E-mail: hyang@dragon.nchu.edu.tw; Lin, Kun-Yi Andrew

    This article reports a scalable technology for fabricating polymer films with excellent water-repelling and anti-ultraviolet properties. A roll-to-roll compatible doctor blade coating technology is utilized to prepare silica colloidal crystal-polymer composites. The silica microspheres can then be selectively removed to create flexible self-standing macroporous polymer films with crystalline arrays of pores. The void sizes are controlled by tuning the duration of a reactive ion etching process prior to the removal of the templating silica microspheres. After surface modification, superhydrophobic surface can be achieved. This study further demonstrates that the as-prepared transparent porous films with 200 nm of pores exhibit diffraction ofmore » ultraviolet lights originated from the Bragg's diffractive of light from the three-dimensional highly ordered air cavities.« less

  20. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  1. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  2. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  3. Polarization Dependent Whispering Gallery Modes in Microspheres

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)

    2016-01-01

    A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083; Wu, Min

    The semiconductor nanostructures decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. In this work, urchin-like monoclinic (m-) LaVO{sub 4} microspheres were prepared by a hydrothermal method and used as a template to fabricate Ag nanoparticle-decorated m-LaVO{sub 4} composites. The morphology and structure were characterized by transmission electron microscope, high-resolution transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray. It was found that Ag nanoparticles with narrow size distribution were uniformly loaded on urchin-like m-LaVO{sub 4} microspheres, and the resulted composite microspheres showed distinct surface plasmon absorption band compared to pure m-LaVO{sub 4}more » microspheres. Photocatalytic activities of as-prepared samples were examined by studying the degradation of methyl orange solutions under visible-light irradiation (> 400 nm). Results clearly showed that urchin-like m-LaVO{sub 4}/Ag microspheres possess much higher photocatalytic activity than pure m-LaVO{sub 4} microspheres and P25. - Highlights: • m-LaVO{sub 4}/Ag composites microspheres were fabricated by a hydrothermal method. • m-LaVO{sub 4} microspheres show higher photocatalytic activity than m-LaVO{sub 4} microspheres. • m-LaVO{sub 4}/Ag microspheres exhibit a good stability.« less

  5. Bioactive and biodegradable silica biomaterial for bone regeneration.

    PubMed

    Wang, Shunfeng; Wang, Xiaohong; Draenert, Florian G; Albert, Olga; Schröder, Heinz C; Mailänder, Volker; Mitov, Gergo; Müller, Werner E G

    2014-10-01

    Biosilica, a biocompatible, natural inorganic polymer that is formed by an enzymatic, silicatein-mediated reaction in siliceous sponges to build up their inorganic skeleton, has been shown to be morphogenetically active and to induce mineralization of human osteoblast-like cells (SaOS-2) in vitro. In the present study, we prepared beads (microspheres) by encapsulation of β-tricalcium phosphate [β-TCP], either alone (control) or supplemented with silica or silicatein, into the biodegradable copolymer poly(d,l-lactide-co-glycolide) [PLGA]. Under the conditions used, ≈5% β-TCP, ≈9% silica, and 0.32μg/mg of silicatein were entrapped into the PLGA microspheres (diameter≈800μm). Determination of the biocompatibility of the β-TCP microspheres, supplemented with silica or silicatein, revealed no toxicity in the MTT based cell viability assay using SaOS-2 cells. The adherence of SaOS-2 cells to the surface of silica-containing microspheres was higher than for microspheres, containing only β-TCP. In addition, the silica-containing β-TCP microspheres and even more pronounced, a 1:1 mixture of microspheres containing β-TCP and silica, and β-TCP and silicatein, were found to strongly enhance the mineral deposition by SaOS-2 cells. Using these microspheres, first animal experiments with silica/biosilica were performed in female, adult New Zealand White rabbits to study the effect of the inorganic polymer on bone regeneration in vivo. The microspheres were implanted into 5mm thick holes, drilled into the femur of the animals, applying a bilateral comparison study design (3 test groups with 4-8 animals each). The control implant on one of the two hind legs contained microspheres with only β-TCP, while the test implant on the corresponding leg consisted either of microspheres containing β-TCP and silica, or a 1:1 mixture of microspheres, supplemented with β-TCP and silica, and β-TCP and silicatein. The results revealed that tissue/bone sections of silica containing implants and implants, composed of a 1:1 mixture of silica-containing microspheres and silicatein-containing microspheres, show an enhanced regeneration of bone tissue around the microspheres, compared to the control implants containing only β-TCP. The formation of new bone induced by the microspheres is also evident from measurements of the stiffness/reduced Young's modulus of the regenerated bone tissue. The reduced Young's modulus of the regenerating bone tissue around the implants was markedly higher for the silica-containing microspheres (1.1MPa), and even more for the 1:1 mixture of the silica- and silicatein-containing microspheres (1.4MPa), compared to the β-TCP microsphere controls (0.4MPa). We propose that based on their morphogenetic activity on bone-forming cells in vitro and the results of the animal experiments presented here, silica/biosilica-based scaffolds are promising materials for bone repair/regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 3(2) full factorial design.

    PubMed

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-07-01

    Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.

  7. Preparation and evaluation of 188 Re sulfide colloidal nanoparticles loaded biodegradable poly (L-lactic acid) microspheres for radioembolization therapy.

    PubMed

    Jamre, Mina; Shamsaei, Mojtaba; Erfani, Mostafa; Sadjadi, Sodeh; Ghannadi Maragheh, Mohammad

    2018-04-12

    Radioembolization with radioactive microspheres has been an effective method for the treatment of liver lesions. The aim of this study was to prepare carrier-free 188 Re loaded poly (L-lactic acid) (PLLA) microspheres through 188 Re sulfide colloidal nanoparticles ( 188 Re-SC nanoparticles). The formation of 188 Re-SC nanoparticles was confirmed by ultraviolet-visible spectrophotometry. The labeling yield of 188 Re-SC nanoparticles was verified using the RTLC method. Effects of synthesis parameters on morphology and size of prepared 188 Re-sulfide colloidal-PLLA microspheres ( 188 Re-SC-PLLA microspheres) were studied by scanning electron microscopy. In vitro stability of 188 Re-SC-PLLA microspheres was investigated in normal saline at room temperature and in human serum at 37°C. In vivo distribution studies and gamma camera imaging were performed in healthy BALB/c mice. The microspheres could be prepared with sizes between 13 and 48 μm (modal value 29 μm) and radiolabeling efficiency >99%. After incubation, the microspheres were found stable in vitro up to 72 hours. The biodistribution after intravenous injection in healthy BALB/c mice showed high accumulation in lung as a first capture pathway organ for microsphere followed by great retention over 48 hours for these microspheres. These data show that 188 Re-SC-PLLA microspheres are suitable candidate for clinical studies. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Development and validation of a fluorescent microsphere immunoassay for soluble CD30 testing.

    PubMed

    Pavlov, Igor; Martins, Thomas B; Delgado, Julio C

    2009-09-01

    Testing for soluble CD30 (sCD30), an indicator of Th2 immune response, is a useful prognostic marker in solid organ transplantation, lymphoproliferative disorders, autoimmunity, and various parasitic diseases. In this study we report the development and validation of a fluorescent microsphere immunoassay for the detection of sCD30 in serum, plasma, and culture supernatants. The dynamic range of this assay is 1 to 400 ng/ml, and the rate of recovery of various concentrations of recombinant sCD30 ranges from 97 to 116% (average recovery, 105%). The test showed a high degree of precision in both intra-assay and interassay studies (coefficients of variation, as high as 7% and 8%, respectively), with a sensitivity of 1 ng/ml. The normal reference range calculated for a cohort of 151 healthy individuals was 1 to 29 ng/ml. The clinical usefulness of the sCD30 fluorescent microsphere immunoassay was demonstrated by showing that levels of sCD30 have a positive correlation with specimens containing high titers of anti-double-stranded DNA antibodies and high titers of immunoglobulin G against Leishmania species. Given the multiplexing potential of the sCD30 fluorescent microsphere immunoassay reported in this study, it is expected that testing of sCD30 concentrations along with those of other cytokines will become an important diagnostic tool for selected immunological and inflammatory diseases where Th2-type cytokine responses have been reported.

  9. Development and Validation of a Fluorescent Microsphere Immunoassay for Soluble CD30 Testing▿

    PubMed Central

    Pavlov, Igor; Martins, Thomas B.; Delgado, Julio C.

    2009-01-01

    Testing for soluble CD30 (sCD30), an indicator of Th2 immune response, is a useful prognostic marker in solid organ transplantation, lymphoproliferative disorders, autoimmunity, and various parasitic diseases. In this study we report the development and validation of a fluorescent microsphere immunoassay for the detection of sCD30 in serum, plasma, and culture supernatants. The dynamic range of this assay is 1 to 400 ng/ml, and the rate of recovery of various concentrations of recombinant sCD30 ranges from 97 to 116% (average recovery, 105%). The test showed a high degree of precision in both intra-assay and interassay studies (coefficients of variation, as high as 7% and 8%, respectively), with a sensitivity of 1 ng/ml. The normal reference range calculated for a cohort of 151 healthy individuals was 1 to 29 ng/ml. The clinical usefulness of the sCD30 fluorescent microsphere immunoassay was demonstrated by showing that levels of sCD30 have a positive correlation with specimens containing high titers of anti-double-stranded DNA antibodies and high titers of immunoglobulin G against Leishmania species. Given the multiplexing potential of the sCD30 fluorescent microsphere immunoassay reported in this study, it is expected that testing of sCD30 concentrations along with those of other cytokines will become an important diagnostic tool for selected immunological and inflammatory diseases where Th2-type cytokine responses have been reported. PMID:19605595

  10. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing.

    PubMed

    Zhang, Dongzhi; Fan, Xin; Yang, Aijun; Zong, Xiaoqi

    2018-08-01

    In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-Fe 2 O 3 ) hollow microspheres/molybdenum disulphide (MoS 2 ) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-Fe 2 O 3 /MoS 2 heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-Fe 2 O 3 /MoS 2 nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. Furthermore, the response of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. This work verifies that the hierarchical α-Fe 2 O 3 /MoS 2 nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Microspheres and their methods of preparation

    DOEpatents

    Bose, Anima B; Yang, Junbing

    2015-03-24

    Carbon microspheres are doped with boron to enhance the electrical and physical properties of the microspheres. The boron-doped carbon microspheres are formed by a CVD process in which a catalyst, carbon source and boron source are evaporated, heated and deposited onto an inert substrate.

  12. Preparation and evaluation of sustained release loxoprofen loaded microspheres.

    PubMed

    Venkatesan, P; Manavalan, R; Valliappan, K

    2011-06-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours.

  13. Preparation and evaluation of sustained release loxoprofen loaded microspheres

    PubMed Central

    Venkatesan, P.; Manavalan, R.; Valliappan, K.

    2011-01-01

    The aim of present study was to formulate and evaluate the loxoprofen loaded Sustained release microspheres by emulsion solvent evaporation technique. Ethylcellulose, a biocompatible polymer is used as the retardant material. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their particle size and drug loading and drug release. The in-vitro release studies were carried out in phosphate buffer at pH 7.4. The prepared microspheres were white, free flowing and spherical in shape. The drug-loaded microspheres showed 71.2% of entrapment and the in-vitro release studies showed that Loxoprofen microspheres of 1:3 ratios showed better sustained effect over a period of 8 hours PMID:24826017

  14. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Paranthaman, Mariappan Parans; Liu, Hansan; Brown, Gilbert M.; Sun, Xiao-Guang; Bi, Zhonghe

    2016-12-06

    Compositions and methods of making are provided for mesoporous metal oxide microspheres electrodes. The mesoporous metal oxide microsphere compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g. The methods of making comprise forming composite powders. The methods may also comprise refluxing the composite powders in a basic solution to form an etched powder, washing the etched powder with an acid to form a hydrated metal oxide, and heat-treating the hydrated metal oxide to form mesoporous metal oxide microspheres.

  15. Mobilization of microspheres from a fractured soil during intermittent infiltration events

    USGS Publications Warehouse

    Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.

    2015-01-01

    Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration events.

  16. Polymer-coated albumin microspheres as carriers for intravascular tumour targeting of cisplatin.

    PubMed

    Verrijk, R; Smolders, I J; McVie, J G; Begg, A C

    1991-01-01

    We used a poly-lactide-co-glycolide polymer (PLAGA 50:50) to formulate cisplatin (cDDP) into microspheres designed for intravascular administration. Two systems were developed. PLAGA-coated albumin microspheres and microspheres consisting of PLAGA only. PLAGA-coated microspheres displayed a mean diameter of 31.8 +/- 0.9 microns and a payload of 7.5% cDDP (w/w). Solid PLAGA microspheres exhibited a mean diameter of 19.4 +/- 0.6 microns and a payload of 20% cDDP. Release characteristics and in vitro effects on L1210 leukemia and B16 melanoma cell lines were investigated. Both types of microsphere overcame the initial rapid release of cDDP (burst effect), and PLAGA-coated albumin microspheres also showed a lag phase of approximately 30 min before cDDP release began. PLAGA-coated albumin microspheres released most of their payload through diffusion, and the coating eventually cracked after 7 days' incubation in saline supplemented with 0.1% Tween at 37 degrees C, enabling the release of any cDDP remaining. Effects of platinum, pre-released from PLAGA-coated albumin microspheres on the in vitro growth of L1210 cells were comparable with those of standard formulations (dissolved) of cDDP. Material released from non-drug-loaded PLAGA microspheres had no effect on L1210 cell growth, suggesting the absence of cytotoxic compounds in the matrix. The colony-forming ability of B16 cells was also equally inhibited by standard cDDP and pre-released drug. These studies show that formulation of cDDP in PLAGA-based microspheres prevents the rapid burst effect of cDDP seen in previous preparations and offers an improved system of administration for hepatic artery infusion or adjuvant therapy, enabling better clinical handling and the promise of a higher ratio of tumour tissue to normal tissue.

  17. Support for the Armor Ceramics symposium at the 40th International Conference on Advanced Ceramics and Composites

    DTIC Science & Technology

    2016-05-09

    WW-P069-2016. In situ HT -ESEM study of MO2 (M=Ce, Th, U) microspheres sintering: From neck elaboration to microstructure design G.I. Nkou Bouala...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Faculty Supported Names of Under Graduate students supported Names of

  18. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests comparing with the commercial one currently available. The high column efficiency and good reproducibility present that the large-porous silica microspheres obtained can be used as a matrix for peptide and protein separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Albumin microspheres as an ocular delivery system for pilocarpine nitrate.

    PubMed

    Rathod, Sudha; Deshpande, S G

    2008-01-01

    Pilocarpine nitrate loaded egg albumin microspheres were prepared by thermal denaturation process in the size range of 1-12 mum. A series of batches were prepared to study factors, which may affect the size and entrapment efficiency of drug in microspheres and optimized the process. Drug loaded microspheres so obtained were evaluated for their size, entrapment efficiency, release rate and biological response. Electron photomicrographs were taken (8000X) to study the morphological characteristics of microspheres. The entrapment and encapsulation of pilocarpine after process optimization was found to be 82.63% and 62.5% respectively. In vitro dissolution rate studies revealed that the release of drug from the microspheres followed spherical matrix mechanism. Biological response of microspheric suspension was measured by reduction in intraocular pressure in albino rabbit eyes and compared with marketed eye drops. Various pharmacokinetic parameters viz. onset of action, duration of action, Tmax and AUC were studied. A measurable difference was found in the mean miotic response, duration and AUC of pilocarpine nitrate microspheric suspension.

  20. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  1. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    PubMed

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  2. Acrolein Microspheres Are Bonded To Large-Area Substrates

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Yen, Richard C. K.

    1988-01-01

    Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.

  3. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  4. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.

  5. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    PubMed

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamide-co-acrylic acid)-Grafted Hollow Fe3O4/SiO2 Microspheres with Surface Holes for BSA Release

    PubMed Central

    Zhao, Jing; Zeng, Ming; Zheng, Kaiqiang; He, Xinhua; Xie, Minqiang; Fu, Xiaoyi

    2017-01-01

    Thermoresponsive P(NIPAM-AA)/Fe3O4/SiO2 microspheres with surface holes serving as carriers were prepared using p-Fe3O4/SiO2 microspheres with a thermoresponsive copolymer. The p-Fe3O4/SiO2 microspheres was obtained using a modified Pickering method and chemical etching. The surface pore size of p-Fe3O4/SiO2 microspheres was in the range of 18.3 nm~37.2 nm and the cavity size was approximately 60 nm, which are suitable for loading and transporting biological macromolecules. P(NIPAM-AA) was synthesized inside and outside of the p-Fe3O4/SiO2 microspheres via atom transfer radical polymerization of NIPAM, MBA and AA. The volume phase transition temperature (VPTT) of the specifically designed P(NIPAM-AA)/Fe3O4/SiO2 microspheres was 42.5 °C. The saturation magnetization of P(NIPAM-AA)/Fe3O4/SiO2 microspheres was 72.7 emu/g. The P(NIPAM-AA)/Fe3O4/SiO2 microspheres were used as carriers to study the loading and release behavior of BSA. This microsphere system shows potential for the loading of proteins as a drug delivery platform. PMID:28772770

  7. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    PubMed

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  8. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres.

    PubMed

    Yang, Yi-Yan; Shi, Meng; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-03-07

    The poly(ortho ester) (POE) and poly(D,L-lactide-co-glycolide) 50:50 (PLGA) composite microspheres were fabricated by a water-in-oil-in-water (w/o/w) double emulsion process. The morphology of the composite microspheres varied depending on POE content. When the POE content was 50, 60 or 70% in weight, the double walled microspheres with a dense core of POE and a porous shell of PLGA were formed. The formation of the double walled POE/PLGA microspheres was analysed. Their in vitro degradation behavior was characterized by scanning electron microscopy, gel permeation chromatography, Fourier-transform infrared microscopy and nuclear magnetic resonance spectroscopy (NMR). It was found that compared to the neat POE or PLGA microspheres, distinct degradation mechanism was achieved in the double walled POE/PLGA microspheres system. The degradation of the POE core was accelerated due to the acidic microenvironment produced by the hydrolysis of the outer PLGA layer. The formation of hollow microspheres became pronounced after the first week in vitro. 1H NMR spectra showed that the POE core was completely degraded after 4 weeks. On the other hand, the outer PLGA layer experienced slightly retarded degradation after the POE core disappeared. PLGA in the double walled microspheres kept more than 32% of its initial molecular weight over a period of 7 weeks.

  9. Hydrothermal synthesis and photocatalytic performance of hierarchical Bi{sub 2}MoO{sub 6} microspheres using BiOI microspheres as self-sacrificing templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-07-15

    Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through phase transformation from BiOI microspheres with the assistance of sodium citrate under hydrothermal condition. The possible formation mechanism for the conversion of BiOI to Bi{sub 2}MoO{sub 6} is discussed here. After being annealed at 300 °C for 2 h, the obtained Bi{sub 2}MoO{sub 6} microspheres exhibited remarkably enhanced photocatalytic activity towards the degradation of rhodamine B and phenol. The superior catalytic performance can be attributed to its larger surface area and higher crystallinity. In addition, Bi{sub 2}MoO{sub 6} microspheres are stable during the degradation reaction and can be used repeatedly. -more » Graphical abstract: Bi{sub 2}MoO{sub 6} hierarchical microspheres were successfully prepared through a facile partial anion exchange strategy using BiOI microspheres as self-sacrificing templates. The Bi{sub 2}MoO{sub 6} microspheres show high visible light photocatalytic activity. - Highlights: • Bi{sub 2}MoO{sub 6} microspheres were prepared via self-sacrificing template anion exchange. • Sodium citrate-assisted anion exchange for preparation of Bi{sub 2}MoO{sub 6} photocatalyst. • Bi{sub 2}MoO{sub 6} catalysts show high visible light photocatalytic activity.« less

  10. Tunable Volumetric Density and Porous Structure of Spherical Poly-ε-caprolactone Microcarriers, as Applied in Human Mesenchymal Stem Cell Expansion.

    PubMed

    Li, Jian; Lam, Alan Tin-Lun; Toh, Jessica Pei Wen; Reuveny, Shaul; Oh, Steve Kah-Weng; Birch, William R

    2017-03-28

    Polymeric microspheres may serve as microcarrier (MC) matrices, for the expansion of anchorage-dependent stem cells. They require surface properties that promote both initial cell adhesion and the subsequent spreading of cells, which is a prerequisite for successful expansion. When implemented in a three-dimensional culture environment, under agitation, their suspension under low shear rates depends on the MCs having a modest negative buoyancy, with a density of 1.02-1.05 g/cm 3 . Bioresorbable poly-ε-caprolactone (PCL), with a density of 1.14 g/cm 3 , requires a reduction in volumetric density, for the microspheres to achieve high cell viability and yields. Uniform-sized droplets, from solutions of PCL dissolved in dichloromethane (DCM), were generated by coaxial microfluidic geometry. Subsequent exposure to ethanol rapidly extracted the DCM solvent, solidifying the droplets and yielding monodisperse microspheres with a porous structure, which was demonstrated to have tunable porosity and a hollow inner core. The variation in process parameters, including the molecular weight of PCL, its concentration in DCM, and the ethanol concentration, served to effectively alter the diffusion flux between ethanol and DCM, resulting in a broad spectrum of volumetric densities of 1.04-1.11 g/cm 3 . The solidified microspheres are generally covered by a smooth thin skin, which provides a uniform cell culture surface and masks their internal porous structure. When coated with a cationic polyelectrolyte and extracellular matrix protein, monodisperse microspheres with a diameter of approximately 150 μm and densities ranging from 1.05-1.11 g/cm 3 are capable of supporting the expansion of human mesenchymal stem cells (hMSCs). Validation of hMSC expansion was carried out with a positive control of commercial Cytodex 3 MCs and a negative control of uncoated low-density PCL MCs. Static culture conditions generated more than 70% cell attachment and similar yields of sixfold cell expansion on all coated MCs, with poor cell attachment and growth on the negative control. Under agitation, coated porous microspheres, with a low density of 1.05 g/cm 3 , achieved robust cell attachment and resulted in high cell yields of ninefold cell expansion, comparable with those generated by commercial Cytodex 3 MCs.

  11. The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine.

    PubMed

    Ratanavaraporn, Juthamas; Kanokpanont, Sorada; Damrongsakkul, Siriporn

    2014-02-01

    The objective of this study was to develop the microspheres from gelatin (G) and silk fibroin (SF) aimed to be applied for the controlled release of curcumin and piperine. The glutaraldehyde-crosslinked G/SF microspheres at various weight blending ratios (100/0, 70/30, 50/50, and 30/70) were successfully fabricated by water in oil emulsion technique. The microspheres prepared from all compositions were in a round shape with homogeneous size distribution both in the dried (194-217 μm) and swollen states (297-367 μm). When subjected in collagenase solution at physiological condition, the G microspheres gradually degraded within 14 days while the blended G/SF microspheres, particularly at 50/50 and 30/70, were not degraded. For the release application, the microspheres were loaded with curcumin and/or piperine. It was found that the microspheres composed of SF tended to entrap curcumin and piperine with the high entrapment and loading efficiencies, possibly due to their hydrophobic interactions. The G/SF microspheres, particularly at the ratios of 50/50 and 30/70, released curcumin and piperine in a sustained manner both for the single and dual release systems. The controlled dual release of curcumin and piperine from the G/SF microspheres would prolong their half-life, provide the optimal concentrations for therapeutic effects at a target site, and improve the bioavailability of curcumin. These novel injectable microspheres dually releasing curcumin and piperine would be introduced for the treatment of diseases without the need of operation.

  12. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 32 full factorial design

    PubMed Central

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-01-01

    Background: Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. Objective: The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. Materials and Methods: DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 32 full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Results: Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Conclusion: Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration. PMID:24167786

  13. High-density, microsphere-based fiber optic DNA microarrays.

    PubMed

    Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R

    2003-05-01

    A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.

  14. Optically Reconfigurable Chiral Microspheres of Self-Organized Helical Superstructures with Handedness Inversion.

    PubMed

    Wang, Ling; Chen, Dong; Gutierrez-Cuevas, Karla G; Bisoyi, Hari Krishna; Fan, Jing; Zola, Rafael S; Li, Guoqiang; Urbas, Augustine M; Bunning, Timothy J; Weitz, David A; Li, Quan

    2017-01-01

    Optically reconfigurable monodisperse chiral microspheres of self-organized helical superstructures with dynamic chirality were fabricated via a capillary-based microfluidic technique. Light-driven handedness-invertible transformations between different configurations of microspheres were vividly observed and optically tunable RGB photonic cross-communications among the microspheres were demonstrated.

  15. EFFECTS OF THE GRAM STAIN ON MICROSPHERES FROM THERMAL POLYAMINO ACIDS1

    PubMed Central

    Fox, Sidney W.; Yuyama, Shuhei

    1963-01-01

    Fox, Sidney W. (The Florida State University, Tallahassee) and Shuhei Yuyama. Effects of the Gram stain on microspheres from thermal polyamino acids. J. Bacteriol. 85:279–283. 1963.—Microspheres produced from acid proteinoid accept the Gram stain. The stain is negative, but microspheres produced from mixtures containing a sufficient proportion of lysine proteinoid stain positive. Microspheres produced from mixtures containing the appropriate proportions contain individuals which stain positive and others which stain negative. Images PMID:13959050

  16. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  17. Method of detecting luminescent target ions with modified magnetic microspheres

    DOEpatents

    Shkrob, Ilya A; Kaminski, Michael D

    2014-05-13

    This invention provides methods of using modified magnetic microspheres to extract target ions from a sample in order to detect their presence in a microfluidic environment. In one or more embodiments, the microspheres are modified with molecules on the surface that allow the target ions in the sample to form complexes with specific ligand molecules on the microsphere surface. In one or more embodiments, the microspheres are modified with molecules that sequester the target ions from the sample, but specific ligand molecules in solution subsequently re-extract the target ions from the microspheres into the solution, where the complexes form independent of the microsphere surface. Once the complexes form, they are exposed to an excitation wavelength light source suitable for exciting the target ion to emit a luminescent signal pattern. Detection of the luminescent signal pattern allows for determination of the presence of the target ions in the sample.

  18. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores.

    PubMed

    Yan, Rui; Zhang, Yaoyao; Wang, Xiaohui; Xu, Jianxiong; Wang, Da; Zhang, Wangqing

    2012-02-15

    Synthesis of porous poly(styrene-co-acrylic acid) (PS-co-PAA) microspheres through one-step soap-free emulsion polymerization is reported. Various porous PS-co-PAA microspheres with the particle size ranging from 150 to 240 nm and with the pore size ranging from 4 to 25 nm are fabricated. The porous structure of the microspheres is confirmed by the transmission electron microscopy measurement and Brunauer-Emmett-Teller (BET) analysis. The reason for synthesis of the porous PS-co-PAA microspheres is discussed, and the phase separation between the encapsulated hydrophilic poly(acrylic acid) segment and the hydrophobic polystyrene domain within the PS-co-PAA microspheres is ascribed to the pore formation. The present synthesis of the porous PS-co-PAA microspheres is anticipated to be a new and convenient way to fabricate porous polymeric particles. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Enhanced gastric retention and drug release via development of novel floating microspheres based on Eudragit E100 and polycaprolactone: synthesis and in vitro evaluation

    PubMed Central

    Farooq, Umar; Khan, Samiullah; Nawaz, Shahid; Ranjha, Nazar Mohammad; Haider, Malik Salman; Khan, Muhammad Muzamil; Dar, Eshwa; Nawaz, Ahmad

    2017-01-01

    Abstract Eudragit E 100 and polycaprolactone (PCL) floating microspheres for enhanced gastric retention and drug release were successfully prepared by oil in water solvent evaporation method. Metronidazole benzoate, an anti-protozoal drug, was used as a model drug. Polyvinyl alcohol was used as an emulsifier. The prepared microspheres were observed for % recovery, % degree of hydration, % water uptake, % drug loading, % buoyancy and % drug release. The physico-chemical properties of the microspheres were studied by calculating encapsulation efficiency of microspheres and drug release kinetics. Drug release characteristics of microspheres were studied in simulated gastric fluid and simulated intestinal fluid i.e., at pH 1.2 and 7.4 respectively. Fourier transform infrared spectroscopy was used to reveal the chemical interaction between drug and polymers. Scanning electron microscopy was conducted to study the morphology of the synthesized microspheres. PMID:29491813

  20. Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chung, Sang-Kun (Inventor); Colvin, Michael S. (Inventor); Chang, Manchium (Inventor)

    1991-01-01

    Monodisperse, polymeric microspheres are formed by injecting uniformly shaped droplets of radiation polymerizable monomers, preferably a biocompatible monomer, having covalent binding sites such as hydroxyethylmethacrylate, into a zone, impressing a like charge on the droplet so that they mutually repel each other, spheroidizing the droplets within the zone and collecting the droplets in a pool of cryogenic liquid. As the droplets enter the liquid, they freeze into solid, glassy microspheres, which vaporizes a portion of the cryogenic liquid to form a layer. The like-charged microspheres, suspended within the layer, move to the edge of the vessel holding the pool, are discharged, fall and are collected. The collected microspheres are irradiated while frozen in the cryogenic liquid to form latent free radicals. The frozen microspheres are then slowly thawed to activate the free radicals which polymerize the monomer to form evenly-sized, evenly-shaped, monodisperse polymeric microspheres.

  1. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  2. Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility.

    PubMed

    Islan, Germán A; de Verti, Ignacio Pérez; Marchetti, Sergio G; Castro, Guillermo R

    2012-07-01

    Screening of ciprofloxacin (Cip) with selected biopolymers brings about 90% antibiotic interactions with a coacervate composed of alginate/high metoxylated pectin in 2:1 ratio. Fourier transform infrared spectroscopy analysis provides information about the nature of this interaction, revealing ionic and hydrophobic patterns among the molecules. Alginate/high methoxylated pectin gel microspheres developed by ionic gelation encapsulates 46.8 ± 5.0% Cip. The gel matrix can release Cip in a sustained manner, releasing 42.7 ± 0.2% in 2 h under simulated stomach pH conditions, and 83.3 ± 1.1% Cip release in 80 mM phosphate at pH = 7.40 (intestinal). The increase of sodium chloride from 50 to 200 mM implies a Cip release from 69.0 ± 1.5% to 95.1 ± 3.6% respectively in 2 h. Scanning electron microscopy revealed the cohesive effect of HM pectin over alginate molecules on the microsphere surface. Those results guarantee all Cip contained in the alginate/HM pectin microspheres could be released in an established kinetic profile along the gastrointestinal tract, avoiding the Cip undesirable side effects during absorption.

  3. Solution-based analysis of multiple analytes by a sensor array: toward the development of an electronic tongue

    NASA Astrophysics Data System (ADS)

    Savoy, Steven M.; Lavigne, John J.; Yoo, J. S.; Wright, John; Rodriguez, Marc; Goodey, Adrian; McDoniel, Bridget; McDevitt, John T.; Anslyn, Eric V.; Shear, Jason B.; Ellington, Andrew D.; Neikirk, Dean P.

    1998-12-01

    A micromachined sensor array has been developed for the rapid characterization of multi-component mixtures in aqueous media. The sensor functions in a manner analogous to that of the mammalian tongue, using an array composed of individually immobilized polystyrene-polyethylene glycol composite microspheres selectively arranged in micromachined etch cavities localized o n silicon wafers. Sensing occurs via colorimetric or fluorometric changes to indicator molecules that are covalently bound to amine termination sites on the polymeric microspheres. The hybrid micromachined structure has been interfaced directly to a charged-coupled-device that is used for the simultaneous acquisition of the optical data from the individually addressable `taste bud' elements. With the miniature sensor array, acquisition of data streams composed of red, green, and blue color patterns distinctive for the analytes in the solution are rapidly acquired. The unique combination of carefully chosen reporter molecules with water permeable microspheres allows for the simultaneous detection and quantification of a variety of analytes. The fabrication of the sensor structures and the initial colorimetric and fluorescent responses for pH, Ca+2, Ce+3, and sugar are reported. Interface to microfluidic components should also be possible, producing a complete sampling/sensing system.

  4. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOEpatents

    Stinton, David P.

    1983-01-01

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  5. New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres.

    PubMed

    Attia, Mohamed I; Eldehna, Wagdy M; Afifi, Samar A; Keeton, Adam B; Piazza, Gary A; Abdel-Aziz, Hatem A

    2017-01-01

    The synthesis and molecular characterization of new isatin-based hydrazonoindolin-2-ones 4a-o and 7a-e are reported. The in vitro anti-proliferative potential of the synthesized compounds 4a-o and 7a-e was examined against HT-29 (colon), ZR-75 (breast) and A549 (lung) human cancer cell lines. Compounds 7b, 7d and 7e were the most active congeners against the tested human cancer cell lines with average IC50 values of 4.77, 3.39 and 2.37 μM, respectively, as compared with the reference isatin-based drug, sunitinib, which exhibited an average IC50 value of 8.11 μM. Compound 7e was selected for further pharmacological evaluation in order to gain insight into its possible mechanism of action. It increased caspase 3/7 activity by 2.4- and 1.85-fold between 4 and 8 h of treatment, respectively, at 10 μM and it caused a decrease in the percentage of cells in the G1 phase of the cell cycle with a corresponding increase in the S-phase. In addition, compound 7e increased phosphorylated tyrosine (p-Tyr) levels nearly two-fold with an apparent IC50 value of 3.8 μM. The 7e-loaded PLGA microspheres were prepared using a modified emulsion-solvent diffusion method. The average encapsulation efficiency of the 7e-loaded PLGA microspheres was 85% ± 1.3. While, the in vitro release profile of the 7e-loaded microspheres was characterized by slow and continuous release of compound 7e during 21 days and the release curve was fitted to zero order kinetics. Incorporation of 7e into PLGA microspheres improved its in vitro anti-proliferative activity toward the human cancer cell line A549 after 120 h incubation period with an IC50 value less than 0.8 μM.

  6. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  7. Insulin delivery through nasal route using thiolated microspheres.

    PubMed

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  8. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  9. Fabrication and characterization of Tm3+-Ho3+ co-doped tellurite glass microsphere lasers operating at ∼2.1 μm

    NASA Astrophysics Data System (ADS)

    Yang, Zhengsheng; Wu, Yuehao; Yang, Kun; Xu, Peipeng; Zhang, Wei; Dai, Shixun; Xu, Tiefeng

    2017-10-01

    We used a Tm3+-Ho3+ co-doped tellurite glass as the laser medium to build active microsphere laser resonators. A droplet method is implemented and hundreds of high quality microspheres can be fabricated simultaneously. Typical Quality factors (Q-factors) of microspheres fabricated in this work reach 106. Silica fiber tapers are used as the coupling mechanism and a commercial 808 nm laser diode is used as the pump source. Laser lines at ∼2.1 μm can be observed in the emission spectrum of these active microsphere resonators. Pump thresholds for generating single mode laser lines in a 59.52 μm diameter microsphere is measured to be 0.887 mW and as the pump power is increased to 1.413 mW, multi-mode laser lines can be generated. We also demonstrate microsphere lasers fabricated in this work can be thermally tuned with a temperature sensitivity of 32 pm/°C, implying these microspheres can be used as highly compact temperature sensors in various mid-infrared applications.

  10. A Comparative Study of Production of Glass Microspheres by using Thermal Process

    NASA Astrophysics Data System (ADS)

    Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher

    2017-06-01

    Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.

  11. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells.

    PubMed

    Horák, Daniel; Svobodová, Zuzana; Autebert, Julien; Coudert, Benoit; Plichta, Zdeněk; Královec, Karel; Bílková, Zuzana; Viovy, Jean-Louis

    2013-01-01

    Monodisperse (4 μm) macroporous crosslinked poly(glycidyl methacrylate) (PGMA) microspheres for use in microfluidic immunomagnetic cell sorting, with a specific application to the capture of circulating tumor cells (CTCs), were prepared by multistep swelling polymerization in the presence of cyclohexyl acetate porogen and hydrolyzed and ammonolyzed. Iron oxide was then precipitated in the microspheres to render them magnetic. Repeated precipitation made possible to raise the iron oxide content to more than 30 wt %. To minimize nonspecific adsorption of the microspheres in a microchannel and of cells on the microspheres, they were coated with albumin crosslinked with glutaraldehyde. Antibodies of epithelial cell adhesion molecule (anti-EpCAM) were then immobilized on the albumin-coated magnetic microspheres using the carbodiimide method. Capture of breast cancer MCF7 cells as a model of CTCs by the microspheres with immobilized anti-EpCAM IgG was performed in a batch experiment. Finally, MCF7 cells were captured by the anti-EpCAM-immobilized albumin-coated magnetic microspheres in an Ephesia chip. A very good rejection of lymphocytes was achieved. Thus, albumin-coated monodisperse magnetic PGMA microspheres with immobilized anti-EpCAM seem to be promising for capture of CTCs in a microfluidic device. Copyright © 2012 Wiley Periodicals, Inc.

  12. Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet.

    PubMed

    Yang, Hui; Trouillon, Raphaël; Huszka, Gergely; Gijs, Martin A M

    2016-08-10

    Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is a scattered beam of light with a high-intensity main lobe and very narrow waist. Here, we report a systematic study of the imaging of water-immersed nanostructures by barium titanate glass microspheres of different size. A numerical study of the light propagation through a microsphere points out the light focusing capability of microspheres of different size and the waist of their photonic nanojet. The former correlates to the magnification factor of the virtual images obtained from linear test nanostructures, the biggest magnification being obtained with microspheres of ∼6-7 μm in size. Analyzing the light intensity distribution of microscopy images allows determining analytically the point spread function of the optical system and thereby quantifies its resolution. We find that the super-resolution imaging of a microsphere is dependent on the waist of its photonic nanojet, the best resolution being obtained with a 6 μm Ø microsphere, which generates the nanojet with the minimum waist. This comparison allows elucidating the super-resolution imaging mechanism.

  13. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2015-01-01

    Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.

  14. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  15. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material.

    PubMed

    Xiao, Wei; Zhou, Wenjie; Feng, Tong; Zhang, Yanhua; Liu, Hongdong; Tian, Liangliang

    2016-09-20

    MoS₂/RGO composite hollow microspheres were hydrothermally synthesized by using SiO₂/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO₂ microspheres. The structure, morphology, phase, and chemical composition of MoS₂/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS₂/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m²·g -1 . When used as supercapacitor electrode material, MoS₂/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g -1 at the current density of 1 A·g -1 , which was much higher than that of contrastive bare MoS₂ microspheres developed in the present work and most of other reported MoS₂-based materials. The enhancement of supercapacitive behaviors of MoS₂/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS₂/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g -1 , showing excellent application potential.

  16. In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion

    NASA Astrophysics Data System (ADS)

    Wang, Yingchun; Yao, Aihua; Huang, Wenhai; Wang, Deping; zhou, Jun

    2011-07-01

    Hollow hydroxyapatite (HAP) microspheres with pores on their surfaces were prepared by converting Li 2O-CaO-B 2O 3 (LCB) glass microspheres in phosphate solution. The structure, phase composition, surface morphology, and porosity of the hollow HAP microspheres were characterized by SEM, SEM-EDS, XRD, FTIR, ICP-AES, and N 2 adsorption-desorption techniques. The formation and conversion mechanism of the hollow HAP microspheres during immersion process were discussed. The as-prepared microspheres consisted of calcium deficient carbonated hydroxyapatite, which is biomimetic. FTIR spectra indicated that the resulting apatite were B-type CO 3HAP, in which carbonate ions occupied the phosphate sites. After 600 °C heating treatment, hollow microspheres were completely composed of calcium deficient hydroxyapatite crystals including CO32-. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2-40 nm with the pore volume 0.5614 cm 3/g, and the mean pore size 10.5 nm, respectively. The results confirmed that LCB glass were transformed to hydroxyapatite without changing the external shape and dimension of the original glass object and the resulting microspheres possessed good hollow structures. Once immersed in phosphate solution, Ca-P-OH hydrates were in situ formed on the surface of the glass and precipitated in the position occupied by Ca 2+, while the pores were formed in the position occupied by Li + and B 3+. These hollow HAP microspheres with such structures may be used as promising drug delivery devices.

  17. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin.

    PubMed

    Aramwit, Pornanong; Ekasit, Sanong; Yamdech, Rungnapha

    2015-10-01

    Silk sericin is recently shown to possess various biological activities for biomedical applications. While various sericin carriers were developed for drug delivery system, very few researches considered sericin as a bioactive molecule itself. In this study, sericin incorporated in the chitosan-based microspheres was introduced as a bioactive molecule and bioactive carrier at the same time. The chitosan/sericin (CH/SS) microspheres at different composition (80/20, 70/30, 60/40, and 50/50) were successfully fabricated using anhydroustri-polyphosphate (TPP) as a polyanionic crosslinker. The microspheres with an average size of 1-4 μm and narrow size distribution were obtained. From FT-IR spectra, the presence of both chitosan and sericin in the microspheres confirmed the occurrence of ionic interaction that crosslink them within the microspheres. We also found that the CH/SS microspheres prepared at 50/50 could encapsulate sericin at the highest percentage (37.28%) and release sericin in the most sustained behavior, possibly due to the strong ionic interaction of the positively charged chitosan and the negatively charged sericin. On the other hand, the composition of CH/SS had no effect on the degradation rate of microspheres. All microspheres continuously degraded and remained around 20% after 14 days of enzymatic degradation. This explained that the ionic crosslinkings between chitosan and sericin could be demolished by the enzyme and hydrolysis. Furthermore, we have verified that all CH/SS microspheres at any concentrations showed non-toxicity to L929 mouse fibroblast cells. Therefore, we suggested that the non-toxic ionic-crosslinked CH/SS microspheres could be incorporated in wound dressing material to achieve the sustained release of sericin for accelerated wound healing.

  18. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed Central

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-01-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8982822

  19. Intestinal absorption of PLAGA microspheres in the rat.

    PubMed

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres < 5 microns. The absorption efficiency was low for the former batch (about 0.11% of the administered dose) and higher for the latter (about 12.7%). The intraileal administration of free rhodamine B was followed by intense labelling of the epithelial cells and basement membranes in mesenteric lymph nodes, spleen, kidney and liver. PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of < 5 microns appeared after 3 h. Microspheres > 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  20. Efficient delivery of recombinant human bone morphogenetic protein (rhBMP-2) with dextran sulfate-chitosan microspheres.

    PubMed

    Xia, Yuan-Jun; Xia, Hong; Chen, Ling; Ying, Qing-Shui; Yu, Xiang; Li, Li-Hua; Wang, Jian-Hua; Zhang, Ying

    2018-04-01

    Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.

  1. Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: synthesis, characterization and cytotoxicity study.

    PubMed

    Efthimiadou, Eleni K; Tapeinos, Christos; Chatzipavlidis, Alexandros; Boukos, Nikos; Fragogeorgi, Eirini; Palamaris, Lazaros; Loudos, George; Kordas, George

    2014-01-30

    This paper deals with the synthesis, characterization and property evaluation of drug-loaded magnetic microspheres with pH-responsive cross-linked polymer shell. The synthetic procedure consists of 3 steps, of which the first two comprise the synthesis of a poly methyl methacrylate (PMMA) template and the synthesis of a shell by using acrylic acid (AA) and methyl methacrylate (MMA) as monomers, and divinyl benzene (DVB) as cross-linker. The third step of the procedure refers to the formation of magnetic nanoparticles on the microsphere's surface. AA that attaches pH-sensitivity in the microspheres and magnetic nanoparticles in the inner and the outer surface of the microspheres, enhance the efficacy of this intelligent drug delivery system (DDS), which constitutes a promising approach toward cancer therapy. A number of experimental techniques were used to characterize the resulting microspheres. In order to investigate the in vitro controlled release behavior of the synthesized microspheres, we studied the Dox release percentage under different pH conditions and under external magnetic field. Hyperthermia caused by an alternating magnetic field (AFM) is used in order to study the doxorubicin (Dox) release behavior from microspheres with pH functionality. The in vivo fate of these hybrid-microspheres was tracked by labeling them with the γ-emitting radioisotope (99m)Tc after being intravenously injected in normal mice. According to our results, microsphere present a pH depending and a magnetic heating, release behavior. As expected, labeled microspheres were mainly found in the mononuclear phagocyte system (MPS). The highlights of the current research are: (i) to illustrate the advantages of controlled release by combining hyperthermia and pH-sensitivity and (ii) to provide noninvasive, in vivo information on the spatiotemporal biodistribution of these microsphere by dynamic γ-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres.

    PubMed

    Andhariya, Janki V; Shen, Jie; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J

    2017-06-10

    Establishment of in vitro-in vivo correlations (IVIVCs) for parenteral polymeric microspheres has been very challenging, due to their complex multiphase release characteristics (which is affected by the nature of the drug) as well as the lack of compendial in vitro release testing methods. Previously, a Level A correlation has been established and validated for polymeric microspheres containing risperidone (a practically water insoluble small molecule drug). The objectives of the present study were: 1) to investigate whether a Level A IVIVC can be established for polymeric microspheres containing another small molecule drug with different solubility profiles compared to risperidone; and 2) to determine whether release characteristic differences (bi-phasic vs tri-phasic) between microspheres can affect the development and predictability of IVIVCs. Naltrexone was chosen as the model drug. Three compositionally equivalent formulations of naltrexone microspheres with different release characteristics were prepared using different manufacturing processes. The critical physicochemical properties (such as drug loading, particle size, porosity, and morphology) as well as the in vitro release characteristics of the prepared naltrexone microspheres and the reference-listed drug (Vivitrol®) were determined. The pharmacokinetics of the naltrexone microspheres were investigated using a rabbit model. The obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method, and compared with the in vitro release profiles of the naltrexone microspheres obtained using USP apparatus 4. Level A IVIVCs were established and validated for predictability. The results demonstrated that the developed USP 4 method was capable of detecting manufacturing process related performance changes, and most importantly, predicting the in vivo performance of naltrexone microspheres in the investigated animal model. A critical difference between naltrexone and risperidone loaded microspheres is their respective bi-phasic and tri-phasic release profiles with varying burst release and lag phase. These variations in release profiles affect the development of IVIVCs. Nevertheless, IVIVCs have been established and validated for polymeric microspheres with different release characteristics. Copyright © 2017. Published by Elsevier B.V.

  3. Optimization of sustained release aceclofenac microspheres using response surface methodology.

    PubMed

    Deshmukh, Rameshwar K; Naik, Jitendra B

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14±0.015% to 85.34±0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12h. The optimized microspheres formulation showed E.E. of 84.87±0.005 with small error value (1.39). The low magnitudes of error and the significant value of R(2) in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    USGS Publications Warehouse

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.

  5. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples.

    PubMed

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping

    2015-05-04

    The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption-desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30-60 μm), a specific surface area (S(BET)) of 281.26 m(2) g(-1) and a total pore volume (V(t)) of 0.459 cm(3) g(-1). Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2-2.2 ng mL(-1). The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL(-1) for each BP) were in the range of 81.3-106.7% with RSD values below 8.3%. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Conjugation of (E)-5-[2-(Methoxycarbonyl)ethenyl]cytidine to hydrophilic microspheres: development of a mobile microscale UV light actinometer.

    PubMed

    Fang, Shiyue; Guan, Yousheng; Blatchley, Ernest R; Shen, Chengyue; Bergstrom, Donald E

    2008-03-01

    ( E)-5-[2-(Methoxycarbonyl)ethenyl]cytidine was biotinylated through a diisopropylsilylacetal linkage and attached to the surface of hydrophilic streptavidin-coated microspheres through the high-affinity noncovalent interaction between biotin and streptavidin. The functionalized microspheres form a stable suspension in water. Upon UV irradiation, the nonfluorescent ( E)-5-[2-(methoxycarbonyl)ethenyl]cytidine on the microspheres undergoes photocyclization to produce highly fluorescent 3-beta-D-ribofuranosyl-2,7-dioxopyrido[2,3-d]pyrimidine. The fluorescence intensity of the microspheres can be correlated to the particle-specific UV doses applied at different suspension concentrations. The microspheres allow one to measure the UV dose (fluence) distribution in high-throughput water disinfection systems.

  7. Active Q switching of a fiber laser with a microsphere resonator

    NASA Astrophysics Data System (ADS)

    Kieu, Khanh; Mansuripur, Masud

    2006-12-01

    We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power ˜102W, duration ˜160ns) at a low pump-power threshold (˜3mW).

  8. Absorption kinetics of flurbiprofen axetil microspheres in cerebrospinal fluid: A pilot study
.

    PubMed

    Zhang, Hong; Gu, Jian; Feng, Yi; An, Haiyan

    2017-11-01

    The purpose of this study is to investigate the absorption dynamics of flurbiprofen axetil in cerebrospinal fluid. We analyzed the concentrations of flurbiprofen in peripheral venous blood and cerebrospinal fluid (CSF) to explore the absorption dynamics of flurbiprofen axetil loaded in lipid microspheres in CSF. 72 adult patients who planned to undergo selective operations under spinal anesthesia or combined spinal-epidural anesthesia were intravenously injected with flurbiprofen axetil (1 mg/kg) and randomly divided into nine groups according to the sampling time after administration: 5 (T5), 10 (T10), 15 (T15), 20 (T20), 25 (T25), 30 (T30), 35 (T35), 40 (T40), and 45 minutes (T45). The CSF and venous blood samples collected from patients were analyzed by reverse-phase high-performance liquid chromatography to determine the concentrations of flurbiprofen. With the exception of 3 CSF samples in T5 and 4 CSF samples in T10, flurbiprofen was detected in all CSF and blood specimens. Significant differences between the CSF concentrations and CSF/plasma drug concentration ratios were observed among the nine time points (p < 0.001), whereas no significant difference in plasma concentration was found (p > 0.05). The findings suggest that lipid microspheres loaded with flurbiprofen can penetrate through the blood-brain barrier into CSF after intravenous injection. The fact that the flurbiprofen concentration rose continuously for 45 minutes after injection indicates that flurbiprofen-loaded lipid microspheres may exert analgesic action via the central nervous system.
.

  9. Microscopic distribution patterns of microspheres deposited by inhalation in lungs of rats, guinea pigs, and dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snipes, M.B.; Guilmette, R.A.; Nikula, K.J.

    1995-12-01

    Acute inhalation exposures of mammalian species to small amounts of poorly soluble particles result in deposition of the particles in the head airways, tracheobronchial region, and pulmonary region of the respiratory tract. Most of the particles that deposit in the head airways and tracheobronchial region are believed to clear rapidly, but some as yet undefined fraction of the particles is retained in the airway epithelium or subepithelial interstitium for extended times. This long-term retention has important implications for the new respiratory tract dosimetry model of the International Commission on Radiological Protection because particles retained within the region can result inmore » long-term exposure of airway epithelial cells. Preliminary results from this study demonstrate that a substantial fraction of the PSL microspheres inhaled by these rats, guinea pigs, and dogs was incorporated into the epithelium and interstitium of the tracheobronchial region.« less

  10. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    PubMed

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Validation of thermal techniques for measurement of pelvic organ blood flows in the nonpregnant sheep: comparison with transit-time ultrasonic and microsphere measurements of blood flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, N.J.; Beard, R.W.; Sutherland, I.A.

    1988-03-01

    Data obtained from a thermal system capable of measuring changes in organ temperature as well as tissue thermal clearance in the uterus and vagina have been compared with blood flow measured continuously with a transit-time ultrasound volume-flow sensor placed around the common internal iliac artery and intermittently with radioactive microspheres in the chronically instrumented nonpregnant sheep. Temperature changes in both the uterus and the vagina correlated well with blood flow changes measured by both techniques after intravenous administration of estradiol or norepinephrine. Thermal clearance did not correlate well with blood flow in the vagina or uterus. These methods may havemore » value in the investigation of blood flow patterns in various clinical situations such as the pelvic pain syndrome and early pregnancy.« less

  12. Effect of pH on polyethylene glycol (PEG)-induced silk microsphere formation for drug delivery.

    PubMed

    Wu, Jianbing; Xie, Xusheng; Zheng, Zhaozhu; Li, Gang; Wang, Xiaoqin; Wang, Yansong

    2017-11-01

    The effects of changing solution pH in the range of 3.6-10.0 during a one-step silk microsphere preparation process, by mixing silk and polyethylene glycol (PEG), was assessed. The microspheres prepared at low pH (3.6) showed a more homogeneous size (1-3μm) and less porous texture than those prepared at neutral pH. High pH (10.0) inhibited microsphere formation, yielding small and inhomogeneous microspheres. Compared to neutral pH, low pH also increased the content of silk crystalline β-sheet structure from approx. 30% to above 40%. As a result, the microspheres produced at low pH were more thermally stable as well as resistant to chemical (8M urea) and enzymatic (protease XIV) degradation when compared to microspheres prepared at neutral pH. Doxorubicin hydrochloride (DOX) and curcumin (CUR) were successfully loaded in silk microspheres via control of solution pH. The loading efficiency of DOX was approx. 95% at pH7.0 and approx. 60% for CUR at pH3.6, attributed to charge-charge interactions and hydrophobic interactions between the silk and drug molecules, respectively. When PBS, pH7.4, was used as a medium for release studies, the pH3.6 microspheres released both drugs more slowly than the pH7.0 microspheres, likely due to the high content of crystalline β-sheet structure that enhanced drug-silk interactions as well as restricted drug molecule diffusion. Copyright © 2017. Published by Elsevier B.V.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J.P., E-mail: chengjp@zju.edu.cn; Chen, X.; Ma, R.

    Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. The first step involves the synthesis of flower-like Co(OH){sub 2} microspheres by a solution route at low temperatures. The second step includes the calcination of the as-prepared Co(OH){sub 2} microspheres at 200 deg. C for 1 h, causing their decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology. The samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffractormeter and Fourier transform infrared spectroscope. Some experimental factors including solution temperature and surfactantmore » on the morphologies of the final products have been investigated. The magnetic properties of Co{sub 3}O{sub 4} microspheres were also investigated. - Graphical Abstract: Flower-like Co{sub 3}O{sub 4} microspheres are composed of self-assembled nanoplates and these nanoplates appear to be closely packed in the microspheres. These nanoplates consist of a large number of nanocrystallites less than 5 nm in size with a porous structure, in which the connection between nanocrystallites is random. Research Highlights: {yields} Flower-like Co{sub 3}O{sub 4} hierarchical microspheres composed of self-assembled porous nanoplates have been prepared by a two-step method without employing templates. {yields} Layered Co(OH){sub 2} microspheres were prepared with an appropriate approach under low temperatures for 1 h reaction. {yields} Calcination caused Co(OH){sub 2} decomposition to form porous Co{sub 3}O{sub 4} microspheres without destruction of their original morphology.« less

  14. Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres

    PubMed Central

    Belair, David G.; Miller, Michael J.; Wang, Shoujian; Darjatmokon, Soesiawati R.; Binder, Bernard Y.K.; Sheibani, Nader; Murphy, William L.

    2016-01-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  15. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl

    PubMed Central

    2012-01-01

    Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. Methods With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Conclusions Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics. PMID:23351176

  16. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl.

    PubMed

    Shah, Sanjay; Madan, Sarika; Agrawal, Ss

    2012-09-03

    The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  17. Starch-entrapped biopolymer microspheres as a novel approach to vary blood glucose profiles.

    PubMed

    Venkatachalam, Mahesh; Kushnick, Michael R; Zhang, Genyi; Hamaker, Bruce R

    2009-10-01

    With emerging knowledge of the impact of the metabolic quality of glycemic carbohydrates on human health, there is a need for novel carbohydrate ingredients that can be custom-made to deliver controlled amounts of glucose to the body and to test hypotheses on the postprandial metabolic consequences of carbohydrates. The goal of the present study was to demonstrate the applicability and action of starch-entrapped biopolymer microspheres as customized, novel, slowly digestible carbohydrates to obtain desired glycemic responses. Starch-entrapped microspheres were developed; and starch digestion and glucose release, subsequent to their cooking (100 degrees C, 20 min) in water, were initially monitored by measuring the rapidly digestible, slowly digestible, and resistant starch fractions using the in vitro Englyst assay. Glycemic and insulinemic responses after consumption of glucose and two different slowly digestible starch microsphere diets were compared using a crossover study in 10 healthy individuals. The mechanism of starch digestion in the microspheres was elucidated from scanning electron microscopic images of the in vitro digested microspheres. Factors such as biopolymer type and concentration, microsphere size, and starch type were manipulated to obtain starch materials with defined amounts of slowly digestible starch based on in vitro studies. Scanning electron microscopy showed that cooked starch entrapped in the dense biopolymer matrix is digested layer by layer from the outside to the inside of the microsphere. Glycemic and insulinemic responses to microsphere test diets were moderate as compared to a glucose diet, but more important, they showed extended glucose release. Starch-entrapped microspheres provide a useful tool to study the postprandial metabolic consequences of slowly digestible carbohydrates.

  18. Demonstration of sub-femtomole sensitivity for small molecules with microsphere ring resonator sensors

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Oveys, Hesam; Fan, Xudong

    2006-02-01

    Optical microsphere resonators can function as highly sensitive bio/chemical sensors due to the large Q-factor, which leads to high light-matter interaction. The whispering gallery modes (WGM) arise at the surface of the microsphere, creating a highly enhanced optical field that interacts with matter on or near the microsphere surface. As a result, the spectral position of the WGM is extremely sensitive to refractive index changes near the surface, such as when bio/chemical molecules bind to the sphere. We show the potential feasibility of a microsphere ring resonator as a sensor for small molecules by demonstrating detection of sub-femtomole changes in SiO II molecules at the surface of the microsphere. In this experiment, the silica molecules act as an excellent model for small molecule analytes because of their 60 Dalton molecular weight, and because we know nearly the exact quantity of molecules at the surface, which enables a sensitivity characterization. We measure the spectral shifts in the WGMs when low concentrations of hydrofluoric acid (HF) are added to a solution that is being probed by the microsphere. As the HF molecules break apart the SiO II molecules at the sphere surface, the WGMs shift due to the sub-nano-scale decrease in the size of the microsphere. These calculations show that the sensitivity of this microsphere resonator is on the order of 500 attomoles. Our results will lead to the utilization of optical microspheres for detection of trace quantities of small molecules for such applications as drug discovery, environmental monitoring, and enzyme detection using peptide cleavage.

  19. Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens

    EPA Science Inventory

    Saliva has an important advantage over serum as a medium for antibody detection due to non-invasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to pot...

  20. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    PubMed

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  1. Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure

    NASA Astrophysics Data System (ADS)

    Shen, Yanbai; Bi, Hongshan; Li, Tingting; Zhong, Xiangxi; Chen, Xiangxiang; Fan, Anfeng; Wei, Dezhou

    2018-03-01

    Hierarchically nanostructured WO3 microspheres that had two types of Au functionalization modes (i.e., Au-loaded mode and Au-doped mode) were characterized in terms of their microstructure and NO2 sensing performance. Pure, Au-loaded, and Au-doped WO3 microspheres were synthesized using a hydrothermal method, followed by a dipping method for Au-loaded WO3 microspheres. Microstructure characterization indicated that uniform microspheres with 3-6 μm in diameter were assembled from numerous well-defined individual WO3 nanorods with a single crystal hexagonal structure. The morphology and size of the WO3 microspheres were not affected by the functionalization of the Au nanoparticles, and the W, O, and Au elements were well-distributed in the WO3 microspheres. The NO2 sensing properties indicated that the Au nanoparticles not only improved the sensor response and reproducibility but also decreased the operating temperature at which the sensor response reached a maximum. Gas sensors based on pure, Au-loaded, and Au-doped WO3 microspheres exhibited a linear relationship between the sensor response and NO2 concentration. The sensing performance was significantly enhanced in the following order: pure, Au-loaded, and Au-doped WO3 microspheres. This result is due to the modulation of the depletion layer via oxygen adsorption as well as chemical and electronic sensitization of Au nanoparticles.

  2. Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.

    PubMed

    Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding

    2015-08-15

    A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  4. Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats.

    PubMed

    Arica, Betül; Kaş, H Süheyla; Moghdam, Amir; Akalan, Nejat; Hincal, A Atilla

    2005-02-16

    The purpose of this study was to prepare and characterize injectable carbidopa (CD)/levodopa (LD)-loaded Poly(L-lactides) (L-PLA), Poly(D,L-lactides) (D,L-PLA) and Poly(D,L-lactide-co-glycolide) (PLAGA) microspheres for the intracerebral treatment of Parkinson's disease. The microspheres were prepared by solvent evaporation method. The polymers' (L-PLA, D,L-PLA and PLAGA) concentrations were 10% (w/w) in the organic phase; the emulsifiers [sodium carboxymethylcellulose (NaCMC):sodium oleate (SO) and Polyvinyl alcohol (PVA):SO mixture (4:1 w/v)] concentrations were 0.75% in the aqueous phase. Microspheres were analyzed for morphological characteristics, size distribution, drug loading and in vitro release. The release profile of CD/LD from microspheres was characterized in the range of 12-35% within the first hour of the in vitro release experiment. The efficiency of CD- and LD-encapsulated microspheres to striatal transplantation and the altering of apomorphine-induced rotational behavior in the 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model were also tested. 6-OHDA/CD-LD-loaded microsphere groups exhibited lower rotation scores than 6-OHDA/Blank microsphere groups as early as 1 week postlesion. These benefits continued throughout the entire experimental period and they were statistically significant during the 1, 2 and 8 weeks (p<0.05). CD/LD-loaded microspheres were specifically prepared to apply as an injectable dosage forms for brain implantation.

  5. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    PubMed

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  6. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    PubMed Central

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-01-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer. PMID:27324595

  7. Influence of polymeric microspheres on the myocardial oxygen partial pressure in the beating heart of pigs.

    PubMed

    Hiebl, B; Mrowietz, C; Lee, S; Braune, S; Knaut, M; Lendlein, A; Franke, R P; Jung, F

    2011-07-01

    Injection of labeled microspheres is an established method in animal models to analyze the capillary organ blood flow at different time points. However, the microspheres can lead to stenoses of the capillary lumen, which might affect tissue oxygen supply. Our study aimed to investigate the influence of repeated injections of microspheres into the left coronary artery on the tissue oxygen partial pressure (pO(2)) in the downstream supplied myocardium of Göttingen minipigs. Tests (n=6 pigs each) were performed with two differently sized microspheres (ø=10 ± 0.1 μm (M10) or ø=15 ± 0.15 μm (M15)) from polystyrene. The pO(2) was measured in the midmyocardium of the left and right ventricle for 6 min continuously after each of five injections (1 × 10(6) microspheres each). There was a time laps of 12 min between each injection. In addition, the influence of the carrier solution was analyzed solely in the identical time frame. pO(2) decreased significantly in the myocardial area supplied by the ramus interventricularis paraconalis after injection of M15 microspheres. In contrast, the application of the M10 microspheres did not change the myocardial pO(2). This finding suggests to use microspheres with diameters not exceeding 10 μm for the coronary blood flow assessment. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    NASA Astrophysics Data System (ADS)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  9. Molecularly imprinted microspheres synthesized by a simple, fast, and universal suspension polymerization for selective extraction of the topical anesthetic benzocaine in human serum and fish tissues.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Chen, Fang; Zhu, De-Rong

    2015-02-01

    A simple, fast, and universal suspension polymerization method was used to synthesize the molecularly imprinted microspheres (MIMs) for the topical anesthetic benzocaine (BZC). The desired diameter (10-20 μm) and uniform morphology of the MIMs were obtained easily by changing one or more of the synthesis conditions, including type and amount of surfactant, stirring rate, and ratio of organic to water phase. The MIMs obtained were used as a molecular-imprinting solid-phase-extraction (MISPE) material for extraction of BZC in human serum and fish tissues. The MISPE results revealed that the BZC in these biosamples could be enriched effectively after the MISPE operation. The recoveries of BZC on MIMs cartridges were higher than 90% (n = 3). Finally, an MISPE-HPLC method with UV detection was developed for highly selective extraction and fast detection of trace BZC in human serum and fish tissues. The developed method could also be used for the enrichment and detection of BZC in other complex biosamples.

  10. Flower-like and hollow sphere-like WO{sub 3} porous nanostructures: Selective synthesis and their photocatalysis property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jiarui, E-mail: jrhuang@mail.anhu.edu.cn; Xu, Xiaojuan; Gu, Cuiping, E-mail: cpgu2008@mail.anhu.edu.cn

    Graphical abstract: -- Abstract: Nanoflake-based flower-like and hollow microsphere-like hydrated tungsten oxide architectures were selectively synthesized by acidic precipitation of sodium tungstate solution at mild temperature. Several techniques, such as X-ray diffraction, scanning electron microscopy, thermogravimetric-differential thermalgravimetric analysis, transmission electron microscopy, and Brunauer–Emmett–Teller N{sub 2} adsorption–desorption analyses, were used to characterize the structure and morphology of the products. The experimental results show that the nanoflake-based flower-like and hollow sphere-like WO{sub 3}·H{sub 2}O architectures can be obtained by changing the concentration of sodium tungstate solution. The possible formation process based on the aggregation–recrystallization mechanism is proposed. The corresponding tungsten oxide three-dimensionalmore » architectures were obtained after calcination at 450 °C. Finally, the obtained WO{sub 3} three-dimensional architectures were used as photocatalyst in the experiments. Compared with WO{sub 3} microflowers, the as-prepared WO{sub 3} hollow microspheres exhibit superior photocatalytic property on photocatalytic decomposition of Rhodamine B due to their hollow porous hierarchical structures.« less

  11. SPHRINT - Printing Drug Delivery Microspheres from Polymeric Melts.

    PubMed

    Shpigel, Tal; Uziel, Almog; Lewitus, Dan Y

    2018-06-01

    This paper describes a simple, straightforward, and rapid method for producing microspheres from molten polymers by merely printing them in an inkjet-like manner onto a superoleophobic surface (microsphere printing, hence SPHRINT). Similar to 3D printing, a polymer melt is deposited onto a surface; however, in contrast to 2D or 3D printing, the surface is not wetted (i.e. exhibiting high contact angles with liquids, above 150°, due to its low surface energy), resulting in the formation of discrete spherical microspheres. In this study, microspheres were printed using polycaprolactone and poly(lactic-co-glycolic acid) loaded with a model active pharmaceutical ingredient-ibuprofen (IBU). The formation of microspheres was captured by high-speed imaging and was found to involve several physical phenomena characterized by non-dimensional numbers, including the thinning and breakup of highly viscous, weakly elastic filaments, which are first to be described in pure polymer melts. The resulting IBU-loaded microspheres had higher sphericity, reproducible sizes and shapes, and superior drug encapsulation efficiencies with a distinctly high process yield (>95%) as compared to the conservative solvent-based methods used presently. Furthermore, the microspheres showed sustained release profiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying

    PubMed Central

    2017-01-01

    We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow. PMID:28901145

  13. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  14. Development and gamma-scintigraphy study of Hibiscus rosasinensis polysaccharide-based microspheres for nasal drug delivery.

    PubMed

    Sharma, Nitin; Tyagi, Shanu; Gupta, Satish Kumar; Kulkarni, Giriraj Thirupathirao; Bhatnagar, Aseem; Kumar, Neeraj

    2016-11-01

    This work describes the application of natural plant polysaccharide as pharmaceutical mucoadhesive excipients in delivery systems to reduce the clearance rate through nasal cavity. Novel natural polysaccharide (Hibiscus rosasinensis)-based mucoadhesive microspheres were prepared by using emulsion crosslinking method for the delivery of rizatriptan benzoate (RB) through nasal route. Mucoadhesive microspheres were characterized for different parameters and nasal clearance of technetium-99m ((99m)Tc)-radiolabeled microspheres was determined by using gamma-scintigraphy. Their Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies showed that the drug was stable during preparation of microspheres. Aerodynamic diameter of microspheres was in the range 13.23 ± 1.83-33.57 ± 3.69 µm. Change in drug and polysaccharide ratio influenced the mucoadhesion, encapsulation efficiency and in-vitro release property. Scintigraphs taken at regular interval indicate that control solution was cleared rapidly from nasal cavity, whereas microspheres showed slower clearance (p < 0.005) with half-life of 160 min. Natural polysaccharide-based microspheres achieved extended residence by minimizing effect of mucociliary clearance with opportunity of sustained delivery for longer duration.

  15. Synthesis and effect of modification on methacylate - acrylate microspheres for Trametes versicolor laccase enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Mazlan, Siti Zulaikha; Hanifah, Sharina Abu

    2014-09-01

    Immobilization of laccase on the modified copolymer methacrylate-acrylate microspheres was studied. A poly (glycidyl methacrylate-co-n-butyl acrylate) microsphere consists of epoxy groups were synthesized using suspension photocuring technique. The epoxy group in poly (GMA-nBA) microspheres were converted into amino groups with aldehyde group. Laccase immobilization is based on having the amino groups on the enzyme surface and aldehyde group on the microspheres via covalent binding. Fourier transform infrared spectroscopy (FT-IR) analysis proved the successful surface modification on microspheres. The FTIR spectrum shows the characteristic peaks at 1646 cm-1 assigned to the conformation of the polymerization that took place between monomer GMA and nBA respectively. In addition, after modification, FTIR peaks that assigned to the epoxy ring (844 cm-1 and 904 cm-1) were decreased. The results obtained from FTIR method signify good agreement with the epoxy content method. Hence, the activity of the laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly (GMA-nBA) exhibited uniform microspheres with below 2 μm surface. Immobilized enzyme showed a broader pH profile and higher temperature compared native enzyme.

  16. MO-A-BRD-00: Current Trends in Y90-Microsphere Therapy: Delivery and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Yttrium-90 (Y90) microsphere therapy, a form of radiation therapy, is an increasingly popular option for care of patients with liver metastases or unresectable hepatocellular carcinoma. The therapy directly delivers Y90 microspheres via the hepatic artery to disease sites. Following delivery, a vast majority of microspheres preferentially lodge in the capillary vessels due to their embolic size and targeted trans-arterial delivery – depositing up to 90% of its energy in the first 5 mm of tissue. There have been a number of advances in tomographic imaging within both interventional radiology and nuclear medicine that has advanced therapy planning techniques. Quantitative imagingmore » of Y90 microsphere distribution post-therapy has also seen innovations that have led to improvements in tumor dosimetry and characterization of tumor response. A review of current trends and recent innovation in Y90 microsphere therapies will be presented. Learning Objectives: To present the imaging requirements for Y90 microsphere therapy planning To explain the standard dosimetry models used in Y90 microsphere therapy planning To report on advances in imaging for therapy planning and posttherapy assessment of tumor dosimetry and response.« less

  17. Effect of palmitic acid on the characteristics and release profiles of rotigotine-loaded microspheres.

    PubMed

    Wang, Aiping; Liang, Rongcai; Liu, Wanhui; Sha, Chunjie; Li, Youxin; Sun, Kaoxiang

    2016-01-01

    The initial burst release is a major obstacle to the development of microsphere-formulated drug products. To investigate the influence of palmitic acid on the characteristics and release profiles of rotigotine-loaded poly(d,l-lactide-co-glycolide) microspheres. Rotigotine-loaded microspheres (RMS) were prepared using the oil-in-water emulsion solvent evaporation technique. The in vitro characteristics of the RMS were evaluated with scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and a particle size analyzer. The in vitro drug release and in vivo pharmacokinetics of the RMS were investigated. The SEM results showed that the addition of palmitic acid changed the surface morphology of the microspheres from smooth to dimpled and then to non-smooth as the palmitic acid content increased. DSC revealed the existence of molecularly dispersed forms of palmitic acid in the microspheres. The in vitro and in vivo release profiles indicated that the addition of 5% and 8% palmitic acid significantly decreased the burst release of rotigotine from the microspheres, and the late-stage release was delayed as the palmitic acid content increased across the investigated range (5-15%). The addition of palmitic acid to the microspheres significantly affects the release profile of rotigotine from RMS.

  18. Yttrium-90 (Y-90) Resin Microsphere Therapy for Patients with Unresectable Hepatocellular Carcinoma: a Single-Center Experience.

    PubMed

    İnce, Semra; Karaman, Bülent; Alagoz, Engin; Karadurmuş, Nuri; Şan, Hüseyin; Erçin, Cemal Nuri; Arslan, Nuri

    2017-09-01

    Selective intraarterial radionuclide therapy (SIRT) with yttrium-90 (Y-90) resin microspheres presently has successful results in primary or metastatic inoperable liver tumors. This procedure, which is also known as radioembolisation, delivers high doses of radiation selectively to hepatic tumors while minimum healthy liver exposure. The aim of this study was to present our clinical experience of radiomicrosphere therapy for the treatment of patients with unresectable hepatocellular carcinoma (HCC). We performed 40 Y-90 microsphere therapies in 28 patients (5 females, 23 males; mean age ± SD 48 ± 8) with HCC during the period from April 2008 through December 2016. Pretreatment Tc-99m microaggregated albumin (MAA) scintigraphy was performed to all patients in order to detect eligibility for SIRT. All patients had pre- and post-biochemical tests (hemogram and serologic tests) and imaging methods (CT or MRI or PET/CT) at regular intervals to detect any possible complication and determine response rates. The mean shunting to the lungs on MAA scan was 6.5% and the mean ± SD administered dose of Y-90 was 1.55 ± 0.32 GBq in all patients. The estimated doses to the target tumors, normal liver parenchyma and lungs were 105.7 ± 55.3, 25.5 ± 8.2 and 5.8 ± 1.7 Gy, respectively. No significant complication was observed during or early after (first week) the treatment procedure and it was well tolerated by all the patients. Only one patient developed a treatment-related gastroduodenal ulcer 3 weeks after the treatment. In control imaging tests (MRI or FDG PET/CT) performed 2.5 months after the treatment, we observed complete response in 2 (7%) patients, partial response in 10 (36%) patients, stable disease in 5 (18%) patients and progressive disease in 11 (39%) patients. According to our clinical experience, we can conclude that Y-90 microsphere therapy is a safe and effective treatment option for the patients with unresectable HCC without any serious side effects.

  19. Preparation and Characterization of Silica Aerogel Microspheres

    PubMed Central

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-01-01

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795

  20. Effects of formulation variables and characterization of guaifenesin wax microspheres for controlled release.

    PubMed

    Mani, Narasimhan; Park, M O; Jun, H W

    2005-01-01

    Sustained-release wax microspheres of guaifenesin, a highly water-soluble drug, were prepared by the hydrophobic congealable disperse method using a salting-out procedure. The effects of formulation variables on the loading efficiency, particle properties, and in-vitro drug release from the microspheres were determined. The type of dispersant, the amount of wetting agent, and initial stirring time used affected the loading efficiency, while the volume of external phase and emulsification speed affected the particle size of the microspheres to a greater extent. The crystal properties of the drug in the wax matrix and the morphology of the microspheres were studied by differential scanning calorimetry (DSC), powder x-ray diffraction (XRD), and scanning electron microscopy (SEM). The DSC thermograms of the microspheres showed that the drug lost its crystallinity during the microencapsulation process, which was further confirmed by the XRD data. The electron micrographs of the drug-loaded microspheres showed well-formed spherical particles with a rough exterior.

  1. CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials.

    PubMed

    Zhu, Wenhao; Li, Qiang; Dai, Ning

    2017-02-01

    CO 2 -derived succinate production was enhanced by Actinobacillus succinogenes through polystyrene (PSt) microsphere materials for CO 2 adsorption in bioreactor, and the adhesion forces between A. succinogenes bacteria and PSt materials were characterized. Synthesized uniformly sized and highly cross-linked PSt microspheres had high specific surface areas. After modification with amine functional groups, the novel amine-functionalized PSt microspheres exhibited a high adsorption capacity of 25.3 mg CO 2 /g materials. After addition with the functionalized microspheres into the culture broth, CO 2 supply to the cells increased. Succinate production by A. succinogenes can be enhanced from 29.6 to 48.1 g L -1 . Moreover, the characterization of interaction forces between A. succinogenes cells and the microspheres indicated that the maximal adhesive force was about 250 pN. The amine-functionalized PSt microspheres can adsorb a large amount of CO 2 and be employed for A. succinogenes anaerobic cultivation in bioreactor for high-efficiency production of CO 2 -derived succinate.

  2. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair.

    PubMed

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X

    2011-05-01

    To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.

  4. Preparation and Characterization of Silica Aerogel Microspheres.

    PubMed

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-04-20

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4-20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112-0.287 g/cm³ and 207.5-660.6 m²/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery.

  5. Evaluation of the Thermosensitive Release Properties of Microspheres Containing an Agrochemical Compound.

    PubMed

    Terada, Takatoshi; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    The purpose of this study was to develop a deeper understanding of the key physicochemical parameters involved in the release profiles of microsphere-encapsulated agrochemicals at different temperatures. Microspheres consisting of different polyurethanes (PUs) were prepared using our previously reported solventless microencapsulation technique. Notably, these microspheres exhibited considerable differences in their thermodynamic characteristics, including their glass transition temperature (T g ), extrapolated onset temperature (T o ) and extrapolated end temperature (T e ). At test temperatures below the T o of the PU, only 5-10% of the agrochemical was rapidly released from the microspheres within 1 d, and none was released thereafter. However, at test temperatures above the T o of the PU, the rate of agrochemical release gradually increased with increasing temperatures, and the rate of release from the microspheres was dependent on the composition of the PU. Taken together, these results show that the release profiles of the microspheres were dependent on their thermodynamic characteristics and changes in their PU composition.

  6. Preparation and Characterization of Fluorescent SiO2 Microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  7. Thermal response of chalcogenide microsphere resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Aryanfar, I; Lim, K S

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts inmore » the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.« less

  8. Experimental evaluation of the magnetic properties of commercially available magnetic microspheres.

    PubMed

    Connolly, Joan; St Pierre, Timothy G; Dobson, Jon

    2005-01-01

    The magnetic properties of 5 commercially available magnetic microsphere samples are tested and compared with those stated by their manufacturers. A suspension of magnetic, iron oxide nanoparticles is studied for comparison. Two of the microsphere samples have magnetic properties which do not support the manufacturer's claims of superparamagnetism. The remaining 3 microsphere samples as well as the nanoparticle suspension are superparamagnetic or ferromagnetic as claimed by the manufacturers. Field cooled and zero field cooled magnetisations indicate that the non-superparamagnetic microsphere samples contain blocked magnetic particles at room temperature. This observation is supported by the open hysteresis loops of the room temperature, field dependent magnetisation measurement. There is a significant paramagnetic component in the superparamagnetic microspheres. This is also present to a lesser extent in a nanoparticle suspension.

  9. PREPARATION OF FLOWER-LIKE Co3O4/Fe3O4 MAGNETIC MICROSPHERES FOR PHOTODEGRADATION OF RhB UNDER UV LIGHT

    NASA Astrophysics Data System (ADS)

    Zhang, Baoliang; Zhang, Hepeng; Zhou, Lunwei; Ali, Nisar; Geng, Wangchang; Zhang, Qiuyu

    2013-07-01

    Flower-like Co3O4/Fe3O4 magnetic microspheres were prepared by coprecipitation of Fe2+ and Fe3+ in presence of flower-like Co3O4 microspheres as template. The preparation process included three steps: preparation of flower-like Co3O4 microspheres by hydrothermal method; immersion of Fe2+ and Fe3+ ions; coprecipitation in the presence of OH-. Rhodamine B (RhB) was chosen as model pollutants to investigate the photodegradation capacities of Co3O4/Fe3O4 magnetic microspheres. The results showed that the microspheres exhibited excellent degradation property and can be recycled to use again. After four times use the degradation efficiency was still above 90%.

  10. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  11. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    PubMed

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Detection of Salmonella sp in chicken cuts using immunomagnetic separation

    PubMed Central

    de Cássia dos Santos da Conceição, Rita; Moreira, Ângela Nunes; Ramos, Roberta Juliano; Goularte, Fabiana Lemos; Carvalhal, José Beiro; Aleixo, José Antonio Guimarães

    2008-01-01

    The immunomagnetic separation (IMS) is a technique that has been used to increase sensitivity and specificity and to decrease the time required for detection of Salmonella in foods through different methodologies. In this work we report on the development of a method for detection of Salmonella in chicken cuts using in house antibody-sensitized microspheres associated to conventional plating in selective agar (IMS-plating). First, protein A-coated microspheres were sensitized with polyclonal antibodies against lipopolysacharide and flagella from salmonellae and used to standardize a procedure for capturing Salmonella Enteritidis from pure cultures and detection in selective agar. Subsequently, samples of chicken meat experimentally contaminated with S. Enteritidis were analyzed immediately after contamination and after 24h of refrigeration using three enrichment protocols. The detection limit of the IMS-plating procedure after standardization with pure culture was about 2x10 CFU/mL. The protocol using non-selective enrichment for 6-8h, selective enrichment for 16-18h and a post-enrichment for 4h gave the best results of S. Enteritidis detection by IMS-plating in experimentally contaminated meat. IMS-plating using this protocol was compared to the standard culture method for salmonellae detection in naturally contaminated chicken cuts and yielded 100% sensitivity and 94% specificity. The method developed using in house prepared magnetic microespheres for IMS and plating in selective agar was able to diminish by at least one day the time required for detection of Salmonella in chicken products by the conventional culture method. PMID:24031199

  13. Multimodality Imaging of Ethiodized Oil–loaded Radiopaque Microspheres during Transarterial Embolization of Rabbits with VX2 Liver Tumors

    PubMed Central

    Tacher, Vania; Duran, Rafael; Lin, MingDe; Sohn, Jae Ho; Sharma, Karun V.; Wang, Zhijun; Chapiro, Julius; Gacchina Johnson, Carmen; Bhagat, Nikhil; Dreher, Matthew R.; Schäfer, Dirk; Woods, David L.; Lewis, Andrew L.; Tang, Yiqing; Grass, Michael; Wood, Bradford J.

    2016-01-01

    Purpose To assess the visibility of radiopaque microspheres during transarterial embolization (TAE) in the VX2 rabbit liver tumor model by using multimodality imaging, including single-snapshot radiography, cone-beam computed tomography (CT), multidetector CT, and micro-CT. Materials and Methods The study was approved by the institutional animal care and use committee. Fifteen VX2-tumor-bearing rabbits were assigned to three groups depending on the type of embolic agent injected: 70–150-μm radiopaque microspheres in saline (radiopaque microsphere group), 70–150-μm radiopaque microspheres in contrast material (radiopaque microsphere plus contrast material group), and 70–150-μm radiolucent microspheres in contrast material (nonradiopaque microsphere plus contrast material group). Rabbits were imaged with single-snapshot radiography, cone-beam CT, and multidetector CT. Three to 5 weeks after sacrifice, excised livers were imaged with micro-CT and histologic analysis was performed. The visibility of the embolic agent was assessed with all modalities before and after embolization by using a qualitative three-point scale score reading study and a quantitative assessment of the signal-to-noise ratio (SNR) change in various regions of interest, including the tumor and its feeding arteries. The Kruskal-Wallis test was used to compare the rabbit characteristics across groups, and the Wilcoxon signed rank test was used to compare SNR measurements before and after embolization. Results Radiopaque microspheres were qualitatively visualized within tumor feeding arteries and targeted tissue with all imaging modalities (P < .05), and their presence was confirmed with histologic examination. SNRs of radiopaque microsphere deposition increased after TAE on multidetector CT, cone-beam CT, and micro-CT images (P < .05). Similar results were obtained when contrast material was added to radiopaque microspheres, except for additional image attenuation due to tumor enhancement. For the group with nonradiopaque microspheres and contrast material, retained tumoral contrast remained qualitatively visible with all modalities except for micro-CT, which demonstrated soluble contrast material washout over time. Conclusion Radiopaque microspheres were visible with all imaging modalities and helped increase conspicuity of the tumor as well as its feeding arteries after TAE in a rabbit VX2 liver tumor model. © RSNA, 2015 PMID:26678453

  14. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood flow velocities. The MRI contrast effect was studied as a function of microsphere concentration.

  15. Enhancement of Poly(orthoester) Microspheres for DNA Vaccine Delivery by Blending with Poly(ethylenimine)

    PubMed Central

    Nguyen, David N.; Raghavan, Shyam S.; Tashima, Lauren M.; Lin, Elizabeth C.; Fredette, Stephen J.; Langer, Robert S.; Wang, Chun

    2008-01-01

    Poly(ortho ester) (POE) microspheres have been previously shown to possess certain advantages for the in vivo delivery of DNA vaccines. In particular, timing of DNA release from POE microspheres in response to acidic phagosomal pH was shown to be an important factor in determining immunogenicity, which was hypothesized to be linked to the natural progression of antigen presenting cell uptake, transfection, maturation, and antigen presentation. Here we report in vitro characterization of the enhanced the efficacy of POE microspheres by blending poly(ethylenimine) (PEI), a well-characterized cationic transfection agent, into the POE matrix. Blending of a tiny amount of PEI (approximately 0.04 wt%) with POE caused large alterations in POE microsphere properties. PEI provided greater control over the rate of pH-triggered DNA release by doubling the total release time of plasmid DNA and enhanced gene transfection efficiency of the microspheres up to 50-fold without any significant cytotoxicity. Confocal microscopy with labeled PEI and DNA plasmids revealed that PEI caused a surface-localizing distribution of DNA and PEI within the POE microsphere as well as focal co-localization of PEI with DNA. We provide evidence that upon degradation, the microspheres of POE-PEI blends released electrostatic complexes of DNA and PEI, which are responsible for the enhanced gene transfection. Furthermore, blending PEI into the POE microsphere induced 50% to 60% greater phenotypic maturation and activation of bone marrow-derived dendritic cells in vitro, judged by up-regulation of co-stimulatory markers on the cell surface. Physically blending PEI with POE is a simple approach for modulating the properties of biodegradable microspheres in terms of gene transfection efficiency and DNA release kinetics. Combined with the ability to induce maturation of antigen-presenting cells, POE-PEI blended microspheres may be excellent carriers for DNA vaccines. PMID:18400294

  16. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties.

    PubMed

    Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-04-29

    The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.

  17. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection

    PubMed Central

    Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  18. Controlled Release of Chitosan and Sericin from the Microspheres-Embedded Wound Dressing for the Prolonged Anti-microbial and Wound Healing Efficacy.

    PubMed

    Aramwit, Pornanong; Yamdech, Rungnapha; Ampawong, Sumate

    2016-05-01

    One approach in wound dressing development is to incorporate active molecules or drugs in the dressing. In order to reduce the frequency of dressing changes as well as to prolong wound healing efficacy, wound dressings that can sustain the release of the active molecules should be developed. In our previous work, we developed chitosan/sericin (CH/SS) microspheres that released sericin in a controlled rate. However, the difficulty of applying the microspheres that easily diffuse and quickly degrade onto the wound was its limitations. In this study, we aimed to develop wound dressing materials which are easier to apply and to provide extended release of sericin. Different amounts of CH/SS microspheres were embedded into various compositions of polyvinyl alcohol/gelatin (PVA/G) scaffolds and fabricated using freeze-drying and glutaraldehyde crosslinking techniques. The obtained CH/SS microspheres-embedded scaffolds with appropriate design and formulation were introduced as a wound dressing material. Sericin was released from the microspheres and the scaffolds in a sustained manner. Furthermore, an optimized formation of the microspheres-embedded scaffolds (2PVA2G+2CHSS) was shown to possess an effective antimicrobial activity against both gram-positive and gram-negative bacteria. These microspheres-embedded scaffolds were not toxic to L929 mouse fibroblast cells, and they did not irritate the tissue when applied to the wound. Finally, probably by the sustained release of sericin, these microspheres-embedded scaffolds could promote wound healing as well as or slightly better than a clinically used wound dressing (Allevyn®) in a mouse model. The antimicrobial CH/SS microspheres-embedded PVA/G scaffolds with sustained release of sericin would appear to be a promising candidate for wound dressing application.

  19. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment.

    PubMed

    Xu, Jing-San; Zhu, Ying-Jie

    2012-11-01

    In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4 emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model

    PubMed Central

    Li, Weiguo; Zhang, Zhuoli; Gordon, Andrew C.; Chen, Jeane; Nicolai, Jodi; Lewandowski, Robert J.; Omary, Reed A.

    2016-01-01

    Purpose To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models. Materials and Methods Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models. Results Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO–labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R2 = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO–labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001). Conclusion MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model. © RSNA, 2015 Online supplemental material is available for this article. PMID:26313619

  1. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies.

    PubMed Central

    Eldridge, J H; Staas, J K; Meulbroek, J A; Tice, T R; Gilley, R M

    1991-01-01

    Microspheres composed of biocompatible, biodegradable poly(DL-lactide-co-glycolide) (DL-PLG) and staphylococcal enterotoxin B (SEB) toxoid were evaluated as a vaccine delivery system when subcutaneously injected into mice. As measured by circulating immunoglobulin G (IgG) antitoxin titers, the delivery of SEB toxoid via DL-PLG microspheres, 1 to 10 microns in diameter, induced an immune response which was approximately 500 times that seen with nonencapsulated toxoid. The kinetics, magnitude, and duration of the antitoxin response induced with microencapsulated toxoid were similar to those obtained when an equal toxoid dose was administered as an emulsion with complete Freund adjuvant. However, the microspheres did not induce the inflammation and granulomata formation seen with complete Freund adjuvant. The adjuvant activity of the microspheres was not dependent on the superantigenicity of SEB toxin and was equally effective at potentiating circulating IgG antitrinitrophenyl levels in response to microencapsulated trinitrophenyl-keyhole limpet hemocyanin. Empty DL-PLG microspheres were not mitogenic, and SEB toxoid injected as a mixture with empty DL-PLG microspheres was no more effective as an immunogen than toxoid alone. Antigen-containing microspheres 1 to 10 microns in diameter exhibited stronger adjuvant activity than those greater than 10 microns, which correlated with the delivery of the 1- to 10-microns, but not the greater than 10-microns, microspheres into the draining lymph nodes within macrophages. The antibody response induced through immunization with microencapsulated SEB toxoid was protective against the weight loss and splenic V beta 8+ T-cell expansion induced by intravenous toxin administration. These results show that DL-PLG microsphere vaccine delivery systems, which are composed of pharmaceutically acceptable components, possess a strong adjuvant activity for their encapsulated antigens. PMID:1879922

  2. Synthesis of novel quaternary silica hybrid bioactive microspheres.

    PubMed

    Angelopoulou, A; Efthimiadou, E Κ; Kordas, G

    2018-01-01

    To survey the preparation of novel hybrid microspheres of quaternary silicate glassy composition (SiO 2 P 2 O 5 CaONa 2 O) and the prospect of using them as an osteogenic system with enhanced bioactive properties for the development of hydroxyapatite. In line with our previous synthetic procedure a two-step process was followed, wherein polystyrene (PS) microspheres were prepared by the emulsifier free-emulsion polymerization method and constituted the core for the sol-gel coating of the silicate inorganic shell. The development of the hybrid microspheres was based on silane and phosphate precursors and was assesses at different ratio of ethanol/water (of 9/1, 4/1, and 2/1, in mL) and at varied ammonia concentration of 4.8-1.0 mL. The hybrid microspheres had an average size ranged between 350 and 550 nm according to SEM, depending on the ethanol/water solution rate and ammonia content. The final microspheres probably exhibited a porous-like structure through the formation of diffused voids along with the low carbon content of the EDX analysis, which could be regulated by the catalyst content. The hybrid microspheres exhibited effective in vitro bioactivity assessed in simulated body fluids (SBF). Quaternary hybrid silica microspheres were effectively synthesized. The bioassay evaluation of the final microspheres revealed the rapid in vitro formation of a bone-like apatite layer. The results verify the bioactivity of the microspheres and promote further research of their suitability on regenerative treatment of bone abnormalities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 112-120, 2018. © 2016 Wiley Periodicals, Inc.

  3. Tabletted microspheres containing Cynara scolymus (var. Spinoso sardo) extract for the preparation of controlled release nutraceutical matrices.

    PubMed

    Gavini, E; Alamanni, M C; Cossu, M; Giunchedi, P

    2005-08-01

    Controlled release dosage forms based on tabletted microspheres containing fresh artichoke Cynara scolymus extract were performed for the oral administration of a nutritional supplement. Microspheres were prepared using a spray-drying technique; lactose or hypromellose have been chosen as excipients. Microspheres were characterized in terms of encapsulated extract content, size and morphology. Qualitative and quantitative composition of the extract before and after the spray process was determined. Compressed matrices (tablets) were prepared by direct compression of the spray-dried microspheres. In vitro release tests of microparticles and tablets prepared were carried out in both acidic and neutral media. Spray-drying is a good method to prepare microspheres containing the artichoke extract. The microspheres encapsulate an amount of extract close to the theoretical value. Particle size analyses indicate that the microparticles have dvs of approximately 6-7 microm. Electronic microscopy observations reveal that particles based on lactose have spherical shape and particles containing hypromellose are almost collapsed. The hydroalcoholic extract is stable to the microsphere production process: its polyphenolic composition (qualitative and quantitative) did not change after spraying. In vitro release studies show that microparticles characterized by a quick polyphenolic release both in acidic and neutral media due to the high water solubility of the carrier lactose. On the contrary, microspheres based hypromellose release only 20% of the loaded extract at pH 1.2 in 2 h and the total amount of polyphenols is released only after about further 6 h at pH 6.8. Matrices prepared tabletting lactose microspheres and hypromellose microparticles in the weight ratio 1:1 show a slow release rate, that lasts approximately 24 h. This one-a-day sustained release formulation containing Cynara scolymus extract could be proposed as a nutraceutical controlled release dosage form for oral administration.

  4. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Tian, Jiyuan; Yu, Juan; Sun, Xiuqin

    2008-12-15

    Oral DNA-based immunotherapy is a new treatment option for fish immunisation in intensive culture. However, because of the existence of the nucleases and severe gastrointestinal conditions, DNA-based vaccines can be hydrolyzed or denatured. In our laboratory, a plasmid DNA (pDNA) containing major capsid protein (MCP) gene of lymphocystis disease virus (LCDV) was prepared, and then pDNA was encapsulated in chitosan microspheres through an emulsion-based methodology. The yield, loading percent and encapsulation efficiency of microspheres were 93.6%, 0.3% and 94.5%, respectively. Scanning electron microscopy (SEM) showed that pDNA-loaded microspheres yielded a spherical shape with smooth surfaces. The disproportion of super-coiled to open circle and linear pDNA suggested that high transfection efficiencies of pDNA in microspheres were retained. The cumulative release of pDNA showed that chitosan microspheres were resistant to degradation in simulated gastrointestinal tract environment. The release profile at PBS buffer (pH 7.4) displayed that pDNA-loaded chitosan microspheres had a release up to 42 days after intestinal imbibition. RT-PCR showed that RNA containing information of MCP gene existed in various tissues 10-90 days post-vaccination. SDS-PAGE and immunofluorescent images indicated that pDNA expressed MCP in tissues of fish 10-90 days after oral administration. In addition, indirect ELISA displayed that the immune responses of sera were positive (O.D.> or =0.3) from week 1 to week 16 for fish vaccinated with microspheres, in comparison with fish vaccinated with naked pDNA. Data obtained suggested that chitosan microspheres were promising carriers for oral pDNA vaccine. Because this encapsulation technique was easy to operate and immunisation efficacy of microspheres loaded with pDNA was significant, it had potential to be used in drug delivery applications.

  5. Magnetic susceptibility characterisation of superparamagnetic microspheres

    NASA Astrophysics Data System (ADS)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  6. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres.

    PubMed

    Narayani, R; Rao, K P

    1994-01-01

    Biodegradable hydrophilic gelatin microspheres containing the anticancer drug methotrexate (MTX) of different mean particle sizes (1-5, 5-10, and 15-20 microns) were prepared by polymer dispersion technique and crosslinked with glutaraldehyde. The microspheres were uniform, smooth, solid and in the form of free-flowing powder. About 80 per cent of MTX was incorporated in gelatin microspheres of different sizes. The in vitro release of MTX was investigated in two different media, namely simulated gastric and intestinal fluids. The release profiles indicated that gelatin microspheres released MTX in a zero-order fashion for 4-6 days in simulated gastric fluid and for 5-8 days in simulated intestinal fluid. The rate of release of MTX decreased with increase in the particle size of the microspheres. MTX release was faster in gastric fluid when compared to intestinal fluid.

  7. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.

    PubMed

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-11-23

    Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g -1 at current density of 0.5 A g -1 , and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg -1 at power density of 500.00 W kg -1 , and a maximum power density of 20.14 kW kg -1 at energy density of 46.8 Wh kg -1 . We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.

  8. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation.

    PubMed

    Dhaliwal, Sumeet; Jain, Subheet; Singh, Hardevinder P; Tiwary, A K

    2008-06-01

    The aim of the present investigation was to evaluate the potential use of mucoadhesive microspheres for gastroretentive delivery of acyclovir. Chitosan, thiolated chitosan, Carbopol 71G and Methocel K15M were used as mucoadhesive polymers. Microsphere formulations were prepared using emulsion-chemical crosslinking technique and evaluated in vitro, ex-vivo and in-vivo. Gelatin capsules containing drug powder showed complete dissolution (90.5 +/- 3.6%) in 1 h. The release of drug was prolonged to 12 h (78.8 +/- 3.9) when incorporated into mucoadhesive microspheres. The poor bioavailability of acyclovir is attributed to short retention of its dosage form at the absorption sites (in upper gastrointestinal tract to duodenum and jejunum). The results of mucoadhesion study showed better retention of thiolated chitosan microspheres (8.0 +/- 0.8 h) in duodenal and jejunum regions of intestine. The results of qualitative and quantitative GI distribution study also showed significant higher retention of mucoadhesive microspheres in upper GI tract. Pharmacokinetic study revealed that administration of mucoadhesive microspheres could maintain measurable plasma concentration of acyclovir through 24 h, as compared to 5 h after its administration in solution form. Thiolated chitosan microsphere showed superiority over the other formulations as observed with nearly 4.0-fold higher AUC(0-24) value (1,090 +/- 51 ng h/ml) in comparison to drug solution (281 +/- 28 ng h/ml). Overall, the result indicated prolonged delivery with significant improvement in oral bioavailability of acyclovir from mucoadhesive microspheres due to enhanced retention in the upper GI tract.

  9. Hydrophilic microspheres from water-in-oil emulsions by the water diffusion technique.

    PubMed

    Trotta, Michele; Chirio, Daniela; Cavalli, Roberta; Peira, Elena

    2004-08-01

    In this study, we developed and evaluated a novel method to produce insulin-loaded hydrophilic microspheres allowing high encapsulation efficiency and the preservation of peptide stability during particle processing. The preparation method used the diffusion of water by an excess of solvent starting from a water-in-solvent emulsion. The water dispersed phase containing albumin or lactose, or albumin-lactose in different weight ratios, and insulin was emulsified in water-saturated triacetin with and without emulsifiers, producing a water-in-triacetin emulsion. An excess of triacetin was added to the emulsion so that water could be extracted into the continuous phase, allowing the insulin-loaded microsphere precipitation. Insulin stability within the microspheres after processing was evaluated by reverse-phase and size-exclusion high-performance liquid chromatography. The water diffusion extraction process provided spherical microparticles of albumin or albumin-lactose. The mean diameter of the microspheres prepared with or without emulsifiers ranged from 2 to 10 microm, and the encapsulation efficiency of insulin was between 60% and 75%, respectively. The analysis of microsphere content after processing showed that insulin did not undergo any chemical modification within microspheres. The use of lactose alone led to the formation of highly viscous droplets that coalesced during the purification step. The water extraction procedures successfully produced insulin-loaded hydrophilic microspheres allowing the preservation of peptide stability. The type of excipient and the size of the disperse phase of the primary w/o emulsion were crucial determinants of microsphere characteristics.

  10. Comparison of 68Ga- and fluorescence-labeled microspheres for measurement of relative pulmonary perfusion in anesthetized pigs.

    PubMed

    Braune, Anja; Scharffenberg, Martin; Naumann, Anne; Bluth, Thomas; de Abreu, Marcelo Gama; Kotzerke, Jörg

    2018-06-01

    We compared 68 Gallium ( 68 Ga)- and fluorescence-labeled microspheres for measurement of pulmonary perfusion distribution in anesthetized pigs without lung injury. In two mechanically ventilated pigs, the distribution of pulmonary perfusion was marked in vivo with 68 Ga- and fluorescence-labeled microspheres in supine and prone position. After each injection, the distribution of 68 Ga-labeled microspheres was measured in vivo with positron emission tomography/ computed tomography (PET/CT) in the position in which microspheres were injected and vice versa. The distribution of fluorescence-labeled microspheres was measured ex vivo . Perfusion distributions were compared between methods and postures within four lung regions and along the ventro-dorsal gradient. After each injection of 68 Ga-labeled microspheres, changes in ventro-dorsal perfusion gradients induced by repositioning were compared for volume- and mass-normalized PET/CT measurements. Regional and gradient analyses of in vivo and ex vivo measurements, respectively, consistently revealed higher pulmonary perfusion in dorsal than ventral regions in supine positioned animals. Both methods showed more pronounced perfusion gradients in supine compared to prone position. Changes in animal position were associated with alterations in the ventro-dorsal perfusion gradient when volume-, but not mass-normalization was conducted for PET/CT data. Ex vivo fluorescence- and in vivo 68 Ga-labeled microspheres measurements revealed similar perfusion distributions. Mass-normalized perfusion measurements by 68 Ga-labeled microspheres and PET/CT were not affected by positioning artifacts. Schattauer GmbH.

  11. Potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus

    PubMed Central

    Ha, Dong-Ho; Pathak, Shiva; Yong, Chul Soon; Kim, Jong Oh; Jeong, Jee-Heon; Park, Jun-Beom

    2016-01-01

    The aim of the present study is to evaluate the potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus. Tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres were prepared using electrospraying technique. In vitro release study of tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres was performed in phosphate-buffered saline (pH 7.4). Gingiva-derived stem cells were isolated and incubated with tacrolimus or tacrolimus-loaded microspheres. Release study of the microspheres revealed prolonged release profiles of tacrolimus without any significant initial burst release. The microsphere itself did not affect the morphology of the mesenchymal stem cells, and cell morphology was retained after incubation with microspheres loaded with tacrolimus at 1 μg/mL to 10 μg/mL. Cultures grown in the presence of microspheres loaded with tacrolimus at 1 μg/mL showed the highest mineralization. Alkaline phosphatase activity increased with an increase in incubation time. The highest expression of pSmad1/5 was achieved in the group receiving tacrolimus 0.1 μg/mL every third day, and the highest expression of osteocalcin was achieved in the group receiving 1 μg/mL every third day. Biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with tacrolimus promoted mineralization. Microspheres loaded with tacrolimus may be applied for increased osteoblastic differentiation. PMID:27721434

  12. Effects of coating on the optical trapping efficiency of microspheres via geometrical optics approximation.

    PubMed

    Park, Bum Jun; Furst, Eric M

    2014-09-23

    We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.

  13. Method and apparatus for making uniform pellets for fusion reactors

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Martin, Alfred J.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method and apparatus for making uniform pellets for laser driven fusion reactors which comprises selection of a quantity of glass frit which has been accurately classified as to size within a few micrometers and contains an occluded material, such as urea, which gasifies and expands when heated. The sized particles are introduced into an apparatus which includes a heated vertical tube with temperatures ranging from 800.degree. C to 1300.degree. C. The particles are heated during the drop through the tube to molten condition wherein the occluded material gasifies to form hollow microspheres which stabilize in shape and plunge into a collecting liquid at the bottom of the tube. The apparatus includes the vertical heat resistant tube, heaters for the various zones of the tube and means for introducing the frit and collecting the formed microspheres.

  14. Percutaneous transcatheter arterial embolization in haemodynamically stable patients with blunt splenic injury

    PubMed Central

    Popovic, Peter; Stanisavljevic, Dragoje; Jeromel, Miran

    2010-01-01

    Background The nonoperative management of the blunt splenic injury in haemodynamically stable patients has become an accepted treatment in recent years. We present a case of the blunt splenic injury successfully treated by supraselective embolization with microspheres. Case report. A young hockey player was brought to the Emergency Department with the history of blunt abdominal trauma 2 h earlier. A Grade III splenic injury with haemoperitoneum was diagnosed on sonographic evaluation and the patient was treated with the selective distal splenic artery embolization with microspheres. Postprocedural ultrasound and computed tomography follow-up a year later revealed only a small area of parenchymal irregularity. Conclusions The percutaneous splenic arterial embolization has a major role in the management of traumatic splenic injuries. Embolization is particularly beneficial in injuries of grade III or higher. PMID:22933888

  15. A Novel Polymer-Synthesized Ceramic Composite Based System for Bone Repair: Osteoblast Growth on Scaffolds with Varied Calcium Phosphate Content

    DTIC Science & Technology

    2005-01-01

    demongtrated the synthesis of degradable scaffolds from PLAGA /calcium phosphate composite microspheres in which an amorphous calcium phosphate is...EXPERIMENTAL DETAILS Scaffold Preparation Scaffolds were prepared as described in detail previously [3]. Briefly, PLAGA /calcium phosphate composite...culture polystyrene (TCPS) 2- pure PLAGA microspheres 64 3- composite microsphere matrices with a low polymer/ceramic ratio 4- composite microsphere

  16. DNA hydrogel microspheres and their potential applications for protein delivery and live cell monitoring

    PubMed Central

    Kim, Taeyoung; Park, Seongmin; Baek, Solhee; Lee, Jong Bum; Park, Nokyoung

    2016-01-01

    Microfluidic devices have been extensively developed as methods for microscale materials fabrication. It has also been adopted for polymeric microsphere fabrication and in situ drug encapsulation. Here, we employed multi-inlet microfluidic channels for DNA hydrogel microsphere formation and in situ protein encapsulation. The release of encapsulated proteins from DNA hydrogels showed different profiles accordingly with the size of microspheres. PMID:27279936

  17. Measurement of thermal diffusivity of depleted uranium metal microspheres

    NASA Astrophysics Data System (ADS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  18. Biomechanical characterization of a low density silicone elastomer filled with hollow microspheres for maxillofacial prostheses.

    PubMed

    Liu, Q; Shao, L Q; Xiang, H F; Zhen, D; Zhao, N; Yang, S G; Zhang, X L; Xu, J

    2013-01-01

    An ideal material for maxillofacial prostheses has not been found. We created a novel material: silicone elastomer filled with hollow microspheres and characterized its biomechanical properties. Expancel hollow microspheres were mixed with MDX4-4210 silicone elastomer using Q7-9180 silicone fluid as diluent. The volume fractions of microspheres were 0, 5, 15, and 30% v/v (volume ratio to the total volume of MDX4-4210 and microspheres). The microspheres dispersed well in the matrix. The physical properties and biocompatibility of the composites were examined. Shock absorption was the greatest by the 5% v/v composite, and decreased with increasing concentrations of microspheres. The density, thermal conductivity, Shore A hardness, tear and tensile strength decreased with increasing concentrations of microspheres, while elongation at break increased. Importantly, the tear strength of all composites was markedly lower than that of pure silicone elastomer. Cell viability assays indicated that the composite was of good biocompatibility. The composite with a volume fraction of 5% exhibited the optimal properties for use as a maxillofacial prosthesis, though its tear strength was markedly lower than that of silicone elastomer. In conclusion, we developed a novel light and soft material with good flexibility and biocompatibility, which holds a promising prospect for clinical application as maxillofacial prosthesis.

  19. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Recent advances in testing of microsphere drug delivery systems.

    PubMed

    Andhariya, Janki V; Burgess, Diane J

    2016-01-01

    This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.

  1. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    PubMed

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. High-speed observation of ZnO microspherical crystals produced by laser ablation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Tasaki, Ryohei; Fujiwara, Yuki; Nagasaki, Fumiaki; Higashihata, Mitsuhiro; Ikenoue, Hiroshi; Okada, Tatsuo

    2017-03-01

    ZnO nano/microstructures have attracted much attention as building blocks for optoelectronic devices because of their high crystalline quality and unique structures. We have succeeded in synthesizing ZnO microspherical crystals by a simple atmospheric laser ablation method, and demonstrated ultraviolet whispering-gallery-mode lasing from the spheres. In the microsphere synthesis process, molten droplets formed into spherical shapes by surface tension, and crystalized during ejection from the ablation spot. In this study, we observed the generation of ZnO microspheres by high-speed camera. Now we are trying to control and manipulate the microspheres using a vortex beam.

  3. Screening study on microsphere used in profile control under the environment of microbial oil recovery

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Xie, Gang; Gao, Shanshan; Wang, Zhiqiang; Wei, Junjie; Shi, Lei; Zheng, Ya; Gu, Yi; Lei, Xiaoyang; Wang, Ai

    2017-12-01

    The performance of four microspheres samples (MS-1, MS-2, MS-3, and MS-4) were evaluated and optimized by indoor experiments. Firstly, the basic physical and chemical properties of the four kinds of microspheres were evaluated by analyzing the solid contents and the solubility in the water. Results showed that the content of the precipitated solids in MS-1 was the lowest in the four kinds of microsphere samples. The contents of the other three microspheres were similar in the value of solid content. Besides, the three microspheres of the solubility in the simulated formation water were excellent. Secondly, the expansion properties of three kinds of microspheres (MS-2, MS-3, and MS-4) were investigated. Results revealed that the expansion performance of MS-3 was greatly affected by microbial metabolism. However, the other two samples had excellent expansion performance under the condition of microbial flooding. Finally, the sealing performance of MS-2 and MS-4 was evaluated by physical simulation Block test. Results showed that compared with MS-2, MS-4 was more suitable for Block B.

  4. Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Berchane, Nader

    2005-11-01

    Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.

  5. Preparation and characterization of oxybenzone-loaded gelatin microspheres for enhancement of sunscreening efficacy.

    PubMed

    Patel, M; Jain, Sunil K; Yadav, Awesh K; Gogna, D; Agrawal, G P

    2006-01-01

    The objective of our present study was to prepare and evaluate gelatin microspheres of oxybenzone to enhance its sunscreening efficacy. The gelatin microspheres of oxybenzone were prepared by emulsion method. Process parameters were analyzed to optimize the formulation. The in vitro drug release study was performed in pH 7.4 using cellulose acetate membrane. Microspheres prepared using oxybenzone:gelatin ratio of 1:6 showed slowest drug release and those prepared with oxybenzone:gelatin ratio of 1:2 showed fastest drug release. The gelatin microspheres of oxybenzone were incorporated in aloe vera gel. Sun exposure method using sodium nitroprusside solution was used for in vitro sunscreen efficacy testing. The formulation C5 containing oxybenzone-bearing gelatin microspheres in aloe vera gel showed best sunscreen efficacy. The formulations were evaluated for skin irritation test in human volunteers, sun protection factor, and minimum erythema dose in albino rats. These studies revealed that the incorporation of sunscreening agent-loaded microspheres into aloe vera gel greatly increased the efficacy of sunscreen formulation more than four times.

  6. Improvement of Oral Bioavailability of Lopinavir Without Co-administration of Ritonavir Using Microspheres of Thiolated Xyloglucan.

    PubMed

    Madgulkar, Ashwini R; Bhalekar, Mangesh R; Kadam, Ashwini A

    2018-01-01

    Lopinavir is a BCS Class IV drug exhibiting poor bioavailability due to P-gp efflux and limited permeation. The aim of this research was to formulate and characterize microspheres of lopinavir using thiolated xyloglucan (TH-MPs) as carrier to improve its oral bioavailability without co-administration of ritonavir. Thiomeric microspheres were prepared by ionotropic gelation between alginic acid and calcium ions. Interaction studies were performed using Fourier transform infrared spectroscopy (FT-IR). The thiomeric microspheres were characterized for its entrapment efficiency, T 80 , surface morphology, and mucoadhesion employing in vitro wash off test. The microspheres were optimized by 3 2 factorial design. The optimized thiomeric microsphere formulation revealed 93.12% entrapment efficiency, time for 80% drug release (T 80 ) of 358.1 min, and 88% mucoadhesion after 1 h. The permeation of lopinavir from microspheres was enhanced 3.15 times as determined by ex vivo study using everted chick intestine and increased relative bioavailability over 3.22-fold over combination of lopinavir and ritonavir as determined by in vivo study in rat model.

  7. Metronidazole loaded pectin microspheres for colon targeting.

    PubMed

    Vaidya, Ankur; Jain, Aviral; Khare, Piush; Agrawal, Ram K; Jain, Sanjay K

    2009-11-01

    A multiparticulate system having pH-sensitive property and specific enzyme biodegradability for colon-targeted delivery of metronidazole was developed. Pectin microspheres were prepared using emulsion-dehydration technique. These microspheres were coated with Eudragit(R) S-100 using oil-in-oil solvent evaporation method. The SEM was used to characterize the surface of these microspheres and a distinct coating over microspheres could be seen. The in vitro drug release studies exhibited no drug release at gastric pH, however continuous release of drug was observed from the formulation at colonic pH. Further, the release of drug from formulation was found to be higher in the presence of rat caecal contents, indicating the effect of colonic enzymes on the pectin microspheres. The in vivo studies were also performed by assessing the drug concentration in various parts of the GIT at different time intervals which exhibited the potentiality of formulation for colon targeting. Hence, it can be concluded that Eudragit coated pectin microspheres can be used for the colon specific delivery of drug. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. MO-A-BRD-02: Physics Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappadath, S.

    2015-06-15

    Yttrium-90 (Y90) microsphere therapy, a form of radiation therapy, is an increasingly popular option for care of patients with liver metastases or unresectable hepatocellular carcinoma. The therapy directly delivers Y90 microspheres via the hepatic artery to disease sites. Following delivery, a vast majority of microspheres preferentially lodge in the capillary vessels due to their embolic size and targeted trans-arterial delivery – depositing up to 90% of its energy in the first 5 mm of tissue. There have been a number of advances in tomographic imaging within both interventional radiology and nuclear medicine that has advanced therapy planning techniques. Quantitative imagingmore » of Y90 microsphere distribution post-therapy has also seen innovations that have led to improvements in tumor dosimetry and characterization of tumor response. A review of current trends and recent innovation in Y90 microsphere therapies will be presented. Learning Objectives: To present the imaging requirements for Y90 microsphere therapy planning To explain the standard dosimetry models used in Y90 microsphere therapy planning To report on advances in imaging for therapy planning and posttherapy assessment of tumor dosimetry and response.« less

  9. MO-A-BRD-01: Clinical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahvash, A.

    2015-06-15

    Yttrium-90 (Y90) microsphere therapy, a form of radiation therapy, is an increasingly popular option for care of patients with liver metastases or unresectable hepatocellular carcinoma. The therapy directly delivers Y90 microspheres via the hepatic artery to disease sites. Following delivery, a vast majority of microspheres preferentially lodge in the capillary vessels due to their embolic size and targeted trans-arterial delivery – depositing up to 90% of its energy in the first 5 mm of tissue. There have been a number of advances in tomographic imaging within both interventional radiology and nuclear medicine that has advanced therapy planning techniques. Quantitative imagingmore » of Y90 microsphere distribution post-therapy has also seen innovations that have led to improvements in tumor dosimetry and characterization of tumor response. A review of current trends and recent innovation in Y90 microsphere therapies will be presented. Learning Objectives: To present the imaging requirements for Y90 microsphere therapy planning To explain the standard dosimetry models used in Y90 microsphere therapy planning To report on advances in imaging for therapy planning and posttherapy assessment of tumor dosimetry and response.« less

  10. Observation of defect-assisted enhanced visible whispering gallery modes in ytterbium-doped ZnO microsphere

    NASA Astrophysics Data System (ADS)

    Khanum, Rizwana; Moirangthem, Rakesh S.; Das, Nayan Mani

    2017-06-01

    Smooth surfaced and crystalline undoped and ytterbium doped zinc oxide (ZnO) microspheres having an approximate size of 3-5 μm were synthesized by hydrothermal process. Out of these microspheres, a single microparticle was chosen and engaged as a whispering gallery wave microresonator. The defect induced luminescence from an individual ZnO microsphere was investigated with micro-photoluminescence measurement in the spectral range of 565 to 740 nm under the excitation of a green laser having a centered wavelength at 532 nm. The defects-related emissions from a single ZnO microsphere show optical resonance peaks so-called "whispering gallery modes" (WGMs) which are confirmed with the theoretical calculation. Further, ZnO microspheres were chemically doped with the different molar percentages of Ytterbium (Yb), and enhancement in their emission properties was investigated. Our experimental results show that ZnO microspheres with 0.5 mol. % doping of Yb gives the strongest optical emission and has highest Q-factor which can be employed in the development of WGM based optical biosensor or laser.

  11. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  12. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats

    PubMed Central

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC0-∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities. PMID:25643802

  13. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats.

    PubMed

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao; Zeng, Zhenling

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC00∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities.

  14. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions

    DOEpatents

    Ryon, Allen D.; Haas, Paul A.; Vavruska, John S.

    1984-01-01

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  15. Microsphere morphology tuning and photo-luminescence properties of monoclinic Y2WO6

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Bai, Yulong; Zhang, Junying; Tang, Zilong

    2015-04-01

    Effects of the solution pH value and reaction time on the precursor morphology and photoluminescence properties are investigated for hydrothermally prepared monoclinic Y2WO6 phosphors. In the near-neutral environment, sodium dodecyl benzene sulfonate (SDBS) surfactant forms small microspheres micelles as template to synthesize microspherical precursor. H+ ions concentration affects the arrangement of negative ionic surfactant SDBS. As a result, jujube-liked and popcorn-like loose microspheres formed at low pH value. When the pH value is 5.2 and the hydrothermal reaction time reaches 24 h, respectively, the strongest luminescent intensity can be obtained. Under this condition, the precursor presented regular microsphere with diameter of 4.0 μm. After high-temperature heat treatment, the obtained phosphor particles still exhibit microsphere-like shape. Therefore, we provide an effective method to tune the morphology of Y2WO6 phosphors and study the relationship between morphology and luminescent performance.

  16. Self-assembled dye-doped polymer microspheres as whispering gallery mode lasers

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Sun, Hongyi; Yang, Hongqin; Wu, Xiang; Xie, Shusen

    2016-10-01

    Microlasers based on high-Q whispering-gallery-mode (WGM) resonances are promising low-threshold laser sources for bio-sensing and imaging applications. In this talk, we demonstrate a cost effective approach to obtain size-controllable polymer microspheres, which can be served as good WGM microcavities. By injecting SU-8 solution into low-refractiveindex UV polymer, self-assembled spherical droplet with smooth surface can be created inside the elastic medium and then solidified by UV exposure. The size of the microspheres can be tuned from several to hundreds of microns. WGM Lasing has been achieved by optically pumping the dye-doped microspheres with ns lasers. Experimental results show that the microsphere lasers have high quality factors and low lasing thresholds. The self-assembled dye-doped polymer microspheres would provide an excellent platform for the micro-laser sources in on-chip biosensing and imaging systems.

  17. Development of poly-l-lysine-coated calcium-alginate microspheres encapsulating fluorescein-labeled dextrans

    NASA Astrophysics Data System (ADS)

    Charron, Luc; Harmer, Andrea; Lilge, Lothar

    2005-09-01

    A technique to produce fluorescent cell phantom standards based on calcium alginate microspheres with encapsulated fluorescein-labeled dextrans is presented. An electrostatic ionotropic gelation method is used to create the microspheres which are then exposed to an encapsulation method using poly-l-lysine to trap the dextrans inside. Both procedures were examined in detail to find the optimal parameters producing cell phantoms meeting our requirements. Size distributions favoring 10-20 microns microspheres were obtained by varying the high voltage and needle size parameters. Typical size distributions of the samples were centered at 150 μm diameter. Neither the molecular weight nor the charge of the dextrans had a significant effect on their retention in the microspheres, though anionic dextrans were chosen to help in future capillary electrophoresis work. Increasing the exposure time of the microspheres to the poly-l-lysine solution decreased the leakage rates of fluorescein-labeled dextrans.

  18. Integrated Cryogenic Experiment (ICE) microsphere investigation

    NASA Technical Reports Server (NTRS)

    Spradley, I.; Read, D.

    1989-01-01

    The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.

  19. Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken newcastle disease and goat pox virus.

    PubMed

    Yuan, Pingfan; Ma, Qiang; Meng, Rizeng; Wang, Chao; Dou, Wenchao; Wang, Guannan; Su, Xingguang

    2009-05-01

    Semiconductor nanocrystals (or quantum dots, QDs) have the potential to overcome some of the limitations encountered by traditional fluorophores in fluorescence labeling applications. The unique spectroscopic properties of QDs make them hold immense promise as versatile labels for biological applications. In this work, we employ the layer-by-layer (LbL) method for the construction of bio-functional multicolor QD-encoded microspheres. Polystyrene microspheres with diameter of 3 microm were used as templates for the deposition of different sized CdTe QDs/polyelectrolyte multilayers. Two different antigens, Chicken newcastle disease (CND) antigen and goat pox virus (GPV) antigen, were conjugated to two kinds of biofunctional multicolor microspheres with different optical encoding. The multicolor microspheres can capture corresponding antibodies labeled with QDs, QDs-CND antibody and QDs-GPV antibody in the fluoroimmunoassays. The microspheres can be distinguished from each other based on their optical encoding.

  20. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  1. Synthesis of V2O5 microspheres by spray pyrolysis as cathode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yin, Zhendong; Xu, Jie; Ge, Yali; Jiang, Qiaoya; Zhang, Yaling; Yang, Yawei; Sun, Yuping; Hou, Siyu; Shang, Yuanyuan; Zhang, Yingjiu

    2018-03-01

    Vanadium oxide (V2O5) microspheres have attracted considerable attention in the energy field due to their unique properties such as high stability and electrochemical activity. Here, massive V2O5 microspheres with smooth surface, hollow cavity and uniform particle sizes (0.4–1.5 μm), were synthesized by a facile spray pyrolysis process. Post-treatment at predefined temperatures effectively turned the microsphere shell into stacked nanorods with widths of 100 nm and lengths of 500 nm when processed at 500 °C for 3 h under nitrogen atmosphere, with enhanced crystallinity. When applied as cathode materials for supercapacitors, the post-treated V2O5 microspheres at 500 °C exhibited improved specific capacitance and longer discharge time. This is an effective method to manufacture massive V2O5 microspheres with tailored structure and potential applications in high-performance energy storage materials.

  2. Delivery of S1P Receptor-Targeted Drugs via Biodegradable Polymer Scaffolds Enhances Bone Regeneration in a Critical Size Cranial Defect*

    PubMed Central

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A.; Green, David; Botchwey, Edward A.

    2014-01-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with microcomputed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. PMID:23640833

  3. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect.

    PubMed

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A; Green, David; Botchwey, Edward A

    2014-04-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with micro-computed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. A 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  4. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water.

    PubMed

    Persson, Frank; Långmark, Jonas; Heinicke, Gerald; Hedberg, Torsten; Tobiason, John; Stenström, Thor-Axel; Hermansson, Malte

    2005-10-01

    Biofiltration of surface water was examined using granular activated carbon (GAC) and expanded clay (EC). Particle removal was 60-90%, measured by flow cytometry, which enabled discrimination between total- and autofluorescent particles (microalgae) in size ranges of 0.4-1 and 1-15 microm, and measured by on-line particle counting. Total particles were removed at a higher degree than autofluorescent particles. The biofilters were also challenged with 1 microm fluorescent microspheres with hydrophobic and hydrophilic surface characteristics and bacteriophages (Salmonella typhimurium 28B). Added microspheres were removed at 97-99% (hydrophobic) and 85-89% (hydrophilic) after 5 hydraulic residence times (HRT) and microspheres retained in the biofilter media were slowly detaching into the filtrate for a long time after the addition. Removal of bacteriophages (5 HRT) was considerably lower at 40-59%, and no long-lasting detachment was observed. A comparison of experimental data with theoretical predictions for removal of particles in clean granular media filters revealed a similar or higher removal of particles around 1 microm in size than predicted, while bacteriophages were removed at a similar or lesser extent than predicted. The results highlight the selectivity and dynamic behaviour of the particle removal processes and have implications for operation and microbial risk assessment of a treatment train with biofilters as pre-treatment.

  5. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes

    NASA Astrophysics Data System (ADS)

    Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  6. In vitro perforation of human epithelial carcinoma cell with antibody-conjugated biodegradable microspheres illuminated by a single 80 femtosecond near-infrared laser pulse

    PubMed Central

    Terakawa, Mitsuhiro; Tsunoi, Yasuyuki; Mitsuhashi, Tatsuki

    2012-01-01

    Pulsed laser interaction with small metallic and dielectric particles has been receiving attention as a method of drug delivery to many cells. However, most of the particles are attended by many risks, which are mainly dependent upon particle size. Unlike other widely used particles, biodegradable particles have advantages of being broken down and eliminated by innate metabolic processes. In this paper, the perforation of cell membrane by a focused spot with transparent biodegradable microspheres excited by a single 800 nm, 80 fs laser pulse is demonstrated. A polylactic acid (PLA) sphere, a biodegradable polymer, was used. Fluorescein isothiocyanate (FITC)-dextran and short interfering RNA were delivered into many human epithelial carcinoma cells (A431 cells) by applying a single 80 fs laser pulse in the presence of antibody-conjugated PLA microspheres. The focused intensity was also simulated by the three-dimensional finite-difference time-domain method. Perforation by biodegradable spheres compared with other particles has the potential to be a much safer phototherapy and drug delivery method for patients. The present method can open a new avenue, which is considered an efficient adherent for the selective perforation of cells which express the specific antigen on the cell membrane. PMID:22679375

  7. Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer.

    PubMed

    Qian, Li-Wei; Hu, Xiao-Ling; Guan, Ping; Gao, Bo; Wang, Dan; Wang, Chao-Li; Li, Ji; Du, Chun-Bao; Song, Wen-Qi

    2014-11-01

    Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting.

  8. 99mTc-MAA/ 90Y-Bremsstrahlung SPECT/CT after simultaneous Tc-MAA/90Y-microsphere injection for immediate treatment monitoring and further therapy planning for radioembolization.

    PubMed

    Ahmadzadehfar, Hojjat; Sabet, Amir; Muckle, Marianne; Wilhelm, Kai; Reichmann, Karl; Biersack, Hans-Jürgen; Ezziddin, Samer

    2011-07-01

    An angiographic evaluation combined with (99m)Tc-macroaggregated albumin (Tc-MAA) scanning should precede the treatment of any selected candidates for radioembolization (RE) of the liver. If the tumours in one liver lobe have not been targeted in the test angiogram, it should be repeated. However, in a few cases treatment of one liver lobe or at least some segments is safe and feasible and performing a repeated test angiogram with Tc-MAA (Re-MAA) in a separate session leads to more radiation exposure and could be time consuming. Our aim was to evaluate the feasibility of concurrent RE of a part of the liver and therapy planning for another region by simultaneous injection of the Tc-MAA and (90)Y-microspheres in two different locations in the therapy session. Tc-MAA and bremsstrahlung (BS) single photon emission computed tomography (SPECT)/CT were performed separately in an effort to distinguish between the distributions of these two different radiopharmaceuticals. RE was combined with a simultaneous second test angiogram of another lobe or segments in the same session in six patients [44-70 years; five women (83%)]. Five patients suffered from colorectal carcinoma (CRC) and one from ovarian cancer. Tc-MAA and BS SPECT/CT were performed for all cases. Post-therapeutic Tc-MAA SPECT/CT showed in all patients only the distribution of Tc-MAA without any detectable BS. Evaluation of (90)Y-microsphere distribution was not always possible in the post-therapeutic BS scan performed 24 h later due to remaining Tc-MAA radiation. However, scans performed at 48 h post-intervention no longer showed any Tc-MAA "contamination". Combining RE and Re-MAA is feasible in appropriately selected patients.

  9. Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xie, Man; Wu, Feng; Chen, Renjie

    2015-10-07

    In this study, a facile nanoetching-template route is developed to synthesize porous nanomicrohierarchical LiNi1/3Co1/3Mn1/3O2 microspheres with diameters below 1.5 μm, using porous CoMnO3 binary oxide microspheres as the template. The unique morphology of CoMnO3 template originates from the contraction effect during the oxidative decomposition of Ca0.2Mn0.4Co0.4CO3 precursors and is further improved by selectively removing calcium carbonate with a nanoetching process after calcination. The as-synthesized LiNi1/3Co1/3Mn1/3O2 microsphere, composed of numerous primary particles and pores with size of dozens of nanometers, illustrates a well-assembled porous nanomicrohierarchical structure. When used as the cathode material for lithium-ion batteries, the as-synthesized microspheres exhibit remarkably enhanced electrochemical performances with higher capacity, excellent cycling stability, and better rate capability, compared with the bulk counterpart. Specifically, hierarchical LiNi1/3Co1/3Mn1/3O2 achieves a high discharge capacity of 159.6 mA h g(-1) at 0.2 C with 98.7% capacity retention after 75 cycles and 133.2 mA h g(-1) at 1 C with 90% capacity retention after 100 cycles. A high discharge capacity of 135.5 mA h g(-1) even at a high current of 750 mA g(-1) (5 C) is also achieved. The nanoetching-template method can provide a general approach to improve cycling stability and rate capability of high capacity cathode materials for lithium-ion batteries.

  10. Antimicrobial action of minocycline microspheres versus 810-nm diode laser on human dental plaque microcosm biofilms.

    PubMed

    Song, Xiaoqing; Yaskell, Tina; Klepac-Ceraj, Vanja; Lynch, Michael C; Soukos, Nikolaos S

    2014-02-01

    The purpose of this study is to investigate the antimicrobial effects of minocycline hydrochloride microspheres versus infrared light at 810 nm from a diode laser on multispecies oral biofilms in vitro. These biofilms were grown from dental plaque inoculum (oral microcosms) and were obtained from six systemically healthy individuals with generalized chronic periodontitis. Multispecies biofilms were derived using supra- and subgingival plaque samples from mesio-buccal aspects of premolars and molars exhibiting probing depths in the 4- to 5-mm range and 1- to 2-mm attachment loss. Biofilms were developed anaerobically on blood agar surfaces in 96-well plates using a growth medium of prereduced, anaerobically sterilized brain-heart infusion with 2% horse serum. Minocycline HCl 1 mg microspheres were applied on biofilms on days 2 and 5 of their development. Biofilms were also exposed on days 2 and 5 of their growth to 810-nm light for 30 seconds using a power of 0.8 W in a continuous-wave mode. The susceptibility of microorganisms to minocycline or infrared light was evaluated by a colony-forming assay and DNA probe analysis at different time points. At all time points of survival assessment, minocycline was more effective (>2 log10 colony-forming unit reduction) than light treatment (P <0.002). Microbial analysis did not reveal susceptibility of certain dental plaque pathogens to light, and it was not possible after treatment with minocycline due to lack of bacterial growth. The cumulative action of minocycline microspheres on multispecies oral biofilms in vitro led to enhanced killing of microorganisms, whereas a single exposure of light at 810 nm exhibited minimal and non-selective antimicrobial effects.

  11. Method for introduction of gases into microspheres

    DOEpatents

    Hendricks, Charles D.; Koo, Jackson C.; Rosencwaig, Allan

    1981-01-01

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  12. PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells.

    PubMed

    Song, Liqing; Ahmed, Mohammad Faisel; Li, Yan; Bejoy, Julie; Zeng, Changchun; Li, Yan

    2017-10-01

    Poly-ɛ-caprolactone (PCL) based microspheres have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. In addition, PCL and polydimethylsiloxane (PDMS) can be fabricated into thermoresponsive shape memory polymers for various biomedical applications (e.g., smart sutures and vascular stents). However, the influence of biophysical properties of PCL-PDMS based microspheres on stem cell lineage commitment has not been well understood. In this study, PDMS was used as soft segments of varying length to tailor the elastic modulus of PCL-based copolymers. It was found that lower elastic modulus (<10 kPa) of the tri-block copolymer PCL-PDMS-PCL promoted vascular differentiation of embryonic stem cells, but the range of 60-100 MPa PCL-PDMS-PCL had little influence on cardiovascular differentiation. Then different sizes (30-140 μm) of PCL-PDMS-PCL microspheres were fabricated and incorporated with embryoid bodies (EBs). Differential expression of KDR, CD31, and VE-cadherin was observed for the EBs containing microspheres of different sizes. Higher expression of KDR was observed for the condition with small size of microspheres (32 μm), while higher CD31 and VE-cadherin expression was observed for the group of medium size of microspheres (94 μm). Little difference in cardiac marker α-actinin was observed for different microspheres. This study indicates that the biophysical properties of PCL-PDMS-PCL microspheres impact vascular lineage commitment and have implications for drug delivery and tissue engineering.

  13. Development and evaluation of intestinal targeted mucoadhesive microspheres of Bacillus coagulans.

    PubMed

    Alli, Sk Md Athar; Ali, Sk Md Ajhar; Samanta, Amalesh

    2011-11-01

    Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits. To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period. Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance. Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature. Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.

  14. Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

    PubMed Central

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-01-01

    Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. PMID:29168756

  15. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    NASA Astrophysics Data System (ADS)

    Horák, Daniel; Hlidková, Helena; Klyuchivska, Olga; Grytsyna, Iryna; Stoika, Rostyslav

    2017-12-01

    The first objective of this work was to prepare biocompatible magnetic polymer microspheres with reactive functional groups that could withstand nonspecific protein adsorption from biological media. Carboxyl group-containing magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) microspheres ∼4 μm in size were prepared by multistage swelling polymerization, precipitation of iron oxide inside their pores, and coating with an α-methoxy-ω-amino poly(ethylene glycol) (CH3O-PEG750-NH2 or CH3O-PEG5,000-NH2)/α-amino-ω-t-Boc-amino poly(ethylene glycol) (H2N-PEG5,000-NH-t-Boc) mixture. The mgt.PHEMA@PEG microspheres contained ∼10 μmol COOH per g. Biocompatibility of the particles was evaluated by their treatment with human embryonic kidney cells of the HEK293 line. The microspheres did not interfere with the growth of these cells, suggesting that the particles can be considered non-toxic. A second goal of this study was to address on the interaction of the developed microspheres with macrophages that commonly eliminate foreign microbodies appearing in organisms. Murine J774.2 macrophages (J774.2) were cultured in the presence of the neat and PEGylated microspheres for 2 h. Mgt.PHEMA@PEG5,000 microspheres significantly adhered to the surface of J774.2 macrophages but were minimally engulfed. Due to these properties, the mgt.PHEMA@PEG microspheres might be useful for application in drug delivery systems and monitoring of the efficiency of phagocytosis.

  16. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Su, Weiguang; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-01

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N‧-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application.

  17. An Accelerated Release Method of Risperidone Loaded PLGA Microspheres with Good IVIVC.

    PubMed

    Hu, Xiaoqin; Zhang, Jianwei; Tang, Xuemei; Li, Mingyuan; Ma, Siyu; Liu, Cheng; Gao, Yue; Zhang, Yue; Liu, Yan; Yu, Fanglin; Yang, Yang; Guo, Jia; Li, Zhiping; Mei, Xingguo

    2018-01-01

    A long release period lasting several days or several weeks is always needed and thereby it is tedious and time consuming to screen formulations of such microspheres with so long release period and evaluate their release profiles in vitro with conventional long-term or "real-time" release method. So, an accelerated release testing of such system is necessary for formulation design as well as quality control purpose. The purpose of this study is to obtain an accelerated release method of risperidone loaded poly(lactic-co-glycolic acid) (PLGA) microspheres with good in vitro/in vivo correlation (IVIVC). Two formulations of risperidone loaded PLGA microspheres used for evaluating IVIVC were prepared by O/W method. The accelerated release condition was optimized by investigating the effect of pH, osmotic pressure, temperature and ethanol concentration on the release of risperidone from microspheres and the in vitro accelerated release profiles of risperidone from PLGA microspheres were obtained under this optimized accelerated release condition. The plasma concentration of risperidone were also detected after subcutaneous injection of risperidone loaded microspheres to rats. The in vivo cumulative absorption profiles were then calculated using Wagner-Nelson model, Loo- Riegelman model and numerical convolution model, respectively. The correlation between in vitro accelerated release and in vivo cumulative absorption were finally evaluated with Least Square Method. It was shown that temperature and ethanol concentration significantly affected the release of risperidone from the microspheres while pH and osmotic pressure of release media slightly affected the release behavior of risperidone. The in vitro release of risperidone from microspheres were finally undergone in PBS (pH7.0, 300mosm) with 20% (V/V) ethanol at 45°C. The sustained and complete release of risperidone was observed in both formulations under the accelerated release condition although these two release profiles were dissimilar. The correlation coefficients (R2) of IVIVC were all above 0.95 and the slopes were all between 0.9564 and 1.1868 in spite of fitted model and microsphere formulation. An in vitro accelerated release method of risperidone microspheres with good IVIVC was established in this paper and this accelerated release method was supposed to have great potential in both in vivo performance prediction and quality control for risperidone loaded PLGA microspheres. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  19. Properties of rigid polyurethane foams filled with glass microspheres

    NASA Astrophysics Data System (ADS)

    Yakushin, V.; Bel'kova, L.; Sevastyanova, I.

    2012-11-01

    The effect of hollow glass microspheres with a density of 125 kg/m3 on the properties of low-density (54-90 kg/m3) rigid polyurethane foams is investigated. The thermal expansion coefficient of the foams and their properties in tension and compression in relation to the content of the microspheres (0.5-5 wt.%) are determined. An increase in the characteristics of the material in compression in the foam rise direction with increasing content of filler is revealed. The limiting content of the microspheres above which the mechanical characteristics of the filled foams begin to decrease is found. The distribution of the microspheres in elements of the cellular structure of the polyurethane foams is examined.

  20. Ketoprofen spray-dried microspheres based on Eudragit RS and RL: study of the manufacturing parameters.

    PubMed

    Rassu, Giovanna; Gavini, Elisabetta; Spada, Gianpiera; Giunchedi, Paolo; Marceddu, Salvatore

    2008-11-01

    The preparation of ketoprofen spray-dried microspheres can be affected by the long drug recrystallization time. Polymer type and drug-polymer ratio as well as manufacturing parameters affect the preparation. The purpose of this work was to evaluate the possibility to obtain ketoprofen spray-dried microspheres using the Eudragit RS and RL; the influence of the spray-drying parameters on morphology, dimension, and physical stability of microspheres was studied. Ketoprofen microspheres based on Eudragit blend can be prepared by spray-drying and the nebulization parameters do not influence significantly particle properties; nevertheless, they can be affected by drying and storage methods. No effect of the container material is found.

  1. Magnetic cellulose-derivative structures

    DOEpatents

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  2. Magnetic cellulose-derivative structures

    DOEpatents

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  3. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  4. Fabrication of photonic band gap materials

    DOEpatents

    Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  5. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  6. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  7. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  8. Microsphere coated substrate containing reactive aldehyde groups

    NASA Technical Reports Server (NTRS)

    Yen, Richard C. K. (Inventor); Rembaum, Alan (Inventor)

    1984-01-01

    A synthetic organic resin is coated with a continuous layer of contiguous, tangential, individual microspheres having a uniform diameter preferably between 100 Angstroms and 2000 Angstroms. The microspheres are an addition polymerized polymer of an unsaturated aldehyde containing 4 to 20 carbon atoms and are covalently bonded to the substrate by means of high energy radiation grafting. The microspheres contain reactive aldehyde groups and can form conjugates with proteins such as enzymes or other aldehyde reactive materials.

  9. Preclinical and clinical in vitro in vivo correlation of an hGH dextran microsphere formulation.

    PubMed

    Vlugt-Wensink, K D F; de Vrueh, R; Gresnigt, M G; Hoogerbrugge, C M; van Buul-Offers, S C; de Leede, L G J; Sterkman, L G W; Crommelin, D J A; Hennink, W E; Verrijk, R

    2007-12-01

    To investigate the in vitro in vivo correlation of a sustained release formulation for human growth hormone (hGH) based on hydroxyethyl methacrylated dextran (dex-HEMA) microspheres in Pit-1 deficient Snell dwarf mice and in healthy human volunteers. A hGH-loaded microsphere formulation was developed and tested in Snell dwarf mice (pharmacodynamic study) and in healthy human volunteers (pharmacokinetic study). Single subcutaneous administration of the microspheres in mice resulted in a good correlation between hGH released in vitro and in vivo effects for the hGH-loaded microsphere formulation similar to daily injected hGH indicating a retained bioactivity. Testing the microspheres in healthy volunteers showed an increase (over 7-8 days) in hGH serum concentrations (peak concentrations: 1-2.5 ng/ml). A good in vitro in vivo correlation was obtained between the measured and calculated (from in vitro release data) hGH serum concentrations. Moreover, an increased serum concentration of biomarkers (insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3) was found again indicating that bioactive hGH was released from the microspheres. Good in vitro in vivo correlations were obtained for hGH-loaded dex-HEMA microspheres, which is an important advantage in predicting the effect of the controlled drug delivery product in a clinical situations.

  10. Preclinical and Clinical In Vitro In Vivo Correlation of an hGH Dextran Microsphere Formulation

    PubMed Central

    de Vrueh, R.; Gresnigt, M. G.; Hoogerbrugge, C. M.; van Buul-Offers, S. C.; de Leede, L. G. J.; Sterkman, L. G. W.; Crommelin, D. J. A.; Hennink, W. E.; Verrijk, R.

    2007-01-01

    Purpose To investigate the in vitro in vivo correlation of a sustained release formulation for human growth hormone (hGH) based on hydroxyethyl methacrylated dextran (dex-HEMA) microspheres in Pit-1 deficient Snell dwarf mice and in healthy human volunteers. Materials and Methods A hGH-loaded microsphere formulation was developed and tested in Snell dwarf mice (pharmacodynamic study) and in healthy human volunteers (pharmacokinetic study). Results Single subcutaneous administration of the microspheres in mice resulted in a good correlation between hGH released in vitro and in vivo effects for the hGH-loaded microsphere formulation similar to daily injected hGH indicating a retained bioactivity. Testing the microspheres in healthy volunteers showed an increase (over 7–8 days) in hGH serum concentrations (peak concentrations: 1–2.5 ng/ml). A good in vitro in vivo correlation was obtained between the measured and calculated (from in vitro release data) hGH serum concentrations. Moreover, an increased serum concentration of biomarkers (insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3) was found again indicating that bioactive hGH was released from the microspheres. Conclusions Good in vitro in vivo correlations were obtained for hGH-loaded dex-HEMA microspheres, which is an important advantage in predicting the effect of the controlled drug delivery product in a clinical situations. PMID:17929148

  11. Novel control methods for insect pests: development of a microencapsulation procedure for proteinaceous bioactives intended for oral delivery.

    PubMed

    Richards, Elaine H; Wontner-Smith, Tim; Bradish, Hannah; Dani, M Paulina; Cotterill, Jane V

    2015-09-01

    The objective was to develop an environmentally favourable microcapsule suitable for delivery of proteinaceous bioactive agents ('bioinsecticides') to pest insects. Utilising feeding bioassays, we determined that microspheres made of alginate can be produced in a variety of sizes and are palatable and non-toxic to larvae of the lepidopteran pest Lacanobia oleracea. Dehydrated microspheres were also readily ingested by larvae. Using a novel feeding bioassay and alginate microspheres containing a fluorescent marker material (coumarin 7 encapsulated in styrene maleic anhydride beads), we determined that the microspheres successfully deliver the marker to the insect gut. Moreover, the alginate microspheres rapidly break down in the alkaline conditions of the insect gut and release their contents, the beads passing through the gut in 2-3 h. Using bovine serum albumin as a test protein and western blotting, it was determined that alginate can successfully encapsulate protein, and that the microspheres can be stored in a CaCl2 solution for up to 24 days without extensive leakage. Importantly, it was also determined that alginate and the microsphere-making procedure developed do not inactivate rVPr1 (an insect immunosuppressive protein and potential bioinsecticide). An alginate-based microsphere has potential to deliver the proteinaceous bioactive rVPr1 to pest insects. © 2014 Crown copyright. Pest Management Science © 2014 Society of Chemical Industry.

  12. Highlighting the Importance of Surface Grafting in Combination with a Layer-by-Layer Approach for Fabricating Advanced 3D Poly(l-lactide) Microsphere Scaffolds

    PubMed Central

    2016-01-01

    A combined surface treatment (i.e., surface grafting and a layer-by-layer (LbL) approach) is presented to create advanced biomaterials, i.e., 3D poly(l-lactide) (PLLA) microsphere scaffolds, at room temperature. The grafted surface plays a crucial role in assembling polyelectrolyte multilayers (PEMs) onto the surface of the microspheres, thus improving the physicochemical properties of the 3D microsphere scaffolds. The grafted surface of the PLLA microspheres demonstrates much better PEM adsorption, improved surface coverage at low pH, and smoother surfaces at high pH compared with those of nongrafted surfaces of PLLA microspheres during the assembly of PEMs. They induce more swelling than nongrafted surfaces after the assembly of the PEMs and exhibit blue emission after functionalization of the microsphere surface with a fluorescent dye molecule. The 3D scaffolds functionalized with and without nanosheets not only exhibit good mechanical performance similar to the compressive modulus of cancellous bone but also exhibit the porosity required for cancellous bone regeneration. The magnetic nanoparticle-functionalized 3D scaffolds result in an electrical conductivity in the high range of semiconducting materials (i.e., 1–250 S cm–1). Thus, these 3D microsphere scaffolds fabricated by surface grafting and the LbL approach are promising candidates for bone tissue engineering. PMID:29503506

  13. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    PubMed

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Yao, X. Steve; Maleki, Lute

    2000-01-01

    With submillimeter size and optical Q up to approximately 10 (exp 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators. In addition to earlier demonstrated optical locking of diode laser to WG mode in a microsphere, we report on microsphere application in the microwave optoelectronic oscillator, OEO. In OEO, a steady-state microwave modulation of optical carrier is obtained in a closed loop including electro-optical modulator, fiber-optic delay, detector and microwave amplifier. OEO demonstrates exceptionally low phase noise (-140 dBc/Hz at l0kHz from approximately 10GHz carrier) with a fiber length approximately 2km. Current technology allows to put all parts of the OEO, except the fiber, on the same chip. Microspheres, with their demonstrated Q equivalent to a kilometer fiber storage, can replace fiber delays in a truly integrated device. We have obtained microwave oscillation in microsphere-based OEO at 5 to 18 GHz, with 1310nm and 1550nm optical carrier, in two configurations: 1) with external DFB pump laser, and 2) with a ring laser including microsphere and a fiber optic amplifier. Also reported is a simple and efficient fiber coupler for microspheres facilitating their integration with existing fiber optics devices.

  15. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles.

    PubMed

    Wei, Yi; Wang, Yuxia; Kang, Aijun; Wang, Wei; Ho, Sa V; Gao, Junfeng; Ma, Guanghui; Su, Zhiguo

    2012-07-02

    An effective and safe formulation of sustained-release rhGH for two months using poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres was developed to reduce the frequency of medication. The rhGH-loaded PELA microspheres with a narrow size distribution were successfully prepared by a double emulsion method combined with a premix membrane emulsification technique without any exogenous stabilizing excipients. The narrow size distribution of the microspheres would guarantee repeatable productivity and release behavior. Moreover, the amphiphilic PELA improved the bioactivity retention of protein drugs since it prevented protein contact with the oil/water interface and the hydrophobic network, and modulated diffusion of acidic degradation products from the carrier system. These PELA microspheres were compared in vivo with commercial rhGH solution, conventional poly(D,L-lactic acid) (PLA) and poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. Administration of rhGH-PELA could extend the duration of rhGH release (for up to 56 days) and increase area under the curve (AUC) compared to rhGH solution, PLA or PLGA microspheres in Sprague-Dawley (SD) rats. In addition, rhGH-PELA microspheres induced a greater response in total insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) than other rhGH formulations. With a hypophysectomized SD rat model, the pharmacological efficacy of rhGH-PELA microspheres was shown to be better than that from daily administration of rhGH solutions over 6 days based on body weight gain and width of the tibial growth plate. Histological examination of the injection sites indicated a significantly milder inflammatory response than that observed after injection of PLA and PLGA microspheres. Neither anti-rhGH antibodies nor the toxic effects on heart, liver and kidney were detectable after administration of rhGH-PELA microspheres in SD rats. These results suggest that rhGH-PELA microspheres have the potential to be clinically effective and safe when administered only once every two months, a dose regimen for better patient acceptance and compliance.

  16. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  17. Apparatus for washing particulate material. [Removal of silicone oil from microspheres by trichloroethylene

    DOEpatents

    Rivera, A.L.; Fowler, V.L.; Justice, G.V.

    1983-12-29

    Transport of nuclear fuel microspheres through a wash liquid is facilitated by feeding a slurry containing the microspheres into the wash liquid via a column having a vibrating tubular screen located under its lower end.

  18. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice

    PubMed Central

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion–evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0−t): 12.53±1.65 mg/L*h vs 7.80±0.83 and 5.82±0.83 mg/L*h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU. PMID:27042001

  19. A 5-fluorouracil-loaded floating gastroretentive hollow microsphere: development, pharmacokinetic in rabbits, and biodistribution in tumor-bearing mice.

    PubMed

    Huang, Yu; Wei, Yumeng; Yang, Hongru; Pi, Chao; Liu, Hao; Ye, Yun; Zhao, Ling

    2016-01-01

    5-Fluorouracil (5-FU) was loaded in hollow microspheres to improve its oral bioavailability. 5-FU hollow microspheres were developed by a solvent diffusion-evaporation method. The effect of Span 80 concentration, ether/ethanol volume ratio, and polyvinyl pyrrolidone/ethyl cellulose weight ratio on physicochemical characteristics, floating, and in vitro release behaviors of 5-FU hollow microspheres was investigated and optimized. The formulation and technology composed of Span 80 (1.5%, w/v), ether/ethanol (1.0:10.0, v/v), and polyvinyl pyrrolidone/ethyl cellulose (1.0:10.0, w/w) were employed to develop three batch samples, which showed an excellent reproducibility. The microspheres were spherical with a hollow structure with high drug loading amount (28.4%±0.5%) and production yield (74.2%±0.6%); they exhibited excellent floating and sustained release characteristics in simulated gastric and intestinal fluid. Pharmacokinetic studies demonstrated that 5-FU hollow microspheres significantly enhanced oral bioavailability (area under curve, [AUC](0-t): 12.53±1.65 mg/L(*)h vs 7.80±0.83 and 5.82±0.83 mg/L(*)h) with longer elimination half-life (t1/2) (15.43±2.12 hours vs 2.25±0.22 and 1.43±0.18 hours) and mean residence time (7.65±0.97 hours vs 3.61±0.41 and 2.34±0.35 hours), in comparison with its solid microspheres and powder. In vivo distribution results from tumor-bearing nude mice demonstrated that the animals administered with 5-FU hollow microspheres had much higher drug content in tumor, plasma, and stomach at 1 and 8 hours except for 0.5 hours sample collection time point in comparison with those administered with 5-FU solid microspheres and its powder. These results suggested that the hollow microspheres would be a promising controlled drug delivery system for an oral chemotherapy agent like 5-FU.

  20. Prolonged cytotoxic effect of colchicine released from biodegradable microspheres.

    PubMed

    Muvaffak, Asli; Gurhan, Ismet; Hasirci, Nesrin

    2004-11-15

    One the main problems of cancer chemotherapy is the unwanted damage to normal cells caused by the high toxicities of anticancer drugs. Any system of controlled drug delivery that would reduce the total amount of drug required, and thus reduce the side effects, would potentially help to improve chemotherapy. In this respect, biodegradable gelatin microspheres were prepared by water/oil emulsion polymerization and by crosslinking with glutaraldehyde (GTA) as the drug-carrier system. Microspheres were loaded with colchicine, a model antimitotic drug, which was frequently used as an antimitotic agent in cancer research involving cell cultures. Microsphere sizes, swelling and degradation properties, drug-release kinetics, and cytotoxities were studied. Swelling characteristics of microspheres changed upon changing GTA concentration. A decrease in swelling values was recorded as GTA crosslink density was increased. In vitro drug release in PBS (0.01M, pH 7.4) showed rapid colchicine release up to approximately 83% (at t = 92 h) for microspheres with low GTA (0.05% v/v), whereas a slower release profile (only approximately 39%) was obtained for microspheres with high GTA (0.50% v/v) content, for the same period. Cytotoxicity tests with MCF-7, HeLa and H-82 cancer cell lines showed that free colchicine was very toxic, showing an approximately 100% lethal effect in both HeLa and H-82 cell lines and more than 50% decrease in viability in MCF-7 cells in 4 days. Indeed, entrapped colchicine indicated similar initial high toxic effect on cell viability in MCF-7 cell line and this effect became more dominant as colchicine continued to be released from microspheres in the same period. In conclusion, the control of the release rate of colchicine from gelatin microspheres was achieved under in vitro conditions by gelatin through the alteration of crosslinking conditions. Indeed, the results suggested the potential application of gelatin microspheres crosslinked with GTA as a sustained drug-delivery system for anticancer drugs for local chemotherapy administrations. (c) 2004 Wiley Periodicals, Inc.

  1. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Aihua, E-mail: aihyao@126.com; Ai, Fanrong; Liu, Xin

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate,more » which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.« less

  3. [Preparation of large-pore silica microspheres using templating method and their applications to protein separation with high performance liquid chromatography].

    PubMed

    Niu, Mengna; Ma, Hongyan; Hu, Fei; Wang, Shige; Liu, Lu; Chang, Haizhou; Huang, Mingxian

    2017-06-08

    Large-pore silica microspheres were synthesized by utilizing weak cation exchange polymer beads as templates, N -trimethoxysilylpropyl- N,N,N -trimethylammonium chloride (TMSPTMA) as a structure-directing agent, tetraethoxysilane (TEOS) as a silica precursor, and triethanolamine as a weak base catalyst. The hydrolysis and condensation of the silica precursors occurred inside the templating polymer beads yielded polymer/silica composite microspheres. After the organic polymer templates were removed in the calcination step, large-pore silica microspheres were produced. The effects of different reaction conditions on the morphology, structure and dispersibility of the formed silica microspheres were investigated. It has been shown that when the volume ratio of TMSPTMA, TEOS and triethanolamine was 1:2:2, silica microspheres with pore size range of 50-150 nm and particle size around 2 μm were obtained. The as-prepared silica microspheres were then bonded with chlorodimethyloctadecylsilane (C18), packed into a 50 mm×4.6 mm column, and evaluated for the separations of some common standard proteins and soybean isolation proteins. The results showed that the large-pore silica spheres from this work have potentials for protein separation in HPLC.

  4. Demonstration of Microsphere Insulation in Cryogenic Vessels

    NASA Astrophysics Data System (ADS)

    Baumgartner, R. G.; Myers, E. A.; Fesmire, J. E.; Morris, D. L.; Sokalski, E. R.

    2006-04-01

    While microspheres have been recognized as a legitimate insulation material for decades, actual use in full-scale cryogenic storage tanks has not been demonstrated until now. The performance and life-cycle-cost advantages previously predicted have now been proven. Most bulk cryogenic storage tanks are insulated with either multilayer insulation (MLI) or perlite. Microsphere insulation, consisting of hollow glass bubbles, combines in a single material the desirable properties that other insulations only have individually. The material has high crush strength, low density, is noncombustible, and performs well in soft vacuum. These properties were proven during recent field testing of two 22,700-L (6,000-gallon) liquid nitrogen tanks, one insulated with microsphere insulation and the other with perlite. Normal evaporation rates (NER) for both tanks were monitored with precision test equipment and insulation levels within the tanks were observed through view ports as an indication of insulation compaction. Specific industrial applications were evaluated based on the test results and beneficial properties of microsphere insulation. Over-the-road trailers previously insulated with perlite will benefit not only from the reduced heat leak, but also the reduced mass of microsphere insulation. Economic assessments for microsphere-insulated cryogenic vessels including life-cycle cost are also presented.

  5. A new rat model of portal hypertension induced by intraportal injection of microspheres

    PubMed Central

    Li, Xiang-Nong; Benjamin, IS; Alexander, B

    1998-01-01

    AIM: To produce a new rat model of portal hypertension by intraportal injection of microspheres. METHODS: Measured aliquots of single or different-sized microspheres (15, 40, 80μm) were injected into the portal vein to block intrahepatic portal radicals. The resultant changes in arterial,portal,hepatic venous and splenic pulp pressures were monitored. The liver and lungs were excised for histological examination. RESULTS: Portal venous pressure was elevated from basal value of 0.89-1.02 kPa to a steady-state of 1.98-3.19 kPa following the sequential injections of single- or different-sized microspheres, with a markedly lowered mean arterial pressure. However, a small-dose injection of 80 μm microspheres (1.8 × 105) produced a steady-state portal venous pressure of 2.53 × 0.17 kPa, and all rats showed normal arterial pressures. In addition, numerous microspheres were found in the lungs in all experimental groups. CONCLUSION: Portal hypertension can be reproduced in rats by intraportal injection of microspheres at a small dose of 80 μm (1.8 × 105). Intrahepatic portal-systemic shunts probably exist in the normal rat liver. PMID:11819236

  6. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis.

    PubMed

    Conzone, Samuel D; Brown, Roger F; Day, Delbert E; Ehrhardt, Gary J

    2002-05-01

    Dysprosium lithium borate (DyLB) glass microspheres were investigated for use in the radiation synovectomy treatment of rheumatoid arthritis. In vitro testing focused on weight loss and cation dissolution from glass microspheres immersed in simulated synovial fluid (SSF) at 37 degrees C for up to 64 days. In vivo testing was performed by injecting glass microspheres into the stifle joints of Sprague-Dawley rats and monitoring the biodegradability of the microspheres and the tissue response within the joints. The DyLB microspheres reacted nonuniformly in SSF with the majority of lithium and boron being dissolved, whereas nearly all of the dysprosium (>99.7%) remained in the reacted microspheres. Because the DyLB glasses released negligible amounts of dysprosium while reacting with SSF, they are considered safe for radiation synovectomy from the standpoint of unwanted radiation release from the joint capsule. Furthermore, the DyLB microspheres fragmented, degraded, and reacted with body fluids while in the joints of rats without histologic evidence of joint damage. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 260--268, 2002; DOI 10.1002/jbm.10047

  7. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  8. Novel polystyrene microspheres functionalized by imidazolium and the electrocatalytic activity towards H2O2 of its Prussian blue composite

    NASA Astrophysics Data System (ADS)

    Mao, Hui; Song, Jinling; Zhang, Qian; Liu, Daliang; Gong, Naiqi; Li, Ying; Wu, Qiong; Verpoort, Francis; Song, Xi-Ming

    2013-05-01

    Copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), novel poly(St-co-VEIB) microspheres were generated. Owing to the presence of imidazolium groups, such microspheres having an average diameter of 125 nm, behave electropositively when dispersed in aqueous solution. Furthermore, due to the presence of imidazolium groups, having a capacity of ion-exchange and weak reducibility on the surface of the PS microspheres, [Fe(CN)6]3- was absorbed on the surface of poly(St-co-VEIB) microspheres, and simultaneously, Fe3+ was reduced to Fe2+. Thus, in situ growth of Prussian blue (PB) nanoparticles could occur on the surface of poly(St-co-VEIB) microspheres without the addition of any other reducing agent. This methodology, utilizing the ion-exchange and weak reducibility properties of the imidazolium groups on the surface of micro-/nanostructures is a novel general method for assembling hierarchical nanostructured materials. Finally, the electrochemical property of the strawberry-like PS/PB composite microspheres was also investigated by applying a glassy carbon electrode. A good repeatability of the cyclic voltammetry responses, having a good linearity and sensitivity, for the electrocatalytic reduction of H2O2 was obtained.

  9. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    1995-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  10. Beat frequency ultrasonic microsphere contrast agent detection system

    NASA Technical Reports Server (NTRS)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  11. Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum.

    PubMed

    Xie, Lianwu; Guo, Junfang; Zhang, Yuping; Hu, Yunchu; You, Qingping; Shi, Shuyun

    2015-07-01

    Improving sites accessibility can increase the binding efficiency of molecular imprinted polymers (MIPs). In this work, we firstly synthesized MIPs over magnetic mesoporous silica microspheres (Fe3O4@mSiO2@MIPs) for the selective recognition of protocatechuic acid (PCA). The resulting Fe3O4@mSiO2@MIPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FT-IR), thermo-gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and vibration sample magnetometer (VSM), and evaluated by adsorption isotherms/kinetics and competitive adsorption. The maximum adsorption capacity of PCA on Fe3O4@mSiO2@MIPs was 17.2mg/g (2.3 times that on Fe3O4@SiO2@MIPs). In addition, Fe3O4@mSiO2@MIPs showed a short equilibrium time (140min), rapid magnetic separation (5s) and high stability (retained 94.4% after six cycles). Subsequently, Fe3O4@mSiO2@MIPs were successfully applied for the selective and efficient determination of PCA (29.3μg/g) from Syzygium aromaticum. Conclusively, we combined three advantages into Fe3O4@mSiO2@MIPs, namely, Fe3O4 core for quick separation, mSiO2 layer for enough accessible sites, and surface imprinting MIPs for fast binding and excellent selectivity, to extract PCA from complex systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua; Zhou, Wenjie; Yu, Hong; Feng, Tong; Pu, Yong; Liu, Hongdong; Xiao, Wei; Tian, Liangliang

    2017-05-01

    Nickel silicate hydroxide/reduced graphene oxide (Ni3Si2O5(OH)4/RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 substrate microspheres. The composition, morphology, structure, and phase of Ni3Si2O5(OH)4/RGO microspheres as well as their electrochemical properties were carefully studied. It was found that Ni3Si2O5(OH)4/RGO microspheres featured distinct hierarchical porous morphology with hollow architecture and a large specific surface area as high as 67.6 m2 g-1. When utilized as a supercapacitor electrode material, Ni3Si2O5(OH)4/RGO hollow microspheres released a maximum specific capacitance of 178.9 F g-1 at the current density of 1 A g-1, which was much higher than that of the contrastive bare Ni3Si2O5(OH)4 hollow microspheres and bare RGO material developed in this work, displaying enhanced supercapacitive behavior. Impressively, the Ni3Si2O5(OH)4/RGO microsphere electrode exhibited outstanding rate capability and long-term cycling stability and durability with 97.6% retention of the initial capacitance after continuous charging/discharging for up to 5000 cycles at the current density of 6 A g-1, which is superior or comparable to that of most of other reported nickel-based electrode materials, hence showing promising application potential in the energy storage area.

  14. Uniform Cu{sub 2}Cl(OH){sub 3} hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Wei; Gao, Pin; Xie, Jimin, E-mail: xiejm391@sohu.com

    2013-08-15

    Using the solution phase method without any surfactants or templates, the hierarchical of Cu{sub 2}Cl(OH){sub 3} microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 1–2 µm and 76.61 m{sup 2} g{sup −1}, respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dyemore » and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu{sub 2}Cl(OH){sub 3} spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: • Cu{sub 2}Cl(OH){sub 3} microspheres were successfully synthesized through a freeze drying process. • A possible formation mechanism of hierarchical microspheres was presented. • The Cu{sub 2}Cl(OH){sub 3} microspheres have high methylene blue adsorption capacity. • Methylene blue adsorption is a spontaneous and exothermic process. • The adsorption mechanism of microspheres onto dye was proposed in detail.« less

  15. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins. © The Author(s) 2016.

  16. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material.

    PubMed

    Zhang, Yanhua; Zhou, Wenjie; Yu, Hong; Feng, Tong; Pu, Yong; Liu, Hongdong; Xiao, Wei; Tian, Liangliang

    2017-12-01

    Nickel silicate hydroxide/reduced graphene oxide (Ni 3 Si 2 O 5 (OH) 4 /RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO 2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO 2 substrate microspheres. The composition, morphology, structure, and phase of Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres as well as their electrochemical properties were carefully studied. It was found that Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres featured distinct hierarchical porous morphology with hollow architecture and a large specific surface area as high as 67.6 m 2  g -1 . When utilized as a supercapacitor electrode material, Ni 3 Si 2 O 5 (OH) 4 /RGO hollow microspheres released a maximum specific capacitance of 178.9 F g -1 at the current density of 1 A g -1 , which was much higher than that of the contrastive bare Ni 3 Si 2 O 5 (OH) 4 hollow microspheres and bare RGO material developed in this work, displaying enhanced supercapacitive behavior. Impressively, the Ni 3 Si 2 O 5 (OH) 4 /RGO microsphere electrode exhibited outstanding rate capability and long-term cycling stability and durability with 97.6% retention of the initial capacitance after continuous charging/discharging for up to 5000 cycles at the current density of 6 A g -1 , which is superior or comparable to that of most of other reported nickel-based electrode materials, hence showing promising application potential in the energy storage area.

  17. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  18. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  19. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  20. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  1. Polystyrene-based Hollow Microsphere Synthesized by γ-ray Irradiation-assisted Polymerization and Self-Assembly and Its Application in Detection of Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Fan, Wenhui; Li, Qing; Hu, Liang; Yan, Siqi; Wen, Wanxin; Chai, Zhifang; Liu, Hanzhou

    2017-01-01

    To simply and multitudinously synthesize hollow microspheres in a pure system is important for relevant research and application. Here, a simple and novel one-pot synthetic strategy to prepare polystyrene (PS) hollow microspheres via irradiation-assisted free-radical polymerizing and self-assembly (IFPS) approach under γ-ray irradiation with no additives introduced into the system is presented. And PS/2,5-Diphenyloxazole (PPO) fluorescent microspheres have been prepared successfully by IFPS reaction, which can be used as scintillators for the detection of ionizing radiation. A linear relationship between emitted luminescence and dose-activity in water is obtained, which suggests that composite microspheres could be used as liquid scintillation in specific environment.

  2. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells.

    PubMed

    Wang, Zi-Yu; Song, Jian; Zhang, Dong-Sheng

    2009-06-28

    To study the methods of preparing the magnetic nano-microspheres of Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complexes and their therapeutic effects with magnetic fluid hyperthermia (MFH). Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed. Hemolysis, micronucleus, cell viability, and LD(50) along with other in vivo tests were performed to evaluate the Fe(2)O(3) microsphere biocompatibility. The inhibition ratio of tumors after Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope. Upon exposure to an alternating magnetic field (AMF), the temperature of the suspension of magnetic particles increased to 41-51 degrees C, depending on different particle concentrations, and remained stable thereafter. Nanosized Fe(2)O(3) microspheres are a new kind of biomaterial without cytotoxic effects. The LD(50) of both Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) in mice was higher than 5 g/kg. One to four weeks after Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complex injections into healthy pig livers, no significant differences were found in serum AST, ALT, BUN and Cr levels among the pigs of all groups (P > 0.05), and no obvious pathological alterations were observed. After exposure to alternating magnetic fields, the inhibition ratio of the tumors was significantly different from controls in the Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) groups (68.74% and 82.79%, respectively; P < 0.01). Tumors of mice in treatment groups showed obvious necrosis, while normal tissues adjoining the tumor and internal organs did not. Fe(2)O(3) and As(2)O(3)/Fe(2)O(3) complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore, nanospheres are ideal carriers for tumor-targeted therapy.

  3. 21 CFR 870.1360 - Trace microsphere.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a...

  4. 21 CFR 870.1360 - Trace microsphere.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Trace microsphere. 870.1360 Section 870.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1360 Trace microsphere. (a...

  5. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  6. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor.

    PubMed

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred; Micera, Silvestro

    2009-04-01

    The use of polymeric carriers containing dispersed magnetic nanocrystalline particles for targeted delivery of drugs in clinical practice has attracted the interest of the scientific community. In this paper a system comprised of alginate microparticles with a core of magnetite and carrying nerve growth factor (NGF) is described. The magnetic properties of these microspheres, typical of superparamagnetic materials, allow precise and controlled delivery to the intended tissue environment. Experiments carried out on PC12 cells with magnetic alginate microspheres loaded with NGF have confirmed the induction of cell differentiation which is strongly dependent on the distance from the microsphere cluster. In addition, finite element modelling (FEM) of the release profile from the microspheres in culture, indicated the possibility of creating defined and predictable NGF gradients from the loaded microspheres. These observations on the carriage and release of growth factors by the proposed microparticles open new therapeutic options for both neuronal regeneration and of the development of effective neuronal interfaces.

  7. Use of Microsphere Technology for Targeted Delivery of Rifampin to Mycobacterium tuberculosis-Infected Macrophages

    PubMed Central

    Barrow, Esther L. W.; Winchester, Gary A.; Staas, Jay K.; Quenelle, Debra C.; Barrow, William W.

    1998-01-01

    Microsphere technology was used to develop formulations of rifampin for targeted delivery to host macrophages. These formulations were prepared by using biocompatible polymeric excipients of lactide and glycolide copolymers. Release characteristics were examined in vitro and also in two monocytic cell lines, the murine J774 and the human Mono Mac 6 cell lines. Bioassay assessment of cell culture supernatants from monocyte cell lines showed release of bioactive rifampin during a 7-day experimental period. Treatment of Mycobacterium tuberculosis H37Rv-infected monocyte cell lines with rifampin-loaded microspheres resulted in a significant decrease in numbers of CFU at 7 days following initial infection, even though only 8% of the microsphere-loaded rifampin was released. The levels of rifampin released from microsphere formulations within monocytes were more effective at reducing M. tuberculosis intracellular growth than equivalent doses of rifampin given as a free drug. These results demonstrate that rifampin-loaded microspheres can be formulated for effective sustained and targeted delivery to host macrophages. PMID:9756777

  8. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  9. Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits.

    PubMed

    Chen, Jianghao; Liu, Wei; Zhao, Jinxiu; Sun, Cong; Chen, Jie; Hu, Kaijin; Zhang, Linlin; Ding, Yuxiang

    2017-03-01

    To investigate the therapeutic effect of gelatin microspheres containing different concentrations of calcitonin gene-related peptide (CGRP) or substance P on repairing bone defects in a rabbit osteoporosis model. Gelatin microspheres containing different concentrations of CGRP or substance P promoted osteogenesis after 3 months in a rabbit osteoporotic bone defective model. From micro-computed tomography imaging results, 10 nM CGRP was optimal for increasing the trabecular number and decreasing the trabecular bone separation degree; similar effects were observed with the microspheres containing 1 µM substance P. Histological analysis showed that the gelatin microspheres containing CGRP or substance P, regardless of the concentration, effectively promoted osteogenesis, and the highest effect was achieved in the groups containing 1 µM CGRP or 1 µM substance P. Gelatin microspheres containing CGRP or substance P effectively promoted osteogenesis in a rabbit osteoporotic bone defect model dose-dependently, though their effects in repairing human alveolar ridge defects still need further investigation.

  10. Preparation of "Cauliflower-Like" ZnO Micron-Sized Particles.

    PubMed

    Gordon, Tamar; Grinblat, Judith; Margel, Shlomo

    2013-11-14

    Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl₂ in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl₂-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres.

  11. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-04-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  12. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  13. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    PubMed

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.

    PubMed

    Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing

    2011-02-28

    Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Budesonide-Loaded Guar Gum Microspheres for Colon Delivery: Preparation, Characterization and in Vitro/in Vivo Evaluation

    PubMed Central

    Liu, Ye; Zhou, Hong

    2015-01-01

    A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 ± 1.32 µm. The drug loading and entrapment efficiency of the formulation were 17.78% ± 2.31% and 81.6% ± 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life (t1/2), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected. PMID:25629228

  17. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  18. pH-Sensitive Self-Assembled Microspheres Composed of Poly(Ethyleneimine) and Cinnamic Acid.

    PubMed

    Park, Danbi; Lee, Seung-Jun; Kim, Jin-Chul

    2018-01-01

    Microspheres which were sensitive to pH change were developed by utilizing cinnamic acid (CA) as a physical cross-linker for poly(ethyleneimine) (PEI). At pH 7.0, the microspheres were efficiently formed at the PEI/CA ratio of 1:3.4, 1:5.1, and 1:7.1 (w/w), which corresponded to the protonated amino group/deprotonated carboxyl group ratio of 5:5, 4:6, and 3:7. The mean diameter of wet microspheres was 3.2 ± 0.3 to 8.8 ± 0.5 μm and that of dry ones was 1.7 ± 0.2 to 2.7 ± 0.2 μm. The microspheres were disappeared upon the alkalification, possibly because the electrostatic interaction between PEI and CA was slackened down and the hydrophobic interaction among CA molecules was weakened. At pH 5.0 and 7.0, the microsphere released its content in a sustained manner and the release degree in 24 h was less than 40%. Whereas, at pH 8.0 and 9.0, the microsphere exhibited a burst release and the release degree in 24 h was greater than 80%. In the alkali condition, not only the electrostatic interaction between PEI and CA but also the hydrophobic interaction among CA molecules became weaker, leading to the disintegration of the microsphere and resulting in a burst and intensive release.

  19. Comparative assessment of in vitro release kinetics of calcitonin polypeptide from biodegradable microspheres.

    PubMed

    Prabhu, Sunil; Sullivan, Jennifer L; Betageri, Guru V

    2002-01-01

    The objective of our study was to compare the in vitro release kinetics of a sustained-release injectable microsphere formulation of the polypeptide drug, calcitonin (CT), to optimize the characteristics of drug release from poly-(lactide-co-glycolide) (PLGA) copolymer biodegradable microspheres. A modified solvent evaporation and double emulsion technique was used to prepare the microspheres. Release kinetic studies were carried out in silanized tubes and dialysis bags, whereby microspheres were suspended and incubated in phosphate buffered saline, sampled at fixed intervals, and analyzed for drug content using a modified Lowry protein assay procedure. An initial burst was observed whereby about 50% of the total dose of the drug was released from the microspheres within 24 hr and 75% within 3 days. This was followed by a period of slow release over a period of 3 weeks in which another 10-15% of drug was released. Drug release from the dialysis bags was more gradual, and 50% CT was released only after 4 days and 75% after 12 days of release. Scanning electron micrographs revealed spherical particles with channel-like structures and a porous surface after being suspended in an aqueous solution for 5 days. Differential scanning calorimetric studies revealed that CT was present as a mix of amorphous and crystalline forms within the microspheres. Overall, these studies demonstrated that sustained release of CT from PLGA microspheres over a 3-week period is feasible and that release of drug from dialysis bags was more predictable than from tubes.

  20. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment.

    PubMed

    Pagar, Kunal P; Vavia, Pradeep R

    2014-06-01

    The poly[La-(Glc-Leu)] copolymer was applied in the present investigation as polymeric carrier to fabricate naltrexone (NTX)-loaded poly[La-(Glc-Leu)] microspheres in the single emulsion solvent evaporation technique for the long-term treatment of alcohol dependence. Newly synthesized poly[La-(Glc-Leu)] copolymer exhibited diminished crystallanity, good biocompatibility and favorable biodegradability to be explored for drug delivery application. Scanning Electron Microscopy study revealed smooth and spherical-shaped NTX-loaded polymeric microspheres with a mean size of 10-90 µm. Influence of various decisive formulation variables such as amount of polymer, stabilizer concentration, homogenization speed, homogenization time, drug loading and organic-to-aqueous phase ratio on particle size, and entrapment efficiency was studied. Differential scanning calorimeter and X-ray diffractometry study confirmed the drug entrapment within polymer matrix into the microsphere environment. In vitro drug release showed the sustained drug release of formulation for the period of 28 d giving biphasic release pattern. Histological examination of NTX-loaded poly[La-(Glc-Leu)] microspheres injected intramuscularly into the thigh muscle of Wistar rats showed minimal inflammatory reaction, demonstrating that NTX-loaded microspheres were biocompatible. Insignificant increase in the serum creatine phosphokinase level (p < 0.05) as compared with the normal value revealed good muscle compatibility of the poly[La-(Glc-Leu)] microsphere system. Biocompatible nature and sustained drug-release action of poly[La-(Glc-Leu)] microspheres may have potential application in depot therapy.

  1. Micro particle launcher/cleaner based on optical trapping technology.

    PubMed

    Liu, Zhihai; Liang, Peibo; Zhang, Yu; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-04-06

    Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

  2. Kinetics of piroxicam release from low-methylated pectin/zein hydrogel microspheres

    USDA-ARS?s Scientific Manuscript database

    The kinetics of a model drug (piroxicam) release from pectin/zein hydrogel microspheres was studied under conditions simulating the gastrointestinal tract. It is established that the rate-limiting step in the release mechanism is drug diffusion out of the microspheres rather than its dissolution. ...

  3. Trisacryl Gelatin Microspheres Versus Polyvinyl Alcohol Particles in the Preoperative Embolization of Bone Neoplasms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basile, Antonio; Rand, Thomas; Lomoschitz, Fritz

    2004-09-15

    The aim of this study was to compare the efficacy of trisacryl gelatin microspheres versus polyvinyl alcohol particles (PVA) in the preoperative embolization of bone neoplasms, on the basis of intraoperative blood loss quantified by the differences in preoperative and postoperative hematic levels of hemoglobin, hematocrit and erythrocytes count. From January 1997 to December 2002, preoperative embolization of bone tumors (either primary or secondary) was carried out in 49 patients (age range 12/78), 20 of whom were treated with trysacril gelatin microspheres (group A) and 29 with PVA particles (group B). The delay between embolization and surgery ranged from 1more » to 13 days in group A and 1 to 4 days in group B. As used in international protocols, we considered hematic levels of hemoglobin, hematocrit and erythrocytes count for the measurement of intraoperative blood loss then the differences in pre- and postoperative levels were used as statistical comparative parameters. We compared the values of patients treated with embospheres (n = 10) and PVA (n = 18) alone, and patients treated with (group A = 10; group B = 11) versus patients treated without other additional embolic materials in each group (group A = 10; group B = 18). According to the Student's t-test (p < 0.05), the difference of hematic parameters between patients treated by embospheres and PVA alone were significant; otherwise there was no significant difference between patients treated with only one embolic material (embospheres and PVA) versus those treated with other additional embolic agents in each group. The patients treated with microspheres had a minor quantification of intraoperative blood loss compared to those who received PVA particles. Furthermore, they had a minor increase of bleeding related to the delay time between embolization and surgery. The use of additional embolic material did not improve the efficacy of the procedure in either group of patients.« less

  4. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    PubMed

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  5. Pectin/zein microspheres as a sustained drug delivery system

    USDA-ARS?s Scientific Manuscript database

    A series of microspheres were prepared from pectins and corn proteins from various sources in the presence of the divalent ions calcium or zinc. The results showed that the yield of microsphere and the efficiency of drug incorporation were dependent on the type and ratio of biopolymers, the size of ...

  6. Porous-wall hollow glass microspheres as carriers for biomolecules

    DOEpatents

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  7. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOEpatents

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  8. Monte Carlo simulation of liver cancer treatment with 166Ho-loaded glass microspheres

    NASA Astrophysics Data System (ADS)

    da Costa Guimarães, Carla; Moralles, Maurício; Roberto Martinelli, José

    2014-02-01

    Microspheres loaded with pure beta-emitter radioisotopes are used in the treatment of some types of liver cancer. The Instituto de Pesquisas Energéticas e Nucleares (IPEN) is developing 166Ho-loaded glass microspheres as an alternative to the commercially available 90Y microspheres. This work describes the implementation of a Monte Carlo code to simulate both the irradiation effects and the imaging of 166Ho and 90Y sources localized in different parts of the liver. Results obtained with the code and perspectives for the future are discussed.

  9. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOEpatents

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  10. Protein specific fluorescent microspheres for labelling a protein

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1982-01-01

    Highly fluorescent, stable and biocompatible microspheres are obtained by copolymerizing an acrylic monomer containing a covalent bonding group such as hydroxyl, amine or carboxyl, for example, hydroxyethylmethacrylate, with an addition polymerizable fluorescent comonomer such as dansyl allyl amine. A lectin or antibody is bound to the covalent site to provide cell specificity. When the microspheres are added to a cell suspension the marked microspheres will specifically label a cell membrane by binding to a specific receptor site thereon. The labeled membrane can then be detected by fluorescence of the fluorescent monomer.

  11. Ultraviolet electroluminescence from hetero p-n junction between a single ZnO microsphere and p-GaN thin film.

    PubMed

    Tetsuyama, Norihiro; Fusazaki, Koshi; Mizokami, Yasuaki; Shimogaki, Tetsuya; Higashihata, Mitsuhiro; Nakamura, Daisuke; Okada, Tatsuo

    2014-04-21

    We report ultraviolet electroluminescence from a hetero p-n junction between a single ZnO microsphere and p-GaN thin film. ZnO microspheres, which have high crystalline quality, have been synthesized by ablating a ZnO sintered target. It was found that synthesized ZnO microspheres had a high-optical property and exhibit the laser action in the whispering gallery mode under pulsed optical pumping. A hetero p-n junction was formed between the single ZnO microsphere/ p-GaN thin film, and a good rectifying property with a turn-on voltage of approximately 6 V was observed in I-V characteristic across the junction. Ultraviolet and visible electroluminescence were observed under forward bias.

  12. Alginate microspheres obtained by the spray drying technique as mucoadhesive carriers of ranitidine.

    PubMed

    Szekalska, Marta; Amelian, Aleksandra; Winnicka, Katarzyna

    2015-03-01

    The present study is aimed at formulation of alginate (ALG) microspheres with ranitidine (RNT) by the spray drying method. Obtained microspheres were characterized for particle size, surface morphology, entrapment efficiency, drug loading, in vitro drug release and zeta potential. Mucoadhesive properties were examined by a texture analyser and three types of adhesive layers--gelatine discs, mucin gel and porcine stomach mucosa. Microspheres showed a smooth surface with narrow particle size distribution and RNT loading of up to 70.9%. All formulations possessed mucoadhesive properties and exhibited prolonged drug release according to the first-order kinetics. DSC reports showed that there was no interaction between RNT and ALG. Designed microspheres can be considered potential carriers of ranitidine with prolonged residence time in the stomach.

  13. Super-focusing of center-covered engineered microsphere.

    PubMed

    Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui

    2016-08-16

    Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere.

  14. Super-focusing of center-covered engineered microsphere

    PubMed Central

    Wu, Mengxue; Chen, Rui; Soh, Jiahao; Shen, Yue; Jiao, Lishi; Wu, Jianfeng; Chen, Xudong; Ji, Rong; Hong, Minghui

    2016-01-01

    Engineered microsphere possesses the advantage of strong light manipulation at sub-wavelength scale and emerges as a promising candidate to shrink the focal spot size. Here we demonstrated a center-covered engineered microsphere which can adjust the transverse component of the incident beam and achieve a sharp photonic nanojet. Modification of the beam width and working distance of the photonic nanojet were achieved by tuning the cover ratio of the engineered microsphere, leading to a sharp spot size which exceeded the optical diffraction limit. At a wavelength of 633 nm, a focal spot of 245 nm (0.387 λ) was achieved experimentally under plane wave illumination. Strong localized field with Bessel-like distribution was demonstrated by employing the linearly polarized beam and a center-covered mask being engineered on the microsphere. PMID:27528093

  15. Mechanism of the formation and growth of fine particles clustered polymer microspheres by simple one-step polymerization in aqueous alcohol system

    NASA Astrophysics Data System (ADS)

    Mao, Hui; Wen, Chao; Wu, Shuyao; Liu, Daliang; Zhang, Yu; Song, Xi-Ming

    2016-02-01

    By using the one-step copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), fine particles clustered (FPC) poly(St-co-VEIB) microspheres have been successfully prepared in the present of sodium dodecylsulfonate (SDS) in aqueous alcohol system. The FPC poly(St-co-VEIB) microspheres are composed of small poly(St-co-VEIB) nanospheres with the average diameter of 40 nm. The formation mechanism of FPC poly(St-co-VEIB) microspheres is proposed by investigating the influence of reaction conditions on their morphologies and observing their growth process. It can be well convinced that VEIB not only acted as a kind of monomers, which participated in the polymerization and provided electropositivity for FPC poly(St-co-VEIB) microspheres, but also acted as emulsifier and reactive stabilizer. The FPC poly(St-co-VEI[SO3CF3]) microspheres, which were obtained by anion-exchange between -SO3CF3 of HSO3CF3 and Br- in FPC poly(St-co-VEIB) microspheres due to the existence of imidazolium groups with electropositivity, showed higher catalytic efficiency for hydration of 1,2-epoxypropane with H2O and esterification between acetic acid and ethanol than that of H2SO4.

  16. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  17. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application.

    PubMed

    Zielhuis, S W; Nijsen, J F W; de Roos, R; Krijger, G C; van Rijk, P P; Hennink, W E; van het Schip, A D

    2006-03-27

    Radioactive holmium-166 loaded poly(L-lactic acid) microspheres are promising systems for the treatment of liver malignancies. The microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method. After preparation, the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. In this paper, the aspects of the production of a (relatively) large-scale GMP batch (4 g, suitable for treatment of 5-10 patients) of Ho-PLLA-MS are described. The critical steps of the Ho-PLLA-MS production process (sieving procedure, temperature control during evaporation and raw materials) were considered and the pharmaceutical quality of the microspheres was evaluated. The pharmaceutical characteristics (residual solvents, possible bacterial contaminations and endotoxins) of the produced Ho-PLLA-MS batches were in compliance with the requirements of the European Pharmacopoeia. Moreover, neutron irradiated Ho-PLLA-MS retained their morphological integrity and the holmium remained stably associated with the microspheres; it was observed that after 270h (10 times the half-life of Ho-166) only 0.3+/-0.1% of the loading was released from the microspheres in an aqueous solution. In conclusion, Ho-PLLA-MS which are produced as described in this paper, can be clinically applied, with respect to their pharmaceutical quality.

  18. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid.

    PubMed

    Xia, Jiexiang; Yin, Sheng; Li, Huaming; Xu, Hui; Yan, Yongsheng; Zhang, Qi

    2011-02-01

    BiOI uniform flowerlike hollow microspheres with a hole in its surface structures have been successfully synthesized through an EG-assisted solvothermal process in the presence of ionic liquid 1-butyl-3-methylimidazolium iodine ([Bmim]I). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), nitrogen sorption, and diffuse reflectance spectroscopy (DRS). A possible formation mechanism for the growth of hollow microspheres was discussed. During the reactive process, ionic liquid not only acted as solvents and templates but also as an I source for the fabrication of BiOI hollow microspheres and was vital for the structure of hollow microspheres. Additionally, we evaluated the photocatalytic activities of BiOI on the degradation of methyl orange (MO) under visible light irradiation and found that as-prepared BiOI hollow microspheres exhibited higher photocatalytic activity than BiOI nanoplates and TiO(2) (Degussa, P25) did. On the basis of such analysis, it can be assumed that the enhanced photocatalytic activities of BiOI hollow microspheres could be ascribed to its energy band structure, high BET surface area, high surface-to-volume ratios, and light absorbance.

  19. Low threshold lasing of bubble-containing glass microspheres by non-whispering gallery mode excitation over a wide wavelength range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, Tsutaru, E-mail: kumagai.t.af@m.titech.ac.jp; Kishi, Tetsuo; Yano, Tetsuji

    2015-03-21

    Bubble-containing Nd{sup 3+}-doped tellurite glass microspheres were fabricated by localized laser heating technique to investigate their optical properties for use as microresonators. Fluorescence and excitation spectra measurements were performed by pumping with a tunable CW-Ti:Sapphire laser. The excitation spectra manifested several sharp peaks due to the conventional whispering gallery mode (WGM) when the pumping laser was irradiated to the edge part of the microsphere. However, when the excitation light was irradiated on the bubble position inside the microsphere, “non-WGM excitation” was induced, giving rise to numerous peaks at a broad wavelength range in the excitation spectra. Thus, efficient excitation wasmore » achieved over a wide wavelength range. Lasing threshold excited at the bubble position was much lower than that for the excitation at the edges of the microsphere. The lowest value of the laser threshold was 34 μW for a 4 μm sphere containing a 0.5 μm bubble. Efficiency of the excitation at the bubble position with broadband light was calculated to be 5 times higher than that for the edge of the microsphere. The bubble-containing microsphere enables efficient utilization of broadband light excitation from light-emitting diodes and solar light.« less

  20. Investigation of triacetin effect on indomethacin release from poly(methyl methacrylate) microspheres: evaluation of interactions using FT-IR and NMR spectroscopies.

    PubMed

    Yuksel, Nilufer; Baykara, Meltem; Shirinzade, Hanif; Suzen, Sibel

    2011-02-14

    The purpose of this study was to form indomethacin (IND)-loaded poly(methyl methacrylate) (PMMA) microspheres having an extended drug release profile over a period of 24h. Microspheres were prepared by solvent evaporation method using sucrose stearate as a droplet stabilizer. When PMMA was used alone for the preparation of microspheres, only 44% of IND could be released at the end of 8h. Triacetin was added to PMMA, as a minor phase, and the obtained microspheres showed a high yield process with recovery of 89.82% and incorporation efficiency of 102.3%. A desired release profile lasting 24h was achieved. Differential scanning calorimetry (DSC) analysis showed that IND was found to be in an amorphous state in the microspheres. Fourier transform infrared (FT-IR) and nuclear magnetic resonance ((1)H NMR) spectra suggested that there might be a hydrogen bond present between the IND hydroxyl group and PMMA. No interaction between triacetin and IND or PMMA as the formation of secondary bonds was observed. The release enhancement of IND from microspheres was attributed to the physical plasticization effect of triacetin on PMMA and, to some extent, the amorphous state of the drug. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    PubMed

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-29

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  2. Controlled dexamethasone delivery via double-walled microspheres to enhance long-term adipose tissue retention

    PubMed Central

    Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G

    2017-01-01

    Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair. PMID:29051810

  3. Melamine-assisted one-pot synthesis of hierarchical nitrogen-doped carbon@MoS2 nanowalled core-shell microspheres and their enhanced Li-storage performances

    NASA Astrophysics Data System (ADS)

    Sun, Fugen; Wei, Yanju; Chen, Jianzhuang; Long, Donghui; Ling, Licheng; Li, Yongsheng; Shi, Jianlin

    2015-07-01

    A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries.A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03708e

  4. Rational design on controlled release ion-exchange polymeric microspheres and polymer-lipid hybrid nanoparticles for the delivery of water-soluble drugs through a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang

    Sulfopropyl dextran sulfate (SP-DS) microspheres and polymer-lipid hybrid nanoparticles (PLN) for the delivery of water-soluble anticancer drugs and P-glycoprotein inhibitors were developed by our group recently and demonstrated effectiveness in local chemotherapy. To optimize the delivery performance of these particulate systems, particularly PLN, an integrated multidisciplinary approach was developed, based on an in-depth understanding of drug-excipient interactions, internal structure, drug loading and release mechanisms, and application of advanced modeling/optimization techniques. An artificial neural networks (ANN) simulator capable of formulation optimization and drug release prediction was developed. In vitro drug release kinetics of SP-DS microspheres, with various drug loading and in different release media, were predicted by ANN. The effects of independent variables on drug release were evaluated. Good modeling performance suggested that ANN is a useful tool to predict drug release from ion-exchange microspheres. To further improve the performance of PLN, drug-polymer-lipid interactions were characterized theoretically and experimentally using verapamil hydrochloride (VRP) as a model drug and dextran sulfate sodium (DS) as a counter-ion polymer. VRP-DS complexation followed a stoichiometric rule and solid-state transformation of VRP were observed. Dodecanoic acid (DA) was identified as the lead lipid carrier material. Based upon the optimized drug-polymer-lipid interactions, PLN with high drug loading capacity (36%, w/w) and sustained release without initial burst release were achieved. VRP remained amorphous and was molecularly dispersed within PLN. H-bonding contributed to the miscibility between the VRP-DS complex and DA. Drug release from PLN was mainly controlled by diffusion and ion-exchange processes. Drug loading capacity and particle size of PLN depend on the formulation factors of the weight ratio of drug to lipid and concentrations of surfactants applied. A three-factor spherical composite experimental design was used to map the cause-and-effect relationship. PLN with high drug loading efficiency (92%) and small particle size (100 nm) were predicted by ANN and confirmed by experiment. The roles of various factors on the properties of PLN were also investigated. In summary, this thesis demonstrates that an integrated multidisciplinary strategy ranging from preformulation to formulation to optimization is suitable for the rational design of SP-DS microspheres and PLN with desired properties.

  5. DNA adsorption onto glass surfaces

    NASA Astrophysics Data System (ADS)

    Carlson, Krista Lynn

    Streaming potential measurements were performed on microspheres of silica, lime silicate (SLS) and calcium aluminate (CA) glasses containing silica and iron oxide (CASi and CAFe). The silicate based glasses exhibited acidic surfaces with isoelectric points (IEP) around a pH of 3 while the calcium aluminates displayed more basic surfaces with IEP ranging from 8--9.5. The surface of the calcium aluminate microspheres containing silica reacted with the background electrolyte, altering the measured zeta potential values and inhibiting electrolyte flow past the sample at ˜ pH 4 due to formation of a solid plug. DNA adsorption experiments were performed using the microspheres and a commercially available silicate based DNA isolation filter using a known quantity of DNA suspended in a chaotropic agent free 0.35 wt% Tris(hydroxymethyl)aminomethane (Tris) buffer solution. The microspheres and commercial filter were also used to isolate DNA from macrophage cells in the presence of chaotropic agents. UV absorbance at ˜260 nm and gel electrophoresis were used to quantify the amount and size of the DNA strands that adsorbed to the microsphere surfaces. In both experiments, the 43--106 microm CAFe microspheres adsorbed the largest quantity of DNA. However, the 43--106 microm SLS microspheres isolated more DNA from the cells than the <43 microm CAFe microspheres, indicating that microsphere size contributes to isolation ability. The UV absorbance of DNA at ˜260 nm was slightly altered due to the dissolution of the calcium aluminate glasses during the adsorption process. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined that calcium and aluminum ions leached from the CA and CAFe microsphere surfaces during these experiments. Circular dichroism (CD) spectroscopy showed that the leached ions had no effect on the conformation of the DNA, and therefore would not be expected to interfere in downstream applications such as DNA replication. The 0.35 wt% Tris solution completely inhibited the formation of the hydrated crystalline layer that develops when the calcium aluminate glassess are incubated in deionized water. A Tris concentration of 0.24 wt% allowed for the formation of both hexagonal and cubic hydrates, however they were severely distorted and present in low amounts such that they were undectable by XRD.

  6. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.

    PubMed

    Cey, Edwin E; Rudolph, David L; Passmore, Joanna

    2009-06-26

    Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere concentrations at all depths directly related to the intensity (or concentration) of dye staining. It is concluded that the flow system influenced transport to a much greater degree than differences between dissolved and colloidal species, and hence a dye tracer could serve as a reasonable surrogate for colloid distributions in the vadose zone following individual infiltration events.

  7. Use of an automated fluorescent microsphere method to measure regional blood flow in the fetal lamb.

    PubMed

    Tan, W; Riggs, K W; Thies, R L; Rurak, D W

    1997-08-01

    We have developed a method for measuring regional blood flow by means of fluorescent microspheres in all organs and tissues of the fetal lamb, including brain, heart, lung, liver, gut, spleen, kidney, adrenal, brown fat, skin, muscle, bone, and placenta. Five different fluorescent-labeled microspheres were used: blue (B), yellow-green (Y), orange (O), red (R), and crimson (C). An automated, 96-well microplate fluorescent reader (bottom reading) was chosen for the assay because of the rapidity and high throughput that it offers. Tissue samples were digested by 4 M ethanolic KOH. The sedimentation method and dye extraction with Cellosolve acetate, as previously reported by others, were used for the sample processing. The bones were crushed and allowed to directly soak in Cellosolve acetate to extract the dye. The relationship between microsphere number and fluorescent intensity was linear over a broad range of microsphere numbers (80-20,000/mL). The coefficients of variation of within-run and between-run precision were 3.39 +/- 1.10% and 4.54 +/- 1.10%, respectively. Recovery of microspheres from tissues and blood averaged 94.3 +/- 2.5% and was not dependent on microsphere number. The spillover of the fluorescent signals into adjacent colors was 4.0 +/- 0.1% for O to Y, 8.1 +/- 0.4% for O to R, and 9.1 +/- 0.5% for R to C, and these values were constant over a wide range in concentrations of the microsphere pairs. No evidence was obtained for quenching of the emission of one fluorophore via photon absorption by another fluorophore. The measurements of regional blood flow obtained with fluorescent microspheres in three chronically instrumented fetal lambs at approximately 140 days gestation were similar to the flow estimates obtained using radioactive microspheres in four other fetal lambs at the same gestational age. The fluorescent method is thus a viable alternative to the radioactive technique for the measurement of regional blood flow to all fetal organs and tissues, particularly when an automated fluorescent microplate reader is employed to reduce analysis time.

  8. Resolution enhancement of 2-photon microscopy using high-refractive index microspheres

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan Forouhesh; Darafsheh, Arash; Phang, Sendy; Mortensen, Luke J.

    2018-02-01

    Intravital microscopy using multiphoton processes is the standard tool for deep tissue imaging inside of biological specimens. Usually, near-infrared and infrared light is used to excite the sample, which enables imaging several mean free path inside a scattering tissues. Using longer wavelengths, however, increases the width of the effective multiphoton Point Spread Function (PSF). Many features inside of cells and tissues are smaller than the diffraction limit, and therefore not possible to distinguish using a large PSF. Microscopy using high refractive index microspheres has shown promise to increase the numerical aperture of an imaging system and enhance the resolution. It has been shown that microspheres can image features λ/7 using single photon process fluorescence. In this work, we investigate resolution enhancement for Second Harmonic Generation (SHG) and 2-photon fluorescence microscopy. We used Barium Titanate glass microspheres with diameters ˜20-30 μm and refractive index ˜1.9-2.1. We show microsphere-assisted SHG imaging in bone collagen fibers. Since bone is a very dense tissue constructed of bundles of collagen fibers, it is nontrivial to image individual fibers. We placed microspheres on a dense area of the mouse cranial bone, and achieved imaging of individual fibers. We found that microsphere assisted SHG imaging resolves features of the bone fibers that are not readily visible in conventional SHG imaging. We extended this work to 2-photon microscopy of mitochondria in mouse soleus muscle, and with the help of microsphere resolving power, we were able to trace individual mitochondrion from their ensemble.

  9. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  10. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    PubMed

    Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  11. Delivery of Bioactive Lipids from Composite Microgel-Microsphere Injectable Scaffolds Enhances Stem Cell Recruitment and Skeletal Repair

    PubMed Central

    Das, Anusuya; Barker, Daniel A.; Wang, Tiffany; Lau, Cheryl M.; Lin, Yong; Botchwey, Edward A.

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy. PMID:25077607

  12. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  13. Molecularly imprinted polymer based on chemiluminescence imaging for the chiral recognition of dansyl-phenylalanine.

    PubMed

    Wang, Li; Zhang, Zhujun; Huang, Lianggao

    2008-03-01

    A new molecularly imprinted polymer (MIP)-chemiluminescence (CL) imaging detection approach towards chiral recognition of dansyl-phenylalanine (Phe) is presented. The polymer microspheres were synthesized using precipitation polymerization with dansyl-L-Phe as template. Polymer microspheres were immobilized in microtiter plates (96 wells) using poly(vinyl alcohol) (PVA) as glue. The analyte was selectively adsorbed on the MIP microspheres. After washing, the bound fraction was quantified based on peroxyoxalate chemiluminescence (PO-CL) analysis. In the presence of dansyl-Phe, bis(2,4,6-trichlorophenyl)oxalate (TCPO) reacted with hydrogen peroxide (H2O2) to emit chemiluminescence. The signal was detected and quantified with a highly sensitive cooled charge-coupled device (CCD). Influencing factors were investigated and optimized in detail. Control experiments using capillary electrophoresis showed that there was no significant difference between the proposed method and the control method at a confidence level of 95%. The method can perform 96 independent measurements simultaneously in 30 min and the limits of detection (LODs) for dansyl-L-Phe and dansyl-D-Phe were 0.025 micromol L(-1) and 0.075 micromol L(-1) (3sigma), respectively. The relative standard deviation (RSD) for 11 parallel measurements of dansyl-L-Phe (0.78 micromol L(-1)) was 8%. The results show that MIP-based CL imaging can become a useful analytical technology for quick chiral recognition.

  14. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution.

    PubMed

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang

    2015-03-09

    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy "controlling competitive reaction" strategy by selecting the thiourea as S(2-) source and Zn(Ac)₂·2H₂O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m(2)g(-1), microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h(-1) under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.

  15. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang

    2015-03-01

    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy ``controlling competitive reaction'' strategy by selecting the thiourea as S2- source and Zn(Ac)2.2H2O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m2g-1, microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h-1 under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.

  16. Penile Girth Enhancement With Polymethylmethacrylate-Based Soft Tissue Fillers.

    PubMed

    Casavantes, Luis; Lemperle, Gottfried; Morales, Palmira

    2016-09-01

    An unknown percentage of men will take every risk to develop a larger penis. Thus far, most injectables have caused serious problems. Polymethylmethacrylate (PMMA) microspheres have been injected as a wrinkle filler and volumizer with increasing safety since 1989. To report on a safe and permanently effective method to enhance penile girth and length with an approved dermal filler (ie, PMMA). Since 2007, the senior author has performed penile augmentation in 752 men mainly with Metacrill, a suspension of PMMA microspheres in carboxymethyl-cellulose. The data of 729 patients and 203 completed questionnaires were evaluated statistically. The overall satisfaction rate was 8.7 on a scale of 1 to 10. After one to three injection sessions, average girth increased by 3.5 cm, or 134% (10.2 to 13.7 cm = 134.31%). Penile length also increased by weight and stretching force of the implant from an average of 9.8 to 10.5 cm. Approximately half the patients perceived some irregularities of the implant, which caused no problems. Complications occurred in 0.4%, when PMMA nodules had to be surgically removed in three of the 24% of patients who had a non-circumcised penis. After 5 years of development, penile augmentation with PMMA microspheres appears to be a natural, safe, and permanently effective method. The only complication of nodule formation and other irregularities can be overcome by an improved injection technique and better postimplantation care. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  17. Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian

    2005-01-01

    Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.

  18. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes

    PubMed Central

    Manzanares, Maria-Cristina; Ginebra, Maria-Pau; Franch, Jordi

    2015-01-01

    The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed. PMID:26132468

  19. Synthesis and improved SERS performance of silver nanoparticles-decorated surface mesoporous silica microspheres

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Wang, Xiaolong; Zhang, Li; Zhou, Jun; Zhao, Ziqi

    2016-08-01

    This study reported the improved Raman enhancement ability of silver nanoparticles (Ag NPs) decorated on surface mesoporous silica microspheres (MSiO2@Ag) than that of Ag NPs on solid silica microspheres (SSiO2@Ag). These two kinds of hybrid structures were prepared by a facile single-step hydrothermal reaction with polyvinylpyrrolidone (PVP) serves as both a reductant and stabilizer. The as-synthesized MSiO2@Ag microspheres show more significant surface-enhanced Raman scattering (SERS) activity for 4-mercaptobenzoic acid (4MBA) than SSiO2@Ag microspheres with enhancement factors as 9.20 × 106 and 4.39 × 106, respectively. The proposed reason for the higher SERS activity is estimated to be the contribution of more Raman probe molecules at the mesoporous channels where an enhanced electromagnetic field exists. Such a field was identified by theoretical calculation result. The MSiO2@Ag microspheres were eventually demonstrated for the SERS detection of a typical chemical toxin namely methyl parathion with a detection limit as low as 1 × 10-3 ppm, showing its promising potential in biosensor application.

  20. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  1. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva.

    PubMed

    Blicharz, Timothy M; Siqueira, Walter L; Helmerhorst, Eva J; Oppenheim, Frank G; Wexler, Philip J; Little, Frédéric F; Walt, David R

    2009-03-15

    Antibody microarrays have emerged as useful tools for high-throughput protein analysis and candidate biomarker screening. We describe here the development of a multiplexed microsphere-based antibody array capable of simultaneously measuring 10 inflammatory protein mediators. Cytokine-capture microspheres were fabricated by covalently coupling monoclonal antibodies specific for cytokines of interest to fluorescently encoded 3.1 microm polymer microspheres. An optical fiber bundle containing approximately 50,000 individual 3.1 microm diameter fibers was chemically etched to create microwells in which cytokine-capture microspheres could be deposited. Microspheres were randomly distributed in the wells to produce an antibody array for performing a multiplexed sandwich immunoassay. The array responded specifically to recombinant cytokine solutions in a concentration-dependent fashion. The array was also used to examine endogenous mediator patterns in saliva supernatants from patients with pulmonary inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). This array technology may prove useful as a laboratory-based platform for inflammatory disease research and diagnostics, and its small footprint could also enable integration into a microfluidic cassette for use in point-of-care testing.

  2. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2015-01-01

    To extend the external control capability of drug release, iron oxide nanoparticles (NPs) encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating) magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release. PMID:26185446

  3. Preparation and characterization of injectable Mitoxantrone poly (lactic acid)/fullerene implants for in vivo chemo-photodynamic therapy.

    PubMed

    Li, Zhi; Zhang, Fei-long; Pan, Li-li; Zhu, Xia-li; Zhang, Zhen-zhong

    2015-08-01

    Fullerene (C60) L-phenylalanine derivative attached with poly (lactic acid) (C60-phe-PLA) was developed to prepare injectable Mitoxantrone (MTX) multifunctional implants. C60-phe-PLA was self-assembled to form microspheres consisting of a hydrophilic antitumor drug (MTX) and a hydrophobic block (C60) by dispersion-solvent diffusion method. The self-assembled microspheres showed sustained release pattern almost 15days in vitro release experiments. According to the tissue distribution of C57BL mice after intratumoral administration of the microspheres, the MTX mainly distributed in tumors, and rarely in heart, liver, spleen, lung, and kidney. Photodynamic antitumor efficacy of blank microsphere was realized. Microspheres afforded high antitumor efficacy without obvious toxic effects to normal organs, owing to its significantly increased MTX tumor retention time, low MTX levels in normal organs and strong photodynamic activity of PLA-phe-C60. These C60-phe-PLA microspheres may be promising for the efficacy with minimal side effects in future treatment of solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Microspheres as resistive elements in a check valve for low pressure and low flow rate conditions.

    PubMed

    Ou, Kevin; Jackson, John; Burt, Helen; Chiao, Mu

    2012-11-07

    In this paper we describe a microsphere-based check valve integrated with a micropump. The check valve uses Ø20 μm polystyrene microspheres to rectify flow in low pressure and low flow rate applications (Re < 1). The microspheres form a porous medium in the check valve increasing fluidic resistance based on the direction of flow. Three check valve designs were fabricated and characterized to study the microspheres' effectiveness as resistive elements. A maximum diodicity (ratio of flow in the forward and reverse direction) of 18 was achieved. The pumping system can deliver a minimum flow volume of 0.25 μL and a maximum flow volume of 1.26 μL under an applied pressure of 0.2 kPa and 1 kPa, respectively. A proof-of-concept study was conducted using a pharmaceutical agent, docetaxel (DTX), as a sample drug showing the microsphere check valve's ability to limit diffusion from the micropump. The proposed check valve and pumping concept shows strong potential for implantable drug delivery applications with low flow rate requirements.

  5. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2015-11-11

    Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.

  6. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  7. Preparation of hollow magnetite microspheres and their applications as drugs carriers

    PubMed Central

    2012-01-01

    Hollow magnetite microspheres have been synthesized by a simple process through a template-free hydrothermal approach. Hollow microspheres were surface modified by coating with a silica nanolayer. Pristine and modified hollow microparticles were characterized by field-emission electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, FT-IR and Raman spectroscopy, and VSM magnetometry. The potential application of the modified hollow magnetite microspheres as a drug carrier was evaluated by using Rhodamine B and methotrexate as model drugs. The loading and release kinetics of both molecules showed a clear pH and temperature dependent profile. Graphical abstract Hollow magnetite microspheres have been synthesized. Load-release experiments with Rhodamine-B as a model drug and with Methotrexate (chemotherapy drug used in treating certain types of cancer) demonstrated the potential applications of these nanostructures in biomedical applications. PMID:22490731

  8. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.

    PubMed

    Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai

    2013-07-01

    In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.

  9. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes

    PubMed Central

    Yu, Bing; He, Liang; Wang, Yifan

    2017-01-01

    Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA) microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4) nanoparticles within the pore. Then, we used diazo-resin (DR) to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments. PMID:29077025

  10. Development of a Smart Diagnostics Platform for Early-Stage Screening of Breast Cancer

    DTIC Science & Technology

    2007-04-01

    Kawaguchi, H.; Fujimoto, K. A Novel Preparation of Nonsymmetrical Microspheres Using the Langmuir Blodgett Technique. Langmuir 2000, 16, 7882–7886. 64...performance liquid chromatography, gas chromatography, mass spectrometry, and enzyme-linked immunosorbent assay. All of these methods require...important criterion for selection of suitable signal transduction systems. A 10 manuscript describing the stability has been published in Langmuir in 2007

  11. Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model.

    PubMed

    Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing

    2017-07-01

    : L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel-Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis.

  12. Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model

    PubMed Central

    Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing

    2017-01-01

    L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel–Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis. PMID:28306627

  13. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats

    PubMed Central

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in “Danxi’s experiential therapy” for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus, these microspheres could be developed as a potential controlled release drug for treatment of gastric ulcer. PMID:26640368

  14. Hydrothermal synthesis of iron phosphate microspheres constructed by mesoporous polyhedral nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Haojie; Sun, Yali; Jia, Xiaohua, E-mail: Jiaxh@ujs.edu.cn

    2015-09-15

    Novel monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres with the diameters of several micrometers were prepared by a facile one-step hydrothermal method without using any templates, only employing FeCl{sub 3}·6H{sub 2}O and NaNH{sub 4}HPO{sub 4} as the initial materials. The obtained samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM), respectively. The characterizations revealed that the as-prepared microspheres are constructed by the polyhedral nanoparticles with an average diameter of 100 nm. The corresponding FePO{sub 4} microspheres assembled by mesoporous polyhedral nanocrystals can be easily obtained by calcining a sphere-like Fe{sub 5}(PO{submore » 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor. - Graphical abstract: Novel monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·H{sub 2}O microspheres with a diameter of several micrometers were successfully obtained by a simple, template-free hydrothermal route. FePO{sub 4} microspheres constructed by mesoporous polyhedral FePO{sub 4} nanocrystals could be easily prepared by calcining an Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor. Display Omitted - Highlights: • Monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres were prepared by a facile hydrothermal method without using any templates • Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres present a novel morphology, which was constructed by closely polyhedral nanoparticles. • The FePO{sub 4} microspheres assembled by mesoporous polyhedral nanocrystals obtained by calcining Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor.« less

  15. Ag-doped TiO2 hollow microspheres with visible light response by template-free route for removal of tetracycline hydrochloride from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Xuanhua; Peng, Meiling; Tang, Yuanyuan; Ke, Anqi; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2018-06-01

    In this study, Ag-doped TiO2 hollow microspheres were synthesized by a template-free route, and their photocatalytic performance and catalytic mechanism were investigated. The hollow microspheres were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and UV–vis spectroscopy. Ag-doped hollow TiO2 microspheres exhibited excellent photocatalytic performance for tetracycline hydrochloride (TC) in water. TC degradation follows pseudo first-order kinetics, and hydroxyl radical (OH·) and holes (h+) were active substances in the photocatalytic reaction.

  16. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    PubMed

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  17. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.

  18. Role of physical heterogeneity in the interpretation of small-scale laboratory and field observations of bacteria, microbial-sized microsphere, and bromide transport through aquifer sediments

    USGS Publications Warehouse

    Harvey, Ronald W.; Kinner, Nancy E.; MacDonald, Dan; Metge, David W.; Bunn, Amoret

    1993-01-01

    The effect of physical variability upon the relative transport behavior of microbial-sized microspheres, indigenous bacteria, and bromide was examined in field and flow-through column studies for a layered, but relatively well sorted, sandy glaciofluvial aquifer. These investigations involved repacked, sieved, and undisturbed aquifer sediments. In the field, peak abundance of labeled bacteria traveling laterally with groundwater flow 6 m downgradient from point of injection was coincident with the retarded peak of carboxylated microspheres (retardation factor, RF = 1.7) at the 8.8 m depth, but preceded the bromide peak and the retarded microsphere peak (RF = 1.5) at the 9.0 m depth. At the 9.5 m depth, the bacterial peak was coincident with both the bromide and the microsphere peaks. Although sorption appeared to be a predominant mechanism responsible for immobilization of microbial-sized microspheres in the aquifer, straining appeared to be primarily responsible for their removal in 0.6-m-long columns of repacked, unsieved aquifer sediments. The manner in which the columns were packed also affected optimal size for microsphere transport, which in one experiment was near the size of the small (∼2 μm) groundwater protozoa (flagellates). These data suggest that variability in aquifer sediment structure can be important in interpretation of both small-scale field and laboratory experiments examining microbial transport behavior.

  19. Fe3O4@Polypyrrole Microspheres with High Magnetization and Superparamagnetism for Efficient and Fast Removal of Pb(II) Ions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui

    2017-12-01

    Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.

  20. Hierarchical Microspheres Constructed from Chitin Nanofibers Penetrated Hydroxyapatite Crystals for Bone Regeneration.

    PubMed

    Duan, Bo; Shou, Kangquan; Su, Xiaojuan; Niu, Yahui; Zheng, Guan; Huang, Yao; Yu, Aixi; Zhang, Yu; Xia, Hong; Zhang, Lina

    2017-07-10

    Chitin exists abundantly in crab and shrimp shells as the template of the minerals, which inspired us to mineralize it for fabricating bone grafting materials. In the present work, chitin nanofibrous microspheres were used as the matrix for in situ synthesis of hydroxyapatite (HA) crystals including microflakes, submicron-needles, and submicron-spheres, which were penetrated by long chitin nanofibers, leading to the hierarchical structure. The shape and size of the HA crystals could be controlled by changing the HA synthesis process. The tight interface adhesion between chitin and HA through the noncovanlent bonds occurred in the composite microspheres, and HAs were homogeneously dispersed and bounded to the chitin nanofibers. In our findings, the inherent biocompatibilities of the both chitin and HA contributed the bone cell adhesion and osteoconduction. Moreover, the chitin microsphere with submicron-needle and submicron-sphere HA crystals remarkably promoted in vitro cell adhesion and in vivo bone healing. It was demonstrated that rabbits with 1.5 cm radius defect were almost cured completely within three months in a growth factor- and cell-free state, as a result of the unique surface microstructure and biocompatibilities of the composite microspheres. The microsphere scaffold displayed excellent biofunctions and an appropriate biodegradability. This work opened up a new avenue to construct natural polymer-based organic-inorganic hybrid microspheres for bone regeneration.

Top