Sample records for microstructural characterization revealed

  1. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  2. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    PubMed

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  3. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    PubMed Central

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-01-01

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919

  4. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  5. Microstructural characterization of Ti-6Al-4V metal chips by focused ion beam (FIB) and transmission electron microscopy (TEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Judy; Dong, Lei; Howe, Jane Y

    2011-01-01

    The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less

  6. Spatial variations in a.c. susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  7. Spatial variations in ac susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  8. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    NASA Astrophysics Data System (ADS)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  9. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  10. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.

    2018-06-01

    The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.

  11. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  12. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    NASA Astrophysics Data System (ADS)

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  13. BiVO4 microstructures with various morphologies: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Wu, Min; Jing, Qifeng; Feng, Xinyan; Chen, Limiao

    2018-01-01

    Bismuth vanadate (BiVO4) microstructures with dumbbell, rod, ellipsoid, sphere, and cake-like morphologies have been successfully fabricated by using a surfactant-free hydrothermal method, in which the morphology of the BiVO4 microstructures can be tuned by simply varying the molar ratio of Bi(NO)3·5H2O to NaVO3 in the starting materials. Based on a series of contrast experiments, the probable formation mechanism of the BiVO4 microstructures with multiple shapes have been proposed. The photocatalytic performances of the as-prepared BiVO4 microstructures have been evaluated by studying the degradation of Rhodamine B solutions under visible light irradiation. The results reveal that the cake-like BiVO4 microstructures exhibit the higher photocatalytic activity than other BiVO4 microstructures due to its high surface area and unique morphology.

  14. Processing of MnBi bulk magnets with enhanced energy product

    DOE PAGES

    Poudyal, Narayan; Liu, Xubo; Wang, Wei; ...

    2016-02-23

    Here, we report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH) max of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH) max value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

  15. Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao

    2018-06-01

    The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

  16. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  17. Phase transformations in steels: Processing, microstructure, and performance

    DOE PAGES

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  18. Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel

    NASA Astrophysics Data System (ADS)

    Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng

    2018-03-01

    In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.

  19. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less

  20. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    USDA-ARS?s Scientific Manuscript database

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  1. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  2. Nanostructure formation during accumulative roll bonding of commercial purity titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir

    2016-12-15

    In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less

  3. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  4. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  5. Non-Destructive Characterization of UO2+x Nuclear Fuels

    DOE PAGES

    Pokharel, Reeju; Brown, Donald W.; Clausen, Bjørn; ...

    2017-10-27

    This article describes the effect of fabrication conditions on as-sintered microstructures of various stoichiometric ratios of uranium dioxide, UO 2+x, with the aim of enhancing the understanding of fabrication process and developing and validating a predictive microstructurebased model for fuel performance. We demonstrate the ability of novel, non-destructive methods such as near-field high-energy X-ray diffraction microscopy (nf-HEDM) and micro-computed tomography (μ-CT) to probe bulk samples of high-Z materials by non-destructively characterizing three samples: UO 2.00, UO 2.11, and UO 2.16, which were sintered at 1450°C for 4 hours. The measured 3D microstructures revealed that grain size and porosity were influencedmore » by deviation from stoichiometry.« less

  6. Microstructural characterization and simulation of damage for geared sheet components

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Isik, K.; Gutknecht, F.; Sieczkarek, P.; Ewert, J.; Tekkaya, A. E.; Clausmeyer, T.; Nürnberger, F.

    2017-09-01

    The evolution of damage in geared components manufactured from steel sheets was investigated, to analyse the influence of damage caused by the sheet-bulk-metal forming. Due to the inhomogeneous and multi-axial deformation in the investigated parts, different aspects such as the location-dependent shape and size of voids are analysed by means of various microscopic methods. In particular, a method to characterize the state of damage evolution, i. e. void nucleation, growth and coalescence using scanning electron microscopy (SEM) is applied. The investigations reveal a strong dependence of the void area fraction, shape of voids and thus damage evolution on the loading mode. The microstructural analysis is complemented with FEM simulations using material models which consider the characteristics of the void evolution.

  7. Orientation Dependence of the Deformation Microstructure of Ta-4%W after Cold-Rolling

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ma, G. Q.; Godfrey, A.; Shu, D. Y.; Chen, Q.; Wu, G. L.

    2017-07-01

    One of the common features of deformed face-centered cubic metals with medium to high stacking fault energy is the formation of geometrically necessary dislocation boundaries. The dislocation boundary arrangements in refractory metals with body-centered cubic crystal structure are, however, less well known. To address this issue a Ta-4%W alloy was cold rolled up to 70% in thickness in the present work. The resulting deformation microstructures were characterized by electron back-scattering diffraction and the dislocation boundary arrangements in each grain were revealed using sample-frame misorientation axis maps calculated using an in-house code. The maps were used to analyze the slip pattern of individual grains after rolling, revealing an orientation dependence of the slip pattern.

  8. Microstructure, microbial profile and quality characteristics of high-pressure-treated chicken nuggets.

    PubMed

    Devatkal, Suresh; Anurag, Rahul; Jaganath, Bindu; Rao, Srinivasa

    2015-10-01

    High-pressure processing (300 MPa for 5 min) as a non-thermal post-processing intervention was employed to improve the shelf life and qualities of cooked refrigerated chicken nuggets. Pomegranate peel extract (1%) was also used as a source of natural antioxidant and antimicrobial in chicken nuggets. Microstructure, microbial profile, instrumental colour, texture profile and lipid oxidation were evaluated. High-pressure treatment and pomegranate peel extract did not influence significantly the colour and textural properties of cooked chicken nuggets. Thiobarbituric acid reactive substance values significantly (p < 0.05) increased in pressure-treated nuggets. Microstructural studies revealed shrinkage in the structure and loosening of the dense network of meat emulsion due to high-pressure treatment. Pressure treatment resulted in a reduction of 2-3.0 log10 cfu/g in total plate count and Enterobacteriaceae count. Molecular characterization studies revealed that Enterobacter amnigenus and Enterobacter sp. in control and Bacillus licheniformis, Enterococcus gallinarum and Acinetobacter baumannii in high-pressure-treated chicken nuggets were the major spoilage bacteria. © The Author(s) 2014.

  9. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone nearmore » the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.« less

  10. Connectivity Measures in EEG Microstructural Sleep Elements.

    PubMed

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.

  11. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease. PMID:26924980

  12. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuanqiang, Zhou; Xiangxiang, Gong; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure andmore » function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.« less

  13. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  14. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE PAGES

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler; ...

    2017-09-21

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  15. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  16. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of foods can be used to identify the important processing parameters that affect the quality of a product.

  17. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.

    PubMed

    Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter

    2010-06-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.

  18. Transformation twinning of Ni–Mn–Ga characterized with temperature-controlled atomic force microscopy

    PubMed Central

    Reinhold, Matthew; Watson, Chad; Knowlton, William B.; Müllner, Peter

    2010-01-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni–Mn–Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni–Mn–Ga single crystal. Experiments were performed in the martensite phase at 25 °C and in the austenite phase at 55 °C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 °C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 °C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys. PMID:20589105

  19. Microstructural Anisotropy of Magnetocaloric Gadolinium Cylinders: Effect on the Mechanical Properties of the Material

    PubMed Central

    Petrovič, Darja Steiner; Šturm, Roman; Naglič, Iztok; Markoli, Boštjan; Pepelnjak, Tomaž

    2016-01-01

    The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces. PMID:28773502

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  1. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less

  2. Energy Storage Publications | Transportation Research | NREL

    Science.gov Websites

    . 367, 1 November 2017 pp. 214-215. Quantitative Microstructure Characterization of a NMC Electrode . NREL/PR-5400-68759. Quantitative Microstructure Characterization of a NMC Electrode Presentation Source . NREL/PR-5400-68339. Microstructure Characterization and Modeling for Improved Electrode Design

  3. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  4. Synthesize and microstructure characterization of Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elwindari, Nastiti; Manaf, Azwar, E-mail: azwar@ui.ac.id

    2016-06-17

    The ferromagnetic heusler alloys are promising materials in many technical applications due to their multifunctional properties such as shape memory effect, magnetocaloric effect, giant magnetoresistance, etc. In this work, synthesize and characterization of polycrystalline Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} (NMCS) alloy are reported. Alloy preparation was conducted by melting the constitute elements under an innert Argon (Ar) atmosphere in a vacuum mini arc-melting furnace. Homogenization of the microstructure of the as-cast ingot was obtained after annealing process at 750°C for 48 hours. It is shown that the dendrites structure has changed to equaixed grains morphology after homogenization. Microstructure characteristics ofmore » material by x-ray diffraction revealed that the alloy has a L{sub 21}-type cubic crystal structure as the main phase at room temperature. In order to induce the shape anisotropy, a forging treatment was applied to show the shape orientation of material. Various enhancements of magnetic properties in a longitudinal direction were observed at various degree of anisotropy. The microstructure changes of as-cast NMCS and effects of homogenization treatments as studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) are discussed in details.« less

  5. Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy

    PubMed Central

    de Albuquerque, Victor Hugo C.; Barbosa, Cleisson V.; Silva, Cleiton C.; Moura, Elineudo P.; Rebouças Filho, Pedro P.; Papa, João P.; Tavares, João Manuel R. S.

    2015-01-01

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ” and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75% and harmonic mean of 89.52) for the application proposed. PMID:26024416

  6. Ultrasonic sensor signals and optimum path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy.

    PubMed

    de Albuquerque, Victor Hugo C; Barbosa, Cleisson V; Silva, Cleiton C; Moura, Elineudo P; Filho, Pedro P Rebouças; Papa, João P; Tavares, João Manuel R S

    2015-05-27

    Secondary phases, such as laves and carbides, are formed during the final solidification stages of nickel-based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ'' and δ phases. This work presents an evaluation of the powerful optimum path forest (OPF) classifier configured with six distance functions to classify background echo and backscattered ultrasonic signals from samples of the inconel 625 superalloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasonic signals were acquired using transducers with frequencies of 4 and 5 MHz. The potentiality of ultrasonic sensor signals combined with the OPF to characterize the microstructures of an inconel 625 thermally aged and in the as-welded condition were confirmed by the results. The experimental results revealed that the OPF classifier is sufficiently fast (classification total time of 0.316 ms) and accurate (accuracy of 88.75%" and harmonic mean of 89.52) for the application proposed.

  7. High-Resolution Characterization of UMo Alloy Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less

  8. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  9. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-12-01

    Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { < 110 > _{γ } || < 1\\overline{1} 0 > _{θ } } { < 111 > _{α } || < 1\\overline{1} 0 > _{θ } } { < 110 > _{γ } || < 111 > _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

  10. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: (I) Synthesis, structural and microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.

    Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less

  11. Unusual inhomogeneous microstructures in charge glass state of PbCrO3

    NASA Astrophysics Data System (ADS)

    Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo

    2018-05-01

    We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.

  12. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2014-11-15

    The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L,more » the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.« less

  13. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys.

    PubMed

    Bottino, Marco C; Coelho, Paulo G; Henriques, Vinicius A R; Higa, Olga Z; Bressiani, Ana H A; Bressiani, José C

    2009-03-01

    This article presents details of processing, characterization and in vitro as well as in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr samples with different levels of porosity. Sintered samples were characterized for density, crystalline phases (XRD), and microstructure (SEM and EDX). Samples sintered at 1000 degrees C showed the highest porosity level ( approximately 30%), featuring open and interconnected pores ranging from 50 to 100 mum in diameter but incomplete densification. In contrast, samples sintered at 1300 and 1500 degrees C demonstrated high densification with 10% porosity level distributed in a homogeneous microstructure. The different sintering conditions used in this study demonstrated a coherent trend that is increase in temperature lead to higher sample densification, even though densification represents a drawback for bone ingrowth. Cytotoxicity tests did not reveal any toxic effects of the starting and processed materials on surviving cell percentage. After an 8-week healing period in rabbit tibias, the implants were retrieved, processed for nondecalcified histological evaluation, and then assessed by backscattered electron images (BSEI-SEM) and EDX. Bone growth into the microstructure was observed only in samples sintered at 1000 degrees C. Overall, a close relation between newly formed bone and all processed samples was observed. (c) 2008 Wiley Periodicals, Inc.

  14. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    PubMed

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  15. Microstructure and Corrosion Resistance of Laser-Welded Crossed Nitinol Wires.

    PubMed

    Dong, Peng; Yao, Runhua; Yan, Zheng; Yan, Zhifeng; Wang, Wenxian; He, Xiuli; Zhou, Jun

    2018-05-18

    Laser welding has been considered to be one of the most promising joining processes for Nitinol medical device manufacturing. Presently, there is still a limited understanding about how laser welding affects the microstructure and the resultant corrosion behaviors. This work aimed to reveal the microstructural factors that influence the corrosion resistance of laser-welded crossed Nitinol joints. The microstructures within various zones of the joints were characterized by using transmission electron microscopy (TEM), and the corrosion behaviors of the joints in 0.9% NaCl and Hank's solutions were studied. The base metal exhibits a single austenite (B2) phase and the highest corrosion resistance. The phase constituent of the fusion zone is the coexistence of the B2 matrix and some precipitates (T₂Ni, TiNi 3, and Ti₃Ni₄ particles), resulting in a slight decrease in corrosion resistance. The heat affected zone (HAZ) shows the austenite matrix but with the precipitation of R-phase, which considerably reduces the corrosion potential, making it the weakest zone.

  16. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  17. Mechanical and Microstructural Characterization of a New Corrosion Resistant Stainless Steel

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geantă, V.; Stefănoiu, R.; Cotruţ, C.; Ciocoiu, R.; Ionescu, M.

    2018-06-01

    The paper investigates the manner in which the chemical composition and delivery status of a new type of stainless steel, highly alloyed with Ni and Cr, affect mechanical properties, microstructure and corrosion resistance. The results obtained during the mechanical test (tensile, compression, Charpy test and micro-hardness) have revealed promising values. During the corrosion test, the preferential attack of the reagent (Aqua regia) located on the grain boundaries, inclusions or polyhedral precipitates have been observed. On the corroded surfaces, some localized pitting effects on grain boundaries have been revealed. The analyses of the parameter values recorded during the corrosion test revealed that the corrosion current density had a low value, comparable to that of other specific types of stainless steels. The actual Icorr (1.089 µA/cm2) value measured for the experimental alloy proves good resistance to corrosion in 3% NaCl saline solution. The estimated rate of corrosion presented acceptable values (0.011 mm/year).

  18. Microstructure and hardness of bovine enamel in roselle extract solution

    NASA Astrophysics Data System (ADS)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  19. The microstructure and magnetic properties of Cu/CuO/Ni core/multi-shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Shi, Jie; Zhang, Xiaofeng; Hao, Shijie; Liu, Yinong; Feng, Chun; Cui, Lishan

    2018-04-01

    Multifunctional metal/oxide/metal core/multi-shell nanowire arrays were prepared mostly by physical or chemical vapor deposition. In our study, the Cu/CuO/Ni core/multi-shell nanowire arrays were prepared by AAO template-electrodeposition and oxidation processes. The Cu/Ni core/shell nanowire arrays were prepared by AAO template-electrodeposition method. The microstructure and chemical compositions of the core/multi-shell nanowires and core/shell nanowires have been characterized using transmission electron microscopy with HADDF-STEM and X-ray diffraction. Magnetization measurements revealed that the Cu/CuO/Ni and Cu/Ni nanowire arrays have high coercivity and remanence ratio.

  20. Role of Microstructure on the Performance of UHTCs

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead

    2010-01-01

    We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.

  1. Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, J.H.; Kim, M.S.

    The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less

  2. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    DOE PAGES

    Ye, B.; Jamison, L.; Miao, Y.; ...

    2017-03-09

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  3. Microstructural investigation of vintage pipeline steels highly susceptible to stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Torres, Monica

    The use of pipelines for the transmission of gas offers not only efficiency, but a number of economic advantages. Nevertheless, pipelines are subject to aggressive operating conditions and environments which can lead to in-service degradation [1] and thus to failures. These failures can have catastrophic consequences, such as environmental damage and loss of life [2]. One of the most dangerous threats to pipeline integrity is stress corrosion cracking (SCC). Despite the substantial progress that has been achieved in the field, due to the complex nature of this phenomenon there is still not a complete understanding of this form of external corrosion. This makes its detection and prevention a challenge and therefore a risk to pipeline integrity, and most importantly, to the safety of the population. SCC cracks are the result of the interaction between a corrosive environment, applied stresses, and a susceptible microstructure. To date, what defines a susceptible microstructure remains ambiguous, as SCC has been observed in a range of steel grades, microstructures, chemical composition, and grain sizes. Therefore, in order to be able to accurately predict and prevent this hazardous form of corrosion, it is imperative to advance our knowledge on the subject and gain a better understanding on the microstructural features of highly susceptible pipeline materials, especially in the subsurface zone where crack nucleation must take place. Therefore, a microstructural characterization of the region near the surface layer was carried-out utilizing TEM. TEM analysis revealed the dislocation character, ferrite morphology, and apparent carbide precipitation in some grain boundaries. Furthermore, light microscopy, SEM, and hardness testing were performed to expand our knowledge on the microscopical features of highly SCC susceptible service components. This investigation presents a new approach to SCC characterization, which exposed the sub-surface region microscopical characteristics of service components with confirmed SCC.

  4. Toughening epoxy acrylate with polyurethane acrylates and hyper-branched polyester in three dimensional printing

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Li, Ning; Liu, Yang; Lu, Gang

    2018-05-01

    In order to improve the toughness of epoxy acrylate (EA) in three dimensional printing (3D-printing), bifunctional polyurethane acrylate (PUA) and trifunctional PUA were firstly blended with EA. The multi-indicators orthogonal experiment, designed with the indicators of tensile strength, elongation at break and impact strength, was used to find out the optimal formulation. Then, hyper-branched polyesters (HBPs) was added to improve the toughness of the photocurable system. The microstructures of the cured specimens were characterized by optical microscopy and scanning electron microscopy. By analyzing their mechanical properties and microstructures, it was revealed that the best addition amounts of HBP are 10 wt%. Results indicated that their toughness improved a lot comparing with pure EA. The changes of mechanical properties were characterized by DMA. The addition of HBP could cause a loss in stiffness, elasticity modulus and thermostability.

  5. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    NASA Astrophysics Data System (ADS)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  6. Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation.

    PubMed

    Xia, Y H; Zhang, B P; Lu, C X; Geng, L

    2013-12-01

    In this paper, corrosion resistance of the Mg-4.0Zn-0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg-4.0Zn-0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF2 was formed on the surface of Mg-4.0Zn-0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. © 2013.

  7. Characterization the microstructure of pulsed Nd:YAG welding method in low frequencies; correlation with tensile and fracture behavior in laser-welded nitinol joints

    NASA Astrophysics Data System (ADS)

    Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali

    2017-05-01

    The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.

  8. Oxidizing annealing effects on VO2 films with different microstructures

    NASA Astrophysics Data System (ADS)

    Dou, Yan-Kun; Li, Jing-Bo; Cao, Mao-Sheng; Su, De-Zhi; Rehman, Fida; Zhang, Jia-Song; Jin, Hai-Bo

    2015-08-01

    Vanadium dioxide (VO2) films have been prepared by direct-current magnetron sputter deposition on m-, a-, and r-plane sapphire substrates. The obtained VO2 films display different microstructures depending on the orientation of sapphire substrates, i.e. mixed microstructure of striped grains and equiaxed grains on m-sapphire, big equiaxed grains on a-sapphire and fine-grained microstructure on r-sapphire. The VO2 films were treated by the processes of oxidation in air. The electric resistance and infrared transmittance of the oxidized films were characterized to examine performance characteristics of VO2 films with different microstructures in oxidation environment. The oxidized VO2 films on m-sapphire exhibit better electrical performance than the other two films. After air oxidization for 600 s at 450 °C, the VO2 films on m-sapphire show a resistance change of 4 orders of magnitude over the semiconductor-to-metal transition. The oxidized VO2 films on a-sapphire have the highest optical modulation efficiency in infrared region compared to other samples. The different performance characteristics of VO2 films are understood in terms of microstructures, i.e. grain size, grain shape, and oxygen vacancies. The findings reveal the correlation of microstructures and performances of VO2 films, and provide useful knowledge for the design of VO2 materials to different applications.

  9. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  10. Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes

    NASA Astrophysics Data System (ADS)

    Yin, Deshun; Qu, Pengfei

    2018-02-01

    Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.

  11. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  12. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  13. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  14. Characterization of the tensile and microstructural properties of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Johnson, W. S.

    1990-01-01

    This study examines a powder metallurgy aluminum alloy in the unreinforced state and with a discontinuous reinforcement of 15 v/o or 30 v/o SiC whisker or 15 v/o SiC particulate. The materials were extruded and then hot-rolled to three plate thicknesses of 6.35, 3.18 and 1.8 mm and were investigated in the as-fabricated and peak aged conditions. The influence of mechanical working on the reinforcement morphology and distribution were examined. A comparison of the mechanical properties was made and the elastic moduli of the reinforced materials were predicted using a micromechanics model. Fractography of tensile specimens revealed that the fracture process was dominated by the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement type. An analysis of these microstructural features and a description of the micromechanics model are presented in the paper.

  15. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  16. Effects of Thermomechanical History on the Tensile Behavior of Nitinol Ribbon

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Turner, Travis L.; Taminger, Karen M.; Shenoy, Ravi N.

    2002-01-01

    Shape memory alloys (SMAs) have enormous potential for a wide variety of applications. A large body of work exists on the characterization of the microstructure and stress-strain behavior of these alloys, Nitinol (NiTi) in particular. However, many attributes of these materials are yet to be fully understood. Previous work at NASA Langley Research Center (LaRC) has included fabrication of hybrid composite specimens with embedded Nitinol actuators and modeling of their thermomechanical behavior. An intensive characterization effort has been undertaken to facilitate fundamental understanding of this alloy and to promote implementation of Nitinol in aerospace applications. Previous work revealed attributes of the Nitinol ribbon that were not easily rationalized with existing data in the literature. In particular, tensile behavior at ambient temperature showed significant dependence on the thermomechanical history prior to testing. The present work is focused on characterizing differences in the microstructure of Nitinol ribbons exposed to four different thermomechanical histories and correlation of the microstructure with tensile properties. Differential scanning calorimetry (DSC) and x-ray diffraction (XRD) analysis were employed to rationalize the microstructures present after exposure to various thermomechanical histories. Three of the Nitinol ribbon conditions were reversible upon heating (in the DSC) through the reverse transformation temperature (A(sub f) to transform the microstructure to austenite. However, the prior thermomechanical conditioning for the Nitinol ribbon that reflected the entire fabrication procedure (4% thermal cycle condition) was found to have an irreversible effect on the microstructure, as it remained unchanged after repeated complete thermal cycles. Tensile tests were conducted to determine the effect of prior thermomechancal conditioning on both the tensile behavior of the Nitinol ribbons and the stress state of the microstructure. The stress-strain behavior of the Nitinol actuators appears to be governed by the interplay between two major variables: namely, microstructural constituents such as the R-phase and the martensite; and the stress state of these constituents (whether twinned with low residual stresses, or detwinned with high residual stresses). The most significant difference in the stress-strain behavior of the four conditions, the critical stress required to achieve an initial stress plateau, was found to depend on both the amount and stress state (twinned or detwinned) of R-phase present in the initial microstructure. Thus, the effect of prior thermomechanical processing is critical to the resulting tensile behavior of the Nitinol actuator. For numerical modeling inputs one must take into account the entire fabrication process on the Nitinol actuator.

  17. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Influence of Heat Treatments on Microstructure and Magnetic Domains in Duplex Stainless Steel S31803

    NASA Astrophysics Data System (ADS)

    Dille, Jean; Pacheco, Clara Johanna; Camerini, Cesar Giron; Malet, Loic Charles; Nysten, Bernard; Pereira, Gabriela Ribeiro; De Almeida, Luiz Henrique; Alcoforado Rebello, João Marcos

    2018-06-01

    The influence of heat treatments on microstructure and magnetic domains in duplex stainless steel S31803 is studied using an innovative structural characterization protocol. Electron backscatter diffraction (EBSD) maps as well as magnetic force microscopy (MFM) images acquired on the same region of the sample, before and after heat treatment, are compared. The influence of heat treatments on the phase volumetric fractions is studied, and several structural modifications after heat treatment are highlighted. Three different mechanisms for the decomposition of ferrite into sigma phase and secondary austenite are observed during annealing at 800 °C. MFM analysis reveals that a variety of magnetic domain patterns can exist in one ferrite grain.

  19. Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron

    DOE PAGES

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean; ...

    2018-04-11

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  20. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis.

    PubMed

    Al Jabbari, Youssef; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony

    2008-04-01

    This study involved testing and analyzing multiple retrieved prosthetic retaining screws after long-term use in vivo to: (1) detect manufacturing defects that could affect in-service behavior; (2) characterize the microstructure and alloy composition; and (3) further characterize the wear mechanism of the screw threads. Two new (control) screws from Nobel Biocare (NB) and 18 used (in service 18-120 months) retaining screws [12 from NB and 6 from Sterngold (SG)] were: (1) metallographically examined by light microscopy and scanning electron microscopy (SEM) to determine the microstructure; (2) analyzed by energy dispersive X-ray (EDX) microanalysis to determine the qualitative and semiquantitative average alloy and individual phase compositions; and (3) tested for Vickers microhardness. Examination of polished longitudinal sections of the screws using light microscopy revealed a significant defect in only one Group 4 screw. No significant defects in any other screws were observed. The defect was considered a "seam" originating as a "hot tear" during original casting solidification of the alloy. Additionally, the examination of longitudinal sections of the screws revealed a uniform homogeneous microstructure in some groups, while in other groups the sections exhibited rows of second phase particles. The screws for some groups demonstrated severe deformation of the lower threads and the bottom part of the screw leading to the formation of crevices and grooves. Some NB screws were comprised of Au-based alloy with Pt, Cu, and Ag as alloy elements, while others (Groups 4 and 19) were Pd-based with Ga, Cu, and Au alloy elements. The microstructure was homogeneous with fine or equiaxed grains for all groups except Group 4, which appeared inhomogeneous with anomalous grains. SG screws demonstrated a typical dendritic structure and were Au-based alloy with Cu and Ag alloy elements. There were differences in the microhardness of gold alloy screws from NB and SG as well as palladium alloy screws from NB. Significant differences within NB retaining screws and between NB and SG screws were found for microstructure, major alloy constituents, and microhardness.

  1. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhtar, F.; Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore; Guo, S.J.

    2008-01-15

    This study deals with the processing, microstructure, and wear behavior of TiC-reinforced stainless steel matrix composites, containing 50 to 70 wt.% TiC. Powder technology was used to successfully fabricate the composites. The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the TiC particles were distributed uniformly in the steel matrix phase. Interface debonding and microcracks were not observed in the composite. The composite hardness increased with TiC content. The fretting wear resistance of the composites was studied against high speed steel. The wear mechanisms are discussed by means of microscopical observations on themore » worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microplowing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microplowing and rapid removal of material from the wear surface was observed at high wear load. The variation of wear loss with volume fraction and mean free path of the binder phase is also reported.« less

  2. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  3. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking Part II: Microstructure characterization

    NASA Astrophysics Data System (ADS)

    Unfried-Silgado, Jimy; Ramirez, Antonio J.

    2014-03-01

    In part II of this work is evaluated the as-welded microstructure of Ni-Cr-Fe alloys, which were selected and modeled in part I. Detailed characterization of primary and secondary precipitates, subgrain and grain structures, partitioning, and grain boundary morphology were developed. Microstructural characterization was carried out using optical microscopy, SEM, TEM, EBSD, and XEDS techniques. These results were analyzed and compared to modeling results displaying a good agreement. The Hf additions produced the highest waviness of grain boundaries, which were related to distribution of Hf-rich carbonitrides. Experimental evidences about Mo distribution into crystal lattice have provided information about its possible role in ductility-dip cracking (DDC). Characterization results of studied alloys were analyzed and linked to their DDC resistance data aiming to establish relationships between as-welded microstructure and hot deformation performance. Wavy grain boundaries, primary carbides distribution, and strengthened crystal lattice are metallurgical characteristics related to high DDC resistance.

  4. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the polycrystalline microstructure. The specific objectives of this work are 1) the development of etching techniques and electron backscatter diffraction strategies to characterize ferrite and martensite phases in steel; 2) the uncovering of a relationship between strength/ductility and material microstructure, 3) a statistical description to quantify the spatial distributions of these phases; and finally 4) the simulation of the microstructural evolution using parameters obtained from the experiments.

  5. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  6. X-ray and optical crystallographic parameters investigations of high frequency induction melted Al-(alpha-Al(2)O(3)) alloys.

    PubMed

    Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y

    2010-01-01

    This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.

  7. Localized Pulsed Electrodeposition Process for Three-Dimensional Printing of Nanotwinned Metallic Nanostructures.

    PubMed

    Daryadel, Soheil; Behroozfar, Ali; Morsali, S Reza; Moreno, Salvador; Baniasadi, Mahmoud; Bykova, Julia; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2018-01-10

    Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.

  8. Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy

    NASA Astrophysics Data System (ADS)

    Jung, Jaimyun; Yoon, Jae Ik; Kim, Jung Gi; Latypov, Marat I.; Kim, Jin You; Kim, Hyoung Seop

    2017-12-01

    Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood. In spite of extensive experimental and modeling efforts on correlating microstructural features with their twinning behavior, a clear relation among the large aggregate of grains is still lacking. In this work, we characterize the micromechanics of grain-to-grain interactions that contribute to twin evolution by investigating the mechanical twins near grain boundaries using a full-field crystal plasticity simulation of a twinning-induced plasticity steel deformed in uniaxial tension at room temperature. Microstructures are first observed through electron backscatter diffraction technique to obtain data to reconstruct a statistically equivalent microstructure through synthetic microstructure building. Grain-to-grain micromechanical response is analyzed to assess the collective twinning behavior of the microstructural volume element under tensile deformation. Examination of the simulated results reveal that grain interactions are capable of changing the local mechanical behavior near grain boundaries by transferring strain across grain boundary or localizing strain near grain boundary.

  9. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  10. Microstructural Characterization of Alloy 617 Crept into the Tertiary Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, Thomas Martin; Wright, Richard Neil

    2015-07-01

    The microstructure of Alloy 617 was characterized following creep tests interrupted at total creep strains ranging from 2-20%. A range of creep temperatures (750-1000oC) and initial creep stresses (10-145 MPa) produced creep test durations ranging from 1 to 5800 hours. Image analysis of optical photomicrographs on longitudinal sections of the gage length was used to document the fraction of creep porosity as a function of creep parameters. Creep porosity was negligible below tertiary creep strains of 10% and increased with tertiary creep strain, thereafter. For a given temperature and total creep strain, creep porosity increased with decreasing creep stress. Creepmore » porosity increased linearly with duration of the creep experiment. TEM performed on the gage sections did not reveal significant creep cavity formation on grain boundaries at the sub-micron level. It was concluded that the onset of tertiary creep did not result from creep cavitation and more likely arose due to the formation of low energy dislocation substructures with increasing tertiary strain.« less

  11. Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots.

    PubMed

    Shafrir, Shai N; Lambropoulos, John C; Jacobs, Stephen D

    2007-08-01

    We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al(23)O(27)N(5)/ALON), polycrystalline alumina (Al(2)O(3)/PCA), and chemical vapor deposited (CVD) silicon carbide (Si(4)C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.

  12. Subsurface Damage and Microstructure Development in Precision Microground Hard Ceramics Using Magnetorheological Finishing Spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2007-08-01

    We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (AL2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface roughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in themore » first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these har ceramics with the use of power spectral density to characterize surface features.« less

  13. Microstructure of Dense Thin Sheets of gamma-TiAl Fabricated by Hot Isostatic Pressing of Tape-Cast Monotapes (Preprint)

    DTIC Science & Technology

    2007-02-01

    fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain

  14. Modulated structures and associated microstructures in the ferroelectric phase of Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0

    NASA Astrophysics Data System (ADS)

    Tsukasaki, Hirofumi; Ishii, Yui; Tanaka, Eri; Kurushima, Kosuke; Mori, Shigeo

    2016-01-01

    In order to understand the ferroelectric and ferroelastic phases in Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0, we have investigated the crystal structures and their associated microstructures of the ferroelectric and ferroelastic phases mainly by transmission electron microscopy (TEM) and scanning transmission electron microscopy-high-angle angular dark-field (STEM-HAADF) experiments, combined with powder X-ray diffraction experiments. Electron diffraction experiments showed that the ferroelectric and ferroelastic phases of Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0 should be characterized as a modulated structure with the modulation vector of \\boldsymbol{{q}} = 0,1/2,0, whose space group should be monoclinic P21. High-resolution TEM experiments revealed that the microstructures in the monoclinic phase can be characterized as twin structures and nanometer-sized planar defects due to the monoclinic structure with the modulated structures, which are responsible for anomalous elastic behaviors and mechanoelectro-optical properties. In addition, subatomic-resolution STEM-HAADF images clearly indicated that the displacement of Al3+ ions involved in the AlO4 tetrahedra should play a crucial role in the formation of the modulated structures and twin structures.

  15. Studies on densification, mechanical, micro-structural and structure–properties relationship of magnesium aluminate spinel refractory aggregates prepared from Indian magnesite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Chandrima; Ghosh, Arup; Haldar, Manas Kamal, E-mail: manashaldar@cgcri.res.in

    The present work intends to study the development of magnesium aluminate spinel aggregates from Indian magnesite in a single firing stage. The raw magnesite has been evaluated in terms of chemical analysis, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. The experimental batch containing Indian magnesite and calcined alumina has been sintered in the temperature range of 1550 °C–1700 °C. The sintered material has been characterized in terms of physico-chemical properties like bulk density, apparent porosity, true density, relative density and thermo-mechanical/mechanical properties like hot modulus of rupture, thermal shock resistance, cold modulus of rupture and structural propertiesmore » by X-ray diffraction in terms of phase identification and evaluation of crystal structure parameters of corresponding phases by Rietveld analysis. The microstructures developed at different temperatures have been analyzed by field emission scanning electron microscope study and compositional analysis of the developed phase has been carried out by energy dispersive X-ray study. - Highlights: • The studies have been done to characterize the developed magnesium aluminate spinel. • The studies reveal correlation between refractory behavior of spinel and developed microstructures. • The studies show the values of lattice parameters of developed phases.« less

  16. Morphological and Microstructural Evolution of Phosphorous-Rich Layer in SnAgCu/Ni-P UBM Solder Joint

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chi; Shih, Toung-Yi; Tien, Shih-Kang; Duh, Jenq-Gong

    2007-11-01

    Interfacial morphologies and microstructure of Sn-3Ag-0.5Cu/Ni-P under bump metallization (UBM) with various phosphorous contents were investigated by transmission electron microscope (TEM) and field emission electron probe microanalyzer (FE-EPMA). It was revealed that as the Ni-Sn-P compound was formed between the solder matrix and Ni-P UBM, the conventionally so-called phosphorous-rich (P-rich) layer was transformed to a series of layer compounds, including Ni3P, Ni12P5 and Ni2P. The relationship between Ni-Sn-P formation and evolution of P-rich layers was probed by electron microscopic characterization with the aid of the phase diagram of Ni-P. On the basis of the TEM micrograph, the selected area diffraction (SAD) pattern, and the FE-EPMA results, the detailed phase evolution of P-rich layers in the SnAgCu/Ni-P joint was revealed and proposed.

  17. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    PubMed Central

    Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-01-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm−3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation. PMID:29765652

  18. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  19. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    PubMed Central

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  20. Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy

    NASA Astrophysics Data System (ADS)

    Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.

    2013-12-01

    Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.

  1. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    NASA Astrophysics Data System (ADS)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  2. Effect of retrogression duration on the grain boundary microstructure and microchemistry of AA7010

    NASA Astrophysics Data System (ADS)

    Nandana, M. S.; Bhat, K. Udaya; Manjunatha, C. M.

    2018-04-01

    The paper presents the microstructural characterization of the aluminium alloy 7010 in retrogression and re- ageing (RRA) condition by using Transmission Electron Microscope (TEM). The grain boundary microstructure is analyzed with the focus on variation of GBP's (grain boundary precipitate) size and PFZ (precipitate free zone) size during retrogression performed at 200 °C for duration of 10-60 min. The microchemistry of the GBP's is analyzed by using TEM-EDS (Energy Dispersive X-ray spectroscopy). The results reveal the coarsening of discrete GBP's along with enrichment of the Cu in them. The average size of the GBP's in RRA treated sample vary from 30 nm during 10 min of retrogression to 59 nm at 60 min of retrogression. The PFZ size varied from 35 nm to 51 nm for 10 min and 60 min of retrogression time, respectively. The Cu content of the GBP's increased from 3.54 wt% for 10 min of retrogression to 5.27 wt% for 60 min of retrogression and re-aged sample.

  3. Effect of High Si Content on U3Si2 Fuel Microstructure

    NASA Astrophysics Data System (ADS)

    Rosales, Jhonathan; van Rooyen, Isabella J.; Meher, Subhashish; Hoggan, Rita; Parga, Clemente; Harp, Jason

    2018-02-01

    The development of U3Si2 as an accident-tolerant nuclear fuel has gained research interest because of its promising high uranium density and improved thermal properties. In the present study, three samples of U3Si2 fuel with varying silicon content have been fabricated by a conventional powder metallurgical route. Microstructural characterization via scanning and transmission electron microscopy reveals the presence of other stoichiometry of uranium silicide such as USi and UO2 in both samples. The detailed phase analysis by x-ray diffraction shows the presence of secondary phases, such as USi, U3Si, and UO2. The samples with higher concentrations of silicon content of 7.5 wt.% display additional elemental Si. These samples also possess an increased amount of the USi phase as compared to that in the conventional sample with 7.3 wt.% silicon. The optimization of U3Si2 fuel performance through the understanding of the role of Si content on its microstructure has been discussed.

  4. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    PubMed

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  5. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  6. Experiments and modeling to characterize microstructure and hardness in 304L

    DOE PAGES

    Deibler, Lisa Anne; Brown, Arthur; Puskar, Joseph D.

    2017-01-12

    Drawn 304L stainless steel tubing was subjected to 42 different annealing heat treatments with the goal of initializing a microstructural model to select a heat treatment to soften the tubing from a hardness of 305 Knoop to 225–275 Knoop. The amount of recrystallization and grain size caused by 18 heat treatments were analyzed via optical microscopy and image analysis, revealing the full range of recrystallization from 0 to 100%. The formation of carbides during the longer duration and higher-temperature heat treatments was monitored via transmission electron microscope evaluation. The experimental results informed a model which includes recovery, recrystallization, and grainmore » growth to predict microstructure and hardness. After initialization of the model, it was able to predict hardness with a R 2 value of 0.95 and recrystallization with an R 2 value of 0.99. As a result, the model was then utilized in the design and testing of a heat treatment to soften the tubing.« less

  7. The influence of microstructure on the tensile behavior of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Birt, Michael J.; Johnson, W. Steven

    1990-01-01

    The relationship between tensile properties and microstructure of a powder metallurgy aluminum alloy, 2009 was examined. The alloy was investigated both unreinforced and reinforced with 15 v/o SiC whiskers or 15 v/o SiC particulate to form a discontinuous metal matrix composite (MMC). The materials were investigated in the as-fabricated condition and in three different hot-rolled sheet thicknesses of 6.35, 3.18, and 1.8 mm. Image analysis was used to characterize the morphology of the reinforcements and their distributions within the matrix alloy. Fractographic examinations revealed that failure was associated with the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement. The results from these observations together with the matrix tensile data were used to predict the strengths and moduli of the MMC's using relatively simple models. The whisker MMC could be modeled as a short fiber composite and an attempt was made to model the particulate MMC as a dispersion/dislocation hardened alloy.

  8. SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.

    PubMed

    Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H

    2012-02-01

    In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Multi-modal porous microstructure for high temperature fuel cell application

    NASA Astrophysics Data System (ADS)

    Wejrzanowski, T.; Haj Ibrahim, S.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G.

    2018-01-01

    In this study, the effect of microstructure of porous nickel electrode on the performance of high temperature fuel cell is investigated and presented based on a molten carbonate fuel cell (MCFC) cathode. The cathode materials are fabricated from slurry consisting of nickel powder and polymeric binder/solvent mixture, using the tape casting method. The final pore structure is shaped through modifying the slurry composition - with or without the addition of porogen(s). The manufactured materials are extensively characterized by various techniques involving: micro-computed tomography (micro-XCT), scanning electron microscopy (SEM), mercury porosimetry, BET and Archimedes method. Tomographic images are also analyzed and quantified to reveal the evolution of pore space due to nickel in situ oxidation to NiO, and infiltration by the electrolyte. Single-cell performance tests are carried out under MCFC operation conditions to estimate the performance of the manufactured materials. It is found that the multi-modal microstructure of MCFC cathode results in a significant enhancement of the power density generated by the reference cell. To give greater insight into the understanding of the effect of microstructure on the properties of the cathode, a model based on 3D tomography image transformation is proposed.

  10. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  11. Microstructural investigation of aluminum-graphene nano platelets composites prepared by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Sreearravind, M.; Peddavarapu, Sreehari; Raghuraman, S.

    2018-04-01

    Recently, Graphene has attracted a large variety of scientific communities due to its inimitable properties. Typically, Graphene Nanoplatelets (GNPs) are ideal reinforcements for the production of nanocomposites due to its excellent mechanical properties for strength enhancement. This paper reports the Aluminum-Graphene Nanoplatelets (Al/GNPs) composites synthesized through powder metallurgy method. The microstructural investigation was carried out to study the GNPs integration on the Al matrix. For this study, the samples Al-2wt% GNPs, Al-3wt% GNPs and Al- 4wt% GNPs are high-energy ball milled at 200rpm and sintered at 500°C,550°C, and 600°C. Microstructural characterization is carried out with optical microscopy, Scanning electron microscopy. Rockwell hardness test is conducted to evaluate the hardness behavior in Al/GNPs. Microstructural analysis revealed the homogeneous dispersion of GNPs in the Al matrix in all the samples. It is observed that the existence of the graphene nanoparticles and the rise of their concentrations in the aluminum matrix (2 wt.% to 4 wt.%) as reinforcement in addition to rising the sintering temperature (450°C to 600°C) greatly improve the mechanical properties of Al/GNPs composites.

  12. Effect of Long-Term Thermal Exposures on Microstructure and Impression Creep in 304HCu Grade Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.

    2017-10-01

    This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.

  13. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  14. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  15. Microstructure and Mechanical Properties of Extruded Gamma Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, I.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at %) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  16. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  17. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.

  18. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.

    PubMed

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan

    2016-01-20

    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.

  19. Dependence of annealing temperature on microstructure and photoelectrical properties of vanadium oxide thin films prepared by DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhang, Dongping; Wang, Bo; Liang, Guangxing; Zheng, Zhuanghao; Luo, Jingting; Cai, Xingmin; Fan, Ping

    2013-12-01

    Vanadium oxide thin films were prepared by DC reactive sputtering method, and the samples were annealed in Ar atmosphere under different temperature for 2 hours. The microstructure, optical and electrical properties of the as-grown and treated samples were characterized by XRD, spectrophotometer, and four-probe technique, respectively. XRD results investigated that the main content of the annealed sample are VO2 and V2O5. With annealing temperature increasing, the intensity of the VO2 phase diffraction peak strengthened. The electrical properties reveal that the annealed samples exhibit semiconductor-to-metal transition characteristic at about 40°C. Comparison of transmission spectra of the samples at room temperature and 100°C, a drastic drop in IR region is found.

  20. SLM processing-microstructure-mechanical property correlation in an aluminum alloy produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Alejos, Martin Fernando

    Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.

  1. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    PubMed

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  2. Quantitative characterization of microstructure of asphalt mixtures

    DOT National Transportation Integrated Search

    2010-10-01

    The microstructure of the fine aggregate matrix has a significant influence on the : mechanical properties and evolution of damage in an asphalt mixture. However, very little : work has been done to define and quantitatively characterize the microstr...

  3. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    DTIC Science & Technology

    2013-08-23

    REPORT Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design 14. ABSTRACT 16. SECURITY...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2013 Stablization of Nanotwinned Microstructures in Stainless Steels Through

  4. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  5. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.

    PubMed

    Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias

    2018-06-01

    Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    PubMed

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Age-related differences in autism: The case of white matter microstructure.

    PubMed

    Koolschijn, P Cédric M P; Caan, Matthan W A; Teeuw, Jalmar; Olabarriaga, Sílvia D; Geurts, Hilde M

    2017-01-01

    Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam

    2015-05-01

    Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

  9. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGES

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; ...

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti 2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  10. 3D characterization of trans- and inter-lamellar fatigue crack in (α + β) Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babout, Laurent, E-mail: Laurent.babout@p.lodz.pl; Jopek, Łukasz; Preuss, Michael

    2014-12-15

    This paper presents a three dimensional image processing strategy that has been developed to quantitatively analyze and correlate the path of a fatigue crack with the lamellar microstructure found in Ti-6246. The analysis is carried out on X-ray microtomography images acquired in situ during uniaxial fatigue testing. The crack, the primary β-grain boundaries and the α lamellae have been segmented separately and merged for the first time to allow a better characterization and understanding of their mutual interaction. This has particularly emphasized the role of translamellar crack growth at a very high propagation angle with regard to the lamellar orientation,more » supporting the central role of colonies favorably oriented for basal 〈a〉 slip to guide the crack in the fully lamellar microstructure of Ti alloy. - Highlights: • 3D tomography images reveal strong short fatigue crack interaction with α lamellae. • Proposed 3D image processing methodology makes their segmentation possible. • Crack-lamellae orientation maps show prevalence of translamellar cracking. • Angle study comforts the influence of basal/prismatic slip on crack path.« less

  11. Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method

    PubMed Central

    Seetharaman, Sankaranarayanan; Subramanian, Jayalakshmi; Tun, Khin Sandar; Hamouda, Abdelmagid S.; Gupta, Manoj

    2013-01-01

    In this study, magnesium composites with nano-size boron nitride (BN) particulates of varying contents were synthesized using the powder metallurgy (PM) technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE) value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture. PMID:28809252

  12. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE PAGES

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.; ...

    2018-06-04

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  13. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  14. Structural characterization of hydrothermally synthesized MnO2 nanorods

    NASA Astrophysics Data System (ADS)

    A'yuni, D. Q.; Alkian, I.; Sya'diyah, F. K.; Kadarisman; Darari, A.; Gunawan, V.; Subagio, A.

    2017-11-01

    We prepared the hydrothermal method to synthesize MnO2 nanorods with controlled structure. KMnO4 and HCl with the various molar ratio (1:2,1:6,1:8) reacted at 160°C for three hours to form MnO2 nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO2. The result revealed that MnO2 formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO2 and α-MnO2. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO2 ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO2 nanorods product would be potentially used in energy storage devices.

  15. Microstructure characterization in domestically-made TP310HNbN austenitic stainless steel after creep test

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Lin, Lin; Hou, Shufang; Wang, Bohan

    Microstructure characterization of domestically-made TP310HNbN austenitic stainless steel after creep test was investigated by means of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results revealed that M23C6 carbides precipitated both inside grains and at the grain boundaries and NbCrN particles were located inside grains for creep-rupture samples. It was clear that sigma phase and NbC particles precipitated inside grains for the creep-rupture sample at 670 C. M23C6 carbides with lattice parameter of three times of the austenite matrix grow in a cube to cube orientation relationship with the matrix. The amount of M23C6 carbide particles obviously increased with the testing time prolonged. Deformation hardening induced an enhanced hardness nearby rupture surface for the creep-rupture samples with a short testing time. For the domestically-made TP310HNbN steel, great attention should be paid to the distribution, size and amount of sigma phase and M23C6 during service.

  16. In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion

    DOE PAGES

    Larson, Natalie M.; Zok, Frank W.

    2017-10-31

    One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis ismore » employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.« less

  17. Effect of Micro Porous Shape on Mechanical Properties in Polypropylene Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo

    The objective is to characterize the effect of the microstructure of the micro pores inside the matrix on the mechanical properties of the thermoplastic syntactic polypropylene (PP) foams at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 3 x 10-1 to 102 s-1. In addition, the dart impact tests are conducted at the impact velocities of 0.1, 1 and 10 m/s. Then, the constitutive law with craze evolution is modified by introducing the relative density, the stress concentration coefficient and the volume fraction of cell edge, and then applied to the dart impact test mode for simulating the macroscopic load displacement history of the dart impact process. Moreover, the microstructural finite element analysis is conducted to characterize the local stress states in the microstructure. In the tensile loading, the elastic modulus is not influenced by the shape of the micro pores in the PP matrix while the yield stress and the strain energy up to failure are relatively influenced by the shape of micro pores. The microstructural finite element analysis shows that the magnitudes of the localized stresses at the edges and the ligaments of the elliptical-shape micro pores are larger than those at the spherical micro pores, leading to the early yielding and the small material ductility. In the case of the dart impact loading, the microstructure of pores has strong effect on the absorbed energy. This is because the elliptical-shape micro pores are very sensitive to the shear deformation, which is revealed by the microstructural finite element analysis. The modified constitutive law with the stress concentration coefficient and the volume fraction of the cell edges successfully predicts the load-displacement curve of the dart impact loading in the spherical micro-porous PP foam. It is concluded that the micro porous shape has strong effect on the material ductility especially in the dart impact test, leading to the possibility to control the material ductility by the shape of the micro pores in the polymeric foams.

  18. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke

    2016-03-15

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porositymore » inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are determined by tension and compression testing.« less

  19. FIB–SEM tomography of 4th generation PWA 1497 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętara, Maciej, E-mail: zietara@agh.edu.pl; Kruk, Adam, E-mail: kruczek@agh.edu.pl; Gruszczyński, Adam, E-mail: gruszcz@agh.edu.pl

    2014-01-15

    The effect of creep deformation on the microstructure of the PWA 1497 single crystal Ni-base superalloy developed for turbine blade applications was investigated. The aim of the present study was to characterize quantitatively a superalloy microstructure and subsequent development of rafted γ′ precipitates in the PWA 1497 during creep deformation at 982 °C and 248 MPa up to rupture. The PWA1497 microstructure was characterized by scanning electron microscopy and FIB–SEM electron tomography. The 3D reconstruction of the PWA1497 microstructure is presented and discussed. - Highlights: • The microstructure of PWA1497 superalloy was examined using FIB–SEM tomography. • In case ofmore » modern single crystal superalloys, measurements of A{sub A} are adequate for V{sub V}. • During creep the γ channel width increases from 65 to 193 nm for ruptured specimen. • Tomography is a useful technique for quantitative studies of material microstructure.« less

  20. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  1. Assessment of MARMOT Grain Growth Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, B.; Zhang, Y.; Schwen, D.

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO 2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO 2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grainmore » growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.« less

  2. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    PubMed

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Influence of low nickel (0.09 wt%) content on microstructure and toughness of P91 steel welds

    NASA Astrophysics Data System (ADS)

    Arivazhagan, B.; Vasudevan, M.; Kamaraj, M.

    2015-05-01

    Modified 9Cr-1Mo (P91) steel is widely used as a high temperature structural material in the fabrication of power plant components. Alloying elements significantly influences the microstructure and mechanical properties of P91 steel weldments. The alloying elements manganese and nickel significantly influence the lower critical phase transformation temperature (AC1) as well as tempering response of welds. In the existing published information there was wide spread use of high Mn+Ni filler wire. In the present study, weldment preparation was completed using GTA filler wire having low Nickel content (Mn+Ni of 0.58 wt% including nickel content of 0.09 wt%). Microstructure and mechanical properties characterization was done. There is a requirement on minimum toughness of 47 Joules for P91 steel tempered welds at room temperature. Microstructural observation revealed that the GTA welds have low δ-ferrite content (<0.5%) in the martensite matrix. In the as-weld condition, the toughness was 28 Joules whereas after PWHT at 760 °C-2 h it was 115 Joules. In the present study, toughness of low nickel weld was higher due to low δ-ferrite content (<0.5%), multipass grain refinement and weld metal deposition of single pass per layer of weldment.

  4. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  5. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden

    NASA Astrophysics Data System (ADS)

    Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.

    2014-04-01

    Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress levels around 8-48 MPa. In contrast the M3 olivine "mortar" microstructure formed at 550-600 °C/0.45-0.6 GPa and represents deformation after the subducted slab had returned to shallow crustal levels. It is proposed here that the presence of a penetrative olivine M2 "foam" microstructure can be used as an easy tool in the field to discriminate between mantle wedge (i.e. sub-continental affinity), ophiolite (i.e. sub-oceanic affinity), and/or hyper-extensional peridotite in the Scandinavian Caledonides. The latter two peridotite subtypes may have similar M2 microstructures, but exclusively restricted to the structural base of the bodies. Alternatively in basal parts of ophiolites, M3 microstructures directly overprint coarser grained proto-granular olivine microstructures.

  6. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys

    DOE PAGES

    Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.; ...

    2016-11-19

    The equiatomic high-entropy alloy (HEA), CrMnFeCoNi, has recently been shown to be microstructurally unstable, resulting in a multi-phase microstructure after intermediate-temperature annealing treatments. The decomposition occurs rapidly in the nanocrystalline (NC) state and after longer annealing times in coarse-grained states. To characterize the mechanical properties of differently annealed NC states containing multiple phases, nanoindentation was used in this paper. The results revealed besides drastic changes in hardness, also for the first time significant changes in the Young's modulus and strain rate sensitivity. Finally, nanoindentation of NC HEAs is, therefore, a useful complementary screening tool with high potential as a highmore » throughput approach to detect phase decomposition, which can also be used to qualitatively predict the long-term stability of single-phase HEAs.« less

  7. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Hasegawa, Y.; Tsuda, H.; Mori, S.; Halbig, M. C.; Asthana, R.; Singh, M.

    2017-01-01

    SiC fiber-bonded ceramics (SA-Tyrannohex: SA-THX) diffusion-bonded with TiCu metallic interlayers were investigated. Thin samples of the ceramics were prepared with a focused ion beam (FIB) and the interfacial microstructure of the prepared samples was studied by transmission electron microscopy (TEM) and scanning TEM (STEM). In addition to conventional microstructure observation, for detailed analysis of reaction compounds in diffusion-bonded area, we performed STEM-EDS measurements and selected area electron diffraction (SAD) experiments. The TEM and STEM experiments revealed the diffusion-bonded area was composed of only one reaction layer, which was characterized by TiC precipitates in Cu-Si compound matrix. This reaction layer was in good contact with the SA-THX substrates, and it is concluded that the joint structure led to the excellent bonding strength.

  8. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  9. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  10. Development and Characterization of Edible Films Based on Fruit and Vegetable Residues.

    PubMed

    Andrade, Roberta M S; Ferreira, Mariana S L; Gonçalves, Édira C B A

    2016-02-01

    Edible films were developed from the solid residue of the processing of whole fruits and vegetables. The solid residue, processed into flour (FVR flour) was chemically and structurally characterized by microstructure, elemental composition, structural links, and moisture sorption isotherm. Films were prepared by casting using aqueous extracts of 8% and 10% of flour (w/w) and characterized in terms of thickness, water solubility, mechanical properties, water vapor permeability, and Fourier transform infrared (FTIR). The analysis of microstructure and elemental composition, performed on flour (mean particle size 350 μm), showed an essentially granular aspect, with the presence of fibrous particles having potassium as one of the most abundant elements. FTIR results showed similarity between the characteristic bands of other raw materials used in edible films. The sorption isotherm of FVR flour showed a typical profile of foods rich in soluble components, such as sugars. Dried films presented an average thickness of 0.263 ± 0.003 mm, a homogenous aspect, bright yellow color, pronounced fruit flavor, and high water solubility. The FTIR spectra of the edible films revealed that addition of potato skin flour did not change the molecular conformation. Moreover, the films presented low tensile strength at break when compared with fruit starch-based films. © 2016 Institute of Food Technologists®

  11. Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Russell, K. F.; Kocik, J.; Keilova, E.

    2000-11-01

    An atom probe tomography microstructural characterization of low copper (0.06 at.% Cu) surveillance samples from a VVER 440 reactor has revealed manganese and silicon segregation to dislocations and other ultrafine features in neutron-irradiated base and weld materials (fluences 1×10 25 m-2 and 5×10 24 m-2, E>0.5 MeV, respectively). The results indicate that there is an additional mechanism of embrittlement during neutron irradiation that manifests itself at high fluences.

  12. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multiple thermal transitions and anisotropic thermal expansions of vertically aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, Assaf

    2016-10-01

    Vertically aligned carbon nanotubes (VA-CNTs) hold the potential to play an instrumental role in a wide variety of applications in micro- and nano-devices and composites. However, their successful large-scale implementation in engineering systems requires a thorough understanding of their material properties, including their thermal behavior, which was the focus of the current study. Thus, the thermal expansion of as-grown VA-CNT microstructures was investigated while increasing the temperature from room temperature to 800 °C and then cooling it down. First thermal transition was observed at 191 ± 68 °C during heating, and an additional thermal transition was observed at 523 ± 138 °C during heating and at similar temperatures during cooling. Each thermal transition was characterized by a significant change in the coefficient of thermal expansion (CTE), which can be related to a morphological change in the VA-CNT microstructures. Measurements of the CTEs in the lateral directions revealed differences in the lateral thermal behaviors of the top, middle, and bottom portions of the VA-CNT microstructures, again indicating that their morphology dominates their thermal characteristics. A hysteretic behavior was observed, as the measured values of CTEs were altered due to the applied thermal loads and the height of the microstructures was slightly higher compared to its initial value. These findings provide an insight into the anisotropic thermal behavior of VA-CNT microstructures and shed light on the relationship between their morphology and thermal behavior.

  14. The influence of different processing stages on particle size, microstructure, and appearance of dark chocolate.

    PubMed

    Glicerina, Virginia; Balestra, Federica; Dalla Rosa, Marco; Bergenhstål, Bjorn; Tornberg, Eva; Romani, Santina

    2014-07-01

    The effect of different process stages on microstructural and visual properties of dark chocolate was studied. Samples were obtained at each phase of the manufacture process: mixing, prerefining, refining, conching, and tempering. A laser light diffraction technique and environmental scanning electron microscopy (ESEM) were used to study the particle size distribution (PSD) and to analyze modifications in the network structure. Moreover, colorimetric analyses (L*, h°, and C*) were performed on all samples. Each stage influenced in stronger way the microstructural characteristic of products and above all the PSD. Sauter diameter (D [3.2]) decreased from 5.44 μm of mixed chocolate sample to 3.83 μm, of the refined one. ESEM analysis also revealed wide variations in the network structure of samples during the process, with an increase of the aggregation and contact point between particles from mixing to refining stage. Samples obtained from the conching and tempering were characterized by small PS, and a less dense aggregate structure. From color results, samples with the finest particles, having larger specific surface area and the smallest diameter, appeared lighter and more saturated than those with coarse particles. Final quality of food dispersions is affected by network and particles characteristics. The deep knowledge of the influence of single processing stage on chocolate microstructural properties is useful in order to improve or modify final product characteristics. ESEM and laser diffraction are suitable techniques to study changes in chocolate microstructure. © 2014 Institute of Food Technologists®

  15. The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach

    NASA Astrophysics Data System (ADS)

    Croxall, S. A.; Hardy, M. C.; Stone, H. J.; Midgley, P. A.

    Nickel-base superalloys are aerospace materials that exhibit exceptional mechanical properties and corrosion resistance at very high temperatures. RR1000 is used in discs in gas turbine engines, where temperatures reach in excess of 650°C with high mechanical stresses. Study of the microstructure at the micron and sub-micron level has conventionally been undertaken using scanning electron microscope images, often meaning the underlying 3D microstructure can be inferred only with additional knowledge. Using a dual-beam workstation, we are able to interrogate directly the 3D microstructure using a serial sectioning approach. The 3D data set, typically (10µm)3 in volume, reveals microstructural detail with lateral resolution of circa 8nm and a depth resolution dictated by the slice thickness, typically 50nm. Morphological and volumetric analysis of the 3D reconstruction of RR1000 superalloy reveals microstructural details hitherto unseen.

  16. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  17. Characterization of glass-infiltrated alumina-based ceramics

    PubMed Central

    Bona, Alvaro Della; Mecholsky, John J; Barrett, Allyson A; Griggs, Jason A

    2010-01-01

    Objective characterize the microstructure, composition, and important properties of glass-infiltrated alumina-based ceramics similar to the In-Ceram system. Methods Materials used were: IA- In-Ceram Alumina (Vita); IAE- IA electrophoretically deposited (Vita); AEM- IA using a vacuum driven method (Vita); VC- Vitro-Ceram (Angelus); TC- Turkom-Cera (Turkom-Ceramic); CC- Ceramcap (Foto-Ceram); and AG- Alglass (EDG). Ceramic specimens were fabricated following manufacturers’ instructions and ISO6872 standard and polished successively through 1μm alumina abrasive. Semi-quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stereology (Vv). The elastic modulus (E) and Poisson’s ratio (ν) were determined using time-of-flight data measured in an ultrasonic pulser/receiver and the density (ρ) was determined using a helium pycnometer. Vicker’s indentation was used to calculate hardness (H). Bar specimens (25×4×1.2mm3) were loaded in three-point bending to fracture using a universal testing machine with cross-head speed of 1mm/min. Flexural strength (σ3P) was calculated and statistically analyzed using ANOVA, Tukey (α=0.05) and Weibull (m= modulus, σ0= characteristic strength). Results SEM and EDS analyses revealed similar microstructure for all ceramics, except for a lead-based matrix in CC and a zirconia phase in VC. TC, AG and CC showed significantly lower mean σ3P values than the other ceramics (p 0.05). AEM showed the greatest m (16). Conclusion Despite few differences in microstructure and composition, the IA, IAE, AEM and VC ceramics have similar properties. Significance The glass-infiltrated alumina-based ceramics from different manufacturers presented distinct characteristics. It is necessary to characterize new commercially available materials to understand their properties. PMID:18692231

  18. Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy

    NASA Astrophysics Data System (ADS)

    Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.

    2018-05-01

    A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.

  19. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  20. Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Wei

    Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.

  1. Microstructure Characterization Of Lead-Free Solders Depending On Alloy Composition

    NASA Astrophysics Data System (ADS)

    Panchenko, Iuliana; Mueller, Maik; Wolter, Klaus-Juergen

    2010-11-01

    Fatigue and crack nucleation in solder joints is basically associated with changes in the microstructure. Therefore the microstructure evolution of SnAgCu solder joints during solidification and subsequent application is an important subject for reliability investigations and physics of failure analysis. The scope of this study is a systematic overview of the as-cast microstructures in small sized lead-free SnAgCu solder spheres after solidification. A total of 32 alloy compositions have been investigated with varying Ag content from 0 to 5 wt.% and varying Cu content from 0 to 1.2 wt.%. The solder spheres had a diameter of approx. 270 μm and were all manufactured under the similar conditions. Subsequent cross-sectioning was carried out in order to analyze the microstructure by optical and electron microscopy as well as Electron Backscatter Diffraction and Energy Dispersive X-ray Spectroscopy. The results allow a comprehensive overview of the dependence of the as-cast microstructure on the solder composition. It is shown that strong changes in microstructure can be caused by small changes in solder composition. In addition, a solidification phenomenon known as cyclic twinning has been found in the samples. Three different microstructures related to that phenomenon will be presented and detailed characterizations of these structures are given in this study. These microstructures differ in their appearance by solidification morphology, phase distribution as well as grain structure and can be described as follows: 1. large dentritic areas of different grain orientations which are characterized by approx. 60° twin boundaries; 2. areas of small β-Sn cells with approx. 60° twin relation and larger intermetallic precipitates; 3. large grains consisting of a β-Sn matrix with very fine intermetallic precipitates and high angle grain boundaries between adjacent grains.

  2. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    NASA Astrophysics Data System (ADS)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  3. Diffusion Tensor Imaging of Pedophilia.

    PubMed

    Cantor, James M; Lafaille, Sophie; Soh, Debra W; Moayedi, Massieh; Mikulis, David J; Girard, Todd A

    2015-11-01

    Pedophilia is a principal motivator of child molestation, incurring great emotional and financial burdens on victims and society. Even among pedophiles who never commit any offense,the condition requires lifelong suppression and control. Previous comparison using voxel-based morphometry (VBM)of MR images from a large sample of pedophiles and controls revealed group differences in white matter. The present study therefore sought to verify and characterize white matter involvement using diffusion tensor imaging (DTI), which better captures the microstructure of white matter than does VBM. Pedophilics ex offenders (n=24) were compared with healthy, age-matched controls with no criminal record and no indication of pedophilia (n=32). White matter microstructure was analyzed with Tract-Based Spatial Statistics, and the trajectories of implicated fiber bundles were identified by probabilistic tractography. Groups showed significant, highly focused differences in DTI parameters which related to participants’ genital responses to sexual depictions of children, but not to measures of psychopathy or to childhood histories of physical abuse, sexual abuse, or neglect. Some previously reported gray matter differences were suggested under highly liberal statistical conditions (p(uncorrected)<.005), but did not survive ordinary statistical correction (whole brain per voxel false discovery rate of 5%). These results confirm that pedophilia is characterized by neuroanatomical differences in white matter microstructure, over and above any neural characteristics attributable to psychopathy and childhood adversity, which show neuroanatomic footprints of their own. Although some gray matter structures were implicated previously, only few have emerged reliably.

  4. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  5. Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazzie, K.E.; Williams, J.J.; Phillips, N.C.

    2012-08-15

    Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIBmore » tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.« less

  6. Utilization of FEM model for steel microstructure determination

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.

    2018-02-01

    Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.

  7. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  8. Interrogating the origin and behavior of magnetic resonance diffusion tensor scalar parameters in the myocardium

    NASA Astrophysics Data System (ADS)

    Abdullah, Osama Mahmoud

    Myocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease.

  9. Effect of Thermochemical Synthetic Conditions on the Structure and Dielectric Properties of Ga1.9Fe0.1O3 Compounds.

    PubMed

    Roy, Swadipta; Ramana, C V

    2018-02-05

    We report on the tunable and controlled dielectric properties of iron (Fe)-doped gallium oxide (Ga 2 O 3 ; Ga 1.9 Fe 0.1 O 3 , referred to as GFO) inorganic compounds. The GFO materials were synthesized using a standard high-temperature, solid-state chemical reaction method by varying the thermochemical processing conditions, namely, different calcination and sintering environments. Structural characterization by X-ray diffraction revealed that GFO compounds crystallize in the β-Ga 2 O 3 phase. The Fe doping has induced slight lattice strain in GFO, which is evident in structural analysis. The effect of the sintering temperature (T sint ), which was varied in the range of 900-1200 °C, is significant, as revealed by electron microscopy analysis. T sint influences the grain size and microstructure evolution, which, in turn, influences the dielectric and electrical properties of GFO compounds. The energy-dispersive X-ray spectrometry and mapping data demonstrate the uniform distribution of the elemental composition over the microstructure. The temperature- and frequency-dependent dielectric measurements indicate the characteristic features that are specifically due to Fe doping in Ga 2 O 3 . The spreading factor and relaxation time, calculated using Cole-Cole plots, are in the ranges of 0.65-0.76 and 10 -4 s, respectively. The results demonstrate that densification and control over the microstructure and properties of GFO can be achieved by optimizing T sint .

  10. Tailoring Morphology and Size of Microstructure and Tensile Properties of Sn-5.5 wt.%Sb-1 wt.%(Cu,Ag) Solder Alloys

    NASA Astrophysics Data System (ADS)

    Dias, Marcelino; Costa, Thiago A.; Soares, Thiago; Silva, Bismarck L.; Cheung, Noé; Spinelli, José E.; Garcia, Amauri

    2018-02-01

    Transient directional solidification experiments, and further optical and scanning electron microscopy analyses and tensile tests, allowed the dependence of tensile properties on the micromorphology and length scale of the dendritic/cellular matrix of ternary Sn-5.5Sb-1Ag and Sn-5.5Sb-1Cu alloys to be determined. Extensive ranges of cooling rates were obtained, which permitted specific values of cooling rate for each sample examined along the length of the casting to be attributed. Very broad microstructural length scales were revealed as well as the presence of either cells or dendrites for the Ag-containing alloy. Hereafter, microstructural spacing values such as the cellular spacing, λ c, and the primary dendritic spacing, λ 1, may be correlated with thermal solidification parameters, that is, the cooling rate and the growth rate. While, for the Cu-containing Sn-Sb alloy, the β-Sn matrix is characterized only by the presence of dendritic arrangements, the Ag-containing Sn-Sb alloy is shown to have high-velocity β-Sn cells associated with high cooling rate regions, i.e., positions closer to the bottom of the alloy casting, with the remaining positions being characterized by a complex growth of β-Sn dendrites. Minor additions of Cu and Ag increase both the yield and ultimate tensile strengths when compared with the corresponding values of the binary Sn-5.5Sb alloy, with a small reduction in ductility. This has been attributed to the homogeneous distribution of the Ag3Sn and Cu6Sn5 intermetallic particles related to smaller λ 1 characterizing the dendritic zones of the ternary Sn-Sb-(Cu,Ag) alloys. In addition, the Ag-modified Sn-Sb alloy exhibited an initial wetting angle consistent with that characterizing the binary Sn-5.5Sb alloy.

  11. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  12. Characterization of the Hot Deformation Behavior of a Newly Developed Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoxia; Yan, Xiaofeng; Duan, Chunhua; Tang, Cunjiang; Pu, Enxiang

    2018-03-01

    To clarify the microstructural evolution and hot workability of GH4282 during hot forming processes, the hot deformation behavior of this superalloy was investigated by isothermal compression tests in the temperature interval of 950-1210 °C and the strain rate range of 0.01-10 s-1 with a true strain of 0.7. The results show that the flow stresses decrease with an increase in the deformation temperature and a decrease in the strain rate. The characteristic of dynamic recrystallization is revealed by the flow curves. The variation rule of the flow stress can be well described by the hyperbolic sine type equation, and the thermal deformation activation energy is determined to be 498.118 kJ/mol. The optimum hot working parameters are 1100-1180 °C and 0.01-0.1 s-1, under which the fine and uniform microstructure can be obtained.

  13. Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy

    NASA Astrophysics Data System (ADS)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.

  14. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei

    2017-11-01

    Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.

  15. Microstructural Constraints on the Formation History of Hibonite in Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Han, J.; Koop, L.; Keller, L. P.; Davis, A. M.

    2017-01-01

    Hibonite is a primary refractory phase occurring in many Ca-Al-rich inclusions (CAIs), typically with spinel and perovskite [1]. Previous mi-crostructural studies of hibonite in CAIs revealed the presence of numerous stacking defects along the (001) plane and correlated non-stoichiometry in hibonite [2,3]. These features are interpreted as complex inter-growths of stoichiometric and Ca-deficient hibonites, as shown by experimental studies of reaction-sintered CaO-Al2O3 compounds [4]. Here, we extend our transmission electron microscope (TEM) studies to hibonite-bearing CAIs in CM chondrites that have been well characterized isotopically [5-7]. In addition, we have undertaken a series of anneal-ing experiments to explore the effect of minor elements (Mg and Ti) on the microstucure of hibonite [8,9,this study]. The results of these experiments are being applied to hibonite in CAIs in order to better understand its formation conditions.

  16. The Microstructure of Lunar Micrometeorite Impact Craters

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  17. Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading

    NASA Astrophysics Data System (ADS)

    Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.

    2009-06-01

    Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.

  18. Texture-Induced Anisotropy in an Inconel 718 Alloy Deposited Using Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.

    2014-01-01

    A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.

  19. Transfer function concept for ultrasonic characterization of material microstructures

    NASA Technical Reports Server (NTRS)

    Vary, A.; Kautz, H. E.

    1986-01-01

    The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

  20. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  1. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1997-12-31

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material.more » Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.« less

  2. General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems

    PubMed Central

    Haghighi, Maryam; Rezaei, Karamatollah

    2012-01-01

    Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details. PMID:22645484

  3. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  4. Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization

    NASA Astrophysics Data System (ADS)

    Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.

    2017-04-01

    This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.

  5. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  6. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  7. Microstructure and inclusion of Ti-6Al-4V fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Huang, Qianli; Hu, Ningmin; Yang, Xing; Zhang, Ranran; Feng, Qingling

    2016-12-01

    Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.

  8. A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.

    PubMed

    Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I

    2017-06-15

    Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.

  9. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneouslymore » in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.« less

  10. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  11. Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2

    NASA Astrophysics Data System (ADS)

    Kumar, J. Vinoth; Karthik, R.; Chen, Shen-Ming; Muthuraj, V.; Karuppiah, Chelladurai

    2016-09-01

    In the present work, potato-like silver molybdate (Ag2MoO4) microstructures were synthesized through a simple hydrothermal method. The microstructures of Ag2MoO4 were characterized by various analytical and spectroscopic techniques such as XRD, FTIR, Raman, SEM, EDX and XPS. Interestingly, the as-prepared Ag2MoO4 showed excellent photocatalytic and electrocatalytic activity for the degradation of ciprofloxacin (CIP) and electrochemical detection of hydrogen peroxide (H2O2), respectively. The ultraviolet-visible (UV-Vis) spectroscopy results revealed that the potato-like Ag2MoO4 microstructures could offer a high photocatalytic activity towards the degradation of CIP under UV-light illumination, leads to rapid degradation within 40 min with a degradation rate of above 98%. In addition, the cyclic voltammetry (CV) and amperometry studies were realized that the electrochemical performance of Ag2MoO4 modified electrode toward H2O2 detection. Our H2O2 sensor shows a wide linear range and lower detection limit of 0.04-240 μM and 0.03 μM, respectively. The Ag2MoO4 modified electrode exhibits a high selectivity towards the detection of H2O2 in the presence of different biological interferences. These results suggested that the development of potato-like Ag2MoO4 microstructure could be an efficient photocatalyst as well as electrocatalyst in the potential application of environmental, biomedical and pharmaceutical samples.

  12. Alterations in biomechanical properties and microstructure of colon wall in early-stage experimental colitis.

    PubMed

    Gong, Xiaohui; Xu, Xiaojuan; Lin, Sisi; Cheng, Yu; Tong, Jianhua; Li, Yongyu

    2017-08-01

    The aim of the current study was to investigate the effects of early-stage dextran sodium sulfate (DSS)-induced mouse colitis on the biomechanical properties and microstructure of colon walls. In the present study, colitis was induced in 8-week-old mice by the oral administration of DSS, and then 10 control and 10 experimental colitis samples were harvested. Uniaxial tensile tests were performed to measure the ultimate tensile strength and ultimate stretches of colon tissues. In addition, histological investigations were performed to characterize changes in the microstructure of the colon wall following treatment. The results revealed that the ultimate tensile stresses were 232±33 and 183±25 kPa for the control and DSS groups, respectively (P=0.001). Ultimate stretches at rupture for the control and DSS groups were 1.43±0.04 and 1.51±0.06, respectively (P=0.006). However, there was no statistically significant difference in tissue stiffness between the two groups. Histological analysis demonstrated high numbers of inflammatory cells infiltrated into the stroma in the DSS group, leading to significant submucosa edema. Hyperplasia was also identified in the DSS-treated submucosa, causing a disorganized microstructure within the colon wall. Furthermore, a large number of collagen fibers in the DSS-treated muscular layer were disrupted, and fiber bundles were thinner when compared with the control group. In conclusion, early-stage experimental colitis alters the mechanical properties and microstructural characteristics of the colon walls, further contributing to tissue remodeling in the pathological process.

  13. Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics

    NASA Astrophysics Data System (ADS)

    Sato, Jun

    Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft biomaterials could lead to erroneous conclusions about microstructural dynamics. Systematic investigations by varying key parameters, like molecular structure, gel concentration, salt concentration, and tracer particle size for microrheology, revealed that subtle variations in molecular architecture can cause major changes in response dynamics. Moreover, the results showed that the method can be applied for studying gel formation and breakup kinetics. The research in this thesis facilitates the design of solvent-responsive soft materials with appropriate microstructural dynamics for in vivo applications like tissue engineering and drug delivery, and can also be applied to study the effect of solvents on self-assembly mechanisms in other responsive soft materials, such as polymer solutions and colloidal dispersions.

  14. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.

    PubMed

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-08-21

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.

  15. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-07-01

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.

  16. Characterizing microstructural features of biomedical samples by statistical analysis of Mueller matrix images

    NASA Astrophysics Data System (ADS)

    He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui

    2017-03-01

    As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.

  17. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films

    NASA Astrophysics Data System (ADS)

    Shen, Haishan; Lee, Suhyeon; Kang, Jun-gu; Eom, Tae-Yil; Lee, Hoojeong; Han, Seungwoo

    2018-01-01

    P-type antimony telluride (Sb2Te3) films of various thicknesses (1-, 6-, 10-, and 16-μm) were deposited on an oxidized Si (100) substrate at 250 °C by effusion cell co-evaporation. Microstructural analysis using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that the grains of the films grew in a mode in which recrystallization was prevalent and grain growth subdued, in contrast to typical film growth, which is often characterized by grain growth. The resultant microstructure exhibited narrow columnar grains, the preferred orientation of which changed with film growth thickness from (1010) with the 1-μm films to (015) for the 6- and 10-μm films, and finally (110) for the 16-μm films. Carrier mobility and the overall thermoelectric properties of the Sb2Te3 films were affected significantly by changes in the film microstructure; this was attributed to the strong anisotropy of Sb2Te3 regarding electrical conductivity. The highest power factor of 3.3 mW/mK2 was observed for the 1-μm-thick Sb2Te3 film.

  18. Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part II: Microstructure Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chengshang; Fang, Zhigang Zak; Bowman, Robert C.

    2015-10-01

    In Part I, the cyclic stabilities of the kinetics of catalyzed MgH2 systems including MgH2–TiH2, MgH2–TiMn2, and MgH2–VTiCr were investigated, showing stable kinetics at 300 °C but deteriorations of the hydrogenation kinetics at temperatures below 150 °C. The present Part II describes the characterization of uncycled and cycled catalyzed MgH2 by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis shows the crystallite sizes of the Mg and MgH2 significantly increased after the cycling. The mean crystallite sizes of the catalysts (TiH2 and VTiCr) increased moderately after the cycling. SEMmore » and TEM imaging were used to compare the microstructures of uncycled (as-milled) and cycled materials, revealing a drastic change of the microstructure after 100 cycles. In particular, results from energy-dispersive spectroscopy (EDS) mapping show that a change of distribution of the catalyst particles in the Mg and MgH2 phase occurred during the cycling.« less

  19. Structure and Infrared Emissivity Properties of the MAO Coatings Formed on TC4 Alloys in K2ZrF6-Based Solution

    PubMed Central

    Li, Ying; Hu, Dan; Xi, Zhengping

    2018-01-01

    Micro-arc oxidation (MAO) ceramic coatings were formed on TC4 alloy surface in silicate and metaphosphate electrolytes based with K2ZrF6 for various concentrations. X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) were used to characterize the phase composition, microstructure and chemical compositions of the coatings. The infrared emissivity of the coatings was measured at 50 °C in a wavelength range of 8–20 µm. The microstructural observations all revealed the typical porousstructures. Moreover, adecline in roughness and thickness of the prepared coatings can be observed when the concentration of K2ZrF6 increases. Combined with the results of XRD and XPS, it was found that all the oxides existed as the amorphous form in the coatings except the TiO2 phase. The coatings exhibited the highest infrared emissivity value (about 0.89) when the concentration of K2ZrF6 was 6 g/L, which was possibly attributed to the defect microstructure and the optimal role of ZrO2. PMID:29414841

  20. Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits

    NASA Astrophysics Data System (ADS)

    Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.

    2018-05-01

    The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.

  1. Hardness, microstructure and surface characterization of laser gas nitrided commercially pure titanium using high power CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvan, J.S.; Subramanian, K.; Nath, A.K.

    Surface nitriding of commercially pure (CP) titanium was carried out using high power CO{sub 2} laser at pure nitrogen and dilute nitrogen (N{sub 2} + Ar) environment. The hardness, microstructure, and melt pool configuration of the laser melted titanium in helium and argon atmosphere was compared with laser melting at pure and dilute nitrogen environment. The hardness of the nitrided layer was of the order of 1000 to 1600 HV. The hardness of the laser melted titanium in the argon and helium atmosphere was 500 to 1000 HV. Using x-ray analysis of the formation of TiN and Ti{sub 2}N phasemore » was identified in the laser nitrided titanium. The presence of nitrogen in the nitrided zone was confirmed using secondary ion mass spectroscopy (SIMS) analysis. The microstructures revealed densely populated dendrites in the sample nitrided at 100% N{sub 2} environment and thinly populated dendrites in dilute environment. The crack intensity was large in the nitrided sample at pure nitrogen, and few cracks were observed in the 50% N{sub 2} + 50% Ar environment.« less

  2. Topographic measurement of buried thin-film interfaces using a grazing resonant soft x-ray scattering technique

    NASA Astrophysics Data System (ADS)

    Gann, Eliot; Watson, Anne; Tumbleston, John R.; Cochran, Justin; Yan, Hongping; Wang, Cheng; Seok, Jaewook; Chabinyc, Michael; Ade, Harald

    2014-12-01

    The internal structures of thin films, particularly interfaces between different materials, are critical to system properties and performance across many disciplines, but characterization of buried interface topography is often unfeasible. In this work, we demonstrate that grazing resonant soft x-ray scattering (GRSoXS), a technique measuring diffusely scattered soft x rays from grazing incidence, can reveal the statistical topography of buried thin-film interfaces. By controlling and predicting the x-ray electric field intensity throughout the depth of the film and simultaneously the scattering contrast between materials, we are able to unambiguously identify the microstructure at different interfaces of a model polymer bilayer system. We additionally demonstrate the use of GRSoXS to selectively measure the topography of the surface and buried polymer-polymer interface in an organic thin-film transistor, revealing different microstructure and markedly differing evolution upon annealing. In such systems, where only indirect control of interface topography is possible, accurate measurement of the structure of interfaces for feedback is critically important. While we demonstrate the method here using organic materials, we also show that the technique is readily extendable to any thin-film system with elemental or chemical contrasts exploitable at absorption edges.

  3. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging.

    PubMed

    Callaghan, Martina F; Freund, Patrick; Draganski, Bogdan; Anderson, Elaine; Cappelletti, Marinella; Chowdhury, Rumana; Diedrichsen, Joern; Fitzgerald, Thomas H B; Smittenaar, Peter; Helms, Gunther; Lutti, Antoine; Weiskopf, Nikolaus

    2014-08-01

    A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19-75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging☆

    PubMed Central

    Callaghan, Martina F.; Freund, Patrick; Draganski, Bogdan; Anderson, Elaine; Cappelletti, Marinella; Chowdhury, Rumana; Diedrichsen, Joern; FitzGerald, Thomas H.B.; Smittenaar, Peter; Helms, Gunther; Lutti, Antoine; Weiskopf, Nikolaus

    2014-01-01

    A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19–75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration. PMID:24656835

  5. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less

  6. Microstructural characterization of pressed HMX material sets at differing densities

    NASA Astrophysics Data System (ADS)

    Molek, C. D.; Welle, E. J.; Wixom, R. R.; Ritchey, M. B.; Samuels, P.; Horie, Y.

    2017-01-01

    The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material - Class 3 - than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.

  7. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less

  8. Characterization of the microstructure of Nb-1wt.%Zr-0.1wt.%C tubes as affected by thermomechanical processing

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1993-01-01

    Microstructure of Nb-1Zr-0.1C tubes were characterized as affected by extrusion temperature of the tube shell and its thermomechanical processing to tubing. Two tube shells of about 40-mm outside diameter (OD) and 25-mm inside diameter (ID) were extruded 8:1 from a vacuum arc-melted ingot at 1900 and 1550 K. Two different OD tubes of approximately 0.36-mm wall thickness were fabricated from each tube shell by a series of 26 cold drawing operations with two in process anneals. The microstructure of tube shells and the tubing before and after a 2-step heat treatment were characterized. Residue extracted chemically from each sample was also analyzed to identify the precipitates. The results concerning the effect of the initial extrusion temperature and subsequent processing on the microstructure of the tubes are presented together with a review of results from similar work on Nb-1Zr-0.1C sheet stock.

  9. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure.

    PubMed

    Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J

    2016-02-15

    Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques. Published by Elsevier Inc.

  10. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    NASA Astrophysics Data System (ADS)

    Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.

    2007-04-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.

  11. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  12. Process Optimization and Microstructure Characterization of Ti6Al4V Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    junfeng, Li; zhengying, Wei

    2017-11-01

    Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting (SLM) were investigated in this article. The relative density of sampled fabricated by SLM is influenced by the main process parameters, including laser power, scan speed and hatch distance. The volume energy density (VED) was defined to account for the combined effect of the main process parameters on the relative density. The results shown that the relative density changed with the change of VED and the optimized process interval is 55˜60J/mm3. Furthermore, compared with laser power, scan speed and hatch distance by taguchi method, it was found that the scan speed had the greatest effect on the relative density. Compared with the microstructure of the cross-section of the specimen at different scanning speeds, it was found that the microstructures at different speeds had similar characteristics, all of them were needle-like martensite distributed in the β matrix, but with the increase of scanning speed, the microstructure is finer and the lower scan speed leads to coarsening of the microstructure.

  13. Microstructural Integrity of the Corpus Callosum Linked with Neuropsychological Performance in Adolescents

    ERIC Educational Resources Information Center

    Fryer, Susanna L.; Frank, Lawrence R.; Spadoni, Andrea D.; Theilmann, Rebecca J.; Nagel, Bonnie J.; Schweinsburg, Alecia D.; Tapert, Susan F.

    2008-01-01

    Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16-18). Fractional anisotropy (FA) and mean diffusion (MD)…

  14. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  15. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    PubMed Central

    Colangelo, Francesco; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Cioffi, Raffaele

    2013-01-01

    The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight) and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too. PMID:28811418

  16. Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Hassan, S. Fida; Paramsothy, M.; Gasem, Z. M.; Patel, F.; Gupta, M.

    2014-08-01

    Room-temperature tensile properties of AZ31 alloy have significantly been improved when reinforced with carbon nanotube via ingot metallurgy process. However, high-temperature (up to 250 °C) elongation-to-failure tensile test of the developed nanocomposite revealed a considerable softening in the AZ31 alloy matrix accompanied by an incredible ductility increment (up to 132%). Microstructural characterization of the fractured samples revealed that the dynamic recrystallization process has induced a complete recrystallization in the AZ31 alloy at a lower temperature (150 °C) followed by substantial grain growth at a higher temperature used in this study. Fractography on the fractured surfaces revealed that the room-temperature mixed brittle-ductile modes of fracture behavior of AZ31 alloy have transformed into a complete ductile mode of fracture at high temperature.

  17. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  18. Microstructure characterization of onion (A.cepa) peels and thin films for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Abodunrin, T.; Boyo, A.; Usikalu, M.; Obafemi, L.; Oladapo, O.; Kotsedi, L.; Yenus, Z.; Maaza, M.

    2017-03-01

    A.cepa peels are obtained from mature onion bulbs. Because of the continuous need for energy, alternative avenues for producing energy are gaining importance. The motivation for this work is based on an urgent need to source energy from readily available waste materials like domestic onion peels. Dye sensitized solar cells (DSSCs) fabricated via doctor blade method and high temperature sintering from waste (onion peels) are investigated for their ability to convert solar to electrical energy. The charge carriers were revealed under phytochemical screening. Functional groups of compounds present in A.cepa peel were analyzed with Fourier transform in infrared (FTIR). The influence of different electrolyte sensitizer is observed on the DSSCs under standard air mass conditions of 1.5 AM. The microstructure properties of these A.cepa DSSCs were explored using scanning electron microscope with energy dispersive spectroscopy (SEM/EDS), x-ray diffraction and Fluorecence spectroscopy (XRF). The interfacial boundary between A.cepa dye, TiO2 framework of TiO2 and indium doped tin oxide (ITO) reveals several prominent anatase and rutile peaks. Photoelectric results, revealed dye-sensitized solar cells with a maximum power output of 126 W and incident photon to conversion energy (IPCE) of 0.13%.This work has established that A.cepa peels can be used as a source of micro-energy generation.

  19. Rabbit cornea microstructure response to changes in intraocular pressure visualized by using nonlinear optical microscopy.

    PubMed

    Wu, Qiaofeng; Yeh, Alvin T

    2008-02-01

    To characterize the microstructural response of the rabbit cornea to changes in intraocular pressure (IOP) by using nonlinear optical microscopy (NLOM). Isolated rabbit corneas were mounted on an artificial anterior chamber in series with a manometer and were hydrostatically pressurized by a reservoir. The chamber was mounted on an upright microscope stage of a custom-built NLOM system for corneal imaging without using exogenous stains or dyes. Second harmonic generation in collagen was used to image through the full thickness of the central corneal stroma at IOPs between 5 and 20 mm Hg. Microstructural morphology changes as a function of IOP were used to characterize the depth-dependent response of the central cornea. Regional collagen lamellae architecture through the full thickness of the stroma was specifically imaged as a function of IOP. Hypotensive corneas showed gaps between lamellar structures that decreased in size with increasing IOP. These morphologic features appear to result from interwoven lamellae oriented along the anterior-posterior axis and parallel to the cornea surface. They appear throughout the full thickness and disappear with tension in the anterior but persist in the posterior central cornea, even at hypertensive IOP. NLOM reveals interwoven collagen lamellae sheets through the full thickness of the rabbit central cornea oriented along the anterior-posterior axis and parallel to the surface. The nondestructive nature of NLOM allows 3-dimensional imaging of stromal architecture as a function of IOP in situ. Collagen morphologic features were used as an indirect measure of depth-dependent mechanical response to changes in IOP.

  20. Synthesis and viscoelastic characterization of microstructurally aligned Silk fibroin sponges.

    PubMed

    Panda, Debojyoti; Konar, Subhajit; Bajpai, Saumendra K; Arockiarajan, A

    2017-07-01

    Silk fibroin (SF) is a model candidate for use in tissue engineering and regenerative medicine owing to its bio-compatible mechanochemical properties. Despite numerous advances made in the fabrication of various biomimetic substrates using SF, relatively few clinical applications have been designed, primarily due to the lack of complete understanding of its constitutive properties. Here we fabricate microstructurally aligned SF sponge using the unidirectional freezing technique wherein a novel solvent-processing technique involving Acetic acid is employed, which obviates the post-treatment of the sponges to induce their water-stability. Subsequently, we quantify the anisotropic, viscoelastic response of the bulk SF sponge samples by performing a series of mechanical tests under uniaxial compression over a wide range of strain rates. Results for these uniaxial compression tests in the finite strain regime through ramp strain and ramp-relaxation loading histories applied over two orders of strain rate magnitude show that microstructural anisotropy is directly manifested in the bulk viscoelastic solid-like response. Furthermore, the experiments reveal a high degree of volume compressibility of the sponges during deformation, and also evince for their remarkable strain recovery capacity under large compressive strains during strain recovery tests. Finally, in order to predict the bulk viscoelastic material properties of the fabricated and pre-characterized SF sponges, a finite strain kinematics-based, nonlinear, continuum model developed within a thermodynamically-consistent framework in a parallel investigation, was successfully employed to capture the viscoelastic solid-like, transversely isotropic, and compressible response of the sponges macroscopically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microstructure Characterization of RERTR Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B. D. Miller; D. D. Keiser

    2008-09-01

    A variety of phases have the potential to develop in the irradiated fuels for the reduced enrichment research test reactor (RERTR) program. To study the radiation stability of these potential phases, three depleted uranium alloys were cast. The phases of interest were identified including U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, UAl4, and U6Mo4Al43. These alloys were irradiated with 2.6 MeV protons at 200ºC up to 3.0 dpa. The microstructure is characterized using SEM and TEM. Microstructural characterization for an archive dispersion fuel plate (U-7Mo fuel particles in Al-2%Si cladding) was also carried out. TEM sample preparation for the irradiated dispersion fuel has beenmore » developed.« less

  2. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  3. Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature

    NASA Astrophysics Data System (ADS)

    Keya, Tahmina

    This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be considered when suitable as far as design modification is concerned. Above all, this study reveals important information about the pattern of microstructure, thus heat transfer mechanism inside a part which is useful to understand the SLM process.

  4. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams. Revision 1

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with three quadrilateral, six pentagonal faces and two hexagonal faces consistent with the 3-6-2 Matzke cell. A compilation of 90 years of experimental data reveals that the average number of cell faces decreases linearly with the increasing ratio of quadrilateral to pentagonal faces. It is concluded that the Kelvin model is not supported by these experimental data.

  5. Microstructural Characterization of the Heat-Affected Zones in Grade 92 Steel Welds: Double-Pass and Multipass Welds

    NASA Astrophysics Data System (ADS)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2018-04-01

    The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.

  6. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Treesearch

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  7. Imaging subtle microstructural variations in ceramics with precision ultrasonic velocity and attenuation measurements

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Baaklini, George Y.

    1987-01-01

    Acoustic images of a silicon carbide ceramic disk were obtained using a precision scanning contact pulse echo technique. Phase and cross-correlation velocity, and attenuation maps were used to form color images of microstructural variations. These acoustic images reveal microstructural variations not observable with X-ray radiography.

  8. Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization.

    PubMed

    Zou, Xiao-Qiang; Guo, Zheng; Huang, Jian-Hua; Jin, Qing-Zhe; Cheong, Ling-Zhi; Wang, Xing-Guo; Xu, Xue-Bing

    2012-07-25

    The physicochemical properties of human milk fat globules (MFG) at different lactation stages from Danish mothers and the microstructure changes of MFG membrane (MFGM) at varied temperatures were investigated, and the relationship between chemical composition and the microstructure of MFGM was elucidated. The fat content in MFG was found to be significantly increased as lactation progressed, and colostrum MFG had the largest mean diameter of 5.75 ± 0.81 μm and the lowest ζ potential of -5.60 ± 0.12 mV. Chemical composition analyses of MFG revealed the following: (i) Colostrum milk fat constituted higher content in PUFAs (ω-6, and long-chain ω-6 and ω-3) than transitional and mature milk fats, with the corresponding lower content of SFA in its sn-2 position. (ii) The content of polar lipids among total lipids varied during lactation course (maximized at transitional stage); however, in terms of subclasses of polar lipids, no significant change of the relative content of sphingomyelin was observed, while the content of phosphatidycholine in mature milk was higher than that in colostrum and transitional milk. (iii) Inspection of fatty acid composition in phospholipids from different lactation milk revealed no remarkable and regular changes could be generalized; and no obvious difference of the morphologies of MFGM at different lactation stages can be visualized. An investigation of the microstructure change of MFGM vs temperature demonstrated that the segregated domains became larger as temperature decreased to 4 °C, while it became smaller when increased to 37 °C. This phenomenon indicated that, in addition to sphingimyelin and cholesterol, phospholipids might also contribute to increasing the segregated domains at lower temperature, while, at elevated temperature, these domains could be diminished, most likely due to a restructuring or distributing of sphingimyelin and cholesterol.

  9. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  10. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    NASA Astrophysics Data System (ADS)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  11. Application of Image Analysis for Characterization of Spatial Arrangements of Features in Microstructure

    NASA Technical Reports Server (NTRS)

    Louis, Pascal; Gokhale, Arun M.

    1995-01-01

    A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.

  12. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  13. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  14. Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children.

    PubMed

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Rekik, Islem; Zhang, Jishui; Zhang, Yue; Tian, Hongwei; Peng, Yun; He, Huiguang

    2016-05-01

    Tourette syndrome (TS) is a neurological disorder that causes uncontrolled repetitive motor and vocal tics in children. Examining the neural basis of TS churned out different research studies that advanced our understanding of the brain pathways involved in its development. Particularly, growing evidence points to abnormalities within the fronto-striato-thalamic pathways. In this study, we combined Tract-Based Spatial Statistics (TBSS) and Atlas-based regions of interest (ROI) analysis approach, to investigate the microstructural diffusion changes in both deep and superficial white matter (SWM) in TS children. We then characterized the altered microstructure of white matter in 27 TS children in comparison with 27 age- and gender-matched healthy controls. We found that fractional anisotropy (FA) decreases and radial diffusivity (RD) increases in deep white matter (DWM) tracts in cortico-striato-thalamo-cortical (CSTC) circuit as well as SWM. Furthermore, we found that lower FA values and higher RD values in white matter regions are correlated with more severe tics, but not tics duration. Besides, we also found both axial diffusivity and mean diffusivity increase using Atlas-based ROI analysis. Our work may suggest that microstructural diffusion changes in white matter is not only restricted to the gray matter of CSTC circuit but also affects SWM within the primary motor and somatosensory cortex, commissural and association fibers. Hum Brain Mapp 37:1903-1919, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ming-Liang, E-mail: mlzhu@ecust.edu.cn; Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{submore » 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.« less

  16. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    PubMed

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    PubMed

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  18. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  19. Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints

    NASA Astrophysics Data System (ADS)

    Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.

    2017-04-01

    The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.

  20. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  1. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    PubMed

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  2. Microstructures and tribological properties of GLC coated 100Cr6 bearing steels

    NASA Astrophysics Data System (ADS)

    Kong, Yonghua; Chen, Qiao; Wang, Long

    2017-11-01

    Low friction and hard amorphous carbon films were fabricated on 100Cr6 bearing steels via the unbalanced magnetron sputtering method. This paper studied the effect of graphite-like carbon (GLC) coatings on the wear resistance of 100Cr6, which are widely used in textile rings. The microstructures of the GLC coatings were investigated using scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive Spectrometer (EDS) and Raman. A comparative analysis using a ball-on-disc tribometer was carried out on 100Cr6 bearing steels with GLC coatings and those that had chromium-electroplated coatings. It was demonstrated that the GLC films on 100Cr6 presented better tribological properties, and the corresponding wear mechanisms were investigated. The tribological properties of GLC films under cryogenic treatment (-196 °C), annealing at temperatures of 300 °C and 350 °C were characterized. It was revealed that the friction coefficients decreased after using three kinds of treatments above.

  3. Failure Resistance of Fiber-Reinforced Ultra-High Performance Concrete (FRUHPC) Subjected to Blast Loading

    NASA Astrophysics Data System (ADS)

    Ellis, Brett; Zhou, Min; McDowell, David

    2011-06-01

    As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.

  4. Bacterial Trapping in Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2016-11-01

    Swimming bacteria inhabit heterogeneous, microstructured environments that are often characterized by complex, ambient flows. Understanding the physical mechanisms underlying cell transport in these systems is key to controlling important processes such as bioremediation in porous soils and infections in human tissues. We study the transport of swimming bacteria (Bacillus subtilis) in quasi-two-dimensional porous microfluidic channels with a range of periodic microstructures and flow strengths. Measured cell trajectories and the local cell number density reveal the formation of filamentous cell concentration patterns within the porous structures. The local cell densification is maximized at shear rates in the range 1-10 s-1, but widely varies with pore geometry and flow topology. Experimental observations are complemented by Langevin simulations to demonstrate that the filamentous patterns result from a coupling of bacterial motility to the complex flow fields via Jeffery orbits, which effectively 'trap' the bacteria on streamlines. The resulting microscopic heterogeneity observed here suppresses bacterial transport and likely has implications for both mixing and cell nutrient uptake in porous media flows. NSF CBET-1511340.

  5. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  6. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  7. Chemical vapor deposition of Mo tubes for fuel cladding applications

    DOE PAGES

    Beaux, Miles F.; Vodnik, Douglas R.; Peterson, Reuben J.; ...

    2018-01-31

    In this study, chemical vapor deposition (CVD) techniques have been evaluated for fabrication of free-standing 0.25 mm thick molybdenum tubes with the end goal of nuclear fuel cladding applications. In order to produce tubes with the wall thickness and microstructures desirable for this application, long deposition durations on the order of 50 h with slow deposition rates were employed. A standard CVD method, involving molybdenum pentachloride reduction by hydrogen, as well as a fluidized-bed CVD (FBCVD) method was applied towards these objectives. Characterization of the tubes produced in this manner revealed regions of material with fine grain microstructure and wallmore » thickness suitable for fuel cladding applications, but lacking necessary uniformity across the length of the tubes. Finally, a path forward for the production of freestanding molybdenum tubes that possess the desired properties across their entire length has been identified and can be accomplished by future optimization of the deposition system.« less

  8. Chemical vapor deposition of Mo tubes for fuel cladding applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaux, Miles F.; Vodnik, Douglas R.; Peterson, Reuben J.

    In this study, chemical vapor deposition (CVD) techniques have been evaluated for fabrication of free-standing 0.25 mm thick molybdenum tubes with the end goal of nuclear fuel cladding applications. In order to produce tubes with the wall thickness and microstructures desirable for this application, long deposition durations on the order of 50 h with slow deposition rates were employed. A standard CVD method, involving molybdenum pentachloride reduction by hydrogen, as well as a fluidized-bed CVD (FBCVD) method was applied towards these objectives. Characterization of the tubes produced in this manner revealed regions of material with fine grain microstructure and wallmore » thickness suitable for fuel cladding applications, but lacking necessary uniformity across the length of the tubes. Finally, a path forward for the production of freestanding molybdenum tubes that possess the desired properties across their entire length has been identified and can be accomplished by future optimization of the deposition system.« less

  9. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    DOE PAGES

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less

  10. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  11. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Guo, Xingwu; Yang, Haiyan; Dai, JiChun; Zhu, Rongyu; Gong, Jia; Peng, Liming; Ding, Wenjiang

    2014-01-01

    The electrodeposition mechanism, microstructures and corrosion resistances of Ni-Cu alloy coatings on Cu substrate were investigated in a choline chloride-urea (1:2 molar ratio) eutectic-based ionic liquid (1:2 ChCl-urea IL) containing nickel and copper chlorides. Cyclic voltammetry showed that the onset reduction potentials for Cu (∼-0.32 V) and for Ni (∼-0.47 V) were close to each other, indicating that Ni-Cu co-deposition could be easily achieved in the absence of complexing agent which was indispensable in aqueous plating electrolyte. Chronoamperometric investigations revealed that Ni-Cu deposits followed the three-dimensional instantaneous nucleation/growth mechanism, thus producing a solid solution. The compositions, microstructures and corrosion resistances of Ni-Cu alloy coatings were significantly dependent on the deposition current densities. Ni-Cu alloy coatings were α-Ni(Cu) solid solutions, and the coating containing ∼17.6 at.% Cu exhibited the best corrosion resistance because of its dense and crack-free structure.

  12. The effect of hot isostatic pressing parameters on microstructure and mechanical properties of Eurofer powder HIPed material

    NASA Astrophysics Data System (ADS)

    Gentzbittel, J. M.; Chu, I.; Burlet, H.

    2002-12-01

    The production of reduced activation ferritic/martensitic (RAFM) steel by powder metallurgy and high isostatic pressing (HIP) offers numerous advantages for different nuclear applications. The objective of this work is to optimise the Eurofer powder HIP process in order to obtain RAFM solid HIPed steel with similar mechanical properties to those of a forged material. Starting from the forged solid Eurofer steel batch, the material is atomized and the Eurofer powder is characterized in terms of granulometry, chemical composition, surface oxides, etc. Different compaction HIP cycle parameters in the temperature range (950-1100 °C) are tested. The chemical composition of the HIPed material is comparable to the initial forged Eurofer. All the obtained materials are fully dense and the microstructure of the compacted material is well martensitic. The prior austenite grain size seems to be constant in this temperature range. The mechanical tests performed at room temperature reveal acceptable hardness, tensile and Charpy impact properties regarding the ITER specification.

  13. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  14. Effect of aluminum contents on sputter deposited CrAlN thin films

    NASA Astrophysics Data System (ADS)

    Vyas, A.; Zhou, Z. F.; Shen, Y. G.

    2018-02-01

    Pure CrN and CrAlN films with varied Al concentrations were prepared onto Si(100) substrates by an unbalanced reactive dc-magnetron sputtering system. The crystal structure, chemical states, and microstructure of the films were characterized by X-ray diffraction, X-ray photoelectron microscopy, transmission electron microscopy whereas mechanical properties were determined by nano-indentation measurements. XRD results showed a prominent (200) reflection in both CrN and CrAlN films. Results demonstrate that CrAlN films formed a solid solution and doping of Al atoms replace the Cr atoms affecting the lattice parameter and crystallization of the films. All Al doped films were of B1 NaCl-type structure, demonstrating that CrAlN films primarily crystallized in cubic structure. Microstructural investigation by TEM for a CrAlN film containing Al content of 24.1 at.%, revealed that there exists an amorphous/nanocrystalline domains (grains of about ∼ 11 nm) and hardness increases 22% when compared with pure CrN film.

  15. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  16. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions

    PubMed Central

    Sachse, F. B.

    2015-01-01

    Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 μm. This allowed extensive analyses revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control versus infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale. PMID:26399990

  17. Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mosnje (Slovenia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, Sabina, E-mail: sabina.kramar@rescen.si; Zalar, Vesna; Urosevic, Maja

    This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES.more » Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: {yields} Mineral and microstructural characterizations of brick-lime mortars. {yields} Hydraulic character of mortars in Roman baths complex. {yields} Reaction rims were observed around brick fragments and dolomitic grains. {yields} Higher content of brick particles yielded a higher BET surface area. {yields} Addition of brick particles increased porosity and diminished pore size diameter.« less

  18. Fast preparation of flower-like Bi{sub 4}Ge{sub 3}O{sub 12} microstructures via a microwave-assisted hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Qian; Zhang, Lei; Chen, Xue-Tai, E-mail: xtchen@netra.nju.edu.cn

    In the present paper, we report a facile and fast microwave-assisted solution-phase approach for the preparation of flower-like bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}) microstructures, employing bismuth nitrate pentahydrate (Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O) and germanium dioxide (GeO{sub 2}) as starting materials. The phase and morphology of the products were characterized by powder X-ray diffraction, X-ray photoelectron spectrum, energy dispersive spectrometry, and scanning electron microscopy. Some control experiments have been carried out to reveal the influencing factors involved in the formation, which suggested that reaction time, reaction temperature, the volume of ammonia and glycerol play crucial roles in the formation ofmore » the flower-like Bi{sub 4}Ge{sub 3}O{sub 12}. The optical absorption property of the product has been investigated. - Highlights: Black-Right-Pointing-Pointer Flower-like Bi4Ge3O12 was synthesized via a microwave-assisted solution route. Black-Right-Pointing-Pointer The phases and morphologies of the product have been characterized. Black-Right-Pointing-Pointer The optical property of the product has been studied.« less

  19. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-07-01

    Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025-1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  20. Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-08-01

    The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.

  1. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)

    DOE PAGES

    Galarraga, Haize; Lados, Diana A.; Dehoff, Ryan R.; ...

    2016-01-01

    Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology that makes possible the fabrication of three dimensional near-net-shaped parts directly from computer models. EBM technology has been in continuously updating, obtaining optimized properties of the processed alloys. Ti-6Al-4V titanium alloy is the most widely used and studied alloy for this technology and is the focus of this work. Several research works have been completed to study the mechanisms of microstructure formation as well as its influence on mechanical properties. However, the relationship is not completely understood, and more systematic research work is necessary in order tomore » attain a better understanding of these features. In this work, samples fabricated at different locations, orientations, and distances from the build platform have been characterized, studying the relationship of these variables with the resulting material intrinsic characteristics and properties (surface topography, microstructure, porosity, micro-hardness and static mechanical properties). This study has revealed that porosity is the main factor controlling mechanical properties relative to the other studied variables. Therefore, in future process developments, decreasing of the porosity should be considered as the primary goal in order to improve mechanical properties.« less

  2. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao

    Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less

  4. The effect of silica toward polymer membrane for water separation process

    NASA Astrophysics Data System (ADS)

    Jamalludin, Mohd Riduan; Rosli, M. U.; Ishak, Muhammad Ikman; Khor, C. Y.; Shahrin, Suhaimi; Ismail, Ras Izzati; Lailina N., M.; Leng Y., L.; Jahidi, H.

    2017-09-01

    The aim of this present work was to investigate the effect of different percentage rice husk silica (RHS) particles composition towards polymer mixed matrix membrane microstructure and performance in water separation process. The polymer membranes were prepared by a phase inversion method using polysulfone (PSf), N-methyl-2-pyrrolidone (NMP) as solvent, distilled water as non-solvent and fixed RHS at 400°C as an additive. The microstructures of PSf/PEG/RHS sample were characterized by performing scanning electron microscope (SEM). The performance was measured by using pure water flux and humic acid for the rejection test. The analyzed result of SEM analysis revealed that the addition of RHS obviously improved the microstructure of the membrane especially at the top and sub layer at the range of 1 until 3 wt. %. This was proven by the pure water flux (PWF) value measured from 114.47 LMH to 154.04 LMH and rejection from value 83% to 96% at this specified range substantially higher than the mixed matrix membrane with synthetic silica. In fact, the presence of RHS particles not only improved the properties and performance of membrane but also possess biodegradable properties which can minimize the pollution and provide a membrane green technology system.

  5. Corrigendum to "Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams"

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15% and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50-57% of the cell faces were pentagonal while 24-28% were quadrilateral and 15-22% were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 Matzke cell

  6. Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy

    PubMed Central

    Raub, Christopher B.; Suresh, Vinod; Krasieva, Tatiana; Lyubovitsky, Julia; Mih, Justin D.; Putnam, Andrew J.; Tromberg, Bruce J.; George, Steven C.

    2007-01-01

    Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth (∼1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4–37°C) and glutaraldehyde to manipulate collagen hydrogel fiber diameter, space-filling properties, and cross-link density. Multiphoton microscopy and scanning electron microscopy reveal that as polymerization temperature decreases (37–4°C) fiber diameter and pore size increase, whereas hydrogel storage modulus (G′, from 23 ± 3 Pa to 0.28 ± 0.16 Pa, respectively, mean ± SE) and mean SHG decrease (minimal change in TPF). In contrast, glutaraldehyde significantly increases the mean TPF signal (without impacting the SHG signal) and the storage modulus (16 ± 3.5 Pa before to 138 ± 40 Pa after cross-linking, mean ± SD). We conclude that SHG and TPF can characterize differential microscopic features of the collagen hydrogel that are strongly correlated with bulk mechanical properties. Thus, optical imaging may be a useful noninvasive tool to assess tissue mechanics. PMID:17172303

  7. Microstructural analysis of laser weld fusion zone in Haynes 282 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osoba, L.O.; Ding, R.G.; Ojo, O.A., E-mail: ojo@cc.umanitoba.ca

    Analytical electron microscopy and spectroscopy analyses of the fusion zone (FZ) microstructure in autogenous laser beam welded Haynes 282 (HY 282) superalloy were performed. The micro-segregation patterns observed in the FZ indicate that Co, Cr and Al exhibited a nearly uniform distribution between the dendrite core and interdendritic regions while Ti and Mo were rejected into the interdendritic liquid during the weld solidification. Transmission electron diffraction analysis and energy dispersive X-ray microanalysis revealed the second phase particles formed along the FZ interdendritic region to be Ti-Mo rich MC-type carbide particles. Weld FZ solidification cracking, which is sometimes associated with themore » formation of {gamma}-{gamma}' eutectic in {gamma}' precipitation strengthened nickel-base superalloys, was not observed in the HY 282 superalloy. Modified primary solidification path due to carbon addition in the newly developed superalloy is used to explain preclusion of weld FZ solidification cracking in the material. - Highlights: Black-Right-Pointing-Pointer A newly developed superalloy was welded by CO{sub 2} laser beam joining technique. Black-Right-Pointing-Pointer Electron microscopy characterization of the weld microstructure was performed. Black-Right-Pointing-Pointer Identified interdendritic microconstituents consist of MC-type carbides. Black-Right-Pointing-Pointer Modification of primary solidification path is used to explain cracking resistance.« less

  8. Application of Electron Backscatter Diffraction to evaluate the ASR risk of concrete aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rößler, C., E-mail: christiane.roessler@uni-weimar.de; Möser, B.; Giebson, C.

    Alkali-Silica Reaction (ASR) is a frequent cause of reduced concrete durability. Eliminating the application of alkali reactive aggregates would reduce the quantity of ASR concrete deterioration in the field. This study introduces an Electron Backscatter Diffraction (EBSD) technique to distinguish the ASR risk of slow-late reacting aggregates by measuring microstructural properties of quartz. Quantifying the amount of quartz grain boundaries and the associated misorientation of grains can thereby be used to differentiate microstructures bearing an ASR risk. It is also shown that dissolution of quartz in high pH environments occurs along quartz grain and subgrain boundaries. Results of EBSD analysismore » are compared with ASR performance testing on concrete prisms and optical light microscopy characterization of quartz microstructure. EBSD opens new possibilities to quantitatively characterize microstructure of quartz in concrete aggregates with respect to ASR. This leads to a better understanding on the actual cause of ASR.« less

  9. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  10. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  11. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  12. Microstructure characterization and phase transformation kinetic study of ball-milled m-ZrO 2-30 mol% a-TiO 2 mixture by Rietveld method

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dutta, H.

    2005-05-01

    High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.

  13. Transport properties of porous media from the microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torquato, S.

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  14. Microstructural and mechanical characterization of scarred vocal folds.

    PubMed

    Heris, Hossein K; Miri, Amir K; Ghattamaneni, Nageswara R; Li, Nicole Y K; Thibeault, Susan L; Wiseman, Paul W; Mongeau, Luc

    2015-02-26

    The goal of this study was to characterize the vocal folds microstructure and elasticity using nonlinear laser scanning microscopy and atomic force microscopy-based indentation, respectively. As a pilot study, the vocal folds of fourteen rats were unilaterally injured by full removal of lamina propria; the uninjured folds of the same animals served as controls. The area fraction of collagen fibrils was found to be greater in scarred tissues two months after injury than the uninjured controls. A novel mathematical model was also proposed to relate collagen concentration and tissue bulk modulus. This work presents a first step towards systematic investigation of microstructural and mechanical characteristics in scarred vocal fold tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiali, E-mail: j.zhang@mpie.de; Morsdorf, Lutz, E-mail: l.morsdorf@mpie.de; Tasan, Cemal Cem, E-mail: c.tasan@mpie.de

    In-situ scanning electron microscopy observations of the microstructure evolution during heat treatments are increasingly demanded due to the growing number of alloys with complex microstructures. Post-mortem characterization of the as-processed microstructures rarely provides sufficient insight on the exact route of the microstructure formation. On the other hand, in-situ SEM approaches are often limited due to the arising challenges upon using an in-situ heating setup, e.g. in (i) employing different detectors, (ii) preventing specimen surface degradation, or (iii) controlling and measuring the temperature precisely. Here, we explore and expand the capabilities of the “mid-way” solution by step-wise microstructure tracking, ex-situ, atmore » selected steps of heat treatment. This approach circumvents the limitations above, as it involves an atmosphere and temperature well-controlled dilatometer, and high resolution microstructure characterization (using electron channeling contrast imaging, electron backscatter diffraction, atom probe tomography, etc.). We demonstrate the capabilities of this approach by focusing on three cases: (i) nano-scale carbide precipitation during low-temperature tempering of martensitic steels, (ii) formation of transformation-induced geometrically necessary dislocations in a dual-phase steel during intercritical annealing, and (iii) the partial recrystallization of a metastable β-Ti alloy. - Highlights: • A multi-probe method to track microstructures during heat treatment is developed. • It enables the analysis of various complex phenomena, even those at atomistic scale. • It circumvents some of the free surface effects of classical in-situ experiments.« less

  16. XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vincentis, N.S., E-mail: devincentis@ifir-conic

    The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less

  17. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation

    NASA Astrophysics Data System (ADS)

    Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.

    2017-01-01

    The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.

  18. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGES

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  19. Microstructural characterization of pipe bomb fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Otto, E-mail: gregory@egr.uri.edu; Oxley, Jimmie; Smith, James

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of themore » smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.« less

  20. Microstructural characterization of catalysis product of nanocement based materials: A review

    NASA Astrophysics Data System (ADS)

    Sutan, Norsuzailina Mohamed; Izaitul Akma Ideris, Nur; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur

    2018-03-01

    Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.

  1. Adaptive characterization of recrystallization kinetics in IF steel by electron backscatter diffraction.

    PubMed

    Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek

    2013-12-01

    In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  2. Surface microstructure of bitumen characterized by atomic force microscopy.

    PubMed

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition, critical technical challenges associated with AFM characterization of bitumen surface structures are discussed, with possible solutions recommended. For future work, combining AFM with other chemical analysis tools that can generate comparable high resolution to AFM would provide an avenue to linking bitumen's chemistry to its microscopic morphological and mechanical properties and consequently benefit the efforts of developing structure-related models for bituminous materials across the different length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less

  4. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  5. Bulk Nanolaminated Nickel: Preparation, Microstructure, Mechanical Property, and Thermal Stability

    NASA Astrophysics Data System (ADS)

    Liu, Fan; Yuan, Hao; Goel, Sunkulp; Liu, Ying; Wang, Jing Tao

    2018-02-01

    A bulk nanolaminated (NL) structure with distinctive fractions of low- and high-angle grain boundaries ( f LAGBs and f HAGBs) is produced in pure nickel, through a two-step process of primary grain refinement by equal-channel angular pressing (ECAP), followed by a secondary geometrical refinement via liquid nitrogen rolling (LNR). The lamellar boundary spacings of 2N and 4N nickel are refined to 40 and 70 nm, respectively, and the yield strength of the NL structure in 2N nickel reaches 1.5 GPa. The impacts of the deformation path, material purity, grain boundary (GB) misorientation, and energy on the microstructure, refinement ability, mechanical strength, and thermal stability are investigated to understand the inherent governing mechanisms. GB migration is the main restoration mechanism limiting the refinement of an NL structure in 4N nickel, while in 2N nickel, shear banding occurs and mediates one-fifth of the total true normal rolling strain at the mesoscale, restricting further refinement. Three typical structures [ultrafine grained (UFG), NL with low f LAGBs, and NL with high f LAGBs] obtained through three different combinations of ECAP and LNR were studied by isochronal annealing for 1 hour at temperatures ranging from 433 K to 973 K (160 °C to 700 °C). Higher thermal stability in the NL structure with high f LAGBs is shown by a 50 K (50 °C) delay in the initiation temperature of recrystallization. Based on calculations and analyses of the stored energies of deformed structures from strain distribution, as characterized by kernel average misorientation (KAM), and from GB misorientations, higher thermal stability is attributed to high f LAGBs in this type of NL structure. This is confirmed by a slower change in the microstructure, as revealed by characterizing its annealing kinetics using KAM maps.

  6. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  7. Microstructure and Mechanical Property of Glutaraldehyde-Treated Porcine Pulmonary Ligament.

    PubMed

    Chen, Huan; Zhao, Xuefeng; Berwick, Zachary C; Krieger, Joshua F; Chambers, Sean; Kassab, Ghassan S

    2016-06-01

    There is a significant need for fixed biological tissues with desired structural and material constituents for tissue engineering applications. Here, we introduce the lung ligament as a fixed biological material that may have clinical utility for tissue engineering. To characterize the lung tissue for potential clinical applications, we studied glutaraldehyde-treated porcine pulmonary ligament (n = 11) with multiphoton microscopy (MPM) and conducted biaxial planar experiments to characterize the mechanical property of the tissue. The MPM imaging revealed that there are generally two families of collagen fibers distributed in two distinct layers: The first family largely aligns along the longitudinal direction with a mean angle of θ = 10.7 ± 9.3 deg, while the second one exhibits a random distribution with a mean θ = 36.6 ± 27.4. Elastin fibers appear in some intermediate sublayers with a random orientation distribution with a mean θ = 39.6 ± 23 deg. Based on the microstructural observation, a microstructure-based constitutive law was proposed to model the elastic property of the tissue. The material parameters were identified by fitting the model to the biaxial stress-strain data of specimens, and good fitting quality was achieved. The parameter e0 (which denotes the strain beyond which the collagen can withstand tension) of glutaraldehyde-treated tissues demonstrated low variability implying a relatively consistent collagen undulation in different samples, while the stiffness parameters for elastin and collagen fibers showed relatively greater variability. The fixed tissues presented a smaller e0 than that of fresh specimen, confirming that glutaraldehyde crosslinking increases the mechanical strength of collagen-based biomaterials. The present study sheds light on the biomechanics of glutaraldehyde-treated porcine pulmonary ligament that may be a candidate for tissue engineering.

  8. The effect of butter grains on physical properties of butter-like emulsions.

    PubMed

    Rønholt, Stine; Buldo, Patrizia; Mortensen, Kell; Andersen, Ulf; Knudsen, Jes C; Wiking, Lars

    2014-01-01

    Milk fat exists as globules in its natural state in milk. The potential of using globular fat to modulate the rheological properties and crystallization behavior in butter-like emulsions was studied in the present work. We conducted a comparative study of butter-like emulsions, with a fat phase consisting of 0, 10, 25, 50, or 100% anhydrous milk fat (AMF), the remaining fat being butter grains, and all samples containing 20% water, to obtain systematic variation in the ratio of globular fat. All emulsions were studied over 4wk of storage at 5°C. By combining small and large deformation rheology, we conducted a detailed characterization of the rheological behavior of butter-like emulsions. We applied differential scanning calorimetry to monitor thermal behavior, confocal laser scanning microscopy for microstructural analysis, and low-field pulsed nuclear magnetic resonance spectrometry to measure solid fat content. By combining these techniques, we determined that increasing the fraction of globular fat (by mixing with butter grains) decreases the hardness of butter-like emulsions up to an order of magnitude at d 1. However, no difference was observed in thermal behavior as a function of butter grain content, as all emulsions containing butter grains revealed 2 endothermal peaks corresponding to the high (32.7°C ± 0.6) and medium (14.6°C ± 0.1) melting fractions of fatty acids. In terms of microstructure, decreasing the amount of butter grains in the emulsions resulted in formation of a denser fat crystal network, corresponding to increased hardness. Moreover, microstructural analysis revealed that the presence of butter grains resulted in faster formation of a continuous fat crystal network compared with the 100% AMF sample, which was dominated by crystal clusters surrounded by liquid oil. During storage, hardness remained stable and no changes in thermal behavior were observed, despite an increase in solid fat content of up to 5%. After 28d of storage, we observed no difference in either microstructural or rheological properties, indicating that formation of primary bonds occurs primarily within the first day of storage. The rheological behavior of butter-like emulsions is not determined solely by hardness, but also by stiffness related to secondary bonds within the fat crystal network. The complex rheological behavior of milk fat-based emulsions is better characterized using multiple parameters. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.

  10. The Effect of Microstructure On Transport Properties of Porous Electrodes

    NASA Astrophysics Data System (ADS)

    Peterson, Serena W.

    The goal of this work is to further understand the relationships between porous electrode microstructure and mass transport properties. This understanding allows us to predict and improve cell performance from fundamental principles. The investigated battery systems are the widely used rechargeable Li-ion battery and the non-rechargeable alkaline battery. This work includes three main contributions in the battery field listed below. Direct Measurement of Effective Electronic Transport in Porous Li-ion Electrodes. An accurate assessment of the electronic conductivity of electrodes is necessary for understanding and optimizing battery performance. The bulk electronic conductivity of porous LiCoO2-based cathodes was measured as a function of porosity, pressure, carbon fraction, and the presence of an electrolyte. The measurements were performed by delamination of thin-film electrodes from their aluminum current collectors and by use of a four-line probe. Imaging and Correlating Microstructure To Conductivity. Transport properties of porous electrodes are strongly related to microstructure. An experimental 3D microstructure is needed not only for computation of direct transport properties, but also for a detailed electrode microstructure characterization. This work utilized X-ray tomography and focused ion beam (FIB)/scanning electron microscopy (SEM) to obtain the 3D structures of alkaline battery cathodes. FIB/SEM has the advantage of detecting carbon additives; thus, it was the main tomography tool employed. Additionally, protocols and techniques for acquiring, processing and segmenting series of FIB/SEM images were developed as part of this work. FIB/SEM images were also used to correlate electrodes' microstructure to their respective conductivities for both Li-ion and alkaline batteries. Electrode Microstructure Metrics and the 3D Stochastic Grid Model. A detailed characterization of microstructure was conducted in this work, including characterization of the volume fraction, nearest neighbor probability, domain size distribution, shape factor, and Fourier transform coefficient. These metrics are compared between 2D FIB/SEM, 3D FIB/SEM and X-ray structures. Among those metrics, the first three metrics are used as a basis for SG model parameterization. The 3D stochastic grid (SG) model is based on Monte Carlo techniques, in which a small set of fundamental inter-domain parameters are used to generate structures. This allows us to predict electrode microstructure and its effects on both electronic and ionic properties.

  11. Ultrafine-grained commercially pure titanium and microstructure response to hydroxyapatite coating methods

    NASA Astrophysics Data System (ADS)

    Calvert, Kayla L.

    Commercially pure titanium (cp-Ti) is an ideal biomaterial as it does not evoke an inflammatory foreign body response in the body. However, the low strength of cp-Ti prevents the use in most orthopaedic load bearing applications. Therefore, many metal orthopaedic implants are commonly made of higher strength metal alloys that are less biocompatible. Nanostructured materials exhibit superior mechanical properties compared to their conventional grain sized counterparts. Severe plastic deformation (SPD) of metals has been shown to produce nanostructured materials. SPD by machining is a single-step deformation route that refines the grain microstructure, to develop an ultrafine grained (UFG) microstructure. UFG cp-Ti strips were developed with induced shear strains of up to 4.0 using a machining-based process. Both Vickers microhardness evaluation and microstructural analysis were used to characterize the as-received (annealed) and machined states. For induced shear strains between 1.9 and 4.0 in grade 2 cp-Ti the hardness was increased from 188 +/- 7 kg/mm2 in the as-received state to between 244 +/- 6 and 264 +/- 12 kg/mm 2 in the as-machined state, corresponding to an increase in hardness between 31 and 41%. The microstructural analysis revealed a grain size reduction from 34 +/- 11 mum in the as-received state to ˜ 100 nm for machined grade 2-Ti. A complete annealing study suggested that recovery/recrystallization occurs between 300 and 400°C, with a significant hardness drop between 400 and 600°C, while grain growth is continuous, starting at the lowest annealing temperature of 300°C. Hydroxyapatite (HA) is commonly applied to orthopaedic devices to promote bone growth. Machined Ti strips were coated with HA using conventional plasma spray as well as two alternative low-temperature application routes (sol-gel with calcination and anodization with hydrothermal treatment) to evaluate the thermal influence on the UFG-Ti substrate. Plasma spray produced a thick (20 to 70 mum) HA crystalline coating, sol-gel followed by calcination did not produce crystalline HA, while anodization with the proper hydrothermal treatment yielded a homogenous crystalline HA coating 5 to 15 mum thick based on the anodization condition. Mechanical and microstructural evaluation of the UFG-Ti substrates revealed that both the plasma spray and anodization followed by hydrothermal treatment (220 -- 225°C) did not affect the substrate grain size or hardness, while the thermal processing and calcination treatment at 313 -- 446°C for the sol-gel method caused recovery and grain growth, as well as a significant decrease in the hardness of the Ti-substrates.

  12. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany.

    PubMed

    Cadena, Edwin

    2016-01-01

    The Eocene (∾48 Ma) Messel Pit in Germany is a UNESCO World Heritage Site because of its exceptionally preserved fossils, including vertebrates, invertebrates, and plants. Messel fossil vertebrates are typically characterized by their articulated state, and in some cases the skin, hair, feathers, scales and stomach contents are also preserved. Despite the exceptional macroscopic preservation of Messel fossil vertebrates, the microstructural aspect of these fossils has been poorly explored. In particular, soft tissue structures such as hair or feathers have not been chemically analyzed, nor have bone microstructures. I report here the preservation and recovery of osteocyte-like and blood vessel-like microstructures from the bone of Messel Pit specimens, including the turtles Allaeochelys crassesculpta and Neochelys franzeni, the crocodile Diplocynodon darwini, and the pangolin Eomanis krebsi. I used a Field Emission Scanning Electron Microscope (FESEM) and a Phenom ProX desktop scanning electron microscope (LOT-QuantumDesign) equipped with a thermionic CeB6 source and a high sensitivity multi-mode backscatter electron (BSE) for microscopical and elemental characterization of these bone microstructures. Osteocyte-like and blood vessel-like microstructures are constituted by a thin layer (∾50 nm thickness), external and internal mottled texture with slightly marked striations. Circular to linear marks are common on the external surface of the osteocyte-like microstructures and are interpreted as microbial troughs. Iron (Fe) is the most abundant element found in the osteocyte-like and blood vessel-like microstructures, but not in the bone matrix or collagen fibril-like microstructures. The occurrence of well-preserved soft-tissue elements (at least their physical form) establishes a promising background for future studies on preservation of biomolecules (proteins or DNA) in Messel Pit fossils.

  13. Processing and characterization of phase boundaries in ceramic and metallic materials

    NASA Astrophysics Data System (ADS)

    Zeng, Liang

    The goal of this dissertation work was to explore and describe advanced characterization of novel materials processing. These characterizations were carried out using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction techniques. The materials studied included ceramics and metallic materials. The first part of this dissertation focuses on the processing, and the resulting interfacial microstructure of ceramics joined using spin-on interlayers. SEM, TEM, and indentation tests were used to investigate the interfacial microstructural and mechanical property evolution of polycrystalline zirconia bonded to glass ceramic MaCor(TM), and polycrystalline alumina to single crystal alumina. Interlayer assisted specimens were joined using a thin amorphous silica interlayer. This interlayer was produced by spin coating an organic based silica bond material precursor and curing at 200°C, followed by joining in a microwave cavity or conventional electric furnace. Experimental results indicate that in the joining of the zirconia and MaCor(TM) no significant interfacial microstructural and mechanical property differences developed between materials joined either with or without interlayers, due to the glassy nature of MaCor(TM). The bond interface was non-planar, as a result of the strong wetting of MaCor(TM) and silica and dissolution of the zirconia. However, without the aid of a silica interlayer, sapphire and 98% polycrystalline alumina failed to join under the experimental conditions under this study. A variety of interfacial morphologies have been observed, including amorphous regions, fine crystalline alumina, and intimate contact between the sapphire and polycrystalline alumina. In addition, the evolution of the joining process from the initial sputter-cure to the final joining state and joining mechanisms were characterized. The second part of this dissertation focused on the effects of working and heat treatment on microstructure, texture, phase boundary movement, and mechanical property evolution in Ti-6Al-4V wire. The as-received wire consisted of equilibrium a and metastable beta phases and had a moderately strong fiber texture with prism plane normals aligned with the wire axis. The wire was worked by extrusion, solution heat-treatment and water quenching, and aging. The extrusion process strengthened the as-received texture. After solutionization and quenching, microstrucual observations showed the presence of many needlelike martensitic platelets in the prior beta phase regions. Texture analysis revealed that a secondary fiber with basal plane normals aligned with the wire axis emerged at the expense of the initial texture, indicating that highly preferred phase boundary motion (variant selection) occurred during the beta → alpha transformation. The strength of the variant selection consistently increased with solutionization temperature and time. In addition, the effects of dislocation type and density on variant selections were further investigated. This implies that strategic prior deformation and heat treatment can be exploited to design the resulting texture and microstructure and consequently optimize the properties of titanium products.

  14. Automated Identification and Characterization of Secondary & Tertiary gamma’ Precipitates in Nickel-Based Superalloys (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    and intensity information from the EFTEM images. The microstructural statistics obtained from the segmented γ’ precipitates agreed with those of the...is its ability to automate segmentation of precipitates in a reproducible manner for acquiring microstructural statistics that relate to both...were identified using a combination of visual inspection and intensity information from the EFTEM images. The microstructural statistics obtained

  15. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  16. Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation

    NASA Astrophysics Data System (ADS)

    Paulson, Kristin R.

    Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.

  17. Quantitative characterization and comparison of precipitate and grain shape in Nickel -base superalloys using moment invariants

    NASA Astrophysics Data System (ADS)

    Callahan, Patrick Gregory

    A fundamental objective of materials science and engineering is to understand the structure-property-processing-performance relationship. We need to know the true 3-D microstructure of a material to understand certain geometric properties of a material, and thus fulfill this objective. Focused ion beam (FIB) serial sectioning allows us to find the true 3-D microstructure of Ni-base superalloys. Once the true 3-D microstructure is obtained, an accurate quantitative description and characterization of precipitate and/or grain shapes is needed to understand the microstructure and describe it in an unbiased way. In this thesis, second order moment invariants, the shape quotient Q, a convexity measure relating the volume of an object to the volume of its convex hull, V/Vconv, and Gaussian curvature have been used to compare an experimentally observed polycrystalline IN100 microstructure to three synthetic microstructures. The three synthetic microstructures used different shape classes to produce starting grain shapes. The three shape classes are ellipsoids, superellipsoids, and the shapes generated when truncating a cube with an octahedron. The microstructures are compared using a distance measure, the Hellinger distance. The Hellinger distance is used to compare distributions of shape descriptors for the grains in each microstructure. The synthetic microstructure that has the smallest Hellinger distance, and so best matched the experimentally observed microstructure is the microstructure that used superellipsoids as a starting grain shape. While it has the smallest Hellinger distance, and is approaching realistic grain morphologies, the superellipsoidal microstructure is still not realistic. Second order moment invariants, Q, and V/V conv have also been used to characterize the γ' precipitate shapes from four experimental Ru-containing Ni-base superalloys with differences in alloying additions. The superalloys are designated UM-F9, UM-F18, UM-F19, and UM-F22. The different alloying additions in each sample cause differences in lattice misfit and γ' precipitate shape morphology, varying from spherical, to cuboidal, to intermediate morphologies. 3-D datasets from each alloy were collected via automated Focused Ion Beam (FIB) serial sectioning. Digital image processing methods are used to register, clean, and segment the images in each of the datasets in order to digitally reconstruct the microstructures in 3-D. The distributions of the shape descriptors of the γ' precipitates from each microstructure are compared using the Hellinger distance. The Hellinger distance determines if there are quantitative differences in the γ' precipitate morphologies, or if they are the same. It was found that comparing distributions of the second order affine moment invariant Ω 3 with the Hellinger distance is sufficient for recognizing that alloys have different compositions. The secondary γ' precipitate shapes in two Ni-based superalloys, one from a UM-F20 alloy with cuboidal precipitates, and one from a Rene-88 DT alloy with more complex dendritic precipitates, have been decomposed and reconstructed using 3-D Zernike functions, which are orthogonal over the unit ball; they can be used to decompose an arbitrary shape scaled to fit inside an embedding sphere into spherical harmonics. Relatively complex shapes can be decomposed into, and reconstructed from, 3-D Zernike functions. In this thesis we show the 3-D Zernike functions and a method to derive expressions for Zernike moments from the more familiar geometric moments. Then Zernike moment reconstructions up to order 20 of precipitates from the two Ni-base superalloys are presented. The Zernike moment reconstructions were characterized using second order moment invariants, and have yielded good reconstructions of cuboidal precipitates. More orders of Zernike moments may be needed to accurately reconstruct the dendritic precipitates. We also introduce the concept of moment invariant density maps to describe 3-D shapes using 2-D moment invariants. To do this we characterize 2-D sections of a 3-D microstructure using 2-D moment invariants. The statistical distribution of 2-D moment invariants from the sections are compared to a library of density maps produced from different shapes. The sectioning plane is random so each group of particles produces a statistical distribution of 2-D moments that can represent a microstructure. Then we show three example applications: determination of a 3-D shape by computing the Hellinger distance between moment invariant density maps derived from random 2-D section micrographs and the density map database; automated detection and quantification of rafting in cuboidal microstructures; and quantitative comparison of pairs of microstructures.

  18. Microstructural Abnormalities Were Found in Brain Gray Matter from Patients with Chronic Myofascial Pain

    PubMed Central

    Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong

    2016-01-01

    Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp; School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Ogura, Atsushi

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure inmore » an amorphous thin film was not revealed owing to detection difficulties.« less

  20. Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach

    NASA Astrophysics Data System (ADS)

    Huang, Huajie; Wang, Xin

    2011-08-01

    Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j

  1. Microstructural characterization of ultra thin copper interconnects

    NASA Astrophysics Data System (ADS)

    Yang, Hee-Dong

    The present study investigates the defects related to reliability issues, such as physical failures developed during processing and end use. In the first part of this study, kinetic analysis using the Johnson-Mehl-Avrami (JMA) model demonstrates that a self-annealing mechanism in electroplated Cu films depends on the film properties, such as thickness and the amount of crystal defects in an as-deposited state. In order to obtain the evidence of such defects, the microstructural characterization of defects in ultra thin copper interconnects using transmission electron microscopy (TEM) is presented. Examination of the defects using TEM reveals that voids filled with gas form as a lens shape along the {110} habit planes of the copper matrix. In the second part of this study, methodology and results of an electro-thermal-fatigue (ETF) testing, designed for early detection of process defects, are presented. Such ETF testing combines high-density current electrical stressing and thermal cycling to accelerate the evolution of defects in Cu interconnects. In ETF testing, the evolution of defects provides the nucleation sites for voids which open or close during thermal cycling. Then, the accumulation of voids creates the change in resistance when they reach a critical size. As a result of voids evolution, the high current density and high joule heating create a transient resistance increase. ETF testing reveals two failure modes, and the mode-I failure has the importance in detecting defects. The number of cycles to failure in ETF testing decreases with higher current density, but the rate of thermal cycling has no effect. Results from this investigation suggest that impurities in the copper electrodeposition process must be carefully controlled to achieve reliable ultra thin copper interconnects.

  2. Grain Boundary Sliding in Deforming Wehrlite: Rheology and Microstructure

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Hirth, G.; Cooper, R. F.; Kruckenberg, S. C.

    2016-12-01

    Elastic anisotropy of Earth's upper mantle used to be attributed exclusively to dislocation creep. However, recent experimental results suggest that crystallographic preferred orientation (CPO) in olivine, which contributes to elastic anisotropy, could also form during grain boundary sliding [e.g., 1-3]. Nevertheless, the fundamental problem of how CPO forms during grain boundary sliding is not fully understood. Our current efforts examine the grain-size-sensitive flow of wehrlite, to characterize the influence of the second phase (clinopyroxene) both on olivine CPO formation as well as the propensity of grain boundary sliding and accumulated strain to effect solid-state phase separation (i.e., metamorphic layering). Creep tests on fine-grain-size (2-5 µm) olivine and clinopyroxene aggregates (T =1100-1200ºC; P = 1.5 GPa; γ=3-7) have been conducted. These reveal strong type-B fabric for olivine. Characterization of effects of grain size, temperature and applied strain rate reveal the grain size dependence, stress exponent and activation energy of the flow kinetics of wehrlite. The stress exponent, which is similar to stress exponent for harzburgite reported by Sundberg & Cooper [1], and grain-size dependence suggest that the dominant deformation mechanism in our experiments may be grain boundary sliding. A large stress drop in early segments of experiments suggest an evolution of microstructure. The Fourier transform of backscatter images demonstrates that there exists a direction of foliation, defined by Ol-Cpx heterophase boundaries, which may be the key to understand the development of CPO formation. [1] Sundberg, M. & Cooper, R. F., J. Geophys. Res., 2008. [2] Miyazaki, T., Sueyoshi, K., and Hiraga, T., Nature, 2013. [3] Tielke, J. A., L. N. Hansen, M. Tasaka, C. Meyers, M. E. Zimmerman, and D. L. Kohlstedt, J. Geophys. Res., 2016.

  3. Microstructure design of low alloy transformation-induced plasticity assisted steels

    NASA Astrophysics Data System (ADS)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the requirement of the next generation AHSS. To further optimize the microstructure such that the designed criteria can be fully satisfied, further efforts have been made on two aspects: heat treatment and alloy addition. A multi-step BIT treatment was designed and successfully reduced the martensite content on the Fe-1.5Mn-1.5Si-0.3C alloy. Microstructure analysis showed a significant reduction on the volume fraction of martensite after the multi-step BIT as compared to the single BIT step. It was also found that, a slow cooling rate between the two BIT treatments resulted in a better combination of strength and ductility than rapid cooling or conventional one step BIT. Moreover, the athermal martensite formation can be fully suppressed by increasing the Mn content (Fe-3Mn-1Si-0.3C) and through carefully designed heat treatments. The athermal martensite-free alloy provided consistently better ductility than the martensite containing alloy. Finally, a microstructure based semi-empirical constitutive model has been developed to predict the monotonic tensile behavior of the multiphase TRIP assisted steels. The stress rule of mixture and isowork assumption for individual phases was presumed. Mecking-Kocks model was utilized to simulate the flow behavior of ferrite, bainitic ferrite and untransformed retained austenite. The kinetics of strain induced martensitic transformation was modeled following the Olson-Cohen method. The developed model has results in good agreements with the experimental results for both TRIP steels studied with same model parameters.

  4. Effects of synthesis techniques on chemical composition, microstructure and dielectric properties of Mg-doped calcium titanate

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai; Sato, Nicha

    2018-04-01

    Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.

  5. Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9% Cr Steel

    NASA Astrophysics Data System (ADS)

    Golański, Grzegorz; Zielińska-Lipiec, Anna; Zieliński, Adam; Sroka, Marek

    2017-03-01

    The paper presents the results of research on the X10CrMoVNbN9-1 (T91) steel after long-term service. The material for testing was taken from a pipe section of a boiler superheater coil serviced for around 105,000 h at the temperature of 540 °C, at the pressure of 12.5 MPa. A quantitative analysis including the measurement of mean diameter of subgrains and precipitates as well as the density of dislocations of the examined steel was performed by means of TEM. The microscopic tests of T91 steel were complemented with the results of tests on mechanical properties which included also the short creep tests. After service, the investigated steel was characterized by a retained lath microstructure of tempered martensite with fine subgrain and quite large density of dislocations as well as numerous precipitates. In the microstructure, apart from the particles of M23C6 and MX (VX, NbC, V-wings), the precipitates of Laves phase and single particles of Z phase were revealed. It has been shown that the extent of degradation of the T91 steel microstructure was minor, which resulted from its low temperature of service. Performed tests of mechanical properties showed that these properties fulfilled the minimum requirements for this steel in the as-received condition. A favorable influence of fine precipitates of Laves phase on mechanical properties was observed. Moreover, an insignificant influence of single precipitates of Z phase on the creep resistance of the examined steel was stated.

  6. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  7. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu 6Sn 5 phase during solidification. In this study, the number and size of Cu 6Sn 5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu 6Sn 5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzedmore » as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu 6Sn 5 phases. Transitions in the Cu 6Sn 5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 10 3 to 10 4 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu 6Sn 5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary-β phase in the solidified alloys was noted. As a result, solidification pathways omitting the formation of the ternary-β phase agreed well with observed room temperature microstructures.« less

  8. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  9. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    DOE PAGES

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; ...

    2016-10-06

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu 6Sn 5 phase during solidification. In this study, the number and size of Cu 6Sn 5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu 6Sn 5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzedmore » as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu 6Sn 5 phases. Transitions in the Cu 6Sn 5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 10 3 to 10 4 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu 6Sn 5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary-β phase in the solidified alloys was noted. As a result, solidification pathways omitting the formation of the ternary-β phase agreed well with observed room temperature microstructures.« less

  10. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.

    PubMed

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-04-27

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.

  11. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    NASA Astrophysics Data System (ADS)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.

  12. Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: Theory and experiments.

    PubMed

    Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram

    2010-01-21

    NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.

  13. Solidification microstructures in single-crystal stainless steel melt pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less

  14. The Relationships Between Microstructure, Tensile Properties and Fatigue Life in Ti-5Al-5V-5Mo-3Cr-0.4Fe (Ti-5553)

    NASA Astrophysics Data System (ADS)

    Foltz, John W., IV

    beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and implications of tensile properties on fatigue life. Several additional experiments are then described that highlight possible causes for the observed dependence of microstructure on fatigue life, including fractographic evidence to provide support of microstructural dependencies.

  15. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization.

    PubMed

    Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich

    2017-01-01

    A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. High-Performance Scanning Acousto-Ultrasonic System

    NASA Technical Reports Server (NTRS)

    Roth, Don; Martin, Richard; Kautz, Harold; Cosgriff, Laura; Gyekenyesi, Andrew

    2006-01-01

    A high-performance scanning acousto-ultrasonic system, now undergoing development, is designed to afford enhanced capabilities for imaging microstructural features, including flaws, inside plate specimens of materials. The system is expected to be especially helpful in analyzing defects that contribute to failures in polymer- and ceramic-matrix composite materials, which are difficult to characterize by conventional scanning ultrasonic techniques and other conventional nondestructive testing techniques. Selected aspects of the acousto-ultrasonic method have been described in several NASA Tech Briefs articles in recent years. Summarizing briefly: The acousto-ultrasonic method involves the use of an apparatus like the one depicted in the figure (or an apparatus of similar functionality). Pulses are excited at one location on a surface of a plate specimen by use of a broadband transmitting ultrasonic transducer. The stress waves associated with these pulses propagate along the specimen to a receiving transducer at a different location on the same surface. Along the way, the stress waves interact with the microstructure and flaws present between the transducers. The received signal is analyzed to evaluate the microstructure and flaws. The specific variant of the acousto-ultrasonic method implemented in the present developmental system goes beyond the basic principle described above to include the following major additional features: Computer-controlled motorized translation stages are used to automatically position the transducers at specified locations. Scanning is performed in the sense that the measurement, data-acquisition, and data-analysis processes are repeated at different specified transducer locations in an array that spans the specimen surface (or a specified portion of the surface). A pneumatic actuator with a load cell is used to apply a controlled contact force. In analyzing the measurement data for each pair of transducer locations in the scan, the total (multimode) acousto-ultrasonic response of the specimen is utilized. The analysis is performed by custom software that extracts parameters of signals in the time and frequency domains. The computer hardware and software provide both real-time and postscan processing and display options. For example, oscilloscope displays of waveforms and power spectral densities are available in real time. Images can be computed while scanning continues. Signals can be digitally preprocessed and/or post-processed by filtering, windowing, time-segmenting, and running-waveform-averaging algorithms. In addition, the software affords options for off-line simulation of the waveform-data-acquisition and scanning processes. In tests, the system has been shown to be capable of characterizing microstructural changes and defects in SiC/SiC and C/SiC ceramic-matrix composites. Delaminations, variations in density, microstructural changes attributable to infiltration by silicon, and crack-space indications (defined in the next sentence) have been revealed in images formed from several time- and frequency-domain parameters of scanning acousto-ultrasonic signals. The crack-space indications were image features that were not revealed by other nondestructive testing methods and are so named because they turned out to mark locations where cracking eventually occurred.

  17. Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Q. Wu; K. N. Allahar; J. Burns

    2013-08-01

    Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (~ 100 – 500 nm) and micron-size grains with nanostructured oxide precipitatesmore » formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures.« less

  18. Characterization of textural, rheological, thermal, microstructural, and water mobility in wheat flour dough and bread affected by trehalose.

    PubMed

    Peng, Bo; Li, Youqian; Ding, Shiyong; Yang, Jun

    2017-10-15

    The study aims to elucidate the effects of trehalose on the mechanical, thermal, and rheological properties of wheat flour dough and water distribution in bread. Texture profile analysis, DSC, farinograph, extensograph, and frequency sweep were applied in dough. The results from SEM revealed that the gluten film became less notable with the presence of trehalose. The kinetics of staling process, low-field 1 H NMR, and water-binding capacity were employed to characterize physicochemical properties of bread. Trehalose decreased the staling rate constant k, indicating an inhibitory effect on firming process in bread. Trehalose had the ability to retain water by hindering the interaction among water molecules, gluten and starch, thus relatively increasing the immobility of the part of water represented by T 22 in low-field 1 H NMR tests. Trehalose restricted water mobilization during storage, resulting in a better water-holding capacity. Our findings reveal that trehalose could be an improver in dough and bread-making performance, as well as an antistaling agent in bread. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    NASA Astrophysics Data System (ADS)

    Scheid, James Eric

    Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a custom explosive experiment that delivered meaningful, full-scale shock deformed samples for analysis. The experiment arrested the collapse of actual, as-fabricated liners in the first microseconds of development. This experiment, performed with only 2% of the explosive mass of the full charge, revealed new insights into material-dependent variations in liner collapse including a striking image of the formation of a shaped charge jet axial hole. The highly strain-hardened and elongated forged liner was the best performer of the three. Less energy from the explosive was dissipated by dislocation generation. This translated to more efficient flow whereas the softer materials behaved as shock absorbers delaying flow. A set of hypotheses was formulated and critiqued based on these observations. The key findings were the effects of grain size, and shear bands induced in the microstructure through cold work enabled efficient liner flow. These bands provide highly localized dislocation highways enabling the matrix adjacent to the bands to deform plastically at higher velocity. Where such bands are unavailable, the pressure must first develop bands of smaller grains, thus decreasing energy available for flow. Collapse velocities were then associated with the number of shear bands, the organization of mobile dislocations, material strain, and liner geometry. Microstructures with the ability to deform with the direction of liner collapse at lower stresses will form jets with a higher velocity and elongate earlier. The effect is higher performance at shorter standoffs. This relationship can be used to predict material behavior under explosive load, guiding engineering choices while designing with respect to anticipated shock loading. The explosive experiment designed here has obvious application in refining the performance of other warheads, and in the hydrodynamic modeling of material properties.

  20. Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi

    2013-06-15

    The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.

  1. Characterization and microstructure of HPMC/Gly:AgNO3 polymer composites

    NASA Astrophysics Data System (ADS)

    Ananda, H. T.; Urs, G. Thejas; Somashekar, R.

    2018-04-01

    This study reports the synthesis and characterization of AgNo3 doped HPMC/Glycerol blend films. The microstructural parameters of these composites were evaluated employing whole powder pattern fitting method (WPPF) and the results obtained are related with other physical properties. AC conductivity results and optical band gap evaluated from UV/Vis studies are focused to establish structure property relations. These composite films are bio-degradable in nature and non-hazardous, this makes them very suitable candidates for applications in appropriate fields.

  2. Mechanical characterization of collagen-glycosaminoglycan scaffolds.

    PubMed

    Harley, Brendan A; Leung, Janet H; Silva, Emilio C C M; Gibson, Lorna J

    2007-07-01

    Tissue engineering scaffolds are used extensively as three-dimensional analogs of the extracellular matrix (ECM). However, less attention has been paid to characterizing the scaffold microstructure and mechanical properties than to the processing and bioactivity of scaffolds. Collagen-glycosaminoglycan (CG) scaffolds have long been utilized as ECM analogs for the regeneration of skin and are currently being considered for the regeneration of nerve and conjunctiva. Recently a series of CG scaffolds with a uniform pore microstructure has been developed with a range of sizes of equiaxed pores. Experimental characterization and theoretical modeling techniques have previously been used to describe the pore microstructure, specific surface area, cell attachment and permeability of these variants. The results of tensile and compressive tests on these CG scaffolds and of bending tests on the individual struts that define the scaffold network are reported here. The CG scaffold variants exhibited stress-strain behavior characteristic of low-density, open-cell foams with distinct linear elastic, collapse plateau and densification regimes. Scaffolds with equiaxed pores were found to be mechanically isotropic. The independent effects of hydration level, pore size, crosslink density and relative density on the mechanical properties was determined. Independent control over scaffold stiffness and pore size was obtained. Good agreement was observed between experimental results of scaffold mechanical characterization and low-density, open-cell foam model predictions for uniform scaffolds. The characterized scaffold variants provide a standardized framework with defined extracellular environments (microstructure, mechanics) for in vitro studies of the mechanical interactions between cells and scaffolds as well as in vivo tissue engineering studies.

  3. The microstructure of starchy food modulates its digestibility.

    PubMed

    Tian, Jinhu; Ogawa, Yukiharu; Shi, John; Chen, Shiguo; Zhang, Huiling; Liu, Donghong; Ye, Xingqian

    2018-06-05

    Starch is the main carbohydrate in human nutrition and shows a range of desired food properties. It has been demonstrated that fast digestion of starchy food can induce many health issues (e.g., hyperglycaemia, diabetes, etc.); therefore, how to modulate its digestion is an interesting topic. Previous studies have revealed that the microstructure and digestibility of starchy food of different botanical origin or from multiple processes are quite different; modulating starch digestion by retaining or altering its microstructure may be effective. In the present review, the current knowledge of the relationship between microstructural changes to starchy food and its digestibility at molecular, cell and tissue, and food processing levels is summarized. New technologies focused on microstructure studies and ways to manipulate food microstructure to modulate starch digestibility are also reviewed. In particular, some insights focusing on the future study of microstructure and the digestibility of starchy food are also suggested.

  4. Microstructural characterization of high-carbon ferrochromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesko, A.; Navara, E.

    1996-04-01

    Light optical and scanning electron microscopy techniques were used for high-carbon ferrochromium microstructural analysis. Different microstructures were observed for industrially and laboratory-produced ferroalloys. Primary carbides of M{sub 7}C{sub 3} with chromium ferrite were found in the industrially produced, slowly solidified, and cooled ferroalloy, while primary M{sub 7}C{sub 3} carbides accompanied a eutectic mixture of M{sub 7}C{sub 3} carbides and chromium ferrite in the laboratory-melted and in the water-solidified and water-cooled materials. Different microstructural arrangements are directly related to the friability properties of this material, which characterizes its resistance to abrasion on handling and impact. In ferrochromium upgraded by carbon contentmore » reduction, the eutectic M{sub 7}C{sub 3} hexagonal carbides are partly replaced by M{sub 23}C{sub 6} dendritic carbides. The presence of dendritic carbides in the ferrochromium eutectic microstructure can be interpreted as a proof of a lower carbon content, raising the commercial value of the ferroalloy. The hexagonal M{sub 7}C{sub 3} carbides exhibited a central hollow along the longitudinal axis, and on metallographic samples they looked like screw nuts. A model of the solidification mechanism for such crystals is proposed.« less

  5. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.

    PubMed

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

  6. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

    DOE PAGES

    Kirka, M. M.; Unocic, K. A.; Raghavan, N.; ...

    2016-02-12

    During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is the microstructure gradient and associated tensile property gradient that are common to all EBM Inconel 718 builds. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) and is comprised of a cored dendritic structure that includesmore » carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of δ needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with δ networks having precipitated within the grain interiors. Mechanically at both 20°C and 650° C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.« less

  7. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  8. Size-dependent microstructures in rapidly solidified uranium-niobium powder particles

    DOE PAGES

    McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...

    2016-06-14

    The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less

  9. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  10. Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan

    2006-06-01

    In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.

  11. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less

  12. Acoustic activation of water-in-oil microemulsions for controlled salt dissolution.

    PubMed

    Baxamusa, Salmaan; Ehrmann, Paul; Ong, Jemi

    2018-06-18

    The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH 2 PO 4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. Dispersed aqueous domains of 2-6 nm radius dissolve a solid block of KDP at 0-10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Anisotropic and Heterogeneous Development of Microstructures. Combining Laboratory/Synchrotron X-rays and EBSD on a few SPD Metallic Systems

    NASA Astrophysics Data System (ADS)

    Bolmaro, Raúl E.; De Vincentis, Natalia S.; Benatti, Emanuel; Kliauga, Andrea M.; Avalos, Martina C.; Schell, Norbert; Brokmeier, Heinz-Günter

    2014-08-01

    The onset of Severe Plastic Deformation (SPD) regime is quite instructive on the possible origins of the nano-microstructures developed in metals and alloys. It is known that grain fragmentation and dislocation accumulation, among other defects, proceed at different paces depending fundamentally on grain orientations and active deformation mechanisms. There have been many attempts to characterize nano-microstructure anisotropy, leading all of them to sometimes contradictory conclusions. Moreover, the characterizations rely on different measurements techniques and pos-processing approaches, which can be observing different manifestations of the same phenomena. On the current presentation we show a few experimental and computer pos-processing and simulation approaches, applied to some SPD/alloy systems. Williamson-Hall and Convolutional Multiple Whole Profile (CMWP) techniques will be applied to peak broadening analysis on experimental results stemming from laboratory Cu Ka X-rays, and synchrotron radiation from LNLS (Laboratório Nacional de Luz Síncrotron, Campinas, Brazil) and Petra III line (HEMS station, at DESY, Hamburg, Germany). Taking advantage of the EBSD capability of giving information on orientational and topological characteristics of grain boundaries, microstructures, grain sizes, etc., we also performed investigations on dislocation density and Geometrically Necessary Dislocation Boundaries (GNDB) and their correlation with texture components. Orientation dependent nano-microstructures and domain sizes are shown on the scheme of generalized pole figures and discussions provide some hints on nano-microstructure anisotropy.

  14. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.

    PubMed

    Badiei, N; Sowedan, A M; Curtis, D J; Brown, M R; Lawrence, M J; Campbell, A I; Sabra, A; Evans, P A; Weisel, J W; Chernysh, I N; Nagaswami, C; Williams, P R; Hawkins, K

    2015-01-01

    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.

  15. A study of reduced chromium content in a nickel-base superalloy via element substitution and rapid solidification processing. Ph.D. ThesisFinal Report

    NASA Technical Reports Server (NTRS)

    Powers, William O.

    1987-01-01

    A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.

  16. Database on Performance of Neutron Irradiated FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less

  17. Ultrasonic Guided-Wave Scan System Used to Characterize Microstructure and Defects in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.; Bhatt, Ramakrishna T.

    2004-01-01

    Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause discrete flaws and distributed microdamage, significantly reducing desirable physical properties. Such microdamage includes fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second phase formation. A recent study (ref. 1) of the durability of a C/SiC CMC discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials. This year, an ultrasonic guided-wave scan system developed at the NASA Glenn Research Center was used to characterize various microstructural and flaw conditions in SiC/SiC (silicon carbide fiber in silicon carbide matrix) and C/SiC (carbon fiber in silicon carbide matrix) CMC samples.

  18. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  19. Characterization of bone microstructure using photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.

  20. Characterization of graded TiC layers deposited by HiPIMS method

    NASA Astrophysics Data System (ADS)

    Bohovicova, Jana; Bonova, Lucia; Halanda, Juraj; Ivan, Jozef; Mesko, Marcel; Advanced Technologies Research Institute Team; Institute of Electronic; Photonic Team

    2016-09-01

    An advanced yet recent development of sputter technique is high power impulse magnetron sputtering (HiPIMS), in which short, energetic pulses are applied to the target, leading to a formation of an ultra-dense plasma in front of the cathode, that provide a high degree of ionization of sputtered material, and consequently enable to control the energy and the direction of the deposition flux. This gives a possibility to alter composition and microstructure in a controlled manner, enables the optimization of TiC for tribological applications. The aim of this work is to link physical phenomena in transient HiPIMS discharges to microstructural and compositional properties of graded TiC thin films. It was found that Ti bottom layer is contamination free. Compared to the direct current magnetron sputtering films, we observed an element specific reduction of impurities measured by ERDA by a factor 3 for N, 4 for H and by a factor of 20 for O. The high purity of Ti layer is partly explained by gas rarefaction and the cleaning effect of the bombarding ions. Graphitization degree of carbon top layer was elucidated by Raman spectroscopy. The compositional effects are correlated with differences in the film microstructure revealed by SEM, XRD and TEM analysis. This work was supported by VEGA, Project No. 1/0503/15 and APVV, Project No. 15-0168.

  1. An In-Depth Investigation into the Physicochemical, Thermal, Microstructural, and Rheological Properties of Petroleum and Natural Asphalts.

    PubMed

    Nciri, Nader; Kim, Jeonghyun; Kim, Namho; Cho, Namjun

    2016-10-21

    Over the last decade, unexpected and sudden pavement failures have occurred in several provinces in South Korea. Some of these failures remain unexplained, further illustrating the gaps in our knowledge about binder chemistry. To prevent premature pavement distress and enhance road performance, it is imperative to provide an adequate characterization of asphalt. For this purpose, the current research aims at inspecting the chemistry, microstructure, thermal, and physico-rheological properties of two types of asphalt, namely petroleum asphalt (PA) and natural asphalt (NA). The binders were extensively investigated by using elemental analysis, thin-layer chromatography with flame ionization detection (TLC-FID), matrix-assisted laser desorption ionization time-of-fight mass spectroscopy (MALDI-TOF-MS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), Nuclear magnetic resonance spectroscopy (¹H-NMR), ultraviolet and visible spectroscopy (UV-VIS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), penetration, softening point, ductility, and viscosity tests. The findings of this research have revealed the distinct variations between the chemical compositions, microstructures, and thermo-rheological properties of the two asphalts and provided valuable knowledge into the characteristics of the binders. Such insight has been effective in predicting the performance or distress of road pavement. This paper will, therefore, be of immediate interest to materials engineers in state highway agencies and asphalt industries.

  2. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less

  3. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2010-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use the three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 cell.

  4. Effect of Silver Flakes in Silver Paste on the Joining Process and Properties of Sandwich Power Modules (IGBTs Chip/Silver Paste/Bare Cu)

    NASA Astrophysics Data System (ADS)

    Zhao, Su-Yan; Li, Xin; Mei, Yun-Hui; Lu, Guo-Quan

    2016-11-01

    In this study, a silver paste has been introduced for attaching chips onto bare Cu substrates (without coating) without applying pressure. Small nano-thickness Ag flakes, measuring 1 μm-5 μm length, were embedded uniformly in Ag nanoparticles for improving the density of the material. The presence of silver flakes in the silver paste affected the joining process and its microstructure. Microstructure characterization revealed that densification of the silver layer was affected by the presence of silver flakes as the flakes coarsened and formed reactive in situ nanoparticles, which facilitated the sintering between the flakes and the incorporated nanoparticles. Coarsening of silver flakes depended on the sintering temperature, time, and the atmosphere, which affected the decomposition and burning out of organics presented on the surface of the flakes. A high-density silver layer was obtained due to the presence of compact silver flakes. With an increase in the microstructure density, a higher bonding strength and a lower thermal impedance of the sintered joints were achieved. On performing pressureless sintering at 270°C for 30 min under 99.99% N2 or 4% H2/N2, the bonding strength and thermal impedance for 11 × 11 mm2 chips were excellent, measuring approximately 21.9 MPa and 0.077°C/W, respectively.

  5. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  6. An In-Depth Investigation into the Physicochemical, Thermal, Microstructural, and Rheological Properties of Petroleum and Natural Asphalts

    PubMed Central

    Nciri, Nader; Kim, Jeonghyun; Kim, Namho; Cho, Namjun

    2016-01-01

    Over the last decade, unexpected and sudden pavement failures have occurred in several provinces in South Korea. Some of these failures remain unexplained, further illustrating the gaps in our knowledge about binder chemistry. To prevent premature pavement distress and enhance road performance, it is imperative to provide an adequate characterization of asphalt. For this purpose, the current research aims at inspecting the chemistry, microstructure, thermal, and physico-rheological properties of two types of asphalt, namely petroleum asphalt (PA) and natural asphalt (NA). The binders were extensively investigated by using elemental analysis, thin-layer chromatography with flame ionization detection (TLC-FID), matrix-assisted laser desorption ionization time-of-fight mass spectroscopy (MALDI-TOF-MS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), Nuclear magnetic resonance spectroscopy (1H-NMR), ultraviolet and visible spectroscopy (UV-VIS), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), penetration, softening point, ductility, and viscosity tests. The findings of this research have revealed the distinct variations between the chemical compositions, microstructures, and thermo-rheological properties of the two asphalts and provided valuable knowledge into the characteristics of the binders. Such insight has been effective in predicting the performance or distress of road pavement. This paper will, therefore, be of immediate interest to materials engineers in state highway agencies and asphalt industries. PMID:28773979

  7. Longitudinal magnetic resonance imaging study shows progressive pyramidal and callosal damage in Friedreich's ataxia.

    PubMed

    Rezende, Thiago J R; Silva, Cynthia B; Yassuda, Clarissa L; Campos, Brunno M; D'Abreu, Anelyssa; Cendes, Fernando; Lopes-Cendes, Iscia; França, Marcondes C

    2016-01-01

    Spinal cord and peripheral nerves are classically known to be damaged in Friedreich's ataxia, but the extent of cerebral involvement in the disease and its progression over time are not yet characterized. The aim of this study was to evaluate longitudinally cerebral damage in Friedreich's ataxia. We enrolled 31 patients and 40 controls, which were evaluated at baseline and after 1 and 2 years. To assess gray matter, we employed voxel-based morphometry and cortical thickness measurements. White matter was evaluated using diffusion tensor imaging. Statistical analyses were both cross-sectional and longitudinal (corrected for multiple comparisons). Group comparison between patients and controls revealed widespread macrostructural differences at baseline: gray matter atrophy in the dentate nuclei, brainstem, and precentral gyri; and white matter atrophy in the cerebellum and superior cerebellar peduncles, brainstem, and periventricular areas. We did not identify any longitudinal volumetric change over time. There were extensive microstructural alterations, including superior cerebellar peduncles, corpus callosum, and pyramidal tracts. Longitudinal analyses identified progressive microstructural abnormalities at the corpus callosum, pyramidal tracts, and superior cerebellar peduncles after 1 year of follow-up. Patients with Friedreich's ataxia present more widespread gray and white matter damage than previously reported, including not only infratentorial areas, but also supratentorial structures. Furthermore, patients with Friedreich's ataxia have progressive microstructural abnormalities amenable to detection in a short-term follow-up. © 2015 International Parkinson and Movement Disorder Society.

  8. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods.

    PubMed

    Seikh, Asiful H; Sherif, El-Sayed M; Khan Mohammed, Sohail M A; Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance.

  9. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods

    PubMed Central

    Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709

  10. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation

    PubMed Central

    Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang

    2017-01-01

    Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826

  11. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE PAGES

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul; ...

    2017-12-11

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  12. Spectral structure and stability studies on microstructure-fiber continuum

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.

    2003-07-01

    Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Rui; Gao, Liming, E-mail: liming.gao@sjtu.edu.cn; Li, Ming, E-mail: mingli90@sjtu.edu.cn

    As the continuous shrinkage of the interconnect line width in microelectronics devices, there is a growing concern about the electromigration (EM) failure of bonding wire. In addition, an innovative Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects due to the cost pressure of gold in the last decade. In present study of the Ag–8Au–3Pd alloy wire, the surface diffusion occupied the dominant position during EM failure, and the activation energy was found to be 0.61 eV. In order to reveal the failure mechanism, the cross-sections of the Ag–8Au–3Pd alloy wire during EM were preparedmore » by focused ion beam (FIB) micro-machining for electron backscatter diffraction (EBSD) analysis. The microstructure evolution of the Ag–8Au–3Pd alloy wire was characterized by the grain size and grain boundary. As a result, the EM failure originates in the atom transportation, which causes grain size increasing and atom diffusion on the wire surface. - Highlights: • The activation energy of Ag–8Au–3Pd alloy wire was obtained as 0.61 eV. • During EM, the silver atoms diffused from negative to the positive terminal on the wire surface. • The microstructure (grain size and grain boundary) was characterized by FIB-EBSD. • During EM, the atom transportation was found to cause grain size growth and atom diffusion on the wire surface.« less

  14. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.

    PubMed

    Calvert, Kayla L; Trumble, Kevin P; Webster, Thomas J; Kirkpatrick, Lynn A

    2010-05-01

    Mechanical properties and microstructure characterization of a series of graded commercial rigid polyurethane foams commonly used to mimic trabecular bone in testing orthopaedic devices is reported. Compressive testing conducted according to ASTM standard F1839-08, which requires large specimens (50.8 mm x 50.8 mm x 25.4 mm blocks) gave elastic modulus and compressive strength values ranging from 115 to 794 MPa and 4.7 to 24.7 MPa, respectively, for foams having densities of 0.240-0.641 g/cm(3). All these results were within the requirements of the specification for the corresponding grades. Compression testing using smaller specimens (7.5 mm diameter x 15 mm) typical of testing bone, gave results in good agreement with those obtained in the standard tests. Microstructural measurements showed the average pore size ranged from 125 to 234 microm for densities ranging from 0.641 to 0.159 g/cm(3), respectively. The relative modulus as a function of relative density of the foams fit well to the model of Gibson and Ashby. Cyclic testing revealed hysteresis in the lower density foams with a loading modulus statistically equivalent to that measured in monotonic testing. Shore DO durometry (hardness) measurements show good correlations to elastic modulus and compressive strength. The results suggest additional parameters to consider for the evaluation of polyurethane foams for bone analog applications.

  15. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  16. Effect of the microstructure on electrical properties of high-purity germanium

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  17. Polytype Stability and Microstructural Characterization of Silicon Carbide Epitaxial Films Grown on [ {11}overline{{2}} {0} ]- and [0001]-Oriented Silicon Carbide Substrates

    NASA Astrophysics Data System (ADS)

    Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.

    2007-04-01

    The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.

  18. Microstructural study of codeposited pentacene:perfluoropentacene grown on KCl by TEM techniques

    NASA Astrophysics Data System (ADS)

    Félix, Rocío; Breuer, Tobias; Witte, Gregor; Volz, Kerstin; Gries, Katharina I.

    2017-08-01

    Transmission electron microscopy techniques have been used as a research tool to derive information on structure and orientation of organic semiconductor blends. Within this work, we have studied the structure and morphology of pentacene (PEN, C22H14) and perfluoropentacene (PFP, C22F14) blends grown with [2:1] and [1:2] mixing ratios on KCl substrates. The [2:1] mixture exhibits a uniform layer on the substrate with domains that are rotated in-plane by 90° towards each other. Electron diffraction experiments revealed that these domains are formed by a crystalline mixed phase (consisting of PEN and PFP) and a PEN phase in excess whose lattice parameters are rather similar. By contrast, in the [1:2] blend, two different arrangements were found. The majority of the sample exhibits some spicular fibers on a background layer lying on top of the KCl substrate. The microstructural characterization revealed that these fibers consist of pure PFP in excess while the background layer is formed by the mixed phase. The other arrangement, which is present to a lesser extent, consists of a PFP film that is in direct contact with the KCl substrate. Using electron diffraction experiments, the orientation of the different phases with respect to each other and in some cases relative to the KCl substrate has been determined.

  19. Microstructural processes in irradiated materials

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  20. Probing Novel Microstructural Evolution Mechanisms in Aluminum Alloys Using 4D Nanoscale Characterization

    DOE PAGES

    Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.; ...

    2017-09-14

    Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less

  1. Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.

    2017-07-01

    Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.

  2. Probing Novel Microstructural Evolution Mechanisms in Aluminum Alloys Using 4D Nanoscale Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.

    Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less

  3. Quality, microstructure, biochemical and immunochemical characteristics of hypoallergenic pasta.

    PubMed

    Susanna, S; Prabhasankar, P

    2012-08-01

    Celiac disease is an immune-mediated enteropathy, characterized by lifelong intolerance to gluten in genetically susceptible individuals. This study aims to develop hypoallergenic pasta using blends of Triticum durum semolina, 40% of other non-wheat flours and additives. Formulated pasta samples were evaluated for product quality characteristics and also subjected to biochemical analysis. Results showed that cooking loss ranged from 6.9% to 7.4%, which were within the acceptable range of 8%. Color change was low and in vitro protein digestibility of the pasta was found to be insignificant. Pasting characteristics of the hypoallergenic flour showed the increased peak viscosity and decreased gelatinization temperature. The scanning electron microscopy results demonstrated less-affected microstructure of gluten network. Texture profile analysis and descriptive sensory analysis revealed that optimized hypoallergenic pasta with xanthan gum as additive was acceptable and comparable with control. SDS-PAGE pattern showed distinct protein profile and decreased intensity, which was supported by Dot-Blot. In conclusion, the hypoallergenic pasta prepared by replacing T durum flour by 40% of other non-gluten flours could be useful for celiac patients because of its low antigenic activity.

  4. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  5. Mapping the opacity of paint layers in paintings with coloured grounds using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Hall-Aquitania, Moorea; Hermens, Erma; Groves, Roger M.

    2017-07-01

    Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.

  6. Role of refractory inclusions in the radiation-induced microstructure of APMT

    NASA Astrophysics Data System (ADS)

    Zhang, Dalong; Briggs, Samuel A.; Field, Kevin G.

    2018-07-01

    Kanthal APMT is a promising FeCrAl-based alloy for accident-tolerant fuel cladding because of its excellent high-temperature oxidation resistance. In this study, powder metallurgy Kanthal APMT alloy, neutron irradiated to 1.8 dpa at nominally 382 °C, was characterized. On-zone STEM imaging revealed that radiation-induced dislocation loops with Burgers vectors of a/2<111> or a < 100 > and black dots tended to agglomerate in the vicinity of refractory inclusions. The densities and sizes of these loops decreased with distance from the inclusion-matrix interfaces. In addition, high-resolution energy-dispersive X-ray spectroscopy mapping was used to determine the inclusions to be either yttrium- or silicon-rich, as well as to detect the radial distribution of radiation-enhanced α‧ phase near these inclusions. A high density of randomly distributed Cr-rich α‧ phase was found, regardless of the presence of inclusions. Results from this study provide insights into how microstructural features can locally tailor the radiation-induced defects in FeCrAl-based alloys.

  7. Microstructural record of cataclastic and dissolution-precipitation processes from shallow crustal carbonate strike-slip faults, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Grasemann, Bernhard; Decker, Kurt

    2015-04-01

    The concept of coseismic slip and aseismic creep deformation along faults is supported by the variability of natural fault rocks and their microstructures. Faults in carbonate rocks are characterized by very narrow principal slip zones (cm to mm wide) containing (ultra)cataclastic fault rocks that accommodate most of the fault displacement. Fluidization of ultracataclastic sub layers and thermal decomposition of calcite due to frictional heating have been proposed as possible indicators for seismic slip. Dissolution-precipitation (DP) processes are possible mechanism of aseismic sliding, resulting in spaced cleavage solution planes and associated veins, indicating diffusive mass transfer and precipitation in pervasive vein networks. We investigated exhumed, sinistral strike-slip faults in carbonates of the Northern Calcareous Alps. The study presents microstructural investigations of natural carbonate fault rocks that formed by cataclastic and dissolution-precipitation related deformation processes. Faults belong to the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system that was formed during eastward lateral extrusion of the Eastern Alps in Oligocene to Lower Miocene. The investigated faults accommodated sinistral slip between several tens and few hundreds of meters. Microstructural analysis of fault rocks was done with scanning electron microscopy and optical microscopy. Deformation experiments of natural fault rocks are planned to be conducted at the Sapienza University of Roma and should be available at the meeting. The investigated fault rocks give record of alternating cataclastic deformation and DP creep. DP fault rocks reveal various stages of evolution including early stylolites, pervasive pressure solution seams and cleavage, localized shear zones with syn-kinematic calcite fibre growth and mixed DP/cataclastic microstructures, involving pseudo sc- and scc'-fabrics. Pressure solution seams host fine grained kaolinit, chlorite and illite while the protolith shows only weak evidence of detrital clay content. Our studies suggest that velocity weakening and strengthening mechanisms alternated during the accumulation of displacement along the SEMP fault zone.

  8. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and subsequent shape recovery experiments. Neutron diffraction techniques are also being applied to the investigation of novel high temperature SMAs with the objective of designing alloys with better stability, higher transition temperatures and ultimately superior durability.

  9. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.

  11. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  12. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  13. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  14. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S.

    2014-08-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al6Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al3Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al6Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al6Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented.

  15. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld zone and thermo-mechanically affected zones exhibited shear texture components; however, there were many textures that deviated from ideal simple shear. Factors affecting the microstructure which are characteristic of the friction stir welding process, such as post-recrystallization deformation and complex deformation induced by tool geometry were discussed as causes for deviation from simple shear textures.

  16. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  17. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  18. Recovery of Crystallographic Texture in Remineralized Dental Enamel

    PubMed Central

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity. PMID:25360532

  19. Recovery of crystallographic texture in remineralized dental enamel.

    PubMed

    Siddiqui, Samera; Anderson, Paul; Al-Jawad, Maisoon

    2014-01-01

    Dental caries is the most prevalent disease encountered by people of all ages around the world. Chemical changes occurring in the oral environment during the caries process alter the crystallography and microstructure of dental enamel resulting in loss of mechanical function. Little is known about the crystallographic effects of demineralization and remineralization. The motivation for this study was to develop understanding of the caries process at the crystallographic level in order to contribute towards a long term solution. In this study synchrotron X-ray diffraction combined with scanning electron microscopy and scanning microradiography have been used to correlate enamel crystallography, microstructure and mineral concentration respectively in enamel affected by natural caries and following artificial demineralization and remineralization regimes. In particular, the extent of destruction and re-formation of this complex structure has been measured. 2D diffraction patterns collected at the European Synchrotron Radiation Facility were used to quantify changes in the preferred orientation (crystallographic texture) and position of the (002) Bragg reflection within selected regions of interest in each tooth slice, and then correlated with the microstructure and local mineral mass. The results revealed that caries and artificial demineralization cause a large reduction in crystallographic texture which is coupled with the loss of mineral mass. Remineralization restores the texture to the original level seen in healthy enamel and restores mineral density. The results also showed that remineralization promotes ordered formation of new crystallites and growth of pre-existing crystallites which match the preferred orientation of healthy enamel. Combining microstructural and crystallographic characterization aids the understanding of caries and erosion processes and assists in the progress towards developing therapeutic treatments to allow affected enamel to regain structural integrity.

  20. A Mechanical, Microstructural, and Damage Study of Various Tailor Hot Stamped Material Conditions Consisting of Martensite, Bainite, Ferrite, and Pearlite

    NASA Astrophysics Data System (ADS)

    Bardelcik, Alexander; Vowles, Caryn J.; Worswick, Michael J.

    2018-04-01

    This paper examines the mechanical, microstructural, and damage characteristics of five different material conditions that were created using the tailored hot stamping process with in-die heating. The tailored material conditions, TMC1 to TMC5 (softest-hardest), were created using die temperatures ranging from 700 °C to 400 °C, respectively. The tensile strength (and total elongation) ranged from 615 MPa (0.24) for TMC1 to 1122 MPa (0.11) for TMC5. TMC3 and TMC4 exhibited intermediate strength levels, with almost no increase in total elongation relative to TMC5. FE-SEM microscopy was used to quantify the mixed-phase microstructures, which ranged in volume fractions of ferrite, pearlite, bainite, and martensite. High-resolution optical microscopy was used to quantify void accumulation and showed that the total void area fraction at 0.60 thickness strain was low for TMC1 and TMC5 ( 0.09 pct) and highest for TMC3 (0.31 pct). Damage modes were characterized and revealed that the poor damage behavior of TMC3 (martensite/bainite/ferrite composition) was a result of small martensitic grains forming at grain boundaries and grain boundary junctions, which facilitated void nucleation as shown by the highest measured void density for this particular material condition. The excellent ductility of TMC1 was a result of a large grained ferritic/pearlitic microstructure that was less susceptible to void nucleation and growth. Large titanium nitride (TiN) inclusions were observed in all of the tailored material conditions and it was shown that they noticeably contributed to the total void accumulation, specifically for the TMC3 and TMC4 material conditions.

  1. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  2. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-09-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 °C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  3. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  4. The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    NASA Technical Reports Server (NTRS)

    Ives, L. K.; Swartzendruber, W. J.; Boettinger, W. J.; Rosen, M.; Ridder, S. D.

    1983-01-01

    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature.

  5. Microstructures of BN/SiC coatings on nicalon fibers

    NASA Technical Reports Server (NTRS)

    Dickerson, R. M.; Singh, M.

    1995-01-01

    The microstructures of Nicalon silicon carbide (SiC) fibers and layered coatings of boron nitride (BN) followed by chemical vapor infiltrated silicon carbide (CVI-SiC) were characterized using optical and electron microscopy. Two different precursors and reactions were used to produce the BN layers while the deposition of CVI silicon carbide was nearly identical. Coated tows were examined in cross-section to characterize the chemistry and structures of the constituents and the interfaces. One BN precursor yielded three sublayers while the other gave a relatively homogeneous nanocrystalline layer.

  6. Nano-scale zirconia and hafnia dielectrics grown by atomic layer deposition: Crystallinity, interface structures and electrical properties

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub

    With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.

  7. Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS)

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Björklund, Stefan; Markocsan, Nicolaie; Nylén, Per

    2015-10-01

    The paper aims at demonstrating various microstructures which can be obtained using the suspension spraying technique and their respective significance in enhancing the thermal insulation property of a thermal barrier coating. Three different types of coating microstructures are discussed which were produced by the Axial Suspension Plasma Spraying. Detailed characterization of coatings was then performed. Optical and scanning electron microscopy were utilized for microstructure evaluations; x-ray diffraction for phase analysis; water impregnation, image analysis, and mercury intrusion porosimetry for porosity analysis, and laser flash analysis for thermal diffusivity measurements were used. The results showed that Axial Suspension Plasma Spraying can generate vertically cracked, porous, and feathery columnar-type microstructures. Pore size distribution was found in micron, submicron, and nanometer range. Higher overall porosity, the lower density of vertical cracks or inter-column spacing, and higher inter-pass porosity favored thermal insulation property of the coating. Significant increase in thermal diffusivity and conductivity was found at higher temperature, which is believed to be due to the pore rearrangement (sintering and pore coarsening). Thermal conductivity values for these coatings were also compared with electron beam physical vapor deposition (EBPVD) thermal barrier coatings from the literature and found to be much lower.

  8. Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements

    NASA Astrophysics Data System (ADS)

    Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay

    2016-12-01

    Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.

  9. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  10. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  11. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    PubMed Central

    Wang, Xi-Shu; Tang, Hua-Ping; Li, Xu-Dong; Hua, Xin

    2009-01-01

    This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coating- substrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM) observations, as a novel method for evaluation of interface strength and critical failure stress. PMID:20054470

  12. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    NASA Astrophysics Data System (ADS)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  13. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    PubMed Central

    Lin, Huirong; Zhang, Shuting; Gong, Song; Zhang, Shenghua; Yu, Xin

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence. PMID:26273617

  14. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    NASA Technical Reports Server (NTRS)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  15. Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Kaydash, Vadym; Shkuratov, Yuriy; Korokhin, Viktor; Videen, Gorden

    2011-01-01

    Phase-ratio imagery is a new tool of qualitative photometric analyses of the upper layer of the lunar regolith, which allows the identification of natural surface structure anomalies and artificially altered regolith. We apply phase-ratio imagery to analyze the Apollo-14, -15, and -17 landing sites. This reveals photometric anomalies of ˜170 × 120 m size that are characterized by lower values of the phase-function steepness, indicating a smoothing of the surface microstructure caused by the engine jets of the landing modules. Other photometric anomalies characterized by higher phase-function slopes are the result of regolith loosening by astronaut boots and the wheels of the Modular Equipment Transporter and the Lunar Roving Vehicle. We also provide a possible explanation for the high brightness of the wheel tracks seen in on-surface images acquired at very large phase angles.

  16. Processing and Characterization of Fe-Mn-Cu-Sn-C Alloys Prepared by Ball Milling and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bączek, Elżbieta; Konstanty, Janusz; Romański, Andrzej; Podsiadło, Marcin; Cyboroń, Jolanta

    2018-03-01

    In this work, Fe-Mn-Cu-Sn-C alloys were prepared by means of powder metallurgy (PM). Powder mixtures were ball-milled for 8, 30 and 120 h and densified to < 1% porosity using spark plasma sintering (SPS) at 900 °C and 35 MPa. After consolidation, all samples of the Fe alloys were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), hardness and flexural strength tests. Resistance to abrasive wear was evaluated in both three-body abrasion and two-body abrasion tests. The SEM observations revealed an evident dependence of grain size and microstructural homogeneity on milling time. The XRD analysis showed a marked increase in austenite content in the as-sintered specimens with milling time. Although the proportion of deformation-induced martensite was small, the strengthening effect of abrasion on the subsurface layer of the investigated alloys was clearly indicated by Knoop hardness measurements.

  17. Characterization of Plastic flow and Resulting Micro-Textures in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2003-01-01

    The mechanically affected zone of a friction stir weld (FSW) cross section exhibits two distinct microstructural regions, possibly the residues of two distinct currents of metal in the FSW flow process. In this study the respective textures of these microstructural regions are investigated using orientation image mapping (OIM).

  18. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  19. Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting

    DOE PAGES

    Cakmak, Ercan; Kirka, Michael M.; Watkins, Thomas R.; ...

    2016-02-23

    Theta-shaped specimens were additively manufactured out of Inconel 718 powders using an electron beam melting technique, as a model complex load bearing structure. We employed two different build strategies; producing two sets of specimens. Microstructural and micro-mechanical characterizations were performed using electron back-scatter, synchrotron x-ray and in-situ neutron diffraction techniques. In particular, the cross-members of the specimens were the focus of the synchrotron x-ray and in-situ neutron diffraction measurements. The build strategies employed resulted in the formation of distinct microstructures and crystallographic textures, signifying the importance of build-parameter manipulation for microstructural optimization. Large strain anisotropy of the different lattice planesmore » was observed during in-situ loading. Texture was concluded to have a distinct effect upon both the axial and transverse strain responses of the cross-members. In particular, the (200), (220) and (420) transverse lattice strains all showed unexpected overlapping trends in both builds. This was related to the strong {200} textures along the build/loading direction, providing agreement between the experimental and calculated results.« less

  20. Characterization of a polymer-infiltrated ceramic-network material

    PubMed Central

    Corazza, Pedro H.; Zhang, Yu

    2015-01-01

    Objectives To characterize the microstructure and determine some mechanical properties of a polymer-ingfiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD–CAM systems. Methods Specimens were fabricated to perform quantitative and qualitative analyses of the material’s microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson’s ratio (v) and Young’s modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and v and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Results Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc = 1.09 ± 0.05 MPa m1/2, ρ = 2.09 ± 0.01 g/cm3, v = 0.23 ± 0.002 and E = 37.95 ± 0.34 GPa. Significance The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. PMID:24656471

  1. Characterization of a polymer-infiltrated ceramic-network material.

    PubMed

    Della Bona, Alvaro; Corazza, Pedro H; Zhang, Yu

    2014-05-01

    To characterize the microstructure and determine some mechanical properties of a polymer-infiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD-CAM systems. Specimens were fabricated to perform quantitative and qualitative analyses of the material's microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson's ratio (ν) and Young's modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and ν and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc=1.09±0.05MPam(1/2), ρ=2.09±0.01g/cm(3), ν=0.23±0.002 and E=37.95±0.34GPa. The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Metallurgical characterization of experimental Ag-based soldering alloys.

    PubMed

    Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros

    2014-10-01

    To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.

  3. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  4. Metallographic Characterization of Wrought Depleted Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsyth, Robert Thomas; Hill, Mary Ann

    Metallographic characterization was performed on wrought depleted uranium (DU) samples taken from the longitudinal and transverse orientations from specific locations on two specimens. Characterization of the samples included general microstructure, inclusion analysis, grain size analysis, and microhardness testing. Comparisons of the characterization results were made to determine any differences based on specimen, sample orientation, or sample location. In addition, the characterization results for the wrought DU samples were also compared with data obtained from the metallographic characterization of cast DU samples previously characterized. No differences were observed in microstructure, inclusion size, morphology, and distribution, or grain size in regard tomore » specimen, location, or orientation for the wrought depleted uranium samples. However, a small difference was observed in average hardness with regard to orientation at the same locations within the same specimen. The longitudinal samples were slightly harder than the transverse samples from the same location of the same specimen. This was true for both wrought DU specimens. Comparing the wrought DU sample data with the previously characterized cast DU sample data, distinct differences in microstructure, inclusion size, morphology and distribution, grain size, and microhardness were observed. As expected, the microstructure of the wrought DU samples consisted of small recrystallized grains which were uniform, randomly oriented, and equiaxed with minimal twinning observed in only a few grains. In contrast, the cast DU microstructure consisted of large irregularly shaped grains with extensive twinning observed in most grains. Inclusions in the wrought DU samples were elongated, broken and cracked and light and dark phases were observed in some inclusions. The mean inclusion area percentage for the wrought DU samples ranged from 0.08% to 0.34% and the average density from all wrought DU samples was 1.62E+04/cm 2. Inclusions in the cast DU samples were equiaxed and intact with light and dark phases observed in some inclusions. The mean inclusion area percentage for the cast DU samples ranged from 0.93% to 1.00% and the average density from all wrought DU samples was 2.83E+04/cm 2. The average mean grain area from all wrought DU samples was 141 μm 2 while the average mean grain area from all cast DU samples was 1.7 mm2. The average Knoop microhardness from all wrought DU samples was 215 HK and the average Knoop microhardness from all cast DU samples was 264 HK.« less

  5. Calculation of grain boundary normals directly from 3D microstructure images

    DOE PAGES

    Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; ...

    2015-03-11

    The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less

  6. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.

    PubMed

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman

    2018-05-09

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  7. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    PubMed

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  8. Microstructured bicontinuous phase formulations: their characterization and application in dermal and transdermal drug delivery.

    PubMed

    Lapteva, Maria; Kalia, Yogeshvar N

    2013-08-01

    The development of approaches to increase drug solubility and partitioning into the skin is an active area of research in topical and transdermal delivery. In addition to forming spherical aggregates, e.g., conventional oil in water or water in oil microemulsions, the combination of an oil, surfactant and water can create bicontinuous structures where the self-assembly properties of surfactants mean that the boundaries between oil and water are no longer random. This leads to the formation of specific microstructures whose intrinsic properties and interactions with the drug will determine the ability to formulate a given drug, its stability once formulated and its subsequent delivery. The review explores the relationship between the microstructure of biphasic formulations, present in microemulsions and liquid crystalline phases, and drug delivery into the skin. An overview of possible internal microstructures is followed by a summary of the methods used for structure characterization. The final section presents the work to-date and discusses the efficacy of such vehicles in enhancing dermal and transdermal delivery. The combination of water, surface agent and oil generates a broad range of three dimensional structures differing in both chemical and physical proprieties. Knowledge of the microstructure is important in understanding the behavior of a formulation and its effect on drug delivery into the skin. Microstructure complexity, interactions between the drug and the vehicle (i.e., location and mobility) and those between the vehicle and the skin are key determinants of drug delivery.

  9. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    PubMed Central

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-01-01

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707

  10. Microstructural characterization, petrophysics and upscaling - from porous media to fractural media

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, K.; Regenauer-Lieb, K.

    2017-12-01

    We present an integrated study for the characterization of complex geometry, fluid transport features and mechanical deformation at micro-scale and the upscaling of properties using microtomographic data: We show how to integrate microstructural characterization by the volume fraction, specific surface area, connectivity (percolation), shape and orientation of microstructures with identification of individual fractures from a 3D fractural network. In a first step we use stochastic analyses of microstructures to determine the geometric RVE (representative volume element) of samples. We proceed by determining the size of a thermodynamic RVE by computing upper/lower bounds of entropy production through Finite Element (FE) analyses on a series of models with increasing sizes. The minimum size for thermodynamic RVE's is identified on the basis of the convergence criteria of the FE simulations. Petrophysical properties (permeability and mechanical parameters, including plastic strength) are then computed numerically if thermodynamic convergence criteria are fulfilled. Upscaling of properties is performed by means of percolation theory. The percolation threshold is detected by using a shrinking/expanding algorithm on static micro-CT images of rocks. Parameters of the scaling laws can be extracted from quantitative analyses and/or numerical simulations on a series of models with similar structures but different porosities close to the percolation threshold. Different rock samples are analyzed. Characterizing parameters of porous/fractural rocks are obtained. Synthetic derivative models of the microstructure are used to estimate the relationships between porosity and mechanical properties. Results obtained from synthetic sandstones show that yield stress, cohesion and the angle of friction are linearly proportional to porosity. Our integrated study shows that digital rock technology can provide meaningful parameters for effective upscaling if thermodynamic volume averaging satisfies the convergence criteria. For strongly heterogeneous rocks, however, thermodynamic convergence criteria may not meet; a continuum approach cannot be justified in this case.

  11. Portable vibro-acoustic testing system for in situ microstructure characterization and metrology

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa

    2018-04-01

    There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.

  12. Microstructures and properties of rapidly solidified alloys

    NASA Technical Reports Server (NTRS)

    Shechtman, D.; Horowitz, E.

    1984-01-01

    The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.

  13. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  14. Three dimensional microstructural characterization of nanoscale precipitates in AA7075-T651 by focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sudhanshu S.; Loza, Jose J.

    2016-08-15

    The size and distribution of precipitates in Al 7075 alloys affects both the mechanical and corrosion behavior (including stress corrosion cracking and fatigue corrosion) of the alloy. Three dimensional (3D) quantitative microstructural analysis of Al 7075 in the peak aged condition (T651) allows for a better understanding of these behaviors. In this study, Focused ion beam (FIB) tomography was used to characterize the microstructure in three dimensions. Analysis of grains and precipitates was performed in terms of volume, size, and morphology. It was found that the precipitates at the grain boundaries are larger in size, higher in aspect ratios andmore » maximum Feret diameter compared to the precipitates inside the grains, due to earlier nucleation of the precipitates at the grain boundaries. Our data on the precipitates at the interface between grains and Mg{sub 2}Si inclusion show that the surfaces of inclusion (impurity) particles can serve as a location for heterogeneous nucleation of precipitates. - Highlights: •Focused ion beam (FIB) tomography was used to characterize the microstructure of Al 7075 in three dimensions. •Analysis of grains and precipitates was performed in terms of volume, size, and morphology. •Precipitates at the grain boundaries have larger size and aspect ratio compared to the precipitates inside the grains.« less

  15. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  16. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  17. The Effects of Helium Bubble Microstructure on Ductility in Annealed and HERF 21Cr-6Ni-9Mn Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosten, M.H.; Morgan, M.J.

    1998-01-01

    This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium withinmore » the matrix and away from the grain boundaries.« less

  18. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    NASA Astrophysics Data System (ADS)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  19. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  20. Gravitational influences on the liquid-state homogenization and solidification of aluminum antimonide. [space processing of solar cell material

    NASA Technical Reports Server (NTRS)

    Ang, C.-Y.; Lacy, L. L.

    1979-01-01

    Typical commercial or laboratory-prepared samples of polycrystalline AlSb contain microstructural inhomogeneities of Al- or Sb-rich phases in addition to the primary AlSb grains. The paper reports on gravitational influences, such as density-driven convection or sedimentation, that cause microscopic phase separation and nonequilibrium conditions to exist in earth-based melts of AlSb. A triple-cavity electric furnace is used to homogenize the multiphase AlSb samples in space and on earth. A comparative characterization of identically processed low- and one-gravity samples of commercial AlSb reveals major improvements in the homogeneity of the low-gravity homogenized material.

  1. Hierarchical microstructures in CZT

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.

    2011-10-01

    Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.

  2. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution

    NASA Technical Reports Server (NTRS)

    Sircar, S.; Chattopadhyay, K.; Mazumder, J.

    1992-01-01

    The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.

  3. Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V

    NASA Astrophysics Data System (ADS)

    Worth, Brian D.; Jones, J. Wayne; Allison, John E.

    1995-11-01

    The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.

  4. A study on the influence of microstructure on small fatigue cracks

    NASA Astrophysics Data System (ADS)

    Castelluccio, Gustavo M.

    In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the in uence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex microstructure presents particular challenges that are discussed and addressed. The conclusions of this work describe the mechanistic of microstructural small crack. In particular, the fatigue crack growth driving force has been characterized as it evolves within grains and crosses to other grains. Furthermore, the computational models serve as a tool to assess the effects of microstructural features on early stages of fatigue crack formation and growth, such as distributions of grain size and twins.

  5. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    DOEpatents

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  6. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    PubMed

    Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai

    2017-04-01

    To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Influence of coarsened and rafted microstructures on the thermomechanical fatigue of a Ni-base superalloy

    DOE PAGES

    Kirka, M. M.; Brindley, K. A.; Neu, R. W.; ...

    2015-08-17

    The aging of the microstructure of Ni-base superalloys during service is mainly characterized by coarsening and rafting of the γ' precipitates. The influence of these different aged microstructures on thermomechanical fatigue (TMF) under either continuously cycled (CC) and creep-fatigue (CF) was investigated. Three different aged microstructures, generated through accelerated aging and pre-creep treatments, were studied: stress-free coarsened γ', rafted with orientation perpendicular to loading direction (N-raft), and rafted with orientation parallel to loading direction (P-raft). Under most conditions, the aged microstructures were less resistant to TMF than the virgin microstructure; however, there were exceptions. Both stress-free coarsened and N-raft microstructuresmore » resulted in a reduction in TMF life under both CC and CF conditions in comparison to the virgin material. P-raft microstructure also resulted in reduction in TMF life under CC conditions; however, an increase in life over that of the virgin material was observed under CF conditions. Finally, these differences are discussed and hypothesized to be related to the interactions of the dislocations in the γ channels with γ' precipitates.« less

  8. Analysis of the Microstructure of Titles in the INSPEC Data-Base

    ERIC Educational Resources Information Center

    And Others; Lynch, Michael F.

    1973-01-01

    A high degree of constancy has been found in the microstructure of titles of samples of the INSPEC data base taken over a three-year period. Character and digram frequencies are relatively stable, while variable-length character-strings characterizing samples separated by three years in time show close similarities. (2 references) (Author/SJ)

  9. Characterization of Cerebral White Matter Properties Using Quantitative Magnetic Resonance Imaging Stains

    PubMed Central

    Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.

    2011-01-01

    Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902

  10. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    NASA Astrophysics Data System (ADS)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  11. Effects of white matter microstructure on phase and susceptibility maps.

    PubMed

    Wharton, Samuel; Bowtell, Richard

    2015-03-01

    To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. © 2014 Wiley Periodicals, Inc.

  12. Effects of White Matter Microstructure on Phase and Susceptibility Maps

    PubMed Central

    Wharton, Samuel; Bowtell, Richard

    2015-01-01

    Purpose To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). Methods The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. Results The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Conclusion Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. Magn Reson Med 73:1258–1269, 2015. © 2014 Wiley Periodicals, Inc. PMID:24619643

  13. Improvement microstructural and damage characterization of ceramic composites Y{sub 2}O{sub 3} – V{sub 2}O{sub 5} with MgO nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Issa, T. T., E-mail: alazbrh@yahoo.com; Hasan, J. M.; Abdullah, E. T.

    2016-04-21

    Compacted samples of Y{sub 2}O{sub 3}-V{sub 2}O{sub 5} – MgO Nano – particles wt. % sintered at different sintering temperature (700, 900, 1100, 1300) ) C° for 2 hours under static air were investigated by x-ray diffraction and differential thermal analysis(DTA), to identify the phase present .Microstructure examination achieved by scanning electron microscopy .Sintered density and porosity were measured for all sintered samples .Compression was tested too and the Brake down voltage and dielectric strength were measure for all sintered samples .The clear improvement were noticed in both microstructure and damage characterization respectively after existing the MgO Nano-particles, by increasingmore » in about 30% in sintered density and 25% for the compressive strength .The improvement also noticed on both brake down voltage and dielectric strength.« less

  14. Dynamic mechanical properties of hydroxyapatite/polyethylene oxide nanocomposites: characterizing isotropic and post-processing microstructures

    NASA Astrophysics Data System (ADS)

    Shofner, Meisha; Lee, Ji Hoon

    2012-02-01

    Compatible component interfaces in polymer nanocomposites can be used to facilitate a dispersed morphology and improved physical properties as has been shown extensively in experimental results concerning amorphous matrix nanocomposites. In this research, a block copolymer compatibilized interface is employed in a semi-crystalline matrix to prevent large scale nanoparticle clustering and enable microstructure construction with post-processing drawing. The specific materials used are hydroxyapatite nanoparticles coated with a polyethylene oxide-b-polymethacrylic acid block copolymer and a polyethylene oxide matrix. Two particle shapes are used: spherical and needle-shaped. Characterization of the dynamic mechanical properties indicated that the two nanoparticle systems provided similar levels of reinforcement to the matrix. For the needle-shaped nanoparticles, the post-processing step increased matrix crystallinity and changed the thermomechanical reinforcement trends. These results will be used to further refine the post-processing parameters to achieve a nanocomposite microstructure with triangulated arrays of nanoparticles.

  15. Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao

    2018-06-01

    The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.

  16. Thermomechanical deformation testing and modeling in the presence of metallurgical instabilities. M.S. Thesis - Akron Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1990-01-01

    A number of viscoplastic constitutive models were developed to describe deformation behavior under complex combinations of thermal and mechanical loading. Questions remain, however, regarding the validity of procedures used to characterize these models for specific structural alloys. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This experimental study is aimed at determining whether viscoplastic constitutive theories characterized using an isothermal data base can adequately model material response under the complex thermomechanical loading conditions typical of power generation service. The approach adopted was to conduct a series of carefully controlled thermomechanical experiments on a nickel-based superalloy, Hastelloy Alloy X. Previous investigations had shown that this material experiences metallurgical instabilities leading to complex hardening behavior, termed dynamic strain aging. Investigating this phenomenon under full thermomechanical conditions leads to a number of challenging experimental difficulties which up to the present work were unresolved. To correct this situation, a number of advances were made in thermomechanical testing techniques. Advanced methods for dynamic temperature gradient control, phasing control and thermal strain compensation were developed and incorporated into real time test control software. These advances allowed the thermomechanical data to be analyzed with minimal experimental uncertainty. The thermomechanical results were evaluated on both a phenomenological and microstructural basis. Phenomenological results revealed that the thermomechanical hardening trends were not bounded by those displayed under isothermal conditions. For the case of Hastelloy Alloy X (and similar dynamic strain aging materials), this strongly suggests that some form of thermomechanical testing is necessary when characterizing a thermoviscoplastic deformation model. Transmission electron microscopy was used to study the microstructural physics, and analyze the unique phenomenological behavior.

  17. Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen

    DOE PAGES

    Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.; ...

    2015-11-20

    Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less

  18. Mechanical characterization of an additively manufactured Inconel 718 theta-shaped specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Watkins, Thomas R.; Bunn, Jeffrey R.

    Two sets of “theta”-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlationmore » between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. Lastly, the spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member.« less

  19. Ordering-separation phase transitions in a Co3V alloy

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.

    2017-01-01

    The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.

  20. Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.

    2018-03-01

    Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.

  1. Microstructure, Mechanical and Surface Morphological Properties of Al5Ti5Cr Master Alloy as Friction Material Prepared by Stir Die Casting

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani

    2018-04-01

    Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.

  2. Differential porosimetry and permeametry for random porous media.

    PubMed

    Hilfer, R; Lemmer, A

    2015-07-01

    Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.

  3. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  4. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    PubMed

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-11-15

    In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.

  5. Transparent Al+3 doped MgO thin films for functional applications

    NASA Astrophysics Data System (ADS)

    Maiti, Payel; Sekhar Das, Pradip; Bhattacharya, Manjima; Mukherjee, Smita; Saha, Biswajit; Mullick, Awadesh Kumar; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work reports the utilization of a relatively simple, cost effective sol-gel technique based route to synthesize highly transparent, spin coated 4.1 at% Al+3 doped MgO thin films on quartz substrates. The films were characterized by XRD, XPS, Raman spectroscopy, and SIMS techniques. The microstructures were characterized by FESEM and TEM while the nanomechanical properties were assessed by the nanoindentation technique. Finally the optical transmittance was measured by UV-vis technique. The x-ray diffraction (XRD) study suggests the crystal facet (2 0 0) of MgO lattice to be distorted after incorporation of Al+3 into MgO lattice. From FESEM the doped films were found to have a dense microstructure with a crystallite size of about 20 nm as revealed by the TEM studies. Nanoindentation measurements indicated drastic increase of elastic modulus for the Al+3 doped MgO thin films by ~73% compared to that of the pristine MgO thin films along with retaining the nanohardness at ~8 GPa. The transmittance of Al+3 doped MgO thin films in the visible range was significantly higher (~99%) than that of pristine MgO (~90%) thin films. The films also had a relatively higher refractive index of about 1.45 as evaluated from the optical properties. The enhanced transmittance as well as the improved elastic modulus of Al+3 doped MgO thin films suggest its promising candidature in magnetic memory devices and as buffer layers of solar cells.

  6. Pore- and micro-structural characterization of a novel structural binder based on iron carbonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sumanta, E-mail: Sumanta.Das@asu.edu; Stone, David, E-mail: dajstone@gmail.com; Convey, Diana, E-mail: Diana.Convey@asu.edu

    2014-12-15

    The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days ismore » noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.« less

  7. Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures

    PubMed Central

    TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.

    2016-01-01

    Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804

  8. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  9. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    PubMed Central

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman

    2018-01-01

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417

  10. In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam

    Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less

  11. In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint

    DOE PAGES

    Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...

    2017-11-20

    Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less

  12. Zirconia toughened mica glass ceramics for dental restorations.

    PubMed

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO{sub 2} from rice husk by solid state reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com

    Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less

  14. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  15. C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali

    2001-01-01

    A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.

  16. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.

  17. Mechanical and Microstructural Effects of Thermal Aging on Cast Duplex Stainless Steels by Experiment and Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.

    Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less

  18. Effect of Ce-substitution on structural, morphological, magnetic and DC electrical resistivity of Co-ferrite materials

    NASA Astrophysics Data System (ADS)

    Mammo, Tulu Wegayehu; Murali, N.; Sileshi, Yonatan Mulushoa; Arunamani, T.

    2018-02-01

    Partially substituted spinel structured CoFe2-xCexO4 (x = 0, 0.03, 0.06, and 0.09) samples have been synthesized using the sol-gel autocombustion route. Stoichiometric amounts of metal nitrates and citric acid were mixed in double distilled water to get homogeneously mixed solutions which were then heated to burn and result in samples for the next two-step annealing procedures. Structural and phase characterization using powder X-ray diffraction (XRD) has been carried out; and a pure spinel structured samples with lattice parameters increasing with the increase of Ce concentration levels have been obtained. The lattice parameters were calculated to be in the range of 8.42774-8.4744 Å. Field emission scanning electron microscopy (FESEM) microstructure characterizations revealed clear grain structures of the so synthesized samples with grain sizes decreasing with Ce. Fourier transform Infrared (FT-IR) characterization measured in the wave number ranges of 400-4000 cm-1 showed the cation vibrations and stretching at characteristic frequency of 668-418 cm-1. The DC resistivity measurements confirmed a decrease in the resistivity of the samples with the increase of Ce concentration and with the increase of temperature in all of the samples synthesized. Room temperature vibrating sample magnetometer measurement revealed the magnetic properties of the samples with decreasing magnetic parameters as Ce concentration increases.

  19. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  20. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  1. Discovering the movement of life: osmosis and microstructure in 1826.

    PubMed

    Pickstone, J V

    1994-01-01

    RJH Dutrochet (1776-1847) may be remembered for his discovery of osmosis in 1826. This essay explores the meanings of that discovery within the science of the early nineteenth century, including contemporary ideas on plant and animal microstructure and on physical explanations for the phenomena of life. Dutrochet is revealed as a 'romantic' exponent of 'organic physics'.

  2. Understanding of the Formation of Micro/Nanoscale Structures on Metal Surfaces by Ultrafast Pulse Laser Processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin

    In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior microstructure demonstrated that most of the volume comprised of resolidified silver grains with 1% porosity.

  3. Twin density of aragonite in molluscan shells characterized using X-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Kogure, Toshihiro; Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Checa, Antonio G.; Sasaki, Takenori; Nagasawa, Hiromichi

    2014-07-01

    {110} twin density in aragonites constituting various microstructures of molluscan shells has been characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM), to find the factors that determine the density in the shells. Several aragonite crystals of geological origin were also investigated for comparison. The twin density is strongly dependent on the microstructures and species of the shells. The nacreous structure has a very low twin density regardless of the shell classes. On the other hand, the twin density in the crossed-lamellar (CL) structure has large variation among classes or subclasses, which is mainly related to the crystallographic direction of the constituting aragonite fibers. TEM observation suggests two types of twin structures in aragonite crystals with dense {110} twins: rather regulated polysynthetic twins with parallel twin planes, and unregulated polycyclic ones with two or three directions for the twin planes. The former is probably characteristic in the CL structures of specific subclasses of Gastropoda. The latter type is probably related to the crystal boundaries dominated by (hk0) interfaces in the microstructures with preferred orientation of the c-axis, and the twin density is mainly correlated to the crystal size in the microstructures.

  4. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

    DOE PAGES

    Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...

    2014-11-25

    Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less

  5. A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization.

    PubMed

    Molina-Romero, Miguel; Gómez, Pedro A; Sperl, Jonathan I; Czisch, Michael; Sämann, Philipp G; Jones, Derek K; Menzel, Marion I; Menze, Bjoern H

    2018-03-23

    The compartmental nature of brain tissue microstructure is typically studied by diffusion MRI, MR relaxometry or their correlation. Diffusion MRI relies on signal representations or biophysical models, while MR relaxometry and correlation studies are based on regularized inverse Laplace transforms (ILTs). Here we introduce a general framework for characterizing microstructure that does not depend on diffusion modeling and replaces ill-posed ILTs with blind source separation (BSS). This framework yields proton density, relaxation times, volume fractions, and signal disentanglement, allowing for separation of the free-water component. Diffusion experiments repeated for several different echo times, contain entangled diffusion and relaxation compartmental information. These can be disentangled by BSS using a physically constrained nonnegative matrix factorization. Computer simulations, phantom studies, together with repeatability and reproducibility experiments demonstrated that BSS is capable of estimating proton density, compartmental volume fractions and transversal relaxations. In vivo results proved its potential to correct for free-water contamination and to estimate tissue parameters. Formulation of the diffusion-relaxation dependence as a BSS problem introduces a new framework for studying microstructure compartmentalization, and a novel tool for free-water elimination. © 2018 International Society for Magnetic Resonance in Medicine.

  6. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samih, Y., E-mail: youssef.samih@univ-lorraine.fr; Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures; Beausir, B.

    2013-09-15

    Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustratedmore » through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.« less

  7. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Gan; Brandon Miller; Dennis Keiser

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less

  8. Densification, Microstructural Evolution, Mechanical Properties and Oxidation Study of CrB2 + EuB6 Composite

    NASA Astrophysics Data System (ADS)

    Raju, K.; Sonber, J. K.; Murthy, T. S. R. Ch.; Sairam, K.; Majumdar, S.; Kain, V.; Nageswar Rao, G. V. S.

    2018-05-01

    This paper reports the results of investigation on densification, microstructural evolution, mechanical properties and oxidation study of CrB2 + EuB6 composite. CrB2 + EuB6 (10 and 20 wt.%) composites have been fabricated by hot pressing at a temperature of 1700 °C and 35 MPa pressure. The hardness and flexural strength were measured in the range of 21.25-24.48 GPa and 171-199 MPa, respectively. The fracture toughness increased from 3.3 to 4.01 MPa m1/2 by the addition of 20% EuB6. Microstructural evolution revealed the uniform distribution of EuB6 and absence of any reaction product. Fracture surface analysis confirmed the presence of transgranular mode of fracture. Oxidation study at 1200 °C revealed that the developed composites have good oxidation resistance and followed the parabolic rate of oxidation.

  9. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  10. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  11. Characterization of a Messer – The late-Medieval single-edged sword of Central Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajfar, Peter; Medved, Jožef; Klančnik, Grega

    2013-12-15

    Metallurgical characterization of a sword blade fragments dating from the second half of the 15th century found in central Slovenia was performed in order to determine its chemical composition, microstructure, microhardness, and to obtain insight into the methods of manufacture of a late-medieval Messer sword. As the artefact was broken, examinations were limited to six very small fragments that were allowed to be removed from the cutting edge, core and the back of the blade. Light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence spectrometry, differential scanning calorimetry, thermodynamics approach and Vickers micro-hardness tests weremore » employed to analyze the microstructure and mechanical properties. The results show that the sword was manufactured from a single wrought iron billet. The surface of the sword was carburized. No evidence of quenching was found. The ferritic microstructure is concentrated in the core, and the pearlitic in the outer layer of the blade. All metal fragments contained non-metallic inclusions that were derived mostly from slag and some from hammer scale. - Highlights: • A metallurgical characterization of a medieval sword blade has been performed. • The carbon content decreased from the surface to the core of the blade. • The dominant microstructure in the outer layer is pearlite and in the core is ferrite. • The presence of lump shaped and elongated non-metallic inclusions was observed. • The sword was manufactured from a single wrought iron billet.« less

  12. Influence of the composite material thermal expansion on embedded highly birefringent polymer microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.

    2013-05-01

    Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.

  13. Diagnosis of non-exudative (DRY) age related macular degeneration by non-invasive photon-correlation spectroscopy.

    PubMed

    Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea

    2016-01-01

    Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.

  14. Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Mahato, B.; Sharma, Sailaja; Sahu, J. K.

    2009-12-01

    As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85- μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.

  15. Microstructural evolution and thermal stability after aging of a cobalt-containing martensitic bearing steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong, E-mail: uniquelsh@163.com

    The microstructural changes and thermal stability of a cobalt-containing martensitic heat resistance bearing steel have been investigated in this paper. The hardness variation showed a progressive hardness decrease associated with coarsening of fine carbides at elevated temperatures. The precipitation of secondary phases during tempering at 500 °C for 10 h and 100 h has been characterized and identified in detail using transmission electron microscopy. The results revealed that the aging treatment induced very fine secondary M{sub 6}C precipitates which were responsible for the secondary hardening peak when tempered at 500 °C for 30 h. But the hardness gradually decreased duemore » to the coarsening of M{sub 6}C carbide and other secondary phases (such as μ phase, σ phase, and χ phase) precipitation when the samples were tempered over 30 h at 500 °C. - Highlights: •Retained austenite fraction was reduced after cryogenic treatment. •Secondary hardening was responsible for M{sub 6}C precipitates. •TEM study to investigate different phases characteristics •Coarsening of carbides during aging has a significant effect on mechanical properties.« less

  16. 7Li MRI of Li batteries reveals location of microstructural lithium.

    PubMed

    Chandrashekar, S; Trease, Nicole M; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P; Jerschow, Alexej

    2012-02-12

    There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.

  17. 7Li MRI of Li batteries reveals location of microstructural lithium

    NASA Astrophysics Data System (ADS)

    Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung; Du, Lin-Shu; Grey, Clare P.; Jerschow, Alexej

    2012-04-01

    There is an ever-increasing need for advanced batteries for portable electronics, to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. The increasing demands on batteries and other electrochemical devices have spurred research into the development of new electrode materials that could lead to better performance and lower cost (increased capacity, stability and cycle life, and safety). These developments have, in turn, given rise to a vigorous search for the development of robust and reliable diagnostic tools to monitor and analyse battery performance, where possible, in situ. Yet, a proven, convenient and non-invasive technology, with an ability to image in three dimensions the chemical changes that occur inside a full battery as it cycles, has yet to emerge. Here we demonstrate techniques based on magnetic resonance imaging, which enable a completely non-invasive visualization and characterization of the changes that occur on battery electrodes and in the electrolyte. The current application focuses on lithium-metal batteries and the observation of electrode microstructure build-up as a result of charging. The methods developed here will be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices.

  18. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel.

    PubMed

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-11

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  19. On the synthesis of AlPO4-21 molecular sieve by vapor phase transport method and its phase transformation to AlPO4-15 molecular sieve

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2015-04-01

    An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.

  20. Direct visualization of soliton stripes in the Cu O2 plane and oxygen interstitials in B i2(S r2 -xL ax) Cu O6 +δ superconductors

    NASA Astrophysics Data System (ADS)

    Guo, C.; Tian, H. F.; Yang, H. X.; Zhang, B.; Sun, K.; Sun, X.; Peng, Y. Y.; Zhou, X. J.; Li, J. Q.

    2017-11-01

    Microstructure features in correlation with the incommensurate modulation and oxygen interstitials in B i2(S r2 -xL ax) Cu O6 +δ superconducting materials were studied by Cs-corrected scanning transmission electron microscopy. Atomic displacements following the modulation wave were well characterized by a sinusoidal wave for each atomic layer, which highlighted clear changes resulting from increases in the La concentration. Careful investigations of the alterations in the local atomic structure revealed that remarkable microstructural features, i.e., notable soliton lines, which arise from the prominent interplay between incommensurate modulation and the basic lattice, appear at the Cu O2 sheets yielding visible structural anomalies for x ranging from 0.40 to 0.85. The interstitial oxygen atoms between the SrO-BiO layers became clearly visible for X ≥0.73 and showed well-defined ordered states in the x =1.10 sample. These structural features, in particular the strong structural effects of the soliton lines on the Cu O2 sheets, could evidently affect the physical properties of layered La-Bi2201 systems.

  1. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    NASA Astrophysics Data System (ADS)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  2. Magnetic force microscopy studies in bulk polycrystalline iron

    NASA Astrophysics Data System (ADS)

    Abuthahir, J.; Kumar, Anish

    2018-02-01

    The paper presents magnetic force microscopy (MFM) studies on the effect of crystallographic orientation and external magnetic field on magnetic microstructure in a bulk polycrystalline iron specimen. The magneto crystalline anisotropic effect on the domain structure is characterized with the support of electron backscatter diffraction study. The distinct variations in magnetic domain structure are observed based on the crystallographic orientation of the grain surface normal with respect to the cube axis i.e. the easy axis of magnetization. Further, the local magnetization behavior is studied in-situ by MFM in presence of external magnetic field in the range of -2000 to 2000 Oe. Various micro-magnetization phenomena such as reversible and irreversible domain wall movements, expansion and contraction of domains, Barkhausen jump, bowing of a pinned domain wall and nucleation of a spike domain are visualized. The respective changes in the magnetic microstructure are compared with the bulk magnetization obtained using vibrating sample magnetometer. Bowing of a domain wall, pinned at two points, upon application of magnetic field is used to estimate the domain wall energy density. The MFM studies in presence of external field applied in two perpendicular directions are used to reveal the influence of the crystalline anisotropy on the local micro-magnetization.

  3. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel

    PubMed Central

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-01

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics. PMID:28772416

  4. Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and ``quasi-cleavage'' fracture of lath martensitic steels

    NASA Astrophysics Data System (ADS)

    Nagao, Akihide; Dadfarnia, Mohsen; Somerday, Brian P.; Sofronis, Petros; Ritchie, Robert O.

    2018-03-01

    Hydrogen embrittlement of lath martenistic steels is characterized by intergranular and "quasi-cleavage" transgranular fracture. Recent transmission electron microscopy (TEM) analyses (Nagao et al., 2012a, 2014a, 2014b, 2014c) of samples lifted from beneath fracture surfaces through focused ion beam machining (FIB) revealed a failure mechanism that can be termed hydrogen-enhanced-plasticity mediated decohesion. Fracture occurs by the synergistic action of the hydrogen-enhanced localized plasticity and decohesion. In particular, intergranular cracking takes place by dislocation pile-ups impinging on prior austenite grain boundaries and "quasi-cleavage" is the case when dislocation pile-ups impinge on block boundaries. These high-angle boundaries, which have already weakened by the presence of hydrogen, debond by the pile-up stresses. The micromechanical model of Novak et al. (2010) is used to quantitatively describe and predict the hydrogen-induced failure of these steels. The model predictions verify that introduction of nanosized (Ti,Mo)C precipitates in the steel microstructure enhances the resistance to hydrogen embrittlement. The results are used to discuss microstructural designs that are less susceptible to hydrogen-induced failure in systems with fixed hydrogen content (closed systems).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galarraga, Haize; Lados, Diana A.; Dehoff, Ryan R.

    Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology that makes possible the fabrication of three dimensional near-net-shaped parts directly from computer models. EBM technology has been in continuously updating, obtaining optimized properties of the processed alloys. Ti-6Al-4V titanium alloy is the most widely used and studied alloy for this technology and is the focus of this work. Several research works have been completed to study the mechanisms of microstructure formation as well as its influence on mechanical properties. However, the relationship is not completely understood, and more systematic research work is necessary in order tomore » attain a better understanding of these features. In this work, samples fabricated at different locations, orientations, and distances from the build platform have been characterized, studying the relationship of these variables with the resulting material intrinsic characteristics and properties (surface topography, microstructure, porosity, micro-hardness and static mechanical properties). This study has revealed that porosity is the main factor controlling mechanical properties relative to the other studied variables. Therefore, in future process developments, decreasing of the porosity should be considered as the primary goal in order to improve mechanical properties.« less

  6. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies.more » In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.« less

  7. Fatigue failure of regenerator screens in a high frequency Stirling engine

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Alger, Donald L.; Moore, Thomas J.; Scheuermann, Coulson M.

    1988-01-01

    Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens.

  8. Formation mechanisms for the dominant kinks with different angles in InP nanowires.

    PubMed

    Zhang, Minghuan; Wang, Fengyun; Wang, Chao; Wang, Yiqian; Yip, SenPo; Ho, Johnny C

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.

  9. Formation mechanisms for the dominant kinks with different angles in InP nanowires

    PubMed Central

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties. PMID:24910572

  10. Heavy Deformation of Patented Near-Eutectoid Steel

    NASA Astrophysics Data System (ADS)

    Khanchandani, Heena; Banerjee, M. K.

    2018-01-01

    Evolution of microstructure in the patented near-eutectoid steel, forged under varying situations, is critically examined in the present investigation. Steel with 0.74 wt.% carbon is isothermally annealed at 500 °C to obtain fine pearlite microstructure. Steel samples, so patented, are subjected to mechanical deformation by forging at various temperatures with different amount of thickness reduction. Microstructural analyses have revealed that mechanical deformation by forging at lower temperatures brings about partial dissolution of cementite, which is followed by the formation of ɛ-carbide in the microstructures. In contrast, cementite is precipitated within ferrite matrix upon warm or hot forging at higher temperatures. It is further observed that increasing deformation percent during low-temperature forging reduces interlamellar spacing of pearlite, whereas an opposite trend is noticed in case of deformation at higher temperature; moreover, deformation induced the change in interlamellar spacing and formation of fine carbide phases in microstructures has caused appreciable enhancement in hardness of the steel.

  11. 3D geometrical characterization and modelling of solid oxide cells electrodes microstructure by image analysis

    NASA Astrophysics Data System (ADS)

    Moussaoui, H.; Debayle, J.; Gavet, Y.; Delette, G.; Hubert, M.; Cloetens, P.; Laurencin, J.

    2017-03-01

    A strong correlation exists between the performance of Solid Oxide Cells (SOCs), working either in fuel cell or electrolysis mode, and their electrodes microstructure. However, the basic relationships between the three-dimensional characteristics of the microstructure and the electrode properties are not still precisely understood. Thus, several studies have been recently proposed in an attempt to improve the knowledge of such relations, which are essential before optimizing the microstructure, and hence, designing more efficient SOC electrodes. In that frame, an original model has been adapted to generate virtual 3D microstructures of typical SOCs electrodes. Both the oxygen electrode, which is made of porous LSCF, and the hydrogen electrodes, made of porous Ni-YSZ, have been studied. In this work, the synthetic microstructures are generated by the so-called 3D Gaussian `Random Field model'. The morphological representativeness of the virtual porous media have been validated on real 3D electrode microstructures of a commercial cell, obtained by X-ray nano-tomography at the European Synchrotron Radiation Facility (ESRF). This validation step includes the comparison of the morphological parameters like the phase covariance function and granulometry as well as the physical parameters like the `apparent tortuosity'. Finally, this validated tool will be used, in forthcoming studies, to identify the optimal microstructure of SOCs.

  12. Advanced Steel Microstructural Classification by Deep Learning Methods.

    PubMed

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  13. Microstructure evolution and tensile properties of Zr-2.5wt%Nb pressure tubes processed from billets with different microstructures

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5wt%Nb pressure tubes. The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structure at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.

  14. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  15. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    PubMed Central

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-01-01

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed. PMID:28809344

  16. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    PubMed

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  17. MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykora, Milan; Kober, Edward Martin

    Los Alamos National Laboratory has developed a concept for a new research facility, MaRIE: Matter-Radiation Interactions in Extremes. The key motivation for MaRIE is to develop new experimental capabilities needed to fill the existing gaps in our fundamental understanding of materials important for key National Nuclear Security Agency (NNSA) goals. MaRIE will bring two major new capabilities: (a) the ability to characterize the meso- and microstructure of materials in bulk as well as local dynamic response characteristics, and (b) the ability to characterize how this microstructure evolves under NNSA-relevant conditions and impacts the material’s performance in this regime.

  18. Transmission electron microscopy characterization of microstructural features of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Avalos-Borja, M.; Pizzo, P. P.; Larson, L. A.

    1983-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitation events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significant alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  19. Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M.; Bennett, J.C.; Gharghouri, M.A.

    2008-06-15

    The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.

  20. Topograph for inspection of engine cylinder walls.

    PubMed

    Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J

    1999-12-20

    The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.

Top