Sample records for microstimulation icms mapping

  1. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  2. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex.

    PubMed

    Higo, Noriyuki; Kunori, Nobuo; Murata, Yumi

    2016-01-01

    In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv.

  3. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex

    PubMed Central

    Kunori, Nobuo; Murata, Yumi

    2016-01-01

    In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv. PMID:27494282

  4. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.

    PubMed

    Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah

    2017-02-01

    Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically.

    PubMed

    Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell

    2015-01-01

    Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Muscle synergies evoked by microstimulation are preferentially encoded during behavior

    PubMed Central

    Overduin, Simon A.; d'Avella, Andrea; Carmena, Jose M.; Bizzi, Emilio

    2014-01-01

    Electrical microstimulation studies provide some of the most direct evidence for the neural representation of muscle synergies. These synergies, i.e., coordinated activations of groups of muscles, have been proposed as building blocks for the construction of motor behaviors by the nervous system. Intraspinal or intracortical microstimulation (ICMS) has been shown to evoke muscle patterns that can be resolved into a small set of synergies similar to those seen in natural behavior. However, questions remain about the validity of microstimulation as a probe of neural function, particularly given the relatively long trains of supratheshold stimuli used in these studies. Here, we examined whether muscle synergies evoked during ICMS in two rhesus macaques were similarly encoded by nearby motor cortical units during a purely voluntary behavior involving object reach, grasp, and carry movements. At each microstimulation site we identified the synergy most strongly evoked among those extracted from muscle patterns evoked over all microstimulation sites. For each cortical unit recorded at the same microstimulation site, we then identified the synergy most strongly encoded among those extracted from muscle patterns recorded during the voluntary behavior. We found that the synergy most strongly evoked at an ICMS site matched the synergy most strongly encoded by proximal units more often than expected by chance. These results suggest a common neural substrate for microstimulation-evoked motor responses and for the generation of muscle patterns during natural behaviors. PMID:24634652

  7. Equilibrium-Based Movement Endpoints Elicited from Primary Motor Cortex Using Repetitive Microstimulation

    PubMed Central

    Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.

    2014-01-01

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints. The data reveal a 3D forelimb movement endpoint workspace that is represented in a patchwork fashion on the 2D M1 cortical surface. Although cortical maps of movement endpoints appear quite disorderly with respect to movement space, we show that the endpoint locations in the workspace evoked with HFLD-ICMS of two adjacent cortical points are closer together than would be expected if the organization were random. Although there were few obvious consistencies in the endpoint maps across the two monkeys tested, one notable exception was endpoints bringing the hand to the mouth, which was located at the boundary between the hand and face representation. Endpoints at the extremes of the monkey's workspace and locations above the head were largely absent. Our movement endpoints are best explained as resulting from coactivation of agonist and antagonist muscles driving the joints toward equilibrium positions determined by the length–tension relationships of the muscles. PMID:25411500

  8. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex.

    PubMed

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  9. Auditory cortical plasticity induced by intracortical microstimulation under pharmacological blockage of inhibitory synapses.

    PubMed

    Yokota, R; Takahashi, H; Funamizu, A; Uchihara, M; Suzurikawa, J; Kanzaki, R

    2006-01-01

    Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced excitatory post-synaptic potentials (EPSPs) produced potentiation in response to the paired tones, while an 'anti-pairing' ICMS preceding the tone-induced EPSPs resulted in depression. However, the conventional ICMS affected both excitatory and inhibitory synapses, and thereby could not quantify net excitatory synaptic effects. In the present work, we evaluated the ICMS effects under a pharmacological blockage of inhibitory inputs. The pharmacological blockage enhanced the ICMS effects, suggesting that inhibitory inputs determine a plastic degree of the neural system. Alternatively, the conventional ICMS had an inadequate timing to control excitatory synaptic inputs, because inhibitory synapse determined the latency of total neural inputs.

  10. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.

    PubMed

    Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q

    2008-09-05

    Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.

  11. Equilibrium-based movement endpoints elicited from primary motor cortex using repetitive microstimulation.

    PubMed

    Van Acker, Gustaf M; Amundsen, Sommer L; Messamore, William G; Zhang, Hongyu Y; Luchies, Carl W; Cheney, Paul D

    2014-11-19

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints. The data reveal a 3D forelimb movement endpoint workspace that is represented in a patchwork fashion on the 2D M1 cortical surface. Although cortical maps of movement endpoints appear quite disorderly with respect to movement space, we show that the endpoint locations in the workspace evoked with HFLD-ICMS of two adjacent cortical points are closer together than would be expected if the organization were random. Although there were few obvious consistencies in the endpoint maps across the two monkeys tested, one notable exception was endpoints bringing the hand to the mouth, which was located at the boundary between the hand and face representation. Endpoints at the extremes of the monkey's workspace and locations above the head were largely absent. Our movement endpoints are best explained as resulting from coactivation of agonist and antagonist muscles driving the joints toward equilibrium positions determined by the length-tension relationships of the muscles. Copyright © 2014 the authors 0270-6474/14/3415722-13$15.00/0.

  12. Behavioral detection of intra-cortical microstimulation in the primary and secondary auditory cortex of cats

    PubMed Central

    Zhao, Zhenling; Liu, Yongchun; Ma, Lanlan; Sato, Yu; Qin, Ling

    2015-01-01

    Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS) delivered in the primary and secondary auditory fields (A1 and A2, respectively). After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal’s behavioral decision process and had an implication for the development of cortical auditory prosthetics. PMID:25964744

  13. Behavioral detection of intra-cortical microstimulation in the primary and secondary auditory cortex of cats.

    PubMed

    Zhao, Zhenling; Liu, Yongchun; Ma, Lanlan; Sato, Yu; Qin, Ling

    2015-01-01

    Although neural responses to sound stimuli have been thoroughly investigated in various areas of the auditory cortex, the results electrophysiological recordings cannot establish a causal link between neural activation and brain function. Electrical microstimulation, which can selectively perturb neural activity in specific parts of the nervous system, is an important tool for exploring the organization and function of brain circuitry. To date, the studies describing the behavioral effects of electrical stimulation have largely been conducted in the primary auditory cortex. In this study, to investigate the potential differences in the effects of electrical stimulation on different cortical areas, we measured the behavioral performance of cats in detecting intra-cortical microstimulation (ICMS) delivered in the primary and secondary auditory fields (A1 and A2, respectively). After being trained to perform a Go/No-Go task cued by sounds, we found that cats could also learn to perform the task cued by ICMS; furthermore, the detection of the ICMS was similarly sensitive in A1 and A2. Presenting wideband noise together with ICMS substantially decreased the performance of cats in detecting ICMS in A1 and A2, consistent with a noise masking effect on the sensation elicited by the ICMS. In contrast, presenting ICMS with pure-tones in the spectral receptive field of the electrode-implanted cortical site reduced ICMS detection performance in A1 but not A2. Therefore, activation of A1 and A2 neurons may produce different qualities of sensation. Overall, our study revealed that ICMS-induced neural activity could be easily integrated into an animal's behavioral decision process and had an implication for the development of cortical auditory prosthetics.

  14. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  15. Virtual active touch using randomly patterned intracortical microstimulation.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L

    2012-01-01

    Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.

  16. Muscle synergies obtained from comprehensive mapping of the primary motor cortex forelimb representation using high-frequency, long-duration ICMS.

    PubMed

    Amundsen Huffmaster, Sommer L; Van Acker, Gustaf M; Luchies, Carl W; Cheney, Paul D

    2017-07-01

    Simplifying neuromuscular control for movement has previously been explored by extracting muscle synergies from voluntary movement electromyography (EMG) patterns. The purpose of this study was to investigate muscle synergies represented in EMG recordings associated with direct electrical stimulation of single sites in primary motor cortex (M1). We applied single-electrode high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to the forelimb region of M1 in two rhesus macaques using parameters previously found to produce forelimb movements to stable spatial end points (90-150 Hz, 90-150 μA, 1,000-ms stimulus train lengths). To develop a comprehensive representation of cortical output, stimulation was applied systematically across the full extent of M1. We recorded EMG activity from 24 forelimb muscles together with movement kinematics. Nonnegative matrix factorization (NMF) was applied to the mean stimulus-evoked EMG, and the weighting coefficients associated with each synergy were mapped to the cortical location of the stimulating electrode. Synergies were found for three data sets including 1 ) all stimulated sites in the cortex, 2 ) a subset of sites that produced stable movement end points, and 3 ) EMG activity associated with voluntary reaching. Two or three synergies accounted for 90% of the overall variation in voluntary movement EMG whereas four or five synergies were needed for HFLD-ICMS-evoked EMG data sets. Maps of the weighting coefficients from the full HFLD-ICMS data set show limited regional areas of higher activation for particular synergies. Our results demonstrate fundamental NMF-based muscle synergies in the collective M1 output, but whether and how the central nervous system might coordinate movements using these synergies remains unclear. NEW & NOTEWORTHY While muscle synergies have been investigated in various muscle activity sets, it is unclear whether and how synergies may be organized in the cortex. We have investigated muscle synergies resulting from high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied throughout M1. We compared HFLD-ICMS synergies to synergies from voluntary movement. While synergies can be identified from M1 stimulation, they are not clearly related to voluntary movement synergies and do not show an orderly topographic organization across M1. Copyright © 2017 the American Physiological Society.

  17. The ventral tegmental area modulates intracortical microstimulation (ICMS)-evoked M1 activity in a time-dependent manner.

    PubMed

    Kunori, Nobuo; Kajiwara, Riichi; Takashima, Ichiro

    2016-03-11

    Intracortical microstimulation (ICMS)-evoked neural activity combined with ventral tegmental area (VTA) stimulation was studied in rat primary motor cortex (M1). We used voltage-sensitive dye (VSD) imaging to analyze the spatiotemporal dynamics of M1 activity following VTA-M1 paired stimulation. VTA stimulation was preceded by M1 ICMS at inter-stimulus intervals (ISIs) of 15-350ms. VSD imaging showed an excitatory-inhibitory sequence of neural activity after composing VTA stimulus- and ICMS-induced M1 neural activity. To evaluate the net ICMS M1 response, the optical response to unpaired VTA stimulation was subtracted from the VTA-M1 paired response. This revealed that the net ICMS-evoked M1 neural activity was inhibited when the ISI was 30-50ms, but highly facilitated when the ISI was 100-350ms. These results suggest that VTA modulates M1 excitability in the order of tens to hundreds of milliseconds and might directly affect the motor command generation process in the M1. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    PubMed Central

    Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126

  19. A computational model that predicts behavioral sensitivity to intracortical microstimulation

    PubMed Central

    Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J.

    2016-01-01

    Objective Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. Approach We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Main results Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber's law. Significance The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics. PMID:27977419

  20. A computational model that predicts behavioral sensitivity to intracortical microstimulation.

    PubMed

    Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J

    2017-02-01

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R 2  = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber's law. The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics.

  1. A computational model that predicts behavioral sensitivity to intracortical microstimulation

    NASA Astrophysics Data System (ADS)

    Kim, Sungshin; Callier, Thierri; Bensmaia, Sliman J.

    2017-02-01

    Objective. Intracortical microstimulation (ICMS) is a powerful tool to investigate the neural mechanisms of perception and can be used to restore sensation for patients who have lost it. While sensitivity to ICMS has previously been characterized, no systematic framework has been developed to summarize the detectability of individual ICMS pulse trains or the discriminability of pairs of pulse trains. Approach. We develop a simple simulation that describes the responses of a population of neurons to a train of electrical pulses delivered through a microelectrode. We then perform an ideal observer analysis on the simulated population responses to predict the behavioral performance of non-human primates in ICMS detection and discrimination tasks. Main results. Our computational model can predict behavioral performance across a wide range of stimulation conditions with high accuracy (R 2 = 0.97) and generalizes to novel ICMS pulse trains that were not used to fit its parameters. Furthermore, the model provides a theoretical basis for the finding that amplitude discrimination based on ICMS violates Weber’s law. Significance. The model can be used to characterize the sensitivity to ICMS across the range of perceptible and safe stimulation regimes. As such, it will be a useful tool for both neuroscience and neuroprosthetics.

  2. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex.

    PubMed

    Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I

    2016-01-01

    The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate ( Macaca mulatta ) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  3. Intracortical microstimulation induced changes in spectral and temporal response properties in cat auditory cortex.

    PubMed

    Valentine, Pamela A; Eggermont, Jos J

    2003-09-01

    Intracortical microstimulation (ICMS), consisting of a 40 ms burst (rate 300 Hz) of 10 microA pulses, repetitively administered once per second, for a total duration of 1 h, induced cortical reorganization in the primary auditory cortical field of the anesthetized cat. Multiple single-unit activity was simultaneously recorded from three to nine microelectrodes. Spiking activity was recorded from the same units prior to and following the application of ICMS in conjunction with tone pips at the characteristic frequency (CF) of the stimulus electrode. ICMS produced a significant increase in the mean firing rate, and in the occurrence of burst activity. There was an increase in the cross-correlation coefficient (R) for unit pairs recorded from sites distant from the ICMS site, and a decrease in R for unit pairs that were recorded at the stimulation site. ICMS induced a shift in the CF, dependent on the difference between the baseline CF and the ICMS-paired tone pip frequency. ICMS also resulted in broader tuning curves, increased driven peak firing rate and reduced response latency. This suggests a lasting reduction in inhibition in a small region surrounding the ICMS site that allows expansion of the frequency range normally represented in the vicinity of the stimulation electrode.

  4. Virtual Active Touch Using Randomly Patterned Intracortical Microstimulation

    PubMed Central

    O’Doherty, Joseph E.; Lebedev, Mikhail A.; Li, Zheng; Nicolelis, Miguel A.L.

    2012-01-01

    Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices. PMID:22207642

  5. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex.

    PubMed

    Callier, Thierri; Schluter, Erik W; Tabot, Gregg A; Miller, Lee E; Tenore, Francesco V; Bensmaia, Sliman J

    2015-10-01

    The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  6. Long-term stability of sensitivity to intracortical microstimulation of somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Callier, Thierri; Schluter, Erik W.; Tabot, Gregg A.; Miller, Lee E.; Tenore, Francesco V.; Bensmaia, Sliman J.

    2015-10-01

    Objective. The dexterous manipulation of objects depends heavily on somatosensory signals from the limb. The development of anthropomorphic robotic arms and of algorithms to decode intended movements from neuronal signals has stimulated the need to restore somatosensation for use in upper-limb neuroprostheses. Without touch and proprioception, patients have difficulty controlling prosthetic limbs to a level that justifies the required invasive surgery. Intracortical microstimulation (ICMS) through chronically implanted electrode arrays has the potential to provide rich and intuitive sensory feedback. This approach to sensory restoration requires, however, that the evoked sensations remain stable over time. Approach. To investigate the stability of ICMS-evoked sensations, we measured the ability of non-human primates to detect ICMS over experimental sessions that spanned years. Main results. We found that the performance of the animals remained highly stable over time, even when they were tested with electrodes that had experienced extensive stimulation. Significance. Given the stability of the sensations that it evokes, ICMS may thus be a viable approach for sensory restoration.

  7. A repetitive intracortical microstimulation pattern induces long-lasting synaptic depression in brain slices of the rat primary somatosensory cortex.

    PubMed

    Heusler, P; Cebulla, B; Boehmer, G; Dinse, H R

    2000-12-01

    Repetitive intracortical microstimulation (ICMS) applied to the rat primary somatosensory cortex (SI) in vivo was reported to induce reorganization of receptive fields and cortical maps. The present study was designed to examine the effect of such an ICMS pattern applied to layer IV of brain slices containing SI on the efficacy of synaptic input to layer II/III. Effects of ICMS on the synaptic strength was quantified for the first synaptic component (s1) of cortical field potentials (FPs) recorded from layer II/III of SI. FPs were evoked by stimulation in layer IV. The pattern of ICMS was identical to that used in vivo. However, stimulation intensity had to be raised to induce an alteration of synaptic strength. In brain slices superfused with standard ACSF, repetitive ICMS induced a short-lasting (60 min) reduction of the amplitude (-37%) and the slope (-61%) of s1 evoked from the ICMS site, while the amplitude and the slope of s1 evoked from a control stimulation site in cortical layer IV underwent a slow onset increase (13% and 50%, respectively). In brain slices superfused with ACSF containing 1.25 microM bicuculline, ICMS induced an initial strong reduction of the amplitude (-50%) and the slope (-79%) of s1 evoked from the ICMS site. These effects decayed to a sustained level of depression by -30% (amplitude) and -60% (slope). In contrast to experiments using standard ACSF, s1 evoked from the control site was not affected by ICMS. The presynaptic volley was not affected in either of the two groups of experiments. A conventional high frequency stimulation (HFS) protocol induced input-specific long-term potentiation (LTP) of the amplitude and slope of s1 (25% and 76%, respectively). Low frequency stimulation (LFS) induced input-specific long-term depression (LTD) of the amplitude and slope of s1 (24% and 30%, respectively). Application of common forms of conditioning stimulation (HFS and LFS) resulted in LTP or LTD of s1, indicating normal susceptibility of the brain slices studied to the induction of common forms of synaptic plasticity. Therefore, the effects of repetitive ICMS on synaptic FP components were considered ICMS-specific forms of short-lasting (standard ACSF) or long-lasting synaptic depression (ACSF containing bicuculline), the latter resembling neocortical LTD. Results of this study suggest that synaptic depression of excitatory mechanisms are involved in the cortical reorganization induced by repetitive ICMS in vivo. An additional contribution of an ICMS-induced modification of inhibitory mechanisms to cortical reorganization is discussed.

  8. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior.

    PubMed

    Rajan, Alexander T; Boback, Jessica L; Dammann, John F; Tenore, Francesco V; Wester, Brock A; Otto, Kevin J; Gaunt, Robert A; Bensmaia, Sliman J

    2015-12-01

    One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal's ability to use their hand--the cortical representation of which is targeted by the ICMS--as a further assay of possible neuronal damage. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.

  9. Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats

    NASA Astrophysics Data System (ADS)

    Devecioğlu, İsmail; Güçlü, Burak

    2017-02-01

    Objective. Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. Approach. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. Main results. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. Significance. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.

  10. Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats.

    PubMed

    Devecioğlu, İsmail; Güçlü, Burak

    2017-02-01

    Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.

  11. Auditory cortical activity after intracortical microstimulation and its role for sensory processing and learning.

    PubMed

    Deliano, Matthias; Scheich, Henning; Ohl, Frank W

    2009-12-16

    Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal. In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel, during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal. Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of ICMS-evoked cortical activation (approximately 1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integration in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.

  12. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  13. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior

    NASA Astrophysics Data System (ADS)

    Rajan, Alexander T.; Boback, Jessica L.; Dammann, John F.; Tenore, Francesco V.; Wester, Brock A.; Otto, Kevin J.; Gaunt, Robert A.; Bensmaia, Sliman J.

    2015-12-01

    Objective. One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal’s ability to use their hand—the cortical representation of which is targeted by the ICMS—as a further assay of possible neuronal damage. Approach. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. Main results. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Significance. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.

  14. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex.

    PubMed

    Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2014-01-29

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.

  15. EMG Activation Patterns Associated with High Frequency, Long-Duration Intracortical Microstimulation of Primary Motor Cortex

    PubMed Central

    Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf

    2014-01-01

    The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348

  16. A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation

    PubMed Central

    O'Doherty, Joseph E.; Lebedev, Mikhail A.; Hanson, Timothy L.; Fitzsimmons, Nathan A.; Nicolelis, Miguel A. L.

    2009-01-01

    Brain–machine interfaces (BMIs) establish direct communication between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a) vibrotactile stimulation of the monkey's hands or (b) multi-channel intracortical microstimulation (ICMS) delivered to the primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PP) in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine–brain recursive input. After 2 weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices. PMID:19750199

  17. Mapping Horizontal Spread of Activity in Monkey Motor Cortex Using Single Pulse Microstimulation

    PubMed Central

    Riehle, Alexa; Brochier, Thomas G.

    2016-01-01

    Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS) applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single and multiunit activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions. PMID:28018182

  18. Plasticity of orientation preference maps in the visual cortex of adult cats.

    PubMed

    Godde, Ben; Leonhardt, Ralph; Cords, Sven M; Dinse, Hubert R

    2002-04-30

    In contrast to the high degree of experience-dependent plasticity usually exhibited by cortical representational maps, a number of experiments performed in visual cortex suggest that the basic layout of orientation preference maps is only barely susceptible to activity-dependent modifications. In fact, most of what we know about activity-dependent plasticity in adults comes from experiments in somatosensory, auditory, or motor cortex. Applying a stimulation protocol that has been proven highly effective in other cortical areas, we demonstrate here that enforced synchronous cortical activity induces major changes of orientation preference maps (OPMs) in adult cats. Combining optical imaging of intrinsic signals and electrophysiological single-cell recordings, we show that a few hours of intracortical microstimulation (ICMS) lead to an enlargement of the cortical representational zone at the ICMS site and an extensive restructuring of the entire OPM layout up to several millimeters away, paralleled by dramatic changes of pinwheel numbers and locations. At the single-cell level, we found that the preferred orientation was shifted toward the orientation of the ICMS site over a region of up to 4 mm. Our results show that manipulating the synchronicity of cortical activity locally without invoking training, attention, or reinforcement, OPMs undergo large-scale reorganization reminiscent of plastic changes observed for nonvisual cortical maps. However, changes were much more widespread and enduring. Such large-scale restructuring of the visual cortical networks indicates a substantial capability for activity-dependent plasticity of adult visual cortex and may provide the basis for cognitive learning processes.

  19. Encoding and Decoding of Multi-Channel ICMS in Macaque Somatosensory Cortex.

    PubMed

    Dadarlat, Maria C; Sabes, Philip N

    2016-01-01

    Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS). We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded. From the resulting pattern of errors, we found that the animal's estimate of target direction was consistent with a weighted circular-mean strategy-close to the optimal decoding strategy given the ICMS encoding. These results support our previous finding that animals can learn to use this artificial sensory feedback in an efficient and naturalistic manner.

  20. Comparative Performance of Linear Multielectrode Probes and Single-Tip Electrodes for Intracortical Microstimulation and Single-Neuron Recording in Macaque Monkey

    PubMed Central

    Ferroni, Carolina G.; Maranesi, Monica; Livi, Alessandro; Lanzilotto, Marco; Bonini, Luca

    2017-01-01

    Intracortical microstimulation (ICMS) is one of the most widely employed techniques for providing causal evidence of the relationship between neuronal activity and specific motor, perceptual, or even cognitive functions. In recent years, several new types of linear multielectrode silicon probes have been developed, allowing researchers to sample neuronal activity at different depths along the same cortical site simultaneously and with high spatial precision. Nevertheless, silicon multielectrode probes have been rarely employed for ICMS studies and, more importantly, it is unknown whether and to what extent they can be used for combined recording and stimulation experiments. Here, we addressed these issues during both acute and chronic conditions. First, we compared the behavioral outcomes of ICMS delivered to the hand region of a monkey's motor cortex with multielectrode silicon probes, commercially available multisite stainless-steel probes and single-tip glass-coated tungsten microelectrodes. The results for all three of the probes were reliable and similar. Furthermore, we tested the impact of long-train ICMS delivered through chronically implanted silicon probes at different time intervals, from 1 to 198 days after ICMS sessions, showing that although the number of recorded neurons decreased over time, in line with previous studies, ICMS did not alter silicon probes' recording capabilities. These findings indicate that in ICMS experiments, the performance of linear multielectrode silicon probes is comparable to that of both single-tip and multielectrode stainless-steel probes, suggesting that the silicon probes can be successfully used for combined recording and stimulation studies in chronic conditions. PMID:29187815

  1. The effect of chronic intracortical microstimulation on the electrode-tissue interface.

    PubMed

    Chen, Kevin H; Dammann, John F; Boback, Jessica L; Tenore, Francesco V; Otto, Kevin J; Gaunt, Robert A; Bensmaia, Sliman J

    2014-04-01

    Somatosensation is critical for effective object manipulation, but current upper limb prostheses do not provide such feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. The viability of intracortical microstimulation (ICMS) as a method to deliver feedback depends in part on the long-term reliability of implanted electrodes used to deliver the stimulation. The objective of the present study is to investigate the effects of chronic ICMS on the electrode-tissue interface. We stimulate the primary somatosensory cortex of three Rhesus macaques through chronically implanted electrodes for 4 h per day over a period of six months, with different electrodes subjected to different regimes of stimulation. We measure the impedance and voltage excursion as a function of time and of ICMS parameters. We also test the sensorimotor consequences of chronic ICMS by having animals grasp and manipulate small treats. We show that impedance and voltage excursion both decay with time but stabilize after 10-12 weeks. The magnitude of this decay is dependent on the amplitude of the ICMS and, to a lesser degree, the duration of individual pulse trains. Furthermore, chronic ICMS does not produce any deficits in fine motor control. The results suggest that chronic ICMS has only a minor effect on the electrode-tissue interface and may thus be a viable means to convey sensory feedback in neuroprosthetics.

  2. Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-01-01

    Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups.

  3. Comparative Performance of Linear Multielectrode Probes and Single-Tip Electrodes for Intracortical Microstimulation and Single-Neuron Recording in Macaque Monkey.

    PubMed

    Ferroni, Carolina G; Maranesi, Monica; Livi, Alessandro; Lanzilotto, Marco; Bonini, Luca

    2017-01-01

    Intracortical microstimulation (ICMS) is one of the most widely employed techniques for providing causal evidence of the relationship between neuronal activity and specific motor, perceptual, or even cognitive functions. In recent years, several new types of linear multielectrode silicon probes have been developed, allowing researchers to sample neuronal activity at different depths along the same cortical site simultaneously and with high spatial precision. Nevertheless, silicon multielectrode probes have been rarely employed for ICMS studies and, more importantly, it is unknown whether and to what extent they can be used for combined recording and stimulation experiments. Here, we addressed these issues during both acute and chronic conditions. First, we compared the behavioral outcomes of ICMS delivered to the hand region of a monkey's motor cortex with multielectrode silicon probes, commercially available multisite stainless-steel probes and single-tip glass-coated tungsten microelectrodes. The results for all three of the probes were reliable and similar. Furthermore, we tested the impact of long-train ICMS delivered through chronically implanted silicon probes at different time intervals, from 1 to 198 days after ICMS sessions, showing that although the number of recorded neurons decreased over time, in line with previous studies, ICMS did not alter silicon probes' recording capabilities. These findings indicate that in ICMS experiments, the performance of linear multielectrode silicon probes is comparable to that of both single-tip and multielectrode stainless-steel probes, suggesting that the silicon probes can be successfully used for combined recording and stimulation studies in chronic conditions.

  4. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex.

    PubMed

    Overstreet, C K; Klein, J D; Helms Tillery, S I

    2013-12-01

    Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of stimulation that can be used to generate effective sensory feedback for neuroprosthetic devices.

  5. Early and late changes in the distal forelimb representation of the supplementary motor area after injury to frontal motor areas in the squirrel monkey.

    PubMed

    Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J

    2008-09-01

    Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.

  6. Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points

    PubMed Central

    Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.; Kovac, Anthony

    2013-01-01

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30–400 Hz), amplitude (30–200 μA), and duration (0.5–2 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80–140 Hz, 80–140 μA, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 ± 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 μA, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement. PMID:23741044

  7. Effects of Tongue Force Training on Orolingual Motor Cortical Representation

    PubMed Central

    Guggenmos, David J.; Barbay, Scott; Bethel-Brown, Crystal; Nudo, Randolph J.; Stanford, John A.

    2009-01-01

    Previous research has demonstrated that training rats in a skilled reaching condition will induce task-related changes in the caudal forelimb area of motor cortex. The purpose of the present study was to determine whether task-specific changes can be induced within the orofacial area of the motor cortex in rats. Specifically, we compared changes of the orofacial motor cortical representation in lick-trained rats to age-matched controls. For one month, six water-restricted Sprague-Dawley rats were trained to lick an isometric force-sensing disc at increasing forces for water reinforcement. The rats were trained daily for six minutes starting with forces of 1g, and increasing over the course of the month to 10, 15, 20, 25 and finally 30 g. One to three days following the last training session, the animals were subjected to a neurophysiological motor mapping procedure in which motor representations corresponding to the orofacial and adjacent areas were defined using intracortical microstimulation (ICMS) techniques. We found no statistical difference in the topographical representation of the control (mean = 2.03 mm2) vs. trained (1.87 mm2) rats. This result indicates that force training alone is insufficient to drive changes in the size of the cortical representation. We also recorded the minimum current threshold required to elicit a motor response at each site of microstimulation. We found that the lick-trained rats had a significantly lower average minimum threshold (29.1 ± 1.0 μA) for evoking movements related to the task compared to control rats (34.6 ± 1.1 μA). These results indicate that while tongue force training alone does not produce lasting changes in the size of the orofacial cortical motor representation, tongue force training decreases the current thresholds necessary for eliciting an ICMS-evoked motor response. PMID:19428638

  8. Whisker motor cortex reorganization after superior colliculus output suppression in adult rats.

    PubMed

    Veronesi, Carlo; Maggiolini, Emma; Franchi, Gianfranco

    2013-10-01

    The effect of unilateral superior colliculus (SC) output suppression on the ipsilateral whisker motor cortex (WMC) was studied at different time points after tetrodotoxin and quinolinic acid injections, in adult rats. The WMC output was assessed by mapping the movement evoked by intracortical microstimulation (ICMS) and by recording the ICMS-evoked electromyographic (EMG) responses from contralateral whisker muscles. At 1 h after SC injections, the WMC showed: (i) a strong decrease in contralateral whisker sites, (ii) a strong increase in ipsilateral whisker sites and in ineffective sites, and (iii) a strong increase in threshold current values. At 6 h after injections, the WMC size had shrunk to 60% of the control value and forelimb representation had expanded into the lateral part of the normal WMC. Thereafter, the size of the WMC recovered, returning to nearly normal 12 h later (94% of control) and persisted unchanged over time (1-3 weeks). The ICMS-evoked EMG response area decreased at 1 h after SC lesion and had recovered its baseline value 12 h later. Conversely, the latency of ICMS-evoked EMG responses had increased by 1 h and continued to increase for as long as 3 weeks following the lesion. These findings provide physiological evidence that SC output suppression persistently withdrew the direct excitatory drive from whisker motoneurons and induced changes in the WMC. We suggest that the changes in the WMC are a form of reversible short-term reorganization that is induced by SC lesion. The persistent latency increase in the ICMS-evoked EMG response suggested that the recovery of basic WMC excitability did not take place with the recovery of normal explorative behaviour. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array.

    PubMed

    Rousche, P J; Normann, R A

    1999-03-01

    In an effort to assess the safety and efficacy of focal intracortical microstimulation (ICMS) of cerebral cortex with an array of penetrating electrodes as might be applied to a neuroprosthetic device to aid the deaf or blind, we have chronically implanted three trained cats in primary auditory cortex with the 100-electrode Utah Intracortical Electrode Array (UIEA). Eleven of the 100 electrodes were hard-wired to a percutaneous connector for chronic access. Prior to implant, cats were trained to "lever-press" in response to pure tone auditory stimulation. After implant, this behavior was transferred to "lever-presses" in response to current injections via single electrodes of the implanted arrays. Psychometric function curves relating injected charge level to the probability of response were obtained for stimulation of 22 separate electrodes in the three implanted cats. The average threshold charge/phase required for electrical stimulus detection in each cat was, 8.5, 8.6, and 11.6 nC/phase respectively, with a maximum charge/phase of 26 nC/phase and a minimum of 1.5 nC/phase thresholds were tracked for varying time intervals, and seven electrodes from two cats were tracked for up to 100 days. Electrodes were stimulated for no more than a few minutes each day. Neural recordings taken from the same electrodes before and after multiple electrical stimulation sessions were very similar in signal/noise ratio and in the number of recordable units, suggesting that the range of electrical stimulation levels used did not damage neurons in the vicinity of the electrodes. Although a few early implants failed, we conclude that ICMS of cerebral cortex to evoke a behavioral response can be achieved with the penetrating UIEA. Further experiments in support of a sensory cortical prosthesis based on ICMS are warranted.

  10. HCN channels segregate stimulation‐evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents

    PubMed Central

    Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell

    2016-01-01

    Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple movement responses within shared networks of motor cortex. This mechanism supports a viewpoint of primary motor cortex as a site of dynamic integration for behavioural output. PMID:27568501

  11. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-10-05

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

  13. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting.

    PubMed

    Chapman, Brendan B; Corneil, Brian D

    2014-01-01

    Many forms of brain stimulation utilize the notion of state dependency, whereby greater influences are observed when a given area is more engaged at the time of stimulation. Here, by delivering intracortical microstimulation (ICMS) to the supplementary eye fields (SEF) of monkeys performing interleaved pro- and anti-saccades, we show a surprising diversity of state-dependent effects of ICMS-SEF. Short-duration ICMS-SEF passed around cue presentation selectively disrupted anti-saccades by increasing reaction times and error rates bilaterally, and also recruited neck muscles, favoring contralateral head turning to a greater degree on anti-saccade trials. These results are consistent with the functional relevance of the SEF for anti-saccades. The multiplicity of stimulation-evoked effects, with ICMS-SEF simultaneously disrupting anti-saccade performance and facilitating contralateral head orienting, probably reflects both the diversity of cortical and subcortical targets of SEF projections, and the response of this oculomotor network to stimulation. We speculate that the bilateral disruption of anti-saccades arises via feedback loops that may include the thalamus, whereas neck muscle recruitment arises via feedforward polysynaptic pathways to the motor periphery. Consideration of both sets of results reveals a more complete picture of the highly complex and multiphasic response to ICMS-SEF that can play out differently in different effector systems.

  14. Corticospinal control of antagonistic muscles in the cat.

    PubMed

    Ethier, Christian; Brizzi, Laurent; Giguère, Dominic; Capaday, Charles

    2007-09-01

    We recently suggested that movement-related inter-joint muscle synergies are recruited by selected excitation and selected release from inhibition of cortical points. Here we asked whether a similar cortical mechanism operates in the functional linking of antagonistic muscles. To this end experiments were done on ketamine-anesthetized cats. Intracortical microstimulation (ICMS) and intramuscular electromyographic recordings were used to find and characterize wrist, elbow and shoulder antagonistic motor cortical points. Simultaneous ICMS applied at two cortical points, each evoking activity in one of a pair of antagonistic muscles, produced co-contraction of antagonistic muscle pairs. However, we found an obvious asymmetry in the strength of reciprocal inhibition; it was always significantly stronger on physiological extensors than flexors. Following intravenous injection of a single bolus of strychnine, a cortical point at which only a physiological flexor was previously activated also elicited simultaneous activation of its antagonist. This demonstrates that antagonistic corticospinal neurons are closely grouped, or intermingled. To test whether releasing a cortical point from inhibition allows it to be functionally linked with an antagonistic cortical point, one of three GABA(A) receptor antagonists, bicuculline, gabazine or picrotoxin, was injected iontophoretically at one cortical point while stimulation was applied to an antagonistic cortical point. This coupling always resulted in co-contraction of the represented antagonistic muscles. Thus, antagonistic motor cortical points are linked by excitatory intracortical connections held in check by local GABAergic inhibition, with reciprocal inhibition occurring at the spinal level. Importantly, the asymmetry of cortically mediated reciprocal inhibition would appear significantly to bias muscle maps obtained by ICMS in favor of physiological flexors.

  15. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  16. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates.

    PubMed

    Yao, Dongyuan; Lavigne, Gilles J; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J

    2013-02-01

    To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Polysomnographic recordings in the electrophysiological study. University sleep research laboratories. The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS.

  18. Noxious lingual stimulation influences the excitability of the face primary motor cerebral cortex (face MI) in the rat.

    PubMed

    Adachi, K; Murray, G M; Lee, J-C; Sessle, B J

    2008-09-01

    The mechanisms whereby orofacial pain affects motor function are poorly understood. The aims were to determine whether 1) lingual algesic chemical stimulation affected face primary motor cerebral cortex (face MI) excitability defined by intracortical microstimulation (ICMS); and 2) any such effects were limited to the motor efferent MI zones driving muscles in the vicinity of the noxious stimulus. Ketamine-anesthetized Sprague-Dawley male rats were implanted with electromyographic (EMG) electrodes into anterior digastric, masseter, and genioglossus muscles. In 38 rats, three microelectrodes were located in left face MI at ICMS-defined sites for evoking digastric and/or genioglossus responses. ICMS thresholds for evoking EMG activity from each site were determined every 15 min for 1 h, then the right anterior tongue was infused (20 microl, 120 microl/h) with glutamate (1.0 M, n = 18) or isotonic saline (n = 7). Subsequently, ICMS thresholds were determined every 15 min for 4 h. In intact control rats (n = 13), ICMS thresholds were recorded over 5 h. Only left and right genioglossus ICMS thresholds were significantly increased (< or =350%) in the glutamate infusion group compared with intact and isotonic saline groups (P < 0.05). These dramatic effects of glutamate on ICMS-evoked genioglossus activity contrast with its weak effects only on right genioglossus activity evoked from the internal capsule or hypoglossal nucleus. This is the first documentation that intraoral noxious stimulation results in prolonged neuroplastic changes manifested as a decrease in face MI excitability. These changes appear to occur predominantly in those parts of face MI that provide motor output to the orofacial region receiving the noxious stimulation.

  19. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats.

    PubMed

    Viaro, Riccardo; Bonazzi, Laura; Maggiolini, Emma; Franchi, Gianfranco

    2017-07-01

    Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Combined Shuttle-Box Training with Electrophysiological Cortex Recording and Stimulation as a Tool to Study Perception and Learning.

    PubMed

    Happel, Max F K; Deliano, Matthias; Ohl, Frank W

    2015-10-22

    Shuttle-box avoidance learning is a well-established method in behavioral neuroscience and experimental setups were traditionally custom-made; the necessary equipment is now available by several commercial companies. This protocol provides a detailed description of a two-way shuttle-box avoidance learning paradigm in rodents (here Mongolian gerbils; Meriones unguiculatus) in combination with site-specific electrical intracortical microstimulation (ICMS) and simultaneous chronical electrophysiological in vivo recordings. The detailed protocol is applicable to study multiple aspects of learning behavior and perception in different rodent species. Site-specific ICMS of auditory cortical circuits as conditioned stimuli here is used as a tool to test the perceptual relevance of specific afferent, efferent and intracortical connections. Distinct activation patterns can be evoked by using different stimulation electrode arrays for local, layer-dependent ICMS or distant ICMS sites. Utilizing behavioral signal detection analysis it can be determined which stimulation strategy is most effective for eliciting a behaviorally detectable and salient signal. Further, parallel multichannel-recordings using different electrode designs (surface electrodes, depth electrodes, etc.) allow for investigating neuronal observables over the time course of such learning processes. It will be discussed how changes of the behavioral design can increase the cognitive complexity (e.g. detection, discrimination, reversal learning).

  1. Combined Shuttle-Box Training with Electrophysiological Cortex Recording and Stimulation as a Tool to Study Perception and Learning

    PubMed Central

    Happel, Max F.K.

    2015-01-01

    Shuttle-box avoidance learning is a well-established method in behavioral neuroscience and experimental setups were traditionally custom-made; the necessary equipment is now available by several commercial companies. This protocol provides a detailed description of a two-way shuttle-box avoidance learning paradigm in rodents (here Mongolian gerbils; Meriones unguiculatus) in combination with site-specific electrical intracortical microstimulation (ICMS) and simultaneous chronical electrophysiological in vivo recordings. The detailed protocol is applicable to study multiple aspects of learning behavior and perception in different rodent species. Site-specific ICMS of auditory cortical circuits as conditioned stimuli here is used as a tool to test the perceptual relevance of specific afferent, efferent and intracortical connections. Distinct activation patterns can be evoked by using different stimulation electrode arrays for local, layer-dependent ICMS or distant ICMS sites. Utilizing behavioral signal detection analysis it can be determined which stimulation strategy is most effective for eliciting a behaviorally detectable and salient signal. Further, parallel multichannel-recordings using different electrode designs (surface electrodes, depth electrodes, etc.) allow for investigating neuronal observables over the time course of such learning processes. It will be discussed how changes of the behavioral design can increase the cognitive complexity (e.g. detection, discrimination, reversal learning). PMID:26556300

  2. Neuroplastic changes in the sensorimotor cortex associated with orthodontic tooth movement in rats.

    PubMed

    Sood, Mandeep; Lee, Jye-Chang; Avivi-Arber, Limor; Bhatt, Poolak; Sessle, Barry J

    2015-07-01

    Orthodontic tooth movement (OTM) causes transient pain and changes in the dental occlusion that may lead to altered somatosensory inputs and patterns of mastication. This study used intracortical microstimulation (ICMS) and electromyographic (EMG) recordings to test whether neuroplastic changes occur in the ICMS-defined motor representations of left and right anterior digastric (LAD, RAD), masseter, buccinator, and genioglossus (GG) muscles within the rat's face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) during OTM. Analyses included any changes in the number of ICMS sites representing these muscles and in the onset latencies of ICMS-evoked responses in the muscles. Sprague-Dawley rats were divided into experimental (E), sham (S), and naive (N) groups; OTM was induced in the E group. Statistical analyses involved a mixed model repeated-measures analysis of variance (MMRM ANOVA). OTM resulted in significant neuroplastic changes in the number of positive sites in the E group for LAD, RAD, and GG muscles in face-M1 and face-S1 at days 1, 7, and 28 of continuous orthodontic force application, and in the number of sites in face-M1 from which ICMS could simultaneously evoke EMG responses in different combinations of LAD, RAD, and GG muscles. However, the onset latencies of ICMS-evoked responses were not significantly different between groups or between face-M1 and face-S1. The neuroplastic changes documented in this study may reflect adaptive sensorimotor changes in response to the altered environment in the oral cavity induced by OTM. © 2015 Wiley Periodicals, Inc.

  3. Orienting movements in area 9 identified by long-train ICMS.

    PubMed

    Lanzilotto, M; Perciavalle, V; Lucchetti, C

    2015-03-01

    The effect of intracortical microstimulation has been studied in several cortical areas from motor to sensory areas. The frontal pole has received particular attention, and several microstimulation studies have been conducted in the frontal eye field, supplementary eye field, and the premotor ear-eye field, but no microstimulation studies concerning area 9 are currently available in the literature. In the present study, to fill up this gap, electrical microstimulation was applied to area 9 in two macaque monkeys using long-train pulses of 500-700-800 and 1,000 ms, during two different experimental conditions: a spontaneous condition, while the animals were not actively fixating on a visual target, and during a visual fixation task. In these experiments, we identified backward ear movements, goal-directed eye movements, and the development of head forces. Kinematic parameters for ear and eye movements overlapped in the spontaneous condition, but they were different during the visual fixation task. In this condition, ear and eye kinematics have an opposite behavior: movement amplitude, duration, and maximal and mean velocities increase during a visual fixation task for the ear, while they decrease for the eye. Therefore, a top-down visual attention engagement could modify the kinematic parameters for these two effectors. Stimulation with the longest train durations, i.e., 800/1,000 ms, evokes not only the highest eye amplitude, but also a significant development of head forces. In this research article, we propose a new vision of the frontal oculomotor fields, speculating a role for area 9 in the control of goal-directed orienting behaviors and gaze shift control.

  4. Dynamic changes of rodent somatosensory barrel cortex are correlated with learning a novel conditioned stimulus.

    PubMed

    Long, John D; Carmena, Jose M

    2013-05-01

    The rodent somatosensory barrel cortex (S1bf) has proved a valuable model for studying neural plasticity in vivo. It has been observed that sensory deprivation or conditioning reorganizes sensory-driven activity within S1bf. These observations suggest a role for S1bf in somatosensory learning. This study evaluated the hypothesis that the response properties of extracellularly recorded neurons in S1bf would change as subjects learned to respond to stimulation of S1bf. Intracortical microstimulation (ICMS) of S1bf was used as a means for bypassing feedforward drive from the sensory periphery, midbrain, and thalamus while exciting local cortical networks. To separate the learning of this conditioned stimulus-conditioned response (CS-CR) from other elements of the task, we employed a cross-modal transfer schedule. Long-Evans rats were initially trained to respond to an auditory stimulus. All subjects were then implanted in both S1bfs with chronic microwire arrays for recording neural activity and delivering ICMS. Next, this association was transferred to ICMS of one hemisphere's S1bf. S1bf responded to ICMS with a brief increase in firing rate followed by a longer reduction in activity. We observed that the duration of reduced activity elicited by ICMS increased as the subjects began to respond correctly more often than expected by chance, and the magnitude of the initial positive response increased as they consolidated this CS-CR. Subsequent ICMS of the opposite S1bf revealed that this CS-CR did not generalize across hemispheres. These results suggest that a mechanism involving a single hemisphere's S1bf tunes cortical responses in concert with changes in rodent behavior during somatosensory learning.

  5. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    PubMed

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  7. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    PubMed

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated as soon as possible to avoid adverse effects on normal growth, development, and physiological functions. Copyright © 2017 the American Physiological Society.

  8. Wireless simultaneous stimulation-and-recording device to train cortical circuits in somatosensory cortex.

    PubMed

    Ramshur, John T; de Jongh Curry, Amy L; Waters, Robert S

    2014-01-01

    We describe for the first time the design, implementation, and testing of a telemetry controlled simultaneous stimulation and recording device (SRD) to deliver chronic intercortical microstimulation (ICMS) to physiologically identified sites in rat somatosensory cortex (SI) and test hypotheses that chronic ICMS strengthens interhemispheric pathways and leads to functional reorganization in the enhanced cortex. The SRD is a custom embedded device that uses the Cypress Semiconductor's programmable system on a chip (PSoC) that is remotely controlled via Bluetooth. The SRC can record single or multiunit responses from any two of 12 available inputs at 1-15 ksps per channel and simultaneously deliver stimulus pulses (0-255 μA; 10 V compliance) to two user selectable electrodes using monophasic, biphasic, or pseudophasic stimulation waveforms (duration: 0-5 ms, inter-phase interval: 0-5 ms, frequency: 0.1-5 s, delay: 0-10 ms). The SRD was bench tested and validated in vivo in a rat animal model.

  9. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    NASA Astrophysics Data System (ADS)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  10. Jaw-Opening Reflex and Corticobulbar Motor Excitability Changes During Quiet Sleep in Non-Human Primates

    PubMed Central

    Yao, Dongyuan; Lavigne, Gilles J.; Lee, Jye-Chang; Adachi, Kazunori; Sessle, Barry J.

    2013-01-01

    Study Objective: To test the hypothesis that the reflex and corticobulbar motor excitability of jaw muscles is reduced during sleep. Design: Polysomnographic recordings in the electrophysiological study. Setting: University sleep research laboratories. Participants and Interventions: The reflex and corticobulbar motor excitability of jaw muscles was determined during the quiet awake state (QW) and quiet sleep (QS) in monkeys (n = 4). Measurements and Results: During QS sleep, compared to QW periods, both tongue stimulation-evoked jaw-opening reflex peak and root mean square amplitudes were significantly decreased with stimulations at 2-3.5 × thresholds (P < 0.001). The jaw-opening reflex latency during sleep was also significantly longer than during QW. Intracortical microstimulation (ICMS) within the cortical masticatory area induced rhythmic jaw movements at a stable threshold (≤ 60 μA) during QW; but during QS, ICMS failed to induce any rhythmic jaw movements at the maximum ICMS intensity used, although sustained jaw-opening movements were evoked at significantly increased threshold (P < 0.001) in one of the monkeys. Similarly, during QW, ICMS within face primary motor cortex induced orofacial twitches at a stable threshold (≤ 35 μA), but the ICMS thresholds were elevated during QS. Soon after the animal awoke, rhythmic jaw movements and orofacial twitches could be evoked at thresholds similar to those before QS. Conclusions: The results suggest that the excitability of reflex and corticobulbar-evoked activity in the jaw motor system is depressed during QS. Citation: Yao D; Lavigne GJ; Lee JC; Adachi K; Sessle BJ. Jaw-opening reflex and corticobulbar motor excitability changes during quiet sleep in non-human primates. SLEEP 2013;36(2):269-280. PMID:23372275

  11. Effects of incisor extraction on jaw and tongue motor representations within face sensorimotor cortex of adult rats.

    PubMed

    Avivi-Arber, Limor; Lee, Jye-Chang; Sessle, Barry J

    2010-04-01

    Loss of teeth is associated with changes in somatosensory inputs and altered patterns of mastication, but it is unclear whether tooth loss is associated with changes in motor representations within face sensorimotor cortex of rats. We used intracortical microstimulation (ICMS) and recordings of cortically evoked muscle electromyographic (EMG) activities to test whether changes occur in the ICMS-defined motor representations of the left and right jaw muscles [masseter, anterior digastric (LAD, RAD)] and tongue muscle [genioglossus (GG)] within the cytoarchitectonically defined face primary motor cortex (face-M1) and adjacent face primary somatosensory cortex (face-S1) 1 week following extraction of the right mandibular incisor in anesthetized (ketamine-HCl) adult male Sprague-Dawley rats. Under local and general anesthesia, an "extraction" group (n = 8) received mucoalveolar bone surgery and extraction of the mandibular right incisor. A "sham-extraction" group (n = 6) received surgery with no extraction. A "naive" group (n = 6) had neither surgery nor extraction. Data were compared by using mixed-model repeated-measures ANOVA. Dental extraction was associated with a significantly increased number of sites within face-M1 and face-S1 from which ICMS evoked RAD EMG activities, a lateral shift of the RAD and LAD centers of gravity within face-M1, shorter onset latencies of ICMS-evoked GG activities within face-M1 and face-S1, and an increased number of sites within face-M1 from which ICMS simultaneously evoked RAD and GG activities. Our novel findings suggest that dental extraction may be associated with significant neuroplastic changes within the rat's face-M1 and adjacent face-S1 that may be related to the animal's ability to adapt to the altered oral state. (c) 2009 Wiley-Liss, Inc.

  12. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats.

    PubMed

    Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco

    2014-05-15

    Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  13. An end-to-end X-IFU simulator: constraints on ICM kinematics

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Gaspari, M.; Ettori, S.; Brighenti, F.

    2017-10-01

    In the next years the study of ICM physics will benefit from a completely new type of oservations made available by the X-IFU microcalorimeter of the ATHENA X-ray telescope. X-IFU will combine energy and spatial resolution (2.5 eV and 5 arcsec) allowing to map line emission and, potentially, to characterise the ICM dynamics with an unprecedented detail. I will present an end-to-end simulator aimed at describing the ability of X-IFU to characterise ICM velocity features. Starting from hydrodynamical simulations of ICM turbulence (Gaspari et al. 2013) we went through a detailed and realistic spectral analysis of simulated observations to derive mapped quantities of gas density, temperature, metallicity and, most notably, centroid shift and velocity broadening of the emission lines, with relative errors. Our results show that X-IFU will be able to map in great detail the ICM velocity features and provide precise measurements of the broadening power spectrum. This will provide interesting constraints on the characteristics of turbulent motions, both on large and small scales.

  14. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    PubMed

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  15. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats

    PubMed Central

    Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.

    2015-01-01

    Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381

  16. A 1.5-to-5 V converter for a battery-powered activity-dependent intracortical microstimulation SoC.

    PubMed

    Azin, Meysam; Mohseni, Pedram

    2012-01-01

    This paper reports on the design, analysis, implementation, and testing of a 1.5-to-5 V converter as part of a battery-powered activity-dependent intracortical microstimulation (ICMS) system-on-chip (SoC) that converts extracellular neural spikes recorded from one cortical area to electrical stimuli delivered to another cortical area in real time. The highly integrated voltage converter is intended to generate a 5-V supply for the stimulating back-end on the SoC from a miniature primary battery that powers the entire system. It is implemented in AMS 0.35 µm two-poly four-metal (2P/4M) complementary metal-oxide-semiconductor (CMOS) technology, employs only one external capacitor (1 µF) for storage, and delivers a maximum dc load current of ~88 µA with power efficiency of 31% with its output voltage adjusted to 5.05 V. This current drive capability affords simultaneous stimulation on all eight channels of the SoC with current amplitude up to ~100 µA and average stimulus rate >500 Hz, which is comfortably higher than firing rate of cortical neurons (<150 spikes per second). The measurement results also agree favorably with theoretical derivations from the analysis of converter operation.

  17. Effective Reading Comprehension in EFL Contexts: Individual and Collaborative Concept Mapping Strategies

    ERIC Educational Resources Information Center

    Riahi, Zahra; Pourdana, Natasha

    2017-01-01

    The present study attempted to investigate the possible impacts of Individual Concept Mapping (ICM) and Collaborative Concept Mapping (CCM) strategies on Iranian EFL learners' reading comprehension. For this purpose, 90 pre-intermediate female language learners ranged between 12 to 17 years of age were selected to randomly assign into ICM, CCM and…

  18. Postnatal Maturation of the Red Nucleus Motor Map Depends on Rubrospinal Connections with Forelimb Motor Pools

    PubMed Central

    Williams, Preston T. J. A.; Kim, Sangsoo

    2014-01-01

    The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962

  19. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    PubMed

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P < 0.05) and sustained (1-2 months) decreased number of ICMS-defined jaw and tongue sites within face-M1 and -S1, and increased thresholds of ICMS-evoked responses in these sites. Furthermore, dental implant placement reversed the extraction-induced changes in face-S1, and in face-M1 the number of jaw sites even increased as compared to naive rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  20. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    PubMed Central

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  1. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    PubMed Central

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  2. A learning–based approach to artificial sensory feedback leads to optimal integration

    PubMed Central

    Dadarlat, Maria C.; O’Doherty, Joseph E.; Sabes, Philip N.

    2014-01-01

    Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration. PMID:25420067

  3. Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance.

    PubMed

    Rousche, Patrick J; Otto, Kevin J; Reilly, Mark P; Kipke, Daryl R

    2003-05-01

    A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 microA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 microA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 microA, with an overall mean of 42.4 (+/-8.1) microA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis.

  4. Individual Component Map of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of circular dicroism spectra of complex systems.

    PubMed

    Chang, Le; Baseggio, Oscar; Sementa, Luca; Cheng, Daojian; Fronzoni, Giovanna; Toffoli, Daniele; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro

    2018-06-13

    We introduce Individual Component Maps of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of chiro-optical linear response spectra deriving from time-dependent density functional theory (TDDFT) simulations. ICM-RS and RSD allow one to visualize the origin of chiro-optical response in momentum or real space, including signed contributions and therefore highlighting cancellation terms that are ubiquitous in chirality phenomena, and should be especially useful in analyzing the spectra of complex systems. As test cases, we use ICM-RS and RSD to analyze circular dichroism spectra of selected (Ag-Au)30(SR)18 monolayer-protected metal nanoclusters, showing the potential of the proposed tools to derive insight and understanding, and eventually rational design, in chiro-optical studies of complex systems.

  5. The impact of an ICME on the Jovian X-ray aurora.

    PubMed

    Dunn, William R; Branduardi-Raymont, Graziella; Elsner, Ronald F; Vogt, Marissa F; Lamy, Laurent; Ford, Peter G; Coates, Andrew J; Gladstone, G Randall; Jackman, Caitriona M; Nichols, Jonathan D; Rae, I Jonathan; Varsani, Ali; Kimura, Tomoki; Hansen, Kenneth C; Jasinski, Jamie M

    2016-03-01

    We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70  R J were dominated by emission from precipitating sulfur ions (S 7+,…,14+ ). Emissions mapping to closed field lines between 70 and 120  R J and to open field lines were generated by a mixture of precipitating oxygen (O 7+,8+ ) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.

  6. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  7. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-07

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.

  8. Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft

    NASA Astrophysics Data System (ADS)

    Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.

    2018-03-01

    The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the Earth.

  9. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.

    PubMed

    Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco

    2011-03-23

    Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.

  10. Toward a Proprioceptive Neural Interface That Mimics Natural Cortical Activity

    PubMed Central

    Tomlinson, Tucker

    2017-01-01

    The dramatic advances in efferent neural interfaces over the past decade are remarkable, with cortical signals used to allow paralyzed patients to control the movement of a prosthetic limb or even their own hand. However, this success has thrown into relief, the relative lack of progress in our ability to restore somatosensation to these same patients. Somatosensation, including proprioception, the sense of limb position and movement, plays a crucial role in even basic motor tasks like reaching and walking. Its loss results in crippling deficits. Historical work dating back decades and even centuries has demonstrated that modality-specific sensations can be elicited by activating the central nervous system electrically. Recent work has focused on the challenge of refining these sensations by stimulating the somatosensory cortex (S1) directly. Animals are able to detect particular patterns of stimulation and even associate those patterns with particular sensory cues. Most of this work has involved areas of the somatosensory cortex that mediate the sense of touch. Very little corresponding work has been done for proprioception. Here we describe the effort to develop afferent neural interfaces through spatiotemporally precise intracortical microstimulation (ICMS). We review what is known of the cortical representation of proprioception, and describe recent work in our lab that demonstrates for the first time, that sensations like those of natural proprioception may be evoked by ICMS in S1. These preliminary findings are an important first step to the development of an afferent cortical interface to restore proprioception. PMID:28035576

  11. Toward a Proprioceptive Neural Interface that Mimics Natural Cortical Activity.

    PubMed

    Tomlinson, Tucker; Miller, Lee E

    2016-01-01

    The dramatic advances in efferent neural interfaces over the past decade are remarkable, with cortical signals used to allow paralyzed patients to control the movement of a prosthetic limb or even their own hand. However, this success has thrown into relief, the relative lack of progress in our ability to restore somatosensation to these same patients. Somatosensation, including proprioception, the sense of limb position and movement, plays a crucial role in even basic motor tasks like reaching and walking. Its loss results in crippling deficits. Historical work dating back decades and even centuries has demonstrated that modality-specific sensations can be elicited by activating the central nervous system electrically. Recent work has focused on the challenge of refining these sensations by stimulating the somatosensory cortex (S1) directly. Animals are able to detect particular patterns of stimulation and even associate those patterns with particular sensory cues. Most of this work has involved areas of the somatosensory cortex that mediate the sense of touch. Very little corresponding work has been done for proprioception. Here we describe the effort to develop afferent neural interfaces through spatiotemporally precise intracortical microstimulation (ICMS). We review what is known of the cortical representation of proprioception, and describe recent work in our lab that demonstrates for the first time, that sensations like those of natural proprioception may be evoked by ICMS in S1. These preliminary findings are an important first step to the development of an afferent cortical interface to restore proprioception.

  12. Using numerical simulations to study the ICM metallicity fields in clusters and groups

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.

    2018-01-01

    Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.

  13. Normal correspondence of tectal maps for saccadic eye movements in strabismus

    PubMed Central

    Economides, John R.; Adams, Daniel L.

    2016-01-01

    The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles. PMID:27605534

  14. Poststroke upper-limb rehabilitation using 5 to 7 inserted microstimulators: implant procedure, safety, and efficacy for restoration of function.

    PubMed

    Davis, Ross; Sparrow, Owen; Cosendai, Gregoire; Burridge, Jane H; Wulff, Christian; Turk, Ruth; Schulman, Joseph

    2008-10-01

    To investigate the feasibility of implanting microstimulators to deliver programmed nerve stimulation for sequenced muscle activation to recover arm-hand functions. By using a minimally invasive procedure and local anesthesia, 5 to 7 microstimulators can be safely and comfortably implanted adjacent to targeted radial nerve branches in the arm and forearm of 7 subjects with poststroke paresis. The microstimulators' position should remain stable with no tissue infection and can be programmed to produce effective personalized functional muscle activity with no discomfort for a preliminary 12-week study. Clinical testing, before and after the study, is reported in the accompanying study. Microstimulator implantations in a sterile operating room. Seven adults, with poststroke hemiparesis of 12 months or more. Under local anesthesia, a stimulating probe was inserted to identify radial nerve branches. Microstimulators were inserted by using an introducer and were retrievable for 6 days by attached suture. Each device was powered via a radiofrequency link from 2 external cuff coils connected to a control unit. To achieve low threshold values at the target sites with minimal implant discomfort. Microstimulators and external equipment were monitored over 12 weeks of exercise. Seven subjects were implanted with 41 microstimulators, 5 to 7 per subject, taking 3.5 to 6 hours. Implantation pain levels were 20% more than anticipated. No infections or microstimulator failures occurred. Mean nerve thresholds ranged between 4.0 to 7.7 microcoulomb/cm(2)/phase over 90 days, indicating that cathodes were within 2 to 4 mm of target sites. In 1 subject, 2 additional microstimulators were inserted. Microstimulators were safely implanted with no infection or failure. The system was reliable and programmed effectively to perform exercises at home for functional restoration.

  15. Cortical Plasticity Induced by Spike-Triggered Microstimulation in Primate Somatosensory Cortex

    PubMed Central

    Song, Weiguo; Kerr, Cliff C.; Lytton, William W.; Francis, Joseph T.

    2013-01-01

    Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow. PMID:23472086

  16. Active sensing of target location encoded by cortical microstimulation.

    PubMed

    Venkatraman, Subramaniam; Carmena, Jose M

    2011-06-01

    Cortical microstimulation has been proposed as a method to deliver sensory percepts to circumvent damaged sensory receptors or pathways. However, much of perception involves the active movement of sensory organs and the integration of information across sensory and motor modalities. The efficacy of cortical microstimulation in such an active sensing paradigm has not been demonstrated. We report a novel behavioral paradigm which delivers microstimulation in real-time based on a rat's movements and show that rats can perform sensorimotor integration with electrically delivered stimuli. Using a real-time whisker tracking system, we delivered microstimulation in barrel cortex of actively whisking rats when their whisker crossed a particular spatial location which defined the target. Rats learned to integrate microstimulation cues with their knowledge of whisker position to infer target location along the rostro-caudal axis in less than 200 ms. In a separate experiment, we found that rats trained to respond to cortical microstimulation responded similarly to whisker deflections while ignoring auditory distracters, suggesting that barrel cortex stimulation may be perceptually similar to somatosensory stimuli. This ability to deliver sensory percepts using cortical microstimulation in an active sensing system might have significant implications for the development of sensorimotor neuroprostheses.

  17. Dopamine-Modulated Recurrent Corticoefferent Feedback in Primary Sensory Cortex Promotes Detection of Behaviorally Relevant Stimuli

    PubMed Central

    Handschuh, Juliane

    2014-01-01

    Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection. PMID:24453315

  18. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex.

    PubMed

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.

  19. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  20. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1

    PubMed Central

    Dagnino, Bruno; Gariel-Mathis, Marie-Alice

    2014-01-01

    Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172

  1. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1.

    PubMed

    Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2015-02-01

    Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.

  2. Improved surgical procedure using intraoperative navigation for the implantation of the SPG microstimulator in patients with chronic cluster headache.

    PubMed

    Kohlmeier, Carsten; Behrens, Peter; Böger, Andreas; Ramachandran, Brinda; Caparso, Anthony; Schulze, Dirk; Stude, Philipp; Heiland, Max; Assaf, Alexandre T

    2017-12-01

    The ATI SPG microstimulator is designed to be fixed on the posterior maxilla, with the integrated lead extending into the pterygopalatine fossa to electrically stimulate the sphenopalatine ganglion (SPG) as a treatment for cluster headache. Preoperative surgical planning to ensure the placement of the microstimulator in close proximity (within 5 mm) to the SPG is critical for treatment efficacy. The aim of this study was to improve the surgical procedure by navigating the initial dissection prior to implantation using a passive optical navigation system and to match the post-operative CBCT images with the preoperative treatment plan to verify the accuracy of the intraoperative placement of the microstimulator. Custom methods and software were used that result in a 3D rotatable digitally reconstructed fluoroscopic image illustrating the patient-specific placement with the ATI SPG microstimulator. Those software tools were preoperatively integrated with the planning software of the navigation system to be used intraoperatively for navigated placement. Intraoperatively, the SPG microstimulator was implanted by completing the initial dissection with CT navigation, while the final position of the stimulator was verified by 3D CBCT. Those reconstructed images were then immediately matched with the preoperative CT scans with the digitally inserted SPG microstimulator. This method allowed for visual comparison of both CT scans and verified correct positioning of the SPG microstimulator. Twenty-four surgeries were performed using this new method of CT navigated assistance during SPG microstimulator implantation. Those results were compared to results of 21 patients previously implanted without the assistance of CT navigation. Using CT navigation during the initial dissection, an average distance reduction of 1.2 mm between the target point and electrode tip of the SPG microstimulator was achieved. Using the navigation software for navigated implantation and matching the preoperative planned scans with those performed post-operatively, the average distance was 2.17 mm with navigation, compared to 3.37 mm in the 28 surgeries without navigation. Results from this new procedure showed a significant reduction (p = 0.009) in the average distance from the SPG microstimulator to the desired target point. Therefore, a distinct improvement could be achieved in positioning of the SPG microstimulator through the use of intraoperative navigation during the initial dissection and by post-operative matching of pre- and post-operatively performed CBCT scans.

  3. Insights into cortical mechanisms of behavior from microstimulation experiments

    PubMed Central

    Histed, Mark H.; Ni, Amy M.; Maunsell, John H.R.

    2012-01-01

    Even the simplest behaviors depend on a large number of neurons that are distributed across many brain regions. Because electrical microstimulation can change the activity of localized subsets of neurons, it has provided valuable evidence that specific neurons contribute to particular behaviors. Here we review what has been learned about cortical function from behavioral studies using microstimulation in animals and humans. Experiments that examine how microstimulation affects the perception of stimuli have shown that the effects of microstimulation are usually highly specific and can be related to the stimuli preferred by neurons at the stimulated site. Experiments that ask subjects to detect cortical microstimulation in the absence of other stimuli have provided further insights. Although subjects typically can detect microstimulation of primary sensory or motor cortex, they are generally unable to detect stimulation of most of cortex without extensive practice. With practice, however, stimulation of any part of cortex can become detected. These training effects suggest that some patterns of cortical activity cannot be readily accessed to guide behavior, but that the adult brain retains enough plasticity to learn to process novel patterns of neuronal activity arising anywhere in cortex. PMID:22307059

  4. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  5. Instructional Curriculum Mapping.

    ERIC Educational Resources Information Center

    Wager, Walter

    Instructional Curriculum Mapping (ICM) is a set of guidelines for diagramming the interrelationships among objectives from different domains of learning. Five major learning domains are identified: (1) intellectual skills; (2) cognitive strategies; (3) verbal information; (4) motor skills; and (5) attitudes. This paper examines the functional…

  6. Theta-burst microstimulation in the human entorhinal area improves memory specificity.

    PubMed

    Titiz, Ali S; Hill, Michael R H; Mankin, Emily A; M Aghajan, Zahra; Eliashiv, Dawn; Tchemodanov, Natalia; Maoz, Uri; Stern, John; Tran, Michelle E; Schuette, Peter; Behnke, Eric; Suthana, Nanthia A; Fried, Itzhak

    2017-10-24

    The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm -diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.

  7. The differential effects of halothane and isoflurane on electroencephalographic responses to electrical microstimulation of the reticular formation.

    PubMed

    Orth, Mashawn; Bravo, Emigdio; Barter, Linda; Carstens, Earl; Antognini, Joseph F

    2006-06-01

    Isoflurane and halothane cause electroencephalographic (EEG) depression and neuronal depression in the reticular formation, a site critical to consciousness. We hypothesized that isoflurane, more than halothane, would depress EEG activation elicited by electrical microstimulation of the reticular formation. Rats were anesthetized with either halothane or isoflurane and stimulating electrodes were positioned in the reticular formation. In a crossover design, anesthetic concentration was adjusted to 0.8 and 1.2 minimum alveolar concentration (MAC) of halothane or isoflurane and electrical microstimulation was performed and the EEG responses were recorded. Microstimulation increased the spectral edge and median edge frequencies 2-2.5 Hz at 0.8 MAC for halothane and isoflurane and 1.2 MAC halothane. At 1.2 MAC isoflurane, burst suppression occurred and microstimulation decreased the period of isoelectricity (24% +/- 19% to 8% +/- 7%; P < 0.05), whereas the spectral edge and median edge frequencies were unchanged. At anesthetic concentrations required to produce immobility, the cortex remains responsive to electrical microstimulation of the reticular formation, although the EEG response is depressed in the transition from 0.8 to 1.2 MAC. These data indicate that cortical neurons remain responsive to synaptic input during isoflurane and halothane anesthesia.

  8. Ranking ICME's efficiency for geomagnetic and ionospheric storms and risk of false alarms

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.

    2017-11-01

    A statistical analysis is undertaken on ICME's efficiency in producing the geomagnetic and ionospheric storms. The mutually-consistent thresholds for the intense, moderate and weak space weather storms and quiet conditions are introduced with an analytical model based on relations between the equatorial Dst index and geomagnetic indices AE, aa, ap, ap(τ) and the ionospheric Vσ indices. The ionosphere variability Vσ index is expressed in terms of the total electron content (TEC) deviation from the -15-day sliding median normalized by the standard deviation for the 15 preceding days. The intensity of global positive ionospheric storm, Vσp, and negative storm, Vσn, is represented by the relative density of anomalous ±Vσ index occurrence derived from the global ionospheric maps GIM-TEC for 1999-2016. An impact of total 421 ICME events for 1999-2016 on the geomagnetic and ionospheric storms expressed by AE, Dst, aa, ap, ap(τ), Vσp, Vσn indices and their superposition is analyzed using ICME catalogue by Richardson and Cane (2010) during 24 h after the ICME start time t0. Hierarchy of efficiency of ICME → storm relation is established. The ICMEs have a higher probability (22-25%) to be followed by the intense ionospheric and auroral electrojet storms at global and high latitudes as compared to the intense storms at middle and low latitudes (18-20%) and to moderate and weak storms at high latitudes (5-17%). At the same time ICMEs are more effective in producing the moderate storms (24-28%) at the middle and low latitudes as compared to the intense and weak storms at these latitudes (13-22%) and to moderate storms at high latitudes (8-17%). The remaining cases when quiet conditions are observed after ICMEs present higher chance for a false alarm. The risk factor for a false alarm can vary from 18% if the superposition of all indices is considered, to 51-64% for individual AE, Vσp and Vσn indices. The analysis indicates that the mutually-consistent thresholds can be successfully applied to the external sources of the geomagnetic and ionospheric storms other than ICME which present challenge for the further investigation.

  9. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.

    PubMed

    Xie, Ni; Yang, Qiuhong; Chappell, Tyson D; Li, Cheng-Xiang; Waters, Robert S

    2010-03-01

    Children with fetal alcohol spectrum disorder (FASD) often exhibit sensorimotor dysfunctions that include deficits in motor coordination and fine motor control. Although the underlying causes for these motor abnormalities are unknown, they likely involve interactions between sensory and motor systems. Rodent animal models have been used to study the effects of prenatal alcohol exposure (PAE) on skilled reaching and on the development and organization of somatosensory barrel field cortex. To this end, PAE delayed the development of somatosensory cortex, reduced the size of whisker and forelimb representations in somatosensory barrel field cortex, and delayed acquisition time to learn a skilled reaching task. However, whether PAE also affects the motor cortex (MI) remains to be determined. In the present study, we investigated the effect of PAE on the size of the forelimb representation in rat MI, thresholds for activation, and the overlap between motor and sensory cortical forelimb maps in sensorimotor cortex. Pregnant Sprague-Dawley rats were assigned to alcohol (Alc), pair-fed (PF), and chow-fed (CF) groups on gestation day 1 (GD1). Rats in the Alc group (n=4) were chronically intubated daily with binge doses of alcohol (6g/kg body weight) from GD1 to GD20 that resulted in averaged blood alcohol levels measured on GD10 (mean=191.5+/-41.9mg/dL) and on GD17 (mean=247.0+/-72.4mg/dL). PF (n=2) and CF (n=3) groups of pregnant rats served as controls. The effect of PAE on the various dependent measures was obtained from multiple male offspring from each dam within treatment groups, and litter means were compared between the groups from alcohol-treated and control (Ct: CF and PF) dams. At approximately 8 weeks of age, rats were anesthetized with ketamine/xylazine and the skull opened over sensorimotor cortex. A tungsten microelectrode was then inserted into the depths of layer V and intracortical microstimulation was used to deliver trains of pulses to evoke muscle contractions and/or movements; maximum stimulating < or =100microA. When a motor response was observed, the threshold for movement was measured and the motor receptive field projected to the cortical surface to serve as representative point for that location. A motor map for the forelimb representation was generated by systematically stimulating at adjacent sites until current thresholds reached the maximum and/or motor responses were no longer evoked. The major findings in this study were as follows: (1) PAE significantly reduced the area of the forelimb representation in the Alc offspring (6.01mm(2), standard error of the mean=+/-0.278) compared with the Ct offspring (8.03mm(2)+/-0.586), (2) PAE did not significantly reduce the averaged threshold for activation of movements between groups, (3) PAE significantly reduced the percent overlap (Alc=31.1%, Ct=55.4%) between the forelimb representation in sensory and motor cortices, and (4) no significant differences were observed in averaged body weight, hemisphere weight, or age of animal between treatment groups. These findings suggest that the effects of PAE are not restricted to somatosensory barrel field cortex but also involve the MI and may underlie deficits in motor control and sensorimotor integration observed among children with FASD. 2010. Published by Elsevier Inc.

  10. The effect of face patch microstimulation on perception of faces and objects.

    PubMed

    Moeller, Sebastian; Crapse, Trinity; Chang, Le; Tsao, Doris Y

    2017-05-01

    What is the range of stimuli encoded by face-selective regions of the brain? We asked how electrical microstimulation of face patches in macaque inferotemporal cortex affects perception of faces and objects. We found that microstimulation strongly distorted face percepts and that this effect depended on precise targeting to the center of face patches. While microstimulation had no effect on the percept of many non-face objects, it did affect the percept of some, including non-face objects whose shape is consistent with a face (for example, apples) as well as somewhat facelike abstract images (for example, cartoon houses). Microstimulation even perturbed the percept of certain objects that did not activate the stimulated face patch at all. Overall, these results indicate that representation of facial identity is localized to face patches, but activity in these patches can also affect perception of face-compatible non-face objects, including objects normally represented in other parts of inferotemporal cortex.

  11. Reward modulates the effect of visual cortical microstimulation on perceptual decisions

    PubMed Central

    Cicmil, Nela; Cumming, Bruce G; Parker, Andrew J; Krug, Kristine

    2015-01-01

    Effective perceptual decisions rely upon combining sensory information with knowledge of the rewards available for different choices. However, it is not known where reward signals interact with the multiple stages of the perceptual decision-making pathway and by what mechanisms this may occur. We combined electrical microstimulation of functionally specific groups of neurons in visual area V5/MT with performance-contingent reward manipulation, while monkeys performed a visual discrimination task. Microstimulation was less effective in shifting perceptual choices towards the stimulus preferences of the stimulated neurons when available reward was larger. Psychophysical control experiments showed this result was not explained by a selective change in response strategy on microstimulated trials. A bounded accumulation decision model, applied to analyse behavioural performance, revealed that the interaction of expected reward with microstimulation can be explained if expected reward modulates a sensory representation stage of perceptual decision-making, in addition to the better-known effects at the integration stage. DOI: http://dx.doi.org/10.7554/eLife.07832.001 PMID:26402458

  12. Wireless Microstimulators for Neural Prosthetics

    PubMed Central

    Sahin, Mesut; Pikov, Victor

    2016-01-01

    One of the roadblocks in the field of neural prosthetics is the lack of microelectronic devices for neural stimulation that can last a lifetime in the central nervous system. Wireless multi-electrode arrays are being developed to improve the longevity of implants by eliminating the wire interconnects as well as the chronic tissue reactions due to the tethering forces generated by these wires. An area of research that has not been sufficiently investigated is a simple single-channel passive microstimulator that can collect the stimulus energy that is transmitted wirelessly through the tissue and immediately convert it into the stimulus pulse. For example, many neural prosthetic approaches to intraspinal microstimulation require only a few channels of stimulation. Wired spinal cord implants are not practical for human subjects because of the extensive flexions and rotations that the spinal cord experiences. Thus, intraspinal microstimulation may be a pioneering application that can benefit from submillimetersize floating stimulators. Possible means of energizing such a floating microstimulator, such as optical, acoustic, and electromagnetic waves, are discussed. PMID:21488815

  13. Tibial nerve stimulation to inhibit the micturition reflex by an implantable wireless driver microstimulator in cats

    PubMed Central

    Li, Xing; Liao, Li-Min; Chen, Guo-Qing; Wang, Zhao-Xia; Lu, Tian-Ji; Deng, Han; Loeb, Gerald-E

    2016-01-01

    Abstract Background: Traditional tibial nerve stimulation (TNS) has been used to treat overactive bladder syndrome (OAB), but there are some shortcomings. Thus, a novel alternative is needed for the treatment of OAB. The study investigated the effects of a new type of tibial nerve microstimulator on the micturition reflex in cats. Methods: An implantable wireless driver microstimulator was implanted around the tibial nerve in 9 α-chloralose anesthetized cats. Cystometry was performed by infusing 0.9% normal saline (NS) or 0.25% acetic acid (AA) through a urethral catheter. Multiple cystometrograms were performed before, during, and after TNS to determine the inhibitory effect of the microstimulator on the micturition reflex. Results: TNS at 2 threshold (T) intensity significantly increased the bladder capacity (BC) during NS infusion. Bladder overactivity was irritated by the intravesical infusion of 0.25% AA, which significantly reduced the BC compared with the NS infusion. TNS at 2 T intensity suppressed AA-induced bladder overactivity and significantly increased the BC compared with the AA control. Conclusion: The implantable wireless driver tibial nerve microstimulator appears to be effective in inhibiting the micturition reflex during physiologic and pathologic conditions. The implantable wireless driver tibial nerve microstimulator could be used to treat OAB. PMID:27537576

  14. Structural insights into the roles of the IcmS-IcmW complex in the type IVb secretion system of Legionella pneumophila.

    PubMed

    Xu, Jianpo; Xu, Dandan; Wan, Muyang; Yin, Li; Wang, Xiaofei; Wu, Lijie; Liu, Yanhua; Liu, Xiaoyun; Zhou, Yan; Zhu, Yongqun

    2017-12-19

    The type IVb secretion system (T4BSS) of Legionella pneumophila is a multiple-component apparatus that delivers ∼300 virulent effector proteins into host cells. The injected effectors modulate host cellular processes to promote bacterial infection and proliferation. IcmS and IcmW are two conserved small, acidic adaptor proteins that form a binary complex to interact with many effectors and facilitate their translocation. IcmS and IcmW can also interact with DotL, an ATPase of the type IV coupling protein complex (T4CP). However, how IcmS-IcmW recognizes effectors, and what the roles of IcmS-IcmW are in T4BSSs are unclear. In this study, we found that IcmS and IcmW form a 1:1 heterodimeric complex to bind effector substrates. Both IcmS and IcmW adopt new structural folds and have no structural similarities with known effector chaperones. IcmS has a compact global structure with an α/β fold, while IcmW adopts a fully α-folded, relatively loose architecture. IcmS stabilizes IcmW by binding to its two C-terminal α-helices. Photocrosslinking assays revealed that the IcmS-IcmW complex binds its cognate effectors via an extended hydrophobic surface, which can also interact with the C terminus of DotL. A crystal structure of the DotL-IcmS-IcmW complex reveals extensive and highly stable interactions between DotL and IcmS-IcmW. Moreover, IcmS-IcmW recruits LvgA to DotL and assembles a unique T4CP. These data suggest that IcmS-IcmW also functions as an inseparable integral component of the DotL-T4CP complex in the bacterial inner membrane. This study provides molecular insights into the dual roles of the IcmS-IcmW complex in T4BSSs.

  15. Restoring tactile and proprioceptive sensation through a brain interface

    PubMed Central

    Tabot, Gregg A.; Kim, Sung Shin; Winberry, Jeremy E.; Bensmaia, Sliman J.

    2014-01-01

    Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry – the elicitation of naturalistic patterns of neuronal activation – and that of adaptation – the brain’s ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic. PMID:25201560

  16. Restoring tactile and proprioceptive sensation through a brain interface.

    PubMed

    Tabot, Gregg A; Kim, Sung Shin; Winberry, Jeremy E; Bensmaia, Sliman J

    2015-11-01

    Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry--the elicitation of naturalistic patterns of neuronal activation--and that of adaptation--the brain's ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation.

    PubMed

    Ninio, Shira; Zuckman-Cholon, Deborah M; Cambronne, Eric D; Roy, Craig R

    2005-02-01

    The intracellular pathogen Legionella pneumophila can infect and replicate within macrophages of a human host. To establish infection, Legionella require the Dot/Icm secretion system to inject protein substrates directly into the host cell cytoplasm. The mechanism by which substrate proteins are engaged and translocated by the Dot/Icm system is not well understood. Here we show that two cytosolic components of the Dot/Icm secretion machinery, the proteins IcmS and IcmW, play an important role in substrate translocation. Biochemical analysis indicates that IcmS and IcmW form a stable protein complex. In Legionella, the IcmW protein is rapidly degraded in the absence of the IcmS protein. Substrate proteins translocated into mammalian host cells by the Dot/Icm system were identified using the IcmW protein as bait in a yeast two-hybrid screen. It was determined that the IcmS-IcmW complex interacts with these substrates and plays an important role in translocation of these proteins into mammalian cells. These data are consistent with the IcmS-IcmW complex being involved in the recognition and Dot/Icm-dependent translocation of substrate proteins during Legionella infection of host cells.

  18. Caudate Microstimulation Increases Value of Specific Choices.

    PubMed

    Santacruz, Samantha R; Rich, Erin L; Wallis, Joni D; Carmena, Jose M

    2017-11-06

    Value-based decision-making involves an assessment of the value of items available and the actions required to obtain them. The basal ganglia are highly implicated in action selection and goal-directed behavior [1-4], and the striatum in particular plays a critical role in arbitrating between competing choices [5-9]. Previous work has demonstrated that neural activity in the caudate nucleus is modulated by task-relevant action values [6, 8]. Nonetheless, how value is represented and maintained in the striatum remains unclear since decision-making in these tasks relied on spatially lateralized responses, confounding the ability to generalize to a more abstract choice task [6, 8, 9]. Here, we investigate striatal value representations by applying caudate electrical stimulation in macaque monkeys (n = 3) to bias decision-making in a task that divorces the value of a stimulus from motor action. Electrical microstimulation is known to induce neural plasticity [10, 11], and caudate microstimulation in primates has been shown to accelerate associative learning [12, 13]. Our results indicate that stimulation paired with a particular stimulus increases selection of that stimulus, and this effect was stimulus dependent and action independent. The modulation of choice behavior using microstimulation was best modeled as resulting from changes in stimulus value. Caudate neural recordings (n = 1) show that changes in value-coding neuron activity are stimulus value dependent. We argue that caudate microstimulation can differentially increase stimulus values independent of action, and unilateral manipulations of value are sufficient to mediate choice behavior. These results support potential future applications of microstimulation to correct maladaptive plasticity underlying dysfunctional decision-making related to neuropsychiatric conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Application of unstable Gfp variants to the kinetic study of Legionella pneumophila icm gene expression during infection.

    PubMed

    Barysheva, Oksana V; Fujii, Jun; Takaesu, Giichi; Yoshida, Shin-ichi

    2008-04-01

    An unstable type of green fluorescent protein (Gfp) tagged with a C-terminal extension, which is a target for tail-specific protease, was used as a reporter gene in Legionella pneumophila. To analyse Gfp expression in legionellae, transcriptional fusions of unstable gfp with the Legionella-specific icm (intracellular multiplication) promoters (P(icmS), P(icmT) and P(icmQ)) were constructed. Infection studies using J774.1 macrophages as the host, and L. pneumophila strains carrying P(icmS)-gfp, P(icmT)-gfp and P(icmQ)-gfp fusions, indicated that the icmS, icmT and icmQ genes could be expressed intracellularly. Expression of icmS, icmT and icmQ genes in infected cells was examined by flow cytometry. Furthermore, fluorescent intracellular legionellae were detected directly by confocal microscopy. Real-time quantitative RT-PCR revealed the differences in the gene expression of icmS, and that of icmT and icmQ, during infection. Expression of icmS was high in the late stage of infection, while that of icmT and icmQ was high in the early phase only. We show that unstable gfp is a useful reporter gene whose expression in legionellae can be followed in real-time, and that it allows analysis of promoter activities in legionellae and monitoring of the infection process.

  20. Intracortical microstimulation of human somatosensory cortex.

    PubMed

    Flesher, Sharlene N; Collinger, Jennifer L; Foldes, Stephen T; Weiss, Jeffrey M; Downey, John E; Tyler-Kabara, Elizabeth C; Bensmaia, Sliman J; Schwartz, Andrew B; Boninger, Michael L; Gaunt, Robert A

    2016-10-19

    Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show that microstimulation within the hand area of the somatosensory cortex of a person with long-term spinal cord injury evokes tactile sensations perceived as originating from locations on the hand and that cortical stimulation sites are organized according to expected somatotopic principles. Many of these percepts exhibit naturalistic characteristics (including feelings of pressure), can be evoked at low stimulation amplitudes, and remain stable for months. Further, modulating the stimulus amplitude grades the perceptual intensity of the stimuli, suggesting that intracortical microstimulation could be used to convey information about the contact location and pressure necessary to perform dexterous hand movements associated with object manipulation. Copyright © 2016, American Association for the Advancement of Science.

  1. The Geoeffectiveness of ICMEs from 1996 to 2013

    NASA Astrophysics Data System (ADS)

    Shen, C.; Chi, Y.; Wang, Y.; Wang, S.; Ye, P.

    2015-12-01

    In a previous study (Chi et al. (2015)), we have established interplanetary coronal mass ejections (ICMEs) catalogue in the near earth solar wind from 1996 to 2013. ICMEs are the predominant drivers of intense geomagnetic storms. In this paper we study the geoeffectiveness of ICMEs based on the ICME catalogue and the Dst indices the geoeffectiveness of ICMEs during 1996-2013. Based on the different in situ observation signatures, all ICMEs (338 events) are divided into three types of: isolated ICMEs (I-ICMEs), multiple ICMEs (M-ICMEs) and shock-embedded ICMEs (S-ICMEs). We find that about 58% of ICMEs caused geomagnetic storms with Dst_min <-30nT. Meanwhile, about 21% of ICMEs caused intense geomagnetic storms and almost all the intense geomagnetic storms are caused by the ICMEs. It also find that the south component of the magnetic field (Bs), the solar wind velocity (V) and the dawn-dust electric field Ey=VxBs are most important parameters in determine the geoeffectiveness of the ICMEs. We further get the critical values of these parameters of the ICMEs which can be used to determine whether a ICME can cause a geomagnetic storm. During solar cycle 24th, there are extremely low number of geomagnetic storms by the reason that the number of strong ICMEs arrived at the Earth is small. The S-ICMEs structures can cause the geomagnetic storms especially intense geomagnetic storms with high possibility. It statistically show the result that the S-ICMEs are important sources of the geomagnetic storms especially for intense storms.

  2. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.

  3. Optimizing microstimulation using a reinforcement learning framework.

    PubMed

    Brockmeier, Austin J; Choi, John S; Distasio, Marcello M; Francis, Joseph T; Príncipe, José C

    2011-01-01

    The ability to provide sensory feedback is desired to enhance the functionality of neuroprosthetics. Somatosensory feedback provides closed-loop control to the motor system, which is lacking in feedforward neuroprosthetics. In the case of existing somatosensory function, a template of the natural response can be used as a template of desired response elicited by electrical microstimulation. In the case of no initial training data, microstimulation parameters that produce responses close to the template must be selected in an online manner. We propose using reinforcement learning as a framework to balance the exploration of the parameter space and the continued selection of promising parameters for further stimulation. This approach avoids an explicit model of the neural response from stimulation. We explore a preliminary architecture--treating the task as a k-armed bandit--using offline data recorded for natural touch and thalamic microstimulation, and we examine the methods efficiency in exploring the parameter space while concentrating on promising parameter forms. The best matching stimulation parameters, from k = 68 different forms, are selected by the reinforcement learning algorithm consistently after 334 realizations.

  4. Plasma Heating inside ICMEs by Alfvenic Fluctuations Dissipation

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, C.; He, J.; Zhang, L.; Richardson, J. D.; Belcher, J. W.; Tu, C.

    2017-12-01

    Nonlinear cascade of low-frequency Alfvenic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvenicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar "W"-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  5. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses

    PubMed Central

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible. PMID:26147771

  6. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    PubMed

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.

  7. Smooth pursuitlike eye movements evoked by microstimulation in macaque nucleus reticularis tegmenti pontis.

    PubMed

    Yamada, T; Suzuki, D A; Yee, R D

    1996-11-01

    1. Smooth pursuitlike eye movements were evoked with low current microstimulation delivered to rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. Microstimulation sites were selected by the observation of modulations in single-cell firing rates that were correlated with periodic smoothpursuit eye movements. Current intensities ranged from 10 to 120 microA and were routinely < 40 microA. Microstimulation was delivered either in the dark with no fixation, 100 ms after a fixation target was extinguished, or during maintained fixation of a stationary or moving target. Evoked eye movements also were studied under open-loop conditions with the target image stabilized on the retina. 2. Eye movements evoked in the absence of a target rapidly accelerated to a constant velocity that was maintained for the duration of the microstimulation. Evoked eye speeds ranged from 3.7 to 23 deg/s and averaged 11 deg/s. Evoked eye speed appeared to be linearly related to initial eye position with a sensitivity to initial eye position that averaged 0.23 deg.s-1.deg-1. While some horizontal and oblique smooth eye movements were elicited, microstimulation resulted in upward eye movements in 89% of the sites. 3. Evoked eye speed was found to be dependent on microstimulation pulse frequency and current intensity. Within limits, evoked eye speed increased with increases in stimulation frequency or current intensity. For stimulation frequencies < 300-400 Hz, only smooth pursuit-like eye movements were evoked. At higher stimulation frequencies, accompanying saccades consistently were elicited. 4. Feedback of retinal image motion interacted with the evoked eye movements to decrease eye speed if the visual motion was in the opposite direction as the evoked, pursuit-like eye movements. 5. The results implicate rNRTP as part of the neuronal substrate that controls smooth-pursuit eye movements. NRTP appears to be divided functionally into a rostral, pursuit-related portion and a caudal, saccade-related area. rNRTP is a component of a corticopontocerebellar circuit that presumably involves the pursuit area of the frontal eye field and that parallels the middle and medial superior temporal cerebral cortical/dorsalateral pontine nucleus (MT/MST-DLPN-cerebellum) pathway known to be involved also with regulating smooth-pursuit eye movements.

  8. Metal distribution in the intracluster medium: a comprehensive numerical study of twelve galaxy clusters

    NASA Astrophysics Data System (ADS)

    Höller, Harald; Stöckl, Josef; Benson, Andrew; Haider, Markus; Steinhauser, Dominik; Lovisari, Lorenzo; Pranger, Florian

    2014-09-01

    We present a simulation setup for studying the dynamical and chemical evolution of the intracluster medium (ICM) and analyze a sample of 12 galaxy clusters that are diverse both kinetically (pre-merger, merging, virialized) and in total mass (Mvir = 1.17 × 1014 - 1.06 × 1015 M⊙). We analyzed the metal mass fraction in the ICM as a function of redshift and discuss radial trends as well as projected 2D metallicity maps. The setup combines high mass resolution N-body simulations with the semi-analytical galaxy formation model Galacticus for consistent treatment of the subgrid physics (such as galactic winds and ram-pressure stripping) in the cosmological hydrodynamical simulations. The interface between Galacticus and the hydro simulation of the ICM with FLASH is discussed with respect to observations of star formation rate histories, radial star formation trends in galaxy clusters, and the metallicity at different redshifts. As a test for the robustness of the wind model, we compare three prescriptions from different approaches. For the wind model directly taken from Galacticus, we find mean ICM metallicities between 0.2-0.8 Z⊙ within the inner 1 Mpc at z = 0. The main contribution to the metal mass fraction comes from galactic winds. The outflows are efficiently mixed in the ICM, leading to a steady homogenization of metallicities until ram-pressure stripping becomes effective at low redshifts. We find a very peculiar and yet common drop in metal mass fractions within the inner ~200 kpc of the cool cores, which is due to a combination of wind suppression by outer pressure within our model and a lack of mixing after the formation of these dense regions. Appendix A is available in electronic form at http://www.aanda.org

  9. SEARCHING FOR BULK MOTIONS IN THE INTRACLUSTER MEDIUM OF MASSIVE, MERGING CLUSTERS WITH CHANDRA CCD DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ang; Yu, Heng; Tozzi, Paolo

    2016-04-10

    We search for bulk motions in the intracluster medium (ICM) of massive clusters showing evidence of an ongoing or recent major merger with spatially resolved spectroscopy in Chandra CCD data. We identify a sample of six merging clusters with >150 ks Chandra exposure in the redshift range 0.1 < z < 0.3. By performing X-ray spectral analysis of projected ICM regions selected according to their surface brightness, we obtain the projected redshift maps for all of these clusters. After performing a robust analysis of the statistical and systematic uncertainties in the measured X-ray redshift z{sub X}, we check whether or not themore » global z{sub X} distribution differs from that expected when the ICM is at rest. We find evidence of significant bulk motions at more than 3σ in A2142 and A115, and less than 2σ in A2034 and A520. Focusing on single regions, we identify significant localized velocity differences in all of the merger clusters. We also perform the same analysis on two relaxed clusters with no signatures of recent mergers, finding no signs of bulk motions, as expected. Our results indicate that deep Chandra CCD data enable us to identify the presence of bulk motions at the level of v{sub BM} > 1000 km s{sup −1} in the ICM of massive merging clusters at 0.1 < z < 0.3. Although the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, Chandra CCD data constitute a key diagnostic tool complementing X-ray bolometers on board future X-ray missions.« less

  10. Neuronix enables continuous, simultaneous neural recording and electrical microstimulation.

    PubMed

    Zhi Yang; Jian Xu; Anh Tuan Nguyen; Tong Wu; Wenfeng Zhao; Wing-Kin Tam

    2016-08-01

    This paper reports a novel neurotechnology (Neuronix) and its validation through experiments. It is a miniature system-on-chip (SoC) that allows recording with simultaneous electrical microstimulation. This function has not been demonstrated before and enables precise, closed-loop neuromodulation. Neuronix represents recent advancement in brain technology and applies to both animal research and clinical applications.

  11. The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth.

    PubMed

    Vincent, Carr D; Vogel, Joseph P

    2006-08-01

    Many bacterial pathogens require a functional type IV secretion system (T4SS) for virulence. Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Dot/Icm T4SS to inject a large number of protein substrates into its host, thereby altering phagosome trafficking. The L. pneumophila T4SS substrate SdeA has been shown to require the accessory factor IcmS for its export. IcmS, defined as a type IV adaptor, exists as a heterodimer with IcmW and this complex functions in a manner similar to a type III secretion chaperone. Here we report an interaction between IcmS and the previously identified virulence factor LvgA. Similar to the icmS mutant, the lvgA mutant appears to assemble a fully functional Dot/Icm complex. Both LvgA and IcmS are small, acidic proteins localized to the cytoplasm and are not exported by the Dot/Icm system, suggesting they form a novel type IV adaptor complex. Inactivation of lvgA causes a minimal defect in growth in the human monocytic cell line U937 and the environmental host Acanthamoeba castellanii. However, the lvgA mutant was severely attenuated for intracellular growth of L. pneumophila in mouse macrophages, suggesting LvgA may be a critical factor that confers host specificity.

  12. Structure and Function of Interacting IcmR-IcmQ Domains from a Type IVb Secretion System in Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raychaudhury, S.; Farelli, J; Montminy, T

    2009-01-01

    During infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association. In addition, the binding of IcmR to IcmQ prevents self-dimerization and also blocks membrane permeabilization. However, IcmR does not completely block membrane binding by IcmQ. We then determined crystal structures of Qn with the interacting region of IcmR. In this complex, each proteinmore » forms an ?-helical hairpin within a parallel four-helix bundle. The amphipathic nature of helices in Qn suggests two possible models for membrane permeabilization by IcmQ. The Rm-Qn structure also suggests how IcmR-like proteins in other L. pneumophila species may interact with their IcmQ partners.« less

  13. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation

    NASA Astrophysics Data System (ADS)

    Choi, John S.; Brockmeier, Austin J.; McNiel, David B.; von Kraus, Lee M.; Príncipe, José C.; Francis, Joseph T.

    2016-10-01

    Objective. Lost sensations, such as touch, could one day be restored by electrical stimulation along the sensory neural pathways. Such stimulation, when informed by electronic sensors, could provide naturalistic cutaneous and proprioceptive feedback to the user. Perceptually, microstimulation of somatosensory brain regions produces localized, modality-specific sensations, and several spatiotemporal parameters have been studied for their discernibility. However, systematic methods for encoding a wide array of naturally occurring stimuli into biomimetic percepts via multi-channel microstimulation are lacking. More specifically, generating spatiotemporal patterns for explicitly evoking naturalistic neural activation has not yet been explored. Approach. We address this problem by first modeling the dynamical input-output relationship between multichannel microstimulation and downstream neural responses, and then optimizing the input pattern to reproduce naturally occurring touch responses as closely as possible. Main results. Here we show that such optimization produces responses in the S1 cortex of the anesthetized rat that are highly similar to natural, tactile-stimulus-evoked counterparts. Furthermore, information on both pressure and location of the touch stimulus was found to be highly preserved. Significance. Our results suggest that the currently presented stimulus optimization approach holds great promise for restoring naturalistic levels of sensation.

  14. Real-time sonography to estimate muscle thickness: comparison with MRI and CT.

    PubMed

    Dupont, A C; Sauerbrei, E E; Fenton, P V; Shragge, P C; Loeb, G E; Richmond, F J

    2001-05-01

    We investigated the feasibility of using real-time sonography to measure muscle thickness. Clinically, this technique would be used to measure the thickness of human muscles in which intramuscular microstimulators have been implanted to treat or prevent disuse atrophy. Porcine muscles were implanted with microstimulators and imaged with sonography, MRI, and CT to assess image artifacts created by the microstimulators and to design protocols for image alignment between methods. Sonography and MRI were then used to image the deltoid and supraspinatus muscles of 6 healthy human subjects. Microstimulators could be imaged with all 3 methods, producing only small imaging artifacts. Muscle-thickness measurements agreed well between methods, particularly when external markers were used to precisely align the imaging planes. The correlation coefficients for sonographic and MRI measurements were 0.96 for the supraspinatus and 0.97 for the deltoid muscle. Repeated sonographic measurements had a low coefficient of variation: 2.3% for the supraspinatus and 3.1% for the deltoid muscle. Real-time sonography is a relatively simple and inexpensive method of accurately measuring muscle thickness as long as the operator adheres to a strict imaging protocol and avoids excessive pressure with the transducer. Copyright 2001 John Wiley & Sons, Inc.

  15. Identification of the DotL Coupling Protein Subcomplex of the Legionella Dot/Icm Type IV Secretion System

    PubMed Central

    Vincent, Carr D.; Friedman, Jonathan R.; Jeong, Kwang Cheol; Sutherland, Molly C.; Vogel, Joseph P.

    2012-01-01

    Summary Legionella pneumophila, the causative agent of Legionnaires’ disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella T4SS substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. PMID:22694730

  16. Long-Term Outcomes of Catheter Ablation of Electrical Storm in Nonischemic Dilated Cardiomyopathy Compared With Ischemic Cardiomyopathy.

    PubMed

    Muser, Daniele; Liang, Jackson J; Pathak, Rajeev K; Magnani, Silvia; Castro, Simon A; Hayashi, Tatsuya; Garcia, Fermin C; Supple, Gregory E; Riley, Michael P; Lin, David; Dixit, Sanjay; Zado, Erica S; Frankel, David S; Callans, David J; Marchlinski, Francis E; Santangeli, Pasquale

    2017-07-01

    The goal of this study was to determine the long-term outcomes of catheter ablation (CA) of electrical storm in patients with nonischemic dilated cardiomyopathy (NIDCM) compared with patients with ischemic cardiomyopathy (ICM). CA of ventricular tachycardia (VT) electrical storm has been shown to improve VT-free survival in patients with ICM. Data on the outcomes of CA of electrical storm in patients with NIDCM are insufficient. The study included 267 consecutive patients with NIDCM (n = 71; ejection fraction 32 ± 14%) and ICM (n = 196; ejection fraction 28 ± 12%). Endo-epicardial CA was performed in 59 (22%) patients. CA was guided by activation and entrainment mapping for tolerated VT and pacemapping/targeting of abnormal substrate for unmappable VT. After a median follow-up of 45 (25th to 75th percentile: 9 to 71) months and 1 (25th to 75th percentile: 1 to 8) procedures, 76 (29%) patients died, 25 (9%) underwent heart transplantation, 87 (33%) experienced VT recurrence, and 13 (5%) had recurrence of electrical storm. Overall VT-free survival was 54% at 60 months (48% in NIDCM and 54% in ICM; p = 0.128). Patients with VT recurrence experienced a median of 2 (1 to 10) VT episodes in the 5 (1 to 14) months after the procedure. Death/transplantation-free survival was 62% at 60 months (53% in NIDCM and 64% in ICM; p = 0.067). Persistent inducibility of any VT with cycle length ≥250 ms at programmed stimulation at the end of the procedure was the only independent predictor of VT recurrence. Low ejection fraction, New York Heart Association functional class, and VT recurrence over follow-up independently predicted death/transplantation. CA of electrical storm was similarly effective in patients with NIDCM compared with patients with ICM, with elimination of electrical storm in 95% of cases and achievement of complete VT control at long-term follow-up in most patients. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system.

    PubMed

    Vincent, Carr D; Friedman, Jonathan R; Jeong, Kwang Cheol; Sutherland, Molly C; Vogel, Joseph P

    2012-07-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex. © 2012 Blackwell Publishing Ltd.

  18. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential?

    PubMed

    Desai, Nina; Xu, Jing; Tsulaia, Tamara; Szeptycki-Lawson, Julia; AbdelHafez, Faten; Goldfarb, James; Falcone, Tommaso

    2011-02-01

    Vitrification technology presents new opportunities for preservation of embryo derived stem cells without first establishing a viable ESC line. This study tests the feasibility of cryopreserving ICM cells using vitrification. ICMs from mouse embryos were isolated and vitrified in HSV straws or on cryoloops. Upon warming, the vitrified ICMs were cultured and observed for attachment and morphology. Colonies were passaged every 3-6 days. ICMs and ICM-derived ESC colonies were tested for expression of stem cell specific markers. ICMs vitrified on both the cryoloop and the HSV straw had high survival rates. ICM derived ESCs remained undifferentiated for several passages and demonstrated expression of typical stem cell markers; SSEA-1, Sox-2, Oct 4 and alkaline phosphatase. This is the first report on successful vitrification of isolated ICMs and the subsequent derivation of ESC colonies. Vitrification of isolated ICMs is a novel approach for preservation of the "stem cell source" material.

  19. Microstimulation of the Human Substantia Nigra Alters Reinforcement Learning

    PubMed Central

    Ramayya, Ashwin G.; Misra, Amrit

    2014-01-01

    Animal studies have shown that substantia nigra (SN) dopaminergic (DA) neurons strengthen action–reward associations during reinforcement learning, but their role in human learning is not known. Here, we applied microstimulation in the SN of 11 patients undergoing deep brain stimulation surgery for the treatment of Parkinson's disease as they performed a two-alternative probability learning task in which rewards were contingent on stimuli, rather than actions. Subjects demonstrated decreased learning from reward trials that were accompanied by phasic SN microstimulation compared with reward trials without stimulation. Subjects who showed large decreases in learning also showed an increased bias toward repeating actions after stimulation trials; therefore, stimulation may have decreased learning by strengthening action–reward associations rather than stimulus–reward associations. Our findings build on previous studies implicating SN DA neurons in preferentially strengthening action–reward associations during reinforcement learning. PMID:24828643

  20. Programmable high-output-impedance, large-voltage compliance, microstimulator for low-voltage biomedical applications.

    PubMed

    Farahmand, Sina; Maghami, Mohammad Hossein; Sodagar, Amir M

    2012-01-01

    This paper reports on the design of a programmable, high output impedance, large voltage compliance microstimulator for low-voltage biomedical applications. A 6-bit binary-weighted digital to analog converter (DAC) is used to generate biphasic stimulus current pulses. A compact current mirror with large output voltage compliance and high output resistance conveys the current pulses to the target tissue. Designed and simulated in a standard 0.18µm CMOS process, the microstimulator circuit is capable of delivering a maximum stimulation current of 160µA to a 10-kΩ resistive load. Operated at a 1.8-V supply voltage, the output stage exhibits a voltage compliance of 1.69V and output resistance of 160MΩ at full scale stimulus current. Layout of the core microelectrode circuit measures 25.5µm×31.5µm.

  1. The plasma physics of thermal conduction in the intracluster medium of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii << particle mean free path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat-flux will drive a powerful whistler-wave instability and, provided we treat the problem in more than 1D so that oblique modes are captured, these waves efficiently scatter electrons thereby shutting down the heat-flux. Our proposed work builds on these findings with the goal of characterizing the macroscopic effective thermal conduction in a form that can be included in fluid (magnetohydrodynamic; MHD) models of the ICM. We will, 1) Conduct an extended linear analysis of the heat-flux whistler instability, exploring the interaction of the heat flux and the pressure anisotropies that would result from bulk motions of the ICM. We will map the stable/unstable regions as a function of heat-flux, pressure anisotropy, and plasma-beta. 2) Perform particle-in-cell (PIC) simulations to explore the non-linear saturation of the heat-flux whistler instability as a function of the plasma-beta and heat-flux, extending the current work (i.e. very strong fluxes) down to the modest heat-fluxes found in the real ICM. Key is whether overlapping wave-particle resonances that are so efficient at killing the conduction with strong heat-fluxes still operate when the driving heat-flux is weak. 3) Develop a new computational/PIC model that, in contrast to current work, sustains a temperature gradient across the domain thereby allowing us to directly measure the relationship between temperature gradient and heat flux. 4) Build a new thermal conduction model, allowing the heat flux to have a non-linear dependence on temperature gradient, and plasma-beta. We will develop thermal conduction algorithms that can be used in public MHD e.g., PLUTO or FLASH. This work will provide the crucial bridge between the global/MHD models of ICM atmospheres and the microphysics that dictates the transport processes. It will inform the next generation of cluster models used to interpret data from NASA's fleet of X-ray observatories.

  2. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape.

    PubMed

    Richter, K S; Harris, D C; Daneshmand, S T; Shapiro, B S

    2001-12-01

    To investigate the predictive value of quantitative measurements of blastocyst morphology on subsequent implantation rates after transfer. Prospective observational study. Private assisted reproductive technology center. One hundred seventy-four IVF patients receiving transfers of expanded blastocyst-stage embryos on day 5 (n = 112) or day 6 (n = 62) after oocyte retrieval. None. Blastocyst diameter, number of trophectoderm cells, inner cell mass (ICM) size, ICM shape, and implantation and pregnancy rates. Blastocyst diameter and trophectoderm cell numbers were unrelated to implantation rates. Day 5 expanded blastocysts with ICMs of >4,500 microm(2) implanted at a higher rate than did those with smaller ICMs (55% vs. 31%). Day 5 expanded blastocysts with slightly oval ICMs implanted at a higher rate (58%) compared with those with either rounder ICMs (7%) or more elongated ICMs (33%). Implantation rates were highest (71%) for embryos with both optimal ICM size and shape. Pregnancy rates were higher for day 5 transfers of optimally shaped ICMs compared with day 5 transfers of optimally sized ICMs. Quantitative measurements of the inner cell mass are highly indicative of blastocyst implantation potential. Blastocysts with relatively large and/or slightly oval ICMs are more likely to implant than other blastocysts.

  3. The potential utility of iodinated contrast media (ICM) skin testing in patients with ICM hypersensitivity.

    PubMed

    Ahn, Young-Hwan; Koh, Young-Il; Kim, Joo-Hee; Ban, Ga-Young; Lee, Yeon-Kyung; Hong, Ga-Na; Jin, U-Ram; Choi, Byung-Joo; Shin, Yoo-Seob; Park, Hae-Sim; Ye, Young-Min

    2015-03-01

    Both immediate and delayed hypersensitivity reactions to iodinated contrast media (ICM) are relatively common. However, there are few data to determine the clinical utility of immunologic evaluation of ICM. To evaluate the utility of ICM skin testing in patients with ICM hypersensitivity, 23 patients (17 immediate and 6 delayed reactions) were enrolled from 3 university hospitals in Korea. With 6 commonly used ICM including iopromide, iohexol, ioversol, iomeprol, iopamidol and iodixanol, skin prick (SPT), intradermal (IDT) and patch tests were performed. Of 10 patients with anaphylaxis, 3 (30.0%) and 6 (60.0%) were positive respectively on SPTs and IDTs with the culprit ICM. Three of 6 patients with urticaria showed positive IDTs. In total, 11 (64.7%) had positive on either SPT or IDT. Three of 6 patients with delayed rashes had positive response to patch test and/or delayed IDT. Among 5 patients (3 anaphylaxis, 1 urticaria and 1 delayed rash) taken subsequent radiological examinations, 3 patients administered safe alternatives according to the results of skin testing had no adverse reaction. However, anaphylaxis developed in the other 2 patients administered the culprit ICM again. With 64.7% (11/17) and 50% (3/6) of the sensitivities of corresponding allergic skin tests with culprit ICM for immediate and delayed hypersensitivity reactions, the present study suggests that skin tests is useful for the diagnosis of ICM hypersensitivity and for selecting safe ICM and preventing a recurrence of anaphylaxis caused by the same ICM.

  4. Restoring Proprioception via a Cortical Prosthesis: A Novel Learning Based Approach

    DTIC Science & Technology

    2016-10-01

    microstimulation from the neural recordings used for BMI control. This allows us to move to a much more efficient paradigm with continuous brain “ read out” for...microstimulation; movement control 3. ACCOMPLISHMENTS: What were the major goals of the project? Specific Aim 1: Determine whether animals ... animals . However, that signal will correlate on a millisecond timescale with visual feedback of the virtual limb. Based on the previous work (Dadarlat

  5. Introduction

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wong, Terry T.

    2011-01-01

    It would be hard to argue against the fact that Integrated Computational Materials Engineering (ICME) is a fast growing discipline within material science and engineering. A quick scan of the proceedings from conferences such as Aeromat, Material Science and Technology, and the TMS Annual Meeting clearly shows it. What began a few years ago as one symposium has grown into multiple ICME related symposia at each of these conferences. As encouraging as the number of symposia being offered is the attendance at the symposia. For example, one of the ICME symposia at MS&T 10, the symposium in which this book is based, had five sessions which culminated in a panel discussion that was standing room only. In addition to the large, annual materials science and engineering conferences, smaller 1 to 2-day conferences/workshops sponsored by government agencies (e.g. AFRL and NIST) on specific aspects of ICME and by universities promoting their ICME work are regularly offered. And arguably the most significant news with regards to ICME and conferences is the July 2011 First World Congress on ICME. This five day TMS sponsored conference, specifically focused on ICME with an international advisory board of ICME leaders, shows how far ICME has spread across the globe. Evidence for the growth of ICME can also be found in Academia. The University Materials Council (UMC) is composed of department heads for material science and engineering from major U.S. and Canadian universities. Meeting twice a year to share best practices in order to strengthen both the engineering content [1] and the educational process, the UMC s agenda for their Spring 2010 meeting was dedicated to ICME [2]. This meeting was held in response to the growing awareness that the universities play a major role in the success of ICME and therefore need to develop ICME curriculum in order to meet that need. To aid educators in the development of ICME courses, NSF is funding a "Summer School" on ICME to be held at the University of Michigan in 2011 [3]. Northwestern University recently announced a MS Certificate Program in ICME [4]. Course work for this certificate begins in the Fall of 2011. Other signs that ICME is growing comes from the formation of ICME initiatives from work that did not start off with ICME in mind. One of the committees in ASM International is the Materials Properties Database Committee (MPDC). In the 2010 meeting of the MPDC, based on a study by ASM, the committee decided that it would create an ICME sub-committee in order to determine how ASM can meet the growing needs of the ICME community [5]. In 1999, the Air Force Research Laboratory (AFRL) created a consortium, the Metals Affordability Initiative (MAI), with members from both industry and government with a goal of reducing the cost and time to market of producing metal parts for aerospace applications [6].

  6. Cortical visual prostheses: from microstimulation to functional percept

    NASA Astrophysics Data System (ADS)

    Najarpour Foroushani, Armin; Pack, Christopher C.; Sawan, Mohamad

    2018-04-01

    Cortical visual prostheses are intended to restore vision by targeted electrical stimulation of the visual cortex. The perception of spots of light, called phosphenes, resulting from microstimulation of the visual pathway, suggests the possibility of creating meaningful percept made of phosphenes. However, to date electrical stimulation of V1 has still not resulted in perception of phosphenated images that goes beyond punctate spots of light. In this review, we summarize the clinical and experimental progress that has been made in generating phosphenes and modulating their associated perceptual characteristics in human and macaque primary visual cortex (V1). We focus specifically on the effects of different microstimulation parameters on perception and we analyse key challenges facing the generation of meaningful artificial percepts. Finally, we propose solutions to these challenges based on the application of supervised learning of population codes for spatial stimulation of visual cortex.

  7. Microstimulation of the human substantia nigra alters reinforcement learning.

    PubMed

    Ramayya, Ashwin G; Misra, Amrit; Baltuch, Gordon H; Kahana, Michael J

    2014-05-14

    Animal studies have shown that substantia nigra (SN) dopaminergic (DA) neurons strengthen action-reward associations during reinforcement learning, but their role in human learning is not known. Here, we applied microstimulation in the SN of 11 patients undergoing deep brain stimulation surgery for the treatment of Parkinson's disease as they performed a two-alternative probability learning task in which rewards were contingent on stimuli, rather than actions. Subjects demonstrated decreased learning from reward trials that were accompanied by phasic SN microstimulation compared with reward trials without stimulation. Subjects who showed large decreases in learning also showed an increased bias toward repeating actions after stimulation trials; therefore, stimulation may have decreased learning by strengthening action-reward associations rather than stimulus-reward associations. Our findings build on previous studies implicating SN DA neurons in preferentially strengthening action-reward associations during reinforcement learning. Copyright © 2014 the authors 0270-6474/14/346887-09$15.00/0.

  8. Revealing Thermal Instabilities in the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2017-08-01

    The Phoenix cluster is the most relaxed cluster known, and hosts the strongest cool core of any cluster yet discovered. At the center of this cluster is a massive starburst galaxy, with a SFR of 500-1000 Msun/yr, seemingly satisfying the early cooling flow predictions, despite the presence of strong AGN feedback from the central supermassive black hole. Here we propose deep narrow-band imaging of the central 120 kpc of the cluster, to map the warm (10^4K) ionized gas via the [O II] emission line. In low-z clusters, such as Perseus and Abell 1795, the warm, ionized phase is of critical importance to map out thermal instabilities in the hot gas, and maps of Halpha and [O II] have been used for decades to understand how (and how not) cooling proceeds in the intracluster medium. The data proposed for here, combined with deep ALMA data, a recently-approved Large Chandra Program, and recently-approved multi-frequency JVLA data, will allow us to probe the cooling ICM, the cool, filamentary gas, the cold molecular gas, the star-forming population, and the AGN jets all on scales of <10 kpc. This multi-observatory campaign, focusing on the most extreme cooling cluster, will lead to a more complete understanding of how and why thermal instabilities develop in the hot ICM of cool core clusters.

  9. Visualization of Cortical Dynamics

    NASA Astrophysics Data System (ADS)

    Grinvald, Amiram

    2003-03-01

    Recent progress in studies of cortical dynamics will be reviewed including the combination of real time optical imaging based on voltage sensitive dyes, single and multi- unit recordings, LFP, intracellular recordings and microstimulation. To image the flow of neuronal activity from one cortical site to the next, in real time, we have used optical imaging based on newly designed voltage sensitive dyes and a Fuji 128x 128 fast camera which we modified. A factor of 20-40 fold improvement in the signal to noise ratio was obtained with the new dye during in vivo imaging experiments. This improvements has facilitates the exploration of cortical dynamics without signal averaging in the millisecond time domain. We confirmed that the voltage sensitive dye signal indeed reflects membrane potential changes in populations of neurons by showing that the time course of the intracellular activity recorded intracellularly from a single neuron was highly correlated in many cases with the optical signal from a small patch of cortex recorded nearby. We showed that the firing of single cortical neurons is not a random process but occurs when the on-going pattern of million of neurons is similar to the functional architecture map which correspond to the tuning properties of that neuron. Chronic optical imaging, combined with electrical recordings and microstimulation, over a long period of times of more than a year, was successfully applied also to the study of higher brain functions in the behaving macaque monkey.

  10. Mapping the filaments in NGC 1275

    NASA Astrophysics Data System (ADS)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  11. Searching for cluster magnetic fields in the cooling flows of 0745-191, A2029, and A4059

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory B.; Barton, Elizabeth J.; Ge, Jingping

    1994-01-01

    We have performed sensitive polarimetric radio observations with the Very Large Array (VLA) of three galaxies: PKS 0745-191, PKS 1508+059, and PKS 2354-350, embedded in x-ray cooling flow clusters. High sensitivity, multifrequency maps of all three, along with spectral index and Faraday rotation measure (RM) maps of PKS 1508+059 and PKS 2354-350 are presented. For PKS 1508+059 and PKS 2354-350 models of the electron density of the intracluster medium (ICM) have been used to set lower limits of 0.1 and 2.7 microG, respectively, on the magnetic field in the ICM based on the observed RMs. In an x-ray selected sample of cooling flow clusters with an associated radio source, 57% (8/14) are found to have absolute RMs in excess of 800 radians/sq m. This sample includes the three sources of this study and all the other high RM sources found to date at zeta less than 0.4. These facts are consistent with the high RM phenomenon being produced by magnetic fields associated with the relatively dense, hot x-ray gas in cooling flow clusters.

  12. Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila.

    PubMed

    Gal-Mor, Ohad; Segal, Gil

    2003-08-01

    To date, 24 Legionella pneumophila genes (icm and dot genes) have been shown to be required for intercellular growth and host cell killing. A previous report indicated that the regulation of these genes is complicated and probably involves several regulatory proteins. In this study, a genetic screen performed in Escherichia coli identified the CpxR response regulator as an activator of the L. pneumophila icmR gene. Construction of an L. pneumophila cpxR insertion mutant showed that the expression of icmR is regulated by CpxR. In addition, a conserved CpxR binding site (GTAAA) was identified in the icmR regulatory region and L. pneumophila His-tagged CpxR protein was shown to bind to the icmR regulatory region using a mobility shift assay. Besides its dramatic effect on the icmR level of expression, the CpxR regulator was also found to affect the expression of the icmV-dotA and icmW-icmX operons, but to a lesser extent. The role of CpxA, the cognate sensor kinase of CpxR, was also examined and its effect on the icmR level of expression was found to be less pronounced than the effect of CpxR. The RpoE sigma factor, which was shown to coregulate genes together with CpxR, was examined as well, but it did not influence icm and dot gene expression. In addition, when the cpxR mutant strain, in which the expression of the icmR gene was dramatically reduced, and the cpxA and rpoE mutant strains were examined for their ability to grow inside Acanthamoeba castellanii and HL-60-derived human macrophages, no intracellular growth defect was observed. This study presents the first evidence for a direct regulator (CpxR) of an icm-dot virulence gene (icmR). The CpxR regulator together with other regulatory factors probably concerts with the expression of icm and dot genes to result in successful infection.

  13. Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning

    NASA Astrophysics Data System (ADS)

    Rebesco, James M.; Miller, Lee E.

    2011-02-01

    Normal brain function requires constant adaptation, as an organism learns to associate important sensory stimuli with the appropriate motor actions. Neurological disorders may disrupt these learned associations and require the nervous system to reorganize itself. As a consequence, neural plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. Associative, or Hebbian, pairing of pre- and post-synaptic activity has been shown to alter stimulus-evoked responses in vivo; however, to date, such protocols have not been shown to affect the animal's subsequent behavior. We paired stimulus trains separated by a brief time delay to two electrodes in rat sensorimotor cortex, which changed the statistical pattern of spikes during subsequent behavior. These changes were consistent with strengthened functional connections from the leading electrode to the lagging electrode. We then trained rats to respond to a microstimulation cue, and repeated the paradigm using the cue electrode as the leading electrode. This pairing lowered the rat's ICMS-detection threshold, with the same dependence on intra-electrode time lag that we found for the functional connectivity changes. The timecourse of the behavioral effects was very similar to that of the connectivity changes. We propose that the behavioral changes were a consequence of strengthened functional connections from the cue electrode to other regions of sensorimotor cortex. Such paradigms might be used to augment recovery from a stroke, or to promote adaptation in a bidirectional brain-machine interface.

  14. Flood Water Level Mapping and Prediction Due to Dam Failures

    NASA Astrophysics Data System (ADS)

    Musa, S.; Adnan, M. S.; Ahmad, N. A.; Ayob, S.

    2016-07-01

    Sembrong dam has undergone overflow failure. Flooding has been reported to hit the town, covering an area of up to Parit Raja, located in the district of Batu Pahat. This study aims to identify the areas that will be affected by flood in the event of a dam failure in Sembrong Dam, Kluang, Johor at a maximum level. To grasp the extent, the flood inundation maps have been generated by using the InfoWorks ICM and GIS software. By using these maps, information such as the depth and extent of floods can be identified the main ares flooded. The flood map was created starting with the collection of relevant data such as measuring the depth of the river and a maximum flow rate for Sembrong Dam. The data were obtained from the Drainage and Irrigation Department Malaysia and the Department of Survey and Mapping and HLA Associates Sdn. Bhd. Then, the data were analyzed according to the established Info Works ICM method. The results found that the flooded area were listed at Sri Lalang, Parit Sagil, Parit Sonto, Sri Paya, Parit Raja, Parit Sempadan, Talang Bunut, Asam Bubok, Tanjung Sembrong, Sungai Rambut and Parit Haji Talib. Flood depth obtained for the related area started from 0.5 m up to 1.2 m. As a conclusion, the flood emanating from this study include the area around the town of Ayer Hitam up to Parit Raja approximately of more than 20 km distance. This may give bad implication to residents around these areas. In future studies, other rivers such as Sungai Batu Pahat should be considered for this study to predict and reduce the yearly flood victims for this area.

  15. Microstimulation with Chronically Implanted Intracortical Electrodes

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas

    Stimulating microelectrodes that penetrate into the brain afford a means of accessing the basic functional units of the central nervous system. Microstimulation in the region of the cerebral cortex that subserve vision may be an alternative, or an adjunct, to a retinal prosthesis, and may be particularly attractive as a means of restoring a semblance of high-resolution central vision. There also is the intriguing possibility that such a prosthesis could convey higher order visual percepts, many of which are mediated by neural circuits in the secondary or "extra-striate" visual areas that surround the primary visual cortex. The technologies of intracortical stimulating microelectrodes and investigations of the effects of microstimulation on neural tissue have advanced to the point where a cortical-level prosthesis is at least feasible. The imperative of protecting neural tissue from stimulation-induced damage imposes constraints on the selection of stimulus parameters, as does the requirement that the stimulation not greatly affect the electrical excitability of the neurons that are to be activated. The latter is especially likely to occur when many adjacent microelectrodes are pulsed, as will be necessary in a visual prosthesis. However, data from animal studies indicates that these restrictions on stimulus parameter are compatible with those that can evoke visual percepts in humans and in experimental animals. These findings give cause to be optimistic about the prospects for realizing a visual prosthesis utilizing intracortical microstimulation.

  16. A low-power bidirectional telemetry device with a near-field charging feature for a cardiac microstimulator.

    PubMed

    Shuenn-Yuh Lee; Chih-Jen Cheng; Ming-Chun Liang

    2011-08-01

    In this paper, wireless telemetry using the near-field coupling technique with round-wire coils for an implanted cardiac microstimulator is presented. The proposed system possesses an external powering amplifier and an internal bidirectional microstimulator. The energy of the microstimulator is provided by a rectifier that can efficiently charge a rechargeable device. A fully integrated regulator and a charge pump circuit are included to generate a stable, low-voltage, and high-potential supply voltage, respectively. A miniature digital processor includes a phase-shift-keying (PSK) demodulator to decode the transmission data and a self-protective system controller to operate the entire system. To acquire the cardiac signal, a low-voltage and low-power monitoring analog front end (MAFE) performs immediate threshold detection and data conversion. In addition, the pacing circuit, which consists of a pulse generator (PG) and its digital-to-analog (D/A) controller, is responsible for stimulating heart tissue. The chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) with 0.35-μm complementary metal-oxide semiconductor technology to perform the monitoring and pacing functions with inductively powered communication. Using a model with lead and heart tissue on measurement, a -5-V pulse at a stimulating frequency of 60 beats per minute (bpm) is delivered while only consuming 31.5 μW of power.

  17. Transit Time and Normal Orientation of ICME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.

    2006-12-01

    Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.

  18. Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: thresholds and recruitment properties

    NASA Astrophysics Data System (ADS)

    Gaunt, R. A.; Hokanson, J. A.; Weber, D. J.

    2009-10-01

    Current research in motor neural prosthetics has focused primarily on issues related to the extraction of motor command signals from the brain (e.g. brain-machine interfaces) to direct the motion of prosthetic limbs. Patients using these types of systems could benefit from a somatosensory neural interface that conveys natural tactile and kinesthetic sensations for the prosthesis. Electrical microstimulation within the dorsal root ganglia (DRG) has been proposed as one method to accomplish this, yet little is known about the recruitment properties of electrical microstimulation in activating nerve fibers in this structure. Current-controlled microstimulation pulses in the range of 1-15 µA (200 µs, leading cathodic pulse) were delivered to the L7 DRG in four anesthetized cats using penetrating microelectrode arrays. Evoked responses and their corresponding conduction velocities (CVs) were measured in the sciatic nerve with a 5-pole nerve cuff electrode arranged as two adjacent tripoles. It was found that in 76% of the 69 electrodes tested, the stimulus threshold was less than or equal to 3 µA, with the lowest recorded threshold being 1.1 µA. The CVs of afferents recruited at threshold had a bimodal distribution with peaks at 70 m s-1 and 85 m s-1. In 53% of cases, the CV of the response at threshold was slower (i.e. smaller diameter fiber) than the CVs of responses observed at increasing stimulation amplitudes. In summary, we found that microstimulation applied through penetrating microelectrodes in the DRG provides selective recruitment of afferent fibers from a range of sensory modalities (as identified by CVs) at very low stimulation intensities. We conclude that the DRG may serve as an attractive location from which to introduce surrogate somatosensory feedback into the nervous system.

  19. Geoeffectiveness (D (sub st) and K (sub p)) of Interplanetary Coronal Mass Ejections During 1995-2009 and Implications for Storm Forecasting

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the geoeffectiveness (based on the Dst and Kp indices) of the more than 300 interplanetary coronal mass ejections (ICMEs) that passed the Earth during 1996-2009, encompassing solar cycle 23. We subsequently estimate the probability that an ICME will generate geomagnetic activity that exceeds certain thresholds of Dst or Kp, including the NOAA "G" storm scale, based on maximum values of the southward magnetic field component (Bs), the solar wind speed (V), and the y component (Ey) of the solar wind convective electric field E = -V x B, in the ICME or sheath ahead of the ICME. Consistent with previous studies, the geoeffectiveness of an ICME is correlated with Bs or Ey approx.= VBs in the ICME or sheath, indicating that observations from a solar wind monitor upstream of the Earth are likely to provide the most reliable forecasts of the activity associated with an approaching ICME. There is also a general increase in geoeffectiveness with ICME speed, though the overall event-to-event correlation is weaker than for Bs and Ey. Nevertheless, using these results, we suggest that the speed of an ICME approaching the Earth inferred, for example, from routine remote sensing by coronagraphs on spacecraft well separated from the Earth or by all-sky imagers, could be used to estimate the likely geoeffectiveness of the ICME (our "comprehensive" ICME database provides a proxy for ICMEs identified in this way) with a longer lead time than may be possible using an upstream monitor

  20. Coronal mass ejections and their sheath regions in interplanetary space

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  1. US-75 ICM system design document : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2013-06-01

    This System Design document for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative. The basic premise behind the ICM initiative is that in...

  2. Second-generation microstimulator.

    PubMed

    Arcos, Isabel; Davis, R; Fey, K; Mishler, D; Sanderson, D; Tanacs, C; Vogel, M J; Wolf, R; Zilberman, Y; Schulman, J

    2002-03-01

    The first-generation injectable microstimulator was glass encased with an external tantalum capacitor electrode. This second-generation device uses a hermetically sealed ceramic case with platinum electrodes. Zener diodes protect the electronics from defibrillation shocks and from electrostatic discharge. The capacitor is sealed inside the case so that it cannot be inadvertently damaged by surgical instruments. This microstimulator, referred to as BION, is the main component of a 255-channel wireless stimulating system. BION devices have been implanted in rats for periods of up to 5 months. Results show benign tissue reactions resulting in identical encapsulation around BION and controls. Stimulation threshold levels did not change significantly over time and ranged between 0.81 to 1.35 mA for all the animals at a 60 micros pulse width. All of the tests performed to date indicate that the BION is safe and effective for long-term human implant. We have elected to develop BION applications by seeking collaboration with the research community through our BION Technology Partnership.

  3. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation.

    PubMed

    Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2017-07-05

    The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Localized microstimulation of primate pregenual cingulate cortex induces negative decision-making.

    PubMed

    Amemori, Ken-ichi; Graybiel, Ann M

    2012-05-01

    The pregenual anterior cingulate cortex (pACC) has been implicated in human anxiety disorders and depression, but the circuit-level mechanisms underlying these disorders are unclear. In healthy individuals, the pACC is involved in cost-benefit evaluation. We developed a macaque version of an approach-avoidance decision task used to evaluate anxiety and depression in humans and, with multi-electrode recording and cortical microstimulation, we probed pACC function as monkeys performed this task. We found that the macaque pACC has an opponent process-like organization of neurons representing motivationally positive and negative subjective value. Spatial distribution of these two neuronal populations overlapped in the pACC, except in one subzone, where neurons with negative coding were more numerous. Notably, microstimulation in this subzone, but not elsewhere in the pACC, increased negative decision-making, and this negative biasing was blocked by anti-anxiety drug treatment. This cortical zone could be critical for regulating negative emotional valence and anxiety in decision-making.

  5. The Legionella IcmSW Complex Directly Interacts with DotL to Mediate Translocation of Adaptor-Dependent Substrates

    PubMed Central

    Sutherland, Molly C.; Nguyen, Thuy Linh; Tseng, Victor; Vogel, Joseph P.

    2012-01-01

    Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS. PMID:23028312

  6. US-75 ICM system as-built design : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2015-05-01

    This As-Built document for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative. The basic premise behind the ICM initiative is that indepen...

  7. Involuntary conscious memory facilitates cued recall performance: further evidence that chaining occurs during voluntary recall.

    PubMed

    Mace, John H

    2009-01-01

    Recent studies have shown that conscious recollection of the past occurs spontaneously when subjects voluntarily recall their own past experiences or a list of previously studied words. Naturalistic diary studies and laboratory studies of this phenomenon, often called involuntary conscious memory (ICM), show that it occurs in 2 ways. One is direct ICM retrieval, which occurs when a cue spontaneously triggers a conscious memory; the other is chained ICM retrieval, which occurs when a retrieved conscious memory spontaneously triggers another. Laboratory studies investigating ICM show that chained ICM retrieval occurs on voluntary autobiographical memory tasks. The present results show that chained ICM retrieval also occurs on a voluntary word list memory task (cued recall). These results are among a handful suggesting that ICM retrieval routinely occurs during voluntary recall.

  8. Rescuing the intracluster medium of NGC 5813

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Hillel, Shlomi; Sternberg, Assaf

    2016-06-01

    We use recent X-ray observations of the intracluster medium (ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties. We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM, than by shocks or turbulent-heating. Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow; in order to adequately heat the inner part of the ICM, they would overheat the outer regions by a large factor, leading to its ejection from the group. Heating by mixing, which was found to be much more efficient than turbulent-heating and shocks-heating, hence, rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.

  9. The development of the ICME supply-chain: Route to ICME implementation and sustainment

    NASA Astrophysics Data System (ADS)

    Furrer, David; Schirra, John

    2011-04-01

    Over the past twenty years, integrated computational materials engineering (ICME) has emerged as a key engineering field with great promise. Models simulating materials-related phenomena have been developed and are being validated for industrial application. The integration of computational methods into material, process and component design has been a challenge, however, in part due to the complexities in the development of an ICME "supply-chain" that supports, sustains and delivers this emerging technology. ICME touches many disciplines, which results in a requirement for many types of computational-based technology organizations to be involved to provide tools that can be rapidly developed, validated, deployed and maintained for industrial applications. The need for, and the current state of an ICME supply-chain along with development and future requirements for the continued pace of introduction of ICME into industrial design practices will be reviewed within this article.

  10. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery.

    PubMed

    Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei

    2017-03-01

    Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepri, Susan T.; Laming, J. Martin; Rakowski, Cara E.

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, wemore » present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.« less

  12. Immediate hypersensitivity to iodinated contrast media: diagnostic accuracy of skin tests and intravenous provocation test with low dose.

    PubMed

    Sesé, L; Gaouar, H; Autegarden, J-E; Alari, A; Amsler, E; Vial-Dupuy, A; Pecquet, C; Francès, C; Soria, A

    2016-03-01

    The diagnosis of HSR to iodinated contrast media (ICM) is challenging based on clinical history and skin tests. This study evaluates the negative predictive value (NPV) of skin tests and intravenous provocation test (IPT) with low-dose ICM in patients with suspected immediate hypersensitivity reaction (HSR) to ICM. Thirty-seven patients with suspected immediate hypersensitivity reaction to ICM were included retrospectively. Skin tests and a single-blind placebo-controlled intravenous provocation test (IPT) with low-dose iodinated contrast media (ICM) were performed. Skin tests with ICM were positive in five cases (one skin prick test and five intradermal test). Thirty-six patients were challenged successfully by IPT, and only one patient had a positive challenge result, with a grade I reaction by the Ring and Messmer classification. Ten of 23 patients followed up by telephone were re-exposed to a negative tested ICM during radiologic examination; two experienced a grade I immediate reaction. For immediate hypersensitivity reaction to ICM, the NPV for skin tests and IPT with low dose was 80% (95% CI 44-97%). © 2016 John Wiley & Sons Ltd.

  13. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells.

    PubMed

    Wanjare, Maureen; Hou, Luqia; Nakayama, Karina H; Kim, Joseph J; Mezak, Nicholas P; Abilez, Oscar J; Tzatzalos, Evangeline; Wu, Joseph C; Huang, Ngan F

    2017-07-25

    Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.

  14. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.

    PubMed

    Ma, Hong; Wang, Li; Liu, Jiandong; Qian, Li

    2017-01-01

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds great promise as a novel therapy for the treatment of heart failure, a common and morbid disease that is usually caused by irreversible loss of functional cardiomyocytes (CMs). Recently, we and others showed that in a murine model of acute myocardial infarction, delivery of three transcription factors, Gata4, Mef2c, and Tbx5 converted endogenous cardiac fibroblasts into functional iCMs. These iCMs integrated electrically and mechanically with surrounding myocardium, resulting in a reduction in scar size and an improvement in heart function. Our findings suggest that iCM reprogramming may be a means of regenerating functional CMs in vivo for patients with heart disease. However, because relatively little is known about the factors that regulate iCM reprogramming, the applicability of iCM reprogramming is currently limited to the experimental settings in which it has been attempted. Specific hurdles include the relatively low conversion rate of iCMs and the need for reprogramming to occur in the context of acute injury. Therefore, before this treatment can become a viable therapy for human heart disease, the optimal condition for efficient iCM generation must be determined. Here, we provide a detailed protocol for both in vitro and in vivo iCM generation that has been optimized so far in our lab. We hope that this protocol will lay a foundation for future further improvement of iCM generation and provide a platform for mechanistic studies.

  15. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  16. Identification of Interplanetary Coronal Mass Ejections at 1 AU Using Multiple Solar Wind Plasma Composition Anomalies

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions of both ICMEs and the ambient solar wind.

  17. I-880 Integrated Corridor Management ICM System Requirements : Final Submittal : System Requirement Specification for the I-880 Corridor in Oakland, California

    DOT National Transportation Integrated Search

    2008-03-31

    This document summarizes the efforts conducted by the I-880 ICM team for the development of the system requirements for the I-880 Integrated Corridor Management System (ICMS). It describes the approach that the I-880 team took in defining the ICMS an...

  18. Efficient Direct Lineage Reprogramming of Fibroblasts into Induced Cardiomyocytes Using Nanotopographical Cues.

    PubMed

    Yoo, Junsang; Chang, Yujung; Kim, Hongwon; Baek, Soonbong; Choi, Hwan; Jeong, Gun-Jae; Shin, Jaein; Kim, Hongnam; Kim, Byung-Soo; Kim, Jongpil

    2017-03-01

    Induced cardiomyocytes (iCMs) generated via direct lineage reprogramming offer a novel therapeutic target for the study and treatment of cardiac diseases. However, the efficiency of iCM generation is significantly low for therapeutic applications. Here, we show an efficient direct conversion of somatic fibroblasts into iCMs using nanotopographic cues. Compared with flat substrates, the direct conversion of fibroblasts into iCMs on nanopatterned substrates resulted in a dramatic increase in the reprogramming efficiency and maturation of iCM phenotypes. Additionally, enhanced reprogramming by substrate nanotopography was due to changes in the activation of focal adhesion kinase and specific histone modifications. Taken together, these results suggest that nanotopographic cues can serve as an efficient stimulant for direct lineage reprogramming into iCMs.

  19. Effect of external anal sphincter contraction on the ischiocavernosus muscle and its suggested role in the sexual act.

    PubMed

    Shafik, Ahmed; Shafik, Ismail; El-Sibai, Olfat; Shafik, Ali A

    2006-01-01

    Whereas the bulbocavernosus muscle shares its contractile activity with the external anal sphincter (EAS), the response of the ischiocavernosus muscle (ICM) to EAS contraction could not be traced in the literature. We investigated the hypothesis that the ICM contracts reflexly upon EAS contraction. The response of the ICM to EAS squeeze and stimulation was recorded in 21 healthy volunteers (13 men, 8 women, age 36.8 +/- 10.7 [SD] years). An electromyographic (EMG) needle (stimulating) electrode was introduced into the EAS and another (recording) one was inserted into the ICM. The test was repeated after individual anesthetization of the EAS and ICM and after muscle infiltration with normal saline instead of lidocaine. EAS electrostimulation (10 stimuli, 200 micros duration, 0.2 Hz frequency, 0-100 mA intensity) produced an increase of ICM EMG activity to a mean of 267.8 +/- 42.7 microV, whereas anal squeeze effected an increase to a mean of 224.5 +/- 45.3 microV. The ICM did not respond to stimulation of the EAS after individual anesthetization of the ICM and EAS, but it did after saline infiltration. The results were reproducible. ICM contracted upon EAS contraction. This effect seems to be mediated through a reflex that we call "anocavernosal excitatory reflex." The ICM lever action is suggested to share in the erectile mechanism by elevating the penile shaft to above the horizontal level. The reflex may prove of diagnostic significance in sexual function disorders, a point that needs further study.

  20. Insertable cardiac monitors in the diagnosis of syncope and the detection of atrial fibrillation: A systematic review and meta-analysis.

    PubMed

    Burkowitz, Jörg; Merzenich, Carina; Grassme, Kathrin; Brüggenjürgen, Bernd

    2016-08-01

    Insertable or implantable cardiac monitors (ICMs) continuously monitor the heart rhythm and record irregularities over 3 years, enabling the diagnosis of infrequent rhythm abnormalities associated with syncope and stroke. The enhanced recognition capabilities of recent ICM models are able to accurately detect atrial fibrillation (AF) and have led to new applications of ICMs for the detection and monitoring of AF. Based on a systematic literature search, two indications were identified for ICMs for which considerable evidence, including randomized studies, exists: diagnosing the underlying cardiac cause of unexplained recurrent syncope and detecting AF in patients after cryptogenic stroke (CS). Three randomized controlled trials (RCTs) were identified that compared the effectiveness of ICMs in diagnosing patients with unexplained syncope (n = 556) to standard of care. A meta-analysis was conducted in order to generate an overall effect size and confidence interval of the diagnostic yield of ICMs versus conventional monitoring. In the indication CS, one RCT and five observational studies were included in order to assess the performance of ICMs in diagnosing patients with AF (n = 1129). Based on these studies, there is strong evidence that ICMs provide a higher diagnostic yield for detecting arrhythmias in patients with unexplained syncope and for detection of AF in patients after CS compared to conventional monitoring. Prolonged monitoring with ICMs is an effective tool for diagnosing the underlying cardiac cause of unexplained syncope and for detecting AF in patients with CS. In all RCTs, ICMs have a superior diagnostic yield compared to conventional monitoring. © The European Society of Cardiology 2016.

  1. Contrast Media Use in Radiation Oncology: A Prospective, Controlled Educational Intervention Study with Retrospective Analysis of Patient Outcomes

    PubMed Central

    Barker, Christopher A.; Mutter, Robert W.; Shapiro, Lauren Q.; Zhang, Zhigang; Wolden, Suzanne L.; Yahalom, Joachim

    2016-01-01

    Purpose Intravenous contrast media (ICM) administration is recommended as part of radiation therapy (RT) simulation in a variety of clinical scenarios, but can cause adverse events. We sought to assess radiation oncology resident knowledge about ICM, and to determine if an educational intervention (EI) could improve this level of knowledge. In conjunction, we retrospectively analyzed risk factors and adverse events related to ICM use before and after the EI to determine whether any improvements in patient outcomes could be realized. Methods Over 2 years, 21 residents in radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC) participated in a pretest-EI-posttest study based on the ACR’s Manual on Contrast Media. Medical and RT records were reviewed, and ICM use, risk factors and adverse events were recorded. Results There was no significant difference in resident understanding of ICM use in residents of different years of training (p=0.85). Understanding of ICM use increased in residents that attended the EI (p<0.05), but this was not sustained 1 year after the EI (p=0.48). Of the 6852 RT simulations that were performed at MSKCC, 1350 (19.7%) involved ICM. Mild adverse events occurred in a few patients (<5%) simulated with ICM, but there was no difference in the number of risk factors or adverse events before and after the EI. Conclusions The EI effectively improved short-term understanding of ICM use. However, the effect was not sustained. The frequency of adverse events related to ICM use was small and not significantly impacted by the EI. PMID:21129689

  2. Statistical Study of ICMEs and Their Sheaths During Solar Cycle 23 (1996 - 2008)

    NASA Astrophysics Data System (ADS)

    Mitsakou, E.; Moussas, X.

    2014-08-01

    We have created a new catalog of 325 interplanetary coronal mass ejections (ICMEs) using their in-situ plasma signatures from 1996 to 2008; this time period includes Solar Cycle 23. The data set came from the OMNI near-Earth database. The one-minute resolution data that we used include magnetic-field strength, solar-wind speed, proton density, proton temperature, and plasma β. We compared this new catalog with other published catalogs. For every event, we indicated the presence of an ICME-driven shock. We identified the boundaries of ICMEs and their sheaths, and examined the statistical properties of characteristic parameters. We derived the duration and radial width of ICMEs and sheaths in the region near Earth. The statistical analysis of all events shows that, on average, sheaths travel faster than ICMEs, which indicates the expansion of CMEs in the interplanetary medium. They have higher mean magnetic-field strength values than ICMEs, and they are denser. They have higher mean proton temperature and plasma β than ICMEs, but they are smaller than ICMEs and last for a shorter time. The events were divided into different categories according to whether they included a shock and according to the phase of Solar Cycle 23 in which they are observed, i.e. ascending, maximum, or descending phase. We compared the different categories. We present a catalog of events available to the scientific community that studies ICMEs, and show the distribution and statistical properties of various parameters during these phenomena that govern the solar wind, the interplanetary medium, and space weather.

  3. In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis.

    PubMed

    Labra, Álvaro; Arredondo-Zelada, Oscar; Flores-Herrera, Patricio; Marshall, Sergio H; Gómez, Fernando A

    2016-03-01

    Piscirickettsia salmonis seriously affects the Chilean salmon industry. The bacterium is phylogenetically related to Legionella pneumophila and Coxiella burnetii, sharing a Dot/Icm secretion system with them. Although it is well documented that L. pneumophila and C. burnetii secrete different virulence effectors via this Dot/Icm system in order to attenuate host cell responses, to date there have been no reported virulence effectors secreted by the Dot/Icm system of P. salmonis. Using several annotations of P. salmonis genome, here we report an in silico analyses of 4 putative Dot/Icm effectors. Three of them contain ankyrin repeat domains and the typical conserved 3D structures of this protein family. The fourth one is highly similar to one of the Dot/Icm-dependent effectors of L. pneumophila. Additionally, all the potential P. salmonis effectors contain a classical Dot/Icm secretion signal in their C-terminus, consisting of: an E-Block, a hydrophobic residue in -3 or -4 and an electronegative charge. Finally, qPCR analysis demonstrated that these proteins are overexpressed early in infection, perhaps contributing to the generation of a replicative vacuole, a key step in the neutralizing strategy proposed for the Dot/Icm system. In summary, this report identifies four Dot/Icm-dependent effectors in P. salmonis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange.

    PubMed

    Loi, Pasqualino; Galli, Cesare; Lazzari, Giovanna; Matsukawa, Kazutsugu; Fulka, Josef; Goeritz, Frank; Hildebrandt, Thomas B

    2018-04-13

    Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation.

  5. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange

    PubMed Central

    LOI, Pasqualino; GALLI, Cesare; LAZZARI, Giovanna; MATSUKAWA, Kazutsugu; FULKA, Josef; GOERITZ, Frank; HILDEBRANDT, Thomas B.

    2018-01-01

    Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%) exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a promising approach for endangered species conservation. PMID:29445070

  6. Constrained Kinematics of ICMEs from Multi-point in Situ and Heliospheric Imaging Data

    NASA Astrophysics Data System (ADS)

    Rollett, T.; Temmer, M.; Moestl, C.; Veronig, A. M.; Lugaz, N.; Vrsnak, B.; Farrugia, C. J.; Amerstorfer, U.

    2013-12-01

    The constrained harmonic mean (CHM) method is used to calculate the direction of motion of ICMEs and their kinematical profiles. Combining single spacecraft white-light observations from STEREO/HI with supplementary in situ data, it is possible to derive the propagation speed varying with heliocentric distance. This is a big advantage against other single-viewpoint methods, i.e. fitting methods, which assume a constant propagation speed. We show two different applications for the CHM method: first, an analysis of the interaction between the solar wind and ICMEs, and second, the interaction between two ICMEs. For analyzing interaction processes it is crucial to use a method that has the ability to investigate the corresponding effects on ICME kinematics. Additionally, we show the analysis of an outstanding fast ICME event of March 2012, which was detected in situ by Venus Express, Messenger and Wind and also observed by STEREO-A/HI. Due to these multiple in situ measurements it was possible to constrain the ICME kinematics by three different boundary values. These studies are fundamental in order to deepen the understanding of ICME evolution and to enhance existing forecasting methods. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  7. Gentle Heating by Mixing in Cooling Flow Clusters

    NASA Astrophysics Data System (ADS)

    Hillel, Shlomi; Soker, Noam

    2017-08-01

    We analyze 3D hydrodynamical simulations of the interaction of jets and the bubbles they inflate with the intracluster medium (ICM) and show that the heating of the ICM by mixing hot bubble gas with the ICM operates over tens of millions of years and hence can smooth the sporadic activity of the jets. The inflation process of hot bubbles by propagating jets forms many vortices, and these vortices mix the hot bubble gas with the ICM. The mixing, and hence the heating of the ICM, starts immediately after the jets are launched, but continues for tens of millions of years. We suggest that the smoothing of the active galactic nucleus (AGN) sporadic activity by the long-lived vortices accounts for the recent finding of a gentle energy coupling between AGN heating and the ICM.

  8. Intensive case management for severe mental illness

    PubMed Central

    Dieterich, Marina; Irving, Claire B; Park, Bert; Marshall, Max

    2014-01-01

    Background Intensive Case Management (ICM) is a community based package of care, aiming to provide long term care for severely mentally ill people who do not require immediate admission. ICM evolved from two original community models of care, Assertive Community Treatment (ACT) and Case Management (CM), where ICM emphasises the importance of small caseload (less than 20) and high intensity input. Objectives To assess the effects of Intensive Case Management (caseload <20) in comparison with non-Intensive Case Management (caseload > 20) and with standard community care in people with severe mental illness. To evaluate whether the effect of ICM on hospitalisation depends on its fidelity to the ACT model and on the setting. Search methods For the current update of this review we searched the Cochrane Schizophrenia Group Trials Register (February 2009), which is compiled by systematic searches of major databases, hand searches and conference proceedings. Selection criteria All relevant randomised clinical trials focusing on people with severe mental illness, aged 18 to 65 years and treated in the community-care setting, where Intensive Case Management, non-Intensive Case Management or standard care were compared. Outcomes such as service use, adverse effects, global state, social functioning, mental state, behaviour, quality of life, satisfaction and costs were sought. Data collection and analysis We extracted data independently. For binary outcomes we calculated relative risk (RR) and its 95% confidence interval (CI), on an intention-to-treat basis. For continuous data we estimated mean difference (MD) between groups and its 95% confidence interval (CI). We employed a random-effects model for analyses. We performed a random-effects meta-regression analysis to examine the association of the intervention’s fidelity to the ACT model and the rate of hospital use in the setting where the trial was conducted with the treatment effect. Main results We included 38 trials (7328 participants) in this review. The trials provided data for two comparisons: 1. ICM versus standard care, 2. ICM versus non-ICM. 1. ICM versus standard care Twenty-four trials provided data on length of hospitalisation, and results favoured Intensive Case Management (n=3595, 24 RCTs, MD −0.86 CI −1.37 to −0.34). There was a high level of heterogeneity, but this significance still remained when the outlier studies were excluded from the analysis (n=3143, 20 RCTs, MD −0.62 CI −1.00 to −0.23). Nine studies found participants in the ICM group were less likely to be lost to psychiatric services (n=1633, 9 RCTs, RR 0.43 CI 0.30 to 0.61, I2=49%, p=0.05). One global state scale did show an Improvement in global state for those receiving ICM, the GAF scale (n=818, 5 RCTs, MD 3.41 CI 1.66 to 5.16). Results for mental state as measured through various rating scales, however, were equivocal, with no compelling evidence that ICM was really any better than standard care in improving mental state. No differences in mortality between ICM and standard care groups occurred, either due to ’all causes’ (n=1456, 9 RCTs, RR 0.84 CI 0.48 to 1.47) or to ’suicide’ (n=1456, 9 RCTs, RR 0.68 CI 0.31 to 1.51). Social functioning results varied, no differences were found in terms of contact with the legal system and with employment status, whereas significant improvement in accommodation status was found, as was the incidence of not living independently, which was lower in the ICM group (n=1185, 4 RCTs, RR 0.65 CI 0.49 to 0.88). Quality of life data found no significant difference between groups, but data were weak. CSQ scores showed a greater participant satisfaction in the ICM group (n=423, 2 RCTs, MD 3.23 CI 2.31 to 4.14). 2. ICM versus non-ICM The included studies failed to show a significant advantage of ICM in reducing the average length of hospitalisation (n=2220, 21 RCTs, MD −0.08 CI −0.37 to 0.21). They did find ICM to be more advantageous than non-ICM in reducing rate of lost to follow-up (n= 2195, 9 RCTs, RR 0.72 CI 0.52 to 0.99), although data showed a substantial level of heterogeneity (I2=59%, p=0.01). Overall, no significant differences were found in the effects of ICM compared to non-ICM for broad outcomes such as service use, mortality, social functioning, mental state, behaviour, quality of life, satisfaction and costs. 3. Fidelity to ACT Within the meta-regression we found that i. the more ICM is adherent to the ACT model, the better it is at decreasing time in hospital (’organisation fidelity’ variable coefficient −0.36 CI −0.66 to −0.07); and ii. the higher the baseline hospital use in the population, the better ICM is at decreasing time in hospital (’baseline hospital use’ variable coefficient −0.20 CI −0.32 to −0.10). Combining both these variables within the model, ’organisation fidelity’ is no longer significant, but ’baseline hospital use’ result is still significantly influencing time in hospital (regression coefficient −0.18 CI −0.29 to −0.07, p=0.0027). Authors’ conclusions ICM was found effective in ameliorating many outcomes relevant to people with severe mental illnesses. Compared to standard care ICM was shown to reduce hospitalisation and increase retention in care. It also globally improved social functioning, although ICM’s effect on mental state and quality of life remains unclear. ICM is of value at least to people with severe mental illnesses who are in the sub-group of those with a high level of hospitalisation (about 4 days/month in past 2 years) and the intervention should be performed close to the original model. It is not clear, however, what gain ICM provides on top of a less formal non-ICM approach. We do not think that more trials comparing current ICM with standard care or non-ICM are justified, but currently we know of no review comparing non-ICM with standard care and this should be undertaken. PMID:20927766

  9. Opening a Window on ICME Evolution and GCR Modulation During Propagation in the Innermost Heliosphere

    NASA Astrophysics Data System (ADS)

    Winslow, R. M.; Lugaz, N.; Schwadron, N.; Farrugia, C. J.; Guo, J.; Wimmer-Schweingruber, R. F.; Wilson, J. K.; Joyce, C.; Jordan, A.; Lawrence, D. J.

    2017-12-01

    We use multipoint spacecraft observations to study interplanetary coronal mass ejection (ICME) evolution and subsequent galactic cosmic ray (GCR) modulation during propagation in the inner heliosphere. We illustrate ICME propagation effects through two different case studies. The first ICME was launched from the Sun on 29 December 2011 and was observed in near-perfect longitudinal conjunction at MESSENGER and STEREO A. Despite the close longitudinal alignment, we infer from force-free field modeling that the orientation of the underlying flux rope rotated ˜80o in latitude and ˜65o in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interactions involving magnetic reconnection with corotating structures in the solar wind dramatically alter the ICME magnetic field. In particular, we observed at STEREO A a highly turbulent region with distinct properties within the flux rope that was not observed at MESSENGER; we attribute this region to interaction between the ICME and a heliospheric plasma sheet/current sheet. This is a concrete example of a sequence of events that can increase the complexity of ICMEs during propagation and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. Our second case study investigates changes with heliospheric distance in GCR modulation by an ICME event (launched on 12 February 2014) observed in near-conjunction at all four of the inner solar system planets. The ICME caused Forbush decreases (FDs) in the GCR count rates at Mercury (MESSENGER), Earth/Moon (ACE/LRO), and Mars (MSL). At all three locations, the pre-ICME background GCR rate was well-matched, but the depth of the FD of GCR fluxes with similar energy ranges diminished with distance from the Sun. A larger difference in FD size was observed between Mercury and Earth than between Earth and Mars, partly owing to the much larger drop in the ICME magnetic field magnitude between Mercury and Earth, and to the faster ICME speed decrease closer to the Sun. The results from these case studies give both a direct and indirect view of how ICMEs evolve during propagation as well as a glimpse of the inner heliosphere environment about to be explored by the Parker Solar Probe and Solar Orbiter.

  10. Intestinal current measurement versus nasal potential difference measurements for diagnosis of cystic fibrosis: a case-control study.

    PubMed

    Bagheri-Hanson, Azadeh; Nedwed, Sebastian; Rueckes-Nilges, Claudia; Naehrlich, Lutz

    2014-10-04

    Nasal potential difference (NPD) and intestinal current measurement (ICM) are functional CFTR tests that are used as adjunctive diagnostic tools for cystic fibrosis (CF). Smoking has a systemic negative impact on CFTR function. A diagnostic comparison between NPD and ICM and the impact of smoking on both CFTR tests has not been done. The sweat chloride test, NPD, and ICM were performed in 18 patients with CF (sweat chloride >60 mmol/l), including 6 pancreatic sufficient (PS) patients, and 13 healthy controls, including 8 smokers. The NPD CFTR response to Cl-free and isoproterenol perfusion (Δ0Cl- + Iso) was compared to the ICM CFTR response to forskolin/IBMX, carbachol, and histamine (ΔIsc, forskolin/IBMX+ carbachol+histamine). The mean NPD CFTR response and ICM CFTR response between patients with CF and healthy controls was significantly different (p <0.001), but not between patients with CF who were PS and those who were pancreatic insufficient (PI). Smokers have a decreased CFTR response measured by NPD (p = 0.049). For ICM there is a trend towards decreased CFTR response (NS). Three healthy control smokers had NPD responses within the CF-range. In contrast to NPD, there was no overlap of the ICM response between patients with CF and controls. ICM is superior to NPD in distinguishing between patients with CF who have a sweat chloride > 60 mmol/l and healthy controls, including smokers. Neither NPD nor ICM differentiated between patients with CF who were PS from those who were PI. Smoking has a negative impact on CFTR function in healthy controls measured by NPD and challenges the diagnostic interpretation of NPD, but not ICM.

  11. Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst.

    PubMed

    Laeno, Arlene May A; Tamashiro, Dana Ann A; Alarcon, Vernadeth B

    2013-11-01

    The blastocyst consists of the outer layer of trophectoderm and pluripotent inner cell mass (ICM), the precursor of the placenta and fetus, respectively. During blastocyst expansion, the ICM adopts a compact, ovoidal shape, whose proper morphology is crucial for normal embryogenesis. Rho-associated kinase (ROCK), an effector of small GTPase RHO signaling, mediates the diverse cellular processes of morphogenesis, but its role in ICM morphogenesis is unclear. Here, we demonstrate that ROCK is required for cohesion of ICM cells and formation of segregated tissues called primitive endoderm (PrE) and epiblast (Epi) in the ICM of the mouse blastocyst. Blastocyst treatment with ROCK inhibitors Y-27632 and Fasudil caused widening or spreading of the ICM, and intermingling of PrE and Epi. Widening of ICM was independent of trophectoderm because isolated ICMs as well as colonies of mouse embryonic stem cells (mESC) also spread upon Y-27632 treatment. PrE, Epi, and trophectoderm cell numbers were similar between control and treated blastocysts, suggesting that ROCK inhibition affected ICM morphology but not lineage differentiation. Rock1 and Rock2 knockdown via RNA interference in mESC also induced spreading, supporting the conclusion that morphological defects caused by the pharmacological inhibitors were due to ROCK inactivation. When blastocysts were transferred into surrogates, implantation efficiencies were unaffected by ROCK inhibition, but treated blastocysts yielded greater fetal loss. These results show that proper ICM morphology is dependent on ROCK activity and is crucial for fetal development. Our studies have wider implication for improving efficiencies of human assisted reproductive technologies that diminish pregnancy loss and promote successful births.

  12. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment.

    PubMed

    Xu, Zhifa; Li, Xia; Hu, Xialin; Yin, Daqiang

    2017-10-01

    Distribution and relevance of iodinated X-ray contrast media (ICM) and iodinated disinfection byproducts (I-DBPs) in a real aquatic environment have been rarely documented. In this paper, some ICM were proven to be strongly correlated with I-DBPs through investigation of five ICM and five iodinated trihalomethanes (I-THMs) in surface water and two drinking water treatment plants (DWTPs) of the Yangtze River Delta, China. The total ICM concentrations in Taihu Lake and the Huangpu River ranged from 88.7 to 131 ng L -1 and 102-252 ng L -1 , respectively. While the total I-THM concentrations ranged from 128 to 967 ng L -1 in Taihu Lake and 267-680 ng L -1 in the Huangpu River. Iohexol, the dominant ICM, showed significant positive correlation (p < 0.01) with CHClI 2 in Taihu Lake. Iopamidol and iomeprol correlated positively (p < 0.01) with some I-THMs in the Huangpu River. The observed pronounced correlations between ICM and I-THMs indicated that ICM play an important role in the formation of I-THMs in a real aquatic environment. Characteristics of the I-THM species distributions indicated that I-THMs may be transformed by natural conditions. Both DWTPs showed negligible removal efficiencies for total ICM (<20%). Strikingly high concentrations of total I-THMs were observed in the finished water (2848 ng L -1 in conventional DWTP and 356 ng L -1 in advanced DWTP). Obvious transformation of ICM to I-THMs was observed during the chlorination and ozonization processes in DWTPs. We suggest that ICM is an important source for I-DBP formation in the real aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system.

    PubMed

    Bardill, J Patrick; Miller, Jennifer L; Vogel, Joseph P

    2005-04-01

    Legionella pneumophila replicates inside alveolar macrophages and causes an acute, potentially fatal pneumonia called Legionnaires' disease. The ability of this bacterium to grow inside of macrophages is dependent on the presence of a functional dot/icm type IV secretion system (T4SS). Proteins secreted by the Dot/Icm T4SS are presumed to alter the host endocytic pathway, allowing L. pneumophila to establish a replicative niche within the host cell. Here we show that a member of the SidE family of proteins interacts with IcmS and is required for full virulence in the protozoan host Acanthamoeba castellanii. Using immunofluorescence microscopy and adenylate cyclase fusions, we show that SdeA is secreted into host cells by L. pneumophila in an IcmS-dependent manner. The SidE-like proteins are secreted very early during macrophage infection, suggesting that they are important in the initial formation of the replicative phagosome. Secreted SidE family members show a similar localization to other Dot/Icm substrates, specifically, to the poles of the replicative phagosome. This common localization of secreted substrates of the Dot/Icm system may indicate the formation of a multiprotein complex on the cytoplasmic face of the replicative phagosome.

  14. Integrated corridor management (ICM) knowledge and technology transfer (KTT).

    DOT National Transportation Integrated Search

    2014-01-01

    The ICM approach involves aggressive, proactive integration of infrastructure along major corridors so that transportation professionals can fully leverage all existing modal choices and assets. ICM helps transportation leaders improve travel time re...

  15. Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes.

    PubMed

    Zhou, Yang; Wang, Li; Liu, Ziqing; Alimohamadi, Sahar; Yin, Chaoying; Liu, Jiandong; Qian, Li

    2017-09-26

    Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes [iCMs]) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CMs and iCMs are still unknown. Here, we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status, whereas iCMs exhibit a maturation status that more closely resembles that of adult CMs. Based on gene expression of metabolic enzymes, iPSC-CMs primarily employ glycolysis, whereas iCMs utilize fatty acid oxidation as the main pathway. Importantly, iPSC-CMs and iCMs exhibit different cell-cycle status, alteration of which influenced their maturation. Therefore, our study provides a foundation for understanding the pros and cons of different reprogramming approaches. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Use of antithrombotic agents in patients with intracerebral cavernous malformations.

    PubMed

    Flemming, Kelly D; Link, Michael J; Christianson, Teresa J H; Brown, Robert D

    2013-01-01

    The goal of this study was to determine the risk of using antithrombotic agents in patients with established intracerebral cavernous malformations (ICMs). From a previously described cohort of 292 patients with radiographically defined ICMs, 40 required an antithrombotic after the ICM was diagnosed. Patients underwent follow-up to determine the incidence of hemorrhage. The mean age of these 40 patients was 62.4 years; there were 21 male and 19 female patients. Five (12.5%) of the 40 patients initially presented with hemorrhage and 4 (10%) had multiple ICMs. Of these patients, 32 were placed on an antiplatelet agent alone, 6 on an anticoagulant alone, and 2 were placed on both. In patients necessitating any antithrombotic agent, 1 patient developed a prospective hemorrhage over the 258 person-years of follow-up (prospective hemorrhage rate 0.41% per person-year). Antithrombotics likely do not precipitate hemorrhage in patients with known ICMs. However, caution should be exercised in the use of antithrombotics in patients with ICMs at high risk for hemorrhage. The risks and benefits of antithrombotics in each situation should be carefully weighed against the natural history of ICM.

  17. Rates and characteristics of radiographically detected intracerebral cavernous malformations after cranial radiation therapy in pediatric cancer patients

    PubMed Central

    Hills, Nancy; Roddy, Erika; Randazzo, Dominica; Chettout, Nassim; Hess, Christopher; Cotter, Jennifer; Haas-Kogan, Daphne A.; Fullerton, Heather; Mueller, Sabine

    2014-01-01

    Rates and characteristics of intracerebral cavernous malformations (ICMs) after cranial radiation therapy (CRT) remain poorly understood. Herein we report on ICMs detected on follow+up imaging in pediatric cancer patients who received CRT at age ≤ 18 years from 1980 to 2009. Through chart reviews (n=362) and phone interviews (n=104) of a retrospective cohort we identified 10 patients with ICMs. The median latency time for detection of ICMs after CRT was 12 years (range 1+24 years) at a median age of 21.4 years (IQR 15+28). The cumulative incidence was 3% (95% CI 1+8%) at 10 years post CRT and 14% (95% CI 7+26%) at 15 years. Three patients underwent surgical resection. Two surgical specimens were pathologically similar to sporadically occurring ICMs; one was consistent with capillary telangiectasia. ICMs are common after CRT and can show a spectrum of histological features. PMID:25122111

  18. Microstimulation of the lumbar DRG recruits primary afferent neurons in localized regions of lower limb.

    PubMed

    Ayers, Christopher A; Fisher, Lee E; Gaunt, Robert A; Weber, Douglas J

    2016-07-01

    Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee. Copyright © 2016 the American Physiological Society.

  19. STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2018-03-01

    We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.

  20. Grade and looseness of the inner cell mass may lead to the development of monochorionic diamniotic twins.

    PubMed

    Otsuki, Junko; Iwasaki, Toshiroh; Katada, Yuya; Sato, Haruka; Furuhashi, Kohyu; Tsuji, Yuta; Matsumoto, Yukiko; Shiotani, Masahide

    2016-09-01

    To examine the relationship between the inner cell mass (ICM) grade and its morphological configuration on the occurrence of monochorionic diamniotic (M-D) twinning. Retrospective embryo cohort study. Private IVF clinic. Evaluation of frozen-thawed single blastocyst transfers with hormone replacement treatment in 8,435. This cohort included 71 blastocysts and their ICMs observed by time-lapse photography. Any changes in configuration of the ICMs observed by time-lapse photography were analyzed retrospectively. The amount of loosening of blastomeres within the ICM was evaluated by time-lapse observations. The number of cells that were involved in the loosening process was also assessed. Both of these parameters were correlated with the type of monozygotic twinning that eventuated. The M-D twinning incidence resulting from blastocysts with a high grade ICM (grade A) were transferred was 0.38% (3/796), whereas it was significantly higher, 1.38% (34/2,463), when blastocysts with a poorer (B and C) grade ICM were transferred. Among 71 transferred frozen-thawed blastocysts that were studied with time-lapse photography, there were two dichorionic diamniotic and one M-D twins. Careful observations of the embryo that resulted in the one M-D case, revealed that the ICM acquired a looser appearance due to decompaction of at least eight cells. This type of decompaction was not observed in the ICMs of other transferred blastocysts. The occurrence of M-D twinning may be avoided by excluding blastocysts that contain decompacting ICMs. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. The location of “8”-shaped hatching influences inner cell mass formation in mouse blastocysts

    PubMed Central

    Takahashi, Kazumasa; Goto, Mayumi; Anzai, Mibuki; Ono, Natsuki; Shirasawa, Hiromitsu; Sato, Wataru; Miura, Hiroshi; Sato, Naoki; Sato, Akira; Kumazawa, Yukiyo; Terada, Yukihiro

    2017-01-01

    The hatching of a blastocyst where the blastocyst portions on the inside and the outside of the zona pellucida feature a figure-of-eight shape is termed “8”-shaped hatching; this type of hatching has been reported to affect the proper presentation of the inner cell mass (ICM) in both human and mouse embryos. Here, our aim was to investigate the factors that affect ICM presentation during “8”-shaped hatching. We performed IVF by using B6D2F1 female mice and ICR male mice, and used the 104 captured blastocysts. Embryos were maintained in KSOM at 37°C in a 5% CO2, 5% O2, and 90% N2 environment, and their growth behavior was monitored individually and continuously using time-lapse cinematography. At 120 h after insemination, embryos were immunostained and examined under a confocal microscope. We used the hatching form to identify “8”-shaped hatching, and we classified the “8”-shaped-hatching blastocysts into two groups, one in which the hatching site was near the ICM center, and the other in which the hatching site was far from the ICM center. We measured each group for ICM size and the number of Oct3/4-positive cells. Of the 95 hatching or hatched embryos, 74 were “8”-shaped-hatching blastocysts, and in these embryos, the ICM was significantly wider when the hatching site was near the ICM than when the hatching site was far from the ICM (P = 0.0091). Moreover, in the “8”-shaped-hatching blastocysts in which the ICM was included in the blastocyst portion outside the zona pellucida―the portion defined as the “outside blastocyst”―after the collapse of this outside blastocyst, the ICM adhered to the trophectoderm of the outside blastocyst, opposite the hatching site. Our results indicate that in “8”-shaped-hatching blastocysts, the hatching site and the collapse of outside blastocyst affect ICM formation. Thus, the assessment of “8”-shaped hatching behaviors could yield indices for accurately evaluating embryo quality. PMID:28384351

  2. Integrated Corridor Management (ICM) Initiative : ICM Surveillance and Detection Requirements for Arterial and Transit Networks

    DOT National Transportation Integrated Search

    2008-10-01

    The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...

  3. Current and Emerging Uses of Insertable Cardiac Monitors: Evaluation of Syncope and Monitoring for Atrial Fibrillation.

    PubMed

    Tomson, Todd T; Passman, Rod

    Insertable cardiac monitors (ICMs) have provided clinicians with a superb tool for assessing infrequent or potentially asymptomatic arrhythmias. ICMs have shown their usefulness in the evaluation of unexplained syncope, providing high diagnostic yields in a cost-effective manner. While unexplained syncope continues to be the most common reason for their use, ICMs are increasingly being used for the monitoring of atrial fibrillation (AF). Recent trials have demonstrated that a substantial proportion of patients with cryptogenic stroke have AF detected only by the prolonged monitoring provided by ICMs. A particularly promising and emerging use for ICMs is in the management of anticoagulation in patients with known paroxysmal AF. The introduction in recent years of ICMs with automatic AF detection algorithms and continuous remote monitoring in combination with novel oral anticoagulants have opened the door for targeted anticoagulation guided by remote monitoring, a strategy that has recently shown promise in pilot studies of this technique. While further research is needed before official recommendations can be given, this use of ICMs opens exciting new possibilities for personalized medicine that could potentially reduce bleeding risk and improve quality of life in patients with atrial fibrillation.

  4. A single-channel implantable microstimulator for functional neuromuscular stimulation.

    PubMed

    Ziaie, B; Nardin, M D; Coghlan, A R; Najafi, K

    1997-10-01

    This paper describes a single-channel implantable microstimulator for functional neuromuscular stimulation. This device measures 2 x 2 x 10 mm3 and can be inserted into paralyzed muscle groups by expulsion from a hypodermic needle. Power and data to the device are supplied from outside by RF telemetry using an amplitude-modulated 2-MHz RF carrier generated using a high-efficiency class-E transmitter. The transmitted signal carries a 5-b address which selects one of the 32 possible microstimulators. The selected device then delivers up to 2 microC of charge store in a tantalum chip capacitor for up to 200 microseconds (10 mA) into loads of < 800 omega through a high-current thin-film iridium-oxide (IrOx) electrode (approximately 0.3 mm2 in area). A bi-CMOS receiver circuitry is used to: generate two regulated voltage supplies (4.5 and 9 V), recover a 2-MHz clock from the carrier, demodulate the address code, and activate the output current delivery circuitry upon the reception of an external command. The overall power dissipation of the receiver circuitry is 45-55 mW. The implant is hermetically packaged using a custom-made glass capsule.

  5. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    PubMed

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  6. Integrated corridor management (ICM) initiative : ICM surveillance and detection needs analysis for the transit data gap.

    DOT National Transportation Integrated Search

    2008-11-01

    The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...

  7. Integrated corridor management (ICM) initiative : ICM surveillance and detection requirements needs analysis for the arterial data gap.

    DOT National Transportation Integrated Search

    2008-11-01

    The primary objective of the ICM Initiative is to demonstrate how Intelligent Transportation System (ITS) technologies can efficiently and proactively facilitate the movement of people and goods through major transportation corridors that comprise a ...

  8. US-75 ICM system requirements : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2010-12-01

    This document is intended as a listing and discussion of the Requirements for the US-75 Integrated Corridor Management System (ICMS) Demonstration Project in Dallas. This document describes what the system is to do (the functional requirements), how ...

  9. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes

    PubMed Central

    Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant

    2017-01-01

    The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells. PMID:28796841

  10. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.

    PubMed

    Bektik, Emre; Dennis, Adrienne; Prasanna, Prateek; Madabhushi, Anant; Fu, Ji-Dong

    2017-01-01

    The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells.

  11. Depression's moderation of the effectiveness of intensive case management with substance-dependent women on temporary assistance for needy families: outpatient substance use disorder treatment utilization and outcomes.

    PubMed

    Kuerbis, Alexis N; Neighbors, Charles J; Morgenstern, Jon

    2011-03-01

    Intensive case management (ICM) is effective for facilitating entry into and retention in outpatient substance use disorder treatment (OSUDT) for low-income substance-dependent women; however, no studies have specifically examined the moderating impact of depressive symptoms on ICM. The purpose of this study was to investigate whether depressive symptoms moderated ICM's effect on OSUDT engagement, attendance, and outcomes for substance-dependent women on Temporary Assistance for Needy Families (TANF). It was hypothesized that highly depressed women would demonstrate worse outcomes on all indicators. Logistic regression and generalized estimating equations were used to determine depression's moderating impact on ICM in a secondary analysis of data from a randomized controlled trial comparing the effectiveness of ICM to usual care provided by local public assistance offices in Essex County, NJ. Substance-dependent women (N = 294) were recruited while being screened for TANF eligibility and were followed for 24 months. Findings revealed that high levels of depressive symptoms moderated the effectiveness of ICM in unexpected directions for two outcome variables. Subjects with high levels of depressive symptoms in ICM were (a) significantly more likely to engage in at least one treatment program than those in usual care and (b) associated with the fewest mean drinks per drinking day across the 24-month follow-up period. Independent effects for high levels of depressive symptoms and ICM were also found to positively influence engagement, attendance, and percentage days abstinent. ICM is effective for substance-dependent women with a broad spectrum of depressive symptoms in enhancing OSUDT utilization and outcomes.

  12. Why item parcels are (almost) never appropriate: two wrongs do not make a right--camouflaging misspecification with item parcels in CFA models.

    PubMed

    Marsh, Herbert W; Lüdtke, Oliver; Nagengast, Benjamin; Morin, Alexandre J S; Von Davier, Matthias

    2013-09-01

    The present investigation has a dual focus: to evaluate problematic practice in the use of item parcels and to suggest exploratory structural equation models (ESEMs) as a viable alternative to the traditional independent clusters confirmatory factor analysis (ICM-CFA) model (with no cross-loadings, subsidiary factors, or correlated uniquenesses). Typically, it is ill-advised to (a) use item parcels when ICM-CFA models do not fit the data, and (b) retain ICM-CFA models when items cross-load on multiple factors. However, the combined use of (a) and (b) is widespread and often provides such misleadingly good fit indexes that applied researchers might believe that misspecification problems are resolved--that 2 wrongs really do make a right. Taking a pragmatist perspective, in 4 studies we demonstrate with responses to the Rosenberg Self-Esteem Inventory (Rosenberg, 1965), Big Five personality factors, and simulated data that even small cross-loadings seriously distort relations among ICM-CFA constructs or even decisions on the number of factors; although obvious in item-level analyses, this is camouflaged by the use of parcels. ESEMs provide a viable alternative to ICM-CFAs and a test for the appropriateness of parcels. The use of parcels with an ICM-CFA model is most justifiable when the fit of both ICM-CFA and ESEM models is acceptable and equally good, and when substantively important interpretations are similar. However, if the ESEM model fits the data better than the ICM-CFA model, then the use of parcels with an ICM-CFA model typically is ill-advised--particularly in studies that are also interested in scale development, latent means, and measurement invariance.

  13. Proposal of a skin tests based approach for the prevention of recurrent hypersensitivity reactions to iodinated contrast media.

    PubMed

    Della-Torre, E; Berti, A; Yacoub, M R; Guglielmi, B; Tombetti, E; Sabbadini, M G; Voltolini, S; Colombo, G

    2015-05-01

    The purpose of the present work is to evaluate the efficacy of an approach that combines clinical history, skin tests results, and premedication, in preventing recurrent hypersensitivity reactions to iodinated contrast media (ICM). Skin Prick tests, Intradermal tests, and Patch tests were performed in 36 patients with a previous reaction to ICM. All patients underwent a second contrast enhanced radiological procedure with an alternative ICM selected on the basis of the proposed approach. After alternative ICM re-injection, only one patient presented a mild NIR. The proposed algorithm, validated in clinical settings where repeated radiological exams are needed, offers a safe and practical approach for protecting patients from recurrent hypersensitivity reactions to ICM.

  14. System requirement specification for the I-15 integrated corridor management system (ICMS) in San Diego, California.

    DOT National Transportation Integrated Search

    2008-03-31

    This document presents a System Requirement Specification for an Integrated Corridor Management System (ICMS) in the I-15 Corridor in San Diego, California. The ICMS will consist of two major subsystems: the existing Intermodal Transportation Managem...

  15. A methodology using in-chair movements as an objective measure of discomfort for the purpose of statistically distinguishing between similar seat surfaces.

    PubMed

    Cascioli, Vincenzo; Liu, Zhuofu; Heusch, Andrew; McCarthy, Peter W

    2016-05-01

    This study presents a method for objectively measuring in-chair movement (ICM) that shows correlation with subjective ratings of comfort and discomfort. Employing a cross-over controlled, single blind design, healthy young subjects (n = 21) sat for 18 min on each of the following surfaces: contoured foam, straight foam and wood. Force sensitive resistors attached to the sitting interface measured the relative movements of the subjects during sitting. The purpose of this study was to determine whether ICM could statistically distinguish between each seat material, including two with subtle design differences. In addition, this study investigated methodological considerations, in particular appropriate threshold selection and sitting duration, when analysing objective movement data. ICM appears to be able to statistically distinguish between similar foam surfaces, as long as appropriate ICM thresholds and sufficient sitting durations are present. A relationship between greater ICM and increased discomfort, and lesser ICM and increased comfort was also found. Copyright © 2016. Published by Elsevier Ltd.

  16. The influence of early embryo traits on human embryonic stem cell derivation efficiency.

    PubMed

    O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra

    2011-05-01

    Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.

  17. Is a specific oncological scoring system better at predicting the prognosis of cancer patients admitted for an acute medical complication in an intensive care unit than general gravity scores?

    PubMed

    Berghmans, T; Paesmans, M; Sculier, J P

    2004-04-01

    To evaluate the effectiveness of a specific oncologic scoring system-the ICU Cancer Mortality model (ICM)-in predicting hospital mortality in comparison to two general severity scores-the Acute Physiology and Chronic Health Evaluation (APACHE II) and the Simplified Acute Physiology Score (SAPS II). All 247 patients admitted for a medical acute complication over an 18-month period in an oncological medical intensive care unit were prospectively registered. Their data, including type of complication, vital status at discharge and cancer characteristics as well as other variables necessary to calculate the three scoring systems were retrospectively assessed. Observed in-hospital mortality was 34%. The predicted in-hospital mortality rate for APACHE II was 32%; SAPS II, 24%; and ICM, 28%. The goodness of fit was inadequate except for the ICM score. Comparison of the area under the ROC curves revealed a better fit for ICM (area 0.79). The maximum correct classification rate was 72% for APACHE II, 74% for SAPS II and 77% for ICM. APACHE II and SAPS II were better at predicting outcome for survivors to hospital discharge, although ICM was better for non-survivors. Two variables were independently predicting the risk of death during hospitalisation: ICM (OR=2.31) and SAPS II (OR=1.05). Gravity scores were the single independent predictors for hospital mortality, and ICM was equivalent to APACHE II and SAPS II.

  18. Interplanetary Coronal Mass Ejections in the Near-Earth Solar Wind During 1996-2002

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Richardson, I. G.

    2003-01-01

    We summarize the occurrence of interplanetary coronal mass injections (ICMEs) in the near-Earth solar wind during 1996-2002, corresponding to the increasing and maximum phases of solar cycle 23. In particular, we give a detailed list of such events. This list, based on in-situ observations, is not confined to subsets of ICMEs, such as magnetic clouds or those preceded by halo CMEs observed by the SOHO/LASCO coronagraph, and provides an overview of 214 ICMEs in the near-Earth solar wind during this period. The ICME rate increases by about an order of magnitude from solar minimum to solar maximum (when the rate is approximately 3 ICMEs/solar rotation period). The rate also shows a temporary reduction during 1999, and another brief, deeper reduction in late 2000-early 2001, which only approximately track variations in the solar 10 cm flux. In addition, there are occasional periods of several rotations duration when the ICME rate is enhanced in association with high solar activity levels. We find an indication of a periodic variation in the ICME rate, with a prominent period of approximately 165 days similar to that previously reported in various solar phenomena. It is found that the fraction of ICMEs that are magnetic clouds has a solar cycle variation, the fraction being larger near solar minimum. For the subset of events that we could associate with a CME at the Sun, the transit speeds from the Sun to the Earth were highest after solar maximum.

  19. Geometric effects of ICMEs on geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cho, KyungSuk; Lee, Jae-Ok

    2017-04-01

    It has been known that the geomagnetic storm is occurred by the interaction between the Interplanetary Coronal Mass Ejection (ICME) and the Earth's magnetosphere; especially, the southward Bz component of ICME is thought as the main trigger. In this study, we investigate the relationship between Dst index and solar wind conditions; which are the southward Bz, electric field (VBz), and time integral of electric field as well as ICME parameters derived from toroidal fitting model in order to find what is main factor to the geomagnetic storm. We also inspect locations of Earth in ICMEs to understand the geometric effects of the Interplanetary Flux Ropes (IFRs) on the geomagnetic storms. Among 59 CDAW ICME lists, we select 30 IFR events that are available by the toroidal fitting model and classify them into two sub-groups: geomagnetic storms associated with the Magnetic Clouds (MCs) and the compression regions ahead of the MCs (sheath). The main results are as follows: (1) The time integral of electric field has a higher correlation coefficient (cc) with Dst index than the other parameters: cc=0.85 for 25 MC events and cc=0.99 for 5 sheath events. (2) The sheath associated intense storms (Dst ≤-100nT) having usually occur at flank regions of ICMEs while the MC associated intense storms occur regardless of the locations of the Earth in ICMEs. The strength of a geomagnetic storm strongly depends on electric field of IFR and durations of the IFR passages through the Earth.

  20. Time-related interdependence between low-frequency cortical electrical activity and respiratory activity in lizard, Gallotia galloti.

    PubMed

    de Vera, Luis; Pereda, Ernesto; Santana, Alejandro; González, Julián J

    2005-03-01

    Electroencephalograms of medial cortex and electromyograms of intercostal muscles (EMG-icm) were simultaneously recorded in the lizard, Gallotia galloti, during two daily time periods (at daytime, DTP: 1200-1600 h; by night, NTP: 0000-0400 h), to investigate whether a relationship exists between the respiratory and cortical electrical activity of reptiles, and, if so, how this relationship changes during the night rest period. Testing was carried out by studying interdependence between cortical electrical and respiratory activities, by means of linear and nonlinear signal analysis techniques. Both physiological activities were evaluated through simultaneous power signals, derived from the power of the low-frequency band of the electroencephalogram (pEEG-LF), and from the power of the EMG-icm (pEMG-icm), respectively. During both DTP and NTP, there was a significant coherence between both signals in the main frequency band of pEMG-icm. During both DTP and NTP, the nonlinear index N measured significant linear asymmetric interdependence between pEEG-LF and pEMG-icm. The N value obtained between pEEG-LF vs. pEMG-icm was greater than the one between pEMG-icm vs. pEEG-LF. This means that the system that generates the pEEG-LF is more complex than the one that generates the pEMG-icm, and suggests that the temporal variability of power in the low-frequency cortical electrical activity is driven by the power of the respiratory activity.

  1. Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study.

    PubMed

    Reinke, F; Bettin, M; Ross, L S; Kochhäuser, S; Kleffner, I; Ritter, M; Minnerup, J; Dechering, D; Eckardt, L; Dittrich, R

    2018-04-01

    Detection of occult atrial fibrillation (AF) is crucial for optimal secondary prevention in stroke patients. The AF detection rate was determined by implantable cardiac monitor (ICM) and compared to the prediction rate of the probability of incident AF by software based analysis of a continuously monitored electrocardiogram at follow-up (stroke risk analysis, SRA); an optimized AF detection algorithm is proposed by combining both tools. In a monocentric prospective study 105 out of 389 patients with cryptogenic stroke despite extensive diagnostic workup were investigated with two additional cardiac monitoring tools: (a) 20 months' monitoring by ICM and (b) SRA during hospitalization at the stroke unit. The detection rate of occult AF was 18% by ICM (n = 19) (range 6-575 days) and 62% (n = 65) had an increased risk for AF predicted by SRA. When comparing the predictive accuracy of SRA to ICM, the sensitivity was 95%, specificity 35%, positive predictive value 27% and negative predictive value 96%. In 18 patients with AF detected by ICM, SRA also showed a medium risk for AF. Only one patient with a very low risk predicted by SRA developed AF revealed by ICM after 417 days. A combination of SRA and ICM is a promising strategy to detect occult AF. SRA is reliable in predicting incident AF with a high negative predictive value. Thus, SRA may serve as a cost-effective pre-selection tool identifying patients at risk for AF who may benefit from further cardiac monitoring by ICM. © 2017 EAN.

  2. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  3. The geoeffectiveness of CIRs and ICMEs

    NASA Astrophysics Data System (ADS)

    Shen, C.; Chi, Y.; Wang, Y.

    2017-12-01

    The corotation rotation regions (CIRs) and interplanetary coronal mass ejections (CMEs) are two typical large scale structures in interplanetary space and also important sources of geomagnetic storms. Using the WIND observations from 1995, the CIRs and ICMEs have been identified manually. Totally, there are 800 CIRs and 500 ICMEs during this period. Based on these catalogues, the properties and geoeffectiveness of CIRs and ICMEs have been carefully studied. In the presentation, we will introduce the properties of these structures first. Then, the detailed comparison between these two structures will also be addressed.

  4. ICM0301s, new angiogenesis inhibitors from Aspergillus sp. F-1491. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Kumagai, Hiroyuki; Someno, Tetsuya; Dobashi, Kazuyuki; Isshiki, Kunio; Ishizuka, Masaaki; Ikeda, Daishiro

    2004-02-01

    In the course of screening program for inhibitors of angiogenesis, novel substances designated as ICM0301A approximately H (1 approximately 8) were isolated from the culture broth of Aspergillus sp. F-1491. ICM0301s inhibited the growth of human umbilical vein endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) with IC50 values of 2.2 approximately 9.3 microg/ml. ICM0301A (1) showed significant anti-angiogenic activity at lower than 10 microg/ml in the angiogenesis model using rat aorta cultured in fibrin gel. ICM0301s showed very low cytotoxicity against various tumor cells. Furthermore, 1CM0301A did not show any toxic symptom in mice by intraperitoneal injection at 100 mg/kg.

  5. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  6. Composition of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.

    2016-01-01

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) less than 10 electronvolts, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q (sub Fe) is greater than 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70 percent over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  7. Composition of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T. H.; Weberg, M.; von Steiger, R.; Mewaldt, R. A.; Lepri, S. T.; Antiochos, S. K.

    2016-07-01

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q Fe > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  8. Generalization of Rindler Potential at Cluster Scales in Randers-Finslerian Spacetime: a Possible Explanation of the Bullet Cluster 1E0657-558?

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Ming-Hua; Lin, Hai-Nan; Li, Xin

    2012-12-01

    The data of the Bullet Cluster 1E0657-558 released on November 15, 2006 reveal that the strong and weak gravitational lensing convergence κ-map has an 8σ offset from the Σ-map. The observed Σ-map is a direct measurement of the surface mass density of the Intracluster medium (ICM) gas. It accounts for 83% of the averaged mass-fraction of the system. This suggests a modified gravity theory at large distances different from Newton's inverse-square gravitational law. In this paper, as a cluster scale generalization of Grumiller's modified gravity model (Phys. Rev. Lett.105 (2010) 211303), we present a gravity model with a generalized linear Rindler potential in Randers-Finslerian spacetime without invoking any dark matter. The galactic limit of the model is qualitatively consistent with the MOND and Grumiller's. It yields approximately the flatness of the rotational velocity profile at the radial distance of several kpcs and gives the velocity scales for spiral galaxies at which the curves become flattened. Plots of convergence κ for a galaxy cluster show that the peak of the gravitational potential has chances to lie on the outskirts of the baryonic mass center. Assuming an isotropic and isothermal ICM gas profile with temperature T = 14.8 keV (which is the center value given by observations), we obtain a good match between the dynamical mass MT of the main cluster given by collisionless Boltzmann equation and that given by the King β-model. We also consider a Randers+dark matter scenario and a Λ-CDM model with the NFW dark matter distribution profile. We find that a mass ratio η between dark matter and baryonic matter about 6 fails to reproduce the observed convergence κ-map for the isothermal temperature T taking the observational center value.

  9. Sensitivity of early mouse embryos to (/sup 3/H)thymidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindle, A.; Wu, K.; Pedersen, R.A.

    1982-12-01

    Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all threemore » post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.« less

  10. The Ionospheric Impact of an ICME-Driven Sheath Region Over Indian and American Sectors in the Absence of a Typical Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John

    2018-05-01

    On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.

  11. On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Schatzman, C.; Cane, H. V.; Richardson, I. G.; Gopalswamy, N.

    2006-01-01

    We compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulyssses from 1996 through 2004. We also distinguish between those ICMEs that contain a magnetic cloud (MC) and those that do not. While the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen at 1 AU. This divergence persists through 2004. A similar divergence occurs between MCs and non-MC ICMEs. We argue that these divergences are due to the birth of midlatitude active regions, which are the sites of a distinct population of CMEs, only partially intercepted by Earth, and we present a simple geometric argument showing that the CME and ICME rates are consistent with one another. We also acknowledge contributions from (1) an increased rate of high-latitude CMEs and (2) focusing effects from the global solar field. While our analysis, coupled with numerical modeling results, generally supports the interpretation that whether one observes a MC within an ICME is sensitive to the trajectory of the spacecraft through the ICME (i.e., an observational selection effect), one result directly contradicts it. Specifically, we find no systematic offset between the latitudinal origin of ICMEs that contain MCs at 1 AU in the ecliptic plane and that of those that do not.

  12. Iodinated Contrast Media Allergy in Patients Hospitalized for Investigation of Chest Pain.

    PubMed

    Topaz, Guy; Karas, Adi; Kassem, Nuha; Kitay-Cohen, Yona; Pereg, David; Shilo, Lotan; Zoref-Lorenz, Adi; Hershko, Alon Y

    2018-04-12

    Iodinated contrast media (ICM) allergy may entail severe adverse events in patients who undergo percutaneous coronary intervention (PCI). Premedication protocols and low-osmolality contrast media have been thought to improve the outcomes of these individuals. The objective of this study was to assess the prevalence and severity of allergic reactions during PCI in patients admitted for investigation of chest pain. This is a retrospective analysis of 13,652 patients who were hospitalized with chest pain during the years 2010-2016, at the Department of Internal Medicine, Meir Medical Center. Patient records were screened for diagnosis of prior ICM allergy. Primary outcomes were: (1) records of previous allergy to ICM, (2) administration of antiallergic premedication, and (3) allergic reactions to the ICM during the procedure. Nine hundred thirty-one individuals without prior ICM allergy were referred for PCI, of whom 2 had minor allergic reactions. Previously diagnosed ICM allergy was recorded for 216 subjects (mean age 65.5 ± 10 years, 42% males). Of these, 32 were referred to in-hospital PCI. Premedication was administered in 10 cases only with no documented rationale for not treating the other 22. Only one of the pretreated patients experienced a reaction attributed to allergy, showing no statistical advantage for premedication. No mortality was documented in the 30 days after PCI among the patients with known ICM allergy. PCI did not induce substantial allergic reactions to ICM in patients with a previously diagnosed allergy. This study did not demonstrate an advantage for premedication. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  13. American Perspectives on the Seventh International Congress on Mathematical Education.

    ERIC Educational Resources Information Center

    Dossey, John A., Ed.

    This publication is a collection of papers portraying an American view of the happenings of the Seventh International Congress on Mathematical Education (ICME-7). Papers included: (1) "ICME-7 and Tertiary Level Mathematics: Une Petite Affaire" (Shirley Hill); (2) "Technology and Mathematics Education at ICME-7" (James T. Fey); (3) "Assessment in…

  14. Effect of iodinated X-ray contrast media in the formation of disinfection byproduts during chlorination and chloramination of water

    EPA Science Inventory

    Iodinated X-ray contrast media (ICMs), used in medical imaging, are poorly metabolized by humans and enter wastewater. As they are incompletely removed during wastewater treatment, ICMs are released to the aquatic environment and have been detected in drinking water sources. ICMs...

  15. Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B12 Enzyme IcmF.

    PubMed

    Li, Zhu; Kitanishi, Kenichi; Twahir, Umar T; Cracan, Valentin; Chapman, Derrell; Warncke, Kurt; Banerjee, Ruma

    2017-03-10

    IcmF is a 5'-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effect of Zingiber officinale and propolis on microorganisms and endotoxins in root canals

    PubMed Central

    MAEKAWA, Lilian Eiko; VALERA, Marcia Carneiro; de OLIVEIRA, Luciane Dias; CARVALHO, Cláudio Antonio Talge; CAMARGO, Carlos Henrique Ribeiro; JORGE, Antonio Olavo Cardoso

    2013-01-01

    The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application of the Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success. PMID:23559108

  17. Interplanetary Coronal Mass Ejections During 1996 - 2007

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2007-01-01

    Interplanetary coronal mass ejections, the interplanetary counterparts of coronal mass ejections at the Sun, are the major drivers of interplanetary shocks in the heliosphere, and are associated with modulations of the galactic cosmic ray intensity, both short term (Forbush decreases caused by the passage of the shock, post-shock sheath, and ICME), and possibly with longer term modulation. Using several in-situ signatures of ICMEs, including plasma temperature, and composition, magnetic fields, and cosmic ray modulations, made by near-Earth spacecraft, we have compiled a "comprehensive" list of ICMEs passing the Earth since 1996, encompassing solar cycle 23. We summarize the properties of these ICMEs, such as their occurrence rate, speeds and other parameters, the fraction of ICMEs that are classic magnetic clouds, and their association with solar energetic particle events, halo CMEs, interplanetary shocks, geomagnetic storms, shocks and cosmic ray decreases.

  18. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.« less

  19. Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo

    2016-07-01

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  20. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  1. Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury

    NASA Astrophysics Data System (ADS)

    Sunshine, Michael D.; Cho, Frances S.; Lockwood, Danielle R.; Fechko, Amber S.; Kasten, Michael R.; Moritz, Chet T.

    2013-06-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for reanimating paralyzed limbs following neurological injury. ISMS within the cervical and lumbar spinal cord is capable of evoking a variety of highly-functional movements prior to injury, but the ability of ISMS to evoke forelimb movements after cervical spinal cord injury is unknown. Here we examine the forelimb movements and muscles activated by cervical ISMS both before and after contusion injury. Approach. We documented the forelimb muscles activated and movements evoked via systematic stimulation of the rodent cervical spinal cord both before injury and three, six and nine weeks following a moderate C4/C5 lateralized contusion injury. Animals were anesthetized with isoflurane to permit construction of somatotopic maps of evoked movements and quantify evoked muscle synergies between cervical segments C3 and T1. Main results. When ISMS was delivered to the cervical spinal cord, a variety of responses were observed at 68% of locations tested, with a spatial distribution that generally corresponded to the location of motor neuron pools. Stimulus currents required to achieve movement and the number of sites where movements could be evoked were unchanged by spinal cord injury. A transient shift toward extension-dominated movements and restricted muscle synergies were observed at three and six weeks following injury, respectively. By nine weeks after injury, however, ISMS-evoked patterns were similar to spinally-intact animals. Significance. The results demonstrate the potential for cervical ISMS to reanimate hand and arm function following spinal cord injury. Robust forelimb movements can be evoked both before and during the chronic stages of recovery from a clinically relevant and sustained cervical contusion injury.

  2. Spinal primitives and intra-spinal micro-stimulation (ISMS) based prostheses: a neurobiological perspective on the “known unknowns” in ISMS and future prospects

    PubMed Central

    Giszter, Simon F.

    2015-01-01

    The current literature on Intra-Spinal Micro-Stimulation (ISMS) for motor prostheses is reviewed in light of neurobiological data on spinal organization, and a neurobiological perspective on output motor modularity, ISMS maps, stimulation combination effects, and stability. By comparing published data in these areas, the review identifies several gaps in current knowledge that are crucial to the development of effective intraspinal neuroprostheses. Gaps can be categorized into a lack of systematic and reproducible details of: (a) Topography and threshold for ISMS across the segmental motor system, the topography of autonomic recruitment by ISMS, and the coupling relations between these two types of outputs in practice. (b) Compositional rules for ISMS motor responses tested across the full range of the target spinal topographies. (c) Rules for ISMS effects' dependence on spinal cord state and neural dynamics during naturally elicited or ISMS triggered behaviors. (d) Plasticity of the compositional rules for ISMS motor responses, and understanding plasticity of ISMS topography in different spinal cord lesion states, disease states, and following rehabilitation. All these knowledge gaps to a greater or lesser extent require novel electrode technology in order to allow high density chronic recording and stimulation. The current lack of this technology may explain why these prominent gaps in the ISMS literature currently exist. It is also argued that given the “known unknowns” in the current ISMS literature, it may be prudent to adopt and develop control schemes that can manage the current results with simple superposition and winner-take-all interactions, but can also incorporate the possible plastic and stochastic dynamic interactions that may emerge in fuller analyses over longer terms, and which have already been noted in some simpler model systems. PMID:25852454

  3. Coordination of eye and head components of movements evoked by stimulation of the paramedian pontine reticular formation.

    PubMed

    Gandhi, Neeraj J; Barton, Ellen J; Sparks, David L

    2008-07-01

    Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.

  4. Gas stripping in galaxy clusters: a new SPH simulation approach

    NASA Astrophysics Data System (ADS)

    Jáchym, P.; Palouš, J.; Köppen, J.; Combes, F.

    2007-09-01

    Aims:The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. Methods: We have adapted the code to describe the interaction of two different gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder interstellar medium (ISM). Both the ICM and ISM components are introduced as SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to cluster center, it crosses the ICM density peak and experiences a time-varying wind. Results: Depending on the duration and intensity of the ISM-ICM interaction, early and late type galaxies in galaxy clusters with either a large or small ICM distribution are found to show different stripping efficiencies, amounts of reaccretion of the extra-planar ISM, and final masses. We compare the numerical results with analytical approximations of different complexity and indicate the limits of the Gunn & Gott simple stripping formula. Conclusions: Our investigations emphasize the role of the galactic orbital history to the stripping amount. We discuss the contribution of ram pressure stripping to the origin of the ICM and its metallicity. We propose gas accumulations like tails, filaments, or ripples to be responsible for stripping in regions with low overall ICM occurrence. Appendix A is only available in electronic form at http://www.aanda.org

  5. ICM: a web server for integrated clustering of multi-dimensional biomedical data.

    PubMed

    He, Song; He, Haochen; Xu, Wenjian; Huang, Xin; Jiang, Shuai; Li, Fei; He, Fuchu; Bo, Xiaochen

    2016-07-08

    Large-scale efforts for parallel acquisition of multi-omics profiling continue to generate extensive amounts of multi-dimensional biomedical data. Thus, integrated clustering of multiple types of omics data is essential for developing individual-based treatments and precision medicine. However, while rapid progress has been made, methods for integrated clustering are lacking an intuitive web interface that facilitates the biomedical researchers without sufficient programming skills. Here, we present a web tool, named Integrated Clustering of Multi-dimensional biomedical data (ICM), that provides an interface from which to fuse, cluster and visualize multi-dimensional biomedical data and knowledge. With ICM, users can explore the heterogeneity of a disease or a biological process by identifying subgroups of patients. The results obtained can then be interactively modified by using an intuitive user interface. Researchers can also exchange the results from ICM with collaborators via a web link containing a Project ID number that will directly pull up the analysis results being shared. ICM also support incremental clustering that allows users to add new sample data into the data of a previous study to obtain a clustering result. Currently, the ICM web server is available with no login requirement and at no cost at http://biotech.bmi.ac.cn/icm/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Intact cell mass spectrometry as a progress tracking tool for batch and fed-batch fermentation processes.

    PubMed

    Helmel, Michaela; Marchetti-Deschmann, Martina; Raus, Martin; Posch, Andreas E; Herwig, Christoph; Šebela, Marek; Allmaier, Günter

    2015-02-01

    Penicillin production during a fermentation process using industrial strains of Penicillium chrysogenum is a research topic permanently discussed since the accidental discovery of the antibiotic. Intact cell mass spectrometry (ICMS) can be a fast and novel monitoring tool for the fermentation progress during penicillin V production in a nearly real-time fashion. This method is already used for the characterization of microorganisms and the differentiation of fungal strains; therefore, the application of ICMS to samples directly harvested from a fermenter is a promising possibility to get fast information about the progress of fungal growth. After the optimization of the ICMS method to penicillin V fermentation broth samples, the obtained ICMS data were evaluated by hierarchical cluster analysis or an in-house software solution written especially for ICMS data comparison. Growth stages of a batch and fed-batch fermentation of Penicillium chrysogenum are differentiated by one of those statistical approaches. The application of two matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) instruments in the linear positive ion mode from different vendors demonstrated the universal applicability of the developed ICMS method. The base for a fast and easy-to-use method for monitoring the fermentation progress of P. chrysogenum is created with this ICMS method developed especially for fermentation broth samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Derivation and characterization of human embryonic stem cell lines from poor quality embryos.

    PubMed

    Liu, Weiqiang; Yin, Yifei; Long, Xiaolin; Luo, Yumei; Jiang, Yonghua; Zhang, Wenhong; Du, Hongzi; Li, Shaoying; Zheng, Yuhong; Li, Qing; Chen, Xinjie; Liao, Baoping; Xiao, Guohong; Wang, Weihua; Sun, Xiaofang

    2009-04-01

    Poor quality embryos discarded from in vitro fertilization (IVF) laboratories are good sources for deriving human embryonic stem cell (hESC) lines. In this study, 166 poor quality embryos donated from IVF centers on day 3 were cultured in a blastocyst medium for 2 days, and 32 early blastocysts were further cultured in a blastocyst optimum culture medium for additional 2 days so that the inner cell masses (ICMs) could be identified and isolated easily. The ICMs of 17 blastocysts were isolated by a mechanical method, while those of the other 15 blastocysts were isolated by immunosurgery. All isolated ICMs were inoculated onto a feeder layer for subcultivation. The rates of ICM attachment, primary ICM colony formation and the efficiency of hESC derivation were similar between the ICMs isolated by the two methods (P>0.05). As a result, four new hESC lines were established. Three cell lines had normal karyotypes and one had an unbalanced Robertsonian translocation. All cell lines showed normal hESC characteristics and had the differentiation ability. In conclusion, we established a stable and effective method for hESC isolation and culture, and it was confirmed that the mechanical isolation was an effective method to isolate ICMs from poor embryos. These results further indicate that hESC lines can be derived from poor quality embryos discarded by IVF laboratories.

  8. Improving 24-Month Abstinence and Employment Outcomes for Substance-Dependent Women Receiving Temporary Assistance for Needy Families With Intensive Case Management

    PubMed Central

    Neighbors, Charles J.; Kuerbis, Alexis; Riordan, Annette; Blanchard, Kimberly A.; McVeigh, Katharine H.; Morgan, Thomas J.; McCrady, Barbara

    2009-01-01

    Objective. We examined abstinence rates among substance-dependent women receiving Temporary Assistance for Needy Families (TANF) in intensive case management (ICM) over 24 months and whether ICM yielded significantly better employment outcomes compared with a screen-and-refer program (i.e., usual care). Methods. Substance-dependent (n = 302) and non–substance dependent (n = 150) TANF applicants in Essex County, New Jersey, were recruited. We randomly assigned substance-dependent women to ICM or usual care. We interviewed all women at 3, 9, 15, and 24 months. Results. Abstinence rates were higher for the ICM group than for the usual care group through 24 months of follow-up (odds ratio [OR] = 2.11; 95% confidence interval [CI] = 1.36, 3.29). A statistically significant interaction between time and group on number of days employed indicated that the rate of improvement over time in employment was greater for the ICM group than for the usual care group (incidence rate ratio = 1.03; 95% CI = 1.02, 1.04). Additionally, there were greater odds of being employed full time for those in the ICM group (OR = 1.68; 95% CI = 1.12, 2.51). Conclusions. ICM is a promising intervention for managing substance dependence among women receiving TANF and for improving employment rates among this vulnerable population. PMID:19059855

  9. The Co-Evolution of Galaxies, their ISM, and the ICM: The Hydrodynamics of Galaxy Transformation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig L.; Ricker, Paul M.

    2017-01-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM.

  10. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cid, C.; Palacios, J.; Saiz, E.

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling awaymore » from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.« less

  11. Current and emerging indications for implantable cardiac monitors.

    PubMed

    Giada, Franco; Bertaglia, Emanuele; Reimers, Bernhard; Noventa, Donatella; Raviele, Antonio

    2012-09-01

    Implantable cardiac monitors (ICMs) continuously monitor the patient's electrocardiogram and perform real-time analysis of the heart rhythm, for up to 36 months. The current clinical use of ICMs involves the evaluation of transitory symptoms of possible arrhythmic origin, such as unexplained syncope and palpitations. Moreover, ICMs can also be used for the evaluation of difficult cases of epilepsy and unexplained falls, though current indications for their application in these sectors are less clearly defined. Finally, the ability of new-generation ICMs to automatically record arrhythmic episodes suggests that these devices could also be used to study asymptomatic arrhythmias, and thus could be proposed for the long-term evaluation of the total (symptomatic and asymptomatic) arrhythmic burden in patients at risk of arrhythmic events. In particular, ICMs may have an emerging role in the management of patients with atrial fibrillation and in those at risk of ventricular arrhythmias. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  12. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  13. Models of community care for severe mental illness: a review of research on case management.

    PubMed

    Mueser, K T; Bond, G R; Drake, R E; Resnick, S G

    1998-01-01

    We describe different models of community care for persons with severe mental illness and review the research literature on case management, including the results of 75 studies. Most research has been conducted on the assertive community treatment (ACT) or intensive case management (ICM) models. Controlled research on ACT and ICM indicates that these models reduce time in the hospital and improve housing stability, especially among patients who are high service users. ACT and ICM appear to have moderate effects on improving symptomatology and quality of life. Most studies suggest little effect of ACT and ICM on social functioning, arrests and time spent in jail, or vocational functioning. Studies on reducing or withdrawing ACT or ICM services suggest some deterioration in gains. Research on other models of community care is inconclusive. We discuss the implications of the findings in terms of the need for specialization of ACT or ICM teams to address social and vocational functioning and substance abuse. We suggest directions for future research on models of community care, including evaluating implementation fidelity, exploring patient predictors of improvement, and evaluating the role of the helping alliance in mediating outcome.

  14. Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.

    PubMed

    Ifkovits, Jamie L; Addis, Russell C; Epstein, Jonathan A; Gearhart, John D

    2014-01-01

    Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic.

  15. Morphology of isolated mouse inner cell masses developing in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, L.M.; Spindle, A.I.; Pedersen, R.A.

    1978-01-01

    The purpose of this study was to examine the developmental capacity of the mouse inner cell mass (ICM) in the absence of the trophoblast. ICMs were isolated from blastocysts by immunosurgery and cultured under conditions that support egg cylinder formation by intact blastocysts. After 2 or 3 days of culture, the ICMs consisted of an outer layer of endoderm and an inner layer of ectoderm that had cavitated centrally. By 4 or 5 days of culture, 25 to 60% of these ICMs had developed into paired cysts, apparently by secondary cavity formation. The inner cell layer surrounding this secondary cavitymore » resembled the extraembryonic ectoderm of cultured egg cylinders. By 6 days of culture, 60% of the ICMs had expanded into yolk sac-like structures that subsequently produced capillaries containing blood cells. The ICMs appeared to develop mesoderm in two distinct ways. A few of them developed mesoderm as a third layer of cells in the cleft separating endoderm and ectoderm, presumably by migrating from the inner, ectodermal layer, through the primitive streak, as in the intact egg cylinder. In the rest of the ICMs the embryonic ectoderm gradually differentiated into mesoderm while still in the inner layer, without primitive streak formation. We suggest, therefore, that the continuous presence of the trophoblast or of its derivatives is not required for the cytodifferentiation of mesoderm although it may be important in establishing embryonic polarity or in providinginductive signals necessary for the morphogenetic aspects of mesoderm differentiation, specifically primitive streak formation.« less

  16. Inhibition of TGFβ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyocytes

    PubMed Central

    Ifkovits, Jamie L.; Addis, Russell C.; Epstein, Jonathan A.; Gearhart, John D.

    2014-01-01

    Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic. PMID:24586958

  17. Comparison of methods of extracting information for meta-analysis of observational studies in nutritional epidemiology.

    PubMed

    Bae, Jong-Myon

    2016-01-01

    A common method for conducting a quantitative systematic review (QSR) for observational studies related to nutritional epidemiology is the "highest versus lowest intake" method (HLM), in which only the information concerning the effect size (ES) of the highest category of a food item is collected on the basis of its lowest category. However, in the interval collapsing method (ICM), a method suggested to enable a maximum utilization of all available information, the ES information is collected by collapsing all categories into a single category. This study aimed to compare the ES and summary effect size (SES) between the HLM and ICM. A QSR for evaluating the citrus fruit intake and risk of pancreatic cancer and calculating the SES by using the HLM was selected. The ES and SES were estimated by performing a meta-analysis using the fixed-effect model. The directionality and statistical significance of the ES and SES were used as criteria for determining the concordance between the HLM and ICM outcomes. No significant differences were observed in the directionality of SES extracted by using the HLM or ICM. The application of the ICM, which uses a broader information base, yielded more-consistent ES and SES, and narrower confidence intervals than the HLM. The ICM is advantageous over the HLM owing to its higher statistical accuracy in extracting information for QSR on nutritional epidemiology. The application of the ICM should hence be recommended for future studies.

  18. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.

    PubMed

    Niederman, Robert A

    2013-10-01

    Studies on membrane development in purple bacteria during adaptation to alterations in light intensity and oxygen tension are reviewed. Anoxygenic phototrophic such as the purple α-proteobacterium Rhodobacter sphaeroides have served as simple, dynamic, and experimentally accessible model organisms for studies of the photosynthetic apparatus. A major landmark in photosynthesis research, which dramatically illustrates this point, was provided by the determination of the X-ray structure of the reaction center (RC) in Blastochloris viridis (Deisenhofer and Michel, EMBO J 8:2149-2170, 1989), once it was realized that this represented the general structure for the photosystem II RC present in all oxygenic phototrophs. This seminal advance, together with a considerable body of subsequent research on the light-harvesting (LH) and electron transfer components of the photosynthetic apparatus has provided a firm basis for the current understanding of how phototrophs acclimate to alterations in light intensity and quality. Oxygenic phototrophs adapt to these changes by extensive thylakoid membrane remodeling, which results in a dramatic supramolecular reordering to assure that an appropriate flow of quinone redox species occurs within the membrane bilayer for efficient and rapid electron transfer. Despite the high level of photosynthetic unit organization in Rba. sphaeroides as observed by atomic force microscopy (AFM), fluorescence induction/relaxation measurements have demonstrated that the addition of the peripheral LH2 antenna complex in cells adapting to low-intensity illumination results in a slowing of the rate of electron transfer turnover by the RC of up to an order of magnitude. This is ascribed to constraints in quinone redox species diffusion between the RC and cytochrome bc1 complexes arising from the increased packing density as the intracytoplasmic membrane (ICM) bilayer becomes crowded with LH2 rings. In addition to downshifts in light intensity as a paradigm for membrane development studies in Rba. sphaeroides, the lowering of oxygen tension in chemoheterotropically growing cells results in a gratuitous formation of the ICM by an extensive membrane biogenesis process. These membrane alterations in response to lowered illumination and oxygen levels in purple bacteria are under the control of a number of interrelated two-component regulatory circuits reviewed here, which act at the transcriptional level to regulate the formation of both the pigment and apoprotein components of the LH, RC, and respiratory complexes. We have performed a proteomic examination of the ICM development process in which membrane proteins have been identified that are temporally expressed both during adaptation to low light intensity and ICM formation at low aeration and are spatially localized in both growing and mature ICM regions. For these proteomic analyses, membrane growth initiation sites and mature ICM vesicles were isolated as respective upper-pigmented band (UPB) and chromatophore fractions and subjected to clear native electrophoresis for isolation of bands containing the LH2 and RC-LH1 core complexes. In chromatophores, increasing levels of LH2 polypeptides relative to those of the RC-LH1 complex were observed as ICM membrane development proceeded during light-intensity downshifts, along with a large array of other associated proteins including high spectral counts for the F1FO-ATP synthase subunits and the cytochrome bc1 complex, as well as RSP6124, a protein of unknown function, that was correlated with increasing LH2 spectral counts. In contrast, the UPB was enriched in cytoplasmic membrane (CM) markers, including electron transfer and transport proteins, as well as general membrane protein assembly factors confirming the origin of the UPB from both peripheral respiratory membrane and sites of active CM invagination that give rise to the ICM. The changes in ICM vesicles were correlated to AFM mapping results (Adams and Hunter, Biochim Biophys Acta 1817:1616-1627, 2012), in which the increasing LH2 levels were shown to form densely packed LH2-only domains, representing the light-responsive antenna complement formed under low illumination. The advances described here could never have been envisioned when the author was first introduced in the mid-1960s to the intricacies of the photosynthetic apparatus during a lecture delivered in a graduate Biochemistry course at the University of Illinois by Govindjee, to whom this volume is dedicated on the occasion of his 80th birthday.

  19. Investigating Microphysics of Intracluster Medium with Advanced Hydrodynamic Simulations and X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim

    Clusters of galaxies are the largest virialized mass concentrations in the Universe, and have long been recognized as sensitive cosmological probes. It is becoming increasingly clear that to realize their full potential for cosmology, we need to drastically reduce uncertainties in the cluster mass estimates and their relation to various cluster observables that arise from our lack of knowledge of the microphysics of the intracluster medium (ICM). Such ICM properties as thermal conductivity, viscosity, strength and structure of the magnetic fields, the energy in the cosmic ray components and electron-ion equilibration rates are very uncertain. Each of these can have a significant impact on the cluster thermal balance and the quantities that we observe in the X-ray, SZ, and radio bands. Theoretical estimates of thermal conductivity and viscosity are particularly uncertain -- by orders of magnitude. The heat can be conducted only along the magnetic field lines, but by some estimates, even along the lines it can be effectively suppressed by small- scale field fluctuations. Even less understood is the physical nature and the magnitude of viscosity, which bears directly on the ICM heating and mixing processes and the damping of turbulence. We have identified a method to constrain these quantities by contrasting high-quality X-ray observations of merging clusters with our high-resolution magnetohydrodynamic simulations that would follow the evolution of the magnetic field and include various levels of anisotropic conduction and viscosity. Thermal conduction can best be constrained by comparing X-ray temperature maps for several well-observed merging clusters with the maps for their simulated analogs. The conduction at interesting levels is expected to erase any small-scale temperature nonuniformities on timescales comparable to that of the merger. Currently, the most readily observable effect of viscosity is the suppression of instabilities in the cluster `cold fronts' -- sharp, arc-like contact discontinuities often observed in the cluster high- resolution X-ray images. Most of the observed cold fronts are very smooth, but some are visibly affected by instabilities. We will constrain the viscosity (largely independently of its exact physical nature) by including various levels of viscosity in the simulation of a strategically selected sample of cold front clusters. The forthcoming Astro-H mission opens another avenue to study the ICM viscosity and related phenomena -- by directly observing turbulence in merging and relaxed clusters. The turbulence in our merger simulations with varying viscosity could be directly compared to the levels eventually observed by Astro-H. Over the past several years, we have developed most of the machinery necessary for the above simulations by adding the appropriate code for diffusive physics into FLASH -- the high-resolution, grid-based magnetohydrodynamic code. As part of the proposed project, we will (a) add a few missing physical ingredients to the code and (b) simulate a sample of merging clusters, carefully selected from the XMM and Chandra archives to provide the strongest constraints on thermal conduction and viscosity in the ICM. The comparison with observations will result in strict limits on these microphysical quantities, adding an important element into the astrophysical foundation for the use of clusters as cosmological tools. The proposed research is directly relevant to the ROSES ATP solicitation, because it is a theoretical/numerical study of the physical processes in galaxy clusters, which will lead to predictions that can be tested with observations by the NASA space astrophysics missions XMM, Chandra and Astro-H.

  20. MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahler, S. W.; Haggerty, D. K.; Richardson, I. G., E-mail: AFRL.RVB.PA@hanscom.af.mil

    About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as 'magnetic clouds' (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the 1 AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengthsmore » were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson and Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions (ARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.« less

  1. Magnetic Field-Line Lengths in Interplanetary Coronal Mass Ejections Inferred from Energetic Electron Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Haggerty, D. K.; Richardson, I. G.

    2011-01-01

    About one quarter of the observed interplanetary coronal mass ejections (ICMEs) are characterized by enhanced magnetic fields that smoothly rotate in direction over timescales of about 10-50 hr. These ICMEs have the appearance of magnetic flux ropes and are known as "magnetic clouds" (MCs). The total lengths of MC field lines can be determined using solar energetic particles of known speeds when the solar release times and the I AU onset times of the particles are known. A recent examination of about 30 near-relativistic (NR) electron events in and near 8 MCs showed no obvious indication that the field-line lengths were longest near the MC boundaries and shortest at the MC axes or outside the MCs, contrary to the expectations for a flux rope. Here we use the impulsive beamed NR electron events observed with the Electron Proton and Alpha Monitor instrument on the Advanced Composition Explorer spacecraft and type III radio bursts observed on the Wind spacecraft to determine the field-line lengths inside ICMEs included in the catalog of Richardson & Cane. In particular, we extend this technique to ICMEs that are not MCs and compare the field-line lengths inside MCs and non-MC ICMEs with those in the ambient solar wind outside the ICMEs. No significant differences of field-line lengths are found among MCs, ICMEs, and the ambient solar wind. The estimated number of ICME field-line turns is generally smaller than those deduced for flux-rope model fits to MCs. We also find cases in which the electron injections occur in solar active regions CARs) distant from the source ARs of the ICMEs, supporting CME models that require extensive coronal magnetic reconnection with surrounding fields. The field-line lengths are found to be statistically longer for the NR electron events classified as ramps and interpreted as shock injections somewhat delayed from the type III bursts. The path lengths of the remaining spike and pulse electron events are compared with model calculations of solar wind field-line lengths resulting from turbulence and found to be in good agreement.

  2. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry.

    PubMed

    Echeverría, S; Borrull, F; Fontanals, N; Pocurull, E

    2013-11-15

    A method for the quantitative determination of five iodinated X-ray contrast media (ICMs) in sewage was developed by solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry. A fused-core analytical column was successfully applied for the first time for the separation of ICMs. Oasis HLB was selected from the sorbents tested because of its higher recoveries. The optimized method allowed the determination of the ICMs at low ng/L levels in both influent and effluent sewage, with detection limits of 40 ng/L and 10 ng/L for most compounds in influent and effluent sewage, respectively. The five ICMs studied were determined in all samples analysed, with iopromide being the analyte found at the highest concentration (8.9 µg/L), while iopamidol was the analyte found at lowest concentration (1.3 µg/L) in influent sewage. Effluent sewage did not show a significant decrease in ICM concentrations. © 2013 Elsevier B.V. All rights reserved.

  3. Approaches to a cortical vision prosthesis: implications of electrode size and placement

    NASA Astrophysics Data System (ADS)

    Christie, Breanne P.; Ashmont, Kari R.; House, Paul A.; Greger, Bradley

    2016-04-01

    Objective. In order to move forward with the development of a cortical vision prosthesis, the critical issues in the field must be identified. Approach. To begin this process, we performed a brief review of several different cortical and retinal stimulation techniques that can be used to restore vision. Main results. Intracortical microelectrodes and epicortical macroelectrodes have been evaluated as the basis of a vision prosthesis. We concluded that an important knowledge gap necessitates an experimental in vivo performance evaluation of microelectrodes placed on the surface of the visual cortex. A comparison of the level of vision restored by intracortical versus epicortical microstimulation is necessary. Because foveal representation in the primary visual cortex involves more cortical columns per degree of visual field than does peripheral vision, restoration of foveal vision may require a large number of closely spaced microelectrodes. Based on previous studies of epicortical macrostimulation, it is possible that stimulation via surface microelectrodes could produce a lower spatial resolution, making them better suited for restoring peripheral vision. Significance. The validation of epicortical microstimulation in addition to the comparison of epicortical and intracortical approaches for vision restoration will fill an important knowledge gap and may have important implications for surgical strategies and device longevity. It is possible that the best approach to vision restoration will utilize both epicortical and intracortical microstimulation approaches, applying them appropriately to different visual representations in the primary visual cortex.

  4. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.

    PubMed

    Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong

    2018-05-04

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.

  5. Improved Generation of Induced Cardiomyocytes Using a Polycistronic Construct Expressing Optimal Ratio of Gata4, Mef2c and Tbx5.

    PubMed

    Wang, Li; Liu, Ziqing; Yin, Chaoying; Zhou, Yang; Liu, Jiandong; Qian, Li

    2015-11-13

    Direct conversion of cardiac fibroblasts (CFs) into induced cardiomyocytes (iCMs) holds great potential for regenerative medicine by offering alternative strategies for treatment of heart disease. This conversion has been achieved by forced expression of defined factors such as Gata4 (G), Mef2c (M) and Tbx5 (T). Traditionally, iCMs are generated by a cocktail of viruses expressing these individual factors. However, reprogramming efficiency is relatively low and most of the in vitro G,M,T-transduced fibroblasts do not become fully reprogrammed, making it difficult to study the reprogramming mechanisms. We recently have shown that the stoichiometry of G,M,T is crucial for efficient iCM reprogramming. An optimal stoichiometry of G,M,T with relative high level of M and low levels of G and T achieved by using our polycistronic MGT vector (hereafter referred to as MGT) significantly increased reprogramming efficiency and improved iCM quality in vitro. Here we provide a detailed description of the methodology used to generate iCMs with MGT construct from cardiac fibroblasts. Isolation of cardiac fibroblasts, generation of virus for reprogramming and evaluation of the reprogramming process are also included to provide a platform for efficient and reproducible generation of iCMs.

  6. ICME — A Mere Coupling of Models or a Discipline of Its Own?

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Schmitz, Georg J.; Prahl, Ulrich

    Technically, ICME — Integrated computational materials engineering — is an approach for solving advanced engineering problems related to the design of new materials and processes by combining individual materials and process models. The combination of models by now is mainly achieved by manual transformation of the output of a simulation to form the input to a subsequent one. This subsequent simulation is either performed at a different length scale or constitutes a subsequent step along the process chain. Is ICME thus just a synonym for the coupling of simulations? In fact, most ICME publications up to now are examples of the joint application of selected models and software codes to a specific problem. However, from a systems point of view, the coupling of individual models and/or software codes across length scales and along material processing chains leads to highly complex meta-models. Their viability has to be ensured by joint efforts from science, industry, software developers and independent organizations. This paper identifies some developments that seem necessary to make future ICME simulations viable, sustainable and broadly accessible and accepted. The main conclusion is that ICME is more than a multi-disciplinary subject but a discipline of its own, for which a generic structural framework has to be elaborated and established.

  7. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-03-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  8. The Evaporation and Survival of Cluster Galaxies’ Coronae. II. The Effectiveness of Anisotropic Thermal Conduction and Survival of Stripped Galactic Tails

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-10-01

    We simulate anisotropic thermal conduction between the intracluster medium (ICM) and the hot coronal interstellar medium (ISM) gas in cluster galaxies. In Paper I, we simulated the evaporation of the hot ISM due to isotropic (possibly saturated) conduction between the ISM and ICM. We found that hot coronae evaporate on ˜ {10}2 {Myr} timescales, significantly shorter than the ˜ {10}3 {Myr} gas loss times due to ram pressure stripping. No tails of stripped gas are formed. This is in tension with the observed ubiquity and implied longevity of compact X-ray coronae and stripped ISM tails, and requires the suppression of evaporation, possibly due to magnetic fields and anisotropic conduction. We perform a series of wind tunnel simulations similar to that in Paper I, now including ISM and ICM magnetic fields. We simulate the effect of anisotropic conduction for a range of extreme magnetic field configurations: parallel and perpendicular to the ICM wind, and continuous and completely disjointed between the ISM and ICM. We find that when conduction is anisotropic, gas loss due to evaporation is severely reduced; the overall gas loss rates with and without anisotropic conduction do not differ by more than 10%-20%. Magnetic fields also prevent stripped tails from evaporating in the ICM by shielding, and providing few pathways for heat transport between the ICM and ISM. The morphology of stripped tails and magnetic fields in the tails and wakes of galaxies are sensitive to the initial magnetic field configuration.

  9. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conductionmore » is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.« less

  10. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-05-01

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  11. Clinical Practice Guidelines for Diagnosis and Management of Hypersensitivity Reactions to Contrast Media.

    PubMed

    Rosado Ingelmo, A; Doña Diaz, I; Cabañas Moreno, R; Moya Quesada, M C; García-Avilés, C; García Nuñez, I; Martínez Tadeo, J I; Mielgo Ballesteros, R; Ortega-Rodríguez, N; Padial Vilchez, M A; Sánchez-Morillas, L; Vila Albelda, C; Moreno Rodilla, E; Torres Jaén, M J

    2016-01-01

    The objective of these guidelines is to ensure efficient and effective clinical practice. The panel of experts who produced this consensus document developed a research protocol based on a review of the literature. The prevalence of allergic reactions to iodinated contrast media (ICM) is estimated to be 1:170 000, that is, 0.05%-0.1% of patients undergoing radiologic studies with ICM (more than 75 million examinations per year worldwide). Hypersensitivity reactions can appear within the first hour after administration (immediate reactions) or from more than 1 hour to several days after administration (nonimmediate or delayed reactions). The risk factors for immediate reactions include poorly controlled bronchial asthma, concomitant medication (eg, angiotensin-converting enzyme inhibitors, ß-blockers, and proton-pump inhibitors), rapid administration of the ICM, mastocytosis, autoimmune diseases, and viral infections. The most common symptoms of immediate reactions are erythema and urticaria with or without angioedema, which appear in more than 70% of patients. Maculopapular rash is the most common skin feature of nonimmediate reactions (30%-90%). Skin and in vitro tests should be performed for diagnosis of both immediate and nonimmediate reactions. The ICM to be administered will therefore be chosen depending on the results of these tests, the ICM that induced the reaction (when known), the severity of the reaction, the availability of alternative ICM, and the information available on potential ICM cross-reactivity. Another type of contrast media, gadolinium derivatives, is used used for magnetic resonance imaging. Although rare, IgE-mediated reactions to gadolinium derivatives have been reported.

  12. INEFFICIENT DRIVING OF BULK TURBULENCE BY ACTIVE GALACTIC NUCLEI IN A HYDRODYNAMIC MODEL OF THE INTRACLUSTER MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Christopher S.; Balbus, Steven A.; Schekochihin, Alexander A., E-mail: chris@astro.umd.edu

    2015-12-10

    Central jetted active galactic nuclei (AGNs) appear to heat the core regions of the intracluster medium (ICM) in cooling-core galaxy clusters and groups, thereby preventing a cooling catastrophe. However, the physical mechanism(s) by which the directed flow of kinetic energy is thermalized throughout the ICM core remains unclear. We examine one widely discussed mechanism whereby the AGN induces subsonic turbulence in the ambient medium, the dissipation of which provides the ICM heat source. Through controlled inviscid three-dimensional hydrodynamic simulations, we verify that explosive AGN-like events can launch gravity waves (g-modes) into the ambient ICM, which in turn decays to volume-fillingmore » turbulence. In our model, however, this process is found to be inefficient, with less than 1% of the energy injected by the AGN activity actually ending up in the turbulence of the ambient ICM. This efficiency is an order of magnitude or more too small to explain the observations of AGN-feedback in galaxy clusters and groups with short central cooling times. Atmospheres in which the g-modes are strongly trapped/confined have an even lower efficiency since, in these models, the excitation of turbulence relies on the g-modes’ ability to escape from the center of the cluster into the bulk ICM. Our results suggest that, if AGN-induced turbulence is indeed the mechanism by which the AGN heats the ICM core, its driving may rely on physics beyond that captured in our ideal hydrodynamic model.« less

  13. Corticosterone metabolite concentrations in greater sage-grouse are positively associated with the presence of cattle grazing

    USGS Publications Warehouse

    Jankowski, M.D.; Russell, Robin E.; Franson, J. Christian; Dusek, Robert J.; Hines, M.K.; Gregg, M.; Hofmeister, Erik K.

    2014-01-01

    The sagebrush biome in the western United States is home to the imperiled greater sage-grouse (Centrocercus urophasianus) and encompasses rangelands used for cattle production. Cattle grazing activities have been implicated in the range-wide decline of the sage-grouse, but no studies have investigated the relationship between the physiological condition of sage-grouse and the presence of grazing cattle. We sampled 329 sage-grouse across four sites (two grazed and two ungrazed) encompassing 13 600 km2 during the spring and late summer–early autumn of 2005 to evaluate whether demographic factors, breeding status, plasma protein levels, and residence in a cattle-grazed habitat were associated with the stress hormone corticosterone. Corticosterone was measured in feces as immunoreactive corticosterone metabolites (ICM). Males captured during the lekking season exhibited higher ICM levels than all others. Prenesting female sage-grouse captured in a grazed site had higher ICM levels than those in ungrazed sites and prenesting female plasma protein levels were negatively correlated with ICM concentrations. With the use of a small-scale spatial model, we identified a positive correlation between cattle pat count and sage-grouse ICM levels. Our model indicated that ICM levels increased by 2.60 ng · g-1 dry feces for every increase in the number of cow pats found in the vicinity. Management practices will benefit from future research regarding the consistency and mechanism(s) responsible for this association and, importantly, how ICM levels and demographic rates are related in this species of conservation concern.

  14. Comparison of the International Crowding Measure in Emergency Departments (ICMED) and the National Emergency Department Overcrowding Score (NEDOCS) to measure emergency department crowding: pilot study.

    PubMed

    Boyle, Adrian; Abel, Gary; Raut, Pramin; Austin, Richard; Dhakshinamoorthy, Vijayasankar; Ayyamuthu, Ravi; Murdoch, Iona; Burton, Joel

    2016-05-01

    There is uncertainty about the best way to measure emergency department crowding. We have previously developed a consensus-based measure of crowding, the International Crowding Measure in Emergency Departments (ICMED). We aimed to obtain pilot data to evaluate the ability of a shortened form of the ICMED, the sICMED, to predict senior emergency department clinicians' concerns about crowding and danger compared with a very well-studied measure of emergency department crowding, the National Emergency Department Overcrowding Score (NEDOCS). We collected real-time observations of the sICMED and NEDOCS and compared these with clinicians' perceptions of crowding and danger on a visual analogue scale. Data were collected in four emergency departments in the East of England. Associations were explored using simple regression, random intercept models and models accounting for correlation between adjacent time points. We conducted 82 h of observation in 10 observation sets. Naive modelling suggested strong associations between sICMED and NEDOCS and clinician perceptions of crowding and danger. Further modelling showed that, due to clustering, the association between sICMED and danger persisted, but the association between these two measures and perception of crowding was no longer statistically significant. Both sICMED and NEDOCS can be collected easily in a variety of English hospitals. Further studies are required but initial results suggest both scores may have potential use for assessing crowding variation at long timescales, but are less sensitive to hour-by-hour variation. Correlation in time is an important methodological consideration which, if ignored, may lead to erroneous conclusions. Future studies should account for such correlation in both design and analysis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Implication of the VirD4 coupling protein of the Lvh type 4 secretion system in virulence phenotypes of Legionella pneumophila.

    PubMed

    Bandyopadhyay, Purnima; Lang, Elza A S; Rasaputra, Komal S; Steinman, Howard M

    2013-08-01

    The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm(+), showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm(+) background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS.

  16. Implication of the VirD4 Coupling Protein of the Lvh Type 4 Secretion System in Virulence Phenotypes of Legionella pneumophila

    PubMed Central

    Bandyopadhyay, Purnima; Lang, Elza A. S.; Rasaputra, Komal S.

    2013-01-01

    The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm+, showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm+ background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS. PMID:23729650

  17. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  18. Mapping the Perceptual Grain of the Human Retina

    PubMed Central

    Tuten, William S.; Roorda, Austin; Sincich, Lawrence C.

    2014-01-01

    In humans, experimental access to single sensory receptors is difficult to achieve, yet it is crucial for learning how the signals arising from each receptor are transformed into perception. By combining adaptive optics microstimulation with high-speed eye tracking, we show that retinal function can be probed at the level of the individual cone photoreceptor in living eyes. Classical psychometric functions were obtained from cone-sized microstimuli targeted to single photoreceptors. Revealed psychophysically, the cone mosaic also manifests a variable sensitivity to light across its surface that accords with a simple model of cone light capture. Because this microscopic grain of vision could be detected on the perceptual level, it suggests that photoreceptors can act individually to shape perception, if the normally suboptimal relay of light by the eye's optics is corrected. Thus the precise arrangement of cones and the exact placement of stimuli onto those cones create the initial retinal limits on signals mediating spatial vision. PMID:24741057

  19. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats.

    PubMed

    Shiromoto, Takashi; Okabe, Naohiko; Lu, Feng; Maruyama-Nakamura, Emi; Himi, Naoyuki; Narita, Kazuhiko; Yagita, Yoshiki; Kimura, Kazumi; Miyamoto, Osamu

    2017-02-01

    Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Immediate reactions to iodinated contrast media.

    PubMed

    Morales-Cabeza, Cristina; Roa-Medellín, Dasha; Torrado, Inés; De Barrio, Manuel; Fernández-Álvarez, Carmen; Montes-Aceñero, Juan Francisco; De La Riva, Inmaculada; Prieto-García, Alicia

    2017-12-01

    Immediate hypersensitivity reactions (IHRs) to iodinated contrast media (ICMs) remain a common clinical concern. Positive skin test and basophil activation test results suggest a specific IgE-mediated mechanism in some cases. Skin test and controlled challenge test (CCT) are useful to manage these patients. To study clinical and allergologic features of IHRs to ICMs in a Spanish tertiary hospital during a 7-year period. Demographic and clinical data concerning the reaction were recorded. Patients treated at the Allergy Department of Hospital General Universitario Gregorio Marañón, Madrid, Spain, underwent skin tests. In those with positive results, CCTs with an alternative skin-test-negative ICM was performed. Global reaction rate was calculated and compared for each ICM. A total of 342 reactions occurred in 329 patients. Cutaneous symptoms were the most common (87.7%). A total of 196 patients underwent an allergy workup, 15 (7.6%) of whom had positive skin test results. Reactions were more severe in patients with positive vs negative skin test results (grade 1, 46.7% vs 73.6%; grade 2, 33.3% vs 20.9%; grade 3, 20% vs 5.46%; P < .05). Three patients had cross-reactivity to 3 ICMs, all including ioversol and iomeprol. Six patients allergic to iopamidol tolerated ioversol and 1 tolerated iomeprol. Four patients allergic to ioversol and 1 allergic to iomeprol tolerated iopamidol. The global reaction rate was 0.2%, differing for each ICM (iopamidol, 0.14%; ioversol, 0.2%; and iomeprol, 0.4%; P < .001). Positive skin test results were found in a low percentage of patients in whom skin test-based CCT identified an alternative non-cross-reactive ICM. Low-grade cross-reactivity was found, especially between iopamidol and ioversol. Reactions were more severe in patients with positive skin test results. The reaction rate was greater for iomeprol compared with iopamidol (reaction rate, 2.8%) and ioversol (reaction rate, 2%). This study identified a possible underlying specific IgE-mediated mechanism by positive skin test result in a low percentage of patients with IHRs to ICMs. In these patients, the CCT based on skin test results was useful for identifying an alternative non-cross-reactive ICM. More studies are needed to investigate the underlying mechanism in patients with IHRs and negative skin test results. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Iodinated X-ray contrast agents: Photoinduced transformation and monitoring in surface water.

    PubMed

    Fabbri, D; Calza, P; Dalmasso, D; Chiarelli, P; Santoro, V; Medana, C

    2016-12-01

    Conventional wastewater treatment methods have shown to be unsuitable for a complete elimination of iodinated X-ray contrast agents (ICMs), which have thus been found in wastewater treatment plant (WWTP) effluent and in surface water. Once in the surface water, they could be transformed through different processes and form several transformation products that may need to be monitored as well. To this end, we studied the abatement and transformation of ICMs by combining laboratory experiments with in field analyses. We irradiated different aqueous solutions of the selected pollutants in the presence of TiO 2 as photocatalyst, aimed to promote ICMs degradation and to generate photoinduced transformation products (TPs) similar to those occurring in the environment and effluent wastewater. This experimental strategy has been applied to the study of three ICMs, namely iopromide, iopamidol and diatrizoate. A total of twenty-four, ten, and ten TPs were detected from iopamidol, diatrizoate and iopromide, respectively. The analyses were performed using a liquid chromatography-LTQ-FT-Orbitrap mass spectrometer. The mineralization process and acute toxicity evolution were assessed as well over time and revealed a lack of mineralization for all ICMs and the formation of harmful byproducts. After characterizing these transformation products, WWTP effluent and surface water taken from several branches of the Chicago River were analyzed for ICMs and their TPs. HRMS with MS/MS fragmentation was used as a confirmatory step for proper identification of compounds in water and wastewater samples. All three of ICM were detected in the effluent and surface water samples, while no significant amount of TPs were detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Intimal cell masses in the abdominal aortas of swine fed a low-fat, low-cholesterol diet for up to twelve years of age.

    PubMed

    Kim, D N; Schmee, J; Lee, K T; Thomas, W A

    1985-05-01

    The normal subendothelial intima of large arteries in man, swine and most other species is a variegated structure from birth onwards. In some regions it contains only a few scattered cells; in others there may be a continuous single layer of cells; and in still others the cells pile up to form what we have called intimal cell masses (ICM). The cells in the normal ICM are mostly smooth muscle cells although there is also a small resident population of monocyte-like cells. We have been studying the ICM in swine with emphasis on the abdominal aorta. We have found that atherosclerotic lesions in the abdominal aorta of swine induced by high-fat high-cholesterol diets begin by a hyperplastic reaction of the smooth muscle cells in the ICM and progress to form large lesions characterized by extensive regions of lipid-rich calcific necrotic debris similar to advanced lesions in man. Because of the putative key role of the ICM in atherogenesis we think that it is important to learn as much as possible about their natural history under conditions as normal as possible. In this report we present data on ICM in the abdominal aortas of 34 male and female Hormel miniature swine maintained on a low-fat low-cholesterol diet for up to 12 years of age. The ICM grow slowly with aging and in the distal portion of the aorta account for an average of 9% in the male and 15% in the female of the total cells in the aortic wall (intima + media).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Solar Cycle Variation and Multipoint Studies of ICME Properties

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    2005-01-01

    The goal of the Living With a Star program is to understand the Sun-Earth connection sufficiently well that we can solve problems critical to life and society. This can most effectively be done in the short term using observations from our past and on-going programs. Not only can this approach solve some of the pressing issues but also it can provide ideas for the deployment of future spacecraft in the LWS program. The proposed effort uses data from NEAR, SOHO, Wind, ACE and Pioneer Venus in quadrature, multipoint, and solar cycle studies to study the interplanetary coronal mass ejection and its role in the magnetic flux cycle of the Sun. ICMEs are most important to the LWS objectives because the solar wind conditions associated with these structures are the most geoeffective of any solar wind phenomena. Their ability to produce strong geomagnetic disturbances arises first because of their high speed. This high speed overtakes the ambient solar wind producing a bow shock wave similar to the terrestrial bow shock. In the new techniques we develop as part of this effort we exploit this feature of ICMEs. This shocked plasma has a greater velocity, higher density and stronger magnetic field than the ambient solar wind, conditions that can enhance geomagnetic activity. The driving ICME is a large magnetic structure expanding outward in the solar wind [Gosling, 19961. The ICMEs magnetic field is generally much higher than that in the ambient solar wind and the velocity is high. The twisted nature of the magnetic field in an ICME almost ensures that sometime during the ICME conditions favorable for geomagnetic storm initiation will occur.

  4. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hector, Jr., Louis G.; McCarty, Eric D.

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowingmore » objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.« less

  5. Hyperthyroidism in patients with ischaemic heart disease after iodine load induced by coronary angiography: Long-term follow-up and influence of baseline thyroid functional status.

    PubMed

    Bonelli, Nadia; Rossetto, Ruth; Castagno, Davide; Anselmino, Matteo; Vignolo, Francesca; Parasiliti Caprino, Mirko; Gaita, Fiorenzo; Ghigo, Ezio; Garberoglio, Roberto; Grimaldi, Roberto; Maccario, Mauro

    2018-02-01

    To study the effect of a iodine load on thyroid function of patients with ischaemic heart disease (IHD) and the long-term influence of unknown subclinical hyperthyroidism. Subclinical hyperthyroidism is considered an independent risk factors for cardiovascular morbidity of patients with IHD. They routinely undergo coronary angiography with iodine contrast media (ICM) which may induce or even worsen hyperthyroidism. A cross-sectional study followed by a longitudinal study on patients with subclinical hyperthyroidism. 810 consecutive IHD outpatients without known thyroid diseases or treatment with drugs influencing thyroid activity undergoing elective coronary angiography. We evaluated thyroid function either before and 1 month after ICM; patients with thyrotoxicosis at baseline or after ICM were then followed up for 1 year. 58 patients had hyperthyroidism at baseline (HB, 7.2%), independently associated to FT4 levels, thyroid nodules and family history of thyroid diseases. After ICM, the prevalence of hyperthyroidism was 81 (10%). Hyperthyroidism after ICM was positively predicted by baseline fT4 levels, thyroid nodules, age over 60, male gender, family history of thyroid diseases. Three months after ICM, 34 patients (4.2%) still showed hyperthyroidism (22 from HB, 13 treated with methimazole). One year after ICM, hyperthyroidism was still present in 20 patients (2.5%, all from HB, 13 treated). The prevalence of spontaneous subclinical hyperthyroidism in IHD is surprisingly elevated and is further increased by iodine load, particularly in patients with thyroid nodules and familial history of thyroid diseases, persisting in a not negligible number of them even after one year. © 2017 John Wiley & Sons Ltd.

  6. Icm/Dot-Independent Entry of Legionella pneumophila into Amoeba and Macrophage Hosts

    PubMed Central

    Bandyopadhyay, Purnima; Xiao, Huifang; Coleman, Hope A.; Price-Whelan, Alexa; Steinman, Howard M.

    2004-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, expresses a type IVB secretion apparatus that translocates bacterial proteins into amoeba and macrophage hosts. When stationary-phase cultures are used to infect hosts, the type IVB apparatus encoded by the icm/dot genes is required for entry, delay of phagosome-lysosome fusion, and intracellular multiplication within host cells. Null mutants with mutations in icm/dot genes are defective in these phenotypes. Here a new model is described in which hosts are infected with stationary-phase cultures that have been incubated overnight in pH 6.5 buffer. This model is called Ers treatment because it enhances the resistance to acid, hydrogen peroxide, and antibiotic stress beyond that of stationary-phase cultures. Following Ers treatment entry into amoeba and macrophage hosts does not require dotA, which is essential for Legionella virulence phenotypes when hosts are infected with stationary-phase cultures, dotB, icmF, icmV, or icmX. Defective host entry is also suppressed for null mutants with mutations in the KatA and KatB catalase-peroxidase enzymes, which are required for proper intracellular growth in amoeba and macrophage hosts. Ers treatment-induced suppression of defective entry is not associated with increased bacterial adhesion to host cells or with morphological changes in the bacterial envelope but is dependent on protein expression during Ers treatment. By using proteomic analysis, Ers treatment was shown to induce a protein predicted to contain eight tetratricopeptide repeats, a motif previously implicated in enhanced entry of L. pneumophila. Characterization of Ers treatment-dependent changes in expression is proposed as an avenue for identifying icm/dot-independent factors that function in the entry of Legionella into amoeba and macrophage hosts. PMID:15271914

  7. The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang

    2017-08-01

    The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).

  8. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less

  9. Implant Evaluation of an Insertable Cardiac Monitor Outside the Electrophysiology Lab Setting

    PubMed Central

    Pachulski, Roman; Cockrell, James; Solomon, Hemant; Yang, Fang; Rogers, John

    2013-01-01

    Background To date, insertable cardiac monitors (ICM) have been implanted in the hospital without critical evaluation of other potential settings. Providing alternatives to in-hospital insertion may increase access to ICM, decrease waiting times for patients awaiting diagnosis, and reduce hospital resources. Methods This was a prospective, non-randomized, clinical trial involving nine clinical sites throughout the United States designed to assess the feasibility of ICM implants in a non-hospital setting. Other than the Reveal® ICM, implant supplies and techniques were left to physician discretion in patients who met indications. Patients were followed up to 90 days post-implant. The primary objective was to characterize the number of procedure-related adverse events that required surgical intervention within 90 days. Results Sixty-five patients were implanted at nine out-of-hospital sites. The insertion procedure was well tolerated by all patients. There were no deaths, systemic infections or endocarditis. There were two (3%) procedure-related adverse events requiring device explant and four (6%) adverse events not requiring explant. ICM use led to 16 diagnoses (24.6%) with 9 patients proceeding to alternate cardiac device implants during the course of the 90-day follow up. Conclusion Out-of-hospital ICM insertion can be accomplished with comparable procedural safety and represents a reasonable alternative to the in-hospital setting. Clinicaltrials.gov registration number: NCT01168427 PMID:23977071

  10. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocher, M.; Lepri, S. T.; Landi, E.

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property ofmore » significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.« less

  11. Enrichment and heating of the intracluster medium by ejection from galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Chris; Evrard, August

    1993-01-01

    Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.

  12. Effects of Solar Array Shadowing on the Power Capability of the Interim Control Module

    NASA Technical Reports Server (NTRS)

    Fincannon, James; Hojnicki, Jeffrey S.; Garner, James Christopher

    1999-01-01

    The Interim Control Module (ICM) is being built by the US Naval Research Laboratory (NRL) for NASA as a propulsion module for the International Space Station (ISS). Originally developed as a spinning spacecraft used to move payloads to their final orbit, for ISS, the ICM will be in a fixed orientation and location for long periods resulting in substantial solar panel shadowing. This paper describes the methods used to determine the incident energy incident energy on the ICM solar panels and the power capability of the electric power system (EPS). Applying this methodology has resulted in analyses and assessments used to identify ICM early design changes/options, placement and orientations that enable successful operation of the EPS under a wide variety of anticipated conditions.

  13. Integrated corridor management : ICM implementation guide

    DOT National Transportation Integrated Search

    2006-04-12

    This Implementation Guidance for Integrated Corridor Management (ICM) has been developed as part of Phase 1 (Foundational Research) for the Federal Highway Administration and the Federal Transit Administration Integrated Corridor Management Initiativ...

  14. Force-related neuronal activity in two regions of the primate ventral premotor cortex.

    PubMed

    Hepp-Reymond, M C; Hüsler, E J; Maier, M A; Ql, H X

    1994-05-01

    Neuronal activity was recorded in the ventral premotor cortex of one monkey (Macaca fascicularis) trained to exert finely graded forces with thumb and index finger on a force sensor in a visuomotor step-tracking paradigm. Trials with two or three consecutive ramp-and-hold force steps were presented randomly. Most neurons displayed similar discharge patterns in the two- and three-step trials and were assigned to one of the following classes: phasic, phasic-tonic, tonic, decreasing, and mixed. For more than 50% of the neurons with tonic activity, positive or negative correlations between firing rate and force were statistically significant. The indices of force sensitivity were on average higher for the two-step than for the three-step trials, indicating that the correlations yielded linearity over only a limited force range. The force-related cells were located in two regions of the ventral premotor cortex. One group was ying rostrally within the inferior limb of the arcuate sulcus, from which microstimulation elicited movements of fingers and hand. In the other more caudal region, adjacent to the finger region of primary motor cortex, microstimulation was rarely effective, but all neurons had clear peripheral receptive fields on finger and hand. The data indicate that two populations of neurons, located in the ventral premotor cortex, are related to movement execution. Effective microstimulation also suggests that one of the populations has fairly direct access to the spinal motor apparatus.

  15. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque

    NASA Astrophysics Data System (ADS)

    Davis, T. S.; Parker, R. A.; House, P. A.; Bagley, E.; Wendelken, S.; Normann, R. A.; Greger, B.

    2012-12-01

    Objective. It has been hypothesized that a vision prosthesis capable of evoking useful visual percepts can be based upon electrically stimulating the primary visual cortex (V1) of a blind human subject via penetrating microelectrode arrays. As a continuation of earlier work, we examined several spatial and temporal characteristics of V1 microstimulation. Approach. An array of 100 penetrating microelectrodes was chronically implanted in V1 of a behaving macaque monkey. Microstimulation thresholds were measured using a two-alternative forced choice detection task. Relative locations of electrically-evoked percepts were measured using a memory saccade-to-target task. Main results. The principal finding was that two years after implantation we were able to evoke behavioural responses to electric stimulation across the spatial extent of the array using groups of contiguous electrodes. Consistent responses to stimulation were evoked at an average threshold current per electrode of 204 ± 49 µA (mean ± std) for groups of four electrodes and 91 ± 25 µA for groups of nine electrodes. Saccades to electrically-evoked percepts using groups of nine electrodes showed that the animal could discriminate spatially distinct percepts with groups having an average separation of 1.6 ± 0.3 mm (mean ± std) in cortex and 1.0° ± 0.2° in visual space. Significance. These results demonstrate chronic perceptual functionality and provide evidence for the feasibility of a cortically-based vision prosthesis for the blind using penetrating microelectrodes.

  16. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    PubMed

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  17. Biometric identification standards research

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Air Quality Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM projects being...

  18. Formation, Heating And Chemical Enrichment Of The Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Eckert, Dominique

    2017-07-01

    The intracluster medium (ICM) contains the majority of the baryons (80-90%) of galaxy clusters and groups. It has been progressively heated up by gravitational and non-gravitational processes since the cluster formation epoch (z 2-3) until it reaches the very high temperatures we see today, i.e. between 10 and 100 million degrees. The global properties of the ICM follow tight scaling laws with halo mass which are shaped both by gravitational and non-gravitational effects (in particular gas cooling and AGN feedback). Finally, we also know that the ICM is enriched in metals which have been ejected from cluster galaxies throughout the cluster formation history. I will give a review of what is currently known about the formation and evolution of the ICM, focusing on the heating processes (shocks, turbulence) and the metal enrichment history of the gas.

  19. Cosmic-Ray Feedback Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.

    2017-07-01

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (I) CRs come into contact with the ambient ICM and efficiently heat it, (II) streaming instability heating dominates over Coulomb and hadronic heating, (III) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (IV) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.

  20. The Hydrodynamics of Galaxy Transformation in Extreme Cluster Environments

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani

    2017-08-01

    Cluster of galaxies are hostile environments. Infalling cluster galaxies are stripped of their dark matter, stars, and hot and cold interstellar medium gas. The ISM, in addition to tidal and ram pressure stripping, can evaporate due to thermal conduction. Gas loss and the subsequent suppression of star formation is not straightforward: magnetic fields in the ISM and ICM shield galaxies and their stripped tails from shear instabilities and conduction, radiative cooling can inhibit gas loss, and feedback from stars and AGN can replenish the ISM. While there is observational evidence that these processes operate, a theoretical understanding of the physics controlling the energy cycle in cluster galaxies remains elusive. Additionally, galaxies have a significant impact on ICM evolution: orbiting galaxies stir up and stretch ICM magnetic field lines, inject turbulence into the ICM via their wakes and g-waves, and infuse metals into the ICM. Quantifying the balance between processes that remove, retain, and replenish the ISM, and the impact of galaxies on the ICM require specialized hydrodynamic simulations of the cluster environment and its galaxies. I will present results from some of these simulations that include ram pressure stripping of galaxies' hot ISM, the effect of magnetic fields on this process, and the effectiveness of isotropic and anisotropic thermal conduction in removing and retaining the ISM. I will also quantify magnetic field amplification and turbulence injection due to orbiting galaxies, and implications for X-ray and radio observations and measurements of galactic coronae, tails, magnetic fields, and turbulence.

  1. The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing.

    PubMed

    Pereira, Leonel; Dias, Nicolina; Santos, Cledir; Lima, Nelson

    2014-01-01

    In this study, the potential of matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry (MALDI-TOF ICMS) was investigated for the identification of clinical isolates. The isolates were analyzed at the species and strain level. Spectral identification by MALDI-TOF ICMS was performed for all strains, and compared with the results of sequencing of the internal transcribed spacers (ITS1 and ITS2), and the 5.8S rDNA region. PCR fingerprinting analysis using primers M13, (GACA)4, and (AC)10 was performed in order to assess the intra-specific variability of Trichophyton rubrum strains. The identification of strains at species level by MALDI-TOF ICMS was in agreement with the previously performed morphological and biochemical analysis. Sequence data confirmed spectral mass identification at species level. Intra-specific variability was assessed. Within the T. rubrum cluster, strains were distributed into smaller highly related sub-groups with a similarity values above 85%. MALDI-TOF ICMS was shown to be a rapid, low-cost and accurate alternative tool for the identification and strain typing of T. rubrum. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  2. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  3. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  4. The flaw-detected coating and its applications in R&M of aircrafts

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with l<300μm, corresponding to the increment of the sensing layer's resistance at the level of 0.05Ω. Also, ICM resistance measurements correlate with crack length, permitting crack length monitoring. Numerous applications are under evaluation for ICM in difficult-to-access locations on commercial and military aircrafts. The motivation for the permanently flaw-detected coating monitoring is either (i) to replace an existing inspection that requires substantial disassembly and surface preparation (e.g. inside the fuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  5. The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium

    NASA Astrophysics Data System (ADS)

    Brunetti, Gianfranco

    2016-01-01

    Acceleration of cosmic-ray electrons (CRe) in the intra-cluster medium (ICM) is probed by radio observations that detect diffuse, megaparsec-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence, driven during massive cluster-cluster mergers, reaccelerates CRe at several giga-electron volts. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean free path (mfp) of CRe, are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are, however, poorly known, and we show that calculations of turbulent acceleration are also sensitive to these uncertainties. On the other hand this fact implies that the non-thermal properties of galaxy clusters probe the complex microphysics and the weakly collisional nature of the ICM.

  6. Opening a Window on ICME-driven GCR Modulation in the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Winslow, Reka M.; Schwadron, Nathan A.; Lugaz, Noé; Guo, Jingnan; Joyce, Colin J.; Jordan, Andrew P.; Wilson, Jody K.; Spence, Harlan E.; Lawrence, David J.; Wimmer-Schweingruber, Robert F.; Mays, M. Leila

    2018-04-01

    Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.

  7. Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    McEnulty, Tess Rose

    2012-06-01

    The purpose of this dissertation is to expand our understanding of oxygen ion escape to space from Venus and its dependence on extreme solar wind conditions found during interplanetary coronal mass ejections (ICMEs). The solar wind dynamic pressure outside of the Venus bow shock did not exceed ˜12 nPa, during 2006-2009, while the solar wind dynamic pressure was higher than this for ˜10% of the time during the PVO mission. Oxygen ions escape Venus through multiple regions near the planet. One of these regions is the magnetosheath, where high energy pick-up ions are accelerated by the solar wind convection electric field. High energy (>1 keV) O+ pick-up ions within the Venus magnetosheath reached higher energy at lower altitude when the solar wind was disturbed by ICMEs compared to pick-up ions when the external solar wind was not disturbed, between 2006-2007. However, the count rate of O+ was not obviously affected by the ICMEs during this time period. In addition to high energy pick-up ions, VEX also detects low energy (˜10-100 eV) O+ within the ionosphere and wake of Venus. These low energy oxygen ions are difficult to interpret, because the spacecraft's relative velocity and potential can significantly affect the measured energy. If VEX ion data is not corrected for the spacecraft's relative velocity and potential, gravitationally bound O+ could be misinterpreted as escaping. These gravitationally bound oxygen ions can extend on the nightside to ˜-2 Venus radii and may even return to the planet after reaching high altitudes in the wake. Gravitationally bound ions will lower the total O+ escape estimated from Venus if total escape is calculated including these ions. However, if the return flux is low compared to the total escaping outflow, this effect is not significant. An ICME with a dynamic pressure of 17.6 nPa impacted Venus on November 11, 2011. During this ICME, the high energy pick-up O+ and the low energy O+ ions were affected. Oxygen ions in the magnetosheath, ionosphere, and tail had higher energies during the ICME, compared to O + energies when the external solar wind conditions were undisturbed. High energy ions were escaping within the dayside magnetosheath region when the ICME was passing as well as when the solar wind was undisturbed. However, during the ICME passage, these O+ ions had three orders of magnitude higher counts. The low energy O+ during the undisturbed days was gravitationally bound, while during the ICME a portion of the low energy ions were likely escaping. The most significant difference in O + during the ICME was high energy pickup ions measured in the wake on the outbound portion of the orbit. These ions had an escape flux of 2.5 X 108 O+cm-2sec-1, which is higher than the average escape flux in all regions of the wake. In addition, the interplanetary magnetic field (IMF) was in a configuration that may have rotated an even higher escape flux O+ away from the VEX orbit. This needs to be confirmed with sampling of other regions in the wake during large ICMEs. A lower bound on the total O+ escape during this event could be ˜2.8 X1026 to 6.5 X 1027 O +/sec, which is 2-3 orders of magnitude higher than the average escape flux measured by VEX. Hence, ICMEs could have played a major role in the total escape of O+ from Venus. The results presented in this dissertation can be used as a guide for future studies of O+ escape at Venus. As we move into solar maximum, Venus will likely be impacted by more large ICMEs. The ICME from the last study of this dissertation was the largest yet measured by VEX, but its 17.6 nPa dynamic pressure is lower than the largest ICMEs during the PVO time period (˜ 80 nPa). The work in this dissertation is also relevant to Mars, since Mars interacts with the solar wind in a similar manner and has analogous ion escape mechanisms. The upcoming MAVEN (Mars Atmosphere and Volatile Evolution) mission will launch at the end of 2013 to study the Martian atmosphere, escape processes, and history of volatiles. This mission will have an in-situ ion instrument and magnetometer similar to those used for the studies in this dissertation, so one could conduct similar studies of the oxygen ion escape from Mars during extreme solar wind conditions. (Abstract shortened by UMI.)

  8. Students' Good Reasons.

    ERIC Educational Resources Information Center

    Alro, Helle; Skovsmose, Ole

    1996-01-01

    Provides examples and a discussion of the Inquiry Cooperation Model (ICM). The ICM is a way of describing a pattern of communicative cooperation between teacher and students. It tries to develop students' preconceptions into mathematical competence. Contains 15 references. (DDR)

  9. ICMS. Chemical Tracking, Management, and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramlette, J.; Miles, R.; Carlson, M.

    1997-10-10

    The ICMS provides: management and system users a cost-effective method for identifying, reporting, and tracking chemicals from identifying the chemical when it is received until it enters a waste stream for a facility or area.

  10. ICMS concept of operations for a generic corridor

    DOT National Transportation Integrated Search

    2006-04-18

    This Generic Concept of Operations for Integrated Corridor Management (ICM) has been developed as part of Phase 1 (Foundational Research) for the Federal Highway Administration and the Federal Transit Administration (FHWA/FTA) Integrated Corridor Man...

  11. Building electronic forms for elderly program: integrated care model for high risk elders in Hong Kong.

    PubMed

    Yiu, Rex; Fung, Vicky; Szeto, Karen; Hung, Veronica; Siu, Ricky; Lam, Johnny; Lai, Daniel; Maw, Christina; Cheung, Adah; Shea, Raman; Choy, Anna

    2013-01-01

    In Hong Kong, elderly patients discharged from hospital are at high risk of unplanned readmission. The Integrated Care Model (ICM) program is introduced to provide continuous and coordinated care for high risk elders from hospital to community to prevent unplanned readmission. A multidisciplinary working group was set up to address the requirements on developing the electronic forms for ICM program. Six (6) forms were developed. These forms can support ICM service delivery for the high risk elders, clinical documentation, statistical analysis and information sharing.

  12. Foreword

    NASA Astrophysics Data System (ADS)

    Labarta, Amilcar; Vazquez, Manuel; Fontcuberta, Josep; Schuller, Ivan; Rivas, José; Givord, Dominique

    2016-02-01

    The International Conference on Magnetism (ICM), organized under the auspices of the International Union of Pure and Applied Physics (IUPAP), takes place every three years. It gathers scientists and engineers involved in magnetism research, from the most fundamental aspects to the most applied ones. ICM 2015, the 20th conference in the series, took place in Barcelona, from 5th to 10th July 2015, organized by a broadly international magnetics community with special commitment from the Spanish community. Almost 2200 delegates took part to ICM 2015, placing this conference amongst those with highest attendance in the series (see Table 1).

  13. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 - 2011

    NASA Astrophysics Data System (ADS)

    Rodkin, D.; Slemzin, V.; Zhukov, A. N.; Goryaev, F.; Shugay, Y.; Veselovsky, I.

    2018-05-01

    We analyze the statistics, solar sources, and properties of interplanetary coronal mass ejections (ICMEs) in the solar wind. The total number of coronal mass ejections (CMEs) registered in the Coordinated Data Analysis Workshops catalog (CDAW) during the first eight years of Cycle 24 was 61% larger than in the same period of Cycle 23, but the number of X-ray flares registered by the Geostationary Operational Environmental Satellite (GOES) was 20 % smaller because the solar activity was lower. The total number of ICMEs in the given period of Cycle 24 in the Richardson and Cane list was 29% smaller than in Cycle 23, which may be explained by a noticeable number of non-classified ICME-like events in the beginning of Cycle 24. For the period January 2010 - August 2011, we identify solar sources of the ICMEs that are included in the Richardson and Cane list. The solar sources of ICME were determined from coronagraph observations of the Earth-directed CMEs, supplemented by modeling of their propagation in the heliosphere using kinematic models (a ballistic and drag-based model). A detailed analysis of the ICME solar sources in the period under study showed that in 11 cases out of 23 (48%), the observed ICME could be associated with two or more sources. For multiple-source events, the resulting solar wind disturbances can be described as complex (merged) structures that are caused by stream interactions, with properties depending on the type of the participating streams. As a reliable marker to identify interacting streams and their sources, we used the plasma ion composition because it freezes in the low corona and remains unchanged in the heliosphere. According to the ion composition signatures, we classify these cases into three types: complex ejecta originating from weak and strong CME-CME interactions, as well as merged interaction regions (MIRs) originating from the CME high-speed stream (HSS) interactions. We describe temporal profiles of the ion composition for the single-source and multi-source solar wind structures and compared them with the ICME signatures determined from the kinematic and magnetic field parameters of the solar wind. In single-source events, the ion charge state, as a rule, has a one-peak enhancement with an average duration of about one day, which is similar to the mean ICME duration of 1.12 days derived from the Richardson and Cane list. In the multi-source events, the total profile of the ion charge state consists of a sequence of enhancements that is associated with the interaction between the participating streams. On average, the total duration of the complex structures that appear as a result of the CME-CME and CME-HSS interactions as determined from their ion composition is 2.4 days, which is more than twice longer than that of the single-source events.

  14. Novel Coenzyme B12-dependent Interconversion of Isovaleryl-CoA and Pivalyl-CoA*

    PubMed Central

    Cracan, Valentin; Banerjee, Ruma

    2012-01-01

    5′-Deoxyadenosylcobalamin (AdoCbl)-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently characterized a fusion protein that comprises the two subunits of the AdoCbl-dependent isobutyryl-CoA mutase flanking a G-protein chaperone and named it isobutyryl-CoA mutase fused (IcmF). IcmF catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA, whereas GTPase activity is associated with its G-protein domain. In this study, we report a novel activity associated with IcmF, i.e. the interconversion of isovaleryl-CoA and pivalyl-CoA. Kinetic characterization of IcmF yielded the following values: a Km for isovaleryl-CoA of 62 ± 8 μm and Vmax of 0.021 ± 0.004 μmol min−1 mg−1 at 37 °C. Biochemical experiments show that an IcmF in which the base specificity loop motif NKXD is modified to NKXE catalyzes the hydrolysis of both GTP and ATP. IcmF is susceptible to rapid inactivation during turnover, and GTP conferred modest protection during utilization of isovaleryl-CoA as substrate. Interestingly, there was no protection from inactivation when either isobutyryl-CoA or n-butyryl-CoA was used as substrate. Detailed kinetic analysis indicated that inactivation is associated with loss of the 5′-deoxyadenosine moiety from the active site, precluding reformation of AdoCbl at the end of the turnover cycle. Under aerobic conditions, oxidation of the cob(II)alamin radical in the inactive enzyme results in accumulation of aquacobalamin. Because pivalic acid found in sludge can be used as a carbon source by some bacteria and isovaleryl-CoA is an intermediate in leucine catabolism, our discovery of a new isomerase activity associated with IcmF expands its metabolic potential. PMID:22167181

  15. Moving from rhetoric to reality: adapting Housing First for homeless individuals with mental illness from ethno-racial groups.

    PubMed

    Stergiopoulos, Vicky; O'Campo, Patricia; Gozdzik, Agnes; Jeyaratnam, Jeyagobi; Corneau, Simon; Sarang, Aseefa; Hwang, Stephen W

    2012-10-02

    The literature on interventions addressing the intersection of homelessness, mental illness and race is scant. The At Home/Chez Soi research demonstration project is a pragmatic field trial investigating a Housing First intervention for homeless individuals with mental illness in five cities across Canada. A unique focus at the Toronto site has been the development and implementation of a Housing First Ethno-Racial Intensive Case Management (HF ER-ICM) arm of the trial serving 100 homeless individuals with mental illness from ethno-racial groups. The HF ER-ICM program combines the Housing First approach with an anti-racism/anti-oppression framework of practice. This paper presents the findings of an early implementation and fidelity evaluation of the HF ER-ICM program, supplemented by participant narrative interviews to inform our understanding of the HF ER-ICM program theory. Descriptive statistics are used to describe HF ER-ICM participant characteristics. Focus group interviews, key informant interviews and fidelity assessments were conducted between November 2010 and January 2011, as part of the program implementation evaluation. In-depth qualitative interviews with HF ER-ICM participants and control group members were conducted between March 2010 and June 2011. All qualitative data were analysed using grounded theory methodology. The target population had complex health and social service needs. The HF ER-ICM program enjoyed a high degree of fidelity to principles of both anti-racism/anti-oppression practice and Housing First and comprehensively addressed the housing, health and sociocultural needs of participants. Program providers reported congruence of these philosophies of practice, and program participants valued the program and its components. Adapting Housing First with anti-racism/anti-oppression principles offers a promising approach to serving the diverse needs of homeless people from ethno-racial groups and strengthening the service systems developed to support them. The use of fidelity and implementation evaluations can be helpful in supporting successful adaptations of programs and services.

  16. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.

  17. In-office insertion of a miniaturized insertable cardiac monitor: Results from the Reveal LINQ In-Office 2 randomized study.

    PubMed

    Rogers, John D; Sanders, Prashanthan; Piorkowski, Christopher; Sohail, M Rizwan; Anand, Rishi; Crossen, Karl; Khairallah, Farhat S; Kaplon, Rachelle E; Stromberg, Kurt; Kowal, Robert C

    2017-02-01

    Recent miniaturization of an insertable cardiac monitor (ICM) may make it possible to move device insertion from a hospital to office setting. However, the safety of this strategy is unknown. The primary objective was to compare the safety of inserting the Reveal LINQ ICM in an office vs a hospital environment. Ancillary objectives included summarizing device- and procedure-related adverse events and responses to a physician questionnaire. Five hundred twenty-one patients indicated for an ICM were randomized (1:1 ratio) to undergo ICM insertion in a hospital or office environment at 26 centers in the United States in the Reveal LINQ In-Office 2 study (ClinicalTrials.gov identifier NCT02395536). Patients were followed for 90 days. ICM insertion was successful in all 482 attempted patients (office: 251; hospital: 231). The untoward event rate (composite of unsuccessful insertion and ICM- or insertion-related complications) was 0.8% (2 of 244) in the office and 0.9% (2 of 227) in the hospital (95% confidence interval, -3.0% to 2.9%; 5% noninferiority: P < .001). In addition, adverse events occurred during 2.5% (6 of 244) of office and 4.4% (10 of 227) of hospital insertions (95% confidence interval [office minus inhospital rates], -5.8% to 1.9%; 5% noninferiority: P < .001). Physicians indicated that for procedures performed in an office vs a hospital, there were fewer delays >15 minutes (16% vs 35%; P < .001) and patient response was more often "very positive." Physicians considered the office location "very convenient" more frequently than the hospital location (85% vs 27%; P < .001). The safety profile for the insertion of the Reveal LINQ ICM is excellent irrespective of insertion environment. These results may expand site of service options for LINQ insertion. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Implication of Proteins Containing Tetratricopeptide Repeats in Conditional Virulence Phenotypes of Legionella pneumophila

    PubMed Central

    Bandyopadhyay, Purnima; Sumer, Eren U.; Jayakumar, Deepak; Liu, Shuqing; Xiao, Huifang

    2012-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates. PMID:22563053

  19. Regional Traffic Incident Management Programs : Implementation Guide

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Air Quality Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM projects ...

  20. The Interpersonal Communication Motives Model.

    ERIC Educational Resources Information Center

    Graham, Elizabeth E.; And Others

    1993-01-01

    Tests a model of interpersonal communication motives and the construct of validity of the Interpersonal Communication Motives Instrument (ICM). Finds that the ICM is differentially related to who people talk to, how people talk, and what people talk about. (SR)

  1. Final report : Dallas Integrated Corridor Management (ICM) Demonstration Project.

    DOT National Transportation Integrated Search

    2015-08-01

    The Dallas Area Rapid Transit (DART) is leading the US-75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...

  2. Test report : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2015-05-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...

  3. Training plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2013-01-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...

  4. Integrated corridor management : implementation guide and lessons learned.

    DOT National Transportation Integrated Search

    2012-02-01

    This implementation guide is intended for use by adopters of integrated corridor management (ICM) approaches and strategies to address congestion and travel time reliability issues within specific travel corridors. It introduces the topic of ICM and ...

  5. Interactive chemistry management system (ICMS); Field demonstration results at United Illuminating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noto, F.A.; Farrell, D.M.; Lombard, E.V.

    1988-01-01

    The authors report on a field demonstration of the interactive chemistry management system (ICMS) performed in the late summer of 1987 at the New Haven Harbor Station of United Illuminating Co. This demonstration was the first installation of the ICMS at an actual plant site. The ICMS is a computer-based system designed to monitor, diagnose, and provide optional automatic control of water and steam chemistry throughout the steam generator cycle. It is one of the diagnostic modules that comprises CE-TOPS (combustion engineering total on-line performance system), which continuously monitors operating conditions and suggests priority actions to increase operation efficiency, extendmore » the performance life of boiler components and reduce maintenance costs. By reducing the number of forced outages through early identification of potentially detrimental conditions, diagnosis of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result.« less

  6. Calculation of gyrosynchrotron radiation brightness temperature for outer bright loop of ICME

    NASA Astrophysics Data System (ADS)

    Sun, Weiying; Wu, Ji; Wang, C. B.; Wang, S.

    :Solar polar orbit radio telescope (SPORT) is proposed to detect the high density plasma clouds of outer bright loop of ICMEs from solar orbit with large inclination. Of particular interest is following the propagation of the plasma clouds with remote sensor in radio wavelength band. Gyrosynchrotron emission is a main radio radiation mechanism of the plasma clouds and can provide information of interplanetary magnetic field. In this paper, we statistically analyze the electron density, electron temperature and magnetic field of background solar wind in time of quiet sun and ICMEs propagation. We also estimate the fluctuation range of the electron density, electron temperature and magnetic field of outer bright loop of ICMEs. Moreover, we calculate and analyze the emission brightness temperature and degree of polarization on the basis of the study of gyrosynchrotron emission, absorption and polarization characteristics as the optical depth is less than or equal to 1.

  7. A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558

    NASA Astrophysics Data System (ADS)

    Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.

    2007-03-01

    Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org

  8. Neuron discharges in the rat auditory cortex during electrical intracortical stimulation.

    PubMed

    Maldonado, P E; Altman, J A; Gerstein, G L

    1998-01-01

    Studies were carried out in rats anesthetized with ketamine or nembutal, with recording of multicellular activity (with separate identification of responses from individual neurons) in the primary auditory cortex before and after electrical intracortical microstimulation. These experiments showed that about half of the set of neurons studied produced responses to short tonal bursts, these responses having two components-initial discharges arising in response to the sound, and afterdischarge occurring after pauses of 50-100 msec. Afterdischarges lasted at least several seconds, and were generally characterized by a rhythmic structure (with a frequency of 8-12 Hz). After electrical microstimulation, the level of spike activity increased, especially in afterdischarges, and this increase could last up to 4 h. Combined peristimulus histograms, cross-correlations, and gravitational analyses were used to demonstrate interactions of neurons, which increased after electrical stimulation and were especially pronounced in the response afterdischarges.

  9. The informatics capability maturity of integrated primary care centres in Australia.

    PubMed

    Liaw, Siaw-Teng; Kearns, Rachael; Taggart, Jane; Frank, Oliver; Lane, Riki; Tam, Michael; Dennis, Sarah; Walker, Christine; Russell, Grant; Harris, Mark

    2017-09-01

    Integrated primary care requires systems and service integration along with financial incentives to promote downward substitution to a single entry point to care. Integrated Primary Care Centres (IPCCs) aim to improve integration by co-location of health services. The Informatics Capability Maturity (ICM) describes how well health organisations collect, manage and share information; manage eHealth technology, implementation, change, data quality and governance; and use "intelligence" to improve care. Describe associations of ICM with systems and service integration in IPCCs. Mixed methods evaluation of IPCCs in metropolitan and rural Australia: an enhanced general practice, four GP Super Clinics, a "HealthOne" (private-public partnership) and a Community Health Centre. Data collection methods included self-assessed ICM, document review, interviews, observations in practice and assessment of electronic health record data. Data was analysed and compared across IPCCs. The IPCCs demonstrated a range of funding models, ownership, leadership, organisation and ICM. Digital tools were used with varying effectiveness to collect, use and share data. Connectivity was problematic, requiring "work-arounds" to communicate and share information. The lack of technical, data and software interoperability standards, clinical coding and secure messaging were barriers to data collection, integration and sharing. Strong leadership and governance was important for successful implementation of robust and secure eHealth systems. Patient engagement with eHealth tools was suboptimal. ICM is positively associated with integration of data, systems and care. Improved ICM requires a health workforce with eHealth competencies; technical, semantic and software standards; adequate privacy and security; and good governance and leadership. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars

    NASA Astrophysics Data System (ADS)

    Freiherr von Forstner, Johan L.; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Hassler, Donald M.; Temmer, Manuela; Dumbović, Mateja; Jian, Lan K.; Appel, Jan K.; Čalogović, Jaša.; Ehresmann, Bent; Heber, Bernd; Lohf, Henning; Posner, Arik; Steigies, Christian T.; Vršnak, Bojan; Zeitlin, Cary J.

    2018-01-01

    The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earth's orbit (1 AU) to Mars (˜1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts causes the so-called Forbush decrease, which can be detected as a reduction of galactic cosmic rays measured on ground. We have used galactic cosmic ray (GCR) data from in situ measurements at Earth, from both STEREO A and STEREO B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument on board Mars Science Laboratory on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or STEREO B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model.

  11. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    NASA Astrophysics Data System (ADS)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  12. Poison Domains Block Transit of Translocated Substrates via the Legionella pneumophila Icm/Dot System

    PubMed Central

    Amyot, Whitney M.; deJesus, Dennise

    2013-01-01

    Legionella pneumophila uses the Icm/Dot type 4B secretion system (T4BSS) to deliver translocated protein substrates to the host cell, promoting replication vacuole formation. The conformational state of the translocated substrates within the bacterial cell is unknown, so we sought to determine if folded substrates could be translocated via this system. Fusions of L. pneumophila Icm/Dot-translocated substrates (IDTS) to dihydrofolate reductase (DHFR) or ubiquitin (Ub), small proteins known to fold rapidly, resulted in proteins with low translocation efficiencies. The folded moieties did not cause increased aggregation of the IDTS and did not impede interaction with the adaptor protein complex IcmS/IcmW, which is thought to form a soluble complex that promotes translocation. The translocation defect was alleviated with a Ub moiety harboring mutations known to destabilize its structure, indicating that unfolded proteins are preferred substrates. Real-time analysis of translocation, following movement during the first 30 min after bacterial contact with host cells, revealed that the folded moiety caused a kinetic defect in IDTS translocation. Expression of an IDTS fused to a folded moiety interfered with the translocation of other IDTS, consistent with it causing a blockage of the translocation channel. Furthermore, the folded protein fusions also interfered with intracellular growth, consistent with inefficient or impaired translocation of proteins critical for L. pneumophila intracellular growth. These studies indicate that substrates of the Icm/Dot T4SS are translocated to the host cytosol in an unfolded conformation and that folded proteins are stalled within the translocation channel, impairing the function of the secretion system. PMID:23798536

  13. Preference and usage of intracanal medications during endodontic treatment.

    PubMed

    Madarati, Ahmad A; Zafar, Muhammad S; Sammani, Aya M N; Mandorah, Ayman O; Bani-Younes, Hamzah A

    2017-07-01

    To investigate the preferences of general dental practitioners (GDPs) and endodontists in using endodontic intra-canal medications (ICMs). This observational and descriptive study was conducted in 2014 in the western province of Saudi Arabia. Following ethical clearance and 2 pilot studies, a web-based questionnaire was electronically sent to 375 randomly and systematically selected GDPs and all endodontists in the western province (n=49). An accompanying e-mail explained the study's aims and confirmed that the data yielded would remain confidential. The responses were collected, and the data was analyzed using the Chi-square test at p=0.05. Significantly, the highest proportion of respondents (53.7%) reported disinfection of the root canals as the main function of ICMs. Calcium hydroxide (CH) was the preferred material of the majority of those who used the same ICM in all cases (85.7%). While the vast majority of all endodontists (87.5%) used CH after pulp extirpation, 48.5% of GDPs used formocresol (p less than 0.001). Almost 30% of those who used ICMs after pulp extirpation did not do so after cleaning and shaping of vital cases. Most endodontists used CH (62.5%) and antibiotics (37.5%) in necrotic pulp cases without apical lesions, which were significantly greater than those of GDPs who did the same (43.8% and 17.2%). Participants were aware that the main function of ICMs is disinfection of the root canal system. However, it is clear that GDPs should reduce their reliance on phenol- and formaldehyde-based medications. There was a distinct trend toward the use of ICMs, especially CH, in necrotic pulp cases.

  14. [Cohort study on incidence of ARDS in patients admitted to the ICU and prognostic factors of mortality].

    PubMed

    Roca, O; Sacanell, J; Laborda, C; Pérez, M; Sabater, J; Burgueño, M J; Domínguez, L; Masclans, J R

    2006-01-01

    Analyze acute respiratory distress syndrome (ARDS) in patients admitted to an Intensive Care Medicine Service (ICMS) and prognostic factors of mortality in these patients. Prospective study of all the patients admitted consecutively in the ICMS from January 1998 to February 2003. ICMS of a third level university site with 32 beds in its General Area and 10 beds in the Traumatology Area. Patients who met the ARDS criteria of the European-North American Consensus Conference at any time during admission in ICMS. ENDPOINTS OF INTEREST: Mortality at 28 days. One hundred and ninety-one patients (3.4 of all the admissions in ICMS) had ARDS criteria. The origin of ARDS was intrapulmonary in 63%. A total of 77% of the patients had multiorgan dysfunction and 26% respiratory superinfection. Median stay in the ICMS was 20 days. Mortality at 28 days was 48% and hospital mortality 58%. Multivariant analysis showed that the variables associated independently with an increase in mortality were the following: APACHE II > 22 (odds ratio [OR] 2.7; 95% CI: 1.3-5.8; p = 0.007), minimum PaO2/FIO2 during evolution of ARDS < 81 mmHg (odds ratio 5.5; 95% CI: 2.6-11.9; p < 0.0001), dysfunction > or = 3 organs (odds ratio 11.8; 95% CI: 2.5-55.4; p = 0.002). ARDS is an entity with elevated mortality whose prognosis is associated not only with the seriousness of pulmonary function deterioration but also of systemic function, on which some treatment could modulate its evolution.

  15. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    PubMed

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  16. The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dumbovic, M.; Temmer, M.

    2017-12-01

    Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.

  17. Cosmic-Ray Feedback Heating of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu

    2017-07-20

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We findmore » that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.« less

  18. Infant carrying methods: Correlates and associated musculoskeletal disorders among nursing mothers in Nigeria.

    PubMed

    Ojukwu, Chidiebele Petronilla; Anyanwu, Godson Emeka; Anekwu, Emelie Morris; Chukwu, Sylvester Caesar; Fab-Agbo, Chukwubuikem

    2017-10-01

    Infant carrying is an integral part of the mothering occupation. Paucity of data exists on its correlates and associated musculoskeletal injuries. In this study, factors and musculoskeletal injuries associated with infant carrying were investigated in 227 nursing mothers, using a structured questionnaire. 77.1% utilised the back infant carrying methods (ICM). Maternal comfort was the major factor influencing participants' (37.4%) choices of ICMs. Infant's age (p = .000) and transportation means (p = .045) were significantly associated with ICMs. Low back pain (82.8%) and upper back pain (74.9%) were the most reported musculoskeletal discomforts associated with ICMs, especially among women who utilised back ICM. Back ICM is predominantly used by nursing mothers. Impact statement Infant carrying has been associated with increased energy cost and biomechanical changes. Currently, there is a paucity of data on infant carrying-related musculoskeletal injuries. In this study, investigating factors and musculoskeletal injuries associated with infant carrying, the results showed that back infant carrying method is predominantly used by nursing mothers. Age of the infant and mothers' means of transportation were determinant factors of infant carrying methods. Among the several reported infant carrying-related musculoskeletal disorders, low back and upper back pain were the most prevalent, especially among women who utilised the back infant carrying method. There is need for women's health specialists to introduce appropriate ergonomic training and interventions on infant carrying tasks in order to improve maternal musculoskeletal health during the childbearing years and beyond. Further experimental studies on the effects of various infant carrying methods on the musculoskeletal system are recommended.

  19. Female specialists in intensive care medicine: job satisfaction, challenges and work-life balance.

    PubMed

    Hawker, Felicity H

    2016-06-01

    Women are under-represented in the intensive care medicine (ICM) specialist workforce. I aimed to better understand the challenges these women face so they can be considered in the training and support of ICM specialists. All female Fellows of the College of Intensive Care Medicine (CICM) of Australia and New Zealand were surveyed using an online questionnaire. The study was approved by the Cabrini Human Research Ethics Committee. Thirty respondents with children volunteered to complete a second questionnaire. I surveyed demographic and workforce data and women's experiences in the ICM specialist workforce in the first survey, and experiences with child-rearing in the second survey. The response rate was 80.3% (127/158). The median age bracket was 40-45 years, and 118 respondents were practising ICM, 85 full-time in a tertiary intensive care unit. Eighteen were ICU directors and 23 were CICM-appointed supervisors of training. Sixty-five women were mothers, and 70% returned to full-time work after their maternity leave. Child care was most commonly undertaken by family members or a nanny. Overall, 81% were satisfied with their experiences, but 37% felt they had been disadvantaged because of their sex. Fewer women with leadership roles felt disadvantaged. Their major challenges included the on-call work affecting child-rearing and family life, sexism in the workplace and difficulties with academic advancement. The participation and satisfaction rates of women working in the ICM specialist workforce are encouraging. Although challenges exist, women contemplating a career in ICM should see it as achievable and rewarding.

  20. Re-exposure to low osmolar iodinated contrast media in patients with prior moderate-to-severe hypersensitivity reactions: A multicentre retrospective cohort study.

    PubMed

    Park, Hye Jung; Park, Jung-Won; Yang, Min-Suk; Kim, Mi-Yeong; Kim, Sae-Hoon; Jang, Gwang Cheon; Nam, Young-Hee; Kim, Gun-Woo; Kim, Sujeong; Park, Hye-Kyung; Jung, Jae-Woo; Park, Jong-Sook; Kang, Hye-Ryun

    2017-07-01

    To evaluate the outcomes of re-exposure to low-osmolar iodinated contrast medium (LOCM) in patients with a history of moderate-to-severe hypersensitivity reaction (HSR). We retrospectively evaluated a cohort comprising all subjects satisfying the following conditions at 11 centres: (1) experienced a moderate-to-severe HSR to LOCM by December 2014, and (2) underwent contrast-enhanced computed tomography after the initial HSR between January 2014 and December 2014. A total of 150 patients with 328 instances of re-exposure were included; the recurrence rate of HSR was 19.5%. Patients with severe initial HSR exhibited a higher recurrence rate of severe HSR compared to patients with moderate initial HSR, despite more intensive premedication. In the multivariate analysis, the independent risk factors for recurrence of HSR were diabetes, chronic urticaria, drug allergy other than to iodinated contrast media (ICM) and severe initial HSR. The risk of recurrent HSR was 67.1% lower in cases where the implicated ICM was changed to another one (odds ratio: 0.329; P = 0.001). However, steroid premedication did not show protective effects against recurrent HSR. In high-risk patients who have previously experienced a moderate-to-severe initial HSR to LOCM, we should consider changing the implicated ICM to reduce recurrence risk. • In patients with moderate-to-severe HSR, steroid premedication only shows limited effectiveness. • Changing the implicated ICM can reduce the recurrence of HSR to ICM. • Diabetes, chronic urticaria and drug allergies increase the risk of ICM HSR.

  1. Concept of operations : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2010-06-01

    This concept of operations (Con Ops) for the US-75 Integrated Corridor Management (ICM) Program has been developed as part of the US Department of Transportation Integrated Corridor Management Initiative, which is an innovative research initiative th...

  2. Operations and maintenance plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2014-01-01

    This Operations and Maintenance (O&M) Plan describes how the Integrated Corridor Management System (ICMS) will be used in daily transportation operations and maintenance activities. The Plan addresses the activities needed to effectively operate the ...

  3. Development of the North American cargo securement standard

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pr...

  4. Integrated corridor management modeling results report : Dallas, Minneapolis, and San Diego.

    DOT National Transportation Integrated Search

    2012-02-01

    This executive summary documents the analysis methodologies, tools, and performance measures used to analyze Integrated Corridor Management (ICM) strategies; and presents high-level results for the successful implementation of ICM at three Stage 2 Pi...

  5. System acceptance test plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2013-02-01

    The Dallas Area Rapid Transit (DART) is leading the US 75 Integrated Corridor Management (ICM) Demonstration Project for the Dallas region. Coordinated corridor operations and management is predicated on being able to share transportation information...

  6. Self-similar hierarchical energetics in the ICM of massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Beresnyak, Andrey

    Massive galaxy clusters (GC) are filled with a hot, turbulent and magnetised intra-cluster medium (ICM). They are still forming under the action of gravitational instability, which drives supersonic mass accretion flows. These partially dissipate into heat through a complex network of large scale shocks, and partly excite giant turbulent eddies and cascade. Turbulence dissipation not only contributes to heating of the ICM but also amplifies magnetic energy by way of dynamo action. The pattern of gravitational energy turning into kinetic, thermal, turbulent and magnetic is a fundamental feature of GC hydrodynamics but quantitative modelling has remained a challenge. In this contribution we present results from a recent high resolution, fully cosmological numerical simulation of a massive Coma-like galaxy cluster in which the time dependent turbulent motions of the ICM are resolved (Miniati 2014) and their statistical properties are quantified for the first time (Miniati 2015, Beresnyak & Miniati 2015). We combine these results with independent state-of-the art numerical simulations of MHD turbulence (Beresnyak 2012), which shows that in the nonlinear regime of turbulent dynamo (for magnetic Prandtl numbers>~ 1) the growth rate of the magnetic energy corresponds to a fraction CE ~= 4 - 5 × 10-2 of the turbulent dissipation rate. We thus determine without adjustable parameters the thermal, turbulent and magnetic history of giant GC (Miniati & Beresnyak 2015). We find that the energy components of the ICM are ordered according to a permanent hierarchy, in which the sonic Mach number at the turbulent injection scale is of order unity, the beta of the plasma of order forty and the ratio of turbulent injection scale to Alfvén scale is of order one hundred. These dimensionless numbers remain virtually unaltered throughout the cluster's history, despite evolution of each individual component and the drive towards equipartition of the turbulent dynamo, thus revealing a new type of self-similarity in cosmology. Their specific values, while consistent with current data, indicate that thermal energy dominates the ICM energetics and the turbulent dynamo is always far from saturation, unlike the condition in other familiar astrophysical fluids (stars, interstellar medium of galaxies, compact objects, etc.). In addition, they have important physical meaning as their specific values encodes information about the efficiency of turbulent heating (the fraction of ICM thermal energy produced by turbulent dissipation) and the efficiency of dynamo action in the ICM (CE ).

  7. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage.

    PubMed

    Capalbo, Antonio; Wright, Graham; Elliott, Thomas; Ubaldi, Filippo Maria; Rienzi, Laura; Nagy, Zsolt Peter

    2013-08-01

    Does comprehensive chromosome screening (CCS) of cells sampled from the blastocyst trophectoderm (TE) accurately predict the chromosome complement of the inner cell mass (ICM)? Comprehensive chromosome screening of a TE sample is unlikely to be confounded by mosaicism and has the potential for high diagnostic accuracy. The effectiveness of chromosome aneuploidy screening is limited by the technologies available and chromosome mosaicism in the embryo. Combined with improving methods for cryopreservation and blastocyst culture, TE biopsy and CCS is considered to be a promising approach to select diploid embryos for transfer. The study was performed between January 2011 and August 2011. In the first part, a new ICM isolation method was developed and tested on 20 good morphology blastocysts. In the main phase of the study, fluorescence in situ hybridization (FISH) was used to reanalyse the ICMs and TEs separated from 70 embryos obtained from 26 patients undergoing blastocyst stage array comparative genome hybridization (aCGH) PGS cycles. The isolated ICM and TE fractions were characterized by immunostaining for KRT18. Then, non-transferrable cryopreserved embryos were selected for the FISH reanalysis based on previous genetic diagnosis obtained by TE aCGH analysis. Blastocysts either diploid for chromosome copy number (20) or diagnosed as single- (40) or double aneuploid (10) were included after preparing the embryo into one ICM and three equal-sized TE sections. Accuracy of the aCGH was measured based on FISH reanalysis. Chromosomal segregations resulting in diploid/aneuploid mosaicism were classified as 'low-', 'medium-' and 'high-' grade and categorized with respect to their distribution (1TE, 2TE, 3TE, ICM or ALL embryo). Linear regression model was used to test the relationship between the distributions and the proportion of aneuploid cells across the four embryo sections. Fisher's exact test was used to test for random allocation of aneuploid cells between TE and ICM. All ICM biopsy procedures displayed ICM cells in the recovered fraction with a mean number of ICM cells of 26.2 and a mean TE cell contamination rate of 2%. By FISH reanalysis of previously aCGH-screened blastocysts, a total of 66 aneuploidies were scored, 52 (78.8%) observed in all cells and 14 (21.2%) mosaic. Overall, mosaic chromosomal errors were observed only in 11 out of 70 blastocysts (15.7%) but only 2 cases were classified as mosaic diploid/aneuploid (2.9%). Sensitivity and specificity of aCGH on TE clinical biopsies were 98.0 and 100% per embryo and 95.2 and 99.8% per chromosome, respectively. Linear regression analysis performed on the 11 mosaic diploid/aneuploid chromosomal segregations showed a significant positive correlation between the distribution and the proportion of aneuploid cells across the four-blastocyst sections (P < 0.01). In addition, regression analysis revealed that both the grade and the distribution of mosaic abnormal cells were significantly correlated with the likelihood of being diagnosed by aCGH performed on clinical TE biopsies (P = 0.019 and P < 0.01, respectively). Fisher's exact test for the 66 aneuploidies recorded showed no preferential allocation of abnormal cells between ICM and TE (P = 0.33). The study is limited to non-transferable embryos, reanalyzed for only nine chromosomes and excludes segmental imbalance and uniparental disomy. The prevalence of aneuploidy in the study group is likely to be higher than in the general population of clinical PGD embryos. This study showed high accuracy of diagnosis achievable during blastocyst stage PGS cycles coupled with 24-chromosomes molecular karyotyping analysis. The new ICM isolation strategy developed may open new possibilities for basic research in embryology and for clinical grade derivation of human embryonic stem cells. No specific funding was sought or obtained for this study.

  8. Effective Connectivity Reveals Largely Independent Parallel Networks of Face and Body Patches.

    PubMed

    Premereur, Elsie; Taubert, Jessica; Janssen, Peter; Vogels, Rufin; Vanduffel, Wim

    2016-12-19

    The primate brain processes objects in the ventral visual pathway. One object category, faces, is processed in a hierarchical network of interconnected areas along this pathway. It remains unknown whether such an interconnected network is specific for faces or whether there are similar networks for other object classes. For example, the primate inferotemporal cortex also contains a set of body-selective patches, adjacent to the face-selective patches, but it is not known whether these body-selective patches form a similar discretely connected network or whether cross-talk exists between the face- and body-processing systems. To address these questions, we combined fMRI with electrical microstimulation to determine the effective connectivity of fMRI-defined face and body patches. We found that microstimulation of face patches caused increased fMRI activation throughout the face-processing system; microstimulation of the body patches gave similar results restricted to the body-processing system. Critically, our results revealed largely segregated connectivity patterns for the body and face patches. These results suggest that face and body patches form two interconnected hierarchical networks that are largely separated within the monkey inferotemporal cortex. Only a restricted number of voxels were activated by stimulation of both the body and face patches. The latter regions may be important for the integration of face and body information. Our findings are not only essential to advance our understanding of the neural circuits that enable social cognition, but they also provide further insights into the organizing principles of the inferotemporal cortex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Development of Talent through Curriculum.

    ERIC Educational Resources Information Center

    Van Tassel-Baska, Joyce

    1995-01-01

    An integrated curriculum model (ICM) is applied to the talent development process. Discussion focuses on a rationale for such a model, model features, applications in two federally funded curriculum projects, and relationship of the ICM to curriculum reform variables and implementation considerations. (DB)

  10. Integrated corridor management : implementation guide and lessons learned (final report version 2.0).

    DOT National Transportation Integrated Search

    2015-09-01

    This implementation guide is intended for use by adopters of integrated corridor management (ICM) approaches and strategies to address congestion and travel time reliability issues within specific travel corridors. It introduces the topic of ICM and ...

  11. I-15 integrated corridor management system : project management plan.

    DOT National Transportation Integrated Search

    2011-06-01

    The Project Management Plan (PMP) assists the San Diego ICM Team by defining a procedural framework for management and control of the I-15 Integrated Corridor Management Demonstration Project, and development and deployment of the ICM System. The PMP...

  12. System requirement specification for the IH-10 Integrated Corridor Management System (ICMS) in San Antonio, Texas

    DOT National Transportation Integrated Search

    2008-03-31

    This Requirements Specification Document (RSD) was developed under the project titled TransGuide Integrated Corridor Management Stage 1 as part of the United States Department of Transportation (USDOT) Integrated Corridor Management (ICM) p...

  13. Dallas integrated corridor management (ICM) transit vehicle real-time data demonstration.

    DOT National Transportation Integrated Search

    2015-01-01

    This project demonstrated and evaluated the ability to collect and transmit transit location and passenger loading data to a transit management center(s) and/or Integrated Corridor Management (ICM) system in real time. It also demonstrated and evalua...

  14. Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barto, R.J.; Farrell, D.M.; Noto, F.A.

    1986-04-01

    The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.

  15. Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong

    2018-05-01

    We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.

  16. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  17. Novel MRI Contrast Agent from Magnetotactic Bacteria Enables In Vivo Tracking of iPSC-derived Cardiomyocytes.

    PubMed

    Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B; Woo, Y Joseph; Chakraborty, Papia; Lee, Kayla R; Foote, Chandler S; Piecewicz, Stephanie; Barrozo, Joyce C; Wakeel, Abdul; Rice, Bradley W; Bell Iii, Caleb B; Yang, Phillip C

    2016-06-06

    Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity.

  18. Global ICME-Mars Interaction and Induced Atmospheric Loss

    NASA Astrophysics Data System (ADS)

    Fang, X.; Ma, Y.; Manchester, W.

    2013-12-01

    Without the shielding of a strong intrinsic magnetic field, the present-day Mars atmosphere is more vulnerable to external solar wind forcing than the Earth's atmosphere. Therefore interplanetary coronal mass ejections (ICMEs) are expected to drive disturbances in the Mars environment in a profoundly different way, which, however, is poorly understood due to the lack of coordinated solar wind and Mars observations. In this study, three sophisticated models work in concert to simulate the physical domain extending from the solar corona to near-Mars space for the 13 May 2005 ICME event. The Space Weather Modeling Framework (SWMF) will be used to investigate the interaction of the ICME with the ambient solar wind and monitor its propagation from the Sun to the planet. A 3-D MHD model for Mars will be applied to assess the planetary atmospheric/ionospheric responses during the ICME passage of Mars. In the Mars weak magnetic field environment, the ion kinetic effects are important and will be included through the use of a 3-D Monte Carlo pickup ion transport model. These physics-based modeling efforts enable us to provide a global and time series view of the Mars response to transient solar wind disturbances and induced atmospheric loss, which is currently not possible due to the limitation of observations.

  19. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE).

    PubMed

    Yan, Mingquan; Chen, Zhanghao; Li, Na; Zhou, Yuxuan; Zhang, Chenyang; Korshin, Gregory

    2018-06-01

    This study examined the electrochemical (EC) reduction of iodinated contrast media (ICM) exemplified by iopamidol and diatrizoate. The method of rotating ring-disc electrode (RRDE) was used to elucidate rates and mechanisms of the EC reactions of the selected ICMs. Experiments were carried at varying hydrodynamic conditions, concentrations of iopamidol, diatrizoate, natural organic matter (NOM) and model compounds (resorcinol, catechol, guaiacol) which were used to examine interactions between products of the EC reduction of ICMs and halogenation-active species. The data showed that iopamidol and diatrizoate were EC-reduced at potentials < -0.45 V vs. s.c.e. In the range of potentials -0.65 to -0.85 V their reduction was mass transfer-controlled. The presence of NOM and model compounds did not affect the EC reduction of iopamidol and diatrizoate but active iodine species formed as a result of the EC-induced transformations of these ICMs reacted readily with NOM and model compounds. These data provide more insight into the nature of generation of iodine-containing by-products in the case of reductive degradation of ICMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Monitoring non-immediate allergic reactions to iodine contrast media

    PubMed Central

    Torres, M J; Mayorga, C; Cornejo-Garcia, J A; Lopez, S; Chaves, P; Rondon, C; Fernandez, T; Blanca, M

    2008-01-01

    Non-immediate reactions to iodine contrast media (ICM) affect 2–5% of patients receiving these agents. We studied the immunological mechanisms involved in patients with a confirmed non-immediate reaction, maculopapular exanthema, after administration of ICM. The diagnosis was carried out by skin testing or drug provocation test. The immunological study was performed in sequential peripheral blood mononuclear cells taken from the onset of the reaction by flow cytometry and in skin biopsy by immunohistochemistry, with specific recognition by the lymphocyte transformation test (LTT) with different ICM. Flow cytometry showed an increase in the different activation markers [CD69, CD25 and human leucocyte antigen D-related (HLA-DR)] and the skin homing receptor [cutaneous lymphocyte-associated antigen (CLA)] in CD4 lymphocytes, whereas perforin was higher in the CD8 lymphocytes. The skin biopsy showed a perivascular mononuclear infiltrate composed of CD4 lymphocytes, expressing CD25, HLA-DR and CLA, with eosinophils. Intradermal skin tests and the LTT were positive to several ICM, including the culprit agent in four and three patients, respectively, with negative results in all 10 tolerant controls. We showed that a specific immunological mechanism was implicated in patients with non-immediate reactions to ICM. Moreover, the positive results in skin tests and lymphocyte proliferation tests indicated that an important cross-reactivity exists. PMID:18341616

  1. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water.

    PubMed

    Jeong, Clara H; Machek, Edward J; Shakeri, Morteza; Duirk, Stephen E; Ternes, Thomas A; Richardson, Susan D; Wagner, Elizabeth D; Plewa, Michael J

    2017-08-01

    The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water. Copyright © 2017. Published by Elsevier B.V.

  2. Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623

    NASA Astrophysics Data System (ADS)

    Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund

    2017-01-01

    Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.

  3. Occurrence of iodinated X-ray contrast media and their biotransformation products in the urban water cycle.

    PubMed

    Kormos, Jennifer Lynne; Schulz, Manoj; Ternes, Thomas A

    2011-10-15

    A LC tandem MS method was developed for the simultaneous determination of four iodinated X-ray contrast media (ICM) and 46 ICM biotransformation products (TPs) in raw and treated wastewater, surface water, groundwater, and drinking water. Recoveries ranged from 70% to 130%, and limits of quantification (LOQ) varied between 1 ng/L and 3 ng/L for surface water, groundwater and drinking water, and between 10 ng/L and 30 ng/L for wastewater. In a conventional wastewater treatment plant, iohexol, iomeprol, and iopromide were transformed to >80%, while iopamidol was transformed to 35%. In total, 26 TPs were detected above their LOQ in WWTP effluents. A significant change in the pattern of ICM TPs was observed after bank filtration and groundwater infiltration under aerobic conditions. Predominately, these TPs are formed at the end of the microbial transformation pathways in batch experiments with soil and sediment. These polar ICM TPs, such as iohexol TP599, iomeprol TP643, iopromide TP701A, and iopromide TP643, were not or only partially removed during drinking water treatment. As a consequence, several ICM TPs were detected in drinking water, at concentration levels exceeding 100 ng/L, with a maximum of 500 ng/L for iomeprol TP687.

  4. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  5. Integrated corridor management initiative : demonstration phase evaluation – Dallas corridor performance analysis test plan.

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Corridor Performance Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM ...

  6. Integrated corridor management initiative : demonstration phase evaluation – San Diego corridor performance analysis test plan.

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Corridor Performance Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...

  7. Incident Management : Successful Practices : A Cross-Cutting Study : Improving Mobility And Saving Lives

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Traveler Response Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pro...

  8. Project management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2010-12-01

    The Dallas Integrated Corridor Management System Demonstration Project is a multi-agency, de-centralized operation which will utilize a set of regional systems to integrate the operations of the corridor. The purpose of the Dallas ICM System is to im...

  9. Systems engineering management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    DOT National Transportation Integrated Search

    2010-12-01

    The purpose of the Dallas ICM System is to implement a multi-modal operations decision support tool enabled by real-time data pertaining to the operation of freeways, arterials, and public transit. The system will be shared between information system...

  10. Integrated corridor management initiative : demonstration phase evaluation – Dallas technical capability analysis test plan.

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM ...

  11. Integrated corridor management initiative: survey Dallas traveler response panel

    DOT National Transportation Integrated Search

    2017-03-01

    This report presents findings from the Integrated Corridor Management (ICM) traveler behavior surveys, a set of panel surveys of US-75 corridor users, conducted before and after the deployment of ICM. The purpose of the surveys was to measure the imp...

  12. Decoding the cortical transformations for visually guided reaching in 3D space.

    PubMed

    Blohm, Gunnar; Keith, Gerald P; Crawford, J Douglas

    2009-06-01

    To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.

  13. Preference and usage of intracanal medications during endodontic treatment

    PubMed Central

    Madarati, Ahmad A.; Zafar, Muhammad S.; Sammani, Aya M.N.; Mandorah, Ayman O.; Bani-Younes, Hamzah A.

    2017-01-01

    Objectives: To investigate the preferences of general dental practitioners (GDPs) and endodontists in using endodontic intra-canal medications (ICMs). Methods: This observational and descriptive study was conducted in 2014 in the western province of Saudi Arabia. Following ethical clearance and 2 pilot studies, a web-based questionnaire was electronically sent to 375 randomly and systematically selected GDPs and all endodontists in the western province (n=49). An accompanying e-mail explained the study’s aims and confirmed that the data yielded would remain confidential. The responses were collected, and the data was analyzed using the Chi-square test at p=0.05. Results: Significantly, the highest proportion of respondents (53.7%) reported disinfection of the root canals as the main function of ICMs. Calcium hydroxide (CH) was the preferred material of the majority of those who used the same ICM in all cases (85.7%). While the vast majority of all endodontists (87.5%) used CH after pulp extirpation, 48.5% of GDPs used formocresol (p<0.001). Almost 30% of those who used ICMs after pulp extirpation did not do so after cleaning and shaping of vital cases. Most endodontists used CH (62.5%) and antibiotics (37.5%) in necrotic pulp cases without apical lesions, which were significantly greater than those of GDPs who did the same (43.8% and 17.2%). Conclusions: Participants were aware that the main function of ICMs is disinfection of the root canal system. However, it is clear that GDPs should reduce their reliance on phenol- and formaldehyde-based medications. There was a distinct trend toward the use of ICMs, especially CH, in necrotic pulp cases. PMID:28674723

  14. A randomized-controlled trial of intensive case management emphasizing the recovery model among patients with severe and enduring mental illness.

    PubMed

    O'Brien, S; McFarland, J; Kealy, B; Pullela, A; Saunders, J; Cullen, W; Meagher, D

    2012-09-01

    There is increasing interest in the application of recovery principles in mental health services. We studied the implementation of a programme of intensive case management (ICM) emphasizing recovery principles in a community mental health service in Ireland. Eighty service attenders with severe and enduring illness characterized by significant ongoing disability were randomized into (1) a group receiving a programme of ICM and (2) a group receiving treatment as usual (TAU). Groups were compared before and after the programme for general psychopathology using the Brief Psychiatric Rating Scale (BPRS) (clinician rated) and How are You? scale (self-rated). The Functional Analysis of Care Environments (FACE) scale provided assessment of multiple functional domains. The overall group (mean age 44.5 ± 13.2 years; 60% male) had mean total Health of the Nation Outcome Scale (HoNOS) scale scores of 10.5 ± 4.6, with problems in social functioning especially prominent (mean social subscale score 5.0 ± 2.7). The ICM group were younger (p < 0.01) with higher baseline scores on the HoNOS social subscale and BPRS (p < 0.05). An analysis of covariance, controlling for these baseline differences, indicated greater improvement in BPRS scores (p = 0.001), How are You? scores (p = 0.02) and FACE domains for cognition, symptoms and interpersonal relationships (all p < 0.001) in the ICM group. The ICM group underwent greater changes in structured daily activities that were linked to improved BPRS scores (p = 0.01). A programme of ICM emphasizing recovery principles resulted in significant improvement across psychopathological and functional domains. Improvements were linked to enhanced engagement with structured daily activities. Recovery-oriented practices can be integrated into existing mental health services and provided alongside traditional models of care.

  15. Galaxy clusters as hydrodynamics laboratories

    NASA Astrophysics Data System (ADS)

    Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-08-01

    The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.

  16. ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moestl, C.; Rollett, T.; Temmer, M.

    2011-11-01

    One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are basedmore » on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.« less

  17. A synthetic aperture radio telescope for ICME observations as a potential payload of SPORT

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, W.; Liu, H.; Xiong, M.; Liu, Y. D.; Wu, J.

    2013-12-01

    We introduce a potential payload for the Solar Polar ORbit Telescope (SPORT), a space weather mission proposed by the National Space Science Center, Chinese Academy of Sciences. This is a synthetic aperture radio imager designed to detect radio emissions from interplanetary coronal mass ejections (ICMEs), which is expected to be an important instrument to monitor the propagation and evolution of ICMEs. The radio telescope applies a synthetic aperture interferometric technique to measure the brightness temperature of ICMEs. Theoretical calculations of the brightness temperature utilizing statistical properties of ICMEs and the background solar wind indicate that ICMEs within 0.35 AU from the Sun are detectable by a radio telescope at a frequency <= 150 MHz with a sensitivity of <=1 K. The telescope employs a time shared double rotation scan (also called a clock scan), where two coplanar antennas revolve around a fixed axis at different radius and speed, to fulfill sampling of the brightness temperature. An array of 4+4 elements with opposite scanning directions are developed for the radio telescope to achieve the required sensitivity (<=1K) within the imaging refreshing time (~30 minutes). This scan scheme is appropriate for a three-axis stabilized spacecraft platform while keeping a good sampling pattern. We also discuss how we select the operating frequency, which involves a trade-off between the engineering feasibility and the scientific goal. Our preliminary results indicate that the central frequency of 150 MHz with a bandwidth of 20 MHz, which requires arm lengths of the two groups of 14m and 16m, respectively, gives an angular resolution of 2°, a field of view of ×25° around the Sun, and a time resolution of 30 minutes.

  18. Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst

    PubMed Central

    Kono, Kanako; Tamashiro, Dana Ann A.; Alarcon, Vernadeth B.

    2014-01-01

    Specification of the trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst correlates with cell position, as TE derives from outer cells whereas ICM from inner cells. Differences in position are reflected by cell polarization and Hippo signaling. Only in outer cells, the apical-basal cell polarity is established, and Hippo signaling is inhibited in such a manner that LATS1 and 2 (LATS1/2) kinases are prevented from phosphorylating YAP, a key transcriptional co-activator of the TE-specifying gene Cdx2. However, the molecular mechanisms that regulate these events are not fully understood. Here, we showed that inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling and disruption of apical-basal polarity. Embryos treated with ROCK inhibitor Y-27632 exhibited elevated expression of ICM marker NANOG and reduced expression of CDX2 at the blastocyst stage. Y-27632-treated embryos failed to accumulate YAP in the nucleus, although it was rescued by concomitant inhibition of LATS1/2. Segregation between apical and basal polarity regulators, namely PARD6B, PRKCZ, SCRIB, and LLGL1, was dampened by Y-27632 treatment, whereas some of the polarization events at the late 8-cell stage such as compaction and apical localization of p-ERM and tyrosinated tubulin occurred normally. Similar abnormalities of Hippo signaling and apical-basal polarization were also observed in embryos that were treated with RHO GTPases inhibitor. These results suggest that RHO-ROCK signaling plays an essential role in regulating Hippo signaling and cell polarization to enable proper specification of the ICM and TE lineages. PMID:24997360

  19. Cost Effectiveness of Implantable Cardiac Monitor-Guided Intermittent Anticoagulation for Atrial Fibrillation: An Analysis of the REACT.COM Pilot Study.

    PubMed

    Steinhaus, Daniel A; Zimetbaum, Peter J; Passman, Rod S; Leong-Sit, Peter; Reynolds, Matthew R

    2016-08-30

    Anticoagulation guidelines for patients with atrial fibrillation (AF) disregard AF burden. A strategy of targeted anticoagulation with novel oral anticoagulants (NOACs) based on continuous rhythm assessment with an implantable cardiac monitor (ICM) has recently been explored. We evaluated the potential cost-effectiveness of this strategy versus projected outcomes with continuous anticoagulation. We developed a Markov model using data from the Rhythm Evaluation for AntiCoagulaTion With COntinuous Monitoring (REACT.COM) pilot study (N = 59) and prior NOAC trials to calculate the costs and quality-adjusted life years (QALYs) associated with ICM-guided intermittent anticoagulation for AF versus standard care during a 3-year time horizon. Health state utilities were estimated from the pilot study population using the SF-12. Costs were based on current Medicare reimbursement. Over 14 ± 4 months of follow-up, 18 of 59 patients had 35 AF episodes. The ICM-guided strategy resulted in a 94% reduction in anticoagulant use relative to continuous treatment. There were no strokes, 3 (5.1%) TIAs, 2 major bleeding events (on aspirin) and 3 minor bleeding events with the ICM-guided strategy. The projected total 3-year costs were $12,535 for the ICM-guided strategy versus $13,340 for continuous anticoagulation. Projected QALYs were 2.45 for both groups. Based on a pilot study, a strategy of ICM-guided anticoagulation with NOACs may be cost-saving relative to expected outcomes with continuous anticoagulation, with similar quality-adjusted survival. This strategy could be attractive from a health economic perspective if shown to be safe and effective in a rigorous clinical trial. © 2016 Wiley Periodicals, Inc.

  20. Does the time between CT scan and chemotherapy increase the risk of acute adverse reactions to iodinated contrast media in cancer patients?

    PubMed

    Farolfi, Alberto; Carretta, Elisa; Luna, Corradina Della; Ragazzini, Angela; Gentili, Nicola; Casadei, Carla; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana; Gavelli, Giampaolo

    2014-10-31

    Cancer patients undergo routine computed-tomography (CT) scans and, therefore, iodinated contrast media (ICM) administration. It is not known whether a time-dependent correlation exists between chemotherapy administration, contrast enhanced CT and onset of acute ICM-related adverse reactions (ARs). All consecutive contrast-enhanced CTs performed from 1 January 2010 to 31 December 2012 within 30 days of the last chemotherapy administration were retrospectively reviewed. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. We analyzed time to CT evaluation calculated as the time elapsed from the date of the CT performed to the date of the last chemotherapy administration. Patients were classified into 4 groups based on the antineoplastic treatment: platinum-based, taxane-based, platinum plus taxane and other group. Out of 10,472 contrast-enhanced CTs performed, 3,945 carried out on 1,878 patients were considered for the study. Forty acute ICM-related ARs (1.01%; 95% CI, 0.70-1.33) were reported. No differences were seen among immediate (within 10 days of the last chemotherapy administration), early (11-20 days) and delayed (21-30 days) CTs. Median time to CT in patients who experienced an acute ICM-related AR by treatment group was not statistically different: 20 days (range 6-30), 17 days (range 5-22), 13 days (range 8-17), 13 days (range (2-29) for the platinum, taxane, platinum plus taxane and other group, respectively (P =0.251). Our results did not reveal any correlation between time to CT and risk of acute ICM-related ARs in cancer patients.

  1. Cost Effectiveness of Implantable Cardiac Monitor-Guided Intermittent Anticoagulation for Atrial Fibrillation: An Analysis of the REACT.COM Pilot Study

    PubMed Central

    Steinhaus, Daniel A; Zimetbaum, Peter J; Passman, Rod S; Leong-Sit, Peter; Reynolds, Matthew R.

    2016-01-01

    Introduction Anticoagulation guidelines for patients with atrial fibrillation (AF) disregard AF burden. A strategy of targeted anticoagulation with novel oral anticoagulants (NOACs) based on continuous rhythm assessment with an implantable cardiac monitor (ICM) has recently been explored. We evaluated the potential cost-effectiveness of this strategy versus projected outcomes with continuous anticoagulation. Methods and Results We developed a Markov model using data from the Rhythm Evaluation for AntiCoagulaTion With COntinuous Monitoring (REACT.COM) pilot study (N=59) and prior NOAC trials to calculate the costs and quality-adjusted life years (QALYs) associated with ICM-guided intermittent anticoagulation for AF vs. standard care over a 3-year time horizon. Health state utilities were estimated from the pilot study population using the SF-12. Costs were based on current Medicare reimbursement. Over 14±4 months of follow-up 18 of 59 patients had 35 AF episodes. The ICM-guided strategy resulted in a 94% reduction in anticoagulant use relative to continuous treatment. There were no strokes, 3 (5.1%) TIAs, 2 major bleeding events (on aspirin) and 3 minor bleeding events with the ICM-guided strategy. The projected total 3-year costs were $12,535 for the ICM-guided strategy vs. $13,340 for continuous anticoagulation. Projected QALYs were 2.45 for both groups. Conclusion Based on a pilot study, a strategy of ICM-guided anticoagulation with NOACs may be cost-saving relative to expected outcomes with continuous anticoagulation, with similar quality-adjusted survival. This strategy could be attractive from a health economic perspective if shown to be safe and effective in a rigorous clinical trial. PMID:27571718

  2. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind modelsmore » (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.« less

  3. [Intensive care services resources in Spain].

    PubMed

    Martín, M C; León, C; Cuñat, J; del Nogal, F

    2013-10-01

    To identify the resources related to the care of critically ill patients in Spain, which are available in the units dependent of the Services of Intensive Care Medicine (ICM) or other services/specialties, analyzing their distribution according to characteristics of the hospitals and by autonomous communities. Prospective observational study. Spanish hospitals. Heads of the Services of ICM. Number of units and beds for critically ill patients and functional dependence. The total number of registries obtained with at least one Service of ICM was 237, with a total of 100,198 hospital beds. Level iii (43.5%) and level ii (35%) hospitals predominated. A total of 73% were public hospitals and 55.3% were non-university centers. The total number of beds for adult critically ill patients, was 4,738 (10.3/100,000 inhabitants). The services of ICM registered had available 258 intensive are units (ICUs), with 3,363 beds, mainly polyvalent ICUs (81%) and 43 intermediate care units. The number of patients attended in the Services of ICM in 2008 was 174,904, with a percentage of occupation of 79.5% A total of 228 units attending critically ill patients, which are dependent of other services with 2,233 beds, 772 for pediatric patients or neonates, were registered. When these last specialized units are excluded, there was a marked predominance of postsurgical units followed by coronary and cardiac units. Seventy one per cent of beds available in the Critical Care Units in Spain are characterized by attending severe adult patients, are dependent of the services of ICM, and most of them are polyvalent. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  4. Establishing an Integrated Catchment Management (ICM) program in East Java, Indonesia.

    PubMed

    Booth, C A; Warianti, A; Wrigley, T

    2001-01-01

    The Brantas is one of Indonesia's most important catchments. It is the "rice bowl" of Java and nationally important for its industrial activity. Surabaya, Indonesia's second largest city, is located at the mouth of the Brantas River which is pivotal to the city's water supply. The challenges associated with the institutional framework for natural resource management in East Java parallels that of many states and provinces around the globe. It is multi-layered and complex. Integrated Catchment Management (ICM) may be defined as "the co-ordinated and sustainable management of land, water, soil vegetation, fauna and other natural resources on a water catchment basis". Over a period of six months, an ICM Strategy was researched and facilitated for the Brantas River Catchment in East Java via a short term advisor attachment. The aim of the Strategy is to improve coordination, co-operation, communication and consistency of government and community efforts towards sustaining the catchment's environmental, economic and social values. The attachment was part of the Pollution Control Implementation (PCI) Project funded by AusAid and the Indonesian Government. The ICM Strategy developed was broad based and addressed the priority natural resource management issues facing the Brantas Catchment. It was co-ordinated by BAPEDALDA, the Provincial Environmental Protection Agency, and developed by all agencies involved in natural resource management in the catchment. Various Universities and Non Government Organisations (NGOs) were also involved in the ICM process which developed the Strategy. At the conclusion of the attachment, a draft ICM Strategy and a proposed institutional framework had been developed. A working group of key agencies was also established to further enhance local "ownership", finalise timescales and implementation responsibilities within the Strategy and bring the institutional arrangements into being through a Governor's Decree.

  5. The Integrated Curriculum Model (ICM)

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce; Wood, Susannah

    2010-01-01

    This article explicates the Integrated Curriculum Model (ICM) which has been used worldwide to design differentiated curriculum, instruction, and assessment units of study for gifted learners. The article includes a literature review of appropriate curriculum features for the gifted, other extant curriculum models, the theoretical basis for the…

  6. Integrated corridor management initiative : demonstration phase evaluation – San Diego benefit-cost analysis test plan.

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM project...

  7. Integrated corridor management I-15 San Diego, California : analysis plan.

    DOT National Transportation Integrated Search

    2010-02-01

    This AMS Analysis Plan for the I-15 Corridor outlines the various tasks associated with the application of the ICM AMS tools and strategies to this corridor in order to support benefit-cost assessment for the successful implementation of ICM. The rep...

  8. Integrated corridor management initiative : overview of the Dallas traveler response panel survey.

    DOT National Transportation Integrated Search

    2017-03-01

    This report presents findings from the Integrated Corridor Management (ICM) traveler behavior surveys, a set of panel surveys of US-75 corridor users, conducted before and after the deployment of ICM. The purpose of the surveys was to measure the imp...

  9. 1995 Truck Size and Weight Performance-Based Workshop report : activity 5 : document North American and European experiences

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...

  10. Integrated corridor management analysis, modeling, and simulation for the I–15 corridor in San Diego, California—post-deployment analysis plan.

    DOT National Transportation Integrated Search

    2016-11-01

    Post-Deployment Analysis, Modeling, and Simulation (AMS) activities focus on identifying impacts and benefits of the as-deployed Integrated Corridor Management (ICM) system. The as-deployed ICM strategies may differ from as-planned ...

  11. Integrated corridor management : analysis, modeling, and simulation for the U.S.-15 corridor in Dallas, Texas—post-deployment analysis plan.

    DOT National Transportation Integrated Search

    2016-10-01

    Post-Deployment Analysis, Modeling, and Simulation (AMS) activities focus on identifying impacts and benefits of the as-deployed Integrated Corridor Management (ICM) system. The as-deployed ICM strategies may differ from as-planned ...

  12. Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury.

    PubMed

    Ravi, S; Selvaraj, M

    2014-04-14

    A novel incessant formation of chain like mesoporous silica (ICMS) has been easily materialized using a mixed surfactant (Pluronic P123 and FC-4) as a structuring reagent in conjunction with a thiol precursor (3-MPS) through a one-pot synthetic method. A particular thiol concentration facilitated the interaction of the micelle head groups to form long-chain micelles, where FC-4 enhanced further growth. The rapid interactions of the micelles and the condensation of silicic acid and its oligomeric derivatives by coordinating 3-MPS through hydrogen bonding interactions leads to form ICMS. The characterization results for the ICMS illustrated that it has an ordered hexagonal pore geometry. The capability of the ICMS for Hg(2+) adsorption was extensively studied under different optimal parameters and the adsorption isothermal values clearly fit with the Langmuir and Freundlich isothermal plots. This novel material exhibited an unprecedentedly high binding affinity toward even microgram levels of mercury ions in wastewater, compared to other thiol-based mesoporous silica.

  13. Integrated case management for work-related upper-extremity disorders: impact of patient satisfaction on health and work status.

    PubMed

    Feuerstein, Michael; Huang, Grant D; Ortiz, Jose M; Shaw, William S; Miller, Virginia I; Wood, Patricia M

    2003-08-01

    An integrated case management (ICM) approach (ergonomic and problem-solving intervention) to work-related upper-extremity disorders was examined in relation to patient satisfaction, future symptom severity, function, and return to work (RTW). Federal workers with work-related upper-extremity disorder workers' compensation claims (n = 205) were randomly assigned to usual care or ICM intervention. Patient satisfaction was assessed after the 4-month intervention period. Questionnaires on clinical outcomes and ergonomic exposure were administered at baseline and at 6- and 12-months postintervention. Time from intervention to RTW was obtained from an administrative database. ICM group assignment was significantly associated with greater patient satisfaction. Regression analyses found higher patient satisfaction levels predicted decreased symptom severity and functional limitations at 6 months and a shorter RTW. At 12 months, predictors of positive outcomes included male gender, lower distress, lower levels of reported ergonomic exposure, and receipt of ICM. Findings highlight the utility of targeting workplace ergonomic and problem solving skills.

  14. Nonthermal Emission from Relativistic Electrons in Clusters of Galaxies: A Merger Shock Acceleration Model

    NASA Astrophysics Data System (ADS)

    Takizawa, Motokazu; Naito, Tsuguya

    2000-06-01

    We have investigated evolution of nonthermal emission from relativistic electrons accelerated around the shock fronts during mergers of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of a merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in the thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles in extending radio halos. In the contracting phase, radio halos are located at the hot region of ICM or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and show rather diffuse distribution.

  15. Comparison of Nasal Potential Difference and Intestinal Current Measurements as Surrogate Markers for CFTR Function.

    PubMed

    Wilschanski, Michael; Yaakov, Yasmin; Omari, Ibrahim; Zaman, Munir; Martin, Camilia R; Cohen-Cymberknoh, Malena; Shoseyov, David; Kerem, Eitan; Dasilva, Deborah; Sheth, Sunil; Uluer, Ahmet; OʼSullivan, Brian P; Freedman, Steven

    2016-11-01

    Nasal potential difference (NPD) measurement is part of the diagnostic criteria for cystic fibrosis (CF) and now used routinely as an endpoint in clinical trials of correcting the basic defect in CF. Intestinal current measurement (ICM), measured ex vivo on a rectal biopsy, has been used to study cystic fibrosis transmembrane conductance regulator (CFTR) function but has not been compared to NPD in the same subject in adults and children. The aim of the study is to evaluate the potential usefulness of ICM as a marker of CFTR function for treatment studies compared NPD in patients with CF and in healthy control subjects. ICM and NPD were performed on healthy controls and patients with CF. The healthy adults were individuals undergoing routine screening colonoscopy at the Beth Israel Deaconess Medical Center. The healthy children were undergoing colonoscopy for suspicion of inflammation in Hadassah Hebrew University Medical Center. The CF adults were recruited from Boston Children's Hospital CF Center and CF Center Worcester Mass, the children with CF from Hadassah CF Center. ICM measurements in healthy control subjects (n = 16) demonstrated a mean (±SE) carbachol response of 16.0 (2.2) μA/cm, histamine response of 13.2 (2.1) μA/cm and a forskolin response of 6.3 (2.0) μA/cm. Basal NPD of -15.9 (1.9) and response to Cl free + isoproterenol of -13.8 (2.0). These responses were inverted in CF subjects (n = 12) for ICM parameters with carbachol response of -3.0 (0.5) μA/cm, histamine -1.0 (0.8) μA/cm and a forskolin response of 0.5 (0.3) and also for NPD parameters; basal NPD of -42.2 (4.3) and response to Cl free + isoproterenol of 4.3 (0.7). Pearson correlation test showed the comparability of ICM and NPD in assessing CFTR function. ICM is equivalent to NPD in the ability to distinguish patients with CF from controls and could be used as surrogate markers of CFTR activity in treatment protocols.

  16. Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming.

    PubMed

    Talkhabi, Mahmood; Razavi, Seyed Morteza; Salari, Ali

    2017-06-01

    Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and quantitatively efficient direct cardiac reprogramming. Taken together, this study provides new insights into the complexity of cell fate conversion and better understanding of the roles of transcriptional activators, signaling pathways and protein kinases in increasing the efficiency of direct cardiac reprogramming and maturity of iCMs.

  17. Scientific publications from Arab world in leading journals of Integrative and Complementary Medicine: a bibliometric analysis.

    PubMed

    Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M

    2015-09-04

    Bibliometric analysis is increasingly employed as a useful tool to assess the quantity and quality of research performance. The specific goal of the current study was to evaluate the performance of research output originating from Arab world and published in international Integrative and Complementary Medicine (ICM) journals. Original scientific publications and reviews from the 22 Arab countries that were published in 22 international peer-reviewed ICM journals during all previous years up to December 31(st) 2013, were screened using the Web of Science databases. Five hundred and ninety-one documents were retrieved from 19 ICM journals. The h-index of the set of papers under study was 47. The highest h-index was 27 for Morocco, 21 for Jordan, followed by 19 for each Kingdom of Saudi Arabia (KSA), and Egypt, and the lowest h-index was 1 for each of Comoros, Qatar, and Syrian Arab Republic. No data related to ICM were published from Djibouti, and Mauritania. After adjusting for economy and population power, Somalia (89), Morocco (32.5), Egypt (31.1), Yemen (21.4), and Palestine (21.2) had the highest research productivity. The total number of citations was 9,466, with an average citation of 16 per document. The study identified 262 (44.3 %) documents with 39 countries in Arab-foreign country collaborations. Arab authors collaborated most with countries in Europe (24.2 %), followed by countries in the Asia-Pacific region (9.8 %). Scientific research output in the ICM field in the Arab world region is increasing. Most of publications from Arab world in ICM filed were driven by societal use of medicinal plants and herbs. Search for new therapies from available low cost medicinal plants in Arab world has motivated many researchers in academia and pharmaceutical industry. Further investigation is required to support these findings in a wider journal as well as to improve research output in the field of ICM from Arab world region by investing in more national and international collaborative research project.

  18. Moving from rhetoric to reality: adapting Housing First for homeless individuals with mental illness from ethno-racial groups

    PubMed Central

    2012-01-01

    Background The literature on interventions addressing the intersection of homelessness, mental illness and race is scant. The At Home/Chez Soi research demonstration project is a pragmatic field trial investigating a Housing First intervention for homeless individuals with mental illness in five cities across Canada. A unique focus at the Toronto site has been the development and implementation of a Housing First Ethno-Racial Intensive Case Management (HF ER-ICM) arm of the trial serving 100 homeless individuals with mental illness from ethno-racial groups. The HF ER-ICM program combines the Housing First approach with an anti-racism/anti-oppression framework of practice. This paper presents the findings of an early implementation and fidelity evaluation of the HF ER-ICM program, supplemented by participant narrative interviews to inform our understanding of the HF ER-ICM program theory. Methods Descriptive statistics are used to describe HF ER-ICM participant characteristics. Focus group interviews, key informant interviews and fidelity assessments were conducted between November 2010 and January 2011, as part of the program implementation evaluation. In-depth qualitative interviews with HF ER-ICM participants and control group members were conducted between March 2010 and June 2011. All qualitative data were analysed using grounded theory methodology. Results The target population had complex health and social service needs. The HF ER-ICM program enjoyed a high degree of fidelity to principles of both anti-racism/anti-oppression practice and Housing First and comprehensively addressed the housing, health and sociocultural needs of participants. Program providers reported congruence of these philosophies of practice, and program participants valued the program and its components. Conclusions Adapting Housing First with anti-racism/anti-oppression principles offers a promising approach to serving the diverse needs of homeless people from ethno-racial groups and strengthening the service systems developed to support them. The use of fidelity and implementation evaluations can be helpful in supporting successful adaptations of programs and services. Trial registration Current Controlled Trials ISRCTN42520374 PMID:23031406

  19. Plasmodium falciparum antigens synthesized by schizonts and stabilized at the merozoite surface by antibodies when schizonts mature in the presence of growth inhibitory immune serum.

    PubMed

    Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Pratt-Rossiter, J M

    1986-03-15

    Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.

  20. Western U.S.-Canada crossborder case study : activity 2 : task D : conduct regional and local trucking case studies

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Technical Capability Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM proje...

  1. A Study of Language Arts Curriculum Effectiveness with Gifted Learners.

    ERIC Educational Resources Information Center

    VanTassel-Baska, Joyce; And Others

    1996-01-01

    This study of language arts curriculum effectiveness presents data supporting utilization of the Integrated Curriculum Model (ICM) with high-ability learners in various grouping contexts. Significant gains were demonstrated in literary analysis, persuasive writing, and linguistic competency for seven elementary classes using the ICM. Implications…

  2. USDOT Integrated Corridor Management (ICM) Initiative Transit Data Gaps for Rail Transit Systems Initial Planning Workshop Notes

    DOT National Transportation Integrated Search

    2008-06-23

    This document presents the notes taken at the USDOT Integrated Corridor Management (ICM) Transit Data Gaps for Rail Transit Systems Initial Planning Workshop. Different scenarios for handling increased demand on rail and bus transit systems are discu...

  3. Integrated corridor management : phase I, concept development and foundational research. Task 3.4, develop alternative definitions

    DOT National Transportation Integrated Search

    2006-04-11

    Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.1 a...

  4. A qualitative assessment of the role of shippers and others in driver compliance with federal safety regulations

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Decision Support System Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pr...

  5. Multi-fluid MHD Study of the Solar Wind Interaction with Mars' Upper Atmosphere during the 2015 March 8th ICME Event

    NASA Astrophysics Data System (ADS)

    Dong, C.; Ma, Y.; Bougher, S. W.; Toth, G.; Nagy, A. F.; Halekas, J. S.; Dong, Y.; Curry, S.; Luhmann, J. G.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J. P.; Mitchell, D. L.; DiBraccio, G. A.; Lillis, R. J.; Jakosky, B. M.; Grebowsky, J. M.

    2015-12-01

    The 3-D Mars multi-fluid BATS-R-US MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the 2015 March 8th interplanetary coronal mass ejection (ICME). We studied four steady-state cases, corresponding to three major ICME phases: pre-ICME phase (Case 1), sheath phase (Cases 2--3), and ejecta phase (Case 4). Detailed data-model comparisons demonstrate that the simulation results are in good agreement with Mars Atmosphere and Volatile EvolutioN (MAVEN) measurements, indicating that the multi-fluid MHD model can reproduce most of the features observed by MAVEN, thus providing confidence in the estimate of ion escape rates from its calculation. The total ion escape rate is increased by an order of magnitude, from 2.05×1024 s-1 (pre-ICME phase) to 2.25×1025 s-1 (ICME sheath phase), during this time period. The calculated ion escape rates were used to examine the relative importance of the two major ion loss channels from the planet: energetic pickup ion loss through the dayside plume and cold ionospheric ion loss through the nightside plasma wake region. We found that the energetic pickup ions escaping from the dayside plume could be as much as ~23% of the total ion loss prior to the ICME arrival. Interestingly, the tailward ion escape rate is significantly increased at the ejecta phase, leading to a reduction of the dayside ion escape to ~5% of the total ion loss. Under such circumstance, the cold ionospheric ions escaping from the plasma wake comprise the majority of the ion loss from the planet. Furthermore, by comparing four simulation results along the same MAVEN orbit, we note that there is no significant variation in the Martian lower ionosphere. Finally, both bow shock and magnetic pileup boundary (BS, MPB) locations are decreased from (1.2 RMars, 1.57 RMars) at the pre-ICME phase to (1.16 RMars, 1.47 RMars) respectively during the sheath phase along the dayside Sun-Mars line. MAVEN has provided a great opportunity to study the evolution of the Martian atmosphere and climate over its history. A large quantity of useful data has been returned for future studies. These kinds of data-model comparisons can help the community to better understand the Martian upper atmosphere response to the (extreme) variation in the solar wind and its interplanetary environment from a global perspective.

  6. The Origin of Mitochondrial Cristae from Alphaproteobacteria.

    PubMed

    Muñoz-Gómez, Sergio A; Wideman, Jeremy G; Roger, Andrew J; Slamovits, Claudio H

    2017-04-01

    Mitochondria are the respiratory organelles of eukaryotes and their evolutionary history is deeply intertwined with that of eukaryotes. The compartmentalization of respiration in mitochondria occurs within cristae, whose evolutionary origin has remained unclear. Recent discoveries, however, have revived the old notion that mitochondrial cristae could have had a pre-endosymbiotic origin. Mitochondrial cristae are likely homologous to the intracytoplasmic membranes (ICMs) used by diverse alphaproteobacteria for harnessing energy. Because the Mitochondrial Contact site and Cristae Organizing System (MICOS) that controls the development of cristae evolved from a simplified version that is phylogenetically restricted to Alphaproteobacteria (alphaMICOS), ICMs most probably transformed into cristae during the endosymbiotic origin of mitochondria. This inference is supported by the sequence and structural similarities between MICOS and alphaMICOS, and the expression pattern and cellular localization of alphaMICOS. Given that cristae and ICMs develop similarly, alphaMICOS likely functions analogously to mitochondrial MICOS by culminating ICM development with the creation of tubular connections and membrane contact sites at the alphaproteobacterial envelope. Mitochondria thus inherited a pre-existing ultrastructure adapted to efficient energy transduction from their alphaproteobacterial ancestors. The widespread nature of purple bacteria among alphaproteobacteria raises the possibility that cristae evolved from photosynthetic ICMs. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Holding Area LINQ Trial (HALT).

    PubMed

    Lee, John J; Weitz, Daniel; Anand, Rishi

    Recent studies have shown that insertable cardiac monitors (ICMs) can be implanted out of the traditional hospital setting and efforts are being made to explore the feasibility of implanting these devices in a specific standardized location other than the operating room or a cardiac catherization/electrophysiology lab. This was a prospective, non-randomized, single center post-market clinical trial designed to occur in the holding area of a hospital operating room or cardiac catheterization/electrophysiology laboratory. The Medtronic Reveal LINQ ICM was implanted and patients were followed for 90 days post implant. This study was designed to observe any procedure related adverse events stemming from the holding area implantation. Twenty patients were implanted at our hospital in a holding room not traditionally associated with the electrophysiology/cardiac/operatory labs. One patient was lost to the 90-day follow up. In one case, ICM implantation led to diagnosis requiring removal of ICM before the 90 day follow up and insertion of a biventricular implantable cardioverter defibrillator (ICD). In the remaining 18 patients, there were no serious complications such as minor skin infections, systemic infections or procedure-related adverse events requiring device explant. When following a standardized protocol with attention to sterile technique, it is feasible to implant ICMs in a holding area with no procedure related adverse events (AE). Copyright © 2017 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  8. EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation

    PubMed Central

    Saha, Biswarup; Home, Pratik; Ray, Soma; Larson, Melissa; Paul, Arindam; Rajendran, Ganeshkumar; Behr, Barry

    2013-01-01

    The first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood. Here, we show that proper development of the TE and ICM lineages is coordinated via combinatorial regulation of embryonic ectoderm development (EED) and lysine-specific demethylase 6B (KDM6B). During blastocyst formation, the relative levels of EED and KDM6B expression determine altered polycomb repressor 2 (PRC2) complex recruitment and incorporation of the repressive histone H3 lysine 27 trimethylation (H3K27Me3) mark at the chromatin domains of TE-specific master regulators CDX2 and GATA3, leading to their activation in the TE lineage and repression in the ICM lineage. Furthermore, ectopic gain of EED along with depletion of KDM6B in preimplantation mouse embryos abrogates CDX2 and GATA3 expression in the nascent TE lineage. The loss of CDX2 and GATA3 in the nascent TE lineage results in improper TE development, leading to failure in embryo implantation to the uterus. Our study delineates a novel epigenetic mechanism that orchestrates proper development of the first mammalian cell lineages. PMID:23671187

  9. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  10. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury

    PubMed Central

    Mercier, L. M.; Gonzalez-Rothi, E. J.; Streeter, K. A.; Posgai, S. S.; Poirier, A. S.; Fuller, D. D.; Reier, P. J.

    2016-01-01

    Intraspinal microstimulation (ISMS) using implanted electrodes can evoke locomotor movements after spinal cord injury (SCI) but has not been explored in the context of respiratory motor output. An advantage over epidural and direct muscle stimulation is the potential of ISMS to selectively stimulate components of the spinal respiratory network. The present study tested the hypothesis that medullary respiratory activity could be used to trigger midcervical ISMS and diaphragm motor unit activation in rats with cervical SCI. Studies were conducted after acute (hours) and subacute (5–21 days) C2 hemisection (C2Hx) injury in adult rats. Inspiratory bursting in the genioglossus (tongue) muscle was used to trigger a 250-ms train stimulus (100 Hz, 100–200 μA) to the ventral C4 spinal cord, targeting the phrenic motor nucleus. After both acute and subacute injury, genioglossus EMG activity effectively triggered ISMS and activated diaphragm motor units during the inspiratory phase. The ISMS paradigm also evoked short-term potentiation of spontaneous inspiratory activity in the previously paralyzed hemidiaphragm (i.e., bursting persisting beyond the stimulus period) in ∼70% of the C2Hx animals. We conclude that medullary inspiratory output can be used to trigger cervical ISMS and diaphragm activity after SCI. Further refinement of this method may enable “closed-loop-like” ISMS approaches to sustain ventilation after severe SCI. NEW & NOTEWORTHY We examined the feasibility of using intraspinal microstimulation (ISMS) of the cervical spinal cord to evoke diaphragm activity ipsilateral to acute and subacute hemisection of the upper cervical spinal cord of the rat. This proof-of-concept study demonstrated the efficacy of diaphragm activation, using an upper airway respiratory EMG signal to trigger ISMS at the level of the ipsilesional phrenic nucleus during acute and advanced postinjury intervals. PMID:27881723

  11. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit

    PubMed Central

    Aedo, Cristian; Terreros, Gonzalo; León, Alex; Delano, Paul H.

    2016-01-01

    Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses. PMID:27195498

  12. Bilateral force transients in the upper limbs evoked by single-pulse microstimulation in the pontomedullary reticular formation.

    PubMed

    Hirschauer, Thomas J; Buford, John A

    2015-04-01

    Neurons in the pontomedullary reticular formation (PMRF) give rise to the reticulospinal tract. The motor output of the PMRF was investigated using stimulus-triggered averaging of electromyography (EMG) and force recordings in two monkeys (M. fascicularis). EMG was recorded from 12 pairs of upper limb muscles, and forces were detected using two isometric force-sensitive handles. Of 150 stimulation sites, 105 (70.0%) produced significant force responses, and 139 (92.5%) produced significant EMG responses. Based on the average flexor EMG onset latency of 8.3 ms and average force onset latency of 15.9 ms poststimulation, an electromechanical delay of ∼7.6 ms was calculated. The magnitude of force responses (∼10 mN) was correlated with the average change in EMG activity (P < 0.001). A multivariate linear regression analysis was used to estimate the contribution of each muscle to force generation, with flexors and extensors exhibiting antagonistic effects. A predominant force output pattern of ipsilateral flexion and contralateral extension was observed in response to PMRF stimulation, with 65.3% of significant ipsilateral force responses directed medially and posteriorly (P < 0.001) and 78.6% of contralateral responses directed laterally and anteriorly (P < 0.001). This novel approach permits direct measurement of force outputs evoked by central nervous system microstimulation. Despite the small magnitude of poststimulus EMG effects, low-intensity single-pulse microstimulation of the PMRF evoked detectable forces. The forces, showing the combined effect of all muscle activity in the arms, are consistent with reciprocal pattern of force outputs from the PMRF detectable with stimulus-triggered averaging of EMG. Copyright © 2015 the American Physiological Society.

  13. The Netherlands: Report on the Middle School.

    ERIC Educational Resources Information Center

    Western European Education, 1985

    1985-01-01

    The Commission for Renewal of the Middle School (ICM) in the Netherlands has been concentrating its efforts on introducing the middle school into the secondary school system. Described is a report published by the ICM in which the group discusses what it is proposing and problems that it is encountering. (RM)

  14. Integrated corridor management concept development and foundational research. Task 3.2, develop criteria for delineating a corridor

    DOT National Transportation Integrated Search

    2006-04-12

    Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.2 a...

  15. Integrated corridor management : analysis, modeling, and simulation for the U.S.-75 corridor in Dallas, Texas – post-deployment assessment report.

    DOT National Transportation Integrated Search

    2016-11-01

    The U.S. Department of Transportation Integrated Corridor Management (ICM) Initiative aims to advance the state of the practice in transportation corridor operations to manage congestion. Through the deployment of ICM at the two selected Demonstratio...

  16. Integrated corridor management analysis, modeling, and simulation for the I-15 corridor in San Diego, California post-deployment assessment report.

    DOT National Transportation Integrated Search

    2016-12-01

    The U.S. Department of Transportation Integrated Corridor Management (ICM) Initiative aims to advance the state of the practice in transportation corridor operations to manage congestion. Through the deployment of ICM at the two selected Demonstratio...

  17. Integrated corridor management, concept development and foundational research. Task 3.3, relationship between corridor management and regional management

    DOT National Transportation Integrated Search

    2006-04-12

    Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.3 a...

  18. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    EPA Science Inventory

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  19. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2015-08-01

    Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.

  20. Reanimating the arm and hand with intraspinal microstimulation

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jonas B.; Seki, Kazuhiko; Jackson, Andrew

    2011-10-01

    To date, there is no effective therapy for spinal cord injury, and many patients could benefit dramatically from at least partial restoration of arm and hand function. Despite a substantial body of research investigating intraspinal microstimulation (ISMS) in frogs, rodents and cats, little is known about upper-limb responses to cervical stimulation in the primate. Here, we show for the first time that long trains of ISMS delivered to the macaque spinal cord can evoke functional arm and hand movements. Complex movements involving coordinated activation of multiple muscles could be elicited from a single electrode, while just two electrodes were required for independent control of reaching and grasping. We found that the motor responses to ISMS were described by a dual exponential model that depended only on stimulation history. We demonstrate that this model can be inverted to generate stimulus trains capable of eliciting arbitrary, graded motor responses, and could be used to restore volitional movements in a closed-loop brain-machine interface.

  1. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    NASA Astrophysics Data System (ADS)

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-08-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.

  2. An artificial arm/hand system with a haptic sensory function using electric stimulation of peripheral sensory nerve fibers.

    PubMed

    Mabuchi, Kunihiko

    2013-01-01

    We are currently developing an artificial arm/hand system which is capable of sensing stimuli and then transferring these stimuli to users as somatic sensations. Presently, we are evoking the virtual somatic sensations by electrically stimulating a sensory nerve fiber which innervates a single mechanoreceptor unit at the target area; this is done using a tungsten microelectrode that was percutaneously inserted into the use's peripheral nerve (a microstimulation method). The artificial arm/hand system is composed of a robot hand equipped with a pressure sensor system on its fingers. The sensor system detects mechanical stimuli, which are transferred to the user by means of the microstimulation method so that the user experiences the stimuli as the corresponding somatic sensations. In trials, the system worked satisfactorily and there was a good correlation between the pressure applied to the pressure sensors on the robot fingers and the subjective intensities of the evoked pressure sensations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching andmore » partitioning (Q&P) heat treatment, as an example.« less

  4. A Systematic Study of Kelvin-Helmholtz Instability in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan

    2017-09-01

    Kelvin-Helmholtz instabilities (KHI) were observed at cold fronts in a handful of clusters. KHI are predicted at all cold fronts in hydro simulation of intracluster medium (ICM). Their presence and absence provides a unique probe of transport processes in the hot plasma, which are essential to the dissipation and redistribution of the energy in the ICM. We propose the first systematic study of the prevalence of KHI in galaxy clusters by analyzing the archived Chandra observations of a sample of 50 nearby galaxy clusters. We will associate the occurrence and properties of KHI rolls with various cluster parameters such as their gas temperature and density, and put constraints on effective transport coefficients in the ICM

  5. High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME

    NASA Astrophysics Data System (ADS)

    Otis, Richard A.; Liu, Zi-Kui

    2017-05-01

    One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.

  6. An Interactive Computer-Based Conferencing System to Accommodate Students' Learning Process.

    ERIC Educational Resources Information Center

    Saiedian, Hossein

    1993-01-01

    Describes an integrated computer-based conferencing and mail system called ICMS (Integrated Conferencing and Mail System) that was developed to encourage students to participate in class discussions more actively. The menu-driven user interface is explained, and ICMS's role in promoting self-assessment and critical thinking is discussed. (eight…

  7. Integrated Classroom versus Resource Model: Academic Viability and Effectiveness.

    ERIC Educational Resources Information Center

    Affleck, James Q.; And Others

    1988-01-01

    Achievement data of elementary learning-disabled students in both an Integrated Classroom Model (ICM) and resource rooms were compared. The ICM was shown to be more cost effective than resource room programs while achieving similar results on reading, math, and language tests for learning-disabled students and on general achievement tests for…

  8. Integrated corridor management : phase I, concept development and foundational research. Task 3.4, identify integrated corridor management institutional strategies and administration

    DOT National Transportation Integrated Search

    2006-04-12

    Task 3 involves overall foundational research to further the understanding of various aspects of Integrated Corridor Management (ICM) and to identify integration issues needed to evaluate the feasibility of the ICM initiative. The focus of Task 3.4 a...

  9. Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Arróyave, Raymundo; Talapatra, Anjana; Johnson, Luke; Singh, Navdeep; Ma, Ji; Karaman, Ibrahim

    2015-11-01

    Over the last decade, considerable interest in the development of High-Temperature Shape Memory Alloys (HTSMAs) for solid-state actuation has increased dramatically as key applications in the aerospace and automotive industry demand actuation temperatures well above those of conventional SMAs. Most of the research to date has focused on establishing the (forward) connections between chemistry, processing, (micro)structure, properties, and performance. Much less work has been dedicated to the development of frameworks capable of addressing the inverse problem of establishing necessary chemistry and processing schedules to achieve specific performance goals. Integrated Computational Materials Engineering (ICME) has emerged as a powerful framework to address this problem, although it has yet to be applied to the development of HTSMAs. In this paper, the contributions of computational thermodynamics and kinetics to ICME of HTSMAs are described. Some representative examples of the use of computational thermodynamics and kinetics to understand the phase stability and microstructural evolution in HTSMAs are discussed. Some very recent efforts at combining both to assist in the design of HTSMAs and limitations to the full implementation of ICME frameworks for HTSMA development are presented.

  10. Predicting ICME properties at 1AU

    NASA Astrophysics Data System (ADS)

    Lago, A.; Braga, C. R.; Mesquita, A. L.; De Mendonça, R. R. S.

    2017-12-01

    Coronal mass ejections (CMEs) are among the main origins of geomagnetic disturbances. They change the properties of the near-earth interplanetary medium, enhancing some key parameters, such as the southward interplanetary magnetic field and the solar wind speed. Both quantities are known to be related to the energy transfer from the solar wind to the Earth's magnetosphere via the magnetic reconnection process. Many attempts have been made to predict the magnetic filed and the solar wind speed from coronagraph observations. However, we still have much to learn about the dynamic evolution of ICMEs as they propagate through the interplanetary space. Increased observation capability is probably needed. Among the several attempts to establish correlations between CME and ICME properties, it was found that the average CME propagation speed to 1AU is highly correlated to the ICME peak speed (Dal Lago et al, 2004). In this work, we present an extended study of such correlation, which confirms the results found in our previous study. Some suggestions on how to use this kind of results for space weather estimates are explored.

  11. Embedded spiral patterns in the massive galaxy cluster Abell 1835

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Kitayama, T.; Dotani, T.

    2017-10-01

    We report on the properties of the intracluster medium (ICM) in the central region of the massive galaxy cluster, Abell 1835, obtained with the data from the Chandra X-ray Observatory. We find distinctive spiral patterns in the cool core in the residual image of the X-ray surface brightness after its nominal profile is subtracted. The spiral patterns consist of two arms. One of them appears as positive, and the other appears as negative excesses in the residual image. Their sizes are ˜ 70 kpc and their morphologies are consistent with each other. We find that the spiral patterns extend from the cool core out to the hotter surrounding ICM. We analyze the X-ray spectra extracted from both regions. We obtain that the ICM properties are similar to those expected by gas sloshing. We also find that the ICM in the two regions of spiral patterns is near or is in pressure equilibrium. Abell 1835 may now be experiencing gas sloshing induced by an off-axis minor merger. These results have been already published (Ueda, Kitayama, & Dotani 2017, ApJ, 837, 34).

  12. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  13. Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass

    PubMed Central

    Williams, Lucy H.; Kalantry, Sundeep; Starmer, Joshua; Magnuson, Terry

    2011-01-01

    Repression of Xist RNA expression is considered a prerequisite to reversal of X-chromosome inactivation (XCI) in the mouse inner cell mass (ICM), and reactivation of X-linked genes is thought to follow loss of Xist RNA coating and heterochromatic markers of inactivation, such as methylation of histone H3. We analyzed X-chromosome activity in developing ICMs and show that reactivation of gene expression from the inactive-X initiates in the presence of Xist coating and H3K27me3. Furthermore, depletion of Xist RNA coating through forced upregulation of NANOG does not result in altered reactivation kinetics. Taken together, our observations suggest that in the ICM, X-linked gene transcription and Xist coating are uncoupled. These data fundamentally alter our perception of the reactivation process and support the existence of a mechanism to reactivate Xp-linked genes in the ICM that operates independently of loss of Xist RNA and H3K27me3 from the imprinted inactive-X. PMID:21471155

  14. Suppression of Electron Thermal Conduction in the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.

    2017-08-01

    The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.

  15. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction.

    PubMed

    Miyamoto, Kazutaka; Akiyama, Mizuha; Tamura, Fumiya; Isomi, Mari; Yamakawa, Hiroyuki; Sadahiro, Taketaro; Muraoka, Naoto; Kojima, Hidenori; Haginiwa, Sho; Kurotsu, Shota; Tani, Hidenori; Wang, Li; Qian, Li; Inoue, Makoto; Ide, Yoshinori; Kurokawa, Junko; Yamamoto, Tsunehisa; Seki, Tomohisa; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2018-01-04

    Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Lessons Learned from 10 Years of STEREO Solar Wind Observations

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2017-12-01

    We have conducted long-term observations of large-scale solar wind structures since the launch of STEREO spacecraft, specifically interplanetary CMEs (ICMEs), slow-to-fast stream interaction regions (SIRs), and interplanetary shocks. In combination with our previous observations of the same solar wind structures in 1995-2009 using Wind/ACE data and the same identification criteria, we have first studied the solar cycle variations of these structures, especially for the same phases of solar cycles 23 and 24. Attributing the shocks to the interplanetary drivers, we have statistically compared the shocks driven by ICMEs and SIRs, and explained the shocks without a clear local driver. In addition, using the longitudinal and latitudinal separations between the twin spacecraft, we have investigated the recurrence and variability of ICMEs and SIRs, and gained the critical implications for the proposed L5 mission. At last, we have associated the heliospheric current sheet (HCS) crossings with the ICMEs and SIRs, and compared the properties of SIRs with and without HCS crossings, which correspond to the helmet streamers and pseudostreamers, respectively. The findings are important constraints on the theories of slow wind origin.

  17. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions

    PubMed Central

    Schroeder, Gunnar N.

    2018-01-01

    The defective in organelle trafficking/intracellular multiplication (Dot/Icm) Type IVb secretion system (T4SS) is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS) or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal. PMID:29354599

  18. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388

    NASA Astrophysics Data System (ADS)

    Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.-J.; English, J.; Wang, Q. D.

    2016-06-01

    We investigate the effects of ram pressure on the ordered magnetic field of a galaxy hosting a radio halo and strong nuclear outflows. New radio images in total and polarized intensity of the edge-on Virgo galaxy NGC 4388 were obtained within the CHANG-ES EVLA project. The unprecedented noise level reached allows us to detect striking new features of the ordered magnetic field. The nuclear outflow extends far into the halo to about 5 kpc from the center and is spatially correlated with the {{H}}α and X-ray emission. For the first time, the southern outflow is detected. Above and below both spiral arms we find extended blobs of polarized emission with an ordered field oriented perpendicular to the disk. The synchrotron lifetime of the cosmic-ray electrons (CREs) in these regions yields a mean outflow velocity of 270+/- 70 {km} {{{s}}}-1, in agreement with a galactic wind scenario. The observed symmetry of the polarized halo features in NGC 4388 excludes a compression of the halo gas by the ram pressure of the intracluster medium (ICM). The assumption of equilibrium between the halo pressure and the ICM ram pressure yields an estimate of the ICM density that is consistent with both the ICM density derived from X-ray observations and the recent Planck Sunyaev-Zel’dovich measurements. The detection of a faint radio halo around cluster galaxies could thus be used for an estimate of ICM ram pressure.

  19. Powering of Hα Filaments by Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.

    2018-05-01

    Cluster cool cores possess networks of line-emitting filaments. These filaments are thought to originate via uplift of cold gas from cluster centers by buoyant active galactic nuclei (AGNs) bubbles, or via local thermal instability in the hot intracluster medium (ICM). Therefore, the filaments are either the signatures of AGN feedback or feeding of supermassive black holes. Despite being characterized by very short cooling times, the filaments are significant Hα emitters, which suggests that some process continuously powers these structures. Many cool cores host diffuse radio mini halos and AGN injecting radio plasma, suggesting that cosmic rays (CRs) and magnetic fields are present in the ICM. We argue that the excitation of Alfvén waves by CR streaming, and the replenishment of CR energy via accretion onto the filaments of high-plasma-β ICM characterized by low CR pressure support, can provide the adequate amount of heating to power and sustain the emission from these filaments. This mechanism does not require the CRs to penetrate the filaments, even if the filaments are magnetically isolated from the ambient ICM, and it may operate irrespectively of whether the filaments are dredged up from the center or form in situ in the ICM. This picture is qualitatively consistent with non-thermal line ratios seen in the cold filaments. Future X-ray observations of the iron line complex with XARM, Lynx, or Athena could help to test this model by providing constraints on the amount of CRs in the hot plasma that is cooling and accreting onto the filaments.

  20. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.

    2013-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

  1. Baryon Content in a Sample of 91 Galaxy Clusters Selected by the South Pole Telescope at 0.2 < z < 1.25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, I.; et al.

    2017-11-02

    We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less

  2. Comparative Study of the December 28, 2015 - January 2, 2016 and April 7 - 11, 1997 Sun-Earth Connection Events

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Richardson, I. G.; Farrugia, C. J.

    2016-12-01

    A Sun-Earth connection event started on December 28, 2015 in association with a M1.8 X-ray flare, commencing at 1120 UT detected by the GOES Environmental satellites, and a partial halo coronal mass ejection (CME) observed from 1200 UT by the SOHO LASCO coronographs. SDO AIA observations indicate that this event was located at W11S22. The related interplanetary coronal mass ejection (ICME) drove an above average strength fast-forward interplanetary shock observed by the Wind spacecraft at the start of Dec 31. This shock also appears to have accelerated solar energetic particles; ACE/EPAM observations show that these energetic particles peaked at shock passage. The shock driver, i.e. the ICME, appears to have impacted the Earth's environment near 17 UT on December 31. This ICME seems to have included several substructures and possibly extended to around midday on January 2, 2016. The impact of the ICME produced lively auroras at low Earth latitudes in the Western-North hemisphere. The associated strong magnetic storm was due to the leading part of the ICME maintaining a southward-oriented magnetic field for several hours. The purpose of this study is to compare and contrast this event with the April 7-11, 1997 Sun-Earth connection event previously discussed by Berdichevsky et al. (1998) which included the passage of an ICME at Earth with a persistent northward, rather than southward, magnetic-field and produced an unusually long-lasting compression of the Earth's magnetosphere. Berdichevsky, D, J.-L. Bougeret, J.-P. Delaboudinière, N. Fox, M. Kaiser, R. Lepping, D. Michels, S. Plunkett, D. Reames, M. Reiner, I. Richardson, G. Rostoker, J. Steinberg, B. Thompson, and T. von Rosenvinge, Evidence for multiple ejecta: April 7-11, 1997, ISTP Sun-Earth connection event GRL, 25, 2473-6, 1998.

  3. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine.

    PubMed

    Ellis, Bradley W; Acun, Aylin; Can, U Isik; Zorlutuna, Pinar

    2017-03-01

    The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.

  4. Baryon Content in a Sample of 91 Galaxy Clusters Selected by the South Pole Telescope at 0.2 < z < 1.25

    DOE PAGES

    Chiu, I.; Mohr, J. J.; McDonald, M.; ...

    2018-05-16

    Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less

  5. Baryon Content in a Sample of 91 Galaxy Clusters Selected by the South Pole Telescope at 0.2 < z < 1.25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, I.; et al.

    2017-11-02

    We estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the strong mass and weak redshift trends in the stellar mass scaling relation suggest a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.« less

  6. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine

    PubMed Central

    Ellis, Bradley W.; Acun, Aylin; Can, U. Isik; Zorlutuna, Pinar

    2017-01-01

    The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner. PMID:28396709

  7. Baryon Content in a Sample of 91 Galaxy Clusters Selected by the South Pole Telescope at 0.2 < z < 1.25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, I.; Mohr, J. J.; McDonald, M.

    Here, we estimate total mass (more » $$M_{500}$$), intracluster medium (ICM) mass ($$M_{\\mathrm{ICM}}$$) and stellar mass ($$M_{\\star}$$) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses $$M_{500}\\gtrsim2.5\\times10^{14}M_{\\odot}$$ and redshift $0.2 < z < 1.25$ from the 2500 deg$^2$ South Pole Telescope SPT-SZ survey. The total masses $$M_{500}$$ are estimated from the SZE observable, the ICM masses $$M_{\\mathrm{ICM}}$$ are obtained from the analysis of $Chandra$ X-ray observations, and the stellar masses $$M_{\\star}$$ are derived by fitting spectral energy distribution templates to Dark Energy Survey (DES) $griz$ optical photometry and $WISE$ or $Spitzer$ near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass and the cold baryonic fraction with cluster mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past $$\\approx9$$ Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low density environment or field surrounding the parent halos, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called "missing baryons" outside cluster virial regions.« less

  8. The collaborative effect of ram pressure and merging on star formation and stripping fraction

    NASA Astrophysics Data System (ADS)

    Bischko, J. C.; Steinhauser, D.; Schindler, S.

    2015-04-01

    Aims: We investigate the effect of ram pressure stripping (RPS) on several simulations of merging pairs of gas-rich spiral galaxies. We are concerned with the changes in stripping efficiency and the time evolution of the star formation rate. Our goal is to provide an estimate of the combined effect of merging and RPS compared to the influence of the individual processes. Methods: We make use of the combined N-body/hydrodynamic code GADGET-2. The code features a threshold-based statistical recipe for star formation, as well as radiative cooling and modeling of galactic winds. In our simulations, we vary mass ratios between 1:4 and 1:8 in a binary merger. We sample different geometric configurations of the merging systems (edge-on and face-on mergers, different impact parameters). Furthermore, we vary the properties of the intracluster medium (ICM) in rough steps: the speed of the merging system relative to the ICM between 500 and 1000 km s-1, the ICM density between 10-29 and 10-27 g cm-3, and the ICM direction relative to the mergers' orbital plane. Ram pressure is kept constant within a simulation time period, as is the ICM temperature of 107 K. Each simulation in the ICM is compared to simulations of the merger in vacuum and the non-merging galaxies with acting ram pressure. Results: Averaged over the simulation time (1 Gyr) the merging pairs show a negligible 5% enhancement in SFR, when compared to single galaxies under the same environmental conditions. The SFRs peak at the time of the galaxies first fly-through. There, our simulations show SFRs of up to 20 M⊙ yr-1 (compared to 3 M⊙ yr-1 of the non-merging galaxies in vacuum). In the most extreme case, this constitutes a short-term (<50 Myr) SFR increase of 50 % over the non-merging galaxies experiencing ram pressure. The wake of merging galaxies in the ICM typically has a third to half the star mass seen in the non-merging galaxies and 5% to 10% less gas mass. The joint effect of RPS and merging, according to our simulations, is not significantly different from pure ram pressure effects.

  9. 77 FR 16562 - Solicitation for a Cooperative Agreement-Curriculum Development for MET, ECCP, and ICMS Training...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... designed to be delivered to staff at the SCA/DFE sites. The key elements from the ICMS approach that are... to design an MET approach appropriate for the SCA/DFE intervention which may differ from the... approaches, techniques, or design aspects proposed that will enhance the project? Organizational (35%) Does...

  10. A Multidimensional Examination of the Acculturation and Psychological Functioning of a Sample of Immigrant Chinese Mothers in the US

    ERIC Educational Resources Information Center

    Tahseen, Madiha; Cheah, Charissa S. L.

    2012-01-01

    The present research used the cluster analysis method to examine the acculturation of immigrant Chinese mothers (ICMs), and the demographic characteristics and psychological functioning associated with each acculturation style. The sample was comprised of 83 first-generation ICMs of preschool children residing in Maryland, United States (US).…

  11. Integrated computational materials engineering: Tools, simulations and new applications

    DOE PAGES

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  12. Preparation for the Implantation of an Intracortical Visual Prosthesis in a Human

    DTIC Science & Technology

    2015-12-01

    cluster of the WFMA. Electrode current flows between the micro-(working) electrode and a longer large-area counter electrode, using either...Biomed Eng 44(10):931-9. McCreery DB, Yuen TGH, Agnew, WF, Bullara LA (2000). Chronic microstimulation in the feline ventral cochlear nucleus

  13. Ketogenic diet restores aberrant cortical motor maps and excitation-to-inhibition imbalance in the BTBR mouse model of autism spectrum disorder.

    PubMed

    Smith, Jacklyn; Rho, Jong M; Teskey, G Campbell

    2016-05-01

    Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder characterized by deficits in sociability and communication, and restricted and/or repetitive motor behaviors. Amongst the diverse hypotheses regarding the pathophysiology of ASD, one possibility is that there is increased neuronal excitation, leading to alterations in sensory processing, functional integration and behavior. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used in the treatment of medically intractable epilepsy, has already been shown to reduce autistic behaviors in both humans and in rodent models of ASD. While the mechanisms underlying these effects remain unclear, we hypothesized that this dietary approach might shift the balance of excitation and inhibition towards more normal levels of inhibition. Using high-resolution intracortical microstimulation, we investigated basal sensorimotor excitation/inhibition in the BTBR T+Itpr(tf)/J (BTBR) mouse model of ASD and tested whether the KD restores the balance of excitation/inhibition. We found that BTBR mice had lower movement thresholds and larger motor maps indicative of higher excitation/inhibition compared to C57BL/6J (B6) controls, and that the KD reversed both these abnormalities. Collectively, our results afford a greater understanding of cortical excitation/inhibition balance in ASD and may help expedite the development of therapeutic approaches aimed at improving functional outcomes in this disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Electrical Microstimulation of the Superior Colliculus in Strabismic Monkeys.

    PubMed

    Fleuriet, Jérome; Walton, Mark M G; Ono, Seiji; Mustari, Michael J

    2016-06-01

    Visually guided saccades are disconjugate in human and nonhuman strabismic primates. The superior colliculus (SC) is a region of the brain topographically organized in visual and motor maps where the saccade goal is spatially coded. The present study was designed to investigate if a site of stimulation on the topographic motor map was evoking similar or different saccade vectors for each eye. We used microelectrical stimulation (MS) of the SC in two strabismic (one esotrope and one exotrope) and two control macaques under binocular and monocular viewing conditions. We compared the saccade amplitudes and directions for each SC site and each condition independently of the fixating eye and then between each fixating eye. A comparison with disconjugacies of visually guided saccades was also performed. We observed different saccade vectors for the two eyes in strabismic monkeys, but conjugate saccades in normal monkeys. Evoked saccade vectors for the left eye when that eye was fixating the target were different from those of the right eye when it was fixating. The disconjugacies evoked by the MS were not identical but similar to those observed for visually guided saccades especially for the dominant eye. Our results suggest that, in strabismus, the saccade generator does not interpret activation of a single location of the SC as the same desired displacement for each eye. This finding is important for advancing understanding of the development of neural circuits in strabismus. French Abstract.

  15. Simulation of Magnetic Cloud Erosion and Deformation During Propagation

    NASA Astrophysics Data System (ADS)

    Manchester, W.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B.; Jackson, B. V.

    2013-12-01

    We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with it's high speed, the ICME evolves in ways that give it a unique appearance at 1AU that does not resemble a typical ICME. First, as the ICME decelerates in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport azimuthal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely open configuration near its nose. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence such remarkable behavior has occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material, and the analysis of SMEI data provides the trajectory of this dense plasma from the Sun. Consistent with the simulation, we find the azimuthal flux (Bz) to be entirely unbalanced giving the appearance that the flux rope has completely eroded on the anti-sunward side.

  16. CXB surface brightness fluctuations: A new frontier of ICM structure and outskirts studies of (un)resolved galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Kolodzig, A.; Gilfanov, M.; Hutsi, G.; Sunyaev, R.

    2017-10-01

    Surface brightness fluctuations of the cosmic X-ray background (CXB) carry unique information about the intracluster-medium (ICM) structure of galaxy clusters and groups up to the virial radius, which is inaccessible by conventional observations of selected nearby resolved clusters. We present results of our CXB fluctuation analysis of the ˜5ks-deep, ˜9deg^2-large Chandra survey XBOOTES. We find that our fluctuation signal of resolved clusters is dominated by nearby, high-luminosity sources. The shape of its power spectrum suggests that for the brightest cluster we are sensitive to the ICM structure up to ˜2× R_{500};(˜2 Mpc/h). The energy spectrum of the fluctuation signal from resolved and unresolved clusters follows a typical ICM spectrum, where redshifts and temperatures are consistent with expectations. It also demonstrates that fluctuations of our unresolved CXB are dominated by unresolved clusters with an average z˜0.4 and T˜1.3keV, suggesting an average L_{0.5-2keV}˜3×10^{42} erg/s and M_{500}˜4×10^{13} M_{Sun}/h. Comparison with modeling suggests, that our fluctuation signal can be described with the one-halo-term of clusters and that it might be sensitive to the presence of substructures. Discrepancies between model and measurement could be utilized to improve our understanding of the ICM structure in a statistical manner. We briefly discuss the potential of larger surveys (e.g. Stripe82, XXL, SRG/eRosita).

  17. Intracranial mucocele formation in the context of longstanding chronic rhinosinusitis: A clinicopathologic series and literature review.

    PubMed

    Lee, Jivianne T; Brunworth, Joseph; Garg, Rohit; Shibuya, Terry; Keschner, David B; Vanefsky, Marc; Lin, Tina; Choi, Soohoo; Stea, Richard; Thompson, Lester D R

    2013-01-01

    Chronic rhinosinusitis (CRS) can lead to serious long-term adverse sequelae, particularly if left untreated. The aim of this study was to describe a series of intracranial mucoceles (ICMs) that arose in the context of longstanding CRS combined with a review of the pertinent literature. A retrospective chart review was performed on all patients who developed ICMs in association with CRS between 2003 and 2012. The clinical presentation, radiographic features, surgical approach, intraoperative findings, and patient outcome were examined in the context of a literature review. Sixty-five cases of mucoceles were identified in patients with a history of CRS, of which seven (10.8%) were intracranial. Five patients were men and two were women with a mean age of 42.1 years. Headache, facial pressure, retro-orbital pain, and visual disturbances were the most common presenting symptoms. Five of the seven had previously undergone sinonasal surgery. Imaging studies showed ICMs involving the anterior cranial fossa, two of which were bilateral. Latency between onset of CRS and ICM detection ranged from 3 to 19 years (mean, 9.4 years). All patients underwent endoscopic transnasal drainage with three also requiring a concurrent, open neurosurgical procedure to access the intracranial component. There were no postoperative complications, and no recurrences were observed after a mean follow-up of 2.7 years. ICMs presenting as delayed complications of CRS are uncommon and constitute a surgical challenge. Open, external skull base approaches used in conjunction with transnasal endoscopic drainage procedures may be necessary to achieve successful management of this rare condition.

  18. Selection of appropriate isolation method based on morphology of blastocyst for efficient derivation of buffalo embryonic stem cells.

    PubMed

    Kumar, R; Ahlawat, S P S; Sharma, M; Verma, O P; Sai Kumar, G; Taru Sharma, G

    2014-03-01

    The efficiency of embryonic stem cell (ESC) derivation from all species except for rodents and primates is very low. There are however, multiple interests in obtaining pluripotent cells from these animals with main expectations in the fields of transgenesis, cloning, regenerative medicine and tissue engineering. Researches are being carried out in laboratories throughout the world to increase the efficiency of ESC isolation for their downstream applications. Thus, the present study was undertaken to study the effect of different isolation methods based on the morphology of blastocyst for efficient derivation of buffalo ESCs. Embryos were produced in vitro through the procedures of maturation, fertilization and culture. Hatched blastocysts or isolated inner cell masses (ICMs) were seeded on mitomycin-C inactivated buffalo fetal fibroblast monolayer for the development of ESC colonies. The ESCs were analyzed for alkaline phosphatase activity, expression of pluripotency markers and karyotypic stability. Primary ESC colonies were obtained after 2-5 days of seeding hatched blastocysts or isolated ICMs on mitomycin-C inactivated feeder layer. Mechanically isolated ICMs attached and formed primary cell colonies more efficiently than ICMs isolated enzymatically. For derivation of ESCs from poorly defined ICMs intact hatched blastocyst culture was the most successful method. Results of this study implied that although ESCs can be obtained using all three methods used in this study, efficiency varies depending upon the morphology of blastocyst and isolation method used. So, appropriate isolation method must be selected depending on the quality of blastocyst for efficient derivation of ESCs.

  19. ICME Identification from Solar Wind Ion Measurements

    NASA Astrophysics Data System (ADS)

    Shinde, A.; Russell, C. T.

    2002-12-01

    In the solar corona, coronal mass ejections are generally identified as an outward moving density enhancement. At 1AU their interplanetary counterparts are generally identified as a twisted and enhanced magnetic structures lasting of the order of a day. In an effort to better classify ICMEs we attempt herein to identify their start and stop time by their signatures in ion data obtained by Wind and ACE solar wind instruments. We search for periods in which the solar wind speed is linearly decreasing and the ion temperature is cool, with a thermal speed of less than 20 km/s. We required a simultaneous enhanced magnetic field but required no special signature of this enhancement. We compared these identifications with those made by D. Larson and R. P. Lepping and published on the web. Of 14 events, 4 were not identified as ICMEs by either Larson or Lepping. Similarly they identified many events that we did not, often because the ion temperature was above our classification threshold, but also because there was no clear speed decrease as the event crossed the spacecraft as would signal an expanding structure. The best events in Larson and Lepping's list had a rate of speed decrease that, if due to the expansion of the structure with distance from the sun moving at the average observed speed, would bring the structure from zero width to the present size in its calculated transit time. We conclude that cold ion temperatures and a declining solar wind velocity are frequent ICME signatures but are neither necessary nor sufficient for ICME identification.

  20. The educational environment for training in intensive care medicine: structures, processes, outcomes and challenges in the European region.

    PubMed

    2009-09-01

    To characterise the training environment in ICM across Europe, with a particular focus on factors influencing competency-based training. A cross-sectional web-based survey completed by the national coordinator for the CoBaTrICE (Competency-Based Training in Intensive Care medicinE) programme in each of 28 European countries. Since the last survey in 2004, 50% of EU countries have modified their training programmes. Seven have already adopted the CoBaTrICE programme since its completion in 2006. Multidisciplinary access to ICM training ('supraspeciality' model) is available in 57%, most commonly as a 2-year training programme. National examinations are held by 26 (93%); in 24 (86%) this is a mandatory exit exam; ten use the European Diploma of Intensive Care (EDIC). A formal national system for quality assurance of ICM training exists in only 18 (64%) countries. National standards for approving hospitals as training centres vary widely. In 29% there is no designated specialist with responsibility for training at the local level. Time for teaching was cited as inadequate by 93% of respondents; only 21% of trainers receive contractual recognition for their work. In 39% there is no protected teaching time for trainees. Half of countries surveyed have no formal system for workplace-based assessment of competence of trainees. There is considerable diversity in pedagogic structures, processes and quality assurance of ICM across Europe. National training organisations should develop common standards for quality assurance, health systems need to invest in educator support, and the EU should facilitate harmonisation by recognising ICM as a multidisciplinary speciality.

  1. An Experimental Study on Effectiveness of Integrated Curriculum Model (ICM) in Social Studies Education for Gifted and Talented Learners

    ERIC Educational Resources Information Center

    Atalay, Özlem; Kahveci, Nihat Gürel

    2015-01-01

    This experimental study examines the effects of Integrated Curriculum Model (ICM) on 4th grade elementary gifted and talented students' academic achievement, creativity and critical thinking (Control Group N= 10, Experimental Group N= 11) in the social studies classroom context, in Istanbul, Turkey. Integrated Curriculum Model was utilized to…

  2. An Observational Study of the Lecture Delivery Style Characteristics of High and Low Rated Lectures.

    ERIC Educational Resources Information Center

    Albanese, Mark A.; And Others

    This study identifies distinguishing differences in lecture delivery styles of lecturers rated by students in a large multi-instructor course: the Introduction to Clinical Medicine Course (ICM). The 20 lowest- and highest-rated lecturers of the 1982 and 1983 ICM courses served as the target group. Non-student raters observing the 1984 lectures…

  3. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.

    2017-10-01

    The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.

  5. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.

    PubMed

    Qian, Li; Berry, Emily C; Fu, Ji-dong; Ieda, Masaki; Srivastava, Deepak

    2013-06-01

    Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.

  6. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our proposed work will elucidate the poorly understood CR and anisotropic transport processes in the weakly collisional ICM and shed light on the long-standing mystery of AGN heating in CC clusters. Our investigation, which incorporates plasma effects into fluid models and provides physical foundation for cosmological simulations, will serve as an important bridge between physics on both micro and macro scales. This study will enable robust modeling of the radio-mode feedback of AGN in cosmological simulations of cluster and galaxy formation. It will also directly impact observational studies of clusters including NASA missions such as Chandra, XMM-Newton, Astro-H/Hitomi, Fermi, HST, and Planck.

  7. An Intraocular Camera for Retinal Prostheses: Restoring Sight to the Blind

    NASA Astrophysics Data System (ADS)

    Stiles, Noelle R. B.; McIntosh, Benjamin P.; Nasiatka, Patrick J.; Hauer, Michelle C.; Weiland, James D.; Humayun, Mark S.; Tanguay, Armand R., Jr.

    Implantation of an intraocular retinal prosthesis represents one possible approach to the restoration of sight in those with minimal light perception due to photoreceptor degenerating diseases such as retinitis pigmentosa and age-related macular degeneration. In such an intraocular retinal prosthesis, a microstimulator array attached to the retina is used to electrically stimulate still-viable retinal ganglion cells that transmit retinotopic image information to the visual cortex by means of the optic nerve, thereby creating an image percept. We describe herein an intraocular camera that is designed to be implanted in the crystalline lens sac and connected to the microstimulator array. Replacement of an extraocular (head-mounted) camera with the intraocular camera restores the natural coupling of head and eye motion associated with foveation, thereby enhancing visual acquisition, navigation, and mobility tasks. This research is in no small part inspired by the unique scientific style and research methodologies that many of us have learned from Prof. Richard K. Chang of Yale University, and is included herein as an example of the extent and breadth of his impact and legacy.

  8. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

    PubMed Central

    van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811

  9. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    PubMed

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  10. Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice.

    PubMed

    Lee, Sukchan; Ahmed, Touqeer; Lee, Soojung; Kim, Huisu; Choi, Sukwoo; Kim, Duk-Soo; Kim, Sang Jeong; Cho, Jeiwon; Shin, Hee-Sup

    2011-12-25

    The mediodorsal thalamic nucleus has been implicated in the control of memory processes. However, the underlying neural mechanism remains unclear. Here we provide evidence for bidirectional modulation of fear extinction by the mediodorsal thalamic nucleus. Mice with a knockout or mediodorsal thalamic nucleus-specific knockdown of phospholipase C β4 exhibited impaired fear extinction. Mutant mediodorsal thalamic nucleus neurons in slices showed enhanced burst firing accompanied by increased T-type Ca(2+) currents; blocking of T channels in vivo rescued the fear extinction. Tetrode recordings in freely moving mice revealed that, during extinction, the single-spike (tonic) frequency of mediodorsal thalamic nucleus neurons increased in wild-type mice, but was static in mutant mice. Furthermore, tonic-evoking microstimulations of the mediodorsal thalamic nucleus, contemporaneous with the extinction tones, rescued fear extinction in mutant mice and facilitated it in wild-type mice. In contrast, burst-evoking microstimulation suppressed extinction in wild-type mice, mimicking the mutation. These results suggest that the firing mode of the mediodorsal thalamic nucleus is critical for the modulation of fear extinction.

  11. Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Meng, X.; Mannucci, A. J.; Mlynczak, M. G.; Hunt, L. A.; Lu, G.

    2017-09-01

    The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16-19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide cooling emission powers and fluxes are estimated from TIMED/SABER measurements. Assimilative mapping of ionospheric electrodynamics (AMIE) estimations of hemispheric power and Joule heating are presented, based on data from global magnetometers, the AMPERE magnetic field data, SSUSI auroral images, and the SuperDARN radar network. Modeled Joule heating and auroral heating of the IT system are mostly controlled by external driving in the March 2013 and 2015 storms, while NO cooling persists into the storm recovery phase. The total heating in the model is about 1000 GW to 3000 GW. Additionally, we intercompare contributions in selected energy channels for five coronal mass ejection-type storms modeled with GITM. Modeled auroral heating shows reasonable agreement with AMIE hemispheric power and is higher than other observational proxies. Joule heating and infrared cooling are likely underestimated in GITM. We discuss challenges and discrepancies in estimating and global modeling of the IT energy partitioning, especially Joule heating, during geomagnetic storms.

  12. A Longitudinal Assessment of Gifted Students' Learning Using the Integrated Curriculum Model (Icm): Impacts and Perceptions of the William and Mary Language Arts and Science Curriculum

    ERIC Educational Resources Information Center

    Feng, Annie Xuemei; Van Tassel-Baska, Joyce; Quek, Chwee; Bai, Wenyu; O'Neill, Barbara

    2005-01-01

    This study examines the effects over time of implementing the William and Mary language arts and science curriculum for gifted learners designed around the Integrated Curriculum Model (ICM) in one suburban school district. It also analyzes stakeholders' perceptions of the effectiveness of the curriculum. Findings suggest that gifted student…

  13. Cardiomyogenic Differentiation of Human Dental Follicle-derived Stem Cells by Suberoylanilide Hydroxamic Acid and Their In Vivo Homing Property.

    PubMed

    Sung, Iel-Yong; Son, Han-Na; Ullah, Imran; Bharti, Dinesh; Park, Ju-Mi; Cho, Yeong-Cheol; Byun, June-Ho; Kang, Young-Hoon; Sung, Su-Jin; Kim, Jong-Woo; Rho, Gyu-Jin; Park, Bong-Wook

    2016-01-01

    The purpose of the present study was to investigate the in vitro cardiomyogenic differentiation potential of human dental follicle-derived stem cells (DFCs) under the influence of suberoylanilide hydroxamic acid (SAHA), a member of the histone deacetylase inhibitor family, and analyze the in vivo homing capacity of induced cardiomyocytes (iCMs) when transplanted systemically. DFCs from extracted wisdom teeth showed mesenchymal stem cell (MSC) characteristics such as plate adherent growing, expression of MSC markers (CD44, CD90, and CD105), and mesenchymal lineage-specific differentiation potential. Adding SAHA to the culture medium induced the successful in vitro differentiation of DFCs into cardiomyocytes. These iCMs expressed cardiomyogenic markers, including alpha-smooth muscle actin (α-SMA), cardiac muscle troponin T (TNNT2), Desmin, and cardiac muscle alpha actin (ACTC1) , at both the mRNA and protein level. For the assessment of homing capacity, PKH26 labeled iCMs were intraperitoneally injected (1×10 6 cells in 100 µL of PBS) into the experimental mice, and the ratios of PKH26 positive cells to the total number of injected cells, in multiple organs were determined. The calculated homing ratios, 14 days after systemic cell transplantation, were 5.6 ± 1.0%, 3.6 ± 1.1%, and 11.6 ± 2.7% in heart, liver, and kidney respectively. There was no difference in the serum levels of interleukin-2 and interleukin-10 at 14 days after transplantation, between the experimental (iCM injected) and control (no injection or PBS injection) groups. These results demonstrate that DFCs can be an excellent source for cardiomyocyte differentiation and regeneration. Moreover, the iCMs can be delivered into heart muscle via systemic administration without eliciting inflammatory or immune response. This can serve as the pilot study for further investigations into the in vitro cardiomyogenic differentiation potential of DFCs under the influence of SAHA and the in vivo homing capacity of the iCMs into the heart muscle, when injected systemically.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel

    Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levelsmore » according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.« less

  15. The Relationship Between Brightest Cluster Galaxy Star Formation and the Intracluster Medium in CLASH

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Larson, Rebecca; Donahue, Megan; Moustakas, John

    2017-09-01

    We study the nature of feedback mechanisms in the 11 CLASH brightest cluster galaxies (BCGs) that exhibit extended ultraviolet and nebular line emission features. We estimate star formation rates (SFRs), dust masses, and starburst durations using a Bayesian photometry-fitting technique that accounts for both stellar and dust emission from the UV through far-IR. By comparing these quantities to intracluster medium (ICM) cooling times and freefall times derived from X-ray observations and lensing estimates of the cluster mass distribution, we discover a tight relationship between the BCG SFR and the ICM cooling time to freefall time ratio, {t}{cool}/{t}{ff}, with an upper limit on the intrinsic scatter of 0.15 dex. Furthermore, starburst durations may correlate with ICM cooling times at a radius of 0.025 {R}500, and the two quantities converge upon reaching the gigayear regime. Our results provide a direct observational link between the thermodynamical state of the ICM and the intensity and duration of BCG star formation activity, and appear consistent with a scenario where active galactic nuclei induce condensation of thermally unstable ICM overdensities that fuel long-duration (>1 Gyr) BCG starbursts. This scenario can explain (a) how gas with a low cooling time is depleted without causing a cooling flow and (b) the scaling relationship between SFR and {t}{cool}/{t}{ff}. We also find that the scaling relation between SFR and dust mass in BCGs with SFRs < 100 {M}⊙ yr-1 is similar to that in star-forming field galaxies; BCGs with large (> 100 {M}⊙ yr-1) SFRs have dust masses comparable to extreme starbursts.

  16. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility.

    PubMed

    Walker, J; Fox, A J; Edwards-Jones, V; Gordon, D B

    2002-02-01

    Intact cell mass spectrometry (ICMS) rapidly analyses the surface composition of microorganisms providing rapid, discriminatory fingerprints for identification and subtyping of important nosocomial pathogens such as methicillin resistant Staphylocccus aureus (MRSA). In this study, ICMS using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF/MS) was assessed for the identification and subtyping of MRSA. An intra- and inter-laboratory reproducibility study was carried out and the effects of culture media (an important source of variation for ICMS) were also studied. Several media used for the cultural identification of MRSA were examined using a panel of well-characterised staphylococcal isolates (n=26). Six MRSA isolates were analysed over a 1-month period for intra-laboratory reproducibility on the same instrument and three different culture media. Spectra were consistent for each isolate between the four experiments on the same culture medium. Individual isolates produced different spectral profiles on different culture media. Spectra from organisms grown on Columbia blood agar contained more peaks (approximately 120) compared to Columbia agar (approximately 50) and methicillin mannitol salt agar (approximately 25). All 26 staphylococcal isolates were subjected to an inter-laboratory study on two MALDI instruments. For each isolate, the overall spectral profile was the same for each of the two instruments but the baseline threshold values was adjusted due to instrument differences in detector sensitivities. Differences between certain regions of the spectra reproducibly identified isolates belonging to the two major MRSA strains (EMRSA phage group 15 and 16). These results demonstrate ICMS with appropriate media selection is a rapid and reproducible technique for identification and discrimination of MRSA.

  17. Optimization of Direct Fibroblast Reprogramming to Cardiomyocytes Using Calcium Activity as a Functional Measure of Success

    PubMed Central

    Addis, Russell C.; Ifkovits, Jamie L.; Pinto, Filipa; Kellam, Lori D.; Esteso, Paul; Rentschler, Stacey; Christoforou, Nicolas; Epstein, Jonathan A.; Gearhart, John D.

    2013-01-01

    Direct conversion of fibroblasts to induced cardiomyocytes (iCMs) has great potential for regenerative medicine. Recent publications have reported significant progress, but the evaluation of reprogramming has relied upon non-functional measures such as flow cytometry for cardiomyocyte markers or GFP expression driven by a cardiomyocyte-specific promoter. The issue is one of practicality: the most stringent measures - electrophysiology to detect cell excitation and the presence of spontaneously contracting myocytes - are not readily quantifiable in the large numbers of cells screened in reprogramming experiments. However, excitation and contraction are linked by a third functional characteristic of cardiomyocytes: the rhythmic oscillation of intracellular calcium levels. We set out to optimize direct conversion of fibroblasts to iCMs with a quantifiable calcium reporter to rapidly assess functional transdifferentiation. We constructed a reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter. Using calcium activity as our primary outcome measure, we compared several published combinations of transcription factors along with novel combinations in mouse embryonic fibroblasts. The most effective combination consisted of Hand2, Nkx2.5, Gata4, Mef2c, and Tbx5 (HNGMT). This combination is >50-fold more efficient than GMT alone and produces iCMs with cardiomyocyte marker expression, robust calcium oscillation, and spontaneous beating that persists for weeks following inactivation of reprogramming factors. HNGMT is also significantly more effective than previously published factor combinations for the transdifferentiation of adult mouse cardiac fibroblasts to iCMs. Quantification of calcium function is a convenient and effective means for the identification and evaluation of cardiomyocytes generated by direct reprogramming. Using this stringent outcome measure, we conclude that HNGMT produces iCMs more efficiently than previously published methods. PMID:23591016

  18. KELVIN-HELMHOLTZ INSTABILITIES AT THE SLOSHING COLD FRONTS IN THE VIRGO CLUSTER AS A MEASURE FOR THE EFFECTIVE INTRACLUSTER MEDIUM VISCOSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roediger, E.; Kraft, R. P.; Forman, W. R.

    2013-02-10

    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusionsmore » about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities {approx}> 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.« less

  19. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  20. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  1. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  2. Patients with breakthrough reactions to iodinated contrast media have low incidence of positive skin tests.

    PubMed

    Berti, A; Della-Torre, E; Yacoub, Mr; Tombetti, E; Canti, V; Sabbadini, M G; Colombo, G

    2016-07-01

    The term "breakthrough reactions" designates repeated hypersensitivity reactions to iodinated contrast media (ICM) despite premedication with glucocorticoids and antihistamines. We aimed to retrospectively evaluate the rate of positive skin test (STs) in our cohort of patients with previous breakthrough reactions to different ICMs. A series of 35 patients, who experienced at least one breakthrough reaction to ICM and who underwent STs within 6 months from the reaction were studied, and results were compared to a control group of patients with a first hypersensitivity reaction occurred without premedication. Skin prick tests (SPT), intradermal tests (IDT) and patch tests (PT) at different dilutions, with a set of three to four ICM were performed. Of the 35 patients with prior breakthrough reactions, 57% had an immediate reaction (IR) and 43% had a non-immediate reaction (NIR). Patients who experienced the first hypersensitivity IR or NIR, later had one or more breakthrough IR or NIR, respectively. Overall, 29% (10/35) of patients with prior breakthrough reactions resulted positive to STs compared to 57% (16/28) of the control group (p < 0.05). No significant difference in allergy history, age, sex, other clinical / demographic features nor chronic use of ACE-inhibitor, beta-blockers or NSAIDs was observed. This preliminary finding suggests that patients with prior breakthrough reactions have significantly lower immunologically proven ICM reactions (positive STs) if compared to non-breakthrough patients. According to that, a considerable number of breakthrough reactions seems to be non-allergic hypersensitivity reactions or reactions which could be mostly prevented by a proper, well-timed skin testing. Larger prospective studies are needed to confirm these results, with a more careful analysis of patients' risk factors, a laboratory assessment that includes an in vitro allergy diagnostics, and hopefully a drug provocation test for selected cases.

  3. Taxanes as a risk factor for acute adverse reactions to iodinated contrast media in cancer patients.

    PubMed

    Farolfi, Alberto; Della Luna, Corradina; Ragazzini, Angela; Carretta, Elisa; Gentili, Nicola; Casadei, Carla; Aquilina, Michele; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana; Gavelli, Giampaolo

    2014-08-01

    The impact of cytotoxic agents on the risk of acute allergy-like adverse reactions (ARs) to intravenous iodinated contrast media (ICM) injections is unknown. We retrospectively reviewed 13,565 computed tomography (CT) scans performed in a consecutive cohort of cancer patients from January 1, 2010 to December 31, 2012. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. The following matched comparisons were made: tax code, gender, primary tumor, antineoplastic therapy, and date of last cycle. Concomitant antineoplastic treatment was classified into five groups: platinum, taxane, platinum plus taxane, other, and no treatment group (no therapy had been administered in the previous 24 months). Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) to evaluate the risk of acute ICM-related ARs. Of 10,472 contrast-enhanced CT scans, 97 (0.93%; 95% CI: 0.74-1.11) ICM-related ARs were reported, 11 of which (0.1%) were severe, including one fatality. The overall incidence was significantly higher in patients aged <65 years (p = .0062) and in the platinum plus taxane and taxane groups (p = .007), whereas no correlation was found with gender, number of previous CT scans, site of disease, or treatment setting. Multivariate analysis confirmed an increased risk for patients aged <65 years (OR: 1.73; 95% CI: 1.14-2.63) and for the taxane group (in comparison with the no treatment group; OR: 2.06; 95% CI: 1.02-4.16). Among cancer patients, concomitant treatment with taxanes and younger age would seem to be risk factors for ICM-related ARs. ©AlphaMed Press.

  4. Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2010-01-01

    The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.

  5. Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J.; Frahm, R. A.; Lundin, R.; Dejong, W.; Ertl, C.; Venable, A.; Wilkinson, C.; Fraenz, M.; Nemec, F.; Connerney, J. E. P.; Espley, J. R.; Larson, D.; Winningham, J. D.; Plaut, J.; Mahaffy, P. R.

    2017-10-01

    In a two-week period between February and March of 2015, a series of interplanetary coronal mass ejections (ICMEs) and solar energetic particle (SEP) events encountered Mars. The interactions were observed by several spacecraft, including Mars Express (MEX), Mars Atmosphere and Volatile Evolution Mission (MAVEN), and Mars Odyssey (MO). The ICME disturbances were characterized by an increase in ion speed, plasma temperature, magnetic field magnitude, and energetic electron flux. Furthermore, increased solar wind density and speeds, as well as unusually high local electron densities and high flow velocities were detected on the nightside at high altitudes during the March 8 event. These effects are thought to be due to the transport of ionospheric plasma away from Mars. In the deep nightside, the peak ionospheric electron density at the periapsis of MEX shows a substantial increase, reaching number densities about 2.7 × 104 cm-3 during the second ICME in the deep nightside. This corresponds to an increase in the MO High-Energy Neutron Detector flux suggesting an increase in the ionization of the neutral atmosphere due to the high intensity of charged particles. Measurements of the SEP fluxs show a substantial enhancement before the shock of a fourth ICME causing impact ionization and absorption of the surface echo intensity which drops to the noise levels, below 10-15 V2m-2 Hz-1 from values of about 2 × 10-14 V2m-2 Hz-1. Moreover, the peak ionospheric density exhibits a discrete enhancement over a period of about 30 h around the same location, which may be due to impact ionization. Ion escape rates at this time are estimated to be in the order of 1025 to 1026 s-1.

  6. Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2010-07-01

    The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. The energetics of relativistic jets in active galactic nuclei with various kinetic powers

    NASA Astrophysics Data System (ADS)

    Musoke, Gibwa Rebecca; Young, Andrew; Molnar, Sandor; Birkinshaw, Mark

    2018-01-01

    Numerical simulations are an important tool in understanding the physical processes behind relativistic jets in active galactic nuclei. In such simulations different combinations of intrinsic jet parameters can be used to obtain the same jet kinetic powers. We present a numerical investigation of the effects of varying the jet power on the dynamic and energetic characteristics of the jets for two kinetic power regimes; in the first regime we change the jet density whilst maintaining a fixed velocity, in the second the jet density is held constant while the velocity is varied. We conduct 2D axisymmetric hydrodynamic simulations of bipolar jets propagating through an isothermal cluster atmosphere using the FLASH MHD code in pure hydrodynamics mode. The jets are simulated with kinetic powers ranging between 1045 and 1046 erg/s and internal Mach numbers ranging from 5.6 to 21.5.As the jets begin to propagate into the intracluster medium (ICM), the injected jet energy is converted into the thermal, kinetic and gravitational potential energy components of the jet cocoon and ICM. We explore the temporal evolution of the partitioning of the injected jet energy into the cocoon and the ICM and quantify the importance of entrainment process on the energy partitioning. We investigate the fraction of injected energy transferred to the thermal energy component of the jet-ICM system in the context of heating the cluster environments, noting that the jets simulated display peak thermalisation efficiencies of least 65% and a marked dependence on the jet density. We compare the efficiencies of the energy partitioning between the cocoon and ICM for the two kinetic power regimes and discuss the resulting efficiency-power scaling relations of each regime.

  8. A Sun-to-Earth Analysis of Magnetic Helicity of the 2013 March 17–18 Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Pal, Sanchita; Gopalswamy, Nat; Nandy, Dibyendu; Akiyama, Sachiko; Yashiro, Seiji; Makela, Pertti; Xie, Hong

    2017-12-01

    We compare the magnetic helicity in the 2013 March 17–18 interplanetary coronal mass ejection (ICME) flux rope at 1 au and in its solar counterpart. The progenitor coronal mass ejection (CME) erupted on 2013 March 15 from NOAA active region 11692 and is associated with an M1.1 flare. We derive the source region reconnection flux using the post-eruption arcade (PEA) method that uses the photospheric magnetogram and the area under the PEA. The geometrical properties of the near-Sun flux rope is obtained by forward-modeling of white-light CME observations. Combining the geometrical properties and the reconnection flux, we extract the magnetic properties of the CME flux rope. We derive the magnetic helicity of the flux rope using its magnetic and geometric properties obtained near the Sun and at 1 au. We use a constant-α force-free cylindrical flux rope model fit to the in situ observations in order to derive the magnetic and geometric information of the 1 au ICME. We find a good correspondence in both amplitude and sign of the helicity between the ICME and the CME, assuming a semi-circular (half torus) ICME flux rope with a length of π au. We find that about 83% of the total flux rope helicity at 1 au is injected by the magnetic reconnection in the low corona. We discuss the effect of assuming flux rope length in the derived value of the magnetic helicity. This study connecting the helicity of magnetic flux ropes through the Sun–Earth system has important implications for the origin of helicity in the interplanetary medium and the topology of ICME flux ropes at 1 au and hence their space weather consequences.

  9. Taxanes as a Risk Factor for Acute Adverse Reactions to Iodinated Contrast Media in Cancer Patients

    PubMed Central

    Farolfi, Alberto; Della Luna, Corradina; Ragazzini, Angela; Carretta, Elisa; Gentili, Nicola; Casadei, Carla; Aquilina, Michele; Barone, Domenico; Minguzzi, Martina; Amadori, Dino; Nanni, Oriana

    2014-01-01

    Background. The impact of cytotoxic agents on the risk of acute allergy-like adverse reactions (ARs) to intravenous iodinated contrast media (ICM) injections is unknown. Methods. We retrospectively reviewed 13,565 computed tomography (CT) scans performed in a consecutive cohort of cancer patients from January 1, 2010 to December 31, 2012. Episodes of acute ICM-related ARs were reported to the pharmacovigilance officer. The following matched comparisons were made: tax code, gender, primary tumor, antineoplastic therapy, and date of last cycle. Concomitant antineoplastic treatment was classified into five groups: platinum, taxane, platinum plus taxane, other, and no treatment group (no therapy had been administered in the previous 24 months). Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) to evaluate the risk of acute ICM-related ARs. Results. Of 10,472 contrast-enhanced CT scans, 97 (0.93%; 95% CI: 0.74–1.11) ICM-related ARs were reported, 11 of which (0.1%) were severe, including one fatality. The overall incidence was significantly higher in patients aged <65 years (p = .0062) and in the platinum plus taxane and taxane groups (p = .007), whereas no correlation was found with gender, number of previous CT scans, site of disease, or treatment setting. Multivariate analysis confirmed an increased risk for patients aged <65 years (OR: 1.73; 95% CI: 1.14–2.63) and for the taxane group (in comparison with the no treatment group; OR: 2.06; 95% CI: 1.02–4.16). Conclusion. Among cancer patients, concomitant treatment with taxanes and younger age would seem to be risk factors for ICM-related ARs. PMID:25063226

  10. Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography.

    PubMed

    Scalise, Filippo; Novelli, Eugenio; Auguadro, Carla; Casali, Valentina; Manfredi, Mariella; Zannoli, Romano

    2015-01-01

    Carbon dioxide (CO2) has been validated as a contrast agent in a large series of studies. A particular advantages of CO2 over iodinated contrast medium (ICM) is the absence of nephrotoxicity and allergic reactions. One of the limitations of CO2 angiography is the difficulty of CO2 manual injection due to its compressibility. The manual gas injection does not permit optimal control of the gas output. Development of an automated CO2 injector has overcome these problems. This study compares the feasibility, safety, and diagnostic accuracy of automated CO2 digital subtraction angiography (DSA) in comparison with ICM-DSA in the evaluation of critical limb ischemic (CLI) patients. We performed DSA with both CO2 and ICM on 40 consecutive CLI patients and directly compared the two techniques. Sixteen females and 24 males participated in the study (mean age, 71.7 years). We assessed the diagnostic accuracy of CO2 in identifying arterial stenosis in the lower limb, with ICM-DSA used as the gold standard. The overall diagnostic accuracy of CO2-DSA was 96.9% (sensitivity, 99.0%; specificity, 96.1%; positive predictive value, 91.1%; negative predictive value, 99.6%). Tolerable minor symptoms occurred in 3 patients. No allergic reactions or significant decline in renal function were observed in patients receiving the CO2 injection. Carbon dioxide DSA is a valuable and safe alternative to traditional ICM-DSA for evaluating CLI patients. This modality should be considered as the standard choice for CLI patients undergoing angiographic evaluation who are known to have renal insufficiency or contrast allergy.

  11. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang

    2016-08-20

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, whichmore » is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.« less

  12. A cohort study of cardiac resynchronization therapy in patients with chronic Chagas cardiomyopathy.

    PubMed

    Martinelli Filho, Martino; de Lima Peixoto, Giselle; de Siqueira, Sérgio Freitas; Martins, Sérgio Augusto Mezzalira; Nishioka, Silvana Angelina D'ório; Pedrosa, Anísio Alexandre Andrade; Teixeira, Ricardo Alkmim; Dos Santos, Johnny Xavier; Costa, Roberto; Kalil Filho, Roberto; Ramires, José Antônio Franchini

    2018-03-02

    Cardiac resynchronization therapy (CRT) is an established procedure for patients with heart failure. However, trials evaluating its efficacy did not include patients with chronic Chagas cardiomyopathy (CCC). We aimed to assess the role of CRT in a cohort of patients with CCC. This retrospective study compared the outcomes of CCC patients who underwent CRT with those of dilated (DCM) and ischaemic cardiomyopathies (ICM). The primary endpoint was all-cause mortality and the secondary endpoints were the rate of non-advanced New York Heart Association (NYHA) class 12 months after CRT and echocardiographic changes evaluated at least 6 months after CRT. There were 115 patients in the CCC group, 177 with DCM, and 134 with ICM. The annual mortality rates were 25.4%, 10.4%, and 11.3%, respectively (P < 0.001). Multivariate analysis adjusted for potential confounders showed that the CCC group had a two-fold [hazard ratio 2.34 (1.47-3.71), P < 0.001] higher risk of death compared to the DCM group. The rate of non-advanced NYHA class 12 months after CRT was significantly higher in non-CCC groups than in the CCC group (DCM 74.0% vs. ICM 73.9% vs. 56.5%, P < 0.001). Chronic Chagas cardiomyopathy and ICM patients had no improvement in the echocardiographic evaluation, but patients in the DCM group had an increase in left ventricular ejection fraction and a decrease in left ventricular end-diastolic diameter. This study showed that CCC patients submitted to CRT have worse prognosis compared to patients with DCM and ICM who undergo CRT. Studies comparing CCC patients with and without CRT are warranted.

  13. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael

    2013-01-01

    The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.

  14. AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Sijacki, Debora

    2017-12-01

    In many observed galaxy clusters, jets launched by the accretion process on to supermassive black holes, inflate large-scale cavities filled with energetic, relativistic plasma. This process is thought to be responsible for regulating cooling losses, thus moderating the inflow of gas on to the central galaxy, quenching further star formation and maintaining the galaxy in a red and dead state. In this paper, we implement a new jet feedback scheme into the moving mesh-code AREPO, contrast different jet injection techniques and demonstrate the validity of our implementation by comparing against simple analytical models. We find that jets can significantly affect the intracluster medium (ICM), offset the overcooling through a number of heating mechanisms, as well as drive turbulence, albeit within the jet lobes only. Jet-driven turbulence is, however, a largely ineffective heating source and is unlikely to dominate the ICM heating budget even if the jet lobes efficiently fill the cooling region, as it contains at most only a few per cent of the total injected energy. We instead show that the ICM gas motions, generated by orbiting substructures, while inefficient at heating the ICM, drive large-scale turbulence and when combined with jet feedback, result in line-of-sight velocities and velocity dispersions consistent with the Hitomi observations of the Perseus cluster.

  15. Transients which are born on the way from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Nikolaeva, Nadezhda; Lodkina, Irina; Yermolaev, Michael

    2016-07-01

    As well known only disturbed types of solar wind (SW) streams can contain the IMF component perpendicular to the ecliptic plane (in particular the southward IMF component) and be geoeffective. Such disturbed types are the following SW streams: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath - compression region before ICME and corotating interaction region (CIR) - compression region before high-speed stream (HSS) of solar wind. Role of solar transients, CME and ICME, in generation of geomagnetic disturbances and space weather prediction is intensively studied by many researchers. However transients Sheath and CIR which are born on the way from the Sun to Earth due to corresponding high speed piston (fast ICME for Sheath and HSS from coronal hole for CIR), are investigated less intensively, and their contribution to geoefficiency are underestimated. For example, on 19 December, 1980 the southward component of IMF Bz increased up to 30 nT and the compressed region Sheath before MC induced the strong magnetic storm with Dst ~ -250 nT. We present and discuss statistical data on Sheath and CIR geoeffectiveness. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences.

  16. Blastocoele expansion degree predicts live birth after single blastocyst transfer for fresh and vitrified/warmed single blastocyst transfer cycles.

    PubMed

    Du, Qing-Yun; Wang, En-Yin; Huang, Yan; Guo, Xiao-Yi; Xiong, Yu-Jing; Yu, Yi-Ping; Yao, Gui-Dong; Shi, Sen-Lin; Sun, Ying-Pu

    2016-04-01

    To evaluate the independent effects of the degree of blastocoele expansion and re-expansion and the inner cell mass (ICM) and trophectoderm (TE) grades on predicting live birth after fresh and vitrified/warmed single blastocyst transfer. Retrospective study. Reproductive medical center. Women undergoing 844 fresh and 370 vitrified/warmed single blastocyst transfer cycles. None. Live-birth rate correlated with blastocyst morphology parameters by logistic regression analysis and Spearman correlations analysis. The degree of blastocoele expansion and re-expansion was the only blastocyst morphology parameter that exhibited a significant ability to predict live birth in both fresh and vitrified/warmed single blastocyst transfer cycles respectively by multivariate logistic regression and Spearman correlations analysis. Although the ICM grade was significantly related to live birth in fresh cycles according to the univariate model, its effect was not maintained in the multivariate logistic analysis. In vitrified/warmed cycles, neither ICM nor TE grade was correlated with live birth by logistic regression analysis. This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade. Copyright © 2016. Published by Elsevier Inc.

  17. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    PubMed Central

    Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries (Rubus geoides), strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis), and currants (Ribes magellanicum) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food. PMID:28553436

  18. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. © 2014 The Authors.

  19. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  20. Aberrant Epicardial Adipose Tissue Extracellular Matrix Remodeling in Patients with Severe Ischemic Cardiomyopathy: Insight from Comparative Quantitative Proteomics.

    PubMed

    Jiang, Ding-Sheng; Zeng, Hao-Long; Li, Rui; Huo, Bo; Su, Yun-Shu; Fang, Jing; Yang, Qing; Liu, Li-Gang; Hu, Min; Cheng, Cai; Zhu, Xue-Hai; Yi, Xin; Wei, Xiang

    2017-03-03

    There is ample evidence indicating that epicardial adipose tissue (EAT) volume and thickness is positively associated with coronary artery disease (CAD). However, the exact pathological changes in the human EAT after myocardial ischemia remains largely unclear. In the current study, we applied a comparative quantitative proteomics to elucidate the altered biological processes in the EAT of ischemic cardiomyopathy (ICM) patients. A total of 1649 proteins were successfully quantified in our study, among which 165 proteins were significantly changed (ratio <0.8 or >1.2 fold and p < 0.05 in both repetitions) in EAT of ICM individuals. Gene ontology (GO) enrichment analysis revealed that cardiac structure and cellular metabolism were over-represented among these regulated proteins. The hypertrophic cardiomyopathy, adrenergic signaling in cardiomyocytes, extracellular matrix (ECM)-receptor interaction, phagosome, Glycolysis/Gluconeogenesis, and PPAR signaling pathway were highlighted by the KEGG PATHWAY analysis. More importantly, we found that the proteins responsible for extracellular matrix organization were dramatically increased in EAT of ICM patients. In addition, the picrosirius red (PSR) staining results showed that the collagen fiber content was prominently increased, which indicated the EAT of ICM individuals underwent extracellular matrix remodeling and ERK1/2 activation maybe responsible for these pathological changes partially.

Top