Science.gov

Sample records for microstructural evolution based

  1. Microstructural Evolution Based on Fundamental Interfacial Properties

    SciTech Connect

    A. D. Rollett; D. J. Srolovitz; A. Karma

    2003-07-11

    This first CMSN project has been operating since the summer of 1999. The main achievement of the project was to bring together a community of materials scientists, physicists and mathematicians who share a common interest in the properties of interfaces and the impact of those properties on microstructural evolution. Six full workshops were held at Carnegie Mellon (CMU), Northwestern (NWU), Santa Fe, Northeastern University (NEU), National Institute for Standards and Technology (NIST), Ames Laboratory, and at the University of California in San Diego (UCSD) respectively. Substantial scientific results were obtained through the sustained contact between the members of the project. A recent issue of Interface Science (volume 10, issue 2/3, July 2002) was dedicated to the output of the project. The results include: the development of methods for extracting anisotropic boundary energy and mobility from molecular dynamics simulations of solid/liquid interfaces in nickel; the extraction of anisotropic energies and mobilities in aluminum from similar MD simulations; the application of parallel computation to the calculation of interfacial properties; the development of a method to extract interfacial properties from the fluctuations in interface position through consideration of interfacial stiffness; the use of anisotropic interface properties in studies of abnormal grain growth; the discovery of abnormal grain growth from random distributions of orientation in subgrain networks; the direct comparison at the scale of individual grains between experimentally observed grain growth and simulations, which confirmed the importance of including anisotropic interfacial properties in the simulations; the classification of a rich variety of dendritic morphologies based on slight variations in the anisotropy of the solid-liquid interface; development of phase field methods that permit both solidification and grain growth to be simulated within the same framework.

  2. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  3. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  4. Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Cui, Zhenshan; Ou, Hengan; Long, Hui

    2016-10-01

    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the two-dimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters.

  5. Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time

    SciTech Connect

    Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.; Liaw, Peter K; Kai, Ji-Jung; Ren, Yang

    2011-01-01

    An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.

  6. Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617

    NASA Astrophysics Data System (ADS)

    Kaoumi, D.; Hrutkay, K.

    2014-11-01

    The mechanisms of deformation were investigated in a nickel-based alloy (Inconel 617) of interest for the Intermediate Heat Exchanger (IHX) for the very high temperature reactor (VHTR). Tensile tests at 25 °C, 600 °C, 800 °C, and 950 °C were conducted in air at different strain rates. The tests were followed by electron microscopy analysis (including FE-SEM, TEM, EDX). The tensile property measurements and the metallographic examination of tested specimens allowed relating the deformation behavior with the microstructural changes in the material. The temperature and strain rate impact on the properties was assessed. The results and microstructure observations were discussed in terms of serrated flow associated with dynamic strain ageing, precipitate evolution, and softening processes due to dynamic recrystallization.

  7. Microstructural evolution in a Ni-Cr-Co based superalloy during cooling from the melt

    SciTech Connect

    Kazdal Zeytin, H. . E-mail: Havva.Zeytin@mam.gov.tr; Arslan Kaya, A.; Tekin, A.

    2006-08-15

    In this study the composition of a Ni-Cr-Co based superalloy was modified with silicon additions in order to observe its effects on the microstructure. The evolution of the microstructure was investigated by electron microscopy of as-cast samples containing various amounts of Si ranging from 0.48 to 5.43 wt.%. The precipitated phases were identified through electron diffraction to be {sigma} (sigma), {chi} (chi), and M{sub 23}C{sub 6}. The {sigma} precipitates of blocky morphology appeared to enclose the precipitates of {chi} phase. Lamellar regions consisting of {sigma} and M{sub 23}C{sub 6} were observed to form along the boundaries between the {sigma} particles and the neighboring phases. These lamellar cells were observed to have grown into the intermetallic phases {sigma} and {chi}. A crystallographic relationship was also found to exist between the {sigma} and M{sub 23}C{sub 6}.

  8. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy.

    PubMed

    Vogel, Florian; Wanderka, Nelia; Balogh, Zoltan; Ibrahim, Mohammed; Stender, Patrick; Schmitz, Guido; Banhart, John

    2013-01-01

    Phase separation of γ' precipitates determines the microstructure and mechanical properties of nickel-based superalloys. In the course of ageing, disordered γ spheres form inside ordered (L12) γ' precipitates, undergo a morphological change to plates and finally split the γ' precipitates. The presence of γ particles inside γ' affects coarsening kinetics and increases alloy hardness. Here we use atom probe tomography to visualize phase separation in a Ni86.1Al8.5Ti5.4 alloy in three dimensions and to quantify the composition of all the phases with near-atomic resolution. We find that γ' precipitates are supersaturated in nickel, thereby driving the formation of γ particles and observe a compositional evolution of the γ particles, which accompanies their morphological change. Our results suggest that by controlling nickel supersaturation we can tailor the phase separation and thereby the properties of nickel-based superalloys. PMID:24356413

  9. Mapping the evolution of hierarchical microstructures in a Ni-based superalloy.

    PubMed

    Vogel, Florian; Wanderka, Nelia; Balogh, Zoltan; Ibrahim, Mohammed; Stender, Patrick; Schmitz, Guido; Banhart, John

    2013-01-01

    Phase separation of γ' precipitates determines the microstructure and mechanical properties of nickel-based superalloys. In the course of ageing, disordered γ spheres form inside ordered (L12) γ' precipitates, undergo a morphological change to plates and finally split the γ' precipitates. The presence of γ particles inside γ' affects coarsening kinetics and increases alloy hardness. Here we use atom probe tomography to visualize phase separation in a Ni86.1Al8.5Ti5.4 alloy in three dimensions and to quantify the composition of all the phases with near-atomic resolution. We find that γ' precipitates are supersaturated in nickel, thereby driving the formation of γ particles and observe a compositional evolution of the γ particles, which accompanies their morphological change. Our results suggest that by controlling nickel supersaturation we can tailor the phase separation and thereby the properties of nickel-based superalloys.

  10. Laser Clad Nickel Based Superalloys: Microstructure Evolution And High Temperature Oxidation Studies

    NASA Astrophysics Data System (ADS)

    Sircar, S.; Ribaudo, C.; Mazumder, J.

    1988-10-01

    Application of alloy coatings with superior oxidation resistance at elevated temperatures (1200°C) on superalloy components is of interest at present. There is a general consensus that the addition of rare earths such as hafnium (Hf) to these alloys has a pronounced effect on their performance. An in situ laser cladding technique was used to produce Ni-Al-Cr-Hf alloys on a nickel alloy substrate. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Scanning Transmission Electron Microscope (STEM) attached with Energy Dispersive X-ray (EDX) analyzers were employed for microstructural evolution studies of alloys produced during the laser cladding process. The microstructure of these alloys mainly consists of dendrites of Y' of the Ni3Al type with about 11-14 wt% Hf and an interdendritic eutectic phase. Electron microscopy in the dendritic zones reveals ordered domains whose morphology depends on laser cladding process parameters. Variation in these parameters produced only subtle changes in the composition and cell spacing of the dendritic phase. The eutectic constituent consists of a Hf-rich phase and a Hf-lean phase in an alternating lamellar structure. Convergent beam diffraction and x-ray spectroscopy techniques were used to characterize the constituents. A possible phase transformation sequence has been suggested. Differential Thermal Analysis (DTA) work indicates that the Y' dissolution temperature for the claddings is at least as high as the substrate material (Rene 80). Single cycle oxidation tests of eight hours at 1200°C in slowly flowing air reveal that the claddings have a lower weight gain rate than the substrate itself. Microchemistry and microstructure of the oxidized samples are examined using SEM attached with EDX and Auger Electron Spectroscopic (AES) techniques. The improvement in the oxidation resistance is believed to be at least partially due to the mechanical pegging between alumina coated hafnia protrusions and the

  11. Creep property and microstructure evolution of a nickel-base single crystal superalloy in [011] orientation

    SciTech Connect

    Han, G.M. Yu, J.J.; Hu, Z.Q.; Sun, X.F.

    2013-12-15

    The creep property and microstructure evolution of a single crystal superalloy with [011] orientation were investigated at the temperatures of 700 °C, 900 °C and 1040 °C. It is shown that there exist stages of primary, steady-state, and tertiary creep under the lower temperature 700 °C. As the temperature increases to high temperatures of 900 °C and 1040 °C, steady-state creep stage is reduced or disappears and the shape of creep curves is dominated by an extensive tertiary stage. The minimum creep strain rate exhibits power law dependence on the applied stress; the stress exponents at 700 °C, 900 °C and 1040 °C are 28, 13 and 6.5, respectively. Microstructure observation shows that the morphologies of γ′ phase almost keep original shape at the lower temperature 700 °C and high applied stress. With the increasing creep temperature, γ′ precipitates tend to link together and form lamellar structure at an angle of 45° inclined to the applied stress. Transmission electron microscopy (TEM) investigations reveal that multiple < 110 > (111) slip systems gliding in the matrix channels and shearing γ′ precipitates by stacking faults or bending dislocation pairs are the main deformation mechanism at the lower temperature of 700 °C. At the high temperatures of 900 °C and 1040 °C, dislocation networks are formed at γ/γ′ interfaces and the γ′ rafts are sheared by dislocation pairs. - Highlights: • Creep properties of < 011 >-oriented single crystal superalloys were investigated. • γ′ phases become rafting at an angle of 45° inclined to the applied stress. • Creep deformation mechanisms depend on temperature and stress.

  12. Oxidation and microstructure evolution of Al-Si coated Ni3Al based single crystal superalloy with high Mo content

    NASA Astrophysics Data System (ADS)

    Tu, Xiaolu; Peng, Hui; Zheng, Lei; Qi, Wenyan; He, Jian; Guo, Hongbo; Gong, Shengkai

    2015-01-01

    A Si modified aluminide (Al-Si) coating was prepared on a Ni3Al based single crystal superalloy with high Mo content by high-activity pack cementation. Cyclic oxidation test at 1150 °C was carried out and the microstructure evolution of the coating was investigated. The results show that the oxidation resistance of the substrate was greatly increased by applying an Al-Si coating. During oxidation, outward diffusion of Mo was effectively blocked due to its high affinity with Si. Besides, a layered structure was formed as a result of the elements inter-diffusion. An obvious degradation of the Al-Si coating was observed after 100 h oxidation. Possible mechanisms related to the oxidation and elements inter-diffusion behaviours were also discussed.

  13. Microstructural and continuum evolution modeling of sintering.

    SciTech Connect

    Braginsky, Michael V.; Olevsky, Eugene A.; Johnson, D. Lynn; Tikare, Veena; Garino, Terry J.; Arguello, Jose Guadalupe, Jr.

    2003-12-01

    deformation during. The continuum portion is based on a finite element formulation that allows 3D components to be modeled using SNL's nonlinear large-deformation finite element code, JAS3D. This tool provides a capability to model sintering of complex three-dimensional components. The model was verified by comparing to simulations results published in the literature. The model was validated using experimental results from various laboratory experiments performed by Garino. In addition, the mesoscale simulations were used to study anisotropic shrinkage in aligned, elongated powder compacts. Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. However, the direction of higher shrinkage was in some cases along the direction of elongation and in other cases in the perpendicular direction depending on the details of the powder compact. In compacts of simple-packed, mono-sized, elongated particles, shrinkage was higher in the direction of elongation. In compacts of close-packed, mono-sized, elongated particles and of elongated particles with a size and shape distribution, the shrinkage was lower in the direction of elongation. We also explored the concept of a sintering stress tensor rather than the traditional sintering stress scalar concept for the case of anisotropic shrinkage. A thermodynamic treatment of this is presented. A method to calculate the sintering stress tensor is also presented. A user-friendly code that can simulate microstructural evolution during sintering in 2D and in 3D was developed. This code can run on most UNIX platforms and has a motif-based GUI. The microstructural evolution is shown as the code is running and many of the microstructural features, such as grain size, pore size, the average grain boundary length (in 2D) and area (in 3D), etc. are measured and recorded as a function of time. The overall density as the function of time is also recorded.

  14. Microstructural evolution and mechanical behavior of nickel-based superalloy 625 made by selective laser melting

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Adams, Paul; Albright, Thomas

    2015-03-01

    The mechanical properties and microstructures of Selective Laser Melted (SLM) alloy 625 procured from different suppliers were compared. The post-SLM process of hot isostatic pressing (HIP) led to a relatively coarse recrystallized gamma matrix phase that was similar in all the suppliers' materials, resulting in nearly identical tensile properties. These similarities obscure significant differences between them with respect to the population of second phase particles, which consisted of carbides or Laves phase. During solidification, the final liquid phase is concentrated in Nb, Mo, Si and C, and leads to L --> γ + carbide/Laves eutectic reactions. Secondary particles are very small prior to HIP and their composition has not been analyzed yet, but are limited to the fine-grained eutectic regions of the material prior to HIP. During HIP the gamma phase recrystallizes to remove the original as-solidified SLM microstructure, but secondary particles nucleate and grow where their elemental constituents first solidified, leading to a non-homogeneous distribution. Quasi-static tensile properties do not appear to be sensitive to these differences, but it is likely that other mechanical properties will be affected, especially fatigue and fracture behavior. Surface roughness, large grain size, and pores and voids left unhealed by the HIP cycle will also influence fatigue and fracture. Surface roughness and porosity in particular are features that could be improved by implementing novel approaches to laser processing in SLM.

  15. Micro-structure evolution of wall based crystals after casting of model suspensions as obtained from Bragg microscopy.

    PubMed

    Palberg, Thomas; Maaroufi, Martin R; Stipp, Andreas; Schöpe, Hans Joachim

    2012-09-01

    Growth of heterogeneously nucleated, wall based crystals plays a major role in determining the micro-structure during melt casting. This issue is here addressed using a model system of charged colloidal spheres in deionized aqueous suspension observed by Bragg microscopy which is a combination of light scattering and microscopy. We examine the evolution of the three-dimensional size, shape, and orientation of twin domains in monolithic crystals growing from two opposing planar walls into a meta-stable (shear-) melt. At each wall crystal orientation and twinning emerges during nucleation with small domains. During growth these widen and merge. From image analysis we observe the lateral coarsening velocities to follow a power law behaviour L(XY) ∝ t(1/2) as long as the vertical growth continues at constant speed. Lateral coarsening terminates upon intersection of the two solids and hardly any further ripening is seen. Initial lateral coarsening velocities show a Wilson Frenkel type dependence on the melt meta-stability.

  16. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    SciTech Connect

    Sorour, A.A. Chromik, R.R. Gauvin, R. Jung, I.-H. Brochu, M.

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of the (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.

  17. Triple junction motion and grain microstructure evolution

    SciTech Connect

    Gottstein, G. . E-mail: gottstein@imm.rwth-aachen.de; Ma, Y.; Shvindlerman, L.S.

    2005-03-01

    The classical concepts of grain growth in polycrystals are based on the dominant role of grain boundaries. This is reflected by the well known von Neumann-Mullins relation. According to this approach triple junctions do not affect grain boundary motion, and their role in grain growth is reduced to maintaining the thermodynamically prescribed equilibrium angles at the lines where boundaries meet. In the current study the experimental data of triple junction mobility are considered with respect to the process of grain growth in 2D systems, in particular with regard to the controlling kinetics. When boundary kinetics prevails grain growth in a polycrystal complies with the von Neumann-Mullins relation. When grain growth is governed by the mobility of triple junctions the kinetics change, and the von Neumann-Mullins relation does not hold anymore. This is the more pronounced the smaller the triple junction mobility. We present a generalized theory of 2D grain growth including a limited triple junction mobility. In this concept the criterion {lambda} plays a central role. It reflects the ratio of boundary to triple junction mobility but is proportional to the grain size as well. The generalized von Neumann-Mullins relation can be expressed in terms of {lambda}. For small values of {lambda}, conspicuous changes of microstructure evolution during grain growth and of microstructural stability are predicted. The theoretical predictions are compared to results of computer simulations by a virtual vertex model.

  18. Microstructure evolution in irradiated materials

    SciTech Connect

    Caturla, M

    1999-11-30

    Study the interaction of defects produced during irradiation or deformation of a metal with the microstructure of that particular material, such as dislocations and grain boundaries. In particular we will study the interaction of dislocation with interstitial loops and stacking fault tetrahedral, and the production of displacement cascades close to dislocations and grain boundaries. The data obtained from these simulations will be used as input to diffusion models and dislocation dynamics models.

  19. Microstructural evolution and mechanical properties of an Fe-18Ni-16Cr-4Al base alloy during aging at 950°C

    NASA Astrophysics Data System (ADS)

    Wang, Man; Sun, Yong-duo; Feng, Jing-kai; Zhang, Rui-qian; Tang, Rui; Zhou, Zhang-jian

    2016-03-01

    The development of Gen-IV nuclear systems and ultra-supercritical power plants proposes greater demands on structural materials used for key components. An Fe-18Ni-16Cr-4Al (316-base) alumina-forming austenitic steel was developed in our laboratory. Its microstructural evolution and mechanical properties during aging at 950°C were investigated subsequently. Micro-structural changes were characterized by scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. Needle-shaped NiAl particles begin to precipitate in austenite after ageing for 10 h, whereas round NiAl particles in ferrite are coarsened during aging. Precipitates of NiAl with different shapes in different matrices result from differences in lattice misfits. The tensile plasticity increases by 32.4% after aging because of the improvement in the percentage of coincidence site lattice grain boundaries, whereas the tensile strength remains relatively high at approximately 790 MPa.

  20. Internal microstructure evolution of aluminum foams under compression

    SciTech Connect

    Wang Min; Hu Xiaofang . E-mail: huxf@ustc.edu.cn; Wu Xiaoping

    2006-10-12

    In this paper, the internal microstructure deformation of open-cell and closed-cell aluminum foams under compression was investigated by using synchrotron radiation X-ray computed tomography (SR-CT) technique and digital image analysis method. The reconstructed images were obtained by using filtered back projection algorithm based on the original images taken from SR-CT experiments. Several important parameters including cross-section porosity, total porosity and cross-section deformation were computed from the reconstructed images. The variation of these parameters provided useful evolution information of internal microstructure of aluminum foams under compression.

  1. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhihao; Zhang, Maicang; Dong, Jianxin

    2013-07-01

    Stress rupture behavior and microstructure evolution of nickel-based superalloy Waspaloy specimens from tenon teeth of an as-received 60,000-hour service-exposed gas turbine disk were studied between 923 K and 1088 K (650 °C and 815 °C) under initial applied stresses varying from 150 to 840 MPa. Good microstructure stability and performance were verified for this turbine disk prior to stress rupture testing. Microstructure instability, such as the coarsening and dissolution of γ' precipitates at the varying test conditions, was observed to be increased with temperature and reduced stress. Little microstructure variation was observed at 923 K (650 °C). Only secondary γ' instability occurred at 973 K (700 °C). Four fracture mechanisms were obtained. Transgranular creep fracture was exhibited up to 923 K (650 °C) and at high stress. A mixed mode of transgranular and intergranular creep fracture occurred with reduced stress as a transition to intergranular creep fracture (ICF) at low stress. ICF was dominated by grain boundary sliding at low temperature and by the nucleation and growth of grain boundary cavities due to microstructure instability at high temperature. The fracture mechanism map and microstructure-related fracture model were constructed. Residual lifetime was also evaluated by the Larson-Miller parameter method.

  2. Microstructure Evolution of a Multifunctional Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Tian, Yu Xing; Hao, Yu Lin

    2016-06-01

    To optimize both mechanical and functional properties of multifunctional titanium alloys via grain refinement, an example of such alloys termed as Ti2448 is adopted to investigate its microstructure evolution and strain rate sensitivity by compression in the single β-phase field. The results show that flow stress and strain rate follow a bilinear relation, which is in sharp contrast with other metallic materials exhibiting a monotonic linearity. Below the critical strain of 1 s-1, the alloy has a normal strain rate sensitivity factor of 0.265. Above the critical value, its hardening rate is ultra-low with a factor of 0.03. Inspite of ultra-low hardening, the alloy is plastic stable under the tested conditions. With the aid of electron back-scattering diffraction and transmission electron microscopy analyses, microstructure evolution via several mechanisms such as dynamic recovery and recrystallization is evaluated by quantitative measurements of grain misorientation and its distribution, sub-grain formation, and localized grain refinement. These results are helpful to obtain the homogenous ultrafine-grained alloy by multi-step thermo-mechanical processing.

  3. The evolution of deformation microstructures and local orientations

    SciTech Connect

    Hughes, D.A.

    1995-12-31

    A brief overview of the evolution of microstructures during deformation is presented within the framework of grain subdivision. Three aspects of the evolving microstructure that are related to recrystallization are emphasized. These include the formation of high angle dislocation boundaries during deformation, the local environment of crystallographic orientations and a new scaling method for modeling detailed microstructural data.

  4. A Markov random field approach for modeling spatio-temporal evolution of microstructures

    NASA Astrophysics Data System (ADS)

    Acar, Pinar; Sundararaghavan, Veera

    2016-10-01

    The following problem is addressed: ‘Can one synthesize microstructure evolution over a large area given experimental movies measured over smaller regions?’ Our input is a movie of microstructure evolution over a small sample window. A Markov random field (MRF) algorithm is developed that uses this data to estimate the evolution of microstructure over a larger region. Unlike the standard microstructure reconstruction problem based on stationary images, the present algorithm is also able to reconstruct time-evolving phenomena such as grain growth. Such an algorithm would decrease the cost of full-scale microstructure measurements by coupling mathematical estimation with targeted small-scale spatiotemporal measurements. The grain size, shape and orientation distribution statistics of synthesized polycrystalline microstructures at different times are compared with the original movie to verify the method.

  5. A positron study on the microstructural evolution of Al-Li based alloys in the early stages of plastic deformation

    SciTech Connect

    Diego, N. de; Rio, J. del; Romero, R.; Somoza, A. |

    1997-11-01

    The formation of voids by coalescence of microvoids initiated at precipitates has been proposed to explain the fracture mechanisms in alloys containing a large number of second phase particles whereas in binary Al-Li alloys with shearable particles the brittleness could be linked with the grain boundary fracture. Most of the microstructure studies of Al-Li alloys have been performed by deforming to fracture; however, little is known about the processes and mechanisms involved in the early stages of plastic deformation. Butler et al. have studied a quaternary Al-Li alloy and have found that there is a critical effective strain to cause voiding, which is about 0.06 and 0.1% for the aged and for the solution treated material respectively. It is very well established that positrons are very sensitive to vacancy-like defects. With the aim of clarifying the behavior of Al-Li based alloys in the very early stages of deformation, and detecting the eventual formation of microvoids, the authors have studied the response of the positron lifetime parameters to the degrees of deformation in age-hardenable Al-Li based alloys plastically deformed under tensile stress.

  6. Microstructure Evolution and Analysis of A [011] Orientation, Single-Crystal, Nickel-Based Superalloy During Tensile Creep

    NASA Astrophysics Data System (ADS)

    Tian, Sugui; Zhang, Shu; Li, Chenxi; Yu, Huichen; Su, Yong; Yu, Xingfu; Yu, Lili

    2012-10-01

    By means of the elastic-plastic finite-element method (FEM) for calculating the distribution features of the von Mises stress and strain energy density, the influences of the applied stress on the von Mises stress of the γ'/ γ phases and the rafting of the γ' phase for the [011] orientation, single-crystal, nickel-based superalloy are investigated. The results show that, after being fully heat treated, the microstructure of the [011] orientation, single-crystal, nickel-based superalloy consists of the cuboidal γ' phase embedded coherently in the γ matrix, and the cuboidal γ' phase on (100) plane is regularly arranged along a 45 deg angle relative to the [011] orientation. Compared with the matrix channel of [010] orientation, the bigger von Mises stress is produced within the [001] matrix channel when the tensile stress is applied along the [011] orientation. Under the action of the larger principal stress component, the bigger expanding lattice strain occurs on the (001) plane of the cuboidal γ' phase along the [010] direction, which may trap the Al, Ti atoms with a bigger atomic radius for promoting the directional growth of the γ' phase into the stripe-like rafted structure along the [001] orientation. The changes of the interatomic potential energy, misfit stress, and interfacial energy during the tensile creep are thought to be the driving forces of promoting the elements' diffusion and directional growth of the γ' phase.

  7. Diffuse Interface Model for Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Nestler, Britta

    A phase-field model for a general class of multi-phase metallic alloys is proposed which describes both, multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  8. Microstructure evolution and FEM analysis of a [111] oriented single crystal nickel-based superalloy during tensile creep

    NASA Astrophysics Data System (ADS)

    Tian, Sugui; Li, Qiuyang; Su, Yong; Yu, Huichen; Xie, Jun; Zhang, Shu

    2015-03-01

    By means of the elastic-plastic stress-strain finite element method (FEM), the distribution of the von Mises stress and strain energy density in the regions near the interfaces of the cuboidal γ/ γ' phases is calculated to investigate the rafted behaviors of γ' phase in a [111] oriented single crystal (SC) nickel-based superalloy. Results show that, after fully heat treated, the microstructure of the superalloy consists of the cuboidal γ' phase embedded coherently in the γ matrix and arranged regularly along the <100> orientation. And the parameters and misfits of γ'/ γ phases in the alloy increase with the temperature. After crept for 50 h, the γ' phase in alloy has transformed into the mesh-like rafted structure on (010) plane along [001] and [100] orientations. When the tensile stress is applied along [111] direction, the change of the strain energy on the planes of the cuboidal γ' phase results in the directional diffusion of the elements. Thereinto, compared with (010) plane, the bigger expanding strain occurs on (100) and (001) planes along the [010], [001] and [010], [100] directions, which may trap the Al and Ti atoms with bigger radius to promote the directional growth of γ' phase on (010) plane along [100] and [001] directions. This is thought to be the main reason for the γ' phase directionally growing into the mesh-like rafted structure on (010) plane.

  9. Densification, microstructure and strength evolution in sintering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoping

    2000-10-01

    Powder metallurgy has the ability to fabricate high quality, complex components to close tolerances in an economical manner. In many applications, a high sintered density is desirable for an improved performance. However, sintering to a high density demands a large shrinkage, often resulting in difficulties with dimensional control. Recent studies indicate the occurrence of a sufficient densification requires a low in situ strength at high sintering temperatures. On the other hand, the low in situ strength often leads to component's distortion in response to the external forces, such as gravity. Unfortunately, lack of knowledge on strength evolution in sintering has been a major challenge to achieve an optimized combination of densification and shape retention. Therefore, the present study investigates strength evolution in sintering and the effects of processing factors. Experiments are performed on prealloyed bronze and elemental mixture of Fe-2Ni powders. For the bronze, a loose casting method is used to fabricate transverse rupture bars, while bars are injection molded for the Fe-2Ni. The in situ transverse rupture strength is measured using the Penn State Flaming Tensile Tester. Experimental results indicate a dependence of densification and strength on sintering temperature. High temperatures enhance densification and interparticle bonding, resulting in strong sintered structures. However, a low in situ strength at high test temperatures indicates the dominance of thermal softening. A strength model combining sintering theories and microstructural parameters is developed to predict both the in situ strength and the post-sintering strength. The model demonstrates the strength of the sintered materials depends on the inherent material strength, the square of neck size ratio, sintered density, and thermal softening. The model is verified by comparison of model predictions with experimental data of the bronze and Fe-2Ni. Compared to prior strength models, this

  10. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  11. Microstructure evolution of lime putty upon aging

    NASA Astrophysics Data System (ADS)

    Mascolo, Giuseppe; Mascolo, Maria Cristina; Vitale, Alessandro; Marino, Ottavio

    2010-08-01

    The microstructure evolution of lime putty upon aging was investigated by slaking quicklime (CaO) with an excess of water for 3, 12, 24, 36, 48 and 66 months. The as-obtained lime putties were characterized in the water retention and in the particle size distribution using the static laser scattering (SLS). The same lime putties, dehydrated by lyophilization, were also investigated in the pore size distribution by mercury intrusion porosimetry, in the surface area by the BET method and, finally, in particle morphology by scanning electron microscopy (SEM). The effect of the extended exposure of quicklime to water confirms a shape change from prismatic crystals of portlandite, Ca(OH) 2, into platelike ones. Simultaneously a growth of larger hexagonal crystals at the expense of the smallest ones (Ostwald ripening) favours a secondary precipitation of submicrometer platelike crystals of portlandite. The shape change and the broader particles size distribution of portlandite crystals upon aging seem to contribute to a better plasticity of lime putty.

  12. Dissipative energy as an indicator of material microstructural evolution

    NASA Astrophysics Data System (ADS)

    Connesson, N.; Maquin, F.; Pierron, F.

    2010-06-01

    In this study, the material microstructure evolution has been studied thanks to two indicators: the cumulated plastic strain and the energy dissipation due to internal friction under cyclic loading. An experimental procedure has been designed to underline the variations of the dissipative energy due to cold work on a DP600 specimen. The results showed that the dissipative energy increases with the plastic strain and can be used as an indicator of material microstructural evolution.

  13. Microstructure and texture evolution of Cu–Nb composite wires

    SciTech Connect

    Deng, Liping; Yang, Xiaofang; Han, Ke; Lu, Yafeng; Liang, Ming; Liu, Qing

    2013-07-15

    The evolution of microstructure and texture in Cu–Nb composite wires fabricated by an accumulative drawing and bundling process was investigated by backscattered electron (BSE), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results indicate the onset of severe curling and shape changing occurred at the size of Nb ∼ 400 nm with a surface increase of about 6.91 μm{sup 2}/μm{sup 3} (the area per unit volume). Two kinds of grain boundaries in Nb are suggested: one is 20°–50° boundary with a rotate/tilt axis around <110> parallel to drawing direction (DD), and another is > 50° boundary with the axis perpendicular to DD. The curling phenomenon occurred at the Cu–Nb interface and is related not only to the deformation mechanism of Nb but also to the presence of interface. This result is distinct from reported works showing that curling takes place when BCC metals are heavily drawn (Area reduction > 73%). The variation in microstructure and texture evolution between Cu and Nb filaments was discussed based on the differences in deformation mechanisms of these two metals. - Highlights: • Microstructure and texture evolution were studied systematically by EBSD. • In Nb, grain boundaries of 20°–50° have a rotate/tile axis around <110>//DD. • The rotation axes of above 50° boundaries are concentrated around <111> ⊥ DD in Nb. • Curling is related to not only deformation mode of BCC but also Cu–Nb interface.

  14. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Wall, James J.; Qu, Jianmin; Jacobs, Laurence J.

    2015-03-01

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  15. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    SciTech Connect

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Wall, James J.; Qu, Jianmin

    2015-03-31

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  16. Compositional and Microstructural Evolution of Olivine During Pulsed Laser Irradiation: Insights Based on a FIB/Field-Emission TEM Study

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Baragiola, R. A.

    2015-01-01

    Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an

  17. Investigation of mechanical properties based on grain growth and microstructure evolution of alumina ceramics during two step sintering process

    NASA Astrophysics Data System (ADS)

    Khan, U. A.; Hussain, A.; Shah, M.; Shuaib, M.; Qayyum, F.

    2016-08-01

    Alumina ceramics having small grain size and high density yield good mechanical properties, which are required in most mechanical applications. Two Step Sintering (TSS) is used to develop dense alumina ceramics. In this research work the effect of sintering temperatures on microstructure and density of the alumina specimens developed by using TSS has been investigated. It has been observed that TSS is more efficient in controlling grain growth and increasing the density as compared to One Step Sintering (OSS) of alumina. Scanning electron micrographs of sintered alumina specimens have been compared. It has been observed that TSS proves to be a better technique for increasing density and controlling grain growth of alumina ceramics than OSS. More relative density, hardness, fracture toughness and small grain size was achieved by using TSS over OSS technique.

  18. Microstructural Evolution and interfacial motion in systems with diffusion barriers

    SciTech Connect

    Perry H. Leo

    2009-03-05

    This research program was designed to model and simulate phase transformations in systems containing diffusion barriers. The modeling work included mass flow, phase formation, and microstructural evolution in interdiffusing systems. Simulation work was done by developing Cahn-Hilliard and phase field equations governing both the temporal and spatial evolution of the composition and deformation fields and other important phase variables.

  19. Microstructural Evolution of DP980 Steel during Friction Bit Joining

    NASA Astrophysics Data System (ADS)

    Huang, T.; Sato, Y. S.; Kokawa, H.; Miles, M. P.; Kohkonen, K.; Siemssen, B.; Steel, R. J.; Packer, S.

    2009-12-01

    The authors study a new solid-state spot joining process, friction bit joining (FBJ), which relies on the use of a consumable joining bit. It has been reported that FBJ is feasible for the joining of steel/steel and aluminum/steel, but the metallurgical characteristics of the joint for enhancement of the properties and reliability remain unclear. Therefore, this study produced friction bit joints in DP980 steel and then examined the microstructures in the joint precisely. In this article, the microstructure distribution associated with hardness in the friction-bit-joined DP980 steel and the microstructural evolution during FBJ are reported.

  20. General introduction to microstructural evolution under cascade damage conditions

    SciTech Connect

    Wiedersich, H.

    1993-06-01

    A short overview of the processes that affect the evolution of the microstructure during irradiation is given. The processes include defect production with an emphasis on the effects of the dynamic cascade events, defect clustering, irradiation-enhanced diffusion, radiation-induced segregation, phase decompositions and phase transformations. A simple model for the description of the development of the defect microstructure in a pure metal during cascade producing irradiation is also outlined which can provide, in principle, defect fluxes required for the description of the microstructural processes such as phase decomposition and irradiation-induced precipitation.

  1. Spontaneous evolution of microstructure in materials

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1993-08-01

    Microstructures which evolve spontaneously from random solutions in near isolation often exhibit patterns of remarkable symmetry which can only in part be explained by boundary and crystallographic effects. With reference to the detailed experimental record, we seek the source of causality in this natural tendency to constructive autonomy, usually designated as a principle of pattern or wavenumber selection in a free boundary problem. The phase field approach which incorporates detailed boundary structure and global rate equations has enjoyed some currency in removing internal degrees of freedom, and this will be examined critically in reference to the migration of phase-antiphase boundaries produced in an order-disorder transformation. Analogous problems for singular interfaces including solute trapping are explored. The microscopic solvability hypothesis has received much attention, particularly in relation to dendrite morphology and the Saffman-Taylor fingering problem in hydrodynamics. A weak form of this will be illustrated in relation to local equilibrium binary solidification cells which renders the free boundary problem unique. However, the main thrust of this article concerns dynamic configurations at anisotropic singular interfaces and the related patterns of eutectoid(ic)s, nonequilibrium cells, cellular dendrites, and Liesegang figures where there is a recognizable macroscopic phase space of pattern fluctuations and/or solitons. These possess a weakly defective stability point and thereby submit to a statistical principle of maximum path probability and to a variety of corollary dissipation principles in the determination of a unique average patterning behavior. A theoretical development of the principle based on Hamilton's principle for frictional systems is presented in an Appendix. Elements of the principles of scaling, universality, and deterministic chaos are illustrated.

  2. Simulated evolution process of core-shell microstructures

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Wang, Haipeng; Wei, Bingbo

    2007-08-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simulation method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell micro-structure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of “bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell”, while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolution is controlled mainly by the Marangoni convection resulting from the temperature gradient.

  3. Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap

    NASA Astrophysics Data System (ADS)

    Ohnuma, I.; Saegusa, T.; Takaku, Y.; Wang, C. P.; Liu, X. J.; Kainuma, R.; Ishida, K.

    2009-01-01

    The microstructure of powders that are applicable for electronic materials were studied for some systems in which there is a liquid miscibility gap. The characteristic morphologies of an egg-like core type and a uniform second-phase dispersion are shown in relation to the phase diagram, where thermodynamic calculations are a powerful tool for alloy design and the prediction of microstructure. Typical examples of microstructural evolution and properties of Pb-free solders and Ag-based micropowders with high electrical conductivity produced by a gas-atomizing method are presented.

  4. Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor condition

    NASA Astrophysics Data System (ADS)

    Gan, J.; Was, G. S.; Stoller, R. E.

    2001-10-01

    A model for microstructure development in austenitic alloys under light water reactor irradiation conditions is described. The model is derived from the model developed by Stoller and Odette to describe microstructural evolution under fast neutron or fusion reactor irradiation conditions. The model is benchmarked against microstructure measurements in 304 and 316 SS irradiated in a boiling water reactor core using one material-dependent and three irradiation-based parameters. The model is also adapted for proton irradiation at higher dose rate and higher temperature and is calibrated against microstructure measurements for proton irradiation. The model calculations show that for both neutron and proton irradiations, in-cascade interstitial clustering is the driving mechanism for loop nucleation. The loss of interstitial clusters to sinks by interstitial cluster diffusion was found to be an important factor in determining the loop density. The model also explains how proton irradiation can produce an irradiated dislocation microstructure similar to that in neutron irradiation.

  5. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  6. Microstructural evolution of eutectic gold-tin solder joints

    NASA Astrophysics Data System (ADS)

    Song, Ho Geon

    Current trends toward miniaturization and the use of lead (Pb)-free solders in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability. The study particularly concentrated on the effects that the joint size and the type of substrate metallization have on both the bulk and interface microstructures of the joints. The systems studied were eutectic Au-Sn on Cu and Cu/electroless Ni/Au and for each system, two sets of sample geometries were used. Eutectic Au-Sn solder joints on Cu have microstructures that are very coarse on the scale of the joint, where the microstructure is strongly affected by the amount of Cu dissolution during reflow process. During aging, steady diffusion of Cu leads to the growth of Cu-rich interfacial intermetallic layers, significant consumption of substrate Cu, and formation of Kirkendall pores along the interface. Thermal cycling of the joints caused decomposition of the thick zeta(Cu)-phase into a fine-grained multiphase microstructure. The microstructures of eutectic Au-Sn solder joints on Cu/electroless Ni/Au are also very coarse due to the dissolution of Au used as a protective layer during soldering. Electroless Ni is shown to effectively act as a diffusion barrier for Cu. The electroless Ni near the interface evolves into a complicated structure due to the interfacial reaction. The solubility characteristics and diffusional behavior of substrate metals into eutectic Au-Sn solder determines the detailed microstructure and microstructural evolution of the ultrafine eutectic Au-Sn joints. Two important things to be noted from the results are as follows: First, the overall microstructures of these joints are very coarse with respect to the size of joint, and hence the properties of the

  7. Microstructure Evolution of a Medium Manganese Steel During Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Sun, Binhan; Aydin, Huseyin; Fazeli, Fateh; Yue, Stephen

    2016-04-01

    An as-cast Fe-0.2C-10Mn-3Si-3Al medium manganese steel with a ferrite plus austenite duplex microstructure was subjected to hot compression tests at deformation temperatures within two-phase ( α + γ) range and various strain rates. The microstructure evolution of the experimental steel during hot deformation was investigated. The flow curves were characterized by a discontinuous yielding at the beginning of plastic deformation, followed by a weak work hardening to a peak and a subsequent mild softening stage. Two restoration processes took place during hot deformation, namely dynamic recrystallization (DRX) of austenite and continuous dynamic recrystallization of ferrite. The DRX of austenite was believed to dominate the softening stage of the flow curves. The discontinuous yielding stemmed from the existing Kurdjumov-Sachs (K-S) orientation relationship between ferrite and austenite in the initial undeformed microstructure, which gradually weakened during subsequent deformation.

  8. The effect of microstructural evolution on superplasticity in Ni{sub 3}Si(V,Mo)

    SciTech Connect

    Stoner, S.L.; Mukherjee, A.K.

    1992-10-01

    To further the understanding of superplasticity in intermetallics, this paper presents results of experimental investigations on an intermetallic alloy based on nickel silicide. Specifically, the evolution of the microstructure and its influence on superplastic performance is discussed. In the duplex microstructure, one phase showed grain growth, and the other, grain refinement. Cavitation occurred at interphase boundaries and final failure was by interlinkage of these cavities. Annealing the material improved the homogeneity of the microstructure. The annealed material showed improved strain rate sensitivity values and enhanced superplasticity. Microstructural features and ductility were also influenced by changing the orientation of the tensile axis. Though a transverse orientation showed more cavitation than longitudinal, it yielded greater elongation. An increased resistance to cavity coalescence in the transverse direction played a role in the enhanced ductility.

  9. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  10. Evolution of microstructure and mechanical properties of VVER-1000 RPV steels under re-irradiation

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Erak, D.; Zhurko, D.

    2015-01-01

    This is a comprehensive study of microstructure and mechanical properties evolution at re-irradiation after recovery annealing of VVER-1000 RPV weld and base metals as well as the effect of annealing on the microstructure and properties of base metal in the zone of the temperature gradient that is implemented during annealing using special heating device. It is shown that the level of radiation-induced microstructural changes under accelerated re-irradiation of weld and base metal is not higher than for the primary irradiation. Thus, we can predict that re-embrittlement of VVER-1000 RPV materials considering the flux effect will not exceed the typical embrittlement rate for the primary irradiation.

  11. Lattice Structures Manufactured by SLM: On the Effect of Geometrical Dimensions on Microstructure Evolution During Processing

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Schaper, Mirko

    2014-08-01

    Employing selective laser melting direct microstructure manipulation is feasible through adjustment of thermal gradients and solidification velocity. Currently, the exposure strategy and laser energy have to be adapted in order to meet a processing window suited for introducing highly anisotropic microstructures. As selective laser melting allows for production of filigree complex structures, the impact of geometry on the microstructure evolution is investigated in the current study and it is shown that miniaturization of structures as well leads to the evolution of anisotropic microstructure.

  12. Tectonic Evolution of the Cretaceous Sava-Klepa Massif, Former Yugoslav Republic of Macedonia, based on field observations and microstructural analysis - Towards a new geodynamic Model

    NASA Astrophysics Data System (ADS)

    Altmeyer, Tobias; Peternell, Mark; Prelević, Dejan; Köpping, Jonas

    2016-04-01

    The Balkan Peninsula was formed during the Mesozoic collision of Gondwana and Eurasia, associated with the closure of the Neo-Tethyan Ocean. As a result, two ophiolitic belts were formed: Dinaride-Hellenide ophiolitic belt in the southwest and the Vardar ophiolitic belt in the northeast. The bulk of Balkan ophiolites originated in the Jurassic (Robertson & Karamata, 1994), and only recently the Late Cretaceous Sava-zone ophiolites are discovered. Ophiolit-like outcrops of Mount Klepa in the Central Macedonia represents a part of Late Cretaceous oceanic lithosphere within the Sava Zone, comprising of pillow lavas, sheet flows, columns, hyaloclastites, dikes as well as cumulates. In this study we investigate the geodynamic setting and evolution of the Late Cretaceous Klepa Massif. Our working hypotheses we want to test is that Klepa Massif represents a new ocean opened through rifting after the closure of Tethyan ocean(s) and collision of Europe and Gondwana already in the Late Jurassic to Early Cretaceous. This hypothesis contradicts the accepted model suggesting that Sava ophiolites represent a relic of the Neo-Tethyan Ocean that closed in the Late Cretaceous. During detailed structural geology field studies, the ophiolitic rock sequence of Klepa Mountain area was mapped in several profiles and about 60 rock samples were taken. These field data in addition to the north-south trending outcrops of the Klepa ophiolite and the north-south trending shear zones which bound the Klepa basalt, lead to the assumption of the existence of a pull apart basin. With the help of microstructural analyses we will determine the deformation history and temperatures which also will be confirmed by the analyses of calcite twins (Ferril et al., 2004). Quartz grain size analysis of quartz bearing rocks, were used for stress piezometry. Furthermore, quartz crystal geometry and crystallographic orientations, which were measured with the Fabric Analyser G60 (Peternell et al., 2010), reveal

  13. Microstructural evolution during stress relaxation of gold thin films

    NASA Astrophysics Data System (ADS)

    Syarbaini, Luthfia Amra

    Microstructure evolution in metal thin films for use in microelectronic devices was studied due to the formation of defects such as whiskers and hillocks that may cause problems in electrical circuits. Thin film stress relaxation can occur through a variety of processes. Understanding such mechanisms and the conditions under which certain mechanism dominate can potentially lead to the improved control of thin film stability. Studies of the 3D microstructural changes in Au thin films on silicon and other substrates with different thermal expansion coefficients aid us in understanding thin film relaxation phenomena such as hillock/whisker formation. Techniques such as in-situ scanning electron microscopy (SEM) heating and cooling experiments, electron backscattered diffraction (EBSD), focus ion beam (FIB) cross sections and atomic force microscopy (AFM) enabled us to quantify the kinetic relationships between relaxation mechanisms and local morphological changes.

  14. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-18

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  15. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    SciTech Connect

    Willey, Trevor M. Lauderbach, Lisa; Gagliardi, Franco; Buuren, Tony van; Glascoe, Elizabeth A.; Tringe, Joseph W.; Lee, Jonathan R. I.; Springer, H. Keo; Ilavsky, Jan

    2015-08-07

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensive microstructural damage resulting from the temperature cycle and solid-state phase transition.

  16. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the β-δ phase transition

    NASA Astrophysics Data System (ADS)

    Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco; van Buuren, Tony; Glascoe, Elizabeth A.; Tringe, Joseph W.; Lee, Jonathan R. I.; Springer, H. Keo; Ilavsky, Jan

    2015-08-01

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensive microstructural damage resulting from the temperature cycle and solid-state phase transition.

  17. Microstructural evolution during dynamic deformation of cubic metals: copper

    SciTech Connect

    Cerreta, Ellen K; Koller, Darcie D; Bronkhorst, Curt A; Excobedo, Juan P; Hansen, Benjamin L; Patterson, Brian M; Lebensohn, Ricardo A; Livescu, Veronica; Tonks, Davis; Mourad, Hashem M; Germann, Timothy C; Perez - Bergquist, Alex; Gray Ill, George T

    2010-12-22

    Shockwave shape can influence dynamic damage evolution. Features such as rise time, pulse duration, peak shock pressure, pull back, and release rate are influenced as wave shape changes. However, their individual influence on dynamic damage evolution is not well understood. Specifically, changing from a square to triangular or Taylor wave loading profile can alter the release kinetics from peak shock pressure and the volume of material sampled during release. This creates a spatial influence. In high purity metals, because damage is often linked to boundaries within the microstructure (grain or twin), changing the volume of material sampled during release, can have a drastic influence on dynamic damage evolution as the number of boundaries or defects sampled is altered. In this study, model-driven dynamic experiments have been conducted on eu with four different grain sizes to examine, for a given shockwave shape, how the spatial effect of boundary distribution influences dynamic damage evolution. Both two and three dimensional damage characterization techniques have been utilized. This study shows the critical influence of spatial effects, in this case boundary density, on dynamic damage evolution. As the boundary density decreases, the damage evolution transitions from nucleation controlled to growth controlled. It also shows that specific boundaries, those with high Schmid factor orientations on either side, maybe a necessary condition for void formation.

  18. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Das, Suman

    2016-07-01

    Metal additive manufacturing (AM) works on the principle of incremental layer-by-layer material consolidation, facilitating the fabrication of objects of arbitrary complexity through the controlled melting and resolidification of feedstock materials by using high-power energy sources. The focus of metal AM is to produce complex-shaped components made of metals and alloys to meet demands from various industrial sectors such as defense, aerospace, automotive, and biomedicine. Metal AM involves a complex interplay between multiple modes of energy and mass transfer, fluid flow, phase change, and microstructural evolution. Understanding the fundamental physics of these phenomena is a key requirement for metal AM process development and optimization. The effects of material characteristics and processing conditions on the resulting epitaxy and microstructure are of critical interest in metal AM. This article reviews various metal AM processes in the context of fabricating metal and alloy parts through epitaxial solidification, with material systems ranging from pure-metal and prealloyed to multicomponent materials. The aim is to cover the relationships between various AM processes and the resulting microstructures in these material systems.

  19. Microstructure Evolution in Al-Cu-Fe Quasicrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Widjaja, Edy; Marks, Laurence

    2003-03-01

    Transmission Electron Microscopy (TEM) was performed to study the microstructure evolution in Al-Cu-Fe quasicrystalline thin films. Thin films were grown by magnetron sputtering on sodium chloride crystals which were subsequently dissolved in water to acquire free-standing films. Nanocrystalline films were found in the as-deposited sample. When annealed at 400oC the films changed to metastable crystalline phases that transformed into icosahedral phases upon further annealing at 500oC. TEM imaging combined with electron diffraction revealed various features associated with the phase evolution in the crystalline-quasicrystalline phase transformation. Some grains in the film functioned as sacrificial grains allowing others to grow into icosahedral phases. Elements near the boundary of the sacrificial grains diffused to form the icosahedral phases, resulting in fragments in the center of the grain. The oxide layer of the film was amorphous aluminum oxide that exhibited poor adhesion to the quasicrystalline films.

  20. Dominant processes for microstructure evolution in polar ice

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Faria, Sergio H.; Weikusat, Ilka; Azuma, Nobuhiko

    2013-04-01

    The microstructure of polycrystalline polar ice is affected by many recrystallization processes, which can occur simultaneously as well as in succession. The size and shape of individual grains, the orientation of c-axes and the occurrence of sub-grain boundaries are all influenced by a number of agents, including stress, strain, impurity content, and temperature within the ice. To interpret the structures found in ice core data with respect to the generating deformation mechanisms, it is necessary to better understand the feedback between microstructure and rheology of the ice. A better knowledge of ice rheology is also required for improving macroscopic ice flow models and producing realistic projections of the mass balance of ice sheets. The analysis of microstructural data of deep ice cores within the last decades contributed significantly to the understanding of recrystallization processes. The review paper by Faria et al. (in preparation) revisits some historic results: The analysis of grain sizes and c-axis orientation distributions with depth of the Byrd deep ice core, Antarctica, suggested that microstructural evolution could be characterized by three main depth ranges of the ice core, defined by their predominant recrystallization regimes. A generalization of these results gave rise to the tripartite paradigm of polar ice microstructure, also called the "three-stage model": (1) In the upper part Normal Grain Growth (NGG) dominates the evolution of the microstructure, leading to steady increase of the average grain size with age/depth. (2) In the central part the NGG is balanced by rotation recrystallization (sometimes also called "polygonisation"), which describes splitting of grains along sub-grain boundaries and consequently leads to a stationary average grain size. (3) In the lower (and warmer) parts of the ice core strain-induced boundary migration including nucleation of new grains was thought to be the dominant factor, resulting in larger average

  1. Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites.

    PubMed

    van de Locht, Renée; Verch, Andreas; Saunders, Martin; Dissard, Delphine; Rixen, Tim; Moya, Aurélie; Kröger, Roland

    2013-07-01

    One of the most important aspects in the research on reef-building corals is the process by which corals accrete biogenic calcium carbonate. This process leads to the formation of a mineral/organic composite and it is believed that the development of the nano- and microstructure of the mineral phase is highly sensitive to the growth conditions. Transmission electron microscopy (TEM) analysis of large-scale (10×30μm) focused ion beam (FIB) prepared lamellae was performed on adult and juvenile scleractinian coral skeleton specimens. This allowed for the investigation of the nano and microstructure and the crystallographic orientation of the aragonite mineral. We found the following microstructural evolution in the adult Porites lobata specimens: randomly oriented nanocrystals with high porosity, partly aligned nanocrystals with high porosity and areas of dense acicular crystals of several micrometers extension, the latter two areas are aligned close to the [001] direction (Pmcn space group). To the best of our knowledge, for the first time the observed microstructure could be directly correlated with the dark/bright bands characteristic of the diurnal growth cycle. We hypothesize that this mineral structure sequence and alignment in the adult specimen is linked to the photosynthetic diurnal cycle of the zooxanthellea regulating the oxygen levels and organic molecule transport to the calcifying medium. These observations reveal a strong control of crystal morphology by the organism and the correlation of the accretion process. No indication for a self-assembly of nanocrystalline units, i.e., a mesocrystal structure, on the micrometer scale could be found.

  2. Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites.

    PubMed

    van de Locht, Renée; Verch, Andreas; Saunders, Martin; Dissard, Delphine; Rixen, Tim; Moya, Aurélie; Kröger, Roland

    2013-07-01

    One of the most important aspects in the research on reef-building corals is the process by which corals accrete biogenic calcium carbonate. This process leads to the formation of a mineral/organic composite and it is believed that the development of the nano- and microstructure of the mineral phase is highly sensitive to the growth conditions. Transmission electron microscopy (TEM) analysis of large-scale (10×30μm) focused ion beam (FIB) prepared lamellae was performed on adult and juvenile scleractinian coral skeleton specimens. This allowed for the investigation of the nano and microstructure and the crystallographic orientation of the aragonite mineral. We found the following microstructural evolution in the adult Porites lobata specimens: randomly oriented nanocrystals with high porosity, partly aligned nanocrystals with high porosity and areas of dense acicular crystals of several micrometers extension, the latter two areas are aligned close to the [001] direction (Pmcn space group). To the best of our knowledge, for the first time the observed microstructure could be directly correlated with the dark/bright bands characteristic of the diurnal growth cycle. We hypothesize that this mineral structure sequence and alignment in the adult specimen is linked to the photosynthetic diurnal cycle of the zooxanthellea regulating the oxygen levels and organic molecule transport to the calcifying medium. These observations reveal a strong control of crystal morphology by the organism and the correlation of the accretion process. No indication for a self-assembly of nanocrystalline units, i.e., a mesocrystal structure, on the micrometer scale could be found. PMID:23685125

  3. Microstructural evolution in an austenitic stainless steel fusion reactor first wall

    SciTech Connect

    Stoller, R.E.; Odette, G.R.

    1986-01-01

    A detailed rate-theory-based model of microstructural evolution under fast neutron irradiation has been developed. The prominent new aspect of this model is a treatment of dislocation evolution in which Frank faulted loops nucleate, grow and unfault to provide a source for network dislocations while the dislocation network can be simultaneously annihilated by a climb/glide process. The predictions of this model compare very favorably with the observed dose and temperature dependence of these key microstructural features over a broad range. This new description of dislocation evolution has been coupled with a previously developed model of cavity evolution and good agreement has been obtained between the predictions of the composite model and fast reactor swelling data as well. The results from the composite model also reveal that the various components of the irradiation-induced microstructure evolve in a highly coupled manner. The predictions of the composite model are more sensitive to parametric variations than more simple models. Hence, its value as a tool in data analysis and extrapolation is enhanced.

  4. Microstructural evolution during the thermomechanical fatigue of solder joints

    SciTech Connect

    Frear, D R

    1991-01-01

    Solder joints in electronic packages are electrical interconnections that also function as mechanical bonds. The solder often constrains materials of different coefficients of thermal expansion that, when thermal fluctuations are encountered, causes the solder joint to experience cyclical deformation. Due to the catastrophic consequences of electrical or mechanical failure of solder joints, a great deal of work has been performed to develop a better understanding of the metallurgical response of solder joints subjected to thermomechanical fatigue. This work reviews the microstructural and mechanical evolution that occurs in solder joints during thermomechanical fatigue. The eutectic Sn-Pb solder alloy is highlighted. Unlike most materials that experience thermomechanical fatigue, solder is commonly used at temperatures of up to nine-tenths of its melting point. Therefore extensive creep, solid state diffusion, recrystallization and grain growth occur in this alloy resulting in the evolution of a heterogeneous coarsened band through which failure eventually takes place. Two other solder alloys are compared with the Sn-Pb eutectic, a Pb-rich Sn-Pb alloy and a ternary near eutectic (40In-40Sn-20Pb, all alloys are given in wt. %). The Pb-rich alloy is a precipitated single phase matrix that does not evolve during thermomechanical fatigue and subsequently has a shorter lifetime. Conversely, the 40In-40Sn-20Pb solder is a two phase eutectic in which the microstructures refines during thermomechanical fatigue giving it a longer lifetime than the eutectic Sn-Pb solder. The microstructural processes that occur during thermomechanical fatigue and final fracture behavior are discussed for the three solder alloys. 47 refs., 14 figs.

  5. 4D analysis of the microstructural evolution of Si-based electrodes during lithiation: Time-lapse X-ray imaging and digital volume correlation

    NASA Astrophysics Data System (ADS)

    Paz-Garcia, J. M.; Taiwo, O. O.; Tudisco, E.; Finegan, D. P.; Shearing, P. R.; Brett, D. J. L.; Hall, S. A.

    2016-07-01

    Silicon is a promising candidate to substitute or complement graphite as anode material in Li-ion batteries due, mainly, to its high energy density. However, the lithiation/delithiation processes of silicon particles are inherently related to drastic volume changes which, within a battery's physically constrained case, can induce significant deformation of the fundamental components of the battery that can eventually cause it to fail. In this work, we use non-destructive time-lapse X-ray imaging techniques to study the coupled electrochemo-mechanical phenomena in Li-ion batteries. We present X-ray computed tomography data acquired at different times during the first lithiation of custom-built silicon-lithium battery cells. Microstructural volume changes have been quantified using full 3D strain field measurements from digital volume correlation analysis. Furthermore, the extent of lithiation of silicon particles has been quantified in 3D from the grey-scale of the tomography images. Correlation of the volume expansion and grey-scale changes over the silicon-based electrode volume indicates that the process of lithiation is kinetically affected by the reaction at the Si/LixSi interface.

  6. Microstructure evolution of 7050 Al alloy during age-forming

    SciTech Connect

    Chen, Junfeng; Zou, Linchi; Li, Qiang; Chen, Yulong

    2015-04-15

    The microstructure evolution of the 7050 Al alloy treated by age-forming was studied using a designed device which can simulate the age-forming process. The grain shape, grain boundary misorientation and grain orientation evolution of 7050 Al alloy during age-forming have been quantitatively characterized by electron backscattering diffraction technique. The results show that age-forming produced abundant low-angle boundaries and elongated grains, which attributed to stress induced dislocation movement and grain boundary migration during the age-forming process. On the other side, the stress along rolling direction caused some unstable orientation grains to rotate towards the Brass and S orientations during the age-forming process. Hence, the intensity of the rolling texture orientation in age-formed samples is enhanced. But this effect decays gradually with increasing aging time, since stress decreases and precipitation hardening occurs during the age-forming process. - Highlights: • Quantitative analysis of grain evolution of 7050 Al alloys during age-forming • Stress induces some grain rotation of 7050 Al alloys during age-forming. • Creep leads to elongate grain of 7050 Al alloys during age-forming. • Obtains a trend on texture evolution during age-forming applied stress.

  7. Microstructural evolution and electrical properties of base-metal electroded BaTi4O9 materials with B-Si-Ba-Zn-O glass system.

    PubMed

    Chou, Chen-Chia; Su, Yu-Hsuan; Liu, Ze-Ming; Utami, Brianti Satrianti; Chen, Cheng-Sao; Chu, Li-Wen

    2012-09-01

    Barium titanate-based microwave dielectrics usually require relatively high temperatures to sinter, which prevents the use of base metals such as copper for electrodes. In this work, BaTi(4)O(9) microwave dielectric ceramics co-fired with copper electrodes are made possible by adding B-Si-Ba- Zn-O glass to induce liquid-phase sintering at sufficiently low temperature and in reduced atmosphere. The microstructures and electric properties of the BaTi(4)O(9) ceramics thus obtained are carefully examined and studied. Proper glass composition may significantly facilitate mass transportation in the low-temperature co-fired ceramic (LTCC) material, resulting in better densification without serious degradation of electric properties. Although the B2O3/SiO2 ratio enhances the glass mobility during sintering, the BaO/ZnO ratio contributes to the chemical affinity of glass to BaTi(4)O(9) ceramics. In addition, various Ba-Ti-O phases with different Ba/Ti ratios may be found in the specimen through the X-ray diffraction patterns when the BaO/ZnO ratio is varied. If the BaO/ZnO ratio is high and the glass flows easily in the material, the Ba(4)Ti(13)O(30) phase is formed. If the BaO/ZnO ratio is low and the glass flows easily in the material, the BaTi(6)O(13) phase appears. We find that glass-induced Ba(4)Ti(13)O(30) transformation may significantly decrease Qxf values in the BT4-BSBZ materials. Therefore, the appropriate glass composition must be selected to ensure the phase stability of dielectrics to achieve the best performance possible.

  8. Microstructural Evolution and Interfacial Motion in Systems with Diffusion Barriers

    SciTech Connect

    William C. Johnson

    2007-06-30

    The initial goal of this research program was to model and to simulate phase transformations in systems containing diffusion barriers. The modeling work included the development and testing of code to describe mass flow, the kinetics of phase formation, elastic deformation, and subsequent microstructural evolution occurring during interdiffusion. The primary simulation tools to be used were a class of diffuse interface methods described by the Cahn-Hilliard and phase field equations for the temporal and spatial evolution of the composition and deformation fields and other relevant phase variables. One-dimensional analytical solutions were also to be developed both to test the numerical methods and to establish connections to physical systems. During the early stages of the research program, two new areas of research related to systems with diffusion barriers were identified. The first area concerned phase formation and diffusional phase transformations in reacting systems subject to high electric current densities. Such high-current environments are common in lead-free solders, for example, and have important technological applications. The second area was an offshoot of the present work, and concerned theoretical modeling of phase evolution and cyclical amorphization of metallic alloys during ball milling.

  9. Microstructure evolution of compressible granular systems under large deformations

    NASA Astrophysics Data System (ADS)

    Gonzalez, Marcial; Cuitiño, Alberto M.

    2016-08-01

    We report three-dimensional particle mechanics static calculations that predict the microstructure evolution during die-compaction of elastic spherical particles up to relative densities close to one. We employ a nonlocal contact formulation that remains predictive at high levels of confinement by removing the classical assumption that contacts between particles are formulated locally as independent pair-interactions. The approach demonstrates that the coordination number depends on the level of compressibility, i.e., on Poisson's ratio, of the particles. Results also reveal that distributions of contact forces between particles and between particles and walls, although similar at jamming onset, are very different at full compaction. Particle-wall forces are in remarkable agreement with experimental measurements reported in the literature, providing a unifying framework for bridging experimental boundary observations with bulk behavior.

  10. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  11. Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.

    1999-01-01

    dynamics at various volume fractions. Preliminary results of numerical and experimental investigations, focused on the growth of finite particle clusters, provide important insight into the nature of the transition between the two scaling regimes. The companion microgravity experiment centers on the growth within finite particle clusters, and follows the temporal dynamics driving microstructural evolution, using holography.

  12. Processing, microstructure evolution and properties of nanoscale aluminum alloys

    NASA Astrophysics Data System (ADS)

    Han, Jixiong

    In this project, phase transformations and precipitation behavior in age-hardenable nanoscale materials systems, using Al-Cu alloys as model materials, were first studied. The Al-Cu nanoparticles were synthesized by a Plasma Ablation process and found to contain a 2˜5 nm thick adherent aluminum oxide scale, which prevented further oxidation. On aging of the particles, a precipitation sequence consisting of, nearly pure Cu precipitates to the metastable theta' to equilibrium theta was observed, with all three forming along the oxide-particle interface. The structure of theta' and its interface with the Al matrix has been characterized in detail. Ultrafine Al-Cu nanoparticles (5˜25 nm) were also synthesized by inert gas condensation (IGC) and their aging behavior was studied. These particles were found to be quite stable against precipitation. Secondly, pure Al nanoparticles were prepared by the Exploding Wire process and their sintering and consolidation behavior were studied. It was found that nanopowders of Al could be processed to bulk structures with high hardness and density. Sintering temperature was found to have a dominant effect on density, hardness and microstructure. Sintering at temperatures >600°C led to breakup of the oxide scale, leading to an interesting nanocomposite composed of 100˜200 nm Al oxide dispersed in a bimodal nanometer-micrometer size Al matrix grains. Although there was some grain growth, the randomly dispersed oxide fragments were quite effective in pinning the Al grain boundaries, preventing excessive grain growth and retaining high hardness. Cold rolling and hot rolling were effective methods for attaining full densification and high hardness. Thirdly, the microstructure evolution and mechanical behavior of Al-Al 2O3 nanocomposites were studied. The composites can retain high strength at elevated temperature and thermal soaking has practically no detrimental effect on strength. Although the ductility of the composite remains

  13. Microstructure Evolution in a New Refractory High-Entropy Alloy W-Mo-Cr-Ti-Al

    NASA Astrophysics Data System (ADS)

    Gorr, Bronislava; Azim, Maria; Christ, Hans-Juergen; Chen, Hans; Szabo, Dorothee Vinga; Kauffmann, Alexander; Heilmaier, Martin

    2016-02-01

    The microstructure of a body-centered cubic 20W-20Mo-20Cr-20Ti-20Al alloy in the as-cast condition as well as its microstructural evolution during heat treatment was investigated. Different characterization techniques, such as focused ion beam-scanning electron microscope, X-ray diffraction, and transmission electron microscope, were applied. Experimental observations were supported by thermodynamic calculations. The alloy exhibits a pronounced dendritic microstructure in the as-cast condition with the respective dendritic and interdendritic regions showing significant fluctuations of the element concentrations. Using thermodynamic calculations, it was possible to rationalize the measured element distribution in the dendritic and the interdendritic regions. Observations of the microstructure evolution reveal that during heat treatment, substantial homogenization takes place leading to the formation of a single-phase microstructure. Driving forces for the microstructural evolution were discussed from a thermodynamic point of view.

  14. Subtask 12F2: Microstructural evolution of V-4Cr-4Ti during neutron irradiation

    SciTech Connect

    Chung, H.M.; Gazda, J.; Loomis, B.A.

    1995-03-01

    The objective of this work is to characterize the microstructural evolution of V-4Cr-4Ti alloy during irradiation by fast neutrons, and thereby to provide a better understanding of long-term performance of the alloy under fusion conditions. Microstructural evolution of V-4Cr-4Ti, an alloy recently shown to exhibit excellent tensile and creep properties, virtual immunity to irradiation embrittlement, and good resistance to swelling, was characterized after irradiation in a lithium environment in the Fast Flux Test Facility (FFTF) (a sodium-cooled fast reactor located in Richland, Washington) at 420, 520, and 600{degrees}C to 24-34 dpa. The primary feature of microstructural evolution during irradiation at 520 and 600{degrees}C was high-density formation of ultrafine Ti{sub 5}Si{sub 3} precipitates and short dislocations. For irradiation at 420{degrees}C, precipitation of Ti{sub 5}Si{sub 3} was negligible, and {open_quotes}black-dot{close_quotes} defects and dislocations were observed in significantly higher densities. In spite of their extremely high densities, neither the {open_quotes}black-dot{close_quotes} defects nor Ti{sub 5}Si{sub 3} precipitates are overly detrimental to ductility and toughness of the alloy, yet they very effectively suppress irradiation-induced swelling. Therefore, these features, normally observed in V-base alloys containing Ti and Si, are considered stable. Unstable microstructural modifications that are likely to degrade mechanical properties significantly were not observed, e.g., irradiation-induced formation of fine oxides, carbides, nitrides, or Cr-rich clusters. 18 refs., 4 figs., 1 tab.

  15. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-10-01

    Morphological synthesis operations were employed for understanding electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with reasonable accuracy. The developed techniques could be considered supplementary to a phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase field, the governing equations for the morphological approach are geometry, not physics, based. A similar non-physics-based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis will represent a useful supplementary tool to phase field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to the morphological study.

  16. Tomography and Simulation of Microstructure Evolution of a Closed-Cell Polymer Foam in Compression

    SciTech Connect

    Daphalapurkar, N.P.; Hanan, J.C.; Phelps, N.B.; Bale, H.; Lu, H.

    2010-10-25

    Closed-cell foams in compression exhibit complex deformation characteristics that remain incompletely understood. In this paper the microstructural evolution of closed-cell polymethacrylimide foam was simulated in compression undergoing elastic, compaction, and densification stages. The three-dimensional microstructure of the foam is determined using Micro-Computed Tomography ({micro}-CT), and is converted to material points for simulations using the material point method (MPM). The properties of the cell-walls are determined from nanoindentation on the wall of the foam. MPM simulations captured the three stages of deformations in foam compression. Features of the microstructures from simulations are compared qualitatively with the in-situ observations of the foam under compression using {micro}-CT. The stress-strain curve simulated from MPM compares reasonably with the experimental results. Based on the results from {micro}-CT and MPM simulations, it was found that elastic buckling of cell-walls occurs even in the elastic regime of compression. Within the elastic region, less than 35% of the cell-wall material carries the majority of the compressive load. In the experiment, a shear band was observed as a result of collapse of cells in a weak zone. From this collapsed weak zone a compaction (collapse) wave was seen traveling which eventually lead to the collapse of the entire foam cell-structure. Overall, this methodology will allow prediction of material properties for microstructures driving the optimization of processing and performance in foam materials.

  17. Microstructural Evolution of TLP Bonded Ti3Al-Nb Alloy Joints

    NASA Astrophysics Data System (ADS)

    Gu, X. Y.; Duan, Z. Z.; Gu, X. P.; Sun, D. Q.

    2014-12-01

    In the present study microstructural evolution in transient liquid phase (TLP) bonded Ti3Al-Nb alloy joints using a pure copper as interlayer was investigated. TLP bonded Ti3Al-Nb alloy joints composed of intermetallic compound layers were produced. Microstructural evolution of joints depended on both bonding time and bonding temperature. With increasing bonding time and bonding temperature, the joint width increased and amount of compounds in the joint decreased. The joint microstructure at 1173 K × 1 min mainly consisted of Ti (solid solution) + Ti2Cu + TiCu + Ti3Cu4 + Ti2Cu3 + TiCu4 + Cu (solid solution) phase and it changed to Ti (solid solution) + Ti2Cu + TiCu at 1223 K × 60 min. Compounds formed on cooling from the bonding temperature by liquid phase were eliminated from the joint at 1223 K × 60 min due to isothermal solidification of liquid phase. The increase of the width of joint is attributed to the composition difference between the isothermal solidification production and its adjacent base material.

  18. Microstructural Evolution During Multi-Pass Friction Stir Processing of a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Tewari, A.; Kanjarla, A. K.; Srinivasan, N.; Reddy, G. M.; Zhu, S. M.; Nie, J. F.; Doherty, R. D.; Samajdar, I.

    2016-05-01

    A commercial magnesium alloy was processed through multi-pass and multi-directional (unidirectional, reverse, and transverse tool movements) friction stir processing (FSP). Based on the FSP location, the dominant prior-deformation basal texture was shifted along the arc of a hypothetical ellipse. The patterns of deformation texture developments were captured by viscoplastic self-consistent modeling with appropriate velocity gradients. The simulated textures, however, had two clear deficiencies. The simulations involved shear strains of 0.8 to 1.0, significantly lower than those expected in the FSP. Even at such low shear, the simulated textures were significantly stronger. Microstructural observations also revealed the presence of ultra-fine grains with relatively weak crystallographic texture. Combinations of ultra-fine grain superplasticity followed by grain coarsening were proposed as the possible mechanism for the microstructural evolution during FSP.

  19. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    SciTech Connect

    Shi, Dongyong; Liu, Wenquan; Ying, Liang Hu, Ping Shen, Guozhe

    2013-12-16

    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models under isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part.

  20. Effect of solidification rate on microstructure evolution in dual phase microalloyed steel

    PubMed Central

    Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.

    2016-01-01

    In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109

  1. Microstructural Evolution of a C-Mn Steel During Hot Compression Above the Ae3

    NASA Astrophysics Data System (ADS)

    Aranas, Clodualdo M.; Shen, Yu-Jack; Rodrigues, Samuel F.; Jonas, John J.

    2016-09-01

    In order to study the microstructural evolution during deformation, hot compression tests were carried out on a 0.06 wt pct C-0.30 wt pct Mn-0.01 wt pct Si steel at temperatures above the Ae3. The volume fraction of ferrite produced dynamically increased with the applied strain and decreased with increasing temperature. The present data are used to generate an isothermal strain-temperature-transformation diagram based on the applied strain. Results of this type can be employed to predict the effect of dynamic transformation during thermomechanical processing.

  2. Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Hu, Xiao-Dong; Han, Bing; Deng, Xiao-Hu; Ju, Dong-Ying

    2016-02-01

    Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain's biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim-Kim-Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.

  3. Final Report: A Transport Phenomena Based Approach to Probe Evolution of Weld Macro and Microstructures and A Smart Bi-directional Model of Fusion Welding

    SciTech Connect

    Dr. Tarasankar DebRoy

    2009-12-11

    In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that the reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.

  4. Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting

    NASA Technical Reports Server (NTRS)

    Dong, Lei; Schneider, Judy

    2009-01-01

    The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.

  5. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.

    PubMed

    Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter

    2016-06-22

    Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.

  6. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.

    PubMed

    Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter

    2016-06-22

    Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts. PMID:27246396

  7. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    SciTech Connect

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-02-15

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100-300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: Black-Right-Pointing-Pointer The microstructural evolution of ASB is studied by electron backscatter diffraction. Black-Right-Pointing-Pointer Twinning can occur in ASB while the contribution to shear localization is slight. Black-Right-Pointing-Pointer Elongated ultrafine grains are observed during the evolution process of ASB. Black-Right-Pointing-Pointer A possible mechanism is proposed to explain the microstructure evolution of ASB.

  8. Evolution of the microstructure during the process of consolidation and bonding in soft granular solids.

    PubMed

    Yohannes, B; Gonzalez, M; Abebe, A; Sprockel, O; Nikfar, F; Kiang, S; Cuitiño, A M

    2016-04-30

    The evolution of microstructure during powder compaction process was investigated using a discrete particle modeling, which accounts for particle size distribution and material properties, such as plasticity, elasticity, and inter-particle bonding. The material properties were calibrated based on powder compaction experiments and validated based on tensile strength test experiments for lactose monohydrate and microcrystalline cellulose, which are commonly used excipient in pharmaceutical industry. The probability distribution function and the orientation of contact forces were used to study the evolution of the microstructure during the application of compaction pressure, unloading, and ejection of the compact from the die. The probability distribution function reveals that the compression contact forces increase as the compaction force increases (or the relative density increases), while the maximum value of the tensile contact forces remains the same. During unloading of the compaction pressure, the distribution approaches a normal distribution with a mean value of zero. As the contact forces evolve, the anisotropy of the powder bed also changes. Particularly, during loading, the compression contact forces are aligned along the direction of the compaction pressure, whereas the tensile contact forces are oriented perpendicular to direction of the compaction pressure. After ejection, the contact forces become isotropic. PMID:26902721

  9. Microstructural Evolution of Lead-Free Solder Joints in Ultrasonic-Assisted Soldering

    NASA Astrophysics Data System (ADS)

    Ji, Hongjun; Wang, Qiang; Li, Mingyu

    2016-01-01

    Solder joint reliability greatly depends on the microstructure of the solder matrix and the morphology of intermetallic compounds (IMCs) in the joints. Addition of strengthening phases such as carbon nanotubes and ceramic particles to solder joints to improve their properties has been widely studied. In this work, ultrasonic vibration (USV) of casting ingots was applied to considerably improve their microstructure and properties, and the resulting influence on fluxless soldering of Cu/Sn-3.0Ag-0.5Cu/Cu joints and their microstructural evolution was investigated. It was demonstrated that USV application during reflow of Sn-based solder had favorable effects on β-Sn grain size refinement as well as the growth and distribution of various IMC phases within the joints. The β-Sn grain size was significantly refined as the ultrasound power was increased, with a reduction of almost 90% from more than 100 μm to below 10 μm. Long and large Cu6Sn5 tubes in the solder matrix of the joints were broken into tiny ones. Needle-shaped Ag3Sn was transformed into flake-shaped. These IMCs were mainly precipitated along β-Sn phase boundaries. High-temperature storage tests indicated that the growth rate of interfacial IMCs in joints formed with USV was slower than in conventional reflow joints. The mechanisms of grain refinement and IMC fragmentation are discussed and related to the ultrasonic effects.

  10. Dynamic Recrystallization Kinetics and Microstructural Evolution for LZ50 Steel During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun

    2016-09-01

    The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s-1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than ɛc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.

  11. Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Jiang, L. H.; Luo, S. H.; Hu, H. B.; Tang, T. G.; Zhang, Q. M.

    2016-01-01

    Dynamic shear test was conducted on the hat-shaped specimen of the thermo-mechanical-processed 1Cr18Ni9Ti stainless steel by using the split Hopkinson pressure bar at ambient temperature. The effect of the shear strain on the microstructure evolution was investigated during adiabatic shearing. The results revealed that the development of adiabatic shear localization went through three stages, including the incubation period, the development stage, and the maturity period. TEM observations showed that the grains in the shear region were elongated, and the elongated grains were gradually evolved into equiaxed nano-grains of 100 nm as shear strain increased. The rotational dynamic recrystallization kinetics calculation showed that subgrains had sufficient time to generate an equiaxed microcrystalline structure by rotation within the deformation time. Based on the observation of the evolution of dislocations and sub-grains in the adiabatic shear region, a model of the microstructure evolution was established during the adiabatic shearing.

  12. Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Zhiqi; Degnan, Craig C.; Jepson, Mark A. E.; Thomson, Rachel C.

    2016-10-01

    The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size, and distribution after high-temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy and transmission electron microscopy. In this paper, it is shown that there are significant differences in the size of the `channels' between gamma prime particles, the degree of rafting, and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructures of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications.

  13. Microstructure evolution with varied layer thickness in magnetron-sputtered Ni/C multilayer films

    PubMed Central

    Peng, Jichang; Li, Wenbin; Huang, Qiushi; Wang, Zhanshan

    2016-01-01

    The microstructure evolution of magnetron-sputtered Ni/C multilayers was investigated by varying the Ni and C layer thickness in the region of a few nanometers. For the samples having 2.6-nm-thick C layers, the interface width increases from 0.37 to 0.81 nm as the Ni layer thickness decreases from 4.3 to 1.3 nm. Especially for the samples with Ni layers less than 2.0 nm, the interface width changes significantly due to the discontinuously distributed Ni crystallites. For the samples having 2.8-nm-thick Ni layers, the interface width increases from 0.37 to 0.59 nm when the C layer thickness decreases from 4.3 to 0.7 nm. The evolution of interface microstructures with varied Ni and C layers is explained based on a proposed simple growth model of Ni and C layers. PMID:27515586

  14. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    SciTech Connect

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; Yang, Ying; Morgan, Dane; Wirth, Brian D.; Gussev, Maxim N.; Busby, Jeremy T.; Nam, H.

    2015-12-11

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.

  15. Microstructural Evolution of Type 304 and 316 Stainless Steels Under Neutron Irradiation at LWR Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Tan, L.; Stoller, R. E.; Field, K. G.; Yang, Y.; Nam, H.; Morgan, D.; Wirth, B. D.; Gussev, M. N.; Busby, J. T.

    2016-02-01

    Life extension of light water reactors will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), leading to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6-120 dpa at 275-375°C were generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher doses.

  16. Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea

    NASA Astrophysics Data System (ADS)

    Park, M.; Jung, H.

    2015-12-01

    The Yugu peridotite is the largest and freshest ultramafic body in the Gyeonggi Massif, Korean Peninsula, which potentially has a tectonic affinity to the eastward extension of the Qinling-Dabie-Sulu collision belt in China. In spite of its tectonic and rheological importance, only few mineralogical and petrological studies have been reported from Yugu peridotite. In order to understand the microstructural evolution of the Yugu peridotites, we conducted a detailed analysis of the microstructures and petro-fabrics. The majority of Yugu peridotite body is significantly serpentinized, and it consists predominantly of spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We collected peridotites from mainly two areas (northwestern and southwestern parts) of the Yugu ultramafic body, and all samples are spinel harzburgites consisting of olivine, orthopyroxene, clinopyroxene, spinel, and amphibole. These samples have similar mineralogy except for the varied amount of clinopyroxene and amphibole. These mineral contents are generally increasing from proto-mylonite peridotites to mylonite peridotites. Based on microstructural characteristics of highly deformed peridotites (especially grain-size of olivine), we classified the samples into four textural types, which are proto-mylonite, proto-mylonite to mylonite transition, mylonite, and ultra-mylonite. Depending on the texture of specimen, it is found that the lattice-preferred orientation (LPO) of olivine varies from A-type (proto-mylonite) via D-type like (mylonite) to E-type (ultra-mylonite). The fabric strength of olivine (M-index and J-index) systematically decreases with decreasing grain-size of olivine from proto-mylonite via mylonite to ultra-mylonite. The cause of fabric evolution in the Yugu peridotites will be discussed.

  17. Evolution of Local Microstructures: Spatial Instabilities in Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Diffusion-limited capillarity-driven coarsening of precipitates is an important and intensively studied phenomenon. The classic coarsening theory developed by Lifshitz and Syozov and Wagner (LSW theory) is limited to infinitesimally small volume fractions, V(sub nu), therefore neglects all direct interparticle interactions. This work uses modeling and holographic imaging to compare coarsening rates in "high" volume fraction versus low volume fraction microstructures by observing mixed-dimensional droplets (spherical caps on a surface coarsening by two-dimensional diffusion) during ground-based investigations. The method involves filling a cell with selected homogeneous parent phase, and cooling below the consolute temperature to the isopycnic temperature in the two-phase region of a monotectic system. A microgravity holographic experiment is required for three-dimensional observations to minimize sedimentation during long-term coarsening. Determination of sizes and positions of the many droplets in the holographic images requires automation. We have developed software for automated data analysis, and demonstrated good agreement between regenerated maps and scaled photographs of the original holograms for mixed dimensional coarsening. The results of these experiments were presented in a formal microgravity Science Concept Review (SCR) on December 18, 2000.

  18. Persistence and variation in microstructural design during the evolution of spider silk

    NASA Astrophysics Data System (ADS)

    Madurga, R.; Blackledge, T. A.; Perea, B.; Plaza, G. R.; Riekel, C.; Burghammer, M.; Elices, M.; Guinea, G.; Pérez-Rigueiro, J.

    2015-10-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers.

  19. Persistence and variation in microstructural design during the evolution of spider silk

    PubMed Central

    Madurga, R.; Blackledge, T. A.; Perea, B.; Plaza, G. R.; Riekel, C.; Burghammer, M.; Elices, M.; Guinea, G.; Pérez-Rigueiro, J.

    2015-01-01

    The extraordinary mechanical performance of spider dragline silk is explained by its highly ordered microstructure and results from the sequences of its constituent proteins. This optimized microstructural organization simultaneously achieves high tensile strength and strain at breaking by taking advantage of weak molecular interactions. However, elucidating how the original design evolved over the 400 million year history of spider silk, and identifying the basic relationships between microstructural details and performance have proven difficult tasks. Here we show that the analysis of maximum supercontracted single spider silk fibers using X ray diffraction shows a complex picture of silk evolution where some key microstructural features are conserved phylogenetically while others show substantial variation even among closely related species. This new understanding helps elucidate which microstructural features need to be copied in order to produce the next generation of biomimetic silk fibers. PMID:26438975

  20. Modeling the evolution of microstructure during the processing of maraging steels

    NASA Astrophysics Data System (ADS)

    Sha, W.; Guo, Z.; Wilson, E. A.

    2004-03-01

    The main theme of the research described in this article was to develop computer-based models to predict micro-structural evolution and precipitation-hardening kinetics during the processing of maraging steels. The prediction made by the computer-based models, when compared with experimental observations and characterization, proved to be within useful accuracy. The research outputs cover the topics of characterization of precipitates, quantification of precipitate fraction, calculation of thermodynamics and kinetics of phase transformations, and modeling of precipitation hardening. A heat-treatment procedure was also developed to improve the toughness of a commercial precipitation-hardening grade, and the design of the chemistry and processing route of low-cost maraging grades was attempted.

  1. A Monte Carlo-finite element model for strain energy controlled microstructural evolution - 'Rafting' in superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1989-01-01

    This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.

  2. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    NASA Astrophysics Data System (ADS)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-07-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  3. Predicting Mesoscale Microstructural Evolution in Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Rodgers, T. M.; Madison, J. D.; Tikare, V.; Maguire, M. C.

    2016-05-01

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. The simulations provide an opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.

  4. Predicting mesoscale microstructural evolution in electron beam welding

    DOE PAGES

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; Maguire, Michael C.

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  5. Microstructural evolution of 7012 alloy during the early stages of artificial ageing

    SciTech Connect

    Ferragut, R.; Somoza, A.; Tolley, A.

    1999-11-26

    A study of the microstructural evolution of a commercial 7012 (Al-Zn-Mg-Cu) age-hardenable alloy following artificial ageing by high resolution and conventional transmission electron microscopy and positron annihilation lifetime spectroscopy is presented. At the early stages of decomposition, the microstructure included precipitation of either pre-precipitate solute clusters or Guinier-Preston zones and semi-coherent {eta}{prime} precipitates, with typical sizes between 1 and 10 nm. Quantitative information on the size, number density and morphology of the particles present in the microstructure was obtained. The results were correlated with those obtained using positron annihilation lifetime spectroscopy.

  6. Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth

    NASA Astrophysics Data System (ADS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Bischoff, E.; Mittemeijer, E. J.

    2012-08-01

    The effect of the adatom surface diffusivity on the evolution of the microstructure and the intrinsic stress of thin metal films was investigated for the case of growth of polycrystalline Ag films on amorphous SiO2 (a-SiO2) and amorphous Ge (a-Ge) substrates, with high and low Ag adatom surface diffusivity, respectively. The surface diffusivity of the deposited Ag adatoms on the a-Ge substrate is suppressed also after coalescence of Ag islands due to the continuous (re)segregation of Ge at the surface of the growing film as evidenced by in-situ XPS. An assessment could be made of the role of adatom surface diffusivity on the microstructural development and the intrinsic stress evolution during film growth. As demonstrated by ex-situ TEM and ex-situ XRD, the Ag films grown on the a-SiO2 and a-Ge substrates possess strikingly different microstructures in terms of grain shape, grain size, and crystallographic texture. Nevertheless, the real-time in-situ stress measurements revealed a compressive → tensile → compressive stress evolution for the developing Ag films on both types of substrates, however on different time scales and with stress-component values of largely different magnitudes. It was concluded that (i) the microstructural development of metallic thin films is predominated by the surface diffusivity of the adatoms and (ii) the intrinsic stress evolution is largely controlled by the developing microstructure and the grain-boundary diffusivity.

  7. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-09-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  8. Microstructure Evolution of a Platinum-Modified Nickel-Aluminide Coating During Thermal and Thermo-mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Sallot, Pierre; Maurel, Vincent; Rémy, Luc; N'Guyen, Franck; Longuet, Arnaud

    2015-10-01

    The microstructure evolution of a platinum-modified nickel-aluminide coating on single-crystal nickel-based superalloy was investigated for various thermal cycling and thermo-mechanical fatigue (TMF) conditions in air for a long-term exposure. An increase in roughness and in β→γ' transformation rate depends similarly on maximum temperature, holding time at maximum temperature and applied stress. Moreover, the evolution of the interdiffusion zone (IDZ) is analyzed by making the distinction between two layers, according to the major phases observed within these layers, namely β-(Ni,Pt)Al and γ'-Ni3Al. This distinction highlighted that the respective thickness evolution of these two layers are sensitive to each parameter of TMF tests with similar increase in evolution rate when increasing time, temperature, as well as applied stress. The distinctive features of phase transformation are finally discussed together with localization of phase transformation and measured evolution of phase transformation within the external coating and β- and γ'-IDZ layer thicknesses under thermal and thermo-mechanical fatigue. This analysis leads to a conclusion that grain boundaries within the external coating as well as interfaces, between thermally grown oxide, external coating, and IDZ, respectively, play a major role in diffusion, phase transformation, and microstructure evolution of typical platinum-modified nickel-aluminide coating.

  9. Composite model of microstructural evolution in austenitic stainless steel under fast neutron irradiation

    SciTech Connect

    Stoller, R.E.; Odette, G.R.

    1986-01-01

    A rate-theory-based model has been developed which includes the simultaneous evolution of the dislocation and cavity components of the microstructure of irradiated austenitic stainless steels. Previous work has generally focused on developing models for void swelling while neglecting the time dependence of the dislocation structure. These models have broadened our understanding of the physical processes that give rise to swelling, e.g., the role of helium and void formation from critically-sized bubbles. That work has also demonstrated some predictive capability by successful calibration to fit the results of fast reactor swelling data. However, considerable uncertainty about the values of key parameters in these models limits their usefulness as predictive tools. Hence the use of such models to extrapolate fission reactor swelling data to fusion reactor conditions is compromised.

  10. Microstructure evolution of a multiphase superalloy processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Sauvage, Xavier; Mukhtarov, Shamil

    2014-08-01

    This paper presents an overview and some original results about the microstructure evolution of an Ultra Fine Grained (UFG) nickel-iron based alloy INCONEL 718 processed by Severe Plastic Deformation (SPD). The ultrafine grain structure of this alloy that contains a high density of γ" and γ' precipitates was characterized by Scanning Transmission Electron Microscopy (STEM). We propose a comparison between two SPD processes, High Pressure Torsion (HPT) and Multiple Forging (MF). The grain refinement is much more pronounced by HPT but intermetallic particles are partly dissolved during SPD. The UFG structure after MF is obviously very different and exhibits a much better thermal stability especially because second phase particles do not reprecipitate during post-deformation annealing.

  11. Evolution of polarization dependent microstructures induced by high repetition rate femtosecond laser irradiation in glass.

    PubMed

    Zhang, Fangteng; Gecevičius, Mindaugas; Chen, Qiuqun; Zhang, Hang; Dai, Ye; Qiu, Jianrong

    2016-09-19

    We report the observation of an anomalous polarization dependent process in an isotropic glass induced by long time stationary irradiation of a high repetition rate near-infrared femtosecond laser. Two distinctive types of polarization dependent microstructures were induced at different irradiation stages. At early stage (a few seconds), a dumbbell-shaped structure elongated perpendicularly to the laser polarization formed at the top of the modified region, which was later erased by further irradiation. At later stage (above 30 s), bubbles filled with O2 formed by the irradiation, which were distributed along the laser polarization at a distance far beyond the radius of the laser beam. Based on a simple modeling of light reflection on boundaries, a thermal accumulation process was proposed to explain the formation and evolution of the dumbbell-shaped microstructure. The possible factors responsible for polarization dependent distribution of bubbles are discussed, which needs further systematic investigations. The results may be helpful in the development of femtosecond laser microprocessing for various applications. PMID:27661877

  12. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    NASA Astrophysics Data System (ADS)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  13. Modeling Of Microstructure Evolution Of BCC Metals Subjected To Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Svyetlichnyy, Dmytro; Majta, Janusz; Muszka, Krzysztof; Łach, Łukasz

    2011-01-01

    Prediction of microstructure evolution and properties of ultrafine-grained materials is one of the most significant, current problems in materials science. Several advanced methods of analysis can be applied for this issue: vertex models, phase field models, Monte Carlo Potts, finite element method (FEM) discrete element method (DEM) and finally cellular automata (CA). The main asset of the CA is ability for a close correlation of the microstructure with the mechanical properties in micro- and meso-scale simulation. Joining CA with the DEM undoubtedly improves accuracy of modeling of coupled phenomena during the innovative forming processes in both micro- and macro-scale. Deformation in micro-scale shows anisotropy, which connected with that the polycrystalline material contains grains with different crystallographic orientation, and grain deformation is depended from configuration of directions of main stresses and axis of grain. Then, CA and DEM must be joint solutions of crystal plasticity theory. In the present model, deformation in macro-scale is transferred to meso-sale, where a block contains several, score or hundreds grains, and then is applied in micro-scale to each grain. Creation of low-angle boundaries and their development into high-angle boundaries are simulated by the cellular automata on the base of calculations using finite element method and crystal plasticity theory. The idea proposed in this study and particular solutions are discussed for the case of ultrafine-grained low-carbon steel.

  14. Evolution of Local Microstructures (ELMS): Spatial Instabilities of Coarsening

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton; Facemire, Barbara R.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that / 2 1/ 3 predicted by TLS is proportional to V(sub v)(exp 1/2), whereas others suggest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.

  15. Evolution of Local Microstructures: Spatial Instabilities of Coarsening Clusters

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton

    2001-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are often microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is diffusion-limited and arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. Competitive kinetics of these processes dictates that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub V)=0 of the dispersed phase. Since the publication of TLS theory, there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that predicted by TLS is proportional to V(exp 1/2)(sub v) whereas others suggest V(exp 1/3)(sub v).This issue has been addressed recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.

  16. Interpreting solidification phenomena and microstructural evolution in metals through the use of transparent model alloy systems

    SciTech Connect

    Grugel, R.N. . Dept. of Materials Science and Engineering); Trivedi, R. )

    1991-01-01

    It is well established that the material properties of alloys are directly related to the scale and distribution of their microstructural constituents. The advances and applications of metallogrpahic techniques for the examination of solidified microstructures have proven invaluable in ascertaining these structure-property relationships. Unfortunately, many aspects of microstructural evolution can only be inferred from a post-solidification examination. The use of transparent compounds which freeze in a manner analogous to metals circumvents this problem by allowing direct and continual observation of solidification events during both transient and steady-state growth. This paper discusses the role of these compounds in promoting our understanding of solidification phenomena. Examples of dendritic, eutectic, and monotectic microstructural development, pertinent to theory and practice, are presented and compared with their metal counterparts. 12 figs., 2 tabs.

  17. Supersoft lithography: Candy-based fabrication of soft silicone microstructures

    PubMed Central

    Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893

  18. Supersoft lithography: candy-based fabrication of soft silicone microstructures.

    PubMed

    Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893

  19. Supersoft lithography: candy-based fabrication of soft silicone microstructures.

    PubMed

    Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.

  20. Effects of Forging Process Parameters on Microstructure Evolution of Aluminum Alloy 7050

    SciTech Connect

    Yi Youping; Shi Yan; Yang Jihui; Lin Yongcheng

    2007-04-07

    The objective of this work is to investigate the behavior of microstructure evolution of aluminum alloy 7050 under the condition of different forging process parameters by means of combining materials physical model with finite element code. For the purpose of establishing constitutive equation and physical model of microstructure evolution, the isothermal compression test were performed by machine Gleeble 1500 on the condition of temperatures ranging from 250 deg. C to 450 deg. C and constant strain rates of 0.01s-1, 0.1s-1, 1s-1 and 10s-1. The behaviors of microstructure evolutions of aluminum alloy 7050 under difference process parameters were studied by metallographic observations. The experiment results showed that recrystallization during forming process occurred at the critical strain and the volume fraction of recrystallization changed with the temperature and strain rate. According to the results of isothermal compression test, a constitutive equation and an empirical model of DRX were obtained. A finite element code DEFORM 3D was used to analyze the influence of different forging process parameters on the behavior of microstructure evolution in details. The present model and simulation method can be served as a useful tool to predict and control the properties and shape of aluminum alloy 7050 components during forging.

  1. Direct handling of sharp interfacial energy for microstructural evolution

    SciTech Connect

    Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; Wang, Lumin

    2014-08-24

    In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.

  2. Evolution of Local Microstructures of Clusters Undergoing 2-Dimensional Diffusion

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.

    2003-01-01

    A primary objective of our current work is to study the details of evolving microstructures through a study of "island" formation in heteroepitaxial film/substrate systems. Such systems could be of direct relevance to so-called mixed-dimensional coarsening and to the study of heterostructures grown by thin-film techniques. The spontaneous formation of three-dimensional islands in strained-layer heteroepitaxy, e.g., has emerged as a new technique for the synthesis of self-assembled quantum dots. This work focuses on coarsening by two-dimensional diffusion of three-dimensional droplets on a flat surface.

  3. Electrospun nickel oxide nanofibers: Microstructure and surface evolution

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah; Hashaikeh, Raed

    2015-12-01

    Nickel oxide (NiO) nanofibers with controlled microstructure were synthesized through the electrospinning technique using a solution composed of nickel acetate and polyvinyl alcohol. The microstructure of NiO nanofibers was found to be highly dependent on nickel acetate concentration in the solution and the post-heat treatment. As the nickel acetate concentration increases, the crystallinity index of NiO nanofibers increases from nearly 50 percent to 90 percent and the average crystallite size in the nanofibers increases from about 20 nm to 30 nm. Further, it was found that annealing the nanofibers at 1000 °C for 2 h leads to nearly full crystallization of nanofibers with significant increase in the crystallite size to about 50 nm while maintaining the fibrous shape. For low nickel acetate concentration, and because of the small nanofibers size, the surface of the calcined nanofibers showed oxygen deficiency which promises a superior activity of these NiO nanofibers for catalytic and sensing applications.

  4. Nanomotor-based biocatalytic patterning of helical metal microstructures.

    PubMed

    Manesh, Kalayil Manian; Campuzano, Susana; Gao, Wei; Lobo-Castañón, María Jesús; Shitanda, Isao; Kiantaj, Kiarash; Wang, Joseph

    2013-02-21

    A new nanomotor-based surface-patterning technique based on the movement of a magnetically powered enzyme-functionalized flexible nanowire swimmer offers the ability to create complex helical metal microstructures.

  5. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510

  6. Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers

    NASA Astrophysics Data System (ADS)

    Sarkar, Madhuchhanda; Dana, Kausik; Das, Sukhen

    2015-10-01

    This work aims to investigate the microstructural and phase evolution of alkali activated metakaolin products with different activators and added aluminosilicate filler phases. The added filler phases have different reactivity to the alkali activated metakaolin system. Microstructural evolution in the alkali activated products has been investigated by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM). Variation in strength development in alkali activated metakaolin products was followed by compressive strength measurement test. Microstructural study shows that in case of metakaolin with NaOH activator crystalline sodalite formed in all the product samples irrespective of the added filler phases. The microstructure of these NaOH activated products investigated by FESEM showed crystalline and inhomogeneous morphology. Mixed activator containing both NaOH and sodium silicate in a fixed mass ratio formed predominantly amorphous phase. Microstructure of these samples showed more homogeneity than that of NaOH activated metakaolin products. The study further shows that addition of α-Al2O3 powder, non reactive phase to the alkali activated metakaolin system when used in larger amount increased crystalline phase in the matrix. α-Al2O3 powder addition increased the compressive strength of the product samples for both the activator compositions. Added phase of colloidal silica, reactive to the alkali activated metakaolin system when used in larger amount was found to increase amorphous nature of the matrix. Addition of colloidal silica influenced the compressive strength property differently with different activator compositions.

  7. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.

    SciTech Connect

    Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann; Patterson, Burton R.; Homer, Eric R.

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  8. Microstructure Evolution During Rapid Debinding of MIM Compact

    NASA Astrophysics Data System (ADS)

    Omar, M. A.; Subuki, I.

    2010-03-01

    This paper discusses the microstructure changes during solvent solvent extraction and polymer burnout process of injection moulded component using a new developed palm stearin binder system. The samples were prepared by injection moulding mixture of stainless steel with palm stearin and polyethylene. Debinding was carried out in two steps; first, the moulded parts were immersed in heptane at a temperature of 40° C, 60° C and 80° C to remove the palm stearin (solvent extraction process) then followed by thermal debinding to remove the insoluble binder of polyethylene. The results show that large pore were formed from the surface to the interior of the debound part during solvent extraction, allowed easy escape of pyrolysis gases during thermal debinding. The rate of extraction of palm stearin from the green body increased with increasing solvent extraction temperature.

  9. Microstructural evolution and trace element mobility in Witwatersrand pyrite

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Hough, Robert M.

    2013-11-01

    Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of <010>{100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple <010>{100} deformation. These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized <001>{120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for

  10. Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading

    SciTech Connect

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    2015-02-15

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones present a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.

  11. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2016-09-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  12. Synthetic Microstructure-Based Lifing of Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Tucker, Joseph C.

    This work focuses on the root cause of life limiting behavior in Ni-based superalloys for high pressure and temperature turbine disks applications in low cycle fatigue (LCF) by generating statistical volume elements (SVEs) of directly measured 3D microstructures for finite element method (FEM) simulations with crystal plasticity. Synthetic microstructures with experimentally determined microstructurally small fatigue crack (MSFC) weakest link features of as large as (ALA) grains and long annealing twins comprise the test cases. Upper limit truncated log-normal distributions account for the log-normal upper tail departure in grain size distributions of Ni-based superalloys more accurately representing ALA grains. Probability plots quantify the log-normality of grain sizes more effectively than traditional histograms. Twins are inserted into synthetic microstructures according to the coherent Sigma3 orientation relationship. A 3D measured dataset of the Inconel 100 (IN100) validates the Saltykov method stereology technique for estimating 3D grain size distributions from 2D; the 3D grain size distribution mean field and upper tail of IN100 is accurately predicted. The Saltykov method gave 3D grain sizes from a Rene 88 Damage Tolerant (R88DT) 2D dataset resulting in fatigue SVEs of approximately 1.5 million elements and 200 grains from FEM sensitivity studies. Changing mesh resolution minimally impacted global damage response, but converging locally requires significantly higher refinement. Fatigue interrogating FEM studies evolved hot spots in the local MSFC environment in one SVE, but not in another SVE with different crystallographic orientations, suggesting strong 3D full-field neighbor effects. The study revealed a need for slip line length considerations in crystal plasticity to better capture life limiting behavior. The findings point towards strictly limiting the ALA grain size in Ni-based superalloys to extend service life.

  13. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  14. Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions

    DOE PAGES

    Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; Yang, Ying; Morgan, Dane; Wirth, Brian D.; Gussev, Maxim N.; Busby, Jeremy T.; Nam, H.

    2015-12-11

    Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less

  15. Evolution of microstructure, strain and physical properties in oxide nanocomposite films

    SciTech Connect

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L.; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.

  16. Evolution of microstructure, strain and physical properties in oxide nanocomposite films

    PubMed Central

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L.; Wang, Haiyan; Jia, Quanxi

    2014-01-01

    We, using LSMO:ZnO nanocomposite films as a model system, have studied the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. It further shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities. PMID:24958206

  17. Evolution of microstructure, strain and physical properties in oxide nanocomposite films

    DOE PAGES

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L.; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures,more » strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.« less

  18. Microstructure Evolution of Biphasic TiNi1+ x Sn Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Verma, Nisha; Douglas, Jason E.; Krämer, Stephan; Pollock, Tresa M.; Seshadri, Ram; Levi, Carlos G.

    2016-08-01

    The effects of thermal treatment on the microstructure of biphasic materials comprising half-Heusler (hH) and full-Heusler (fH) phases, as well as on their associated thermal conductivity, are discussed. The focus of this study was on a biphasic hH/fH alloy of nominal stoichiometry TiNi1.2Sn, synthesized by containerless (magnetic levitation) induction melting. The alloy samples were exposed to various heat treatments to generate microstructures containing second-phase precipitates ranging in size from ~10 nm to a few micrometers. The materials were characterized with regard to morphology, size, shape, and orientation relationship of the fH and hH phases, both of which were present as precipitates within larger regions of the counterpart phase. The solidification path of the alloy and its implications for the subsequent microstructure evolution during heat treatment were elucidated, and relationships with the ensuing thermal conductivity were characterized.

  19. Microstructure and electrical resistance evolution during sintering of a Ag nanoparticle paste

    NASA Astrophysics Data System (ADS)

    Scola, J.; Tassart, X.; Vilar, C.; Jomard, F.; Dumas, E.; Veniaminova, Y.; Boullay, P.; Gascoin, S.

    2015-04-01

    Silver nanoparticle pastes are promising materials for high temperature interconnection particularly above 400 °C. Reliability is a major concern in interconnection and it mainly depends on the behavior under the stress induced by thermal cycling. The joint microstructure is then a crucial parameter for reliability and determines the electrical, mechanical and thermal properties. Here, an investigation procedure is proposed to describe the microstructure of a joint and to monitor its evolution in real-time during the sintering. Combining electron and x-ray diffraction with electrical resistance measurement and secondary ion mass spectroscopy, our method is used on a sample made out of a home-made silver nanoparticle paste. The influence of the chemical composition of the paste on the microstructure is discussed as well as the compatibility of the paste for oxide interconnection.

  20. Microstructural evolution in nickel alloy C-276 after Ar-ion irradiation at elevated temperature

    SciTech Connect

    Jin, Shuoxue; He, Xinfu; Li, Tiecheng; Ma, Shuli; Tang, Rui; Guo, Liping

    2012-10-15

    In present work, the irradiation damage in nickel-base alloy C-276 irradiated with Ar-ions was studied. Specimens of C-276 alloy were subjected to an irradiation of Ar-ions (with 120 keV) to dose levels of 6 and 10 dpa at 300 and 550 Degree-Sign C, respectively. The size distributions and densities of dislocation loops caused by irradiation were investigated with transmission electron microscopy. Irradiation hardening due to the formation of the loops was calculated using the dispersed barrier-hardening model, showing that irradiation hardening was greatest at 300 Degree-Sign C/6 dpa. The microstructure evolution induced by Ar-ion irradiation (0-10 dpa) in nickel-base alloy C-276 has been studied using a multi-scale modeling code Radieff constructed based on rate theory, and the size of dislocation loops simulated by Radieff was in good agreement with the experiment. - Highlights: Black-Right-Pointing-Pointer High density of dislocation loops appeared after Ar ions irradiation. Black-Right-Pointing-Pointer Irradiation hardening due to the formation of loops was calculated by the DBH model. Black-Right-Pointing-Pointer Size of loops simulated by Radieff was in good agreement with the experiment.

  1. Microstructural evolution of nanocrystalline Fe–Zr alloys upon annealing treatment

    SciTech Connect

    Shi, X.H.; Chen, Y.Z.; Ma, X.Y.; Wang, H.T.; Liu, F.

    2015-05-15

    Nanocrystalline Fe–Zr alloys exhibit an extraordinary thermal stability at elevated temperatures, which enables their potential applications in various fields. However, there remain concerns regarding the controlling stabilization mechanisms responsible for their thermal stability. In this work, two nanocrystalline Fe–Zr alloys containing 1 at.% Zr and 5 at.% Zr were annealed at various temperatures (T{sub ann}) up to 900 °C. Microstructural evolution of the alloys upon annealing was investigated by means of an X-ray diffractometer equipped with a 2-dimensional detector and transmission electron microscopy. Below 600 °C, microstructures of the two alloys consist of single nanocrystalline ferrite whose grain size is rather stable upon annealing treatments. Above 600 °C, accompanying the precipitation of Fe{sub 3}Zr phase, an apparent grain coarsening of ferrite is observed, whereas the thermal stability of the alloys is still considerably higher than that of nanocrystalline pure Fe. Based on the experimental results, it was claimed that stabilization of the nanocrystalline Fe–Zr alloys should not be totally ascribed to the thermodynamic stabilization mechanism due to the reduction in grain boundary energy as suggested in earlier investigations [K.A. Darling et al., Scr. Mater. 59 (2008) 530 and K.A. Darling et al., Mater. Sci. Eng. A527 (2010) 3572]; when T{sub ann} is higher than 600 °C, along with the precipitation of Fe{sub 3}Zr, the effect of thermodynamic stabilization is weakened, the kinetic effect arising from Zener pinning of Fe{sub 3}Zr precipitates turns to be an important mechanism contributing to the stabilization of the nanoscale grain size. - Highlights: • We show clear evidence of precipitation of Fe{sub 3}Zr phase above 600 °C. • Stabilization of nanostructure is not solely controlled by thermodynamic mechanism. • Above 600 °C, Zener pinning plays an important role in stabilizing nanostructure.

  2. Studies of microstructural imperfections of powdered Zirconium-based alloys

    SciTech Connect

    Chowdhury, P.S.; Mukherjee, P.

    2010-11-15

    Different model based approaches of X-ray diffraction line profile analysis have been applied on the heavily deformed zirconium-based alloys in the powdered form to characterize the microstructural parameters like domain size, microstrain and dislocation density. In characterizing the microstructure of the material, these methods are complimentary to each other. Though the parameters obtained by different techniques are differently defined and thus not necessarily comparable, the values of domain size and microstrain obtained from the different techniques show similar trends.

  3. Deformation behavior and microstructure evolution of wrought magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wang, Shouren; Song, Linghui; Kang, Sukbong; Cho, Jaehyung; Wang, Yingzi

    2013-05-01

    There are many researches on the deformation behavior of wrought magnesium alloys, such as AZ31, AZ80, AZ91, and ZK60 magnesium alloys at different temperatures and strain rates, but few of them focuses on the deformation behavior of AZ41M and ZK60M alloys, especially under the twin-roll casting (TRC) state. Meanwhile, the existing researches only focus on the grain refinement law of the magnesium alloys under deformation conditions, the deformation mechanism has not been revealed yet. The hot compression behavior of AZ41M and ZK60M magnesium alloys under the temperature and strain rate ranges of 250-400 °C and 0.001-1 s-1 are studied by thermal simulation methods using Gleeble 1500 machine and virtual simulation using finite element analysis software. Simulation results show that sine hyperbolic law is the most suitable flow stress model for wider deformation conditions. The most reasonable selected deformation conditions of ZK60M alloy is 350 °C/0.1 s-1 for TRC and 350 °C/1 s-1 for conventional casting (CC), while AZ41M alloy is 300 °C/0.01 s-1 for TRC and 350 °C/0.1 s-1 for CC. Deformation behavior and dynamic recrystallization (DRX) mechanism of them are analyzed at the same deformation conditions. The microstructures of AZ41M and ZK60M alloys are observed at different deformed conditions by optical microscopy (OM) and electron back scatter diffraction (EBSD) and it reveals the flow behavior and deformation mechanism of them. Working harden and work soften contribute to the activation of basal, non-basal slip systems which promote DRX. The proposed research reveals the deformation behavior and mechanism of the AZ41M and ZK 60M magnesium alloys and concludes their optimized deformation parameters and processes and provides a theory basis for their manufacturing and application.

  4. Manupulation of microstructure, phase evolution and mechanical properties by devitrification of andesite for use as proppant

    NASA Astrophysics Data System (ADS)

    Koseski, Ryan P.

    Small, roughly spherical ceramic particles, approximately 1mm in size are used for a number of applications including casting sands, catalysts, and cement fillers. The oil and natural gas industry utilizes such materials in tonnage quantities yearly as extraction aids. Particles intended for this application are referred to as proppants. Proppants are composed of materials that differ by density, strength and cost, and are selected on a site by site basis. Recently, competing usage and depletion of reserves of one of the most popular category of proppant materials, sintered aluminosilicates (e.g. kaolinite, bauxite) have driven the need for alternative raw materials for proppant manufacturing. Andesite, a by-product of mining operations in the south-west United States was identified as an abundant, readily available, and low cost alternative proppant material that can be fused and net-shaped into a glass which when crystallized results in microstructures which may offer substantial toughening and fracture characteristics which may serve to their advantage for use as proppants that do not decrease the permeability ("blind") the particle bed. This study addressed the devitrification behavior and its role on the mechanical properties of andesite-based glass-ceramic spheres for use as proppants. Timetemperature- transformation studies were performed to evaluate the devitrification behavior of andesite glass. Crystalline phase evolution and microstructural development were evaluated using quantitative x-ray diffraction, scanning electron microscopy, differential thermal analysis, and spectrophotometry. The andesite glass devitrification commenced with the precipitation of iron oxides (magnetite) which served as seeds for the epitaxial growth of dendritic pyroxenes. Mechanical properties, such as diametral compressive strength, fracture toughness, hardness, and fracture morphology were correlated with crystalline phase evolution. Selected heat treatments resulting in the

  5. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2016-04-01

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (∼3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. This difference is attributed to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  6. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    NASA Astrophysics Data System (ADS)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  7. Hot Deformation Behavior and Microstructural Evolution of a Medium Carbon Vanadium Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Cutrim, Rialberth M.; Rodrigues, Samuel F.; Reis, Gedeon S.; Silva, Eden S.; Aranas, Clodualdo; Balancin, Oscar

    2016-10-01

    Hot forging of steel requires application of large strains, under which conditions, dynamic recrystallization (DRX) is expected to take place. In this study, torsion tests were carried out on a medium carbon vanadium microalloyed steel (38MnSiVS5) to simulate hot forging. Deformations were applied isothermally in the temperature range 900-1200 °C at strain rates of 0.1-10 s-1 in order to observe for the occurrence of DRX and to investigate for the microstructural evolution during straining. The shape of the flow curves indicated that the recrystallization takes place during deformation. This was supported by optical microscopy performed on the quenched samples which displayed considerable amounts of recrystallized grains. It was shown that the grain size depends on straining conditions such as strain rate and temperature. Finally, it was revealed that these process parameters can considerably affect the evolution of microstructure of industrial grade steels by means of DRX.

  8. Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling

    SciTech Connect

    Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun

    2014-08-15

    This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50% had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.

  9. The effect of implantation conditions on microstructural evolution in oxygen implanted silicon

    NASA Astrophysics Data System (ADS)

    Datta, Ranju

    Ion implantation is used for the fabrication of SIMOX (separation by implanted oxygen). SIMOX is a silicon on insulator structure used for microelectronic devices, where a buried oxide layer insulates a silicon overlayer from the substrate. High energy, high dose oxygen ions are implanted into a heated single crystalline silicon wafer, followed by high temperature annealing to create a uniform buried oxide and eliminate implantation damage. The final quality of SIMOX material depends on the properties of the silicon overlayer and the buried oxide. The dominant defects are threading dislocations in the silicon overlayer and silicon inclusions (silicon islands) within the buried oxide, both of which are detrimental. The objectives of this dissertation were to evaluate the effect of implantation conditions on the formation of these defects, and to understand the underlying physical mechanisms which govern microstructural evolution in this system. The effects of implant dose, energy, substrate temperature and beam current variations on microstructural evolution were investigated, primarily, by transmission electron microscopy and x-ray diffraction. Only specific dose ranges yielded low defect density SIMOX. Threading dislocation densities were low for intermediate doses and were high for very low and very high doses. However, low silicon island densities in the buried oxide were obtained at only one specific low dose and at high doses. These dose windows were affected to different extents by the other implantation parameters. The physical mechanisms for these effects were established. Threading dislocations in the annealed state evolved from dislocation half loops present in the as-implanted state at high doses. The presence of dislocation half loops was a result of strain relief processes in the near surface region during implantation. Threading dislocations at low doses were the result of defect pinning by a bilayer oxide structure. The precipitate distribution in

  10. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. The model

    SciTech Connect

    Hemmer, H.; Grong, O.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  11. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  12. Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation

    SciTech Connect

    Jin, Yongmei M.

    2009-02-09

    Effects of twin boundary mobility on domain microstructure evolution during magnetic field-induced deformation in magnetic shape memory alloys are studied by phase field micromagnetic microelastic modeling. The simulations show that different twin boundary mobilities lead to drastically different domain microstructures and evolution pathways, yielding very different magnetization and strain responses, even with opposite signs. The study also reveals complex domain phenomena in magnetic shape memory alloys.

  13. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    SciTech Connect

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

    2013-12-01

    irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.

  14. Evolution of quartz microstructures and textures during thrusting of the Kalak nappe complex

    NASA Astrophysics Data System (ADS)

    Marti, Sina; Kern, Nicola; Stünitz, Holger; Kilian, Rüdiger; Heilbronner, Renée; Menegon, Luca

    2013-04-01

    The Kalak nappe of Northern Norway shows penetrative Caledonian shear deformation related to the Scandian collison. Deformation took place under retrograde metamorphic conditions of amphibolite to greenschist facies and locally preserved low strain lenses show relics of pre-Caledonian granulite facies assemblages. Thus, the Kalak nappe represents a detached segment of pre-Caledonian lower crust. Along the E6 at Langfjord and Altafjord south of the Seiland Igneous Province, a transect through the lower part of the Kalak nappe and the contact to the underlying parautochthonous (PA) unit is studied. While the Kalak units consist of metapelites, mafics, metapsammites, and metagranitoids, the PA units consist largely of low grade micaschists and carbonates. We analyzed dynamic quartz microstructures and textures in conjunction with the metamorphic gradient from the PA across the thrust into higher nappe units. From the structurally higher units down towards the thrust contact, dominant recrystallization mechanisms change from grain boundary migration recrystallization (GBM) to grain boundary migration accompanied with subgrain rotation recrystallization (GBM+SGR) to subgrain rotation recrystallization (SGR). Corresponding mean recrystallized grain sizes decrease from ~ 340 μm (GBM) to ~ 180 μm (GBM+SGR) to ~ 60 μm (SGR). In the lowest grade rocks, domains are found where SGR recrystallization overprints an earlier GBM microstructure. Changes in quartz [c]-axis pole figures accompany the change in dominant recrystallization mechanism from distinct maxima in the y-direction for the GBM regime to peripheral maxima (with large angles to the foliation) in the SGR regime. Together with the fabric changes, the Kalak nappe shows a retrograde metamorphic evolution from ~ 700 to 570 ° C, 1.2 to 0.9 GPa and dominant GBM recrystallization to GBM+SGR at ~ 580 - 500 ° C, 1 to 0.9 GPa to dominant SGR below 500 ° C, 0.7 GPa and increasing strain localization during nappe

  15. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  16. Microstructure evolution and hardness variation of pack-rolled nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Ni, H. T.; Zhu, J.; Zhang, X. Y.

    2015-01-01

    The microstructure evolution and hardness of nanocrystalline nickel during pack rolling at room temperature have been investigated. It was found that the roll-bonding side (R) and non-roll-bonding side (NR) behaved quite differently. The hardness of side R is higher than that of side NR. No obvious work softening was observed in either side R or side NR until the strain reached ~ 0.611. Quantitative X-ray diffraction analysis indicated that the grain size in side NR increases faster than that in side R, a result confirmed by transmission electron microscopy. Texture analysis showed that (2 0 0) preferred orientation first strengthens but then weakens in both sides NR and R, while a strong (2 2 0) preferred orientation emerges, particularly in side R. Further texture analysis suggests that dislocation slip is responsible for the texture discrepancy between side NR and side R. The dislocation activity, grain rotation and grain growth are discussed based on the experimental results.

  17. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  18. Effect of Intercritical Annealing on Microstructural Evolution and Properties of Quenched & Partitioned (Q&P) Steels

    NASA Astrophysics Data System (ADS)

    Wu, Riming; Jin, Xuejun; Wang, Chenglin; Wang, Li

    2016-04-01

    Transformation of metastable austenite into martensite in novel quenched & partitioned (Q&P) steels improves sheet formability, allowing this class of high-strength steels to be used for automotive structural components. The current work studies the microstructural evolution by varying intercritical annealing time ( t a), as well as its influence on the martensite-austenite constituent and mechanical properties of Q&P steels. As the t a was prolonged, the morphology of retained austenite progressively transformed from block to a mixture of block and film, and finally changed to totally film. Based on electron back-scatter diffraction (EBSD) measurements and uniaxial tensile response, the holding time of 600 s at 760 °C was determined to produce the best results in terms of highest volume fraction of retained austenite ( f γ = 15.8%) and largest strain (26.8%) at the ultimate tensile strength (892 MPa). This difference in work-hardening behavior corresponds directly to the transformation rate of retained austenite with different morphology. The slower rate of transformation of filmy austenite allowed for work hardening to persist at high strains where the transformation effect had already been exhausted in the blocky one. There is great potential for properties improvement through adjustment of metastability of retained austenite.

  19. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    NASA Astrophysics Data System (ADS)

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; Hanks, Byron W.; Foulk, James W.; Battaile, Corbett C.

    2016-05-01

    The mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FE meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.

  20. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    DOE PAGES

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; Hanks, Byron W.; Foulk, James W.; Battaile, Corbett C.

    2016-04-25

    Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less

  1. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels

    NASA Astrophysics Data System (ADS)

    Clarke, A. J.; Clarke, K. D.; McCabe, R. J.; Necker, C. T.; Papin, P. A.; Field, R. D.; Kelly, A. M.; Tucker, T. J.; Forsyth, R. T.; Dickerson, P. O.; Foley, J. C.; Swenson, H.; Aikin, R. M.; Dombrowski, D. E.

    2015-10-01

    Low-enriched uranium-10 wt.% molybdenum (LEU-10wt.%Mo) is of interest for the fabrication of monolithic fuels to replace highly-enriched uranium (HEU) dispersion fuels in high performance research and test reactors around the world. In this work, depleted uranium-10 wt.%Mo (DU-10wt.%Mo) is used to simulate the solidification and microstructural evolution of LEU-10wt.%Mo. Electron backscatter diffraction (EBSD) and complementary electron probe microanalysis (EPMA) reveal significant microsegregation present in the metastable γ-phase after solidification. Homogenization is performed at 800 and 1000 °C for times ranging from 1 to 32 h to explore the time-temperature combinations that will reduce the extent of microsegregation, as regions of higher and lower Mo content may influence local mechanical properties and provide preferred regions for γ-phase decomposition. We show for the first time that EBSD can be used to qualitatively assess microstructural evolution in DU-10wt.%Mo after homogenization treatments. Complementary EPMA is used to quantitatively confirm this finding. Homogenization at 1000 °C for 2-4 h may the regions that contain 8 wt.% Mo or lower, whereas homogenization at 1000 °C for longer than 8 h effectively saturates Mo chemical homogeneity, but results in substantial grain growth. The appropriate homogenization time will depend upon additional microstructural considerations, such as grain growth and intended subsequent processing. Higher carbon LEU-10wt.%Mo generally contains more inclusions within the grains and at grain boundaries after solidification. The effect of these inclusions on microstructural evolution (e.g. grain growth) during homogenization and as potential γ-phase decomposition nucleation sites is unclear, but likely requires additional study.

  2. Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem

    Ferritic-martensitic steels are primary candidate materials for fuel cladding and internal applications in the Sodium Fast Reactor, as well as first-wall and blanket materials in future fusion concepts because of their favorable mechanical properties and resistance to radiation damage. Since microstructure evolution under irradiation is amongst the key issues for these materials in these applications, developing a fundamental understanding of the irradiation-induced microstructure in these alloys is crucial in modeling and designing new alloys with improved properties. The goal of this project was to investigate the evolution of microstructure of two commercial ferritic-martensitic steels, NF616 and HCM12A, under heavy ion irradiation at a broad temperature range. An in situ heavy ion irradiation technique was used to create irradiation damage in the alloy; while it was being examined in a transmission electron microscope. Electron-transparent samples of NF616 and HCM12A were irradiated in situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with 1 MeV Kr ions to ˜10 dpa at temperatures ranging from 20 to 773 K. The microstructure evolution of NF616 and HCM12A was followed in situ by systematically recording micrographs and diffraction patterns as well as capturing videos during irradiation. In these irradiations, there was a period during which no changes are visible in the microstructure. After a threshold dose (˜0.1 dpa between 20 and 573 K, and ˜2.5 dpa at 673 K) black dots started to become visible under the ion beam. These black dots appeared suddenly (from one frame to the next) and are thought to be small defect clusters (2-5 nm in diameter), possibly small dislocation loops with Burgers vectors of either ½ or . The overall density of these defect clusters increased with dose and saturated around 6 dpa. At saturation, a steady-state is reached in which defects are eliminated and created at the same rates so that the

  3. Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem

    Ferritic-martensitic steels are primary candidate materials for fuel cladding and internal applications in the Sodium Fast Reactor, as well as first-wall and blanket materials in future fusion concepts because of their favorable mechanical properties and resistance to radiation damage. Since microstructure evolution under irradiation is amongst the key issues for these materials in these applications, developing a fundamental understanding of the irradiation-induced microstructure in these alloys is crucial in modeling and designing new alloys with improved properties. The goal of this project was to investigate the evolution of microstructure of two commercial ferritic-martensitic steels, NF616 and HCM12A, under heavy ion irradiation at a broad temperature range. An in situ heavy ion irradiation technique was used to create irradiation damage in the alloy; while it was being examined in a transmission electron microscope. Electron-transparent samples of NF616 and HCM12A were irradiated in situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with 1 MeV Kr ions to ˜10 dpa at temperatures ranging from 20 to 773 K. The microstructure evolution of NF616 and HCM12A was followed in situ by systematically recording micrographs and diffraction patterns as well as capturing videos during irradiation. In these irradiations, there was a period during which no changes are visible in the microstructure. After a threshold dose (˜0.1 dpa between 20 and 573 K, and ˜2.5 dpa at 673 K) black dots started to become visible under the ion beam. These black dots appeared suddenly (from one frame to the next) and are thought to be small defect clusters (2-5 nm in diameter), possibly small dislocation loops with Burgers vectors of either ½ or . The overall density of these defect clusters increased with dose and saturated around 6 dpa. At saturation, a steady-state is reached in which defects are eliminated and created at the same rates so that the

  4. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  5. Microstructural evolution during ultra-rapid annealing of severely deformed low-carbon steel: strain, temperature, and heating rate effects

    NASA Astrophysics Data System (ADS)

    Mostafaei, M. A.; Kazeminezhad, M.

    2016-07-01

    An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200-1100°C/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction.

  6. Recrystallization Process in Fe-Cr-Al Oxide Dispersion-Strengthened Alloy: Microstructural Evolution and Recrystallization Mechanism

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Chao, J.; Capdevila, C.

    2014-05-01

    Mechanically alloyed iron-base oxide dispersion-strengthened (ODS) alloys are the class of advanced materials for application in heat exchangers tubing in which creep and oxidation resistance are paramount. The yttria dispersion in such alloys improves the high-temperature creep and stress rupture life. The strength is further enhanced by the development of a coarse-grained microstructure during recrystallization. Factors controlling the evolution of this desirable microstructure are explored in this work, focusing specifically on PM 2000. The results presented in terms of orientation imaging, transmission electron microscopy, and scanning electron microscopy indicate that the recrystallization process consists of two different stages. Before the coarse grain takes place, the alloy undergoes an extended recovery process followed by abnormal grain growth. The initial microstructure consisted of subgrains (submicrometer sizes) with a strong <110>∥RD fiber texture ( α fiber), which are transformed into coarse grains (mm sizes) with orientations <112>∥RD. The aim of this study is to describe the mechanisms involved in the intermediate stages of recrystallization process from the submicrometer grain size to the abnormal grain size.

  7. A simulation study of microstructure evolution during solidification process of liquid metal Ni

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Rong; Liu, Rang-Su; Zhang, Ai-Long; Hou, Zhao-Yang; Wang, Xin; Tian, Ze-An

    2007-12-01

    A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt-Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature Tc, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of 2.0 × 1013 K . s-1 and 1.0 × 1012 K . s-1, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures Tc would be 1073 and 1173 K, respectively.

  8. Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.

    2016-10-01

    Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.

  9. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.

    PubMed

    He, Mo-Rigen; Samudrala, Saritha K; Kim, Gyuseok; Felfer, Peter J; Breen, Andrew J; Cairney, Julie M; Gianola, Daniel S

    2016-01-01

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone. PMID:27071458

  10. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen

    NASA Astrophysics Data System (ADS)

    He, Mo-Rigen; Samudrala, Saritha K.; Kim, Gyuseok; Felfer, Peter J.; Breen, Andrew J.; Cairney, Julie M.; Gianola, Daniel S.

    2016-04-01

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone.

  11. Microstructural evolution of a recycled aluminum alloy deformed by equal channel angular pressing process

    NASA Astrophysics Data System (ADS)

    Makhlouf, Thabet; Rebhi, Atef; Couzinié, Jean-Philippe; Champion, Yannick; Njah, Nabil

    2012-11-01

    The microstructural evolution of a recycled aluminum alloy after equal channel angular pressing (ECAP) up to four passes was investigated using X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Microhardness tests were performed to determine the associated changes in mechanical properties. An ultrafine-grained material has been obtained with a microstructure showing a mixture of highly strained crystallites. A high density of dislocations was achieved as a result of severe plastic deformation (SPD) through the die. Changes in mechanical behavior are also revealed after ECAP due to strain hardening. Thermal analysis and TEM micrographs obtained after annealing indicate the succession of the recovery, recrystallization, and grain growth phenomena. Moreover, the energy stored during ECAP may be related to the dislocation density introduced by SPD. We finally emphasize the role played by the precipitates in this alloy.

  12. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen

    PubMed Central

    He, Mo-Rigen; Samudrala, Saritha K.; Kim, Gyuseok; Felfer, Peter J.; Breen, Andrew J.; Cairney, Julie M.; Gianola, Daniel S.

    2016-01-01

    The large fraction of material residing at grain boundaries in nanocrystalline metals and alloys is responsible for their ultrahigh strength, but also undesirable microstructural instability under thermal and mechanical loads. However, the underlying mechanism of stress-driven microstructural evolution is still poorly understood and precludes rational alloy design. Here we combine quantitative in situ electron microscopy with three-dimensional atom-probe tomography to directly link the mechanics and kinetics of grain boundary migration in nanocrystalline Al films with the excess of O atoms at the boundaries. Site-specific nanoindentation leads to grain growth that is retarded by impurities, and enables quantification of the critical stress for the onset of grain boundary migration. Our results show that a critical excess of impurities is required to stabilize interfaces in nanocrystalline materials against mechanical driving forces, providing new insights to guide control of deformation mechanisms and tailoring of mechanical properties apart from grain size alone. PMID:27071458

  13. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion

    SciTech Connect

    Janeček, Miloš; Čížek, Jakub; Stráský, Josef; Václavová, Kristína; Hruška, Petr; Polyakova, Veronika; Gatina, Svetlana; Semenova, Irina

    2014-12-15

    Microstructure evolution and mechanical properties of ultra-fine grained Ti15Mo alloy processed by high pressure torsion were investigated. High pressure torsion straining resulted in strong grain refinement as-observed by transmission electron microscopy. Microhardness and light microscopy showed two distinct regions — (i) a central region with radial material flow and low microhardness (340 HV) and (ii) a peripheral region with rotational material flow and high microhardness (430 HV). Positron annihilation spectroscopy showed that the only detectable defects in the material are dislocations, whose density increases with the radial distance and the number of high pressure torsion revolutions. The local chemical environment around defects does not differ significantly from the average composition. - Highlights: • Beta-Ti alloy Ti15Mo was processed by high pressure torsion (HPT). • Lateral inhomogeneity of the microstructure and microhardness was found. • Dislocations are the only lattice defects detectable by positron annihilation. • Molybdenum is not preferentially segregated along dislocation cores.

  14. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Zhou, W. F.; Liu, F. F.; Ren, Y. P.; Yuan, S. Q.; Ren, N. F.; Xu, S. D.; Yang, T.

    2016-02-01

    Microstructure evolution and grain refinement of Ti-6Al-4V alloy after laser shock processing (LSP) are systematically investigated in this paper. Laser shock waves were induced by a Q-switched Nd:YAG laser system operated with a wave-length of 1064 nm and 10 ns pulse width. The microstructures of LSP samples were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Present results indicate that the surface hardness of samples subjected to LSP impacts has significantly improved. Multidirectional twin intersections and dislocation movements lead to grain subdivision in α phase with ultra-high plastic deformation. High-density dislocations are found in β phase. Multidirectional twin intersections and division of sub-grain boundaries play an important role in the grain refinement of Ti-6Al-4V alloy under LSP loading conditions.

  15. Modeling the Microstructure Evolution During Additive Manufacturing of Ti6Al4V: A Comparison Between Electron Beam Melting and Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Vastola, G.; Zhang, G.; Pei, Q. X.; Zhang, Y.-W.

    2016-05-01

    Beam-based additive manufacturing (AM) is an innovative technique in which parts are built layerwise, starting from the material in powder form. As a developing manufacturing technique, achievement of excellent mechanical properties in the final part is of paramount importance for the mainstream adoption of this technique in industrial manufacturing lines. At the same time, AM offers an unprecedented opportunity to precisely control the manufacturing conditions locally within the part during build, enabling local influence on the formation of the texture and microstructure. In order to achieve the control of microstructure by tailoring the AM machine parameters, a full understanding and modeling of the heat transfer and microstructure evolution processes is needed. Here, we show the implementation of the non-equilibrium equations for phase formation and dissolution in an AM modeling framework. The model is developed for the Ti6Al4V alloy and allows us to show microstructure evolution as given by the AM process. The developed capability is applied to the cases of electron beam melting and selective laser melting AM techniques to explain the significantly different microstructures observed in the two processes.

  16. Microstructural evolution from stable sliding to fast stick slip: insights from rock deformation experiments on quartz

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Scuderi, Marco M.; Viti, Cecilia; Marone, Chris

    2016-04-01

    Inferring microstructural evolution and associated fault slip behaviour along natural and/or experimental faults is a long-standing problem in fault mechanics. For example, does grain-size reduction and shear localization facilitate earthquake slip or vice versa? We have sheared granular layers of quartz gouge in a double direct shear configuration using a biaxial apparatus. We varied loading stiffness and applied normal stresses to produce a spectrum of slip modes from stable sliding at 10 μm/s, slow stick-slip (average slip velocity 100 μm/s) and fast stick slip (average slip velocity 4 mm/s). At the end of the experiments we collected the experimental fault rocks for microstructural investigations. Additional samples were collected from control experiments to investigate shear fabric development and microstructural features before the onset of stick-slip instabilities. We investigated the role of normal stress and stick-slip properties, including slip velocity, in determining fault zone microstructural features. Ranging from stable sliding to fast stick-slip we observe a progressive localization of deformation along fault parallel boundary shear planes. Only during fast stick-slip is the deformation localized along continuous, thin (1-2 microns wide), boundary parallel shear planes. The shear zones are composed of nanograins dispersed within a patchy matrix. We conducted TEM analyses to characterize these materials. In experiments at the same normal stress, fast stick-slip results in localized shear zones and fabric with nanograins whereas for stable sliding the microstructure does not show a significant grain size reduction and localization. Our results indicate that the fault rheological properties and fault slip behaviour, ranging from stable to unstable slip, plays a significant role in shear localization and fault zone fabric development.

  17. Deformation behavior and microstructural evolution of nanocrystalline aluminum alloys and composites

    NASA Astrophysics Data System (ADS)

    Ahn, Byungmin

    Nanocrystalline or ultrafine-grained Al alloys are often produced by severe plastic deformation methods and exhibit remarkably enhanced strength and hardness compared to conventional coarse-grained materials, resulting in great potential for structural applications. To achieve nanocrystalline structure, grains were refined by cryomilling (mechanical milling at cryogenic temperature) pre-alloyed powders. Cryomilling provides capability for rapid grain refinement and synthesis of commercial quantities (30-40 kg). The cryomilled powder was primarily consolidated by hot or cold isostatic pressing in general. Secondary consolidation was achieved by extrusion or forging. Alternatively, quasi-isostatic forging was applied either as an initial consolidation or as a further deformation step. To improve insufficient ductility and toughness of nanocrystalline materials, an intelligent design with microstructural modification was introduced by generation of multiple size scales. A bimodal grain structure consisting of nanocrystalline grains and inclusions of coarse-grained material was produced by consolidation of blended powders. The resulting materials exhibited enhanced ductility compared to 100% nanocrystalline materials, with only moderate decreases in strength. A similar process was used to produce hybrid trimodal microstructures comprised of regions of nanocrystalline and coarse grains, as well as hard ceramic particles, providing super-high compressive strength. For cryomilled nanocrystalline Al alloys, effects of degassing temperature were investigated in terms of microstructural evolution. Higher degassing temperatures resulted in higher density and lower hydrogen content, which can reduce loss of toughness in consolidated materials. Different consolidation methods were compared with regard to the relation between the microstructures and mechanical properties. Quasi-isostatic forging led to greater and more isotropic fracture toughness, compared with other processing

  18. Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; El-Awady, Jaafar A.

    2016-06-01

    Discrete dislocation dynamics simulations were performed to investigate the dislocation microstructure evolution and cyclic hardening during the early stages of fatigue loading in nickel single crystals. The effects of the crystal size and initial dislocation densities on both the mechanical response and the evolution of dislocation microstructure were quantified. Crystals having an initial dislocation density of 1012 m-2 and diameter less than 2.0 μm do not show any dislocation density multiplication or cyclic hardening. In contrast, crystals having the same initial dislocation density and diameters larger than 2.0 μm show a significant dislocation density accumulation in the form of dislocation cell-like structures, even after only a few number of loading cycles. This dislocation density accumulation was also accompanied by considerable cyclic hardening. The dislocation cell size and its wall thickness increase with increasing crystal size. With increasing dislocation density the critical crystal size, at which dislocation cell-structures form, decreases. The information theoretic entropy is utilized as a metric to quantify the extent of dislocation patterning and the formation and evolution of dislocation cell structures over time. Cross-slip was found to play a dominant role in the dislocation cell-structure formation. Further insights on the mechanisms contributing to the observed behavior are presented and discussed.

  19. Microstructure evolution of hot-deformed Nd-Fe-B anisotropic magnets

    SciTech Connect

    Liu, J. Hono, K.; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.

    2014-05-07

    The microstructural evolution of hot-deformed Nd-Fe-B magnets in each stage of hot-deformation process was studied using transmission electron microscopy and three dimensional atom probe (3DAP). The anisotropic growth of initially isotropic grains in rapidly solidified alloy occurs by annealing without pressing. 3DAP analyses showed a higher concentration of rare-earth elements in the intergranular phase parallel to the flat surface of platelet shaped Nd{sub 2}Fe{sub 14}B grains compared to that in the intergranular phase at the side of platelets.

  20. Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, He Ken; Yao, Zhongwen; Judge, Colin; Griffiths, Malcolm

    2013-11-01

    Work on Inconel®Inconel® is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys.1 X-750 spacers removed from CANDU®CANDU® is a registered trademark of Atomic Energy of Canada Limited standing for ''CANada Deuterium Uranium''.2 reactors has shown that they become embrittled and there is development of many small cavities within the metal matrix and along grain boundaries. In order to emulate the neutron irradiation induced microstructural changes, heavy ion irradiations (1 MeV Kr2+ ions) were performed while observing the damage evolution using an intermediate voltage electron microscope (IVEM) operating at 200 kV. The irradiations were carried out at various temperatures 60-400 °C. The principal strengthening phase, γ‧, was disordered at low doses (˜0.06 dpa) during the irradiation. M23C6 carbides were found to be stable up to 5.4 dpa. Lattice defects consisted mostly of stacking fault tetrahedras (SFTs), 1/2<1 1 0> perfect loops and small 1/3<1 1 1> faulted Frank loops. The ratio of SFT number density to loop number density for each irradiation condition was found to be neither temperature nor dose dependent. Under the operation of the ion beam the SFT production was very rapid, with no evidence for further growth once formed, indicating that they probably formed as a result of cascade collapse in a single cascade. The number density of the defects was found to saturate at low dose (˜0.68 dpa). No cavities were observed regardless of the irradiation temperature between 60 °C and 400 °C for doses up to 5.4 dpa. In contrast, cavities have been observed after neutron irradiation in the same material at similar doses and temperatures indicating that helium, produce during neutron irradiation, may be essential for the nucleation and growth of cavities.

  1. Modelling multi-scale deformation of amorphous glassy polymers with experimentally motivated evolution of the microstructure

    NASA Astrophysics Data System (ADS)

    Engqvist, Jonas; Wallin, Mathias; Ristinmaa, Matti; Hall, Stephen A.; Plivelic, Tomás S.

    2016-11-01

    Novel experimental data, obtained recently using advanced multi-scale experiments, have been used to develop a micro-mechanically motivated constitutive model for amorphous glassy polymers. Taking advantage of the experiments, the model makes use of a microstructural deformation gradient to incorporate the experimentally obtained deformation of the microstructure, as well as its evolving orientation. By comparing results from the model to experimental data, it is shown that the proposed approach is able to accurately predict glassy polymer deformation over a wide range of length-scales, from the macroscopic response (mm range) down to the deformation of the microstructure (nm range). The proposed model is evaluated by comparing the numerical response to experimental results on multiple scales from an inhomogeneous cold drawing experiment of glassy polycarbonate. Besides the macroscopic force-displacement response, a qualitative comparison of the deformation field at the surface of the specimen is performed. Furthermore, the predicted evolution of the fabric orientation is compared to experimental results obtained from X-ray scattering experiments. The model shows very good agreement with the experimental data over a wide range of length scales.

  2. Effect of Ultrasonic Shot Peening on the Microstructural Evolution and Mechanical Properties of SUS304

    NASA Astrophysics Data System (ADS)

    Ahn, Deokgi; Shin, Keesam; Dong, Jiling; Jung, Jinesung; Kim, Doosoo

    2011-06-01

    Shot peening is a mechanical surface modification technology, which can extend the fatigue life of materials by introducing work hardening, compressive stress, and/or some additional microstructural change in surface layer resulting in a restraint of crack initiation and propagation on the surface. In this study, SUS304, which has high formability and corrosion resistance, was shot peened and fatigued for the determination of their effect on the evolution of microstructures. The fatigue of the specimens were carried out at three different cycles, followed by second shot peening and finish fatigue of 106 cycles. The microstructures of the specimens were investigated using OM, EBSD, SED and EDS. The resulting mechanical property such as microhardness and residual stress was also investigated. Deformed layer of ~100μm and mechanical twins were observed after fatigue and shot peening test. The top surface layer of shot peened specimen showed the highest twin density and microhardness. The increase of the fatigue before shot peening caused increase and deepening of the compressive residual stress. However, the finish fatigue of 106 cycles decreased overall compressive residual stress.

  3. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  4. Cellular/Dendritic Transition and Microstructure Evolution during Transient Directional Solidification of Pb-Sb Alloys

    NASA Astrophysics Data System (ADS)

    Rosa, Daniel M.; Spinelli, José E.; Ferreira, Ivaldo L.; Garcia, Amauri

    2008-09-01

    Recent studies of lead-antimony alloys, used for the production of positive electrodes of lead-acid batteries, have assessed the influences of both the microstructural morphology and of solute redistribution on the surface corrosion resistance in sulfuric acid solution, and have shown that cellular structures and dendritic structures have different responses on the corrosion rate of such alloys. The present article focuses on the search of adequate solidification conditions (alloy composition, cooling rate, and solidification velocity), which determine the occurrence of a microstructural transition from the cellular to the dendritic regime during the transient unidirectional solidification of hypoeutectic Pb-Sb alloys and on the microstructural evolution after such transition. The experimental data refers to the solidification of four hypoeutectic Pb-Sb alloys (2.2, 2.5, 3, and 6.6 wt pct Sb) and of the eutectic composition. The experimental results include transient metal/mold heat-transfer coefficients, liquidus isotherm velocity, cooling rate, and cellular and dendritic spacings. It was found that the cooling rate dependence on cellular and primary dendritic spacings is characterized by an experimental law of the form λ 1 = A{\\cdot}ifmmodeexpandafterdotelseexpandafter\\.fi{T}^{{{kern 1pt} {-0.55}}}, which seems to be independent of composition where A = 60 represents the alloys undergoing a cellular growth and A = 115 can describe the dendritic growth. The sudden change on such multiplier has occurred for the Pb 2.2 wt pct Sb alloy, i.e., for the cellular/dendritic transition.

  5. Synthesis and Microstructural Evolution of Amorphous/Nanocrystalline Steel Coatings by Different Thermal-Spray Processes

    NASA Astrophysics Data System (ADS)

    Varadaraajan, V.; Guduru, Ramesh K.; Mohanty, P. S.

    2013-04-01

    Amorphous/nanocrystalline coatings are useful in high strength and wear-resistant applications. In the present study, the microstructural evolution of a nanocrystalline high performance steel coatings developed by different spray processes along with a novel "hybrid thermal spray" technique was studied. The hybrid-spray process combines arc and high-velocity oxy-fuel (HVOF) techniques, in which the molten metal at the arcing tip is atomized and rapidly propelled toward the substrate by HVOF jet. This so-called hybrid concept offers the benefits of productivity of electric arc spray combined with improved coating densities of HVOF. The microstructural characterization of the hybrid-spray coatings was performed by x-ray diffraction, electron microscopy, and differential scanning calorimetry, and then compared with coatings of the similar material developed by plasma-, HVOF-, and arc-spray processes individually. The HVOF- and plasma-spray coatings showed amorphous structures with very fine nanocrystals embedded, whereas hybrid- and arc-spray techniques yielded completely crystalline coatings with grain size in the range of several nanometers. The final microstructures in different spray processes could be attributed to the precursor materials employed, process temperatures, and cooling rates during the deposition process.

  6. Influence of the Initial Microstructure on the Reverse Transformation Kinetics and Microstructural Evolution in Transformation-Induced Plasticity-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jeong In; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Kyooyoung; Heo, Yoon-Uk; Suh, Dong-Woo

    2016-11-01

    The reverse transformation behavior upon heating to intercritical temperature was studied in Fe-0.21C-2.2Mn-1.5Si (wt pct) alloy with three initial microstructures. One is the cold-rolled (CR) structure and two others are martensite having different fractions of retained austenite. The CR structure exhibits slower reverse transformation kinetics than martensite due to the lesser population of potent nucleation sites and coarse cementite particles. The film type of retained austenite at the martensite lath boundary contributes to the earlier start of the reverse transformation, because it can proceed as the growth of pre-existing retained austenite, which makes the nucleation process less critical. Besides, the growth of interlath austenite plays an essential role in the evolution of fine lath-type reverse-transformed microstructure, which was difficult to obtain from similar initial microstructures of martensite having negligible fraction of interlath austenite.

  7. Influence of the Initial Microstructure on the Reverse Transformation Kinetics and Microstructural Evolution in Transformation-Induced Plasticity-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jeong In; Ryu, Joo Hyun; Lee, Sea Woong; Lee, Kyooyoung; Heo, Yoon-Uk; Suh, Dong-Woo

    2016-08-01

    The reverse transformation behavior upon heating to intercritical temperature was studied in Fe-0.21C-2.2Mn-1.5Si (wt pct) alloy with three initial microstructures. One is the cold-rolled (CR) structure and two others are martensite having different fractions of retained austenite. The CR structure exhibits slower reverse transformation kinetics than martensite due to the lesser population of potent nucleation sites and coarse cementite particles. The film type of retained austenite at the martensite lath boundary contributes to the earlier start of the reverse transformation, because it can proceed as the growth of pre-existing retained austenite, which makes the nucleation process less critical. Besides, the growth of interlath austenite plays an essential role in the evolution of fine lath-type reverse-transformed microstructure, which was difficult to obtain from similar initial microstructures of martensite having negligible fraction of interlath austenite.

  8. The role of bedding in the evolution of meso- and microstructural fabrics in fault zones

    NASA Astrophysics Data System (ADS)

    Ishii, Eiichi

    2016-08-01

    To investigate the role of bedding in the evolution of meso- and microstructural fabrics in fault zones, detailed microscopic, mineralogical, and geochemical analyses were conducted on bedding-oblique and bedding-parallel faults that cut a folded Neogene siliceous mudstone that contains opal-CT, smectite, and illite. An analysis of asymmetric structures in the fault gouges indicates that the secondary fractures associated with each fault exhibit contrasting characteristics: those of the bedding-oblique fault are R1 shears, whereas those of the bedding-parallel fault are reactivated S foliation. The bedding-oblique fault shows the pervasive development of S foliation, lacks opal-CT, and has low SiO2/TiO2 ratios only in gouge, whereas the bedding-parallel fault exhibits these characteristics in both gouge and wall rocks. The development of S foliation and the lack of silica can result from local ductile deformation involving the sliding of phyllosilicates, coupled with pressure solution of opal-CT. Although such deformation can occur in gouge, the above results indicate that it may occur preferentially along bedding planes, preceding the formation of a gouge/slip surface. Thus, in sedimentary rocks that contain phyllosilicates and soluble minerals, bedding can influence the rheological evolution of meso- and microstructural fabrics in fault zones.

  9. Microstructural Evolution of Cu/Solder/Cu Pillar-Type Structures with Different Diffusion Barriers

    NASA Astrophysics Data System (ADS)

    Cheng, Hsi-Kuei; Lin, Yu-Jie; Chen, Chih-Ming; Liu, Kuo-Chio; Wang, Ying-Lang; Liu, Tzeng-Feng

    2016-08-01

    Microstructural evolution of the Cu/solder/Cu pillar-type bonding structures with a reduced solder volume subjected to thermal aging at 423 K to 473 K(150 °C to 200 °C) was investigated. In a bonding structure employing a Ni single layer as the diffusion barrier, solder was consumed with formation of the Ni3Sn4 phase at the bonding interfaces due to an usual Sn/Ni interfacial reaction. However, an unusual Sn/Cu reaction occurred with formation of the Cu6Sn5 (and Cu3Sn) phase on the periphery of the Cu pillar due to out-diffusion of Sn toward the pillar periphery. Consumption of solder was accelerated by the above two reactions which led to the formation of a continuous gap in the bonding structure. Employment of a thicker Ni layer plus a Cu cap layer as the diffusion barrier in the bonding structure effectively blocked out-diffusion of Sn toward the periphery of the Cu pillar and therefore retarded the gap formation. The retardation effect was attributed to an increment of diffusion distance on the pillar periphery due to an effective diffusion barrier composed by Ni and thicker Cu-Sn (Cu6Sn5 + Cu3Sn) phase layers. Detailed phase identification and microstructural evolution in the bonding structures were also investigated using scanning electron microscopy and transmission electron microscopy.

  10. Atomic scale modeling of defect production and microstructure evolution in irradiated metals

    SciTech Connect

    Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.

    1997-04-01

    Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitial clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.

  11. Microstructural changes during creep of CMSX-4 single crystal Ni base superalloy at 750 degrees C.

    PubMed

    Dubiel, B T; Czyrska-Filemonowicz, A

    2010-03-01

    TEM studies of creep tested CMSX-4 nickel-base single crystal superalloy were performed to analyse a microstructure evolution during creep at temperature 750 degrees C, and uniaxial tensile stress of 675 MPa. Microstructural analyses were focused mainly on examination of dislocation configurations during primary and secondary creep stages of high temperature deformation. At such low temperature and high stress creep deformation proceed by cutting of gamma' particles by dislocations. It was found that primary creep is initiated by movement of dislocations with Burgers vector a/2 <110> in the gamma phase. The second type of dislocations active at primary creep stage are extended dislocation ribbons with overall a<112> Burgers vector, separated by superlattice stacking faults, cutting both the gamma and gamma' phases. The movement of the dislocation ribbons is inhibited at secondary creep stage by dislocation networks formed at gamma-gamma' interfaces. PMID:20500397

  12. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term Irradiation at Elevated Temperature: Critical Experiments

    SciTech Connect

    Was, Gary; Jiao, Zhijie; Allen, Todd; Yang, Yong

    2013-12-20

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by microchemistry changes due to radiation-induced segregation, dislocation loop formation and growth, radiation induced precipitation, destabilization of the existing precipitate structure, as well as the possibility for void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiation-induced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses to 200 dpa and beyond). Further, predictive modeling is not yet possible, as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. This project builds upon joint work at the proposing institutions, under a NERI-C program that is scheduled to end in September, to understand the effects of

  13. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization.

    PubMed

    Papendorf, Benjamin; Nonnenmacher, Katharina; Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2011-04-01

    The present study focuses on the synthesis and ceramization of novel hafnium-alkoxide-modified silazanes as well as on their microstructure evolution at high temperatures. The synthesis of hafnia-modified polymer-derived SiCN ceramic nanocomposites is performed via chemical modification of a polysilazane and of a cyclotrisilazane, followed by cross-linking and pyrolysis in argon atmosphere. Spectroscopic investigation (i.e., NMR, FTIR, and Raman) shows that the hafnium alkoxide reacts with the N-H groups of the cyclotrisilazane; in the case of polysilazane, reactions of N-H as well as Si-H groups with the alkoxide are observed. Consequently, scanning and transmission electron microscopy studies reveal that the ceramic nanocomposites obtained from cyclotrisilazane and polysilazane exhibited markedly different microstructures, which is a result of the different reaction pathways of the hafnium alkoxide with cyclotrisilazane and with polysilazane. Furthermore, the two prepared ceramic nanocomposites are unexpectedly found to exhibit extremely different high-temperature behavior with respect to decomposition and crystallization; this essential difference is found to be related to the different distribution of hafnium throughout the ceramic network in the two samples. Thus, the homogeneous distribution of hafnium observed in the polysilazane-derived ceramic leads to an enhanced thermal stability with respect to decomposition, whereas the local enrichment of hafnium within the matrix of the cyclotrisilazane-based sample induces a pronounced decomposition upon annealing at high temperatures. The results indicate that the chemistry and architecture of the precursor has a crucial effect on the microstructure of the resulting ceramic material and consequently on its high-temperature behavior.

  14. Evolution of phase, texture, microstructure and magnetic properties of Fe-Cr-Co-Mo-Ti permanent magnets

    NASA Astrophysics Data System (ADS)

    Ahmad, Zubair; ul Haq, A.; Yan, Mi; Iqbal, Zafar

    2012-08-01

    Magnetic phase evolution, crystallographic texture, microstructure and magnetic properties of Fe-28Cr-15Co-3.5Mo-1.8Ti alloy have been investigated by X-ray diffractometry, scanning transmission electron microscopy and magnetometry techniques as a function of processing conditions. Heat treatment conditions for obtaining optimum textural, microstructural and magnetic properties have been established by the experimentations. The Goss {110}<001> and cube type {001}<010> textures have been developed in an optimal treated Fe-28Cr-15Co-3.5Mo-1.8Ti magnets. The coercive force in Fe-28Cr-15Co-3.5Mo-1.8Ti magnets depends critically on the shape anisotropy of rod-like Fe Co Ti-rich α1 particles and remanence on the alignment and elongation of α1 particles parallel to applied magnetic field <100> directions. The optimum magnetic properties obtained in Fe-28Cr-15Co-3.5Mo-1.8Ti alloy are intrinsic coercive force, iHc, of 78.8 kA/m (990 Oe), remanence, Br of 1.12 T (11.2 kG) and energy product, (BH)max of 52.5 kJ/m3 (6.5 MGOe). The development of Fe-28Cr-15Co-3.5Mo-1.8Ti magnets as well as characterization of texture, microstructural and magnetic properties in the current study would be helpful in designing the new Fe-Cr-Co-Mo based magnets suitable for scientific and technological applications.

  15. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  16. Laser damage threshold measurements of microstructure-based high reflectors

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.

    2008-10-01

    In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.

  17. Microstructure Evolution in Nano-reinforced Ferritic Steel Processed By Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Boulnat, Xavier; Perez, Michel; Fabregue, Damien; Douillard, Thierry; Mathon, Marie-Hélène; de Carlan, Yann

    2013-11-01

    Oxide-dispersion strengthened ferritic steel was produced by high-energy attrition, leading to a complex nanostructure with deformed ferritic grains. After mechanical alloying, the powder was then consolidated by spark plasma sintering (SPS) using various thermo-mechanical treatments. Hot isostatic pressing (HIP) was also performed on the same powder for comparison. Above 1123 K (850 °C), SPS consolidation-induced heterogeneous microstructure composed of ultra-fine-grained regions surrounded by larger grains. Spatial distribution of the stored energy was measured in the bimodal microstructure using the Kernel average misorientation. In contrary to large recrystallized grains, ultra-fine grains are still substructured with low-angle grain boundaries. The precipitation kinetics of the nano-oxides during consolidation was determined by small-angle neutron scattering. Precipitation mainly occurred during the heating stage, leading to a high density of nanoclusters that are of prime importance for the mechanical properties. Other coarser titanium-enriched oxides were also detected. The multiscale characterization allowed us to understand and model the evolution of the complex microstructure. An analytical evaluation of the contributing mechanisms explains the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Then, the thermal stability of coherent nano-oxides is responsible for effective grain boundary pinning in recovered regions where the driving pressure for recrystallization is lowered. This scenario is confirmed in both SPSed and HIPed materials.

  18. Microstructural evolution and mechanical properties of a copper-zirconium alloy processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Wongsa-Ngam, Jittraporn

    A copper alloy, Cu-0.1% Zr, has been processed at room temperature by different techniques of severe plastic deformation (SPD), namely equal-channel angular pressing (ECAP), high-pressure torsion (HPT) and a combination of both processing (ECAP + HPT). The experiments were conducted to evaluate the microstructural evolution and mechanical properties for each of the processed and their combination. A transmission electron microscopy (TEM) and an electron backscatter diffraction (EBSD) techniques were employed to measure the microstructural features, grain size distributions and the distribution of the misorientation angles. The mechanical properties of the processed samples were examined and compared both at a room temperature using microhardness measurements and at an elevated temperature using tensile testing. Using TEM and EBSD techniques, it is demonstrated that these three SPD procedures have a potential for producing an ultrafine-grain structure containing reasonably equiaxed grains with high-angle boundary misorientations. However, microstructures are refined in different level depending on the processing operation. The grain refinement mechanisms are primarily governed by dislocation activities. Microhardness distribution of the strained samples shows that there is a non-uniform of this distribution in the early stages of deformation where the lower hardness values were measured near the bottom of samples for ECAP and at the central region for HPT. This inhomogeneity is gradual decreased with increasing imposed strain and ultimately the microhardness distribution is reasonably homogeneous when the sufficient strain is subjected to the sample. The tensile results demonstrate that the samples after SPD processing exhibit superior mechanical properties with the combination of high strength and ductility compared to the as-received materials where the maximum elongation to failure of ˜240% at 723 K using a strain rate of 1.0 x 10 -4 s-1 is achieved in a sample

  19. FEM Analysis of Defects and Microstructure Evolution during Hot Working of Specialty Alloys

    SciTech Connect

    Mendoza, Victor

    2010-06-15

    The main goals of process simulation in manufacturing are to reduce manufacturing/part development time and cost as well as increasing quality and productivity. In this study, porosity evolution is modeled by introducing a porosity evolution parameter, which is function of strain rate and stress triaxiality factor. Applicability is shown by simulating the first two stages of an ingot conversion process; variables are die geometry and bite size. Moreover, application is extended to hot shape rolling, where the geometry of the oval passes is the variable. Validation is carried out through evaluation of samples from final products. Also, surface defects in hot shape rolling are tracked by studying the instability during the rolling of the material. Plastic work approach was used to judge the occurrence of instability during the process. The effect of number of passes and roll gap was examined to predict the occurrence of surface cracking. On the other hand, unrecrystallized grains and coarse grain problem are other significant problems in the metalworking industry. A recrystallization model is implemented in a finite element framework, to study the effect of forging parameters on the microstructure evolution during ingot conversion process of a superalloy.

  20. FEM Analysis of Defects and Microstructure Evolution during Hot Working of Specialty Alloys

    NASA Astrophysics Data System (ADS)

    Mendoza, Victor

    2010-06-01

    The main goals of process simulation in manufacturing are to reduce manufacturing/part development time and cost as well as increasing quality and productivity. In this study, porosity evolution is modeled by introducing a porosity evolution parameter, which is function of strain rate and stress triaxiality factor. Applicability is shown by simulating the first two stages of an ingot conversion process; variables are die geometry and bite size. Moreover, application is extended to hot shape rolling, where the geometry of the oval passes is the variable. Validation is carried out through evaluation of samples from final products. Also, surface defects in hot shape rolling are tracked by studying the instability during the rolling of the material. Plastic work approach was used to judge the occurrence of instability during the process. The effect of number of passes and roll gap was examined to predict the occurrence of surface cracking. On the other hand, unrecrystallized grains and coarse grain problem are other significant problems in the metalworking industry. A recrystallization model is implemented in a finite element framework, to study the effect of forging parameters on the microstructure evolution during ingot conversion process of a superalloy.

  1. Thermal and temporal evolution of microstructure in polycrystalline ZnO

    NASA Astrophysics Data System (ADS)

    Kondal, Neha; Tiwari, Sanjiv Kumar

    2016-05-01

    Tug between electronics and spintronics has opened up new area of research named as dilute magnetic semiconductors (DMS), ZnO is one of the most reliable candidates for spintronic devices and DMS. Since, pure and transition metal doped polycrystalline ZnO shows room temperature ferromagnetism, therefore it is very important to gain insight into its microstructure (MS) evolution. We report thermal evolution of MS of pure ZnO on sintering it at 200 °C, 400 °C, 600 °C, and 800 °C in ambient atmosphere for two hours. Temporal evolution at fixed temperature was analyzed using mean field model of internal energy and entropy. Grain size of ZnO MS were analyzed using integral breadth method of X-ray diffraction (XRD) lines using Voigt profile fit,. XRD line corresponding to [101] plane shifts from 36.17° to 36.28° whereas grain size increases from 67.5 nm to 93.7 nm with increase of temperature from 23°C to 800°C respectively. Grain growth with increase of temperature show Arrhenius type behavior with activation energy of 30.77 kJ-mol-1 and temporal growth shows diffusive behavior with exponent 0.5.

  2. Evolution of Texture and Microstructure in Deformed and Annealed Copper-Iron Multilayer

    NASA Astrophysics Data System (ADS)

    Suresh, K. S.; Rollett, A. D.; Suwas, Satyam

    2016-02-01

    The effect of multiple phases on the evolution of texture during cold rolling and annealing of a copper-iron multilayer, fabricated by accumulative roll bonding, has been studied. The presence of an iron layer affects the deformation texture of the copper layer only at very large strains. On the other hand, a strong effect of copper on iron is observed at both small and large strains. At smaller strains, the larger deformation carried by the copper suppresses the texture development in the iron, whereas, at higher strains, selection of specific orientation relationship at the interface influences the texture of the iron layer. Shear banding and continuous dynamic recrystallization were found to influence the evolution of texture in the copper layer. The influence of large plastic deformation on the recrystallization behavior of copper is demonstrated with the suppression of typical fcc annealing texture components, described as constrained recrystallization. Evolution of typical annealing texture component is suppressed because of the multilayer microstructure. The plane of the interface formed during deformation is determined by a combination of the rolling texture of individual phases, constrained annealing, and the tendency to form a low-energy interface between the two phases during annealing.

  3. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials

    SciTech Connect

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Dr. Manabu; Edmondson, Dr. Philip; Xue, Haizhou; Liu, Peng; Moll, Sandra; Namavar, Fereydoon; Hardiman, Chris; Shannon, Prof. Steven; Weber, William J

    2014-01-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is

  4. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    PubMed

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications. PMID:27040253

  5. Evolution of Microstructure and Texture During Hot Compression of a Ni-Fe-Cr Superalloy

    NASA Astrophysics Data System (ADS)

    Coryell, S. P.; Findley, K. O.; Mataya, M. C.; Brown, E.

    2012-02-01

    Superalloys are being employed in more extreme conditions requiring higher strength, which requires producers to forge products to finer grain sizes with less grain size variability. To assess grain size, crystallographic texture, and substructure as a function of forging conditions, frictionless uniaxial compression testing characteristic of hot working was performed on INCOLOY 945 (Special Metals Corporation, Huntington, WV), which is a newly developed hybrid of alloys 718 and 925, over a range of temperatures and strain rates. The microstructure and texture were investigated comprehensively using light optical microscopy, electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM) to provide detailed insight into microstructure evolution mechanisms. Dynamic recrystallization, nucleated by grain/twin boundary bulging with occasional subgrain rotation, was found to be a dominant mechanism for grain refinement in INCOLOY 945. At higher strain rates, static recrystallization occurred by grain boundary migration. During deformation, duplex slip along {111} planes occurred until a stable <110> fiber compression texture was established. Recrystallization textures were mostly random but shifted toward the compression texture with subsequent deformation. An exception occurred at 1423 K (1150 °C) and 0.001 seconds-1, the condition with the largest fraction of recrystallized grains, where a <100> fiber texture developed, which may be indicative of preferential growth of specific grain orientations.

  6. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  7. Microstructural evolution in a low carbon steel during cold rolling and subsequent annealing.

    PubMed

    Ghassemali, E; Kermanpur, A; Najafizadeh, A

    2010-09-01

    Cold rolling with subsequent annealing of lath martensite structure could lead to the formation of nanostructures in low carbon steels. In the present work, the microstructural evolution of a 0.13% C steel during this process was studied. The specimens were austenitized at 950 degrees C followed by quenching in ice-brine to get martensitic structure. The quenched samples were aged at 200 degrees C for 30 min. These specimens were cold rolled up to 90% reduction in thickness without any intermediate annealing and then annealed at the temperatures from 400 to 600 degrees C. Scanning and transmission electron microscopy and color metallography was used to investigate the microstructure. Microscopic investigations showed that a multiphase nanostructure composed of equiaxed ferrite grains with the mean grain size of about 188 nm and small blocks of tempered martensite can be achieved under annealing at 400 degrees C for 90 min. Formation of the nanostructure was discussed from the viewpoint of characteristics of the martensite starting structure. Fragmentation of martensite lathes in cold rolling stage play an important role on recrystallization at annealing stage to get the ultrafine structure.

  8. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    PubMed

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications.

  9. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  10. Evolution of microstructure in vanadium oxide bolometer film during annealing process

    NASA Astrophysics Data System (ADS)

    Su, Yu-Yu; Cheng, Xing-Wang; Li, Jing-Bo; Dou, Yan-Kun; Rehman, Fida; Su, De-Zhi; Jin, Hai-Bo

    2015-12-01

    Vanadium oxide thin films were prepared through direct current magnetron reactive sputtering and post annealing process. The evolution of composition, microstructure, and electrical properties of as-deposited amorphous films during the annealing process was clarified by X-ray diffraction, scanning electron microscopy and temperature-dependent resistance measurement. A new composition of thin film was acquired which consisted of crystalline V6O13 and amorphous phase. Sheet resistance and temperature coefficient of resistance (TCR) of the thin film are 90 kΩ/□ (measured at room temperature) and 2.52%/K, respectively. No metal-to-semiconductor transition was observed in the obtained film at temperatures ranging from room-temperature to 90 °C, suggesting the thin film is suitable for the application in microbolometer.

  11. Effect of localized microstructural evolution on higher harmonic generation of guided wave modes

    NASA Astrophysics Data System (ADS)

    Choi, Gloria; Liu, Yang; Yao, Xiaochu; Lissenden, Cliff J.

    2015-03-01

    Higher harmonic generation of ultrasonic waves has the potential to be used to detect precursors to macroscale damage of phenomenon like fatigue due to microstructural evolution contributing to nonlinear material behavior. Aluminum plates having various plastic zone sizes were plastically deformed to different levels. The fundamental shear horizontal mode was then generated in the plate samples via a magnetostrictive transducer. After propagating through the plastic zone the primary wave mode (SH0) and its third harmonic (sh0) were received by a second transducer. Results of a parallel numerical study using the S1-s2 Lamb mode pair, where sensitivity to changes in third order elastic constants were investigated, are described within the context of the experimental results. Specimens used within both studies are geometrically similar and have double edge notches for dog bone samples that introduce localized plastic deformation. Through both studies, the size of the plastic zone with respect to the propagation distance and damage intensity influence the higher harmonics.

  12. Effect of Impact and Penetration on Microstructural Evolution of High-performance Concretes

    SciTech Connect

    Ren, Fei; Mattus, Catherine H; Wang, Jy-An John; Dipaolo, Beverly P

    2013-01-01

    Due to the increased concern of public safety in recent years, blast resistance of infrastructures has become an emerging research focus in the cement and concrete industry. Ultra High Performance Concrete (UHPC) with fiber reinforcement usually possesses compressive strengths greater than 200 MPa, which makes them promising candidates for blast-resistant building materials. In the current project, two UHPC materials, Ductal and ERDC-M, were subject to projectile penetration testing. The microstructural evolution due to projectile impact was examined via scanning electron microscopy and X-ray diffraction. Possible phase changes were observed in the impact volume, which was likely a result of the high temperature and high pressure induced by the impact.

  13. Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization

    NASA Astrophysics Data System (ADS)

    Liu, Tao; He, Chun-nian; Li, Gen; Meng, Xin; Shi, Chun-sheng; Zhao, Nai-qin

    2015-05-01

    Microstructural evolution in a new kind of aluminum (Al) alloy with the chemical composition of Al-8.82Zn-2.08Mg-0.80Cu-0.31Sc-0.3Zr was investigated. It is found that the secondary phase MgZn2 is completely dissolved into the matrix during a short homogenization treatment (470°C, 1 h), while the primary phase Al3(Sc,Zr) remains stable. This is due to Sc and Zr additions into the Al alloy, high Zn/Mg mass ratio, and low Cu content. The experimental findings fit well with the results calculated by the homogenization diffusion kinetics equation. The alloy shows an excellent mechanical performance after the short homogenization process followed by hot-extrusion and T6 treatment. Consequently, a good combination of low energy consumption and favorable mechanical properties is obtained.

  14. Microstructural evolution of V-4Cr-4Ti during ion irradiation at 200{degrees}C

    SciTech Connect

    Gazda, J.; Meshii, M.; Loomis, B.A. Chung, H.M.

    1996-04-01

    The results of a transmission electron microscopy (TEM) investigation of the microstructural evolution of V-4Cr-4Ti (Heat no. 832665) that was irradiated with 4.5 MeV {sup 58}Ni{sup ++} ions at 200 {degrees}C are presented. Dose effects were investigated for fluences ranging from 0.5 to 5 dpa. When the irradiation dose was increased, the relative number density of black dots and dislocation loops was nearly constant and accompanied by an increase in the size of the defects. Cavity formation was not observed in any of the specimens, indicating high resistance of the alloy to void swelling at the lower temperature of the experiments.

  15. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Yalavarthy, H. V.; He, T.; Yen, C.-F.; Cheeseman, B. A.

    2010-07-01

    A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.

  16. Microstructure and Texture Evolutions in AISI 1050 Steel by Flow Forming

    SciTech Connect

    Bedekar, Vikram; Pauskar, Praveen; Shivpuri, Rajiv; Howe, Jane Y

    2014-01-01

    Hot rolled and annealed AISI 1050 steel cylindrical coupons were flow formed at different levels of deformation (66% and 90% wall thickness reduction). TEM studies revealed development of ultra fine (sub) grain cell structure due to severe plastic deformation. The transverse subgrain size changed from 10 m (beginning) to 300nm (66% deformation) to 40nm (90% deformation). EBSD study revealed decreased recrystallization fraction at 90% deformation compared with 66% deformation due to orientation pinning from preferred orientation along {002} planes. No evidence of dislocation pinning or cracking was observed on any samples. The aim of the present work is to study the deformation behaviour and microstructural evolution during conventional flow forming process. The study also sheds light on the strengthening behaviour and structural changes during severe straining.

  17. Intergrannular strain evolution in a zircaloy-4 alloy with Widmanstatten microstructure

    SciTech Connect

    Clausen, Bjorn; Vogel, Sven C; Garlea, Eena; Choo, Hahn; Pang, Judy W L; Kenik, Edward A

    2009-01-01

    A Zircaloy-4 alloy with Widmanstatten-Basketweave microstructure and random texture has been used to study the deformation systems responsible for the polycrystalline plasticity at the grain level. The evolution of internal strain and bulk texture is investigated using neutron diffraction and an elasto-plastic self-consistent (EPSC) modeling scheme. The macroscopic stress-strain behavior and intergranular (hkil-specific) strain development, parallel and perpendicular to the loading direction, were measured in-situ during uniaxial tensile loading. Then, the EPSC model was employed to simulate the experimental results. This modeling scheme accounts for the thermal anisotropy; elastic-plastic properties of the constituent grains; and activation, reorientation, and stress relaxation associated with twinning. The agreement between the experiment and the model will be discussed as well as the critical resolved shear stresses (CRSS) and the hardening coefficients obtained from the model.

  18. Microstructure Evolution and Mechanical Properties of Al/Al-Mg/Al composite sheet metals

    NASA Astrophysics Data System (ADS)

    Cho, Jaehyung; Kim, Su-Hyeon; Kim, Hyoung-Wook; Lim, Cha-Yong; Kim, Eun-Young; Choi, Shi-Hoon

    2011-08-01

    Two different types of aluminum alloys of AA1050 and AA5182 were used to manufacture Al/Al-Mg/Al composite sheet metals by roll bonding technology at room temperature. The composite sheet metals were annealed at 400 °C and carried out uniaxial tension tests to investigate mechanical properties. Macroscopic mechanical properties are strongly dependent on the volume (or thickness) fraction of two component layers. Microstructure and texture evolution were also investigated during roll bonding process. The AA1050 sheets located in the outer layer mainly consist of shear texture components and the AA5182 sheet located in the center layer consists of plane strain texture components. With differential speeds of the top and bottom rolls, roll bonding was also carried out. Elongation along the RD and TD was improved at a speed difference of approximately 10%-20%.

  19. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    DOE PAGES

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 andmore » Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.« less

  20. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Rios, Orlando

    2015-02-01

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23, and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  1. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    SciTech Connect

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  2. Microstructural aspects of fatigue in Ni-base superalloys.

    PubMed

    Antolovich, Stephen D

    2015-03-28

    Nickel-base superalloys are primarily used as components in jet engines and land-based turbines. While compositionally complex, they are microstructurally simple, consisting of small (50-1000 nm diameter), ordered, coherent Ni(3)(Al,Ti)-type L1(2) or Ni(3)Nb-type DO(22) precipitates (called γ(') and γ(''), respectively) embedded in an FCC substitutional solid solution consisting primarily of Ni and other elements which confer desired properties depending upon the application. The grain size may vary from as small as 2 μm for powder metallurgy alloys used in discs to single crystals the actual size of the component for turbine blades. The fatigue behaviour depends upon the microstructure, deformation mode, environment and cycle time. In many cases, it can be controlled or modified through small changes in composition which may dramatically change the mechanism of damage accumulation and the fatigue life. In this paper, the fundamental microstructural, compositional, environmental and deformation mode factors which affect fatigue behaviour are critically reviewed. Connections are made across a range of studies to provide more insight. Modern approaches are pointed out in which the wealth of available microstructural, deformation and damage information is used for computerized life prediction. The paper ends with a discussion of the very important and highly practical subject of thermo-mechanical fatigue (TMF). It is shown that physics-based modelling leads to significantly improved life prediction. Suggestions are made for moving forward on the critical subject of TMF life prediction in notched components. PMID:25713453

  3. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    SciTech Connect

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  4. Patch microstructure in cement-based materials: Fact or artefact?

    SciTech Connect

    Wong, H.S. . E-mail: hong.wong@imperial.ac.uk; Buenfeld, N.R.

    2006-05-15

    The appearance of patch microstructure, i.e. broad dense and porous regions separated by sharp and distinct boundaries and occurring randomly in bulk and interfacial transition zones, has been reported previously in various site- and laboratory-mixed concretes and mortars. In this paper, evidence is presented to show that patch microstructure is an artefact of sample preparation and does not reflect the true nature of the hydrated cement paste. The appearance of dense patches comes from paste areas that have been ground and polished beyond the epoxy resin intrusion depth. In a backscattered electron image, pores not filled with epoxy are not visible because the signal is generated from the base or side walls of the pores. A modified method for epoxy impregnation, which can achieve a much deeper epoxy penetration than conventional vacuum impregnation, is presented.

  5. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    SciTech Connect

    Karakoese, Ercan; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.

  6. Processing, microstructural evolution and electrochemical performance relationships in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ayhan

    The relationships between the processing parameters, microstructures and electrochemical performance of solid oxide fuel cell (SOFC) components were investigated. The operating regimes (i.e., reducing vs. oxidizing) as well as the elevated temperatures (e.g. 800°C) for their operation introduce several material challenges. Therefore, composite materials are employed to withstand operating conditions while providing sufficient electrochemical performance for fuel cell operation. Analyses on lanthanum-strontium manganite (LSM) - yttria stabilized zirconia (YSZ) compositions (45 vol%-55 vol%) by impedance spectroscopy demonstrated that two competing polarization mechanisms (i.e. charge-exchange and surface adsorption-diffusion of oxygen) limit performance. Optimization of microstructures resulted in total resistances as low as 0.040 Ohm cm2. Studies on Ag composites revealed that incorporation of up to 25 vol% oxide particles (LSM and YSZ) with sizes comparable to the Ag grains (~0.5 microm) can minimize the densification and coarsening of the Ag matrix. While the powder based oxide additions increased the stability limit of porous Ag composites from <550°C to 800°C, the use of nanostructured coatings increased the stability limit to 900°C for cathodes and current collectors. Investigations of Ni-YSZ anode microstructures demonstrated that uniform distribution of percolating isometric pores (>5 microm) allows forming desired continuous percolation of all phases (Ni, YSZ and pores) lowering activation polarization below 0.100 Ohm cm2 and maintaining significant electrical conductivity (>1000 S/cm). Identification of polarization mechanisms by deconvolution of impedance spectra and tailoring the corresponding microstructures was demonstrated as an effective method for optimization of SOFC components.

  7. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  8. Competing Effects Of Electronic And Nuclear Energy Loss On Microstructural Evolution In Ionic-covalent Materials

    SciTech Connect

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Manabu; Edmondson, P. D.; Xue, H.; Liu, Peng; Moll, Sandra; Hardiman, Christopher M.; Shannon, Steven; Weber, William J.

    2014-05-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence

  9. A novel method of multi-scale simulation of macro-scale deformation and microstructure evolution on metal forming

    NASA Astrophysics Data System (ADS)

    Huang, Shiquan; Yi, Youping; Li, Pengchuan

    2011-05-01

    In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.

  10. The effect of urea on microstructures of Ni3S2 on nickel foam and its hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang

    2016-11-01

    The effects of urea concentration on microstructures of Ni3S2formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni3S2 nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni3S2 nanotube arrays. The resulting Ni3S2 nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni3S2 nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction.

  11. Microstructures induced by a stress gradient in a nickel-based superalloy

    SciTech Connect

    Ignat, M.; Buffiere, J.Y.; Chaix, J.M. )

    1993-03-01

    The evolution of the microstructure of single crystals of a nickel-based superalloy during high temperature (1,323 K, 1,050 C) creep in bending has been studied. Bending provides both tensile and compressive stress gradients, consequently the effects of varying stress conditions on the evolution of the morphology of the [gamma][prime] precipitates can be determined from a single specimen. The morphological changes were analyzed by scanning electron microscopy using image analysis techniques and by transmission electron microscopy, then described by dimensionless parameters. The authors discuss the dependence of the morphological changes in the superalloy on the stresses acting in the sample (magnitude and sign). The authors also discuss the driving mechanisms for the observed morphological changes.

  12. Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Geindreau, C.; Lesaffre, B.; Rolland du Roscoat, S.

    2014-12-01

    We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the

  13. Microstructural Evolution and Mechanical Properties of Cold-deformed Al-5Cu Alloy Samples After Isothermal Heat Treatments

    SciTech Connect

    Saklakoglu, Nursen; Gencalp, Simge

    2011-01-17

    Abstract.In this paper, the microscopic morphology of a semi solid Al5Cu alloy by strain induced melt activated (SIMA) process were investigated, and the effects of predeformation, microstructural evolution, aging response and hardness changes were determined. The microstructural observation shows that while the grain boundaries started to appear after 620 deg. C, globular grains surrounded wet boundaries needed for SSP were obtained at 650 deg. C. The grain sizes exhibited ununiformity from the outer surface to the center of the sample because of ununiform predeformation. Although isothermal heat treatments reduced hardness, age hardening gave back the hardness loss.

  14. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  15. Microstructure Evolution and Its Effect on the Wear Performance of HVOF-Sprayed Conventional WC-Co Coating

    NASA Astrophysics Data System (ADS)

    Fu, Dingfa; Xiong, Haoqi; Wang, Qun

    2016-08-01

    In this work, a conventional tungsten carbide 12% cobalt (WC-12Co) coating was deposited by using a liquid fuel JP-8000 high velocity oxyfuel spray system. The properties of the coating namely phase content, microstructure, hardness, porosity, and fracture toughness were examined. The microstructure evolution and its influence on the abrasive wear behavior of the coatings were evaluated in detail by in-situ scanning electron microscopy and a comprehensive model for decarburization of WC has been established using x-ray diffraction and transmission electron microscopy analyses.

  16. Microstructure Evolution and Its Effect on the Wear Performance of HVOF-Sprayed Conventional WC-Co Coating

    NASA Astrophysics Data System (ADS)

    Fu, Dingfa; Xiong, Haoqi; Wang, Qun

    2016-10-01

    In this work, a conventional tungsten carbide 12% cobalt (WC-12Co) coating was deposited by using a liquid fuel JP-8000 high velocity oxyfuel spray system. The properties of the coating namely phase content, microstructure, hardness, porosity, and fracture toughness were examined. The microstructure evolution and its influence on the abrasive wear behavior of the coatings were evaluated in detail by in-situ scanning electron microscopy and a comprehensive model for decarburization of WC has been established using x-ray diffraction and transmission electron microscopy analyses.

  17. Evolution of Local Microstructures: Spatial and Temporal Correlation in Clusters Undergoing 2-Dimensional Diffusion

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Frazier, D. O.; Rogers, J. R.; Witherow, W. K.; Facemire, B. R.; Inguva, R.; Glicksman, M. E.

    2003-01-01

    Diffusion-limited, capillarity-driven, coarsening of precipitates is an important and intensively studied phenomenon. Coarsening can occur among several microstructural constituents ranging from the primary phases to widely dispersed precipitates. Moreover, coarsening of three-dimensional (3-D) phase domains, occurring via mass transport through a two-dimensional (2-D) diffusion field (called mixed-dimensional phase coarsening) is a cooperative phenomenon that is of practical importance, especially in thin film technologies and catalysis. A primary objective of our current work is to focus on the details of evolving microstructures through a study of 'island' formation in heteroepitaxial film/substrate systems. Whereas this work has been designed for space-based coarsening studies, which require long-duration quality microgravity to observe 3-D Ostwald ripening, a significant amount of work has been performed during ground-based studies to observe diffusional coarsening in a liquid-liquid two-phase system. We have performed the experiment at an isopycnic point to maximize exclusion of gravity-based system disturbance. This has allowed observations of 3-D droplets, immobilized by container wall contact, undergoing coarsening by 2-D diffusion for the required long times (approximately 4 months) using a holographic imaging technique. Although such systems may not be as reliant on long-duration microgravity processing as 3-D systems are, they are of direct relevance to so-called mixed-dimensional coarsening and to the study of heterostructures grown by thin-film technique

  18. Microstructure evolution of Al-Mg-B thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Constant, A.; Lo, C. C. H.; Anderegg, J. W.; Russell, A. M.; Snyder, J. E.; Molian, P.

    2003-07-01

    The growth of Al-Mg-B thin films on SiO2/Si(100) substrates was performed by nanosecond pulsed laser deposition at three different substrate temperatures (300 K, 573 K, and 873 K). The as-deposited films were then annealed at 1173 K or 1273 K for 2 h. X-ray photoelectron spectroscopy, x-ray diffraction (XRD), and atomic force microscope were employed to investigate the effects of processing conditions on the composition, microstructure evolution, and surface morphology of the Al-Mg-B films. The substrate temperatures were found to affect the composition of as-deposited films in that the Mg content decreases and C content increases at higher substrate temperatures, in particular for the 873 K-deposited film. XRD results show that the as-deposited films were amorphous, and this structure may be stable up to 1173 K. Annealing at 1273 K was found to fully crystallize the room temperature and 573 K-deposited Al-Mg-B films with the formation of the polycrystalline orthorhombic AlMgB14 phase, accompanied by the development of a pronounced (011) preferred orientation. Nevertheless, high C incorporation in the 873 K-deposited Al-Mg-B film inhibits the crystallization and the amorphous structure remains stable even during 1273 K annealing. The presence of Si in the room-temperature-deposited 1273 K-annealed film due to the interdiffusion between the substrate and film leads to the formation of an additional tetragonal α-FeSi2 phase, which is thought to cause the surface cracking and microstructural instability observed in this film.

  19. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures

    NASA Astrophysics Data System (ADS)

    Gan, J.; Was, G. S.

    2001-08-01

    Irradiation-induced microstructures of high purity and commercial purity austenitic stainless steels were investigated using proton-irradiation. For high purity alloys, Fe-20Cr-9Ni (HP 304 SS), Fe-20Cr-24Ni and Ni-18Cr-9Fe were irradiated using 3.2 MeV protons between 300°C and 600°C at a dose rate of 7×10 -6 dpa/ s to doses up to 3.0 dpa. The commercial purity alloys, CP 304 SS and CP 316 SS were irradiated at 360°C to doses between 0.3 and 5.0 dpa. The dose, temperature and composition dependence of the number density and size of dislocation loops and voids were characterized. The changes in yield strength due to irradiation were estimated from Vickers hardness measurements and compared to calculations using a dispersed-barrier-hardening (DBH) model. The dose and temperature dependence of proton-irradiated microstructure (loops, voids) and the irradiation hardening are consistent with the neutron-data trend. Results indicate that proton-irradiation can accurately reproduce the microstructure of austenitic alloys irradiated in LWR cores.

  20. Physical Simulation of Hot Deformation and Microstructural Evolution of Fe-0.05C-0.13P Steel

    NASA Astrophysics Data System (ADS)

    Mehta, Yashwant; Rajput, S. K.; Dabhade, V. V.; Chaudhari, G. P.

    2016-04-01

    High-phosphorus steels are important for structural applications where corrosion resistance is required and are subjected to hot deformation processing. Therefore, hot deformation behavior of Fe-0.05C-0.13P steel is studied by conducting hot compression tests in the temperature range 750-1050 °C after austenitization at 1050 °C for 10 s. The strain rates ranged from 0.001 to 10 s-1. Optical and scanning electron microscopy was performed to determine the microstructural evolution. EBSD measurement on selected samples was used to determine the microstructural changes in the ferrite phase. Processing windows were determined using modified dynamic material model in order to determine the safe hot working domains and these are correlated with the microstructural developments.

  1. The microstructural evolution, crystallography, and thermal processing of ultrahigh carbon Fe-1.85 pct C melt-spun ribbon

    NASA Technical Reports Server (NTRS)

    Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.

    1993-01-01

    A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.

  2. Microstructural Evolution of INCONEL® Alloy 740H® Fusion Welds During Creep

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; de Barbadillo, John J.; Baker, Brian A.; Watanabe, Masashi

    2015-02-01

    Electron microscopy techniques have been used to investigate the cause of premature creep failure in the fusion zone of INCONEL® Alloy 740H® (INCONEL and 740H are registered trademarks of Special Metals Corporation) welds. The reduced creep rupture lives of all-weld-metal and cross-weld creep specimens (relative to base metal specimens) have been attributed to the presence of large grain boundary regions that were denuded in fine γ' but contained coarse, elongated particles. Investigation of creep rupture specimens has revealed four factors that influence the formation of these coarsened zones, and the large particles found within them have been identified as γ'. Comparisons of the microstructural characteristics of these zones to the characteristics that are typical of denuded zones formed by a variety of mechanisms identified in the literature have been made. It is concluded that the mechanism of γ'-denuded zone formation in alloy 740H is discontinuous coarsening of the γ' phase. The discontinuous reaction is catalyzed by the grain boundary migration and sliding which occur during creep and likely promoted by the inhomogeneous weld metal microstructure that results from solute segregation during solidification. The increased susceptibility to the formation of the observed γ'-denuded zones in the weld metal as compared to the base metal is discussed in the context of differences in the contributions to the driving force for the discontinuous coarsening reaction.

  3. Interfacial Microstructure Evolution and Shear Strength of Titanium Sandwich Structures Fabricated by Brazing

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Fan, Minyu; Li, Jinlong; Tao, Jie

    2016-03-01

    The corrugated sandwich structure, consisting of a CP Ti (commercially pure titanium) core between two Ti-6Al-4V face sheets, was brazed using pasty Ti-37.5Zr-15Cu-10Ni as filler alloy, at the temperature of 870°C for 5, 10, 20, and 30 min. The effect of brazing time on the microstructure and elemental distribution of the brazed joints was examined by means of SEM, EDS, and XRD analyses. It was found that various intermetallic phases were formed in the brazed joints, following a brazing time of 5 min, and their contents were decreased by the increment of brazing time, while prolonged brazing time resulted in a fine, acicular Widmanstätten microstructure throughout the entire joint. In addition, shear testing was performed in the brazed corrugated specimens in order to indirectly assess the quality of the joints. The debonding between CP Ti and Ti-6Al-4V was observed in the specimen brazed for 5 min and the fracture of the CP Ti corrugated core occurred after 30 min of brazing time. Additionally, when brazed for 10 min or 20 min, brittle intermetallic compounds in the joints and the grain growth of the base metal were controllable. Therefore, the sandwich structures failed without debonding in the joints or fracture within the base metal, demonstrating a good combination of strength and ductility.

  4. Phase-field model simulation of ferroelectric/antiferroelectric materials microstructure evolution under multiphysics loading

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi

    Ferroelectric (FE) and closely related antiferroelectric (AFE) materials have unique electromechanical properties that promote various applications in the area of capacitors, sensors, generators (FE) and high density energy storage (AFE). These smart materials with extensive applications have drawn wide interest in the industrial and scientific world because of their reliability and tunable property. However, reliability issues changes its paradigms and requires guidance from detailed mechanism theory as the materials applications are pushed for better performance. A host of modeling work were dedicated to study the macro-structural behavior and microstructural evolution in FE and AFE material under various conditions. This thesis is focused on direct observation of domain evolution under multiphysics loading for both FE and AFE material. Landau-Devonshire time-dependent phase field models were built for both materials, and were simulated in finite element software Comsol. In FE model, dagger-shape 90 degree switched domain was observed at preexisting crack tip under pure mechanical loading. Polycrystal structure was tested under same condition, and blocking effect of the growth of dagger-shape switched domain from grain orientation difference and/or grain boundary was directly observed. AFE ceramic model was developed using two sublattice theory, this model was used to investigate the mechanism of energy efficiency increase with self-confined loading in experimental tests. Consistent results was found in simulation and careful investigation of calculation results gave confirmation that origin of energy density increase is from three aspects: self-confinement induced inner compression field as the cause of increase of critical field, fringe leak as the source of elevated saturation polarization and uneven defects distribution as the reason for critical field shifting and phase transition speed. Another important affecting aspect in polycrystalline materials is the

  5. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    SciTech Connect

    Liu, Hai-Tao; Yao, Sheng-Jie; Sun, Yu; Gao, Fei; Song, Hong-Yu; Liu, Guo-Huai; Li, Lei; Geng, Dian-Qiao; Liu, Zhen-Yu; Wang, Guo-Dong

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initial as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.

  6. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. PMID:27059404

  7. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures.

  8. The Flow Behavior and Microstructural Evolution of Ti-5Al-5Mo-5V-3Cr during Subtransus Isothermal Forging

    NASA Astrophysics Data System (ADS)

    Jones, N. G.; Dashwood, R. J.; Dye, D.; Jackson, M.

    2009-08-01

    High-strength metastable β alloys, for example, Ti-5Al-5Mo-5V-3Cr, have replaced steel as the material of choice for large components, such as the main truck beam on the latest generation of airframes. The production of these components is carried out by hot near-net-shape forging, during which process variable control is essential to achieve the desired microstructural condition and subsequent mechanical properties. The flow behavior and microstructural evolution during subtransus isothermal forging of Ti-5Al-5Mo-5V-3Cr has been investigated for two different starting microstructures and analysis has incorporated previously published results. The flow behavior, irrespective of initial microstructural condition, is found to be very similar at strains ≥0.35. It is thought that this is due to a common microstructural state being reached, where dynamic recovery of the β phase is the dominating deformation mechanism. At strains <0.35, the flow behavior is believed to be dominated by the morphology and volume fraction of the α phase. Small globular α particles are thought to have little effect on the flow behavior, while the observed flow softening is directly linked to the fragmentation of acicular α precipitates.

  9. Microstructures and oxidation behavior of some Molybdenum based alloys

    SciTech Connect

    Ray, Pratik Kumar

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  10. Microstructural evolution of massively transformed {gamma}-TiAl during isothermal aging

    SciTech Connect

    Kumagai, T.; Abe, E.; Nakamura, M.; Takeyama, M.

    1997-03-01

    {gamma}-TiAl base alloys have been expected as high-temperature structural materials because of their superior properties such as high specific elastic modulus and strength, high melting temperature and reasonable oxidation resistance. Recently, the authors reported that the microstructure changes from a massively transformed {gamma} grain structure to a equiaxed {gamma} grain structure involving fine {alpha}{sub 2} particles both in the {gamma} grain interiors and at the {gamma} grain boundaries, when a Ti-48at.%Al alloy quenched from an {alpha} phase field was isothermally aged in an {alpha}{sub 2} + {gamma} two phase field. More recently, Wen et al. suggested that this reaction occurs through the following two stages: (1) precipitation of thin {alpha}{sub 2} plates and small {alpha}{sub 2} particles, and (2) spheroidization of the fine {alpha}{sub 2} plates and growth of the {alpha}{sub 2} particles. However, the detailed formation mechanism of the {alpha}{sub 2} particles, especially the spheroidization mechanism of the fine {alpha}{sub 2} plates, is not clarified yet. The purpose of this study is to investigate the microstructural development of the massively transformed {gamma} structure during isothermal aging, and to discuss the {gamma} {yields} {alpha}({alpha}{sub 2}) phase transformation.

  11. Deformation Mechanism and Microstructure Evolution of T92/S30432 Dissimilar Welded Joint During Creep

    NASA Astrophysics Data System (ADS)

    Xu, Lianyong; Wang, Yongfa; Jing, Hongyang; Zhao, Lei; Han, Yongdian

    2016-09-01

    The cross dissimilar welds between T92 martensitic steel and S30432 austenitic steel were crept at 625 °C with different applied stresses, and the creep deformation and microstructure behaviors were characterized. The results revealed that the creep deformation behavior of dissimilar weld joint was controlled by its martensitic T92 part due to the Ni-based filler metal employed. The fracture positions of crept dissimilar welded joints were located in base metal of T92 steel as the applied stress over than 140 MPa. The fracture type was mainly caused by plastic deformation and characterized by dimples and surface necking. In contrast, as applied stress was <140 MPa, fractured location was transferred into the fine-grained heat-affected zone of T92 part identified to be the intergranular brittle fracture. This phenomenon was controlled by creep deformation and related to undissolved carbides, fine grain size and constraint effect induced by creep deformation inconsistent in this zone.

  12. Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Umapathy, H.; Mohanty, P.

    2010-01-01

    The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.

  13. TEM investigation on the microstructural evolution of Hastelloy N induced by Ar⁺ ion irradiation.

    PubMed

    Liu, Min; Lu, Yanling; Liu, Renduo; Zhou, Xingtai

    2014-02-01

    Hastelloy N alloy has been selected as the primary structure material for molten salt reactor. In this article, Hastelloy N alloy samples were irradiated to different doses at room temperature using 300 keV Ar(+) ions. The microstructural evolution was investigated by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). Black dot defects emerged in sample irradiated at low dose (0.4 displacement per atom (dpa)), and they grew up with irradiation doses (0.4-2 dpa). A high density of small dislocation loops (nano meters in size) were observed in the sample irradiated to 4 dpa. When the ion dose increased to 12 dpa, complicated structures with defects (including dislocation lines, larger loops and smaller black dots) were observed. Dislocation networks were detected from high-angle annular dark field (HAADF) images. Larger dislocation loops (size: 30-80 nm) were visible in the sample irradiated to 40 dpa. Irradiation with dose of 120 dpa led to the formation of face-centered cubic nanocrystallites with preferred orientations.

  14. TEM examination of microstructural evolution during processing of 14CrYWTi nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Kishimoto, H.; Alinger, M. J.; Odette, G. R.; Yamamoto, T.

    2004-08-01

    A transmission electron microscopy (TEM) study was carried out on the co-evolution of the coarser-scale microstructural features in mechanically alloyed (MA) powders and hot isostatic press (HIP) consolidated Fe-14Cr-3W-0 and 0.4Ti-0.25Y 2O 3 nanostructured ferritic alloys (NFAs). The pancake shaped nanoscale grains in the as-MA powders are textured and elongated parallel to the particle surface. Powder annealing results in re-crystallization at 850 °C and grain growth at 1150 °C. The grains also recrystallize and may grow in the alloys HIPed at 850 °C, but appear to retain a polygonized sub-grain structure. The grains are larger and more distinct in the alloys HIPed at 1000 and 1150 °C. However, annealing resulted in bi-modal grain size distribution. Finer grains retained a significant dislocation density and populations of small precipitates with crystal structures distinct form the matrix. The grains and precipitates were much larger in alloys without Ti.

  15. Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Arase, S.; Yamamoto, T.; Wells, P.; Onishi, T.; Odette, G. R.

    2016-04-01

    Radiation hardening and embrittlement of A533B steels is heavily dependent on the Cu content. In this study, to investigate the effect of copper on the microstructural evolution of these materials, A533B steels with different Cu levels were irradiated with 2.4 MeV Fe ions and 1.0 MeV electrons. Ion irradiation was performed from room temperature (RT) to 350 °C with doses up to 1 dpa. At RT and 290 °C, low dose (<0.1 dpa) hardening trend corresponded with ΔH ∝ (dpa)n, with n initially approximately 0.5 and consistent with a barrier hardening mechanism, but saturating at ≈0.1 dpa. At higher dose levels, the radiation-induced hardening exhibited a strong Cu content dependence at 290 °C, but not at 350 °C. Electron irradiation using high-voltage electron microscopy revealed the growth of interstitial-type dislocation loops and enrichment of Ni, Mn, and Si in the vicinities of pre-existing dislocations at doses for which the radiation-induced hardness due to ion irradiation was prominent.

  16. Microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-guo; Zhang, Yang; Su, Ning; Ji, Lian-ze; Li, Yuan-dong; Chen, Ti-jun

    2016-06-01

    In this paper, heat treatment was carried out on Al/Al-Mg-Si alloy clad wire, and microstructure evolution and properties of Al/Al-Mg-Si alloy clad wire during heat treatment were investigated. During solution, contents of Mg and Si in inner matrix increased due to dissolution of primary Mg2Si, and they also increased in outer matrix because Mg and Si diffused across the interface. Tensile strength of the clad wire increased firstly and then decreased, and elongation continuously increased, while conductivity continuously decreased with the increase in solution time. In aging process, Mg2Si precipitated in both inner core and outer layer, and the content and average diameter of the precipitate increased with the increase in aging time. The content of precipitate was higher, and the average diameter was bigger in inner core. Tensile strength of the clad wire increased firstly and then decreased with the increase in aging time, and the elongation continuously decreased, while the conductivity continuously increased. The peak tensile strength of 202 MPa occurred at 8 h, when the corresponding elongation was 20 % and the conductivity reached 56.07 %IACS. Even tensile strength of the prepared clad wire approximately equaled to that of Al-0.5Mg-0.35Si alloy 203 MPa, the conductivity was obviously improved from 54.2 to 56.07 %IACS.

  17. Transmitted light relaxation and microstructure evolution of ferrofluids under gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Li, Decai; Li, Feng; Zhu, Quanshui; Xie, Yu

    2015-03-01

    Using light transmission experiments and optical microscope observations with a longitudinal gradient magnetic field configuration, the relationship between the behavior of the transmitted light relaxation and the microstructure evolution of ionic ferrofluids in the central region of an axisymmetric field is investigated. Under a low-gradient magnetic field, there are two types of relaxation process. When a field is applied, the transmitted light intensity decreases to a minimum within a time on the order of 101-102 s. It is then gradually restored, approaching its initial value within a time on the order of 102 s. This is type I relaxation, which corresponds to the formation of magnetic columns. After the transmission reaches this value, it either increases or decreases slowly, stabilizing within a time on the order of 103 s, according to the direction of the field gradient. This is a type II relaxation, which results from the shadowing effect, corresponding to the motion of the magnetic columns under the application of a gradient force. Under a magnetic field with a centripetal high-gradient (magnetic materials subjected to a force pointing toward the center of the axisymmetric field), the transmitted light intensity decreases monotonously and more slowly than that under a low-gradient field. Magnetic transport and separation resulted from magnetophoresis under high-gradient fields, changing the formation dynamics of the local columns and influencing the final state of the column system.

  18. Microstructural evolution and atomic transport by thermomigration in eutectic tin-lead flip chip solder joints

    SciTech Connect

    Yang, Dan; Wu, B. Y.; Chan, Y. C.; Tu, K. N.

    2007-08-15

    The thermomigration behavior of eutectic tin-lead flip chip solder joints at an ambient temperature of 150 deg. C was investigated in terms of microstructural evolution, atomic transport, and numerical simulation. Pb accumulation and phase separation were observed in solder joints near a melting temperature after 50 h, which was supported by energy dispersive x-ray and element mapping analysis. It is believed that Pb atoms migrated from the chip side (the hot side) to the substrate side (the cold side) under a temperature gradient. Thermal electrical finite element simulation for the real flip chip test structure showed the existence of a temperature difference between the substrate side and the chip side. In addition, a temperature gradient above 1000 deg. C/cm across the adjacent unpowered solder joints was predicted. This was also verified by temperature measurements with thermocouples. The atomic flux of Pb due to thermomigration was calculated here, which was agreeable with the values originally reported. Also, the driving force of thermomigration was estimated to be 10{sup -17} N, even approaching the same order with that of electromigration under a current density of 10{sup 4} A/cm{sup 2}.

  19. Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ran, Qingxuan; Xu, Wanjian; Wu, Zhaoyu; Li, Jun; Xu, Yulai; Xiao, Xueshan; Hu, Jincheng; Jiang, Laizhu

    2016-07-01

    Evolutions of microstructure, mechanical, and corrosion properties of 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.261N-0.030C-0.5Si) duplex stainless steel have been investigated during cold rolling at room temperature. Dislocation slip dominated deformation mode of ferrite phase. However, deformation mechanism of austenite phase was different with the increasing cold-rolling reductions. Dislocation slip and strengthening effect of twin boundaries caused pile-up phenomenon at the initial deformation stage. When the amount of cold-rolling reduction attained greater than 50 pct, induced α'-martensite appeared in deformed austenite phase. Hardness of austenite phase was higher than that of the deformed ferrite because of its higher strengthening effect during cold-rolling process. Cold-rolling deformation caused deterioration of the pitting corrosion resistance in 3.5 wt pct NaCl aqueous solution. Pitting corrosion always initiated in the ferrite phase and the phase boundary in the solution-treated alloy. Additional pitting holes appeared in deformed austenite phase because of the decrease in corrosion resistance caused by dislocation accumulation and induced α'-martensite.

  20. Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Wu, Y. C.; Liu, X. B.; Wang, R. S.; Nagai, Y.; Inoue, K.; Shimizu, Y.; Toyama, T.

    2015-03-01

    The microstructural evolution of reactor pressure vessel (RPV) steels induced by proton and heavy ion irradiation at low temperature (∼373 K) has been investigated using positron annihilation spectroscopy (PAS), atom probe tomography (APT), transmission electron microscopy (TEM) and nanoindentation. The PAS results indicated that both proton and heavy ion irradiation produce a large number of matrix defects, which contain small-size defects such as vacancies, vacancy-solute complexes, dislocation loops, and large-size vacancy clusters. In proton irradiated RPV steels, the size and number density of vacancy cluster defects increased rapidly with increasing dose due to the migration and agglomeration of vacancies. In contrast, for Fe ion irradiated steels, high density, larger size vacancy clusters can be easily induced at low dose, showing saturation in PAS response with increasing dose. No clear precipitates, solute-enriched clusters or other forms of solute segregation were observed by APT. Furthermore, dislocation loops were observed by TEM after 1.0 dpa, 240 keV proton irradiation, and an increase of the average nanoindentation hardness was found. It is suggested that ion irradiation produces many point defects and vacancy cluster defects, which induce the formation of dislocation loops and the increase of nanoindentation hardness.

  1. Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ran, Qingxuan; Xu, Wanjian; Wu, Zhaoyu; Li, Jun; Xu, Yulai; Xiao, Xueshan; Hu, Jincheng; Jiang, Laizhu

    2016-10-01

    Evolutions of microstructure, mechanical, and corrosion properties of 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.261N-0.030C-0.5Si) duplex stainless steel have been investigated during cold rolling at room temperature. Dislocation slip dominated deformation mode of ferrite phase. However, deformation mechanism of austenite phase was different with the increasing cold-rolling reductions. Dislocation slip and strengthening effect of twin boundaries caused pile-up phenomenon at the initial deformation stage. When the amount of cold-rolling reduction attained greater than 50 pct, induced α'-martensite appeared in deformed austenite phase. Hardness of austenite phase was higher than that of the deformed ferrite because of its higher strengthening effect during cold-rolling process. Cold-rolling deformation caused deterioration of the pitting corrosion resistance in 3.5 wt pct NaCl aqueous solution. Pitting corrosion always initiated in the ferrite phase and the phase boundary in the solution-treated alloy. Additional pitting holes appeared in deformed austenite phase because of the decrease in corrosion resistance caused by dislocation accumulation and induced α'-martensite.

  2. Dislocations via incompatibilities in phase-field models of microstructure evolution

    NASA Astrophysics Data System (ADS)

    Gröger, R.; Marchand, B.; Lookman, T.

    2016-08-01

    We develop a phase-field model that describes the elastic distortion of a ferroelastic material with cubic anisotropy due to an arbitrary dislocation network and a uniform external load. The dislocation network is characterized using the Nye tensor and enters the formulation via a set of incompatibility constraints for the internal strain field. The long-range elastic response of the material is obtained by minimization of the free energy that accounts for higher-order terms of the order parameters and symmetry-adapted strain gradients. The influence of dislocations on the microstructure is studied using a static equilibrium analysis of a material without dislocations and with a random array of parallel edge dislocations. A minimal continuum dislocation dynamics is then used to investigate the simultaneous evolution of the network of geometrically necessary dislocations and the internal strain field. The model developed here is directly applicable to single-phase cubic crystals with an arbitrary degree of anisotropy as well as to ferroelastic materials undergoing temperature-driven cubic-to-tetragonal phase transitions.

  3. Microstructure and Texture Evolution During the Accumulative Roll Bonding of Pure Ni

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, P. P.; Terada, D.; Tsuji, N.

    Evolution of microstructure and texture was studied in severely plastically deformed (up to an equivalent strain of 6.4) high purity (99.99%) Ni sheets processed through Accumulative Roll Bonding (ARB). As received Ni plates ( 10 mm in thickness) were cold rolled to 80% reduction in thickness ( 2 mm) and vacuum annealed at 600°C for one hour and these were used as the starting materials (average grain size 25 μm) for the subsequent ARB processing. ND and TD plane normal sections of the ARB processed sheets were subjected to Electron Back Scatter Diffraction (EBSD) and Transmission Electron Microscope (TEM) studies. The ARB processed Ni sheets were found to be filled with ultrafine grains (average grain size 400 nm) after 8 cycles of ARB. Extensive shear band formation was observed particularly in the high cycle ARBed materials. The deformation textures were found to be quite inhomogeneous at the low cycle regime of the ARB. However, the deformation texture achieved remarkable homogeneity after 6 and 8 cycles of ARB and S ({123} <634>) component of the deformation texture was found to be quite strong.

  4. Dimensional Stability and Microstructure Evolution in Irradiated Systems with Complex Kinetics

    SciTech Connect

    Diaz de la Rubia, T; Caturla, M J; Fluss, M J

    2003-04-28

    We use a combination of molecular dynamics and kinetic Monte Carlo simulations to explore the role of temperature and dose rate on damage accumulation in a model system with complex kinetics. We describe the accumulation of He-vacancy (HeV) complexes as well as vacancy and interstitial clusters as a function of irradiation temperature, dose, and dose rate. We show that nucleation of stable HeV complexes (voids and bubbles) at low temperature and flux takes place at extremely low doses. We also describe the effect of temperature on the HeV complex size distribution and show that growth beyond a critical nucleation size is not possible in this system at temperatures above 300 K for dose rates smaller than 10{sup -8} dpa/s. We further demonstrate that a temperature shift of 25 K per decade of flux scales the dose rate dependence of He-vacancy complex (voids and bubbles) accumulation when irradiation is carried out to low doses (0.03-0.06 dpa) at temperatures between 150 K and 300 K and dose rates of 10{sup -6}, 10{sup -7}, 10{sup -8}, and 10{sup -9} dpa/s. The results provide an atomistic description of microstructure evolution including void nucleation and the early stages of growth, and should be useful in designing and interpreting accelerated aging experiments.

  5. Crack-seal microstructure evolution in bi-mineralic quartz-chlorite veins in shales and siltstones from the RWTH-1 well, Aachen, Germany

    NASA Astrophysics Data System (ADS)

    Becker, Stephan; Hilgers, Christoph; Kukla, Peter A.; Urai, Janos L.

    2011-04-01

    In core samples from the deep geothermal well RWTH-1 we studied Variscan quartz-chlorite veins formed by crack-seal processes in siliciclastics at the brittle to ductile transition. These sheared veins are common in sections of the well, which are interpreted as Variscan thrust zones based on image logs and seismic data. Microstructures interpreted to reflect different stages in the evolution of such crack-seal veins suggest the veins started in microcracks sealed by quartz and chlorite, to veinlets crossing multiple grains, and bundles of veinlets evolving by progressive localization into low-angle extensional shear veins and high-angle dilational jog veins. In the sheared veins, chlorite and quartz ribbons show evidence for crack-seal and simultaneous ductile shearing during vein evolution, forming peculiar fin-shaped microstructures in quartz ribbons. In high-angle dilational jogs fibrous crystals of quartz and chlorite point to multiple crack-seal events with simultaneous growth of two different mineral phases. This is interpreted to be the basic microstructural process in the veins. We extend earlier models of polycrystal growth in fractures and present a series of 2D simulations of the kinematics of crystal growth in these bi-mineralic veins for both localized and non-localized cracking. Results are compared with the observed microstructures. We show that when the relative growth rates of the two mineral phases are different, serrated grain boundaries evolve. The similarities between observation and model suggest that the assumption of our model is valid, although many second order processes require a more detailed study. We propose that the principles observed here can be applied to other bi-mineralic crack-seal veins.

  6. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    PubMed Central

    Xu, Feng; Hu, Xiao-fang; Xiao, Yu; Xiao, Ti-qiao

    2014-01-01

    In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT) technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth. PMID:24737986

  7. Refractory Boride Formation and Microstructure Evolution during Solidification of Titanium-Boron and Titanium Aluminum-Boron Alloys

    NASA Astrophysics Data System (ADS)

    Hyman, Mark Edward

    1990-01-01

    gamma-TiAl alloys targeted for use as a structural material in advanced aerospace applications lack adequate creep strength at high temperatures. Incorporation of hard refractory second phase particles (e.g. TiB _2) exhibiting large aspect ratios (i.e. needles) can increase creep strength by constraining the plastic flow of the matrix during high temperature service. Matrix microstructure evolution and refractory boride formation in binary Ti-B and Ti-(25-52) at% Al and <= ~ 6 at% B alloys during conventional solidification is examined. The effects of rapid solidification processing (RSP) on microstructure evolution and boride morphology in ternary alloys is examined in electromagnetically levitated droplets processed via gas and splat quenching. A liquidus projection near the Ti-Al edge binary is deduced from a combination of computer modelling efforts and experimental evidence. The primary fields of crystallization sequentially traversed with increasing Al content starting from the Ti-B edge binary are: TiB to Ti_3B_4 to TiB_2 and beta to alpha to gamma for B-rich (i.e. ~5 at% B) and dilute alloys, respectively. A monovariant line of the type, L to M + TiB_2 (where M = beta, alpha , and gamma) was found to run slightly below the ~1 at% B isoconcentration line near the equiatomic TiAl composition. Matrix microstructure evolution and boride formation in these ternary alloys can be explained using the proposed liquidus projection for the Ti-Al-B system. TiB_2 forms in Ti-Al-B alloys (i.e. >= 35 at% Al) with various morphologies--blocky, plate/needle and flakes--and are extensively characterized by TEM and SEM. Their growth mechanisms leading to their various morphologies is discussed. Aside from the boride phases formed, the solidification microstructures of the Ti-Al -B alloys of interest showed essentially the same constituent phases as those of binary Ti-Al alloys of similar composition. Characterization of supercooled ternary droplets dilute in B (i.e. <=1 at% B

  8. Microstructurally based thermomechanical fatigue lifetime model of solder joints for electronic applications

    SciTech Connect

    Frear, D.R.; Rashid, M.M.; Burchett, S.N.

    1993-07-01

    We present a new methodology for predicting the fatigue life of solder joints for electronics applications. This approach involves integration of experimental and computational techniques. The first stage involves correlating the manufacturing and processing parameters with the starting microstructure of the solder joint. The second stage involves a series of experiments that characterize the evolution of the microstructure during thermal cycling. The third stage consists of a computer modeling and simulation effort that utilizes the starting microstructure and experimental data to produce a reliability prediction of the solder joint. This approach is an improvement over current methodologies because it incorporates the microstructure and properties of the solder directly into the model and allows these properties to evolve as the microstructure changes during fatigue.

  9. Microstructure and properties of pitch-based carbon composites

    PubMed

    Blanco; Santamaria; Bermejo; Bonhomme; Menendez

    1999-11-01

    Pitches prepared in the laboratory by thermal treatment and air-blowing of a commercial coal-tar pitch were used as matrix precursors of carbon composites using granular petroleum coke, foundry coke, amorphous graphite and anthracite. Pitches were characterized by standard procedures (elemental analysis, softening point, solubility tests and carbon yield) and light microscopy (mesophase content). Pitch pyrolysis behaviour was monitored by thermogravimetric analysis and from the optical texture of cokes. Pitch wettability to the different carbons, at different temperatures, was also studied. Experimental conditions selected for the preparation of composites were based on pitch composition and properties. The main microstructural features of composites were determined by light microscopy and scanning electron microscopy. Composite properties were described in terms of their density, porosity and compressive strength, and related to composite microstructure and the characteristics of the precursors. Thermal treatment and air-blowing of pitch improved carbon composite structure and properties. The lowest porosities and best mechanical properties were observed in those composites obtained with the thermally treated pitches combined with foundry coke and anthracite. PMID:10540274

  10. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  11. Effect of irradiation spectrum on the microstructural evolution in ceramic insulators

    SciTech Connect

    Zinkle, S.J.

    1995-04-01

    The objective of this study is to determine and examine the effect of variations in the ionizing and displacive radiation environments on the microstructure of oxide ceramic insulators. Cross section transmission electron microscopy has been used to investigate the microstructure of MgAl{sub 2}O{sub 4} (spinel) and Al{sub 2}O{sub 3} (alumina) following irradiation with ions of varying mass and energy at room temperature and 650{degree}C. These results clearly indicate that light ion and electron irradiations produce microstructures which are not representative of the microstructure that would form in these ceramics during fission or fusion neutron irradiation.

  12. An EBSD investigation on flow localization and microstructure evolution of 316L stainless steel for Gen IV reactor applications

    NASA Astrophysics Data System (ADS)

    Wu, Xianglin; Pan, Xiao; Mabon, James C.; Li, Meimei; Stubbins, James F.

    2007-09-01

    Type 316L stainless steel has been selected as a candidate structural material in a series of current accelerator driven systems and Generation IV reactor conceptual designs. The material is sensitive to irradiation damage in the temperature range of 150-400 °C: even low levels of irradiation exposure, as small as 0.1 dpa, can cause severe loss of ductility during tensile loading. This process, where the plastic flow becomes highly localized resulting in extremely low overall ductility, is referred as flow localization. The process controlling this confined flow is related to the difference between the yield and ultimate tensile strengths such that large irradiation-induced increases in the yield strength result in very limited plastic flow leading to necking after very small levels of uniform elongation. In this study, the microstructural evolution controlling flow localization is examined. It is found that twinning is an important deformation mechanism at lower temperatures since it promotes the strain hardening process. At higher temperatures, twinning becomes energetically impossible since the activation of twinning is determined by the critical twinning stress, which increases rapidly with temperature. Mechanical twinning and dislocation-based planar slip are competing mechanisms for plastic deformation.

  13. Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Geindreau, C.; Lesaffre, B.; Rolland du Roscoat, S.

    2014-02-01

    We carried out a study to monitor the time evolution of microstructural and physical properties of snow during a temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient along the vertical during three weeks in a cold-room, and regularly sampled in order to obtain a set of 3-D images using X-ray microtomography. A large panel of properties was then computed from this series of 3-D images: density, specific surface area, correlation length, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, a specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical models (Self consistent estimates and Dilutes bed of spheroids) based on the snow density, and the size and anisotropy of the grains through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the micro or macro scale.

  14. Experimental investigation of grain-scale microstructure evolution during olivine-wadsleyite phase transformation under "dry" conditions

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A.; Karato, S. I.

    2015-12-01

    We investigate the evolution of grain-scale microstructure during the olivine to wadsleyite transformation through high pressure and temperature experiments. The grain-size evolution and the spatial distribution of newly formed fine grains during the phase transformation in the mantle transition zone have potentially large influence on the strength of a slab in the transition zone that has an important control on the slab deformation. However, most of previous experimental studies on the processes of phase transformations have focused on the kinetics of phase transformation and no experimental studies have been published on these microstructural issues. The key issues that we investigate include (i) the size of new grains and (ii) spatial distribution of new grains (critical conditions for percolation). We conduct high-pressure, temperature annealing experiments and investigate the grain-scale microstructure evolution. We find that olivine transforms to wadsleyite mainly via grain boundary nucleated transformation mechanism: New grains are formed on pre-existing olivine-olivine grain-boundaries in all cases. In some runs, we identified the time for site saturation on grain-boundaries and together with the grain-size at site saturation we calculated both nucleation and growth rate. During early stages of transformation a grain boundary percolated microstructure develops and this may be very crucial in decreasing the overall strength of composite during this step. The grain size at the site saturation seems to decrease with overpressure. We also find that inadequate annealing of defects may give rise to apparent kinetic parameters interpretation of which may not be straightforward. We report inferred functional forms of nucleation and growth rate and discuss possible implications of these experimental observations on the weakening of a slab in the mantle transition zone.

  15. Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryoforging

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Kumar, Nikhil; Yogesha, K. K.; Jayaganthan, R.; Nath, S. K.

    2016-07-01

    Mechanical properties and microstructure evolution of Al 2014 alloy subjected to cryoforging (MDF) to a cumulative strain of 1.2, 1.8, and 2.4 were investigated in the present work. The deformed samples after 4 cycles at a cumulative strain of 2.4 shows the formation of ultrafine grain sizes in the range of 100-450 nm with high-angle grain boundaries as observed from TEM analysis. The tensile and hardness of the deformed sample were measured by Universal Testing machine and Vickers hardness Tester, respectively. The tests were also conducted for sample deformed at room temperature to compare with cryo-forged samples. The sample deformed at cryogenic temperature up to a cumulative strain 2.4 shows an improvement of tensile strength, hardness, and apparent fracture toughness (KQ) from 318 MPa to 470 MPa, 103HV to 171 HV, and 23.93 MPa √ m to 37.7 MPa √ m, respectively, with decrease in ductility from 18% to 6% as compared with solution-treated alloy. The cryo-forged Al 2014 alloy exhibits an increment of 7% in tensile strength, 3% in yield strength, and 3% in hardness up to cumulative true strain of 2.4 as compared to the samples forged at room temperature. The improvement in tensile properties of MDFed alloy is attributed to dislocation strengthening and grain boundary strengthening effect at both temperatures. The effective suppression of cross slip and climb at liquid nitrogen temperature improves the strength of cryo-forged sample better than that of room temperature-forged alloy.

  16. Investigation on the evolution of microstructure and texture of electroplated Ni-Ti composite coating by Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhao, Yuantao; Cai, Fei; Wang, Chengxi; Chai, Ze; Zhu, Kaiyuan; Xu, Zhou; Jiang, Chuanhai

    2015-10-01

    Rietveld refinement was utilized to investigate the evolution of microstructure and texture of the Ni-Ti composite coatings electroplated at different applied current densities. Scanning Electron Microscope and Energy Dispersive Spectroscopy were utilized to investigate the morphology and chemical composition of the coatings. Relative texture coefficients (RTC) and measured pole figures were utilized to investigate the texture evolution of the coatings. The results showed that the surface morphology of the coatings changed from a colonial structure to a polyhedral one. And the incorporated Ti content decreased with increasing applied current density. As the applied current density increased, the crystallite sizes increased and their distribution got less uniform, and the microstrain and dislocation density decreased. The results of simulated pole figures obtained from Rietveld refinement illustrated that the texture of the coatings changed from no obvious texture to a strong [2 0 0] fiber texture with increasing applied current density. The texture evolution obtained from simulated pole figures was confirmed by the result of RTC and the measured pole figures. The evolutions of the microstructure and texture were derived from the change of the applied current density and incorporated Ti content in the Ni-Ti composite coatings.

  17. The Impact of Strain Reversal on Microstructure Evolution and Orientation Relationships in Ti-6Al-4V with an Initial Alpha Colony Microstructure

    NASA Astrophysics Data System (ADS)

    Muszka, K.; Lopez-Pedrosa, M.; Raszka, K.; Thomas, M.; Rainforth, W. M.; Wynne, B. P.

    2014-12-01

    The effect of forward and reverse torsion on flow behavior and microstructure evolution, particularly dynamic and static spheroidization, on Ti-6Al-4V with an alpha lamella colony microstructure was studied. Testing was undertaken sub beta transus [1088 K (815 °C)] at strain rates of either 0.05 or 0.5 s-1. Quantitative metallography and electron back scatter diffraction has identified that a critical monotonic strain ( ɛ c) in the range of 0.3 to 0.6 is required to initiate rapid dynamic spheroidization of the alpha lamella. For material deformed to strains below ɛ c and then reversed to a zero net strain the orientation relationships between alpha colonies are close to ideal Burgers, enabling prior beta grains to be fully reconstructed. Material deformed to strains greater than ɛ c and reversed lose Burgers and no beta reconstruction is possible, suggesting ɛ c is the strain required to generate break-up of lamella. Static spheroidization is, however, sensitive to strain path around ɛ c. Annealing at 1088 K (815 °C) for 4 hours for material subjected to 0.25 forward + 0.25 forward strain produces 48 pct spheroidized grains while material with 0.25 forward + 0.25 reverse strain has 10 pct spheroidization. This is believed to be a direct consequence of different levels of the stored energy between these two strain paths.

  18. The Impact of Strain Reversal on Microstructure Evolution and Orientation Relationships in Ti-6Al-4V with an Initial Alpha Colony Microstructure

    NASA Astrophysics Data System (ADS)

    Muszka, K.; Lopez-Pedrosa, M.; Raszka, K.; Thomas, M.; Rainforth, W. M.; Wynne, B. P.

    2014-09-01

    The effect of forward and reverse torsion on flow behavior and microstructure evolution, particularly dynamic and static spheroidization, on Ti-6Al-4V with an alpha lamella colony microstructure was studied. Testing was undertaken sub beta transus [1088 K (815 °C)] at strain rates of either 0.05 or 0.5 s-1. Quantitative metallography and electron back scatter diffraction has identified that a critical monotonic strain (ɛ c) in the range of 0.3 to 0.6 is required to initiate rapid dynamic spheroidization of the alpha lamella. For material deformed to strains below ɛ c and then reversed to a zero net strain the orientation relationships between alpha colonies are close to ideal Burgers, enabling prior beta grains to be fully reconstructed. Material deformed to strains greater than ɛ c and reversed lose Burgers and no beta reconstruction is possible, suggesting ɛ c is the strain required to generate break-up of lamella. Static spheroidization is, however, sensitive to strain path around ɛ c. Annealing at 1088 K (815 °C) for 4 hours for material subjected to 0.25 forward + 0.25 forward strain produces 48 pct spheroidized grains while material with 0.25 forward + 0.25 reverse strain has 10 pct spheroidization. This is believed to be a direct consequence of different levels of the stored energy between these two strain paths.

  19. Microstructural evolution in advanced boiler materials for ultra-supercritical coal power plants

    NASA Astrophysics Data System (ADS)

    Wu, Quanyan

    The goal of improving the efficiency of pulverized coal powerplants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam temperatures approaching 760°C under a stress of 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other conventional alloys. As part of a large DOE-funded consortium, new and existing materials based on advanced austenitic stainless steels and nickel base superalloys are being evaluated for these very demanding applications. In the present work, the nickel base superalloys of Inconel 617, CCA617, Haynes 230 and Inconel 740, and austenitic alloys Super 304H and HR6W, were evaluated on their microstructural properties over elevated temperature ageing and creep rupture conditions. The materials were aged for different lengths of time at temperatures relevant to USC applications, i.e., in the range from 700 to 800°C. The precipitation behaviors, namely of the gamma', carbides and eta phase in some conditions in nickel base superalloys, carbides in Haynes 230, Cu-rich precipitates in Super 304H and Laves phase particles in HR6W, were studied in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and related analytical techniques. Particular attention has been given on the structure, morphology and compositional distinctiveness of various phases (including gamma, gamma', carbides, secondary phase precipitates, and other types of particles) and their nature, dislocation structures and other types of defects. The results were presented and discussed in light of associated changes in microhardness in the cases of aged samples, and in close reference to mechanical testing (including tensile and creep rupture tests) wherever available. Several mechanical strengthening

  20. On the macroscopic response, microstructure evolution, and macroscopic stability of short-fibre-reinforced elastomers at finite strains: I - Analytical results

    NASA Astrophysics Data System (ADS)

    Avazmohammadi, Reza; Ponte Castañeda, Pedro

    2014-04-01

    This paper presents a homogenization-based constitutive model for the mechanical behaviour of particle-reinforced elastomers with random microstructures subjected to finite deformations. The model is based on a recently improved version of the tangent second-order (TSO) method (Avazmohammadi and Ponte Castañeda, J. Elasticity 112 (2013) p.139-183) for two-phase, hyperelastic composites and is able to directly account for the shape, orientation, and concentration of the particles. After a brief summary of the TSO homogenization method, we describe its application to composites consisting of an incompressible rubber reinforced by aligned, spheroidal, rigid particles, undergoing generally non-aligned, three-dimensional loadings. While the results are valid for finite particle concentrations, in the dilute limit they can be viewed as providing a generalization of Eshelby's results in linear elasticity. In particular, we provide analytical estimates for the overall response and microstructure evolution of the particle-reinforced composites with generalized neo-Hookean matrix phases under non-aligned loadings. For the special case of aligned pure shear and axisymmetric shear loadings, we give closed-form expressions for the effective stored-energy function of the composites with neo-Hookean matrix behaviour. Moreover, we investigate the possible development of "macroscopic" (shear band-type) instabilities in the homogenized behaviour of the composite at sufficiently large deformations. These instabilities whose wavelengths are much larger than the typical size of the microstructure are detected by making use of the loss of strong ellipticity condition for the effective stored-energy function of the composites. The analytical results presented in this paper will be complemented in Part II (Avazmohammadi and Ponte Castaneda, Phil. Mag. (2014)) of this work by specific applications for several representative microstructures and loading configurations.

  1. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the

  2. Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    Song, K. K.; Pauly, S.; Sun, B. A.; Tan, J.; Stoica, M.; Kühn, U.; Eckert, J.

    2013-01-01

    The variation of the transformation-mediated deformation behavior with microstructural changes in CuZr-based bulk metallic glass composites is investigated. With increasing crystalline volume fraction, the deformation mechanism gradually changes from a shear-banding dominated process as evidenced by a chaotic serrated flow behavior, to being governed by a martensitic transformation with a pronounced elastic-plastic stage, resulting in different plastic deformations evolving into a self-organized critical state characterized by the power-law distribution of shear avalanches. This is reflected in the stress-strain curves by a single-to-"double"-to-"triple"-double yielding transition and by different mechanical properties with different serrated flow characteristics, which are interpreted based on the microstructural evolutions and a fundamental energy theorem. Our results can assist in understanding deformation behaviors for high-performance metastable alloys.

  3. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    SciTech Connect

    Frear, D.R.; Burchett, S.N.; Rashid, M.M.

    1994-12-31

    The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  4. The Effect of Hot Deformation Parameters on Microstructure Evolution of the α-Phase in Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Perumal, Bama; Rist, Martin A.; Gungor, Salih; Brooks, Jeffery W.; Fitzpatrick, Michael E.

    2016-08-01

    The effect of high-temperature deformation and the influence of hot working parameters on microstructure evolution during isothermal hot forging of Ti-6Al-4V in the alpha phase field were investigated. A series of hot isothermal axis-symmetric compression tests were carried out at temperatures both low and high in the alpha stability field [(1153 K and 1223 K (880 °C and 950 °C), respectively], using three strain rates (0.01, 0.1 and 1.0/s) relevant to industrial press forging. The microstructures and orientation of the alpha laths were determined using optical microscopy and electron backscatter diffraction techniques. The experimental results show that there is a change in lath morphology of the secondary α phase under the influence of the deformation parameters, and that α lath thickness appears to have little influence on flow behavior.

  5. Influence of melt convection on microstructure evolution of Nd-Fe-B alloys using a forced crucible rotation technique

    NASA Astrophysics Data System (ADS)

    Biswas, K.; Hermann, R.; Filip, O.; Acker, J.; Gerbeth, G.; Priede, J.

    2006-09-01

    The forced crucible rotation technique has been applied to the solidification of Nd-Fe-B alloys. Specially sealed samples were subjected to well-defined forced rotation during induction heating and solidification. The resulting microstructure of the Nd-Fe-B alloys in consideration of melt convection has been investigated using scanning electron probe microscopy. The determination of the -Fe volume fraction by measuring the magnetic moment in a vibrating sample magnetometer (VSM) resulted in a distinct reduction of the -Fe volume fraction in samples with high crucible rotation frequencies. Furthermore, a new category of experiment has been started where a tailored magnetic field was applied in order to study the microstructure evolution due to an enhancement or suppression of the melt convection by additional alternating magnetic fields.

  6. Microstructural Evolution and Mechanical Properties of Short-Term Thermally Exposed 9/12Cr Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-11-01

    The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.

  7. Dynamic evolution process of multilayer core-shell microstructures within containerlessly solidifying Fe(50)Sn(50) immiscible alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Geng, D L; Wei, B

    2016-03-01

    Multilayer core-shell structures are frequently formed in polymers and alloys when temperature and concentration fields are well symmetrical spatially. Here we report that two- to five-layer core-shell microstructures were the dominant structural morphology of a binary Fe(50)Sn(50) immiscible alloy solidified under the containerless and microgravity states within a drop tube. Three dimensional phase field simulation reveals that both the uniformly dispersive structure and the multilayer core-shells are the various metastable and transitional states of the liquid phase separation process. Only the two-layer core-shell is the most stable microstructure with the lowest chemical potential. Because of the suppression of Stokes motion, solutal Marangoni migration becomes important to drive the evolution of core-shell structures. PMID:27078410

  8. Dynamic evolution process of multilayer core-shell microstructures within containerlessly solidifying F e50S n50 immiscible alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Geng, D. L.; Wei, B.

    2016-03-01

    Multilayer core-shell structures are frequently formed in polymers and alloys when temperature and concentration fields are well symmetrical spatially. Here we report that two- to five-layer core-shell microstructures were the dominant structural morphology of a binary F e50S n50 immiscible alloy solidified under the containerless and microgravity states within a drop tube. Three dimensional phase field simulation reveals that both the uniformly dispersive structure and the multilayer core-shells are the various metastable and transitional states of the liquid phase separation process. Only the two-layer core-shell is the most stable microstructure with the lowest chemical potential. Because of the suppression of Stokes motion, solutal Marangoni migration becomes important to drive the evolution of core-shell structures.

  9. THEORETICAL INVESTIGATION OF MICROSTRUCTURE EVOLUTION AND DEFORMATION OF ZIRCONIUM UNDER CASCADE DAMAGE CONDITIONS

    SciTech Connect

    Barashev, Alexander V; Golubov, Stanislav I; Stoller, Roger E

    2012-06-01

    This work is based on our reaction-diffusion model of radiation growth of Zr-based materials proposed recently in [1]. In [1], the equations for the strain rates in unloaded pure crystal under cascade damage conditions of, e.g., neutron or heavy-ion irradiation were derived as functions of dislocation densities, which include contributions from dislocation loops, and spatial distribution of their Burgers vectors. The model takes into account the intra-cascade clustering of self-interstitial atoms and their one-dimensional diffusion; explains the growth stages, including the break-away growth of pre-annealed samples; and accounts for some striking observations, such as of negative strain in prismatic direction, and co-existence of vacancy- and interstitial-type prismatic loops. In this report, the change of dislocation densities due to accumulation of sessile dislocation loops is taken into account explicitly to investigate the dose dependence of radiation growth. The dose dependence of climb rates of dislocations is calculated, which is important for the climb-induced glide model of radiation creep. The results of fitting the model to available experimental data and some numerical calculations of the strain behavior of Zr for different initial dislocation structures are presented and discussed. The computer code RIMD-ZR.V1 (Radiation Induced Microstructure and Deformation of Zr) developed is described and attached to this report.

  10. Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys: Part I. Evolution of Microstructure and Texture

    NASA Astrophysics Data System (ADS)

    Manda, Premkumar; Ghosal, P.; Chakkingal, Uday; Singh, A. K.

    2015-06-01

    The present work describes the evolution of microstructures and textures in alloys Ti-5Al-5Mo-5V-3Cr (A1), Ti-5Al-3.5Mo-7.2V-3Cr (A2), Ti-5Al-5Mo-8.6V-1.5Cr (A3), and Ti-5Al-3.5Mo-5V-3.94Cr (A4) during unidirectional hot rolling. The hot-rolled microstructures of the alloy A1 exhibit large fraction of recovered/recrystallized grains, while the alloy A3 shows small fraction of recovered/recrystallized grains. The alloy A2 displays subgrains and recrystallized grains, while the alloy A4 exhibits the microstructure consisting of the features of both the alloys A1 and A2. The alloys A1, A3, and A4 show the presence of shear bands within the β grains and also small volume fraction of the α phase. The dominance of deformation and/or recrystallization components in respective α and γ fibers varies with alloy compositions and hot rolling reductions. In alloys A1 and A2, deformation components dominate from 30 to 50 pct rolling reductions, while recrystallization components govern in 70 pct rolled samples. The deformation components prevail from 30 to 70 pct rolling reductions in alloy A3. The alloy A4 exhibits softening of texture due to recovery or early stage of recrystallization from 30 to 50 pct reductions, while texture present in 70 pct rolled sample consists of mainly the deformation components. The role of molybdenum appears to be quite critical in the evolution of microstructures and textures of these alloys. The alloys with low and high Mo contents display high and low amount of the α phase, respectively.

  11. Microstructural evolution of lipid aggregates in nucleating model and human biles visualized by cryogenic transmission electron microscopy.

    PubMed

    Konikoff, F M; Danino, D; Weihs, D; Rubin, M; Talmon, Y

    2000-02-01

    Obtaining reliable information on the physical state and ultrastructure of bile is difficult because of its mixed aqueous-lipid composition and thermodynamic metastability. We have used time-lapse cryogenic transmission electron microscopy (cryo-TEM) combined with video-enhanced light microscopy (VELM) to study microstructural evolution in nucleating bile. A well-characterized model bile and gallbladder biles from cholesterol and pigment gallstone patients were studied sequentially during cholesterol nucleation and precipitation. In model bile, cholesterol crystallization was preceded by the appearance of the following distinct microstructures: spheroidal micelles (3-5 nm), discoidal membrane patches (50-150 nm) often in multiple layers (2-10), discs (50-100 nm), and unilamellar (50-200 nm) and larger multilamellar vesicles (MLVs). The membrane patches and discs appeared to be short-lived intermediates in a micelle-to-vesicle transition. Vesicular structures formed by growth and closure of patches as well as by budding off from vesicles with fewer bilayers. MLVs became more abundant, uniform, and concentric as a function of time. In native bile, all the above microstructures, except discoidal membrane patches, were observed. However, native MLVs were more uniform and concentric from the beginning. When cholesterol crystals appeared by light microscopy, MLVs were always detected by cryo-TEM. Edges of early cholesterol crystals were lined up with micelles and MLVs in a way suggesting an active role in feeding crystal growth from these microstructures. These findings, for the first time documented by cryo-TEM in human bile, provide a microstructural framework that can serve as a basis for investigation of specific factors that influence biliary cholesterol nucleation and crystal formation.

  12. Microstructural evolution in NaNbO3-based antiferroelectrics

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Shimizu, Hiroyuki; Randall, Clive A.

    2015-11-01

    Our recent study found that CaZrO3 doping can effectively enhance the antiferroelectric P phase in NaNbO3 ceramics, leading to a double polarization hysteresis loop characteristic of a reversible antiferroelectric ↔ ferroelectric phase transition [Shimizu et al., Dalton Trans. 44, 10763 (2015)]. Here, a thorough transmission electron microscope study was performed to illustrate the CaZrO3 doping-assisted antiferroelectricity stabilization. In parallel to the bright-field imaging and selected area electron diffraction from multiple zone axes, detailed dark-field imaging was utilized to determine the superlattice structural origins, from either oxygen octahedral tilting or antiparallel cation displacements. By analogy with Pb(Zr1-xTix)O3 and rare-earth doped BiFeO3 systems, the chemical substitutions are such as to an induced polar-to-antipolar transition that is consistent with a tolerance factor reduction. The resultant chemical pressure has a similar effect to the compressive hydrostatic pressure where the antiferroelectric state is favored over the ferroelectric state.

  13. Dolomite microstructures between 390° and 700 °C: Indications for deformation mechanisms and grain size evolution

    NASA Astrophysics Data System (ADS)

    Berger, Alfons; Ebert, Andreas; Ramseyer, Karl; Gnos, Edwin; Decrouez, Danielle

    2016-08-01

    Dolomitic marble on the island of Naxos was deformed at variable temperatures ranging from 390 °C to >700 °C. Microstructural investigations indicate two end-member of deformation mechanisms: (1) Diffusion creep processes associated with small grain sizes and weak or no CPO (crystallographic preferred orientation), whereas (2) dislocation creep processes are related with larger grain sizes and strong CPO. The change between these mechanisms depends on grain size and temperature. Therefore, sample with dislocation and diffusion creep microstructures and CPO occur at intermediate temperatures in relative pure dolomite samples. The measured dolomite grain size ranges from 3 to 940 μm. Grain sizes at Tmax >450 °C show an Arrhenius type evolution reflecting the stabilized grain size in deformed and relative pure dolomite. The stabilized grain size is five times smaller than that of calcite at the same temperature and shows the same Arrhenius-type evolution. In addition, the effect of second phase particle influences the grain size evolution, comparable with calcite. Calcite/dolomite mixtures are also characterized by the same difference in grain size, but recrystallization mechanism including chemical recrystallization induced by deformation may contribute to apparent non-temperature equilibrated Mg-content in calcite.

  14. Microstructure and Texture Evolution in Cold Rotary Forging of Spur Bevel Gears of 20CrMnTi Alloy Steel

    NASA Astrophysics Data System (ADS)

    Han, Xinghui; Dong, Liying; Hua, Lin; Zhuang, Wuhao

    2016-03-01

    The microstructure of cold rotary forged gears greatly affects their working life. Therefore, the aim of this study is to reveal the evolution of microstructure and texture that occurs during the cold rotary forging of spur bevel gears of 20CrMnTi alloy steel. The evolution of grains of the gear tooth is investigated through optical microscopy. By employing scanning electron microscopy and electron backscatter diffraction, the evolution of the cementite particles and the texture of the gear tooth is also revealed. The results indicate that the grain size distribution is non-uniform from the tooth profile to its center. The cementite particles in the tooth profile are finer and more uniformly distributed than those in the tooth center. After cold rotary forging, the tooth center has a combination of α- and γ-fibers, and the γ-fibers are more developed than the α-fibers, while most of the components in the tooth profile are assembled along the α-fibers.

  15. Real internal microstructure based key mechanism analysis on the micro-damage process of short fibre-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hu, Xiaofang; Fang, Jian; Xu, Feng; Dong, Bo; Xiao, Yu; Wang, Luobin

    2016-10-01

    In this work, the underlying micro-damage mechanisms of randomly oriented short fibre-reinforced composites were revealed based on real internal microstructural characteristics obtained by high-resolution (0.7 μm/pixel) synchrotron radiation X-ray computed tomography (SR-CT). The special ‘pore dominant micro-damage processes’ were directly observed through SR-CT three-dimensional reconstructed images, which were different from the well-known ‘fibre breakage dominant failure mode’. The mechanisms of pore formation and pore evolution were further investigated on the basis of the microstructural parameters extracted from the SR-CT results. On one hand, the pore formation mechanism caused by shear stress concentration was proposed by combining the shear-lag model with the microstructural parameters obtained from the experiment, including the fibre length and orientation angle. On the other hand, the ‘fibre-end aggregation-induced pore connection’ mode of crack initiation was proposed through a composites model, which considered the parameters of real internal microstructure, including the critical value of the distance between neighbouring fibre ends and the number of neighbouring fibre ends. The study indicated that the shear stress concentration was significant in the region with a large number of neighbouring fibre ends, thus causing pore connection and crack initiation.

  16. Real internal microstructure based key mechanism analysis on the micro-damage process of short fibre-reinforced composites

    PubMed Central

    Hu, Xiaofang; Fang, Jian; Xu, Feng; Dong, Bo; Xiao, Yu; Wang, Luobin

    2016-01-01

    In this work, the underlying micro-damage mechanisms of randomly oriented short fibre-reinforced composites were revealed based on real internal microstructural characteristics obtained by high-resolution (0.7 μm/pixel) synchrotron radiation X-ray computed tomography (SR-CT). The special ‘pore dominant micro-damage processes’ were directly observed through SR-CT three-dimensional reconstructed images, which were different from the well-known ‘fibre breakage dominant failure mode’. The mechanisms of pore formation and pore evolution were further investigated on the basis of the microstructural parameters extracted from the SR-CT results. On one hand, the pore formation mechanism caused by shear stress concentration was proposed by combining the shear-lag model with the microstructural parameters obtained from the experiment, including the fibre length and orientation angle. On the other hand, the ‘fibre-end aggregation-induced pore connection’ mode of crack initiation was proposed through a composites model, which considered the parameters of real internal microstructure, including the critical value of the distance between neighbouring fibre ends and the number of neighbouring fibre ends. The study indicated that the shear stress concentration was significant in the region with a large number of neighbouring fibre ends, thus causing pore connection and crack initiation. PMID:27713472

  17. Impact of Materials Processing on Microstructural Evolution and Hydrogen Isotope Storage Properties of Pd-Rh Alloy Powders.

    SciTech Connect

    Yee, Joshua K

    2015-02-01

    Cryomilled Pd - 10Rh was investiga ted as potential solid - state storage material of hydrogen. Pd - 10Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd - 10Rh was then examined using microstructural characterization techniques including op tical microscopy, electron microscopy, and X - ray diffraction. Pd - 10Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd - 10Rh, generating grains at the nanom etric scale through dislocation - based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hyd rogen sorption properties until the smallest grain size (on the order of %7E25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  18. Weldability and microstructure development in nickel-base superalloys

    SciTech Connect

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1997-11-01

    The integrity of nickel-base superalloy single-crystal welds depends on the weld cracking tendency, weld metal dendrite selection process, stray crystal formation, and macro- and microstructure development. These phenomena have been investigated in commercial nickel-base superalloy single crystal welds. During electron beam and laser beam welding, transverse and longitudinal weld cracking occurred. However, the weld cracking tendency was reduced with preheating. Most of the dendritic growth pattern development in these welds can be explained by a geometric model. However, the welds also contained misoriented stray crystals, which were frequently associated with weld cracks. The formation of stray crystals was related to thermal and constitutional supercooling effects. Fine-scale elemental partitioning between {gamma} and {gamma}{prime} phase was measured with atom-probe field-ion microscopy. Marked differences in partitioning characteristics in two welds were observed and are related to differences in cooling rates. In this paper, the modeling tools available to describe the above are reviewed.

  19. Stress corrosion crack tip microstructure in nickel-based alloys

    SciTech Connect

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content.

  20. Hot Compression of TC8M-1: Constitutive Equations, Processing Map, and Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Yue, Ke; Chen, Zhiyong; Liu, Jianrong; Wang, Qingjiang; Fang, Bo; Dou, Lijun

    2016-06-01

    Hot compression of TC8M-1 was carried out under isothermal working conditions with temperature from 1173 K to 1323 K (900 °C to 1050 °C), strain rate from 0.001 to 10/s, and height reduction from 20 to 80 pct (corresponding true strain from 0.22 to 1.61). Constitutive equations were constructed and apparent activation energies of 149.5 and 617.4 kJ/mol were obtained for deformation in the β and upper α/ β phase regions, respectively. Microstructure examination confirmed the dominant role of dynamic recrystallization in the α/ β phase region and that of dynamic recovery in the β phase region, with the occurrence of grain boundary sliding at very low strain rate (0.001/s) in both regions. Based on the dynamic materials model, processing maps were constructed, providing optimal domains for hot working at the temperature of 1253 K (980 °C) and the strain rate of 0.01 to 0.1/s, or at 1193 K to 1213 K (920 °C to 940 °C) and 0.001/s. Moreover, our results indicated that the initial temperature non-uniformity along the specimen axis before compression existed and influenced the strain distribution, which contributed to the abnormal oscillations and/or abrupt rise-up of true stress and inhomogeneous deformation.

  1. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy

    SciTech Connect

    Jalilvand, V.; Omidvar, H.; Shakeri, H.R.; Rahimipour, M.R.

    2013-01-15

    IN-738LC nickel-based superalloy was joined by transient liquid phase diffusion bonding using AMS 4777 filler alloy. The bonding process was carried out at 1050 Degree-Sign C under vacuum atmosphere for various hold times. Microstructures of the joints were studied by optical and scanning electron microscopy. Continuous centerline eutectic phases, characterized as nickel-rich boride, chromium-rich boride and nickel-rich silicide were observed at the bonds with incomplete isothermal solidification. In addition to the centerline eutectic products, precipitation of boron-rich particles was observed in the diffusion affected zone. The results showed that, as the bonding time was increased to 75 min, the width of the eutectic zone was completely removed and the joint was isothermally solidified. Homogenization of isothermally solidified joints at 1120 Degree-Sign C for 300 min resulted in the elimination of intermetallic phases formed at the diffusion affected zone and the formation of significant {gamma} Prime precipitates in the joint region. - Highlights: Black-Right-Pointing-Pointer TLP bonding of IN-738LC superalloy was performed using AMS 4777 filler alloy. Black-Right-Pointing-Pointer Insufficient diffusion time resulted in the formation of eutectic product. Black-Right-Pointing-Pointer Precipitation of B-rich particles was observed within the DAZ. Black-Right-Pointing-Pointer The extent of isothermal solidification increased with increasing holding time. Black-Right-Pointing-Pointer Homogenizing of joints resulted in the dissolution of DAZ intermetallics.

  2. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  3. Influence of Cr and Ni on Microstructural Evolution during Heat Treatment of Low-Carbon Transformation Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Suh, Dong-Woo; Park, Seong-Jun; Kim, Sung-Joon

    2008-09-01

    The effect of Cr and Ni addition on microstructural evolution in the transformation induced plasticity (TRIP) steel is investigated. Both Cr and Ni increase the austenite fraction at austempering temperature. The austenite in Ni-added steel is stable during final cooling after austempering; however, a considerable amount of austenite transforms to martensite in Cr-added steel. The instability of austenite in Cr-added steel is attributed to the increase of hardenability, which inhibits the carbon enrichment in austenite by suppressing ferrite formation.

  4. Bond Coat Engineering Influence on the Evolution of the Microstructure, Bond Strength, and Failure of TBCs Subjected to Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Nagy, D.; Marple, B. R.

    2015-01-01

    Different types of thermal spray systems, including HVOF (JP5000 and DJ2600-hybrid), APS (F4-MB and Axial III), and LPPS (Oerlikon Metco system) were employed to spray CoNiCrAlY bond coats (BCs) onto Inconel 625 substrates. The chemical composition of the BC powder was the same in all cases; however, the particle size distribution of the powder employed with each torch was that specifically recommended for the torch. For optimization purposes, these BCs were screened based on initial evaluations of roughness, porosity, residual stress, relative oxidation, and isothermal TGO growth. A single type of standard YSZ top coat was deposited via APS (F4MB) on all the optimized BCs. The TBCs were thermally cycled by employing a furnace cycle test (FCT) (1080 °C-1 h—followed by forced air cooling). Samples were submitted to 10, 100, 400, and 1400 cycles as well as being cycled to failure. The behavior of the microstructures, bond strength values (ASTM 633), and the TGO evolution of these TBCs, were investigated for the as-sprayed and thermally cycled samples. During FCT, the TBCs found to be both the best and poorest performing and had their BCs deposited via HVOF. The results showed that engineering low-oxidized BCs does not necessarily lead to an optimal TBC performance. Moreover, the bond strength values decrease significantly only when the TBC is about to fail (top coat spall off) and the as-sprayed bond strength values cannot be used as an indicator of TBC performance.

  5. Dendritic Growth and Microstructure Evolution with Different Cooling Rates in Ti48Al2Cr2Nb Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Hu, Rui; Zhang, Tiebang; Kou, Hongchao; Wang, Jun; Yang, Guang; Li, Jinshan

    2016-01-01

    The influence of cooling rates on the dendritic growth and microstructure evolution of Ti48Al2Cr2Nb alloy is studied by electromagnetic levitation combined with copper mold casting. The different cooling rates of the conical as-cast sample with diameters from 4.7 to 0.8 mm were calculated by ANSYS software. The results show that primary dendrite arm spacing decreases with increase in cooling rate. Peritectic transformation (L + β → α) and the transformation of α → (α2 + γ) are restrained at cooling rate of 2.3 × 104 K s-1. With further increase in cooling rate (2.6 × 104 K s-1), a fine and homogeneous microstructure can be observed in the conical casting sample with the diameter of 0.8 mm. It consists of a large amount of massive γ phase, lath-like γ phase, and only few lamellar structures (α2 + γ). The formation of the microstructure in the alloy is attributed to the strong chilling, giving rise to the high undercooling and the high dislocation density during rapid solidification.

  6. The Microstructural Evolution of Inconel Alloy 740 During Solution Treatment, Aging, and Exposure at 760 °C

    SciTech Connect

    Cowen, Christopher J.; Danielson, Paul E.; Jablonski, Paul D.

    2010-08-10

    In this study, the microstructural evolution of Inconel alloy 740 during solution treatment and aging was characterized using optical and scanning electron microscopy. During double solution heat treatment, carbon is liberated from the dissolution of MC carbides during the first solution treatment at 1150 °C, and fine MC carbides are precipitated on gamma grain boundaries during the second solution treatment at 1120 °C. Due to the concurrent decrease in carbon solubility and the increase in the contribution of grain boundary diffusion at lower temperatures, the MC carbides on the gamma grain boundaries provide a localized carbon reservoir that aids in M23C6 carbide precipitation on gamma grain boundaries during exposure at 760 °C. The γ' phase, which is the key strengthening phase in alloy 740, is incorporated into the alloy microstructure during aging at 850 °C. Finally, the main source of microstructural instability observed during exposure at 760 °C was the coarsening of the γ' phase.

  7. Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization

    NASA Astrophysics Data System (ADS)

    Li, Wan-song; Gao, Hong-ye; Nakashima, Hideharu; Hata, Satoshi; Tian, Wen-huai

    2016-08-01

    In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.

  8. Microstructure evolution and density behavior of CP Ti parts elaborated by Self-developed vacuum selective laser melting system

    NASA Astrophysics Data System (ADS)

    Zhang, Baicheng; Liao, Hanlin; Coddet, Christian

    2013-08-01

    This work mainly focuses on the evolution of density behavior and microstructure of commercial pure (CP) Ti parts elaborated by SLM under vacuum system (1 × 10-4 bar) developed at the IRTES-LERMPS laboratory. The mechanism of melt and evaporation process during selective laser melting (SLM) under vacuum environment is also presented in this paper. The surface quality, density and microhardness of Ti samples were measured as a mechanical property. Fine hexagonal crystal structure of α can be found with low scanning velocity, martensitic formation α‧ can be observed with high scanning velocity, the method of scanning twice can enlarge the of grain size. A systemic SLM process under vacuum is proposed to calculate the maximum temperature of the molten pool and reveals the evolution of the solidification of melting pool under the laser beam irradiation.

  9. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L.

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  10. Microstructural evolution and mechanical properties of cryomilled nanograined near Al-5083 alloy following deformation processing

    NASA Astrophysics Data System (ADS)

    Kaisar, Khan Hasib

    Nanocrystalline Al-Mg alloys are being considered for light weight transportation applications because they possess significantly higher strength than the conventional coarse grained alloys. Failure strengths higher than 1000 MPa have been reported for Al-5083 alloy at New Mexico Tech, which are almost double the strength of commercial precipitation strengthened Al-alloys. Unfortunately, the ductility tends to exhibit inverse relationship to strength and therefore there is a need to find ways to increase the ductility while maintaining high strength. In this work, we utilize a near Al-5083 alloy that was cryomilled for 24 hours in liquid nitrogen environment and consolidated by vacuum hot-pressing. The as-atomized Al-Mg powder was especially fabricated to minimize undesired impurity content to prevent premature fracture from intermetallic particles. It turned out that the final composition was slightly lower in Mn and Mg content and so the alloy is better designated as a near Al-5083 alloy. The as-vacuum hot pressed material had poor ductility because of inadequate prior-particle bonding, and therefore was subjected to deformation processing using low strain-rate extrusion at elevated temperatures. Both the strain-rate and temperature of extrusion were varied in an effort to obtain a good combination of tensile strength and ductility. In addition, the samples were annealed following extrusion in order to reduce residual stresses. The microstructure of extruded samples were characterized using a combination of electron microscope and X-ray diffraction techniques, and revealed a multi-scale morphology that could be binned into three different sizes of grains: i) those less than 100 nm that were analyzed using the X-ray based Williamson-Hall technique and transmission electron microscopy (TEM), ii) grain sizes in the 100-300 nm regime that were best revealed using TEM and scanning electron microscope (SEM) based electron-backscatter diffraction (EBSD) techniques, and

  11. Effects of aging temperature on microstructural evolution at dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Bahn, Chi Bum; Kim, Ji Hyun

    2015-07-01

    From the earlier study which characterized the region of a fusion boundary between a low-alloy steel (LAS) and a Ni-based weld metal of as-welded and aged samples at 450 °C for a 30-y-equivalent time, it was observed in the microstructure that the aging treatment induced the formation and growth of Cr precipitates in the fusion boundary region because of the thermodynamic driving force. Now, this research extends the text matrix and continues the previous study by compiling all the test data, with an additional aging heat treatment conducted at 400 °C for 15- and 30-y-equivalent times (6450 and 12,911 h, respectively). The results for the extended test matrix primarily represent the common features of and disparities in the effects of thermal aging on the aged samples at two different heat-treatment temperatures (400 and 450 °C). Although no difference was expected between the samples, because the heat treatment conditions simulate thermal aging effects during the same service time of 30 y, the sample aged at 450 °C exhibited slightly more severe effects of thermal aging than the sample aged at 400 °C. Nevertheless, the trends for these effects are similar and the simulation of thermal aging effects for a light-water reactor appears to be reliable. However, according to a simulation of the same degree of thermal aging effects, it appears that the activation energy for Cr diffusion should be larger than the numerical value used in this study.

  12. Effect of proteins on the surface microstructure evolution of a CoCrMo alloy in bio-tribocorrosion processes.

    PubMed

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2016-09-01

    Under tribological contact, the subsurface microstructure of CoCrMo alloys for artificial joint implants can be changed and affect the life and safety of such devices. As one of the most important and abundant components in the synovial fluid, proteins play a key role in affecting the bio-tribocorrosion behaviors of metal implants. The effect of proteins on the subsurface microstructure evolution of a CoCrMo alloy was investigated using a transmission electron microscope (TEM) in this study. The result shows that proteins have two main effects on the subsurface's evolution: forming a multilayered structure and causing severer subsurface deformation. The tribo-film can protect the passive film from scrapping, and then the passive film can reduce or even suppress the stacking fault annihilation by blocking the access to the metal surface. It leads to the stacking fault being diffused towards the deeper area and a strain accumulation in the subsurface, before inducing a severer deformation. On the other hand, the effect of proteins results in the location changing from the top surface to be underneath the top surface, where the maximum frictional shear stress occurs. This can cause a deeper deformation. PMID:27182652

  13. Mathematical Modeling for Microstructural Evolution in Multi-pass Hot Compression of Q345E Alloy Steel

    NASA Astrophysics Data System (ADS)

    Qian, Dongsheng; Peng, Yaya

    2015-05-01

    The deformation process and inter-pass time of hot working are always accompanied by complicated microstructural evolution. As a kind of low alloy steels with good malleability, Q345E steel is widely used. The specimens of Q345E steel were heated to 1123, 1223, 1323, 1423, and 1523 K and held for 0, 120, 240, 360, and 480 s, respectively, on Gleeble-3500 thermo-mechanical simulator to develop the austenite grain growth equation of Q345E steel. In addition, the `single-pass hot compression tests,' `double-pass hot compression tests,' and `single-pass hot compression and thermal insulation tests' at temperature from 1123 to 1423 K with the strain rate from 0.01 to 10 s-1 were carried out on Gleeble-3500 thermo-mechanical simulator to investigate the behavior of dynamic recrystallization (DRX), meta-dynamic recrystallization (MDRX), and static recrystallization (SRX), and to establish the mathematical equations of DRX, MDRX, and SRX, which can predict the volume fraction of recrystallization and grain size after recrystallization. The result of error analysis and a 2D finite element simulation model during hot upsetting verifies that the experimental data agree well with the predicted values calculated by these mathematical equations, which indicates that the established mathematical equations can be applied to accurately predict the microstructural evolution of Q345E steel during hot deformation.

  14. The microstructural evolution of ultrananocrystalline diamond films due to P ion implantation process—the annealing effect

    SciTech Connect

    Lin, Sheng-Chang; Yeh, Chien-Jui; Leou, Keh-Chyang; Kurian, Joji; Lin, I.-Nan; Dong, Chung-Li; Niu, Huan

    2014-11-14

    The microstructural evolution of UNCD films which are P-ion implanted and annealed at 600 °C (or 800 °C) is systematically investigated. The difference of interaction that the UNCD content undergoes along the trajectory of the incident P-ions is reflected in the alteration of the granular structure. In regions where the P-ions reside, the “interacting zone,” which is found at about 300 nm beneath the surface of the films, coalescence of diamond grains occurs inducing nano-graphitic clusters. The annealing at 600 °C (or 800 °C) heals the defects and, in some cases, forms interconnected graphitic filaments that result in the decrease in surface resistance. However, the annealing at 600 °C (800 °C) induces marked UNCD-to-Si layers interaction. This interaction due to the annealing processes hinders the electron transport across the interface and degrades the electron field emission properties of the UNCD films. These microstructural evolution processes very well account for the phenomenon elaborating that, in spite of enhanced conductivity of the UNCD films along the film's surface due to the P-ion implantation and annealing processes, the electron field emission properties for these UNCD films do not improve.

  15. The effects of quartz recrystallization and reaction on weak phase interconnection, strain localization and evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Gonçalves, Cristiane C.; Gonçalves, Leonardo; Hirth, Greg

    2015-02-01

    We conducted axial compression and general shear experiments, at T = 900 °C and P = 1.5 GPa, on samples of banded iron formation (BIF) and synthetic aggregates of quartz, hematite and magnetite to investigate how dynamic recrystallization of quartz promotes strain localization, and the role of weak second phases (oxides) on the rheology and microstructural evolution of the aggregates. Experiments showed strain localization into oxide rich layers, and that the oxide content and oxide distribution are key factors for the strength of the aggregate. Only 2-10 wt.% hematite leads to pronounced weakening and increasing hematite content above ˜10% has only a minor additional effect. Where oxide grains are dispersed, the initial strength contrast with quartz induces stress concentrations at their tips, promoting high stress recrystallization-accommodated dislocation creep of quartz. Fine recrystallized quartz reacts with oxide, forming trails of fine reaction product (ferrosilite/fayalite) leading to the interconnection/percolation of a weaker matrix. The strength contrast between the quartz framework and these fine-grained trails promotes strain localization into micro-shear zones, inducing drastic strain weakening. Thus dynamic recrystallization of quartz promotes syn-deformational reactions leading to a microstructurally-controlled evolution of phase strength contrast. It results in a rheologic transition from load-bearing framework to a matrix-controlled rheology, with transition from S-C‧ to S-C fabric with increasing strain.

  16. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Getto, E.; Sun, K.; Monterrosa, A. M.; Jiao, Z.; Hackett, M. J.; Was, G. S.

    2016-11-01

    The void swelling and microstructure evolution of ferritic-martensitic alloys HT9, T91 and T92 were characterized following irradiation with Fe++ ions at 460 °C to damage levels of 75-650 displacements per atom with 10 atom parts per million pre-implanted helium. Steady state swelling rate of 0.033%/ dpa was determined for HT9, the least swelling resistant alloy, and 0.007%/ dpa in T91. In T91, resistance was due to suppression of void nucleation. Swelling resistance was greatest in T92, with a low density (∼1 × 1020 m-3) of small voids that had not grown appreciably, indicating suppression of nucleation and growth. Additional heats of T91 indicated that alloy composition was not the determining factor of swelling resistance. Carbon and chromium-rich M2X precipitates formed at 250 dpa and were correlated with decreased nucleation in T91 and T92, but did not affect void growth in HT9. Dislocation and G-phase microstructure evolution was analyzed up to 650 dpa in HT9.

  17. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    SciTech Connect

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  18. Microstructure Evolution and Shear Behavior of the Solder Joints for Flip-Chip LED on ENIG Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Sun, Fenglian; Luo, Liangliang; Yuan, Cadmus A.; Zhang, Guoqi

    2015-07-01

    The microstructure evolution and shear behavior of the solder joints for the flip-chip light-emitting diode on the electroless nickel/immersion gold (ENIG) substrate were investigated in this study. The experimental results reveal that the solder joints for the anode and cathode have different microstructures and failure characteristics during the shear test before and after isothermal aging. For the solder joints for the anode, the interfacial intermetallic compound (IMC) is (Au, Ni)Sn4 at the solder/anode interface but dendritic Ni3Sn4 grains at the solder/ENIG interface after reflow. Meanwhile, the dendritic Ni3Sn4 grains are surrounded by (Au, Ni)Sn4, which suppresses the growth of the Ni3Sn4 grains during aging. For the solder joints for the cathode, a nano scaled Au-rich layer can be observed near the cathode/solder layer interface after reflow. And the Au-rich layer moves toward the bulk solder because of the volume expansion by the transformation from Au into (Au, Ni)Sn4 during reflow and isothermal aging. Due to the diffusion of the Au atom from the Au-rich layer into the bulk solder, the Au-rich layer transformed into an interface inside of the solder joint. The average shear force of the solder joints shows a decrease from 380 gf to 250 gf because of the microstructure evolution during the isothermal aging for 1000 h at 85°C. After long time aging, the primary failure mode of the solder joint for the anode changed from the anode broken to the brittle failure of the solder layer. The delamination between the IMC layer and the insulation layer is suggested to be the dominated failure mode of the solder joint for the cathode after aging.

  19. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  20. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  1. Crack-seal microstructure evolution in multiphase rocks: an example of quartz-chlorite veins formed at the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Becker, S.; Urai, J.; Scholz, K.; Kukla, P.

    2009-04-01

    For this study we analyzed core samples from the deep geothermal well RWTH-1 (Aachen-Germany), which intersects Carboniferous to Devonian siliciclastics and carbonates deformed during Variscan thrusting and subsequent normal faulting events. From several successive generations of veins, we focussed on quartz-chlorite +/- calcite veins formed by crack-seal processes in the brittle to ductile transition realm (< 390 °C, 150 - 250 MPa, Lögering, 2008). The veins are common in sections of the well which are interpreted as Variscan thrusts based on image logs and seismic data. Veins are up to 1 cm thick, formed in pull-apart sections of brittle-ductile shear zones. The change in angle (releasing angle = alpha) of the shear fracture is the main factor controlling vein geometry. Two end-member types of vein geometry can be defined. The first type, the "flat" vein is formed when alpha is less than a few degrees, it contains chlorite and quartz ribbons and commonly shows evidence for ductile shearing. The quartz ribbons often show peculiar "blocky-sawtooth" boundaries. The second type, the "fat" vein quartz forms when alpha is large, up to 90 degrees. Here, stretched-crystal-type fibrous veins are common, with irregular grain boundaries between the chlorite and quartz fibres. Chlorite is present as inclusion bands or trails. Multiple crack-seal events are interpreted to be the basic microstructural process in the veins. The clearest evidence for this is found in very thin, incipient veins, where "stretched" host rock grains are common. The length of these stretched crystals increases in wider veins, together with an increasing density of healed fractures as shown by fluid inclusion trails. To understand the microstructural evolution, we extend earlier models of polycrystal growth in fractures (Urai et al, 1991) to the growth of two phases (Quartz and Chlorite) from a supersaturated solution, onto a crack-wall containing both phases. When the relative growth rates of the

  2. Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X-ray Phase Contrast Tomography.

    PubMed

    Sun, Fu; Zielke, Lukas; Markötter, Henning; Hilger, André; Zhou, Dong; Moroni, Riko; Zengerle, Roland; Thiele, Simon; Banhart, John; Manke, Ingo

    2016-08-23

    Due to its low redox potential and high theoretical specific capacity, Li metal has drawn worldwide research attention because of its potential use in next-generation battery technologies such as Li-S and Li-O2. Unfortunately, uncontrollable growth of Li microstructures (LmSs, e.g., dendrites, fibers) during electrochemical Li stripping/plating has prevented their practical commercialization. Despite various strategies proposed to mitigate LmS nucleation and/or block its growth, a fundamental understanding of the underlying evolution mechanisms remains elusive. Herein, synchrotron in-line phase contrast X-ray tomography was employed to investigate the morphological evolution of electrochemically deposited/dissolved LmSs nondestructively. We present a 3D characterization of electrochemically stripped Li electrodes with regard to electrochemically plated LmSs. We clarify fundamentally the origin of the porous lithium interface growing into Li electrodes. Moreover, cleavage of the separator caused by growing LmS was experimentally observed and visualized in 3D. Our systematic investigation provides fundamental insights into LmS evolution and enables us to understand the evolution mechanisms in Li electrodes more profoundly. PMID:27463258

  3. Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging

    NASA Astrophysics Data System (ADS)

    Alexandrov, Igor V.; Sitdikov, Vil D.; Abramova, Marina M.; Sarkeeva, Elena A.; Wei, Kun Xia; Wei, Wei

    2016-10-01

    The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.

  4. Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging

    NASA Astrophysics Data System (ADS)

    Alexandrov, Igor V.; Sitdikov, Vil D.; Abramova, Marina M.; Sarkeeva, Elena A.; Wei, Kun Xia; Wei, Wei

    2016-08-01

    The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.

  5. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  6. Microstructure evolution in proton-irradiated austenitic Fe-Cr-Ni alloys under LWR core conditions

    NASA Astrophysics Data System (ADS)

    Gan, Jian

    1999-11-01

    Irradiation-induced microstructure of austenitic stainless steel was investigated using proton irradiation. High-purity alloys of Fe-20Cr-9Ni (UHP 304 SS), Fe-20Cr-24Ni and Ni-18Cr-9Fe were irradiated using 3.2 MeV protons at a dose rate of 7 × 10-6 dpa/s between 300°C and 600°C. The irradiation produced a microstructure consisting of dislocation loops and voids. The dose and temperature dependence of the number density and size of dislocation loops and voids were investigated. The changes in yield strength due to irradiation were estimated from Vickers hardness measurements and compared to calculations using a dispersed-barrier hardening model. The dose and temperature dependence of microstructure and hardness change for proton irradiation follows the same trend as that for neutron irradiation at comparable irradiation conditions. Commercial purity alloys of CP 304 SS and CP 316 SS were irradiated at 360°C to doses between 0.3 and 3.0 dpa. The irradiated microstructure consists of dislocation loops. No voids were detected at doses up to 3.0 dpa. Loop size distributions are in close agreement with that in the same alloys neutron-irradiated in a LWR core. The loop density also agrees with neutron irradiation data. The yield strength as a function of dose in proton irradiated commercial purity alloys is consistent with the neutron- data trend. A fast-reactor microstructure model was adapted for light water reactor (LWR) irradiation conditions (275°C, 7 × 10 -8 dpa/s) and then applied to proton irradiation under conditions (360°C, 7 × 10-6 dpa/s) relevant to LWRs. The original model was modified by including in-cascade interstitial clustering and the loss of interstitial clusters to sinks by cluster diffusion. It was demonstrated that loop nucleation for both LWR irradiation condition and proton irradiation are driven by in-cascade interstitial clustering. One important result from this modeling work is that the difference in displacement cascade between

  7. Evolution of microstructure in mixed niobia-hybrid silica thin films from sol-gel precursors.

    PubMed

    Besselink, Rogier; Stawski, Tomasz M; Castricum, Hessel L; ten Elshof, Johan E

    2013-08-15

    The evolution of structure in sol-gel derived mixed bridged silsesquioxane-niobium alkoxide sols and drying thin films was monitored in situ by small-angle X-ray scattering. Since sol-gel condensation of metal alkoxides proceeds much faster than that of silicon alkoxides, the incorporation of d-block metal dopants into silica typically leads to formation of densely packed nano-sized metal oxide clusters that we refer as metal oxide building blocks in a silica-based matrix. SAXS was used to study the process of niobia building block formation while drying the sol as a thin film at 40-80°C. The SAXS curves of mixed niobia-hybrid silica sols were dominated by the electron density contrast between sol particles and surrounding solvent. As the solvent evaporated and the sol particles approached each other, a correlation peak emerged. Since TEM microscopy revealed the absence of mesopores, the correlation peak was caused by a heterogeneous system of electron-rich regions and electron poor regions. The regions were assigned to small clusters that are rich in niobium and which are dispersed in a matrix that mainly consisted of hybrid silica. The correlation peak was associated with the typical distances between the electron dense clusters and corresponded with distances in real space of 1-3 nm. A relationship between the prehydrolysis time of the silica precursor and the size of the niobia building blocks was observed. When 1,2-bis(triethoxysilyl)ethane was first hydrolyzed for 30 min before adding niobium penta-ethoxide, the niobia building blocks reached a radius of 0.4 nm. Simultaneous hydrolysis of the two precursors resulted in somewhat larger average building block radii of 0.5-0.6 nm. This study shows that acid-catalyzed sol-gel polymerization of mixed hybrid silica niobium alkoxides can be rationalized and optimized by monitoring the structural evolution using time-resolved SAXS.

  8. Microstructural Evolution and Magnetic Properties of Aged CoNiGaAl Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    El-Bagoury, N.; Rashad, M. M.

    2016-05-01

    A study on the influence of aging heat treatment conditions at 823 K for 3 h, 24 h, and 120 h, on microstructure, martensitic transformation, and magnetic and mechanical properties of Co50Ni23Ga27- X Al X alloys ( X = 0 and 1 at.%) was performed by using x-ray diffraction (XRD) analysis, optical microscopy (OM), energy-dispersive spectrometer (EDS), differential scanning calorimeter (DSC), and vibrating sample magnetometer (VSM). The results show that the microstructure of both aged alloys consists of martensite and fcc second γ phase in addition to ordered cubic gamma prime ( γ') phase precipitates in martensite. The martensitic transformation temperature peak ( M p) elevates with prolonging aging time and decreasing valence electron concentration ( e v/ a). Saturation magnetization ( M s) decreases, whereas both remanence magnetization ( M r) and coercivity ( H c) increase with aging time. Meanwhile, the aging time enhances the hardness property ( H v) of the investigated alloys.

  9. Sintering Concepts - Atomistic Mass Flow, Microstructure Evolution, and Macroscopic Property Changes

    NASA Astrophysics Data System (ADS)

    German, R. M.

    2002-12-01

    Sintering is the process for bonding contacting particles by the application of thermal energy. At the atomistic level, mass flow is random, yet biased by subtle surface curvature gradients. During sintering microstructure changes become noticable and eventually bulk macroscopic property changes, such as strength increases and pore elimination, can be observed. Computer modeling of sintering has evolved to help understand and link the atomistic and macroscopic aspects. The recent emphasis in sintering models has forced theory to face up to some basic problems. From a perdictive view, the computer models are still behind observations, largely because of errors in our understanding of material property changes and the interactions between the evolving microstructure and kinetics of mass flow. New trends in sintering models will be introduced to show how accurate models require a firm grasp of these issues to predict bulk property changes. The identification of such problems sets in place an agenda for the sintering research community.

  10. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  11. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling

    SciTech Connect

    Okita, T; Wolfer, W G; Garner, F A; Sekimura, N

    2003-12-01

    Ternary austenitic model alloys were modified with 0.25 wt.% titanium and irradiated in FFTF reactor at dose rates ranging over more than two orders in magnitude. While lowering of dose rate strongly increases swelling by shortening the incubation dose, the steady state swelling rate is not affected by dose rate. Although titanium addition strongly alters the void microstructure, swelling at {approx} 420 C does not change with titanium additions, but the sensitivity to dose rate is preserved.

  12. Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.

    2008-01-01

    Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.

  13. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    PubMed

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea. PMID:21133137

  14. Autostereoscopy-based three-dimensional on-machine measuring system for micro-structured surfaces.

    PubMed

    Li, Da; Cheung, Chi Fai; Ren, Mingjun; Zhou, Liqiu; Zhao, Xing

    2014-10-20

    Traditional off-line measuring systems find it difficult to measure micro-structured workpieces which have a large volume and heavy weight, such as micro-structured patterned precision roller drums. This paper proposes an autostereoscopy-based three-dimensional (3D) measuring method and develops an innovative measuring system for the 3D on-machine measurement of the micro-structured surfaces, an Autostereoscopy-based Three-Dimensional On-machine Measuring (ATDOM) system. The ATDOM system is compact and capable of fast data acquisition and high accuracy in 3D computational reconstruction of complex surfaces under different measuring environments. A prototype ATDOM system is experimentally verified through a series of measurement experiments conducted on a precision machine tool. The results indicate that the ATDOM system provides an important means for efficient and reliable on-machine measurement of micro-structured surfaces. PMID:25401597

  15. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting.

  16. Influence of coarsened and rafted microstructures on the thermomechanical fatigue of a Ni-base superalloy

    SciTech Connect

    Kirka, M. M.; Brindley, K. A.; Neu, R. W.; Antolovich, S. D.; Shinde, S. R.; Gravett, P. W.

    2015-08-17

    The aging of the microstructure of Ni-base superalloys during service is mainly characterized by coarsening and rafting of the γ' precipitates. The influence of these different aged microstructures on thermomechanical fatigue (TMF) under either continuously cycled (CC) and creep-fatigue (CF) was investigated. Three different aged microstructures, generated through accelerated aging and pre-creep treatments, were studied: stress-free coarsened γ', rafted with orientation perpendicular to loading direction (N-raft), and rafted with orientation parallel to loading direction (P-raft). Under most conditions, the aged microstructures were less resistant to TMF than the virgin microstructure; however, there were exceptions. Both stress-free coarsened and N-raft microstructures resulted in a reduction in TMF life under both CC and CF conditions in comparison to the virgin material. P-raft microstructure also resulted in reduction in TMF life under CC conditions; however, an increase in life over that of the virgin material was observed under CF conditions. Finally, these differences are discussed and hypothesized to be related to the interactions of the dislocations in the γ channels with γ' precipitates.

  17. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological

  18. Effect of simultaneous helium implantation on the microstructure evolution of Inconel X-750 superalloy during dual-beam irradiation

    NASA Astrophysics Data System (ADS)

    Changizian, P.; Zhang, H. K.; Yao, Z.

    2015-12-01

    This study focuses on investigation into the effect of helium implantation on microstructure evolution in Inconel X-750 superalloy during dual-beam (Ni+/He+) irradiation. The 1 MeV Ni+ ions with the damage rate of 10-3 dpa/s as well as 15 keV He+ ions using rate of 200 appm/dpa were simultaneously employed to irradiate specimens at 400 °C to different doses. Microstructure characterization has been conducted using high-resolution analytical transmission electron microscopy (TEM). The TEM results show that simultaneous helium injection has significant influence on irradiation-induced microstructural changes. The disordering of γ‧ (Ni3 (Al, Ti)) precipitates shows noticeable delay in dose level compared to mono heavy ion irradiation, which is attributed to the effect of helium on promoting the dynamic reordering process. In contrast to previous studies on single-beam ion irradiation, in which no cavities were reported even at high doses, very small (2-5 nm) cavities were detected after irradiation to 5 dpa, which proved that helium plays crucial role in cavity formation. TEM characterization also indicates that the helium implantation affects the development of dislocation loops during irradiation. Large 1/3 <1 1 1> Frank loops in the size of 10-20 nm developed during irradiation at 400 °C, whereas similar big loops detected at higher irradiation temperature (500 °C) during sole ion irradiation. This implies that the effect of helium on trapping the vacancies can help to develop the interstitial Frank loops at lower irradiation temperatures.

  19. The Effect of Long-Term Thermal Exposure on the Microstructure and Stress Rupture Property of a Directionally Solidified Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Jiang, X. W.; Wang, D.; Xie, G.; Li, H.; Lou, L. H.; Zhang, J.

    2014-12-01

    Microstructural degradation and microstructure-property relationship during long-term thermal exposure in a directionally solidified Ni-based superalloy are systematically studied. The coarsening kinetics of γ' precipitation conforms well to the LSW model during the long-term thermal exposure. The detailed time dependence of MC decomposition during the long-term thermal exposure is revealed. Grain boundary coarsening was mainly facilitated by γ' and M23C6 precipitates coarsening in GBs region, and the GB coarsening kinetics conforms well to the JMAK theory. During different stages of the thermal exposure, dominant factors for the decrease of stress-rupture lifetime vary due to the evolution of multiple microstructures ( γ' coarsening, MC decomposition, and grain boundary coarsening).

  20. Nanostructured aluminium titanate (Al{sub 2}TiO{sub 5}) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    SciTech Connect

    Azarniya, Abolfazl; Azarniya, Amir; Hosseini, Hamid Reza Madaah; Simchi, Abdolreza

    2015-05-15

    In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 °C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 °C and begins to be crystallized to alumina, anatase and AT at higher temperatures. Moreover, AT tends to decompose into rutile and alumina at temperatures higher than 900 °C and its degradation rate reaches a maximum at temperatures near to 1100 °C. In this synthesis, citric acid was used as a chelating agent for Al{sup 3} {sup +} and Ti{sup 4} {sup +} ions and it was shown that a low citric acid-to-metal cation ratio leads to larger numbers of nuclei during crystallization and smaller grain size. Finally, a model was suggested to describe the microstructural evolution of AT compound based on a nucleation and growth regime. - Graphical abstract: Display Omitted - Highlights: • We synthesized aluminium titanate ceramic in both powder and nanofiber forms. • The methods in use were citrate sol gel and sol gel-assisted electrospinning. • Powders and nanofibers bear a nanostructured nature with a grain size less than 70 nm. • A model is suggested to describe microstructural evolution of synthetic products.

  1. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Fang, Feng; Xu, Yun-Bo; Zhang, Yuan-Xiang; Wang, Yang; Lu, Xiang; Misra, R. D. K.; Wang, Guo-Dong

    2015-05-01

    Non-oriented electrical steel as-cast strip was produced by twin roll strip casting process, and subsequently cold rolled and annealed at heating rates in the range of 3-450 °C/s with the aim to elucidate the effect of heating rate on the evolution of recrystallized microstructure and texture. The average grain size was rapidly increased when the heating rate was increased from 3 to 25 °C/s, and decreased when the heating rate was greater than 25 °C/s. The average grain size did not increase linearly with heating rate, which was related to different degree of nucleation and growth rate. The recrystallization texture exhibited pronounced improvement during rapid annealing. At high heating rate, the Goss and Cube had a higher probability of nucleation of shear bands with high stored energy, while the intensity of the γ-fiber texture was significantly reduced. The highest B50 value attained was 1.803 T at a heating rate of 300 °C/s. The study indicates that rapid heating has strong effect on the recrystallization behavior in non-oriented electrical steels, which facilitates optimization of microstructure and texture, especially in the coarse-grained structure.

  2. Effects of Recrystallization on Microstructure and Texture Evolution of Cold-Rolled Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Jiang, Haitao; Dong, Peng; Zeng, Shangwu; Wu, Bo

    2016-05-01

    The effects of recrystallization during annealing process on microstructure and texture evolution of cold-rolled Ti-6Al-4V alloy plates were investigated. The plates after cold rolling with a thickness reduction of 5, 10, and 15% were annealed under different conditions of 750 °C for 1 h, 800 °C for 1 h, and 800 °C for 1.5 h, respectively. It was found out that the recrystallization temperature decreased with increasing rolling reduction due to higher storage energy, while the extension of annealing time caused grain growth. For the cold-rolled plate with a reduction of 10%, the resulting microstructure showed more equal-axis grains after annealing at 800 °C for 1 h, among different conditions. Moreover, the XRD results showed that the cold-rolled plate composed mainly of {0001} <10-10> basal texture, {10-11} <1-210> and {01-12} <10-10> pyramidal textures, and {01-10} <10-10> prismatic texture, and that the weak {10-11} <1-210> texture was transformed to components {01-12} <10-10> and {01-10} <10-10>, which were expected to improve formability. Electron back-scattered diffraction results ascertained that two mechanisms, i.e., recrystallization sites of preferred orientations and favorable grain growth both played important roles in static recrystallization.

  3. Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam

    2015-05-01

    Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

  4. High-resolution characterization of microstructural evolution in RbxFe2-ySe2 crystals on annealing

    NASA Astrophysics Data System (ADS)

    Speller, S. C.; Dudin, P.; Fitzgerald, S.; Hughes, G. M.; Kruska, K.; Britton, T. B.; Krzton-Maziopa, A.; Pomjakushina, E.; Conder, K.; Barinov, A.; Grovenor, C. R. M.

    2014-07-01

    The superconducting and magnetic properties of phase-separated AxFe2-ySe2 compounds are known to depend on postgrowth heat treatments and cooling profiles. This paper focuses on the evolution of microstructure on annealing and how this influences the superconducting properties of RbxFe2-ySe2 single crystals. We find that the minority phase in the as-grown crystal has increased unit cell anisotropy (c /a ratio), reduced Rb content, and increased Fe content compared to the main phase. The microstructure is rather complex, with two-phase mesoscopic plate-shaped features aligned along {113} habit planes. The minority phases are strongly faceted on the {113} planes, which we have shown to be driven by minimizing the volume strain energy introduced as a result of the phase transformation. Annealing at 488 K results in coarsening of the mesoscopic plate-shaped features and the formation of a third distinct phase. The subtle differences in structure and chemistry of the minority phase(s) in the crystals are thought to be responsible for changes in the superconducting transition temperature. In addition, scanning photoemission microscopy has clearly shown that the electronic structure of the minority phase has a higher occupied density of states of the low binding energy Fe3d orbitals, which is characteristic of crystals that exhibit superconductivity. This demonstrates a clear correlation between the Fe-vacancy-free phase with high c /a ratio and the electronic structure characteristics of the superconducting phase.

  5. Texture and microstructure evolution in single-phase Ti{sub x}Ta{sub 1-x}N alloys of rocksalt structure

    SciTech Connect

    Koutsokeras, L. E.; Abadias, G.; Patsalas, P.

    2011-08-15

    The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globular type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.

  6. Microstructural evolution of NF709 (20Cr-25Ni-1.5MoNbTiN) under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kim, B. K.; Tan, L.; Xu, C.; Yang, Y.; Zhang, X.; Li, M.

    2016-03-01

    Because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ∼76% was estimated by nanoindentation, approximately consistent with the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.

  7. Time-Resolved SAXS/WAXS Study of the Phase Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions

    SciTech Connect

    Zhu, Qing; Harris, Michael T.; Taylor, Lynne S.

    2013-03-07

    Simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) was employed to elucidate the physical state and location of various small molecule drugs blended with polyethylene glycol (PEG), as well as the time dependent microstructural evolution of the systems. Samples were prepared by comelting physical mixtures of the drug and PEG, followed by solidification at 25 C. The model drugs selected encompassed a wide variety of physicochemical properties in terms of crystallization tendency and potential for interaction with PEG. It was observed that compounds which crystallized rapidly and had weak interactions with PEG tended to be excluded from the interlamellar region of the PEG matrix. In contrast, drugs which had favorable interactions with PEG were incorporated into the interlamellar regions of the polymer up until the point at which the drug crystallized whereby phase separation occurred. These factors are likely to impact the effectiveness of drug/PEG systems as drug delivery systems.

  8. Correlation of Impact Conditions, Interface Reactions, Microstructural Evolution, and Mechanical Properties in Kinetic Spraying of Metals: A Review

    NASA Astrophysics Data System (ADS)

    Kim, Jaeick; Lee, Changhee

    2016-09-01

    In the past, most studies into kinetic spraying technology focused on basic research, but a large portion of current research is devoted to industrial applications of the technology. To advance, however, studies about industrial applications of kinetic spraying require profound understanding of the scientific foundations of the kinetic spray process. Nevertheless, no one has yet provided a well-organized summary of the correlations among impact conditions, interface reactions, microstructural evolution, and mechanical properties across the whole field of kinetic spraying technology. This paper provides such an overview of these correlations for kinetic spraying of metals. For each correlation, the interactions between the given conditions and the material properties of the metal feedstock powder are the most influential. These interactions are so complicated that it is difficult to systematically classify all cases into certain types. Nonetheless, we try to explain and summarize the critical factors and their roles in each relationship.

  9. Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation

    DOE PAGES

    Kim, Byoungkoo; Tan, Lizhen; Xu, C.; Yang, Yong; Zhang, Xuan; Li, Meimei

    2015-12-30

    In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less

  10. Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation

    SciTech Connect

    Kim, Byoungkoo; Tan, Lizhen; Xu, C.; Yang, Yong; Zhang, Xuan; Li, Meimei

    2015-12-30

    In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent with the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.

  11. Evolution of magnetic properties and microstructure of Hf{sub 2}Co{sub 11}B alloys

    SciTech Connect

    McGuire, Michael A. Rios, Orlando

    2015-02-07

    Amorphous Hf{sub 2}Co{sub 11}B alloys produced by melt-spinning have been crystallized by annealing at 500–800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo{sub 7}, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo{sub 7} phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo{sub 3}B{sub 2}, Hf{sub 6}Co{sub 23}, and Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf{sub 2}Co{sub 11}B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo{sub 7} and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.

  12. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    PubMed

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites.

  13. Evolution of 2D Potts Model Grain Microstructures from an Initial Hillert Size Distribution

    SciTech Connect

    Battaile, C.C.; Holm E.A.

    1998-10-19

    Grain growth experiments and simulations exhibit self-similar grain size distributions quite different from that derived via a mean field approach by Hillert [ 1]. To test whether this discrepancy is due to insufficient anneal times, two different two-dimensional grain structures with realistic topologies and Hillert grain size distributions are generated and subjected to grain growth via the Monte Carlo Potts Model (MCPM). In both cases, the observed self-similar grain size distributions deviate from the initial Hillert form and conform instead to that observed in MCPM grain growth simulations that start from a random microstructure. This suggests that the Hillert grain size distribution is not an attractor.

  14. Microstructural evolution in H ion induced splitting of freestanding GaN

    SciTech Connect

    Moutanabbir, O.; Scholz, R.; Senz, S.; Goesele, U.; Chicoine, M.; Schiettekatte, F.; Suesskraut, F.; Krause-Rehberg, R.

    2008-07-21

    We investigated the microstructural transformations during hydrogen ion-induced splitting of GaN thin layers. Cross-sectional transmission electron microscopy and positron annihilation spectroscopy data show that the implanted region is decorated with a high density of 1-2 nm bubbles resulting from vacancy clustering during implantation. These nanobubbles persist up to 450 deg. C. Ion channeling data show a strong dechanneling enhancement in this temperature range tentatively attributed to strain-induced lattice distortion. The dechanneling level decreases following the formation of plateletlike structures at 475 deg. C. Extended internal surfaces develop around 550 deg. C leading to the exfoliation of GaN thin layer.

  15. Microstructural evolution and macroscopic shrinkage in the presence of density gradients and agglomeration

    NASA Astrophysics Data System (ADS)

    Lu, Peizhen

    X-ray computed tomography (CT) can characterize internal density gradients. An in-situ laser dilatometry has been constructed to track dimensional change at different positions of a sample during binder removal and sintering. This combination of tools not only allows us to better understand how microscopic change affects macroscopic dimensions, but also provides guidance for a variety of ceramic processes. Non-uniform agglomerate packing and deformation provide density gradients which drive binder migration during binder removal. Simultaneously, density undergoes a slight decrease accompanied by a 1.0% loss in dimensional tolerance. This and CT difference images suggest that capillary forces generated during binder melting can change the density distribution. During sintering, nonuniformities present in the green state persist into the fired state and become exaggerated. Regions of different initial density can occupy different stages sintering. At ˜88% sintered density, CT clearly showed that open porosity follows the distribution of low density areas. Mercury porosimetry detected three distinct levels of porosity. Microstructural examination correlated the porosity level with the coordination of (i) two to three or (ii) multiple grains around pores. Microstructural packing controls both the observed macroscopic expansion at T ≤ 1000°C and the onset of shrinkage. Neck formation initiates during expansion and not exclusively during shrinkage. Inter- and intra-agglomerate expansion/shrinkage proceed simultaneously but the effective 'transmission' of particle-level behavior to the macroscopic level appears to be controlled by the initial agglomerate bonding and internal agglomerate densities. Discrete element modeling provides corroborating evidence regarding the importance of compact continuity. Following the expansion-shrinkage transition, the higher the zone density the faster the initial shrinkage. The 25% RH sample shrank more rapidly than the same zone in

  16. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    SciTech Connect

    Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.

    1998-12-07

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  17. Microthermoforming of flexible, not-buried hollow microstructures for chip-based life sciences applications.

    PubMed

    Truckenmüller, R; Giselbrecht, S

    2004-08-01

    A new method is presented for the manufacturing of flexible, not buried and thin-walled hollow microstructures from polymer films. This low-cost method seems to be especially suited for the fabrication of plastic microstructures for fluidic one-way applications in the field of life sciences. It is based on a thermoforming process adapted to microstructure technology and is called 'microthermoforming'. Inside a hot embossing press, a heated thin thermoplastic film is formed into the evacuated microcavities of a plate-shaped metal mould using a compressed gas. The film may be heat-sealed on to a thicker plastic film substrate inside the same press without demoulding the thermoformed film. To demonstrate the performance of the new manufacturing method, flexible capillary electrophoresis and cell culture chips from polystyrene, polycarbonate and a cyclo-olefin polymer with 16 and 625 parallel microstructures each, respectively, have been fabricated.

  18. Flow softening and microstructure evolution during hot working of wrought near-gamma titanium aluminides

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Frey, N.; El-Soudani, S. M.; Bryant, J. D.

    1992-06-01

    The hot-working behavior of two wrought ingot-metallurgy near-gamma titanium aluminides was established using the isothermal, hot compression test. Experiments were conducted in both the two-phase (alpha+gamma) and single-phase (alpha) regimes at strain rates typical of conventional metalworking operations (0.1 to 10 s-1). As for conventional titanium alloys, the flow stress showed a strong dependence on temperature and strain rate. In addition, the stress-strain curves revealed substantial levels of flow softening. Under subtransus conditions, the majority of this softening was ascribed to deformation heating effects and, secondarily, to microstructural effects. By contrast, microstructural changes, associated with the dissolution of remnant gamma grains and redistribution of solute, appeared to lead to the majority of the softening observed in the nominally single-phase alpha regime. Metallography on as-received (isothermally forged), heat-treated, isothermally upset, and upset and heat-treated samples revealed the persistence of segregation which appears to be a signature of the solidification process characteristic of near-gamma titanium aluminides.

  19. Microstructural evolution of nuclear grade graphite induced by ion irradiation at high temperature environment

    NASA Astrophysics Data System (ADS)

    Tsai, Shuo-Cheng; Huang, E.-Wen; Kai, Ji-Jung; Chen, Fu-Rong

    2013-03-01

    This study simulates the Wigner Effect of nuclear-grade graphite in a High Temperature Gas-cooled Reactor (HTGR). The graphite was artificially irradiated with 3 MeV C2+ ions to mimic the fast neutron-radiation damage of the HTGR core environment. The irradiation temperatures were controlled between the range of 500-800 °C in a high vacuum environment of 10-7 torr. This high-dosage radiation creates enormous amounts of Frenkel pairs, which induce lattice swelling. These Frenkel vacancies and interstitials generate new strain fields and, hence, store energy in the distorted crystalline structure. The structural integrity of nuclear grade graphite was quantified using high-resolution transmission electron microscopy (HRTEM). The microstructure was estimated by the fast Fourier transform of HRTEM images. Within the samples irradiated with 10 dpa at 600 °C, the d-spacing of {0 0 0 2} expanded from 0.336 nm to 0.396 nm accompanying with the greatest distorted graphite microstructure. The c-axis of graphite swelled approximately 18% and the disorder coefficient was 1.10 ± 0.17 (1/nm). The synchrotron X-ray experimental results, gauged from 500 μm3 volume, suggesting that the ion-implanted graphite only deformed locally and epitaxially. This study also presents possible mechanisms.

  20. Probing microstructure evolution during the hardening of gypsum by proton NMR relaxometry.

    PubMed

    Jaffel, Hamouda; Korb, Jean-Pierre; Ndobo-Epoy, Jean-Philippe; Morin, Vincent; Guicquero, Jean-Pierre

    2006-04-13

    We report a comprehensive proton NMR relaxation study of the water confined in the evolving porous structure of hardened gypsum prepared with different water-to-plaster ratios (w/p) and increasing additions of crushed gypsum. This study gives some new information on the microstructure, the water distribution, and the hydration kinetics without any drying or perturbing preparation. The bi-exponential transverse magnetization decay reveals the existence of two water populations in slow exchange. However, the different behaviors of these populations during saturation and desaturation experiments show evidence of a fast exchange of each population with the surface. Two modes of organization of the microstructure of this material are identified through an original model of exchange as a function of the water-to-plaster ratio (0.4 < or = w/p < or = 0.6 and 0.7 < or = w/p < or = 1). A clear gap is shown in the exchange rate value above w/p = 0.6 that could be representative of a percolation threshold. Both the method and the theory presented can be applied more widely to other porous media with reactive surface areas. PMID:16599514

  1. Role of spall in microstructure evolution during laser-shock-driven rapid undercooling and resolidification

    NASA Astrophysics Data System (ADS)

    Colvin, Jeffrey D.; Jankowski, Alan F.; Kumar, Mukul; MoberlyChan, Warren J.; Reed, Bryan W.; Paisley, Dennis L.; Tierney, Thomas E.

    2009-01-01

    We previously reported [Colvin et al., J. Appl. Phys. 101, 084906 (2007)] on the microstructure morphology of pure Bi metal subjected to rapid laser-shock-driven melting and subsequent resolidification upon release of pressure, where the estimated effective undercooling rates were of the order of 109-1010 K/s. More recently, we repeated these experiments, but with a Bi/Zn alloy (Zn atomic fraction of 2%-4%) instead of elemental Bi and with a change in target design to suppress spall in the Bi/Zn samples. We observed a similar microstructure morphology in the two sets of experiments, with initially columnar grains recrystallizing to larger equiaxed grains. The Bi samples, however, exhibited micron-scale dendrites on the spall surfaces, whereas there were no dendritic structures anywhere in the nonspalled Bi/Zn, even down to the nanometer scale as observed by transmission electron microscopy. We present the simulations and the interferometry data that show that the samples in the two sets of experiments followed nearly identical hydrodynamic and thermodynamic paths apart from the presence of (probably partially liquid) spall in pure Bi. Simulations also show that the spall occurs right at the moving phase front and, hence, the spall itself cuts off the principal direction for latent heat dissipation across the phase boundary. We suggest that it is the liquid spall itself that creates the conditions for dendrite formation.

  2. Role of spall in microstructure evolution during laser-shock-driven rapid undercooling and resolidification

    SciTech Connect

    Colvin, Jeffrey D.; Jankowski, Alan F.; Kumar, Mukul; MoberlyChan, Warren J.; Reed, Bryan W.; Paisley, Dennis L.; Tierney, Thomas E.

    2009-01-01

    We previously reported [Colvin et al., J. Appl. Phys. 101, 084906 (2007)] on the microstructure morphology of pure Bi metal subjected to rapid laser-shock-driven melting and subsequent resolidification upon release of pressure, where the estimated effective undercooling rates were of the order of 10{sup 9}-10{sup 10} K/s. More recently, we repeated these experiments, but with a Bi/Zn alloy (Zn atomic fraction of 2%-4%) instead of elemental Bi and with a change in target design to suppress spall in the Bi/Zn samples. We observed a similar microstructure morphology in the two sets of experiments, with initially columnar grains recrystallizing to larger equiaxed grains. The Bi samples, however, exhibited micron-scale dendrites on the spall surfaces, whereas there were no dendritic structures anywhere in the nonspalled Bi/Zn, even down to the nanometer scale as observed by transmission electron microscopy. We present the simulations and the interferometry data that show that the samples in the two sets of experiments followed nearly identical hydrodynamic and thermodynamic paths apart from the presence of (probably partially liquid) spall in pure Bi. Simulations also show that the spall occurs right at the moving phase front and, hence, the spall itself cuts off the principal direction for latent heat dissipation across the phase boundary. We suggest that it is the liquid spall itself that creates the conditions for dendrite formation.

  3. Microstructure evolution and lubricant wear performance of laser alloyed layers on automobile engine chains

    NASA Astrophysics Data System (ADS)

    Sun, G. F.; Zhou, R.; Zhang, Y. K.; Yuan, G. D.; Wang, K.; Ren, X. D.; Wen, D. P.

    2014-10-01

    Wear resistant layers on nodular cast iron chains with C-B-W-Cr powders were fabricated by laser surface alloying (LSA). Microstructure, phases and lattice parameters, were investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Micro-, nano-hardness and elastic modulus were measured with a Vickers microhardness tester and a nano-indendation tester. Lubricant sliding wear performance was performed on a ball-on-disk apparatus in ambient air using the straight line reciprocating wear form. Results indicate that microstructure of the alloyed layers changes from hyper-eutectic to hypo-eutectic, varing with laser specific energy. Nano-grain size and micro-hardness decrease while martensite lattice parameters increase with laser specific energy. Existence of graphite in the substrate increases the carbon content in the retained austenite to 1.59 wt%. Nano-hardness and elastic modulus of the alloyed layers are close. Friction and wear properties of the layers are improved by LSA compared with the substrate. Wear mechanism of them is illustrated.

  4. Mechanical and Microstructural Behavior of Cold-Sprayed Titanium- and Nickel-Based Coatings

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2015-12-01

    Cold spraying is a coating technology that can deposit materials with unique properties. The coating forms through intensive plastic deformation of particles impacting on a substrate at temperature well below the melting point of the sprayed material. Recently, various studies have been published regarding the microstructural and mechanical evolution of metal-matrix composite coatings produced by cold spraying. Herein, we describe the principal results of the available literature in the field of cold-sprayed composites. It is shown that more research is required to solve various questions in this field, for example, the different deformation modes of the material exhibited for various processing conditions, the reinforcing percentage of different material combinations, and the mechanical properties resulting from these complex systems. In the present study, this issue is approached and described for cold-sprayed Ni- and Ti-based composites. Materials were produced with varying ceramic phase (BN and TiAl3) fraction. The variation of the grain size, adhesion strength, porosity, and hardness of the deposits as a function of the ceramic phase fraction and processing parameters (impacting particle speed) is described. The interaction mechanisms between the cold-sprayed particles and the metal matrix during the coating process are presented and described. The results demonstrate a beneficial effect on grain size and porosity with increasing reinforcing phase percentage, as well as narrow processing parameter ranges to achieve the optimal properties with respect to the pure parent materials.

  5. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  6. Temperature-Dependent Flow Behavior and Microstructural Evolution During Compression of As-Cast Mg-7.7Al-0.4Zn

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul R.; Prabhu, Nityanand; Hodgson, Peter D.; Kashyap, Bhagwati P.

    2016-08-01

    The microstructure and mechanical properties improve substantially by hot working. This aspect in as-cast Mg-7.7Al-0.4Zn (AZ80) alloy is investigated by compression tests over temperature range of 30-439°C and at strain rates of 5 × 10-2, 10-2, 5 × 10-4 and 10-4 s-1. The stress exponent (n) and activation energy (Q) were evaluated and analyzed for high-temperature deformation along with the microstructures. Upon deformation to a true strain of 0.80, which corresponds to the pseudo-steady-state condition, n and Q were found to be 5 and 151 kJ/mol, respectively. This suggests the dislocation climb-controlled mechanism for deformation. Prior to attaining the pseudo-steady-state condition, the stress-strain curves of AZ80 Mg alloy exhibit flow hardening followed by flow softening depending on the test temperature and strain rate. The microstructures obtained upon deformation revealed dissolution of Mg17Al12 particles with concurrent grain growth of α-matrix. The parameters like strain rate sensitivity and activation energy were analyzed for describing the microstructure evolution also as a function of strain rate and temperature. This exhibited similar trend as seen for deformation per se. Thus, the mechanisms for deformation and microstructure evolution are suggested to be interdependent.

  7. Temperature-Dependent Flow Behavior and Microstructural Evolution During Compression of As-Cast Mg-7.7Al-0.4Zn

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul R.; Prabhu, Nityanand; Hodgson, Peter D.; Kashyap, Bhagwati P.

    2016-10-01

    The microstructure and mechanical properties improve substantially by hot working. This aspect in as-cast Mg-7.7Al-0.4Zn (AZ80) alloy is investigated by compression tests over temperature range of 30-439°C and at strain rates of 5 × 10-2, 10-2, 5 × 10-4 and 10-4 s-1. The stress exponent ( n) and activation energy ( Q) were evaluated and analyzed for high-temperature deformation along with the microstructures. Upon deformation to a true strain of 0.80, which corresponds to the pseudo-steady-state condition, n and Q were found to be 5 and 151 kJ/mol, respectively. This suggests the dislocation climb-controlled mechanism for deformation. Prior to attaining the pseudo-steady-state condition, the stress-strain curves of AZ80 Mg alloy exhibit flow hardening followed by flow softening depending on the test temperature and strain rate. The microstructures obtained upon deformation revealed dissolution of Mg17Al12 particles with concurrent grain growth of α-matrix. The parameters like strain rate sensitivity and activation energy were analyzed for describing the microstructure evolution also as a function of strain rate and temperature. This exhibited similar trend as seen for deformation per se. Thus, the mechanisms for deformation and microstructure evolution are suggested to be interdependent.

  8. Microstructural evolution during solution treatment of Co-Cr-Mo-C biocompatible alloys

    SciTech Connect

    Giacchi, J.V.; Fornaro, O.; Palacio, H.

    2012-06-15

    Three different Co-Cr-Mo-C alloys conforming to ASTM F75 standard were poured in an industrial environment and subjected to a conventional solution treatment at 1225 Degree-Sign C for several time intervals. The microstructural changes and transformations were studied in each case in order to evaluate the way in which treatment time influences the secondary phase fraction and clarify the microstructural changes that could occur. To assess how treatment time affects microstructure, optical microscopy and image analyzer software, scanning electron microscopy and energy dispersion spectrometry analysis were employed. The main phases detected in the as-cast state were: {sigma}-phase, M{sub 6}C, and M{sub 23}C{sub 6} carbides. The latter presented two different morphologies, blocky type and lamellar type. Despite being considered the most detrimental feature to mechanical properties, {sigma}-phase and lamellar carbides dissolution took place in the early stages of solution treatment. M{sub 23}C{sub 6} carbides featured two different behaviors. In the alloy obtained by melting an appropriate quantity of alloyed commercial materials, a decrease in size, spheroidization and transformation into M{sub 6}C carbides were simultaneously observed. In the commercial ASTM F75 alloy, in turn, despite being the same phase, only a marked decrease in precipitates size was noticed. These different behaviors could be ascribed to the initial presence of other phases in the alloy obtained from alloyed materials, such as {sigma}-phase and 'pearlitic' carbides, or to the initial precipitate size which was much larger in the first than in the commercial ASTM F75 alloy studied. M{sub 6}C carbides dissolved directly in the matrix as they could not be detected in samples solution-treated for 15 min. - Highlights: Black-Right-Pointing-Pointer Three different Co-Cr-Mo alloys were poured under an industrial environment. Black-Right-Pointing-Pointer Transformation of existing phases followed during

  9. What lies beneath? Diffusion EAP-based study of brain tissue microstructure.

    PubMed

    Zucchelli, Mauro; Brusini, Lorenza; Andrés Méndez, C; Daducci, Alessandro; Granziera, Cristina; Menegaz, Gloria

    2016-08-01

    Diffusion weighted magnetic resonance signals convey information about tissue microstructure and cytoarchitecture. In the last years, many models have been proposed for recovering the diffusion signal and extracting information to constitute new families of numerical indices. Two main categories of reconstruction models can be identified in diffusion magnetic resonance imaging (DMRI): ensemble average propagator (EAP) models and compartmental models. From both, descriptors can be derived for elucidating the underlying microstructural architecture. While compartmental models indices directly quantify the fraction of different cell compartments in each voxel, EAP-derived indices are only a derivative measure and the effect of the different microstructural configurations on the indices is still unclear. In this paper, we analyze three EAP indices calculated using the 3D Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE) model and estimate their changes with respect to the principal microstructural configurations. We take advantage of the state of the art simulations to quantify the variations of the indices with the simulation parameters. Analysis of in-vivo data correlates the EAP indices with the microstructural parameters obtained from the Neurite Orientation Dispersion and Density Imaging (NODDI) model as a pseudo ground truth for brain data. Results show that the EAP derived indices convey information on the tissue microstructure and that their combined values directly reflect the configuration of the different compartments in each voxel.

  10. Influence of coarsened and rafted microstructures on the thermomechanical fatigue of a Ni-base superalloy

    DOE PAGES

    Kirka, M. M.; Brindley, K. A.; Neu, R. W.; Antolovich, S. D.; Shinde, S. R.; Gravett, P. W.

    2015-08-17

    The aging of the microstructure of Ni-base superalloys during service is mainly characterized by coarsening and rafting of the γ' precipitates. The influence of these different aged microstructures on thermomechanical fatigue (TMF) under either continuously cycled (CC) and creep-fatigue (CF) was investigated. Three different aged microstructures, generated through accelerated aging and pre-creep treatments, were studied: stress-free coarsened γ', rafted with orientation perpendicular to loading direction (N-raft), and rafted with orientation parallel to loading direction (P-raft). Under most conditions, the aged microstructures were less resistant to TMF than the virgin microstructure; however, there were exceptions. Both stress-free coarsened and N-raft microstructuresmore » resulted in a reduction in TMF life under both CC and CF conditions in comparison to the virgin material. P-raft microstructure also resulted in reduction in TMF life under CC conditions; however, an increase in life over that of the virgin material was observed under CF conditions. Finally, these differences are discussed and hypothesized to be related to the interactions of the dislocations in the γ channels with γ' precipitates.« less

  11. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.

  12. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    SciTech Connect

    Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth; Parish, Chad M; Leslie, Dr Scott; Bieler, T. R.

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallization behavior was correlated with dislocation slip activities.

  13. Microstructure Modeling of Third Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  14. Microstructural evolution at the overlap zones of 12Cr martensitic stainless steel laser alloyed with TiC

    NASA Astrophysics Data System (ADS)

    Adebiyi, D. I.; Popoola, A. P. I.; Pityana, S. L.

    2014-09-01

    Multiple track laser alloying is characterised by additional heat treatment and differences in the amount of powder deposited at the overlap regions. These result in different microstructural and phase evolution at these regions, which are not obtainable in the single tracks. X12CrNiMo steel has been laser alloyed with TiC using a 4.4 kW continuous wave (CW) Nd:YAG laser. The process parameters were first optimised after which they were kept constant for overlap ratios of 50% and 75%. The depths of the alloyed zone, the mcrostructural evolution, metallurgical structures and compositions are different for the 50% and 75% overlap. The 75% overlap sample has an alloying depth of 4233 μm (about two times that of the 50% overlap). The XRD of the 50% overlap sample reveals the presence of complex carbides, which are absent in that of the 75% overlap. Although both overlap samples have retained martensite, diffractographs show that the martensite of the 75% is richer in carbide. These are attributed to differences in powder catchment, heat build-up and depth of alloying.

  15. Microstructural Evolution of Intermetallic Compounds in TCNCP Cu Pillar Solder Joints

    NASA Astrophysics Data System (ADS)

    Liang, Chien-Lung; Lin, Kwang-Lung; Peng-Wei, Jr.

    2016-01-01

    This study investigated the microstructure, especially intermetallic compounds (IMCs), formed between a Cu pillar and Cu trace joined by thermal compression bonding with nonconductive paste (NCP). Continuous, uniform layers of Cu3Sn formed on the surface of both the Cu pillar and Cu trace. However, the growth of Cu6Sn5 was suppressed, forming nonuniformly on the Cu trace due to NCP filler entrapment at the Cu-solder interface that hindered Sn diffusion flux. Multireflow induced rapid growth of IMCs within the Cu pillar solder joint. The combination of multireflow and thermal cycle testing gave rise to asymmetric growth of IMCs between the chip side and substrate side as a result of stress migration induced by thermal cycling.

  16. Effect of Post-weld Heat Treatment on Microstructure and Mechanical Properties of Laser Beam Welded TiAl-based Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ventzke, Volker; Staron, Peter; Schell, Norbert; Kashaev, Nikolai; Huber, Norbert

    2014-01-01

    Post-weld heat treatment is carried out on the laser beam welded γ-TiAl-based alloy Ti-48Al-1Cr-1.5Nb-1Mn-0.2Si-0.5B (at. pct). The macro/microstructure and mechanical properties of both as-welded and heat-treated specimens are investigated by radiography, SEM, and tensile tests. Moreover, high energy synchrotron X-ray diffraction is performed to measure the residual stresses and evaluate the microstructure evolution. It is found that the residual stresses are distributed in a three-peak shape in the region of the weld zone and heat-affected zone of the as-welded specimen due to the microstructural transformation and heat softening. The residual stresses are largely relieved after the heat treatment. The heat-treated specimens have a near fully lamellar microstructure and show balanced mechanical properties of strength and ductility. The diffraction shows that the phase transformation from α 2 to γ takes place under tensile load at 1023 K (750 °C), and the grain size and lamellar spacing are refined in the weld zone. Finally, the fracture mechanisms are found to be controlled by the local stress concentration-induced strain misfit between α 2 and γ phases in the near γ grains and delamination and debonding in the lamellae. Boride ribbons of 5 μm in the near fully lamellar microstructure are found not to be detrimental to the tensile properties.

  17. Heat Treatment of AZ91D Mg-Al-Zn Alloy: Microstructural Evolution and Dynamic Response

    NASA Astrophysics Data System (ADS)

    Luong, Dung D.; Shunmugasamy, Vasanth Chakravarthy; Cox, James; Gupta, Nikhil; Rohatgi, Pradeep K.

    2013-11-01

    Magnesium alloys are attracting great interest from the automotive industry because of the potential for weight reduction. An AZ91D cast alloy was studied in the current work to understand the effect of heat treatment on the microstructure and dynamic compressive properties. The selected heat treatments include solution treatment (T4) and solution treatment followed by aging (T6). The as-cast alloy microstructure consists of intermetallic β-phase (Mg17Al12) precipitates surrounded by α + β lamellar eutectic in α-Mg solid solution. The AZ91D-T4 specimens showed small β-phase precipitates along the grain boundaries and regions of eutectic mixture. The T6 heat treatment causes the β-phase platelets in the α + β eutectic to grow and develop into β-precipitates. The difference in the phase morphology reflects into the mechanical properties. The Vickers hardness of the T6 heat-treated specimens was 3.6% higher than the as-cast alloy. The compressive yield strengths of T4 and T6 treated specimens were 1.3% and 43.1% higher than those of as-cast specimens. The high strain rate compression testing resulted in increase in the strength with strain rate for the T4 and T6 specimens. A maximum increase of 42% was observed in T6 specimen tested at a strain rate of 4,000/s in comparison to the quasi-static compression. Under high strain rate compression testing, the T6 heat-treated specimens showed failure of the β-precipitates resulting in increased energy absorption in comparison to the quasi-static compression.

  18. Evolution of microcomputer-based medical instrumentation.

    PubMed

    Tompkins, Willis J

    2009-01-01

    This paper provides a historical review of the evolution of the technologies that led to modern microcomputer-based medical instrumentation. I review the history of the microprocessor-based system because of the importance of the microprocessor in the design of modern medical instruments. I then give some examples of medical instruments in which the microprocessor has played a key role and in some cases has even empowered us to develop new instruments that were not possible before. I include a discussion of the role of the microprocessor-based personal computer in development of medical instruments.

  19. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications.

    PubMed

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-12-15

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  20. Fountain-pen-based laser microstructuring with gold nanoparticle inks

    SciTech Connect

    Choi, Tae Y.; Poulikakos, Dimos; Grigoropoulos, Costas P.

    2004-07-05

    Employing the fountain-pen principle, a micropipette is used to write an Au nanoparticle ink on glass substrates. A continuous-wave laser (488-515 nm) is subsequently used as a controlled, localized energy source to evaporate the carrier liquid (toluene) in the ink and sinter the nanoparticles together thus fabricating continuous gold stripes 5 {mu}m in width and a few hundred nanometers in height. The scanning speed, the laser intensity, and the degree of defocusing are identified as important parameters to the successful manufacturing of the gold microstructures. The electrical resistivity of the stripes, within the parametric domain of the present work, is measured to be the order of 10{sup -6} {omega} m.

  1. Fountain-pen-based laser microstructuring with gold nanoparticle inks

    NASA Astrophysics Data System (ADS)

    Choi, Tae Y.; Poulikakos, Dimos; Grigoropoulos, Costas P.

    2004-07-01

    Employing the fountain-pen principle, a micropipette is used to write an Au nanoparticle ink on glass substrates. A continuous-wave laser (488-515nm) is subsequently used as a controlled, localized energy source to evaporate the carrier liquid (toluene) in the ink and sinter the nanoparticles together thus fabricating continuous gold stripes 5μm in width and a few hundred nanometers in height. The scanning speed, the laser intensity, and the degree of defocusing are identified as important parameters to the successful manufacturing of the gold microstructures. The electrical resistivity of the stripes, within the parametric domain of the present work, is measured to be the order of 10-6Ωm.

  2. Surface microstructure profilometry based on laser confocal feedback

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Zhang, Shulian; Li, Yan

    2015-10-01

    We demonstrate a surface microstructure profile measurement method, which utilizes the positioning ability of confocal technology and the high sensitivity of frequency-shift feedback of a microchip laser. The surface profile is measured by combination of the amplitude and phase information of the feedback light reflected by the sample. The amplitude information is used for coarse measurement and to determine the integral number of half lasing wavelengths contained in the sample profile variation. The phase information is used for fine measurement and to determine the fractional number. The measurement realizes both a large axial measuring range of tens of microns and a high axial resolution of ˜2 nm. Meanwhile, a heterodyne phase measurement approach is introduced to compensate for environmental disturbance and to realize high axial resolution measurement under common room conditions. The surface profile of a grating is measured and proves the feasibility of the method.

  3. Rheological and microstructural evolution of Carrara marble with high shear strain: results from high temperature torsion experiments

    NASA Astrophysics Data System (ADS)

    Pieri, Marco; Burlini, Luigi; Kunze, Karsten; Stretton, Iona; Olgaard, David L.

    2001-09-01

    This study investigated the rheological and microstructural evolution of Carrara marble deformed to large shear strain to understand how dynamic recrystallization and lattice-preferred orientation (LPO) are related to strain softening processes. Solid cylinders of Carrara marble were deformed in torsion up to a shear strain of γ=11 at constant twist rates, which correspond to a shear strain rate of 3×10 -4 s -1 at the outer surface, and at temperatures of 1000 and 1200 K (727 and 927°C, respectively). For the initial grain size of 150 μm, these conditions are within the dislocation creep regime. Substantial changes in both rheology and microstructure were observed as the marble deformed to high shear strain at 1000 K (1200 K). A peak stress was reached at about γ=1 ( γ=0.5) followed by moderate strain weakening. An apparent steady-state flow stress was obtained at high shear strain of γ>5 ( γ>2). The stress exponent n decreased slowly with strain from 10 ( γ=1) to 6 ( γ=9) at 1000 K, but it remained approximately constant at 1200 K ( n around 10). At the maximum reached shear strain of γ=11 ( γ=8.5), the marble had almost completely recrystallized to a fine grain size of about 10 μm (20 μm). A secondary foliation developed in the recrystallized matrix, which is at a large oblique angle to the shear zone boundary (SZB). LPO was measured by electron backscatter diffraction (EBSD). For both temperatures, the LPO evolved from an oblique deformation texture to a very sharp and symmetric single orientation component with r{101¯4} parallel to the shear plane and a<1¯21¯0> parallel to the shear direction. It is concluded that strain weakening was associated with the development of a strong LPO during dynamic recrystallization to a finer grain size. Mechanical and microstructural steady-state is only reached at large shear strain. The steady-state lattice and grain shape fabrics can hardly be used as shear sense indicators in such recrystallized calcite

  4. Cranial base evolution within the hominin clade

    PubMed Central

    Nevell, L; Wood, B

    2008-01-01

    The base of the cranium (i.e. the basioccipital, the sphenoid and the temporal bones) is of particular interest because it undergoes significant morphological change within the hominin clade, and because basicranial morphology features in several hominin species diagnoses. We use a parsimony analysis of published cranial and dental data to predict the cranial base morphology expected in the hypothetical last common ancestor of the Pan–Homo clade. We also predict the primitive condition of the cranial base for the hominin clade, and document the evolution of the cranial base within the major subclades within the hominin clade. This analysis suggests that cranial base morphology has continued to evolve in the hominin clade, both before and after the emergence of the genus Homo. PMID:18380865

  5. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-11-01

    Ni3V bulk intermetallic compounds with ordered D022 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D022 structure of Ni3V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D022 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation.

  6. Microstructural evolution and some mechanical properties of nanosized yttrium oxide dispersion strengthened 13Cr steel

    NASA Astrophysics Data System (ADS)

    Tich Nguyen, Van; Phuong Doan, Dinh; BaoTrung Tran, Tran; Duong Luong, Van; Nguyen, Van An; Phan, Anh Tu

    2010-09-01

    Oxide dispersion strengthened (ODS) steels, manufactured by a mechanical alloying method, during the past few years, appear to be promising candidates for structural applications in nuclear power plants. The purpose of this work is to elaborate the manufacturing processes of ODS 13Cr steel with the addition of 1.0 wt% yttrium oxide through the powder metallurgy route using the high energy ball mill. Microstructural analysis by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness testing have been used to optimize the technological parameters of milling, hot isostatic pressing and heat-treatment processes. The steel hardness increases with decreasing particle size of 13Cr ODS steel. The best hardness was obtained from more than 70 h of milling in the two tanks planetary ball mill or 30 h of milling in the one tank planetary ball mill and hot isostatic pressing at 1150 °C . The particle size of the steel is less than 100 nm, and the density and hardness are about 7.3 g cm-3 and 490 HB, respectively. Report submitted to the 5th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Hanoi, 9-12 November 2010.

  7. Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatment

    NASA Astrophysics Data System (ADS)

    Li, Kongzhai; Haneda, Masaaki; Ning, Peihong; Wang, Hua; Ozawa, Masakuni

    2014-01-01

    The relationship between structure and reduction/redox properties of Fe-Ce mixed oxides with a Fe content of 5, 10, 20 or 30 mol%, prepared by a coprecipitation method, were investigated by XRD, Raman, TEM, TPR and TPO techniques. It is found that all the iron ions can be incorporated into the ceria lattice to form a solid solution for the FeCe 5 (Fe 5%) sample, but amorphous or crystal Fe2O3 particles were found to be present on the Fe-Ce oxide samples with higher the iron content. The reducibility of single solid solution was much better than the pure CeO2, and the appearance of dispersed Fe2O3 particles improved the surface reducibility of materials. The iron ions incorporated into the CeO2 lattice accelerated the oxygen release from bulk to surface, and surface Fe2O3 particles in close contact to CeO2 acted as a catalyst for the reaction between solid solution and hydrogen. The microstructure of exposed Fe2O3 with Ce-Fe-O solid solution allows the Fe-Ce mixed oxides to own good reducibility and high OSC, which also counteracts the deactivation of the reducibility resulting from the sintering of materials in the redox cycling.

  8. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.

    2013-05-01

    A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.

  9. Microstructure Evolution During Spray Rolling and Heat Treatment of 2124 Al

    SciTech Connect

    K.M. McHugh; Y. Lin; Y. Zhou; S.B. Johnson; J.P. Delplanque; E.J. Lavernia

    2006-09-01

    Spray rolling is a strip casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly move an alloy’s latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified product. While similar in many ways to twin-roll casting, spray rolling is able to process a broader range of alloys and operates at a higher production rate. A laboratory-scale strip caster has been constructed at INL and used to evaluate the interplay of processing parameters and strip quality while producing strips up to 200 mm wide and 1.6 – 6.4 mm thick. Plans are underway to scale to 600 mm width and demonstrate steady-state operation. As-spray-rolled strip is characterized by a flat, uniformly thick profile with minimal porosity or segregation. This paper examines how processing parameters influence the microstructure transformations that take place during spray rolling and post-deposition heat treatment of 2124 Al.

  10. Effect of He implantation on fracture behavior and microstructural evolution in F82H

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Kiyohiro; Sato, Kiminori; Nogami, Shuhei; Hasegawa, Akira; Ando, Masami; Tanigawa, Hiroyasu

    2014-12-01

    Reduced-activation ferritic/martensitic steels (RAFMs) are the primary candidate structural materials for fusion reactor blanket components. He bubbles, which formed under 14 MeV neutron irradiation, is considered to cause some mechanical property changes. In a previous study, Hasegawa et al. investigated the fracture behavior using Charpy impact test of He implanted F82H by 50 MeV α-particles with cyclotron accelerator, and the ductile brittle transition temperature (DBTT) was increased and intergranular fracture (IGF) was observed. However, the cause of the IGF was not shown in the previous study. To clarify the cause of the IGF of the He implanted F82H by 50 MeV α-particles with cyclotron accelerator, the microstructure of the He implanted F82H was investigated. After Charpy impact test at 233 K, the brittle fracture surface of the He implanted specimen was observed by SEM and TEM. By SEM observation, grain boundary surface was clearly observed from the bottom of the notch to a depth of about 400 μm. This area correspond to the He implanted region. On the other hand, at unimplanted region, river pattern was observed and transgranular fracture occurred. TEM observation revealed the He bubbles agglomeration at dislocations, lath boundaries, and grain boundaries, and the coarsening of precipitates on grain boundaries. IGF of the He implanted F82H was caused by both He bubbles and coarsening precipitates.

  11. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    NASA Astrophysics Data System (ADS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S. V.

    2015-12-01

    Microstructural development in laser clad layers of Chromium carbide (CrxCy)-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr3C2 and Cr7C3, the clad layers showed only the presence of Cr7C3. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr7C3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr7C3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ2) of the Cr7C3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  12. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, Joseph R.

    1991-01-01

    Alloys in the Al-Cu-Li Ag-Mg subsystem were developed that exhibit desirable combinations of strength and ductility. These Weldalite (trademark) alloys, are unique for Al-Cu-Li alloys in that with or without a prior cold stretching operation, they obtain excellent strength-ductility combinations upon natural and artificial aging. This is significant because it enables complex, near-net shape products such as forgings and super plastically formed parts to be heat treated to ultra-high strengths. On the other hand, commercial extrusions, rolled plates and sheets of other Al-Cu-Li alloys are typically subjected to a cold stretching operation before artificial aging to the highest strength tempers to introduce dislocations that provide low-energy nucleation sites for strengthening precipitates such as the T(sub 1) phase. The variation in yield strength (YS) with Li content in the near-peak aged condition for these Weldalite (trademark) alloys and the associated microstructures were examined, and the results are discussed.

  13. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study

    SciTech Connect

    Pareige, P.; Russell, K.F.; Stoller, R.E.; Miller, M.K.

    1998-03-01

    Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentration in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.

  14. Influence of composition on microstructural parameters of single crystal nickel-base superalloys

    SciTech Connect

    MacKay, R.A.; Gabb, T.P.; Garg, A.; Rogers, R.B.; Nathal, M.V.

    2012-08-15

    Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including {gamma} Prime solvus, {gamma} Prime volume fraction, topologically close-packed (TCP) phases, {gamma} and {gamma} Prime phase chemistries, and {gamma}-{gamma} Prime lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in {gamma} Prime solvus over the wide compositional range explored and Mo produced the biggest effect on the {gamma} lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the {gamma} matrix and to a smaller extent in the {gamma} Prime phase. The software tool under-predicted {gamma} Prime solvus temperatures and {gamma} Prime volume fractions, and over-predicted TCP phase volume fractions at 982 Degree-Sign C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: Black-Right-Pointing-Pointer Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys Black-Right-Pointing-Pointer Co produced a large change in {gamma} Prime solvus; Mo had a large effect on lattice mismatch. Black-Right-Pointing-Pointer Re exhibited very potent influence on all microstructural parameters was investigated. Black-Right-Pointing-Pointer {gamma} and {gamma} Prime phase chemistries both varied with temperature and alloy composition. Black

  15. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned

  16. Effects of Two-Stage Cold Rolling Schedule on Microstructure and Texture Evolution of Strip Casting Grain-Oriented Silicon Steel with Extra-Low Carbon

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Liu, Wen-Qiang; Wang, Yin-Ping; Liu, Zhen-Yu; Wang, Guo-Dong

    2016-04-01

    A 0.27 mm-thick grain-oriented silicon steel sheet with extra-low carbon was successfully produced by a novel processing route including strip casting, normalizing, two-stage cold rolling with an intermediate annealing, primary annealing, and secondary recrystallization annealing. The evolutions of microstructure and texture along the whole processing route were investigated with a special emphasis on the effects of two-stage cold rolling schedule. It was found that Goss orientation originated in the first cold rolling due to shear banding and relatively strong Goss texture evolved through the whole thickness after intermediate annealing. This is significantly different from the results in conventional process in which the origin of Goss texture is in the hot rolling stage and Goss texture only develops below the sheet surface. Besides, it was found that cold rolling schedule had significant influences on microstructure homogeneity, evolution of λ-fiber texture in primary annealed state and, thus, on secondary recrystallization. In case of appropriate cold rolling schedule, a homogeneous microstructure with Goss texture, relatively strong γ-fiber texture and medium α-fiber texture was observed in the primary annealed strip. Although Goss texture in primary annealed state was much weaker than that in two-stage route in conventional process, a perfect secondary recrystallization microstructure was produced and the magnetic induction B8 was as high as 1.85 T. By contrast, when the cold rolling schedule was inappropriate, the primary annealed strips exhibited inhomogeneous microstructure, together with weak γ-fiber texture, medium α-fiber and λ-fiber texture. Finally, the sheets showed incomplete secondary recrystallization microstructure in which a large number of fine grains still existed.

  17. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.

    PubMed

    Zúñiga, R N; Skurtys, O; Osorio, F; Aguilera, J M; Pedreschi, F

    2012-10-01

    The initial characteristics of emulsions and the rearrangement of the oil droplets in the film matrix during film drying, which defines its microstructure, has an important role in the physical properties of the emulsion-based films. The objective of this work was to study the effect of the microstructure (two droplet size distributions) and stability (with or without surfactant) of HPMC oil-in-water emulsions over physical properties of HPMC emulsion-based edible films. HPMC was used to prepare sunflower oil-in-water emulsions containing 0.3 or 1.0% (w/w) of oil with or without SDS, as surfactant, using an ultrasonic homogenizer. Microstructure, rheological properties and stability of emulsions (creaming) were measured. In addition, microstructure, coalescence of oil droplets, surface free energy, optical and mechanical properties and water vapor transfer of HPMC films were evaluated. Image analysis did not show differences among droplet size distributions of emulsions prepared at different oil contents; however, by using SDS the droplet size distributions were shifted to lower values. Volume mean diameters were 3.79 and 3.77 μm for emulsions containing 0.3 and 1.0% without surfactant, respectively, and 2.72 and 2.71 μm for emulsions with SDS. Emulsions formulated with 1.0% of oil presented higher stability, with almost no change during 5 and 3 days of storage, for emulsions with and without SDS, respectively. Internal and surface microstructure of emulsion-based films was influenced by the degree of coalescence and creaming of the oil droplets. No effect of microstructure over the surface free energy of films was found. The incorporation of oil impaired the optical properties of films due to light scattering of light. Addition of oil and SDS decreased the stress at break of the emulsion-based films. The replace of HPMC by oil and SDS produce a lower "amount" of network structure in the films, leading to a weakening of their structure. The oil content and SDS

  18. Evolution of the Microstructure of Polycrystalline Magnesium at Mega Plastic Deformation in Bridgeman Anvils

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Pilyugin, V. P.; Antonova, O. V.

    2016-07-01

    The method of transmission electron microscopy is used to study the evolution of polycrystalline magnesium structure after shear under high pressure at room temperature. In the initial deformation stages (shrinkage), band structures are observed. It is established that after shear at 5°, the predominant deformation mode is twinning in the (I0Ī2) plane. For shear at 90°, electron microscopic cells, grains with enhanced level of internal stress, and small fraction of recrystallized grains and fragments are distinguished. For high deformation degrees (1-5 revolutions), uniformly distributed recrystallized grains and fragments are observed, and basal deformation structure is clearly distinguished by the radiographic method.

  19. Microstructure evolution of a quartz-feldspatic gneiss: Cenerigneiss (Serie dei Laghi - N Italy)

    NASA Astrophysics Data System (ADS)

    Bergomi, M. A.; Boriani, A.

    2003-04-01

    The Cenerigneiss (Serie dei Laghi - Southern Alps) is coarse metasandstones to metaconglomerates, with variable abundance of K-feldspar and Pl porphyroclasts, metamorphosed under amphibolite facies condition. They show heterogenous microstuctures mainly related to the presence or the absence of K-felspar porphyroclasts. In the samples without them, the Cenerigneiss show an unusual glomeroblastic microstructure. Although individual grains were constantly changing orientation, position and size during deformation, the mean aggregate grain size is determined by the relative rates, per unit volume, at which new grains were produced by subgrain rotation (N), and rate (G) at which all grains were consumed by grain boundary migration. For any given mineral phase, the mobility of a grain boundary is exponentially dependent on temperature (T). For a given initial grain-size, e/T ratio (e=strain rate) of deformation controls N/G and determines whether recrystallization during deformation controls the grain-size (Bell &Johnson, 1989). The heterogenous grain-size reduction of Cenerigneiss, could be explained by high e/T ratios and N/G>1. The average grain-size should decrease until N/G reaches a value which is in dynamic equilibrium with the e/T conditions (Hickey &Bell, 1996). The size of subgrains and new grains changes as a function of the strain rate and of the H2O content of the rock. For a given strain rate, high water content increases the recrystallization rate. In particular, most K-feldspar porphyroclasts in the Cenerigneiss have undergone a combination of recovery-accommodated dislocation creep and recrystallization-accommodated dislocation creep. In fact, recrystallization in Kfs involved subgrain rotation (SR), assisted by grain-boundary migration (GBM) or kink-band boundary bulging. Where deformation partitioning results in a zone of shear strain cutting through a grain, the lattice is strained, commonly forming a kink band. In the early stages, dislocations

  20. Use of High Magnetic Field to Control Microstructural Evolution in Metallic and Magnetic Materials

    SciTech Connect

    Ludtka, G.M.; Mackiewicz- Ludtka, G.; Wilgen, J.B.; Kisner, R.A.

    2010-06-27

    The Amendment 1, referred to as Phase 2, to the original CRADA NFE-06-00414 added tasks 3 through 7 to the original statement of work that had two main tasks that were successfully accomplished in Phase 1 of this project. In this Phase 2 CRADA extension, extensive research and development activities were conducted using high magnetic field processing effects for the purpose of manipulating microstructure in the SAE 5160 steel to refine grain size isothermally and to develop nanocrystalline spacing pearlite during continuous cooling, and to enhance the formability/forgability of the non-ferrous precipitation hardening magnesium alloy AZ90 by applying a high magnetic field during deformation processing to investigate potential magnetoplasticity in this material. Significant experimental issues (especially non-isothermal conditions evolving upon insertion of an isothermal sample in the high magnetic field) were encountered in the isothermal phase transformation reversal experiments (Task 4) that later were determined to be due to various condensed matter physics phenomenon such as the magnetocaloric (MCE) effect that occurs in the vicinity of a materials Curie temperature. Similarly the experimental deformation rig had components for monitoring deformation/strain (Task 3) that were susceptible to the high magnetic field of the ORNL Thermomagnetic Processing facility 9-T superconducting magnet that caused electronic components to fail or record erroneous (very noisy) signals. Limited experiments on developing nanocrystalline spacing pearlite were not sufficient to elucidate the impact of high magnetic field processing on the final pearlite spacing since significant statistical evaluation of many pearlite colonies would need to be done to be conclusive. Since extensive effort was devoted to resolving issues for Tasks 3 and 7, only results for these focused activities are included in this final CRADA report along with those for Task 7 (described in the Objectives Section

  1. Microstructural evolution of thin film vanadium oxide prepared by pulsed-direct current magnetron sputtering

    SciTech Connect

    Motyka, M. A.; Horn, M. W.; Gauntt, B. D.; Dickey, E. C.; Podraza, N. J.

    2012-11-01

    Vanadium oxide (VO{sub x}) thin films have been deposited by pulsed-DC magnetron sputtering using a metallic vanadium target in a reactive argon and oxygen environment. While the process parameters (power, total pressure, oxygen-to-argon ratio) remained constant, the deposition time was varied to produce films between 75 {+-} 6 and 2901 {+-} 30 A thick, which were then optically and electrically characterized. The complex dielectric function spectra ({epsilon} = {epsilon}{sub 1} + i{epsilon}{sub 2}) of the films from 0.75 to 5.15 eV were extracted by ex situ, multiple-angle spectroscopic ellipsometry (SE) measurements for the series of varied thickness VO{sub x} samples. Significant changes in {epsilon} and resistivity occur as a function of thickness, indicating the correlations exist between the electrical and the optical properties over this spectral range. In addition, in situ measurements via real time SE (RTSE) were made on the film grown to the largest thickness to track optical property and structural variations during growth. RTSE was also used to characterize changes in the film occurring after growth was completed, namely during post sputtering in the presence of argon and oxygen while the sample is shielded, and atmospheric exposure. RTSE indicates that the exposure of the film to the argon and oxygen environment, regardless of the shutter isolating the target, causes up to 200 A of the top surface of the deposited film to become more electrically resistive as evidenced by variations in {epsilon}. Exposure of the VO{sub x} thin film to atmospheric conditions introduces a similar change in {epsilon}, but this change occurs throughout the bulk of the film. A combination of these observations with RTSE results indicates that thinner, less ordered VO{sub x} films are more susceptible to drastic changes due to atmospheric exposure and that microstructural variations in this material ultimately control its environmental stability.

  2. Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys

    SciTech Connect

    Ergen, Semra; Uzun, Orhan; Yilmaz, Fikret; Kiliçaslan, M. Fatih

    2013-06-15

    In this work, the effects of Be addition on the microstructure and phase transformation temperatures of Cu–12Al–xBe (x = 0.4, 0.5 and 0.6 wt.%) shape memory alloys fabricated by using the arc-melting and melt-spinning techniques have been investigated. X-ray diffraction analysis revealed that the arc-melted alloys consisted of austenitic β{sub 1}, martensitic β{sub 1}′ and γ{sub 2} precipitate phases, whereas melt-spun ribbons were composed of a fully martensitic phase. The average grain size of martensitic phases in melt-spun ribbons was determined by electron microscopy images, showing a decrease with increasing Beryllium (Be) amount. Moreover, it was found that the Be addition in the arc-melted alloys had a distinct effect on the morphology of the γ{sub 2} precipitate phase. Transmission electron microscopy analysis showed that the thickness of martensitic plates in the melt-spun ribbons reduced with increasing Be addition. In a differential scanning calorimeter analysis, no martensitic transformation (M{sub s}) peak was observed in arc-melted alloys, but it was clearly detected in melt-spun ribbons, in which M{sub s} decreased dramatically with increasing Be addition. The improvement in the shape memory ability of melt-spun ribbons was explained in terms of the refinement in grain size and martensitic plates. - Highlights: • The CuAlBe SMAs were produced by means of arc-melter and melt-spinner techniques. • MT was directly obtained in melt-spuns without any intermediate process. • The transformation temperatures decreased with increasing Be amount. • The thickness of martensitic plates in the ribbons reduced with increasing Be. • SMP of CuAl was improved by the addition of Be together with rapid solidification.

  3. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications

    PubMed Central

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-01-01

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element. PMID:26694398

  4. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  5. A micro-structured Si-based electrodes for high capacity electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Krikscikas, Valdas; Oguchi, Hiroyuki; Yanazawa, Hiroshi; Hara, Motoaki; Kuwano, Hiroki

    2014-11-01

    We challenged to make basis for Si electrodes of electric double layer capacitors (EDLC) used as a power source of micro-sensor nodes. Mcroelectromechanical systems (MEMS) processes were successfully introduced to fabricate micro-structured Si-based electrodes to obtain high surface area which leads to high capacity of EDLCs. Study of fundamental properties revealed that the microstructured electrodes benefit from good wettability to electrolytes, but suffer from electric resistance. We found that this problem can be solved by metal-coating of the electrode surface. Finally we build an EDLC consisting of Au-coated micro-structured Si electrodes. This EDLC showed capacity of 14.3 mF/cm2, which is about 530 times larger than that of an EDLC consisting of flat Au electrodes.

  6. The Effect of Microstructural Evolution on Hardening Behavior of 2205 Stainless Steel in Long-Term Aging at 500 °C

    NASA Astrophysics Data System (ADS)

    Shi, Shukun; Ma, Guodong; Guo, Bo; Fang, Kuanjun; Wang, Jun

    2014-06-01

    The effect of microstructural evolution on hardening behavior of 2205 stainless steel in long-term aging at 500 °C was studied by optical microscope, scanning electron microscope, and transmission electron microscope. The results showed that the hardness of ferrite phase in matrix steadily increased with the aging time at the first stage of 4 months, presented a peak of hardness at about 5 months, and showed a downward trend for the aging time from 6 to 8 months, while the hardness of the austenitic phase remained constant. Analysis showed that the iron-rich α phase and the Cr-rich α' phase generated by spinodal decomposition, Cr2N precipitations, and Fe2Mn (R-phase) were the main reasons for the generation of peak in hardness of ferrite phase. Further studies showed that some dislocation structure (changing with the aging time) in δ-ferrite of matrix is related to the microstructural evolution.

  7. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    SciTech Connect

    K. Linga Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  8. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    PubMed Central

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-01-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries. PMID:27748437

  9. Effect of Annealing Time on Microstructural Evolution and Deformation Characteristics in 10Mn1.5Al TRIP Steel

    NASA Astrophysics Data System (ADS)

    Han, Qihang; Zhang, Yulong; Wang, Li

    2015-05-01

    To investigate microstructural evolution and its effects on the deformation behaviors of cold-rolled 10Mn1.5Al TRIP steel, a series of intercritical annealing treatments with various holding times from 3 minutes to 48 hours were conducted. With the increase of the holding time from 3 minutes to 12 hours, the elongation was improved from 15 to 42 pct, while the tensile strength was only reduced from 1210 to 1095 MPa; the strength-ductility combination thus exceeded 45 GPa pct. Austenite was found to coexist with martensite within deformed grains, which reduced the strain concentration at the interface. The austenite transformation fraction, as measured from the {220} peaks, after 3 minutes annealing was half that after 12 hours annealing. This is an indication that the slip systems were more easily activated in the micro-scaled grains compared with nano-scaled grains. Therefore, although the stability of austenite would have increased during annealing, size-induced slip suppression was reduced. Thus, more strain was accommodated in the austenite, facilitating a greater strain-induced transformation and better ductility.

  10. In situ Scanning electron microscope study and microstructural evolution of nano silicon anode for high energy Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hovington, P.; Dontigny, M.; Guerfi, A.; Trottier, J.; Lagacé, M.; Mauger, A.; Julien, C. M.; Zaghib, K.

    2014-02-01

    In situ and ex situ scanning electron microscopy of nano Si and SiO anode particles was carried out during the first cycles, and at various stages of charge. The particle size effects were explored in the range 0.1-20 μm, providing a new insight into the micro-structural evolution of the particles as a function of their size, and into the 'mechanical' resistance upon important volume change upon phase transformation of these anodes. For small particles, the failure of the battery comes from an electrochemical sintering that compacts the whole electrode, which results in its cracking. The particles keep their integrity when the discharge is stopped at a voltage 0.1 V, which corresponds to the chemical composition Li12Si7, while the particles are known to crack at deeper discharge up to Li22Si5. Replacing the Si particles by SiO particles in an attempt to avoid these structural effects did not help, because of the different chemical reactions during cycling, with the loss of oxygen.

  11. Effects of Dynamic Multi-directional Loading on the Microstructural Evolution and Thermal Stability of Pure Aluminum

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Hua; Chen, Yadong

    2016-09-01

    Microstructural evolution and thermal stability of 1050 commercial pure aluminum processed by means of split Hopkinson pressure bar and Instron-3369 mechanical testing machine to an accumulated strain of 3.6 were investigated. The nominal strain rates reached up to 3.0 × 103 and 1 × 10-3/s, respectively. Samples in the deformed state and annealed in the temperature interval 423-523 K for 1 h were characterized by transmission electron microscopy (TEM). TEM observations reveal that the initial coarse grains are refined significantly, and the deformed structures mainly consist of equiaxed subgrains and dislocation cells with a high density of interior dislocation. In addition, the average subgrain/cell sizes of these two kinds of deformed samples are nearly the same. As to recovery behavior, recovered subgrains are observed at 473 (dynamic) versus 523 K (quasi-static), that is to say, recovery is fairly slow in the quasi-static deformed samples. It is therefore to be expected that thermal stability of this dynamic deformed aluminum is weaker than that of the quasi-static compressed one, which is due to the higher density of dislocation and nonequilibrium dislocation configurations produced during dynamic loading.

  12. Microstructure evolution and magnetic properties of FeB/Pt multilayers and FeBPt composite films

    SciTech Connect

    Su, Hao; Schwarm, Samuel C.; Gupta, Subhadra; Martens, Richard L.

    2014-05-07

    Comparisons of microstructural evolution and magnetic properties were made of a FeB12/Pt10/[FeB1.2/Pt1]{sub 15}/Ta5 nm multilayered structure with a FeB12/Pt10/FeBPt33/Ta5 nm co-deposited structure. The Ta capping layer was used to protect the films from oxidation. Both these samples were sputtered in the same planetary deposition system onto thermally oxidized silicon substrates. They both represent layer-by-layer deposition, with the second type of deposition having atomically fine layers, more than an order of magnitude finer than the first type. The samples were annealed at a range of times, temperatures, and vacuum conditions. X-ray diffraction (XRD), transmission electron microscopy, and alternating gradient magnetometry were employed to characterize the structural and magnetic properties, respectively. Significant differences were observed between the two types of structures. A maximum coercivity of 8.9 kOe was seen for the atomically fine multilayer, about 10% more than that for the coarse multilayer. XRD analysis confirmed that both the coarse and fine multilayers were in the L1{sub 0} phase after annealing. Our results indicate that the co-deposited film, which is really composed of atomically fine multilayers, is superior to the coarse multilayered FeB/Pt for the formation of L1{sub 0}-phase FePt.

  13. Changes in Precipitate Distributions and the Microstructural Evolution of P24/P91 Dissimilar Metal Welds During PWHT

    NASA Astrophysics Data System (ADS)

    Dawson, Karl E.; Tatlock, Gordon J.; Chi, Kuangnan; Barnard, Peter

    2013-11-01

    The effect of post-weld heat treatments (PWHTs) on the evolution of precipitate phases in dissimilar metal welds made between 9 pct Cr P91 alloy and 2.25 pct Cr T/P24-type weld metal has been investigated. Sections of multi-pass fusion welds were analyzed in their as welded condition and after PWHTs of 2 and 8 hour duration at 1003 K (730 °C). Thin foil specimens and carbon extraction replicas have been examined in transmission electron microscopes in order to identify precipitate phases and substantiate their distributions in close proximity to the fusion line. The findings of these studies confirm that a carbon-depleted region develops in the lower alloyed weld material, adjacent to the weld interface, during thermal processing. A corresponding carbon enriched region is formed, simultaneously, in the coarse grain heat affected zone of the P91 parent alloy. It has been demonstrated that carbon depletion from the weld alloy results in the dissolution of M7C3 and M23C6 chromium carbides. However, micro-alloying additions of vanadium and niobium which are made to both the P24 and P91 alloys facilitate the precipitation of stable, nano-scale, MX carbonitride particles. This work demonstrates that these particles, which are of key importance to the strength of ferritic creep resistant alloys, are retained in carbon-depleted regions. The microstructural stability which is conferred by their retention means that the pernicious effects of recrystallization are largely avoided.

  14. Effects of Dynamic Multi-directional Loading on the Microstructural Evolution and Thermal Stability of Pure Aluminum

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Zhang, Hua; Chen, Yadong

    2016-07-01

    Microstructural evolution and thermal stability of 1050 commercial pure aluminum processed by means of split Hopkinson pressure bar and Instron-3369 mechanical testing machine to an accumulated strain of 3.6 were investigated. The nominal strain rates reached up to 3.0 × 103 and 1 × 10-3/s, respectively. Samples in the deformed state and annealed in the temperature interval 423-523 K for 1 h were characterized by transmission electron microscopy (TEM). TEM observations reveal that the initial coarse grains are refined significantly, and the deformed structures mainly consist of equiaxed subgrains and dislocation cells with a high density of interior dislocation. In addition, the average subgrain/cell sizes of these two kinds of deformed samples are nearly the same. As to recovery behavior, recovered subgrains are observed at 473 (dynamic) versus 523 K (quasi-static), that is to say, recovery is fairly slow in the quasi-static deformed samples. It is therefore to be expected that thermal stability of this dynamic deformed aluminum is weaker than that of the quasi-static compressed one, which is due to the higher density of dislocation and nonequilibrium dislocation configurations produced during dynamic loading.

  15. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    NASA Astrophysics Data System (ADS)

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-10-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries.

  16. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Song, Hyejin; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Byeong-Joo; Lee, Sunghak

    2016-06-01

    The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn ( α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α'-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.

  17. Microstructure Evolution and Hardness of an Ultra-High Strength Cu-Ni-Si Alloy During Thermo-mechanical Processing

    NASA Astrophysics Data System (ADS)

    Lei, Q.; Li, Z.; Hu, W. P.; Liu, Y.; Meng, C. L.; Derby, B.; Zhang, W.

    2016-07-01

    Microstructure evolution and hardness changes of an ultra-high strength Cu-Ni-Si alloy during thermo-mechanical processing have been investigated. For hot-compressive deformation specimens, dynamic recrystallization preferentially appeared on deformation bands. As deformation temperature increased from 750 to 900 °C, elongated grains with the Cubic texture {001} <100> were substituted by recrystallized grains with Copper texture {112} <111>. For the samples having undergone cold rolling followed by annealing, static recrystallization preferentially occurred in the deformation bands, and then complete recrystallization occurred. Goss, Cubic, and Brass textures remained after annealing at 600 and 700 °C for 1 h; R texture {111} <211> and recrystallization texture {001} <100> were formed in samples annealed at 800 and 900 °C for 1 h, respectively. For samples processed under multi-directional forging at cryogenic temperature, the hardness was increased as a result of work hardening and grain refinement strengthening. These were attributed to the formation of equiaxed sub-grain structures and a high dislocation density.

  18. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  19. Structural evolution of La-Cr-O thin films: Part I. Microstructure and phase development

    SciTech Connect

    Orlovskaya, N.; Coratolo, A.; Lugovy, M.; Johnson, C.D.; Gemmen, R.S.

    2006-12-05

    The structural evolution of La–Cr–O thin films and the formation mechanisms of the LaCrO3 perovskite phase have been studied. X-ray amorphous La–Cr–O protective coatings were deposited by magnetron sputtering on metallic interconnect materials. During the annealing of the material in air a two-step phase transition from La–Cr–O to a monoclinic LaCrO4 monazite and further to an orthorhombic LaCrO3 perovskite phase was observed. The formation of a fine nanoporous structure is a result of the significant increase in density of the final LaCrO3 perovskite in comparison with monazite LaCrO4 phase. While the porous structure was not sought after for this application, these distinctive nanostructures may have numerous applications in catalysis, separation membranes or for other SOFC components.

  20. Modeling ductile metals under large strain, pressure and high strain rates incorporating damage and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone

    2011-06-01

    In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behaviour of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.

  1. Modeling ductile metals under large strain, pressure and high strain rate incorporating damage and microstructure evolution

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone

    2012-03-01

    In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.

  2. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.

    PubMed

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  3. Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections

    NASA Astrophysics Data System (ADS)

    Dong, Hongqun; Vuorinen, Vesa; Laurila, Tomi; Paulasto-Kröckel, Mervi

    2016-06-01

    The interfacial reactions between the widely employed solder Au-20wt.%Sn and the common contact metallizations (e.g. Ni, Cu and Pt) are normally complex and not well determined. In order to identify the proper contactor for Au-20wt.%Sn solder, the present study focuses on (1) rationalizing the interfacial reaction mechanisms of Au-20wt.%Sn|Cu as well as (2) measuring the mechanical properties of individual intermetallics formed at the interface. The evolution of interfacial reaction products were rationalized by using the experimental results in combination with the calculated Au-Cu-Sn phase diagram information. It was found that the growth of the AuCu interfacial intermetallic layer was diffusion-controlled. The diffusion path of Au-20wt.%Sn|Cu at 150°C was proposed. The hardness and indentation modulus of the interfacial reaction products were measured using nanoindentation tests. The results revealed a significant influence of the Cu solubility on the mechanical properties of (Au,Cu)Sn and (Au,Cu)5Sn, i.e. their hardness and contact modulus increased with the increase in the amount of Cu. Furthermore, results obtained here for the Au-20wt.%Sn|Cu joints were compared to those from Au-20wt.%Sn|Ni in order to assess the similarities and differences between these widely used interconnection metallization systems.

  4. Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections

    NASA Astrophysics Data System (ADS)

    Dong, Hongqun; Vuorinen, Vesa; Laurila, Tomi; Paulasto-Kröckel, Mervi

    2016-10-01

    The interfacial reactions between the widely employed solder Au-20wt.%Sn and the common contact metallizations (e.g. Ni, Cu and Pt) are normally complex and not well determined. In order to identify the proper contactor for Au-20wt.%Sn solder, the present study focuses on (1) rationalizing the interfacial reaction mechanisms of Au-20wt.%Sn|Cu as well as (2) measuring the mechanical properties of individual intermetallics formed at the interface. The evolution of interfacial reaction products were rationalized by using the experimental results in combination with the calculated Au-Cu-Sn phase diagram information. It was found that the growth of the AuCu interfacial intermetallic layer was diffusion-controlled. The diffusion path of Au-20wt.%Sn|Cu at 150°C was proposed. The hardness and indentation modulus of the interfacial reaction products were measured using nanoindentation tests. The results revealed a significant influence of the Cu solubility on the mechanical properties of (Au,Cu)Sn and (Au,Cu)5Sn, i.e. their hardness and contact modulus increased with the increase in the amount of Cu. Furthermore, results obtained here for the Au-20wt.%Sn|Cu joints were compared to those from Au-20wt.%Sn|Ni in order to assess the similarities and differences between these widely used interconnection metallization systems.

  5. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  6. Neuron-based heredity and human evolution

    PubMed Central

    Gash, Don M.; Deane, Andrew S.

    2015-01-01

    It is widely recognized that human evolution has been driven by two systems of heredity: one DNA-based and the other based on the transmission of behaviorally acquired information via nervous system functions. The genetic system is ancient, going back to the appearance of life on Earth. It is responsible for the evolutionary processes described by Darwin. By comparison, the nervous system is relatively newly minted and in its highest form, responsible for ideation and mind-to-mind transmission of information. Here the informational capabilities and functions of the two systems are compared. While employing quite different mechanisms for encoding, storing and transmission of information, both systems perform these generic hereditary functions. Three additional features of neuron-based heredity in humans are identified: the ability to transfer hereditary information to other members of their population, not just progeny; a selection process for the information being transferred; and a profoundly shorter time span for creation and dissemination of survival-enhancing information in a population. The mechanisms underlying neuron-based heredity involve hippocampal neurogenesis and memory and learning processes modifying and creating new neural assemblages changing brain structure and functions. A fundamental process in rewiring brain circuitry is through increased neural activity (use) strengthening and increasing the number of synaptic connections. Decreased activity in circuitry (disuse) leads to loss of synapses. Use and disuse modifying an organ to bring about new modes of living, habits and functions are processes in line with Neolamarckian concepts of evolution (Packard, 1901). Evidence is presented of bipartite evolutionary processes—Darwinian and Neolamarckian—driving human descent from a common ancestor shared with the great apes. PMID:26136649

  7. Neuron-based heredity and human evolution.

    PubMed

    Gash, Don M; Deane, Andrew S

    2015-01-01

    It is widely recognized that human evolution has been driven by two systems of heredity: one DNA-based and the other based on the transmission of behaviorally acquired information via nervous system functions. The genetic system is ancient, going back to the appearance of life on Earth. It is responsible for the evolutionary processes described by Darwin. By comparison, the nervous system is relatively newly minted and in its highest form, responsible for ideation and mind-to-mind transmission of information. Here the informational capabilities and functions of the two systems are compared. While employing quite different mechanisms for encoding, storing and transmission of information, both systems perform these generic hereditary functions. Three additional features of neuron-based heredity in humans are identified: the ability to transfer hereditary information to other members of their population, not just progeny; a selection process for the information being transferred; and a profoundly shorter time span for creation and dissemination of survival-enhancing information in a population. The mechanisms underlying neuron-based heredity involve hippocampal neurogenesis and memory and learning processes modifying and creating new neural assemblages changing brain structure and functions. A fundamental process in rewiring brain circuitry is through increased neural activity (use) strengthening and increasing the number of synaptic connections. Decreased activity in circuitry (disuse) leads to loss of synapses. Use and disuse modifying an organ to bring about new modes of living, habits and functions are processes in line with Neolamarckian concepts of evolution (Packard, 1901). Evidence is presented of bipartite evolutionary processes-Darwinian and Neolamarckian-driving human descent from a common ancestor shared with the great apes.

  8. Role of annealing temperatures on the evolution of microstructure and properties of Cr2O3 films

    NASA Astrophysics Data System (ADS)

    He, Nairu; Ji, Li; Liu, Xiaohong; Li, Hongxuan; Zhou, Huidi; Chen, Jianmin

    2015-12-01

    Cr2O3 films were deposited on Ni-based high-temperature alloy substrates by using a cathodic arc ion plating system and then annealed in air at different temperatures. The effects of different annealing temperatures on the microstructure, mechanical and tribological properties of the films were examined. Results showed that the as-deposited Cr2O3 films were primarily amorphous with crystallization and vaporization temperatures of 360 °C and 940 °C, respectively. Annealing above the crystallization temperature improved the hardness, adhesion, and wear life of the Cr2O3 films. A mesh-like heave structure comprising Cr2O3 and Cr2Ti7O17 phases formed on the film surface after annealing above the vaporization temperature. The mesh-like heave structure endued the film with excellent tribological properties in a wide temperature range from room temperature (RT) to 1000 °C.

  9. Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750oC

    SciTech Connect

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Yamamoto, Yukinori

    2008-12-01

    Creep-rupture tests in air of foils and sheets of the nickel-based superalloy 625 at 750oC and 100 MPa have been conducted, and indicate the additional processing required to achieve foil form reduces creep life compared to thicker-section wrought product forms. Both scanning and transmission electron microscopy were employed to examine as-processed and creep-tested specimens to correlate observed microstructures and creep behavior. Prior to creep testing, the morphology consists of gamma phase with M6C precipitates. This morphology changes during creep to one consisting of orthorhombic delta phase extending across gamma grains, and grain boundaries dominated by the presence of rhombohedral mu phase, delta phase, and a diamond-cubic eta phase. Additionally, temperature ranges of equilibrium phase field stability were calculated using JMatPro. The phases predicted and their compositions generally agree with those observed within the superalloy after creep testing.

  10. High-temperature microstructural stability in iron- and nickel-base alloys from rapid solidification processing

    SciTech Connect

    Flinn, J.E. ); Bae, J.C.; Kelly, T.F. )

    1991-08-01

    The properties and performance of metallic alloys for heat resistant applications depend on the fineness, homogeneity, and stability of their microstructures, particularly after high temperature exposures. Potential advantages of rapid solidification processing (RSP) of alloys for such applications are the homogeneity in composition and fine microstructural features derived from the nature of the RSP process. The main RSP product form is powder, is which obtained by atomizing a narrow melt stream into fine molten droplets. Rapid cooling of the droplets is typically achieved through convective cooling with noble gases such as argon or helium. Consolidation of RSP powder, either using near-net-shape methods or into forms that can be converted to final product shapes, requires exposures to fairly high temperatures, usually 900 to 1200{degrees}C for iron- and nickel-base alloys. Full consolidation, i.e., complete densification with accompanying particle bonding, usually requires pressure or stress assistance. Consolidation, as well as any subsequent thermal-mechanical processing, may affect the chemical homogeneity and fine microstructures. A study has been performed on a series of RSP iron- and nickel-base alloys. The results of microstructure examinations and mechanical properties tests of the consolidated powders, and their correlation, will be covered in this paper. 14 refs., 10 figs., 1 tab.

  11. NODDI and Tensor-Based Microstructural Indices as Predictors of Functional Connectivity

    PubMed Central

    Deligianni, Fani; Carmichael, David W.; Zhang, Gary H.; Clark, Chris A.; Clayden, Jonathan D.

    2016-01-01

    In Diffusion Weighted MR Imaging (DWI), the signal is affected by the biophysical properties of neuronal cells and their relative placement, as well as extra-cellular tissue compartments. Typically, microstructural indices, such as fractional anisotropy (FA) and mean diffusivity (MD), are based on a tensor model that cannot disentangle the influence of these parameters. Recently, Neurite Orientation Dispersion and Density Imaging (NODDI) has exploited multi-shell acquisition protocols to model the diffusion signal as the contribution of three tissue compartments. NODDI microstructural indices, such as intra-cellular volume fraction (ICVF) and orientation dispersion index (ODI) are directly related to neuronal density and orientation dispersion, respectively. One way of examining the neurophysiological role of these microstructural indices across neuronal fibres is to look into how they relate to brain function. Here we exploit a statistical framework based on sparse Canonical Correlation Analysis (sCCA) and randomised Lasso to identify structural connections that are highly correlated with resting-state functional connectivity measured with simultaneous EEG-fMRI. Our results reveal distinct structural fingerprints for each microstructural index that also reflect their inter-relationships. PMID:27078862

  12. Pore- and micro-structural characterization of a novel structural binder based on iron carbonation

    SciTech Connect

    Das, Sumanta; Stone, David; Convey, Diana; Neithalath, Narayanan

    2014-12-15

    The pore- and micro-structural features of a novel binding material based on the carbonation of waste metallic iron powder are reported in this paper. The binder contains metallic iron powder as the major ingredient, followed by additives containing silica and alumina to facilitate favorable reaction product formation. Compressive strengths sufficient for a majority of concrete applications are attained. The material pore structure is investigated primarily through mercury intrusion porosimetry whereas electron microscopy is used for microstructural characterization. Reduction in the overall porosity and the average pore size with an increase in carbonation duration from 1 day to 4 days is noticed. The pore structure features are used in predictive models for gas and moisture transport (water vapor diffusivity and moisture permeability) through the porous medium which dictates its long-term durability when used in structural applications. Comparisons of the pore structure with those of a Portland cement paste are also provided. The morphology of the reaction products in the iron-based binder, and the distribution of constituent elements in the microstructure are also reported. - Highlights: • Carbonation of iron produces a dense microstructure. • Pore volume in iron carbonate lower, critical size higher than those in OPC pastes • Reaction product contains iron, carbon, silicon, aluminum and calcium. • Power-law for porosity-moisture permeability relationship was established.

  13. Microstructural evolution and correlated magnetic domain configuration of nanoparticles embedded in a single crystal of Cu75–Ni20–Fe5 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seop; Taniuchi, Toshiyuki; Mizuguchi, Masaki; Shin, Shik; Takanashi, Koki; Takeda, Mahoto

    2016-08-01

    We have investigated the microstructural evolution and magnetic domain configurations in nano-scale Fe–Ni rich precipitates formed in a single-crystal specimen of Cu–20at%Ni–5at%Fe alloy on isothermal annealing at 873 K and 973 K, using a combination of transmission electron microscopy (TEM), electron backscattering diffraction, field-emission scanning electron microscopy (FE-SEM), and laser-based photoemission electron microscopy (laser-PEEM). The TEM and FE-SEM observations showed that small, spherical solute-rich particles formed randomly in the initial stage of the precipitation, but on isothermal annealing, cubic, rectangular, plate-shaped and rod-shaped precipitates appeared and aligned along the  <1 0 0 >  directions in the copper-rich matrix. Laser-PEEM was applied to single-crystal specimens of the alloy and allowed direct observations of magnetic domain configurations in individual ferromagnetic particles at the nanometer scale. This revealed that cubic particles of size approximately 50–60 nm consist of single magnetic domains, but particles of size 100 nm have a closed spin structure (e.g. vortex or multiple domains).

  14. Base-Induced Liquid Crystals of Graphene Oxide for Preparing Elastic Graphene Foams with Long-Range Ordered Microstructures.

    PubMed

    Yao, Bowen; Chen, Ji; Huang, Liang; Zhou, Qinqin; Shi, Gaoquan

    2016-02-24

    Base-induced graphene oxide (GO) liquid crystals form a highly ordered texture. This microstructure can be inherited by graphene foams prepared by hydrothermal reduction, showing a long-range ordered microstructure of graphene sheets in 3D. This provides an insightful understanding into the supramolecular chemistry of GO sheets.

  15. Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces.

    PubMed

    Parsons, I; Lee, M R; Smith, J V

    1998-12-22

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4-0.6 microm wide, forming an orthogonal honeycomb network in a surface zone 50 microm thick, with 2-3 x 10(6) intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth's surface by approximately 3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial "soup." Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria.

  16. Biochemical evolution II: Origin of life in tubular microstructures on weathered feldspar surfaces

    PubMed Central

    Parsons, Ian; Lee, Martin R.; Smith, Joseph V.

    1998-01-01

    Mineral surfaces were important during the emergence of life on Earth because the assembly of the necessary complex biomolecules by random collisions in dilute aqueous solutions is implausible. Most silicate mineral surfaces are hydrophilic and organophobic and unsuitable for catalytic reactions, but some silica-rich surfaces of partly dealuminated feldspars and zeolites are organophilic and potentially catalytic. Weathered alkali feldspar crystals from granitic rocks at Shap, north west England, contain abundant tubular etch pits, typically 0.4–0.6 μm wide, forming an orthogonal honeycomb network in a surface zone 50 μm thick, with 2–3 × 106 intersections per mm2 of crystal surface. Surviving metamorphic rocks demonstrate that granites and acidic surface water were present on the Earth’s surface by ∼3.8 Ga. By analogy with Shap granite, honeycombed feldspar has considerable potential as a natural catalytic surface for the start of biochemical evolution. Biomolecules should have become available by catalysis of amino acids, etc. The honeycomb would have provided access to various mineral inclusions in the feldspar, particularly apatite and oxides, which contain phosphorus and transition metals necessary for energetic life. The organized environment would have protected complex molecules from dispersion into dilute solutions, from hydrolysis, and from UV radiation. Sub-micrometer tubes in the honeycomb might have acted as rudimentary cell walls for proto-organisms, which ultimately evolved a lipid lid giving further shelter from the hostile outside environment. A lid would finally have become a complete cell wall permitting detachment and flotation in primordial “soup.” Etch features on weathered alkali feldspar from Shap match the shape of overlying soil bacteria. PMID:9860941

  17. Experimental investigations and multiscale modeling of the microstructure evolution and the mechanical properties of a ferritic steel grade during the production process

    NASA Astrophysics Data System (ADS)

    Helm, Dirk; Baiker, Maria; Bienger, Pierre

    2013-05-01

    The process chain for sheet metals after casting to produce components made of semi-finished products is complex and the resulting mechanical properties of the produced material depend strongly on the evolution of the microstructure. After casting, a typical process chain consists of hot rolling, cold rolling, annealing, skin pass rolling, and sheet metal forming. In order to represent the microstructure evolution in an adequate way, a multiscale modeling concept is applied for the process steps cold rolling, annealing, and sheet metal forming. In this Integrated Computational Materials Engineering (ICME) concept, the strong microstructure evolution during the production of semi-finished products is modeled by using crystal plasticity for the representation of the cold rolling process and a cellular automaton is incorporated to model the annealing procedure. In both cases, only the microstructure in an adequate unit cell is considered. For sheet metal forming, the whole component has to be simulated together with the interaction between workpiece and the forming tools in order to solve technological problems like springback. For this purpose, classical macroscopic plasticity models have been applied. To connect the different length scales of the modeling approaches, a scale transition on the basis of numerical homogenization is introduced for the determination of the mechanical properties like the multi-axial yield behavior. These information are required to virtually determine the type of the macroscopic plasticity model, the material parameters of the plasticity model, and to simulate sheet metal forming processes. In the article, the different modeling approaches are compared step by step with experimental investigations in order to prove the predictability of each modeling technique.

  18. Black hole thermodynamics based on unitary evolutions

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  19. Microstructural development in high volume fraction gamma prime Ni-base oxide-dispersion-strengthened superalloys

    NASA Astrophysics Data System (ADS)

    Kang, S. K.; Benn, R. C.

    1985-07-01

    The mechanical alloying process has successfully combined oxide-dispersion-strengthening with conventional gamma prime precipitation hardening for advanced gas turbine materials. INCONEL* alloy MA 6000, a mechanically alloyed Ni-base superalloy, has the highest temperature capability among commercially available superalloys. Further improvement of the intermediate temperature strength has been pursued by both increasing the gamma prime content up to 80 vol pct and controlling the additions of refractory metals. The microstructural development of these new experimental alloys is reported in this paper, especially for an alloy, nominally identified as Alloy 51, having the composition Ni-9.3 pct Cr-8.5 pct Al-6.6 pct W-3.4 pct Mo-0.15 pct Zr-0.01 pct B-l.l pct Y2O3 (wt pct). Both the primary and the secondary recrystallized microstructures of the alloy were characterized in terms of gamma grain structure, gamma prime precipitate morphology, orientation relationships, dispersoids, carbide/nitride particles, and chemical composition of intermetallic phases. The microstructural stability of the alloy under stress rupture conditions was also investigated in terms of coarsening/coalescence of gamma prime precipitates. Correlation of the microstructural information with the high temperature properties of the alloy is also briefly discussed.

  20. Solid lipid nanoparticle preparation by a warm microemulsion based process: influence of microemulsion microstructure.

    PubMed

    Fadda, P; Monduzzi, M; Caboi, F; Piras, S; Lazzari, P

    2013-03-25

    Warm microemulsions (WME) containing lipids are used as starting systems to obtain solid lipid nanoparticles (SLN) in alternative processes to those based on high pressure homogenization technique. SLN characteristics can be influenced by the microemulsion composition and the specific conditions adopted in the quenching process related to the transformation of WME into nanoparticles. To establish optimized conditions for the production of SLN starting from WME, in a first step of this work we have defined the microstructure of warm microemulsions highlighted in the lecithin (LCT)/water (W)/tripalmitin (TP)/1-butanol (B)/taurocholate sodium salt (ST) phase behavior at 70°C. Moreover, we have further studied the LCT/W/TP/B system by evaluating the effect on the microemulsion area due to the LCT/B weight ratio, the replacement of 1-butanol with different alcohols (ROH), and the addition of taurocholate sodium salt (ST) at different LCT/ST weight ratios. The microstructure of the isotropic phase region obtained in the presence of ST has been characterized by both (1)H NMR PGSE measurements and electrical conductivity. The characteristics of final nanoparticles are discussed taking into account both the microstructure of the parent WME and the conditions of the quenching process leading to SLN. The present results highlight the relevance of the microstructural characteristic of WME to assure the obtainment of SLN with average diameter in the order of 100-2000 nm and narrow size distribution. PMID:23422277

  1. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  2. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  3. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep

    SciTech Connect

    Li, Shengzhi; Eliniyaz, Zumrat; Zhang, Lanting; Sun, Feng; Shen, Yinzhong; Shan, Aidang

    2012-11-15

    This research focused on the formation and microstructural evolution of delta ferrite phase in SAVE12 steel. The formation of delta ferrite was due to the high content of ferrite forming alloy elements such as Cr, W, and Ta. This was interpreted through either JMatPro-4.1 computer program or Cr{sub eq} calculations. Delta ferrite was found in bamboo-like shape and contained large amount of MX phase. It was surrounded by Laves phases before creep or aging treatment. Annealing treatments were performed under temperatures from 1050 Degree-Sign C to 1100 Degree-Sign C and various time periods to study its dissolution kinetics. The result showed that most of the delta ferrite can be dissolved by annealing in single phase austenitic region. Dissolution process of delta ferrite may largely depend on dissolution kinetic factors, rather than on thermodynamic factors. Precipitation behavior during short-term (1100 h) creep was investigated at temperature of 600 Degree-Sign C under a stress of 180 MPa. The results demonstrated that delta ferrite became preferential nucleation sites for Laves phase at the early stage of creep. Laves phase on the boundary around delta ferrite showed relatively slower growth and coarsening rate than that inside delta ferrite. - Highlights: Black-Right-Pointing-Pointer Delta ferrite is systematically studied under heat treatment and short-term creep. Black-Right-Pointing-Pointer Delta ferrite contains large number of MX phase and is surrounded by Laves phases before creep or aging treatment. Black-Right-Pointing-Pointer Formation of delta ferrite is interpreted by theoretical and empirical methods. Black-Right-Pointing-Pointer Most of the delta ferrite is dissolved by annealing in single phase austenitic region. Black-Right-Pointing-Pointer Delta ferrite becomes preferential nucleation sites for Laves phase at the early stage of creep.

  4. Numerical Simulations of One-dimensional Microstructure Dynamics

    SciTech Connect

    Berezovski, M.; Berezovski, A.; Engelbrecht, J.

    2010-05-21

    Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.

  5. A modified split Hopkinson torsional bar system for correlated study of τ–γ relations, shear localization and microstructural evolution

    PubMed Central

    Yang, Rong; Zhang, Husheng; Shen, Letian; Xu, Yongbo; Bai, Yilong; Dodd, Bradley

    2014-01-01

    The conventional split Hopkinson torsional bar (SHTB) system consists of two bars, which can successfully produce the data for the construction of dynamic torsional shear stress and strain relationships. However, the system cannot provide reliable information on the progression of the deformed micro-structure during the test. The reverberation of waves in the bars and the tested specimen can spoil the microstructural pattern formed during the effective loading. This paper briefly reviews a modified version of the SHTB system consisting of four bars that has been developed. This modified system can eliminate the reverberation of waves in the specimen and provide only a single rectangular torsional stress pulse, thus it can properly freeze the microstructure formed during the effective period of loading in the specimen. By using the advantage of the modified SHTB system, together with a new design of specimen, it is possible to perform a correlated study of the dynamic stress–strain response, shear localization and the evolution of the microstructure at a fixed view-field (position) on a given specimen during the sequence of the loading time. The principles, experimental set-up and procedure, calibration and some preliminary results of the correlated study are reported in this paper. PMID:24711492

  6. Deformation Behavior and Microstructure Evolution of As-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua

    2016-09-01

    The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.

  7. Effect of the content of B4C on microstructural evolution and wear behaviors of the laser-clad coatings fabricated on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Bai, L. L.; Li, J.; Chen, J. L.; Song, R.; Shao, J. Z.; Qu, C. C.

    2016-01-01

    TiNi/Ti2Ni-based composite coatings reinforced by TiC and TiB2 were produced on Ti6Al4V by laser cladding the mixture of a Ni-based alloy and different contents of B4C (0 wt%, 5 wt%, 15 wt%, and 25 wt%). The macromorphologies and microstructures of the coatings were examined through optical microscopy, X-ray diffractometry, scanning electron microscopy, and energy dispersive spectrometry. The microhardness, fracture toughness, and wear behaviors of the coatings were also investigated by using a microhardness tester and an ultra-functional wear testing machine. Results showed that the coatings were mainly composed of TiNi/Ti2Ni and TiC/TiB2 as the matrix and reinforcement particles, respectively. The phase constituents of the coatings were not influenced by addition of different contents of B4C. The microstructure of the reinforcements in the coatings presented the following evolution: hypereutectic consisting of blocky (TiC+TiB2)e eutectic and primary TiCp cellular dendrites (0 wt% B4C), mixture of hypereutectic and willow-shaped (TiB2+TiC)p pseudoeutectic (5 wt% B4C), and pseudoeutectic (15 and 25 wt% B4C). With increasing B4C content, the volume fraction and size of the pseudoeutectic structures as well as the average microhardness of the coatings (850, 889, 969, and 1002 HV0.2) were increased. By contrast, the average fracture toughness of the coatings was gradually decreased (4.47, 4.21, 4.06, and 3.85 Mpa m1/2) along with their wear volumes (0 wt%, 5 wt%, and 15 wt% B4C). The increase in B4C content to 25 wt% did not further reduce wear loss. The wear mechanism transformed from micro-cutting (0 wt% B4C) into a combination of micro-cutting and brittle debonding (5 wt% B4C) and finally led to brittle debonding (15 wt% and 25 wt% B4C). Coatings with suitable contents of B4C (less than 15 wt%) showed excellent comprehensive mechanical properties.

  8. Microstructural evolution in NF616 (P92) and Fe–9Cr–0.1C-model alloy under heavy ion irradiation

    SciTech Connect

    Topbasi, Cem; Kaoumi, Djamel; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    In this comparative study, in situ investigations of the microstructure evolution in a Fee9Cr ferritic emartensitic steel, NF616, and a Fee9Cre0.1C-model alloy with a similar ferriticemartensitic microstructure have been performed. NF616 and Fee9Cre0.1C-model alloy were irradiated to high doses (up to ~10 dpa) with 1 MeV Kr ions between 50 and 673 K. Defect cluster density increased with dose and saturated in both alloys. The average size of defect clusters in NF616 was constant between 50 and 573 K, on the other hand average defect size increased with dose in Fee9Cre0.1C-model alloy around ~1 dpa. At low temperatures (50e298 K), alignment of small defect clusters resulted in the formation of extensive defects in Fee9Cre0.1C-model alloy around ~2e3 dpa, while similar large defects in NF616 started to form at a high temperature of 673 K around ~5 dpa. Interaction of defect clusters with the lath boundaries were found to be much more noticeable in Fee9Cre0.1C-model alloy. Differences in the microstructural evolution of NF616 and Fee9Cre0.1C-model alloy are explained by means of the defect cluster trapping by solute atoms which depends on the solute atom concentrations in the alloys.

  9. Microstructural evolution in NF616 (P92) and Fe-9Cr-0.1C-model alloy under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem; Kaoumi, Djamel; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    In this comparative study, in situ investigations of the microstructure evolution in a Fe-9Cr ferritic-martensitic steel, NF616, and a Fe-9Cr-0.1C-model alloy with a similar ferritic-martensitic microstructure have been performed. NF616 and Fe-9Cr-0.1C-model alloy were irradiated to high doses (up to ∼10 dpa) with 1 MeV Kr ions between 50 and 673 K. Defect cluster density increased with dose and saturated in both alloys. The average size of defect clusters in NF616 was constant between 50 and 573 K, on the other hand average defect size increased with dose in Fe-9Cr-0.1C-model alloy around ∼1 dpa. At low temperatures (50-298 K), alignment of small defect clusters resulted in the formation of extensive defects in Fe-9Cr-0.1C-model alloy around ∼2-3 dpa, while similar large defects in NF616 started to form at a high temperature of 673 K around ∼5 dpa. Interaction of defect clusters with the lath boundaries were found to be much more noticeable in Fe-9Cr-0.1C-model alloy. Differences in the microstructural evolution of NF616 and Fe-9Cr-0.1C-model alloy are explained by means of the defect cluster trapping by solute atoms which depends on the solute atom concentrations in the alloys.

  10. The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe-9%Cr ODS steel to 3 dpa at 500 °C

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2015-12-01

    A model Fe-9%Cr oxide dispersion strengthened (ODS) steel was irradiated with protons or neutrons to a dose of 3 displacements per atom (dpa) at a temperature of 500 °C, enabling a direct comparison of ion to neutron irradiation effects at otherwise fixed irradiation conditions. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography including cluster analysis. Both proton and neutron irradiations produced a comparable void and dislocation loop microstructure. However, the irradiation response of the Ti-Y-O oxide nanoclusters varied. Oxides remained stable under proton irradiation, but exhibited dissolution and an increase in Y:Ti composition ratio under neutron irradiation. Both proton and neutron irradiation also induced varying extents of Si, Ni, and Mn clustering at existing oxide nanoclusters. Protons are able to reproduce the void and loop microstructure of neutron irradiation carried out to the same dose and temperature. However, since nanocluster evolution is controlled by both diffusion and ballistic impacts, protons are rendered unable to reproduce the nanocluster evolution of neutron irradiation at the same dose and temperature.

  11. [The motive force of evolution based on the principle of organismal adjustment evolution.].

    PubMed

    Cao, Jia-Shu

    2010-08-01

    From the analysis of the existing problems of the prevalent theories of evolution, this paper discussed the motive force of evolution based on the knowledge of the principle of organismal adjustment evolution to get a new understanding of the evolution mechanism. In the guide of Schrodinger's theory - "life feeds on negative entropy", the author proposed that "negative entropy flow" actually includes material flow, energy flow and information flow, and the "negative entropy flow" is the motive force for living and development. By modifying my own theory of principle of organismal adjustment evolution (not adaptation evolution), a new theory of "regulation system of organismal adjustment evolution involved in DNA, RNA and protein interacting with environment" is proposed. According to the view that phylogenetic development is the "integral" of individual development, the difference of negative entropy flow between organisms and environment is considered to be a motive force for evolution, which is a new understanding of the mechanism of evolution. Based on such understanding, evolution is regarded as "a changing process that one subsystem passes all or part of its genetic information to the next generation in a larger system, and during the adaptation process produces some new elements, stops some old ones, and thereby lasts in the larger system". Some other controversial questions related to evolution are also discussed.

  12. Understanding the Role of Hot Isostatic Pressing Parameters on the Microstructural Evolution of Ti-6Al-4V and Inconel 718 Fabricated by Electron Beam Melting

    SciTech Connect

    Peter, William H.; Nandwana, Peeyush; Kirka, Michael M.; Dehoff, Ryan R.; Sames, William; Erdman, III, Donald L.; Eklund, Anders; Howard, Ron

    2015-04-01

    In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powder bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.

  13. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect

    Liu Fei; Zhang Zhaodong; Liu Liming

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  14. Evolution of RNA-Based Networks.

    PubMed

    Stadler, Peter F

    2016-01-01

    RNA molecules have served for decades as a paradigmatic example of molecular evolution that is tractable both in in vitro experiments and in detailed computer simulation. The adaptation of RNA sequences to external selection pressures is well studied and well understood. The de novo innovation or optimization of RNA aptamers and riboswitches in SELEX experiments serves as a case in point. Likewise, fitness landscapes building upon the efficiently computable RNA secondary structures have been a key toward understanding realistic fitness landscapes. Much less is known, however, on models in which multiple RNAs interact with each other, thus actively influencing the selection pressures acting on them. From a computational perspective, RNA-RNA interactions can be dealt with by same basic methods as the folding of a single RNA molecule, although many details become more complicated. RNA-RNA interactions are frequently employed in cellular regulation networks, e.g., as miRNA bases mRNA silencing or in the modulation of bacterial mRNAs by small, often highly structured sRNAs. In this chapter, we summarize the key features of networks of replicators. We highlight the differences between quasispecies-like models describing templates copied by an external replicase and hypercycle similar to autocatalytic replicators. Two aspects are of importance: the dynamics of selection within a population, usually described by conventional dynamical systems, and the evolution of replicating species in the space of chemical types. Product inhibition plays a key role in modulating selection dynamics from survival of the fittest to extinction of unfittest. The sequence evolution of replicators is rather well understood as approximate optimization in a fitness landscape for templates that is shaped by the sequence-structure map of RNA. Some of the properties of this map, in particular shape space covering and extensive neutral networks, give rise to evolutionary patterns such as drift

  15. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect

    Lin, Wei-Ting; Cheng, An; Huang, Ran; Zou, Si-Yu

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  16. Modeling microstructure evolution of binary systems subjected to irradiation and mechanical loading

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Shchokotova, Olga M.; Lysenko, Irina O.; Kharchenko, Vasyl O.

    2015-07-01

    We study a change in mechanical properties of binary systems subjected to irradiation influence described by ballistic flux of atomic mixing having regular and stochastic contributions. By using numerical modeling based on the phase field approach we study dynamics of deformation fields in a previously irradiated system and in the binary system deformed during irradiation. An influence of both deterministic and stochastic components of ballistic flux onto both yield strength and ultimate strength is studied. We have found that degradation of mechanical properties relates to the formation of percolating clusters of shear bands. Considering a hardening coefficient we analyze stages of plastic deformation of both initially irradiated alloy and alloy subjected to sustained irradiation. Stability of binary alloy under mechanical loading in the form of shear strain with a constant rate and cyclic deformation is discussed.

  17. In Situ Monitoring of Microstructures during Subsequent Phase Transitions in the Olivine System up to 30 GPa and 1100 K Using 3D-XRD Single-Grain Analysis. Effects of Grain Size Evolution on the Stagnation of Slab.

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Hilairet, N.; Ghosh, S.; Jacobs, J.; Perrillat, J. P.; Vaughan, G. B. M.; Garbarino, G.; Mezouar, N.; Merkel, S.

    2014-12-01

    Microstructures significantly influence the rheological properties of rocks and are important to understand geodynamical processes such as the descent of slabs. For example, grain size reductions during phase transitions in the dominant upper mantle constituent, olivine, to its high-pressure polymorphs wadsleyite and ringwoodite have been related to the stagnation of slabs in the transition zone. Detailed studies of the microstructure development, underlying transformation mechanism and transformation kinetics are needed in order to assess the effects of these phase transformations on the rheological properties of the slab material and to build reliable models of mantle flow and slab subduction behaviors. So far, the experimental studies dedicated to this theme were mostly based on ex situ techniques (e.g. electron microscopy of quenched products).In this contribution, we present detailed results form in situ single-grain analysis on the evolution of microstructures during the succession of phase transitions in Mg2SiO4*H2O. We used a new approach based on in situ three dimensional-X-ray diffraction (3D-XRD) experiments performed up to 30 GPa and 1100 K using a resistively heated diamond anvil cell at the beam lines ID11 and ID27 of the ESRF. The individual orientations, crystallographic parameters and growth rates of numerous grains inside a polycrystalline sample have been monitored in situ at the high pressure and temperature conditions and while the material was transforming. These parameters have been used to infer grain size distributions, textural relations between parent and newly formed phase and their evolution with ongoing transformation, as well as changing PT conditions and transformation kinetics. This original dataset allows drawing a refined picture of phase transitions in the most abundant minerals of the Earth's upper mantle, shed new light on the origin of seismic anomalies at transition zone depth and provide new grounds for complex simulations

  18. Distributions of energy storage rate and microstructural evolution in the area of plastic strain localization during uniaxial tension of austenitic steel

    NASA Astrophysics Data System (ADS)

    Oliferuk, W.; Maj, M.

    2015-08-01

    The presented work is devoted to an experimental determination of the energy storage rate in the area of strain localization. The experimental procedure involves two complementary techniques: i.e. infrared thermography (IRT) and visible light imaging. The results of experiments have shown that during the evolution of plastic strain localization the energy storage rate in some areas of the deformed specimen drops to zero. To interpret the decrease of the energy storage rate in terms of micro-mechanisms, microstructural observations using Transmission Electron Microscopy (TEM) and Electron Back Scattered Diffraction (EBSC) were performed. On the basis of microstructural studies it is believed that a 0 value of energy storage rate corresponds to the state in which only two dominant components of the texture appear, creating conditions for crystallographic shear banding.

  19. Evolution-Based Functional Decomposition of Proteins.

    PubMed

    Rivoire, Olivier; Reynolds, Kimberly A; Ranganathan, Rama

    2016-06-01

    The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  20. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  1. Melanin-based color of plumage: role of condition and of feathers' microstructure

    USGS Publications Warehouse

    D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.

    2014-01-01

    Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.

  2. Melanin-based color of plumage: role of condition and of feathers' microstructure.

    PubMed

    D'Alba, Liliana; Van Hemert, Caroline; Spencer, Karen A; Heidinger, Britt J; Gill, Lisa; Evans, Neil P; Monaghan, Pat; Handel, Colleen M; Shawkey, Matthew D

    2014-10-01

    Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if, or how, the physiological processes underlying melanogenesis or the role of the microstructure of feathers in imparting structural color to feathers may be adversely affected by condition. Here, we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, whereas in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases, we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.

  3. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    SciTech Connect

    Li, Hao-Ze Liu, Hai-Tao; Liu, Zhen-Yu Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  4. Influence of Heat Treatments on the Microstructural Evolution and Resultant Mechanical Properties in a Low Carbon Medium Mn Heavy Steel Plate

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Lv, Meng-yang; Liu, Zhen-yu; Wang, Guo-dong

    2016-05-01

    In this study, the microstructural evolution and resultant mechanical properties in a low carbon medium Mn heavy steel plate were investigated in detail. The results show that the introduction of medium manganese alloy design in the heavy steel plate has been shown to achieve the outstanding combination of strength, ductility, low-temperature impact toughness, and strain hardening capacity. It has been found that the austenite phase mainly displays at martensitic lath boundaries and shows lath shape for the heat treating at 873 K (600 °C) for 1 to 10 hours or 893 K (620 °C) for 2 hours, and not all the austenite phase obeys the K-S or N-W orientation relationship with respect to abutting martensitic lath. Although the microstructure in the steel after heat treating at 873 K (600 °C) for 1 to 10 hours is similar to each other, the resultant mechanical properties are very different because the volume fraction and stability of retained austenite vary with the heat treatments. The best low-temperature impact toughness is achieved after heat treating at 873 K (600 °C) for 2 hours due to the formation of a considerable volume fraction of retained austenite with relatively high stability, but the strain hardening capacity and ductility are disappointing because of insufficient TRIP effect. Based on enhancing TRIP effect, the two methods have been suggested. One is to increase the isothermal holding temperature to 893 K (620 °C), and the other one is to prolong the isothermal holding time to 10 hours at 873 K (600 °C). The two methods can significantly increase strain hardening capacity and ductility nearly without harming low-temperature impact toughness. In addition, the stability of retained austenite has been discussed by the quantitative analysis and it has been demonstrated that the stability of retained austenite is related to the chemical composition, size, and morphology. Moreover, the isothermal holding temperature has a great effect on the stability of

  5. Simulated evolution of the vertebral body based on basic multicellular unit activities.

    PubMed

    Wang, Chao; Zhang, Chunqiu; Han, Jingyun; Wu, Han; Fan, Yubo

    2011-07-01

    A numerical model based on the theory of bone remodeling is proposed to predict the evolution of trabecular bone architecture within the vertebral body and to investigate the process of degeneration in vertebral bone. In this study, particular attention is paid on the description of microstructure changes during the aging process. To take into account the effect of basic multicellular units (BMUs), a set of computational algorithms has been developed. It is assumed that BMU activation probability depends on the state of damaged bone tissue (damage accumulation, ω), which is evaluated according to previous research concerning bone fatigue damage. Combining these algorithms with the finite-element method (FEM), the microstructure of vertebral bone has been predicted for up to 8 simulated years. Moreover, biomechanical material properties have been monitored to investigate the changes of vertebral bone with age. This study shows that the simulation based on BMU activities has the potential to define and predict the morphological evolution of the vertebral body. It can be concluded that the novel algorithms incorporating the coupled effects of both adaptive remodeling and microdamage remodeling could be utilized to gain greater insight into the mechanism of bone loss in the elderly population.

  6. Microstructure-property relationships in directionally solidified single-crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, Rebecca A.; Nathal, Michael V.

    1988-01-01

    This paper discusses some of the microstructural features which influence the creep properties of directionally solidified and single-crystal nickel-base superalloys. Gamma prime precipitate size and morphology, gamma-gamma (prime) lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single-crystal superalloys at high temperatures, where directional gamma (prime) coarsening is prominent, and at lower temperatures, where gamma (prime) coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  7. Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.

    1986-01-01

    Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  8. From pixels to patches: a cloud classification method based on a bag of micro-structures

    NASA Astrophysics Data System (ADS)

    Li, Qingyong; Zhang, Zhen; Lu, Weitao; Yang, Jun; Ma, Ying; Yao, Wen

    2016-03-01

    Automatic cloud classification has attracted more and more attention with the increasing development of whole sky imagers, but it is still in progress for ground-based cloud observation. This paper proposes a new cloud classification method, named bag of micro-structures (BoMS). This method treats an all-sky image as a collection of micro-structures mapped from image patches, rather than a collection of pixels. It represents the image with a weighted histogram of micro-structures. Based on this representation, BoMS recognizes the cloud class of the image by a support vector machine (SVM) classifier. Five classes of sky condition are identified: cirriform, cumuliform, stratiform, clear sky, and mixed cloudiness. BoMS is evaluated on a large data set, which contains 5000 all-sky images captured by a total-sky cloud imager located in Tibet (29.25° N, 88.88° E). BoMS achieves an accuracy of 90.9 % for 10-fold cross-validation, and it outperforms state-of-the-art methods with an increase of 19 %. Furthermore, influence of key parameters in BoMS is investigated to verify their robustness.

  9. Synthesis and characterization of lignin-based carbon materials with tunable microstructure

    SciTech Connect

    Chatterjee, Sabornie; Clingenpeel, Amy; McKenna, Amy; Rios, Orlando; Johs, Alexander

    2013-01-01

    Lignin-based carbons can be used as a low-cost alternative to graphite and petroleum-based carbons enabling the production of sustainable, functional carbon materials for various applications. The microstructure development of these carbons can be controlled through chemical modification of the lignin precursor and choice of carbonization parameters. In this work, microstructured carbon materials are synthesized from lignin using a combination of chemical modification and carbon fiber processing techniques. Lignin is modified by incorporating different ester groups which results in a precursor highly compatible with melt processing using the fiber extrusion technique and conversion into microstructured carbons by oxidative stabilization and subsequent carbonization. Furthermore, the impact of esterifications on precursor chemistry and carbonizations is investigated. A nuclear magnetic resonance study of modified lignins shows characteristic spectral changes as a result of esterifications. Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry shows the modification process does not affect the polymeric character of the lignin backbone. Esterifications result in moderate shifts in O:C and H:C ratios. Thermogravimetric analysis of lignins reveals distinct differences in mass loss trends during oxidations and carbonizations.

  10. Microstructural Evolution and Solidification Behavior of Al-Mg-Si Alloy in High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Ji, Shouxun; Wang, Yun; Watson, D.; Fan, Z.

    2013-07-01

    Microstructural evolution and solidification behavior of Al-5 wt pct Mg-1.5 wt pct Si-0.6 wt pct Mn-0.2 wt pct Ti alloy have been investigated using high-pressure die casting. Solidification commences with the formation of primary α-Al phase in the shot sleeve and is completed in the die cavity. The average size of dendrites and fragmented dendrites of the primary α-Al phase formed in the shot sleeve is 43 μm, and the globular primary α-Al grains formed inside the die cavity is at a size of 7.5 μm. Solidification inside the die cavity also forms the lamellar Al-Mg2Si eutectic phase and the Fe-rich intermetallics. The size of the eutectic cells is about 10 μm, in which the lamellar α-Al phase is 0.41 μm thick. The Fe-rich intermetallic compound exhibits a compact morphology and is less than 2 μm with a composition of 1.62 at. pct Si, 3.94 at. pct Fe, and 2.31 at. pct Mn. A solute-enriched circular band is always observed parallel to the surface of the casting. The band zone separates the outer skin region from the central region of the casting. The solute concentration is consistent in the skin region and shows a general drop toward the center inside the band for Mg and Si. The peak of the solute enrichment in the band zone is much higher than the nominal composition of the alloy. The die casting exhibits a combination of brittle and ductile fracture. There is no significant difference on the fracture morphology in the three regions. The band zone is not significantly detrimental in terms of the fracture mechanism in the die casting. Calculations using the Mullins and Sekerka stability criterion reveal that the solidification of the primary α-Al phase inside the die cavity has been completed before the spherical α-Al globules begin to lose their stability, but the α-Al grains formed in the shot sleeve exceed the limit of spherical growth and therefore exhibit a dendritic morphology.

  11. In-situ irradiation studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti

    SciTech Connect

    Doraiswamy, N.; Kestel, B.; Alexander, D.E.

    1996-11-01

    Role of He in microstructural evolution of V-3.8Cr-3.9Ti was investigated by in-situ TEM of as-prepared and He implanted (<10 appM) samples subjected to 200 keV He irradiation at RT. Quantitative analysis showed an increase in defect density and size with irradiation in both. The unimplanted sample showed a defect density consistent with electron irradiation experiments. The He preimplanted sample had slightly larger defects and a substantially greater increase in number density of defects. This is consistent with a mechanism of He trapping by formation of He-vacancy-X (X=C,N,O) complexes.

  12. The Evolution of Solid Oxide Fuel Cell Nickel-Yttria Stabilized Zirconia Anodes Studied Using Electrochemical and Three-Dimensional Microstructural Characterizations

    NASA Astrophysics Data System (ADS)

    Kennouche, David O.

    This thesis focuses on Solid Oxide Fuel Cells (SOFCs). The 21st century will see major changes in the way energy is produced, stored, and used around the world. SOFCs, which provide an efficient, scalable, and low-pollution alternative method for electricity generation, are expected to play an important role. SOFCs can also be operated in electrolysis mode for energy storage, important since health and economic reasons are causing a shift towards intermittent renewable energy resources. However, multiple limitations mainly linked to cost and durability have prevented the expansion of this technology to mass markets. This work focuses on the Nickel - Yttria Stabilized Zirconia (Ni-YSZ) anode that is widely used in SOFCs. Coarsening of Ni in the Ni-YSZ anode has been widely cited as a primary cause of long-term SOFC degradation. While there have been numerous studies of Ni coarsening reported, these have typically only tracked the evolution of Ni particle size, not the entire microstructure, and have typically not been correlated directly with electrochemical performance. In this thesis, the advanced tomography techniques Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography and Trans- mission X-ray Microscopy (TXM) have been utilized to enable insight into the evolution of Ni-YSZ structure and how it relates to performance degradation. Extensive anode aging studies were done for relatively short times using temperatures higher than in normal SOFC operation in order to accelerate microstructural evolution. In addition the microstructure changes were correlated with changes in anode polarization resistance. While most of the measurements were done by comparing different anodes aged under different conditions, the first example of a "pseudo in situ" measurement where the same anode was 3D imaged repeatedly with intervening aging steps, was also demonstrated. A microstructural evolution model that focuses on the active three-phase boundary density was

  13. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    SciTech Connect

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing the predictions with experiments.

  14. Evolution of microstructure and texture during annealing of Al-2.5%Mg-0.2%Sc severely deformed by a combination of accumulative roll bonding (ARB) and conventional rolling

    NASA Astrophysics Data System (ADS)

    Gatti, J. R.; Bhattacharjee, P. P.

    2015-04-01

    Evolution of microstructure and texture during heavy cold-rolling and annealing of Al-2.5%Mg-0.2%Sc alloy was investigated. For this purpose recrystallized sheets of 1mm thickness having finely dispersed precipitates were processed to 3 cycles of ARB (equivalent strain, εeq=2.4) followed by conventional rolling to a final thickness of 200μm resulting in total equivalent strain of 4.0. Evolution of ultrafine microstructure and strong copper or pure metal type texture were observed during deformation. During annealing very stable microstructure was observed up to 400°C but further annealing resulted in formation of a layered microstructure with deformed layer sandwiched between recrystallized layers. Formation of strong cube texture is not observed in the recrystallized layers. Isothermal annealing for longer time at 500°C leads to abnormal growth of Q orientation ({013}<213>) within the deformed layer.

  15. Evolution of Microstructure and Mechanical Properties of the Ni-25Al-27.5Fe-1.0Nb Intermetallic Alloy after Thermal Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Chiang; Jang, Jason Shian-Ching; Tsai, Han-Chang; Li, Tsung-Hsiung

    The evolution of microstructure and mechanical properties of the Ni-25Al-27.5Fe-1.0Nb intermetallic alloy after thermal mechanical treatment (TMT) was systematically investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) with electron dispersive spectrum (EDS) capability, and atmosphere-controlled tensile test at room temperature with different strain rate. The results of XRD reveals that a matrix of β' phase [(Ni, Fe) Al type ordered bcc structure] and a precipitated γ phase (Ni3Fe fcc solid solution) co-exist in this alloy after TMT. The dendritic microstructure of the as-cast alloy was eliminated after TMT process. In parallel, a refined and homogeneous distributed lath precipitates can be obtained after annealing at 820 for 4 hr. Additionally, this alloy presents a relative high strength as well as ductile mechanical behavior (UTS~1320 MPa and ɛ~8%, respectively) at room temperature in air. A 30% improvement in yield strength is suggested to be contributed by the refined microstructure from the TMT. Moreover, the tensile strength and ductility of this alloy exhibit insensitive response with respect to the loading strain rate at room temperature.

  16. Shearing of magma along a high-grade shear zone: Evolution of microstructures during the transition from magmatic to solid-state flow

    NASA Astrophysics Data System (ADS)

    Zibra, I.; Kruhl, J. H.; Montanini, A.; Tribuzio, R.

    2012-04-01

    Syntectonic plutons may record short-lived geological events related to crustal melting and deformation of the continental crust. Therefore, interpretation of microstructure and orientation of fabrics is critical in order to constrain space/time/temperature/deformation relationships during pluton crystallization. Here we describe the transition from magmatic to solid-state deformation in the late-Variscan Diorite-Granite Suite (DGS) emplaced along the Santa Lucia Shear Zone. The systematic collection of meso-, microstructural and quartz < c > axis data allow us to examine the spatial distribution and the mode of superposition of different fabrics. We identify three magmatic microfabric types, thought to reflect the microstructural evolution at decreasing melt content during pluton crystallization. Our data suggest that diffusion creep, dislocation creep and grain-scale fracturing cooperated in accommodating the shearing of the partially molten quartzofeldspathic aggregate. We suggest that the switch from upward to horizontal magmatic flow occurred at melt fractions gt; ˜0.40, and that most of the hypersolidus fabrics formed during horizontal flow, reflecting the stress field imposed by the shear zone, and preserving no memory of the ascent stage.

  17. Age estimation of juvenile European hake Merluccius merluccius based on otolith microstructure analysis: a slow or fast growth pattern?

    PubMed

    Pattoura, P; Lefkaditou, E; Megalofonou, P

    2015-03-01

    The main goal of this study was to examine otolith microstructure and to estimate the age and growth of European hake Merluccius merluccius from the eastern Mediterranean Sea. One hundred and twenty-nine specimens ranging from 102 to 438 mm in total length (LT ) were used. Age estimations were based on the study of the otolith microstructure, which was revealed after grinding both frontal sides of otoliths. The enumerations of the daily growth increments (DGI) as well as their width (WDGI ) measurements were made on calibrated digital images. The number of DGI in otoliths ranged between 163 and 717. Four phases in the WDGI evolution were distinguished: (1) larval-juvenile pelagic phase, with an increasing trend in WDGI up to the 60th DGI, (2) settlement phase, with a short-term deceleration in WDGI between the 61st and 150th DGI, (3) juvenile demersal phase, characterized by a stabilization of WDGI from 151st to 400th DGI and (4) adult phase, with a decreasing trend in WDGI after the 400th DGI. Age, sex and month of formation were found to affect the WDGI in all phases, with the exception of age at the juvenile demersal phase. The power curve with intercept model described best the relationship of M. merluccius LT with age (TDGI ), according to Akaike criteria, revealing differences in growth between females [LT = 65 · 36(TDGI )(0 · 40) - 388 · 55] and males [LT = 69 · 32(TDGI )(0 · 37) - 352 · 88] for the sizes examined. The mean daily growth rates were 0·61 mm day(-1) for females and 0·52 mm day(-1) for males, resulting in an LT of 283 and 265 mm at the end of their first year of life. In comparison with previous studies on the Mediterranean Sea, the results of this study showed a greater growth rate, similar to results from tagging experiments and otolith microstructure analyses for M. merluccius in other geographic areas. PMID:25545134

  18. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  19. Growth and microstructure evolution of the Nb{sub 2}Al-Al{sub 3}Nb eutectic in situ composite

    SciTech Connect

    Rios, C.T.; Ferrandini, P.L.; Milenkovic, S.; Caram, R. . E-mail: rcaram@fem.unicamp.br

    2005-03-15

    In situ composite materials obtained by directional growth of eutectic alloys usually show improved properties, that make them potential candidates for high temperature applications. The eutectic alloy found in the Al-Nb system is composed of the two intermetallic phases Al{sub 3}Nb (D0{sub 22}) and Nb{sub 2}Al (D8{sub b}). This paper describes the directional solidification of an Al-Nb eutectic alloy using a Bridgman type facility at growth rates varying from 1.0 to 2.9 cm/h. Longitudinal and transverse sections of grown samples were characterized regarding the solidification microstructure by using optical and scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction. Despite both phases being intermetallic compounds, the eutectic microstructure obtained was very regular. The results obtained were discussed regarding the effect of the growth rate on the microstructure, lamellar-rod transition and variation of phase volume fraction.

  20. Microstructure Evolution and Corrosion Property of Medium-Carbon Alloy Steel after High-Temperature Carburization Process

    NASA Astrophysics Data System (ADS)

    Dewei, Deng; Tingting, Niu; Haiying, Liu; Lin, Zhang; Qi, Sun

    2016-04-01

    In the present study, the effects of carburization treatment on the microstructure and corrosion property of medium-carbon steels (40Cr) were investigated by means of X-ray diffraction (XRD), electron microprobe analyzer (EMPA), optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical corrosion, respectively. It was found that the microstructures beneath the surface were refined and a smooth transition microstructure from the surface to the core was observed in carburized samples. The fine plate-like but not granular carbide precipitation (Cr7C3) was observed in carburized sample by heat-treatment. The carburized specimens exhibited some effectiveness in the improvement of hardness and a smooth transition hardness profile. Corrosion resistance of 40Cr was improved by carburization treatment, resulting in the higher self-corrosion potential and the lower self-corrosion current density.

  1. Microstructure evolution of Li uptake/removal in MoO{sub 2}@C nanoparticles with high lithium storage performance

    SciTech Connect

    Liu, Yulong; Zhang, Hong; Ouyang, Pan; Chen, Wenhao; Li, Zhicheng

    2014-02-01

    Highlights: • The carbon-coated MoO{sub 2} (MoO{sub 2}@C) ultra fine nanoparticles are synthesized by one-pot hydrothermal method. • MoO{sub 2}@C nanoparticles have high specific capacity, excellent cycling performance and rate performance. • Phase transformations for lithium ion uptake/removal are examined carefully by TEM. • Phase transformations are highly reversible during the redox process. - Abstract: A facile one pot strategy of a hydrothermal methodology was applied to synthesize the carbon coated MoO{sub 2} (MoO{sub 2}@C) nanostructured particles, which are composed of ultra fine nanoparticles with homogeneous carbon coating about several nanometers. As an electrode in lithium ion batteries, the MoO{sub 2}@C shows a high specific capacity and reversible capacity (730 mA h g{sup −1} after 60 cycles). Microstructure investigations, by using a high resolution transmission electron microscopy, of the MoO{sub 2}@C based electrodes employed at various states during the first discharge/charge cycle were conducted to elucidate the lithium ion uptake/removal mechanism and cycling behavior. In the lithium uptake process, the original MoO{sub 2} phase transfers into Li{sub 0.98}MoO{sub 2} through an addition type reaction, and then nanosized metallic Mo emerges as a result of a conversion reaction. In turn, Mo could be oxidized to the intermediate Li{sub 0.98}MoO{sub 2} before converting to hyperfine MoO{sub 2} phase on upcoming lithium removal process.

  2. The Evolution of the Surface Morphologies and Microstructures of an Unleveled Hot-Rolled Steel Strip During Cold Rolling After Hydrogen Reduction

    NASA Astrophysics Data System (ADS)

    Jing, Yu-An; Shang, Qiuyue; Zang, Xiaoming; Zhang, Lei; Peng, Xingdong; Jia, Pinfeng

    2016-01-01

    The removal of oxide scale from a hot-rolled strip surface can completely eliminate environmental pollution if performed by hydrogen-reduction descaling instead of traditional pickling descaling. However, a large number of cracks appear on the surface of a leveled hot-rolled steel strip after hydrogen reduction. This effect is likely to impede the application of reduction descaling to cold-rolled products. Nevertheless, there are almost no cracks on the surface of an unleveled hot-rolled steel strip if the hot-rolled steel strip is not subjected to repeated bending by the leveler machine. The surface quality of a reduced steel strip will be better than that of a pickled steel strip. To investigate the evolution of the surface morphologies, microstructures, and properties of an unleveled strip steel during cold rolling, unleveled strip steel samples were rolled using a four-high mill after hydrogen reduction and after pickling. The surface morphologies and cross-sectional microstructures of the samples were observed by SEM, and the surface-roughness values were measured using a TR200 profilometer before and after cold-rolling deformation. The evolution of the surface morphologies and cross-sectional microstructures of the sample after cold rolling were analyzed. The results show that the oxide scale formed on the surface turns into a metallic iron layer, and a decarburization layer appears between the metallic iron layer and the steel matrix after hydrogen reduction. Few cracks, besides pores, and bubbles, appeared on the surface of the sample after hydrogen reduction. The pores and bubbles were roll-flattened after five passes of cold rolling. The work hardening degree and mechanical properties of the reduced sample are similar to those of the pickled sample after cold rolling. Compared with the rolled sample after pickling, the surface qualities of the reduced samples are better than those of the pickled samples and better than those of the reduced samples that

  3. Subtask 12G1: Effects of dynamically charged helium on swelling and microstructure of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine void structure, distribution, and density changes of several vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible. For specimens irradiated to {approx}18-31 dpa at 500-600{degrees}C with a helium generation rate of 0.4-4.2 appm He/dpa, only a few helium bubbles were observed at the interface of grain matrices and some of the Ti(O,N,C) precipitates, and no microvoids or helium bubbles were observed either in grain matrices or near grain boundaries. Under these conditions, dynamically produced helium atoms seem to be trapped in the grain matrix without significant bubble nucleation or growth, and in accordance with this, density changes from DHCE and non-DHCE (negligible helium generation) were similar for comparable fluence and irradiation temperature. Only for specimens irradiated to {approx}31 dpa at 425{degrees}C, when helium was generated at a rate of 0.4-0.8 appm helium/dpa, were diffuse helium bubbles observed in limited regions of grain matrices and near {approx}15% of the grain boundaries in densities significantly lower than those in the extensive coalescences of helium bubbles typical of other alloys irradiated in tritium-trick experiments. Density changes of specimens irradiated at 425{degrees}C in the DHCE were significantly higher than those from non-DHCE irradiation. Microstructural evolution in V-4Cr-4Ti was similar for DHCE and non-DHCE except for helium bubble number density and distribution. As in non-DHCE, the irradiation-induced precipitation of ultrafine Ti{sub 5}Si{sub 3} was observed for DHCE at >500{degrees}C but not at 425{degrees}C.

  4. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  5. Corrosion Performance Based on the Microstructural Array of Al-Based Monotectic Alloys in a NaCl Solution

    NASA Astrophysics Data System (ADS)

    Osório, Wislei R.; Freitas, Emmanuelle S.; Garcia, Amauri

    2014-01-01

    The aim of this study is to compare the electrochemical behavior of three monotectic Al-based alloys (Al-Pb, Al-Bi, and Al-In) in a 0.5 M NaCl solution at room temperature. Two distinct microstructure arrays were experimentally obtained for each Al monotectic alloy by using a water-cooled unidirectional solidification system. Results of electrochemical impedance spectroscopy (EIS) plots, potentiodynamic polarization curves, and impedance parameters obtained by an equivalent circuit analysis are discussed. It was found that the Al-Pb alloy has lower corrosion current density, higher polarization resistance, lower relative weight, and cost than the corresponding values of Al-Bi and Al-In alloys. It is also shown that the electrochemical behavior of the three alloys examined are intimately correlated with the scale of the corresponding microstructure, with smaller droplets and spacings (i.e., cell and interphase spacings) being associated with a decrease in the corrosion resistance.

  6. AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator.

    PubMed

    Girard, Gabriel; Rutger Fick; Descoteaux, Maxime; Deriche, Rachid; Wassermann, Demian

    2015-01-01

    We propose a novel method to simultaneously trace brain white matter (WM) fascicles and estimate WM microstructure characteristics. Recent advancements in diffusion-weighted imaging (DWI) allow multi-shell acquisitions with b-values of up to 10,000 s/mm2 in human subjects, enabling the measurement of the ensemble average propagator (EAP) at distances as short as 10 μm. Coupled with continuous models of the full 3D DWI signal and the EAP such as Mean Apparent Propagator (MAP) MRI, these acquisition schemes provide unparalleled means to probe the WM tissue in vivo. Presently, there are two complementary limitations in tractography and microstructure measurement techniques. Tractography techniques are based on models of the DWI signal geometry without taking specific hypotheses of the WM structure. This hinders the tracing of fascicles through certain WM areas with complex organization such as branching, crossing, merging, and bottlenecks that are indistinguishable using the orientation-only part of the DWI signal. Microstructure measuring techniques, such as AxCaliber, require the direction of the axons within the probed tissue before the acquisition as well as the tissue to be highly organized. Our contributions are twofold. First, we extend the theoretical DWI models proposed by Callaghan et al. to characterize the distribution of axonal calibers within the probed tissue taking advantage of the MAP-MRI model. Second, we develop a simultaneous tractography and axonal caliber distribution algorithm based on the hypothesis that axonal caliber distribution varies smoothly along a WM fascicle. To validate our model we test it on insilico phantoms and on the HCP dataset.

  7. AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator.

    PubMed

    Girard, Gabriel; Rutger Fick; Descoteaux, Maxime; Deriche, Rachid; Wassermann, Demian

    2015-01-01

    We propose a novel method to simultaneously trace brain white matter (WM) fascicles and estimate WM microstructure characteristics. Recent advancements in diffusion-weighted imaging (DWI) allow multi-shell acquisitions with b-values of up to 10,000 s/mm2 in human subjects, enabling the measurement of the ensemble average propagator (EAP) at distances as short as 10 μm. Coupled with continuous models of the full 3D DWI signal and the EAP such as Mean Apparent Propagator (MAP) MRI, these acquisition schemes provide unparalleled means to probe the WM tissue in vivo. Presently, there are two complementary limitations in tractography and microstructure measurement techniques. Tractography techniques are based on models of the DWI signal geometry without taking specific hypotheses of the WM structure. This hinders the tracing of fascicles through certain WM areas with complex organization such as branching, crossing, merging, and bottlenecks that are indistinguishable using the orientation-only part of the DWI signal. Microstructure measuring techniques, such as AxCaliber, require the direction of the axons within the probed tissue before the acquisition as well as the tissue to be highly organized. Our contributions are twofold. First, we extend the theoretical DWI models proposed by Callaghan et al. to characterize the distribution of axonal calibers within the probed tissue taking advantage of the MAP-MRI model. Second, we develop a simultaneous tractography and axonal caliber distribution algorithm based on the hypothesis that axonal caliber distribution varies smoothly along a WM fascicle. To validate our model we test it on insilico phantoms and on the HCP dataset. PMID:26221712

  8. Applicability of a Micromechanics Model Based on Actual Microstructure for Failure Prediction of DP Steels

    SciTech Connect

    Choi, Kyoo Sil; Soulami, Ayoub; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, various micromechanics models based on actual microstructures of DP steels are examined in order to determine the reasonable range of martensite volume fraction where the methodology described in this study can be applied. For this purpose, various micromechanics-based finite element models are first created based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite and martensite phases and also the influence of voids in the ferrite phase on the overall ductility of DP steels. The computational results indicate that there is a range of martensite volume fraction where the phase inhomogeneity between the ferrite and martensite phases has dominant effect on the overall ductility of DP steels, defeating the influence of the ductility of each phase and the voids in the ferrite phase, and that this phase inhomogeneity dominant region includes the range of marteniste volume fraction between 15% and 40%. Therefore, the methodology, adopted in this study, may be applied to DP steels within the phase inhomogeneity dominant region in tailoring the DP steel design for its intended purpose and desired properties.

  9. Evolution based on chromosome affinity from a network perspective

    NASA Astrophysics Data System (ADS)

    Monteiro, R. L. S.; Fontoura, J. R. A.; Carneiro, T. K. G.; Moret, M. A.; Pereira, H. B. B.

    2014-06-01

    Recent studies have focused on models to simulate the complex phenomenon of evolution of species. Several studies have been performed with theoretical models based on Darwin's theories to associate them with the actual evolution of species. However, none of the existing models include the affinity between individuals using network properties. In this paper, we present a new model based on the concept of affinity. The model is used to simulate the evolution of species in an ecosystem composed of individuals and their relationships. We propose an evolutive algorithm that incorporates the degree centrality and efficiency network properties to perform the crossover process and to obtain the network topology objective, respectively. Using a real network as a starting point, we simulate its evolution and compare its results with the results of 5788 computer-generated networks.

  10. Microstructural Changes of a Creep-Damaged Nickel-Based K002 Superalloy Containing Hf Element under Different HIP Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Zhou, Yu; Dong, Jian; Wang, Tianyou; Zhao, Zihua; Zhang, Zheng

    2016-02-01

    Effects of hot isostatic pressing (HIP) temperature on the microstructural evolution of a nickel-based K002 superalloy containing Hf element after long-term service were investigated using three different soaking temperatures during HIP. The degraded γ' precipitates represented coarse and irregular morphology after long-term service. These γ' precipitates still were of coarse and irregular shape, but the size and volume fraction of γ' precipitates were markedly reduced under HIP condition of 1,190°C/200 MPa/4 h, indicating that the γ' precipitates were experiencing a dissolution process. Meanwhile, the concentrically oriented N-type γ' rafting structure around the cavities was formed. With HIP temperature increase to 1,220°C and 1,250°C, the small-sized, cubic and regular γ' precipitates were re-precipitated, and the concentrically oriented γ' structure vanished. The unstable morphology induced by the nucleation and growth of γ matrix was found near the creep cavities, indicating that the solute atoms diffused inward the creep-induced cavities during HIP. However, at HIP temperature of 1,220°C and 1,250°C, a large number of blocky MC(2)-type carbides containing amounts of Hf elements were precipitated, demonstrating that HIP treatment at higher temperatures can result in the formation of a large number of blocky MC(2)-type carbides.

  11. Verifying the functional ability of microstructured surfaces by model-based testing

    NASA Astrophysics Data System (ADS)

    Hartmann, Wito; Weckenmann, Albert

    2014-09-01

    Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.

  12. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    SciTech Connect

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  13. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  14. Magnetic properties, microstructure, and phase evolution of Pr xFe bal.Ti yB 20-x ( x=4-9; y=2.5-5) nanocomposites

    NASA Astrophysics Data System (ADS)

    Chiu, C. H.; Chang, H. W.; Chang, C. W.; Chang, W. C.

    Magnetic properties, microstructure, and phase evolution of Pr lean and boron-enriched Pr xFe bal.Ti yB 20-x ( x=4-9; y=2.5-5) melt-spinning ribbons with nanostructures have been investigated. Based on thermal magnetic analysis (TMA), for y=2.5, two phases, namely Pr 2Fe 14B and α-Fe, were found for ribbons with x=9, while additional two metastable phases, Pr 2Fe 23B 3 and Fe 3B, existed for x=4, 7 and 8. With the decrease of Pr content, the remanence increases but coercivity decreases. The optimal properties of Br=9.5 kG, iHc=10.7 kOe, and ( BH) max=17.8 MG Oe are achieved in Pr 9Fe bal.Ti 2.5B 11 nanocomposites. On the other hand, higher Ti substitution for Fe in Pr 7Fe bal.Ti yB 13 ribbons could refine the grain size and suppress the metastable Pr 2Fe 23B 3 and Fe 3B phases effectively. The excellent permanent magnetic properties are mainly dominated by the nanoscaled microstructures and the coexistence of sufficient magnetically soft phases, Fe 3B, Pr 2Fe 23B 3 and α-Fe, with magnetically hard Pr 2Fe 14B phase.

  15. Al-TiC Composites Fabricated by a Thermally Activated Reaction Process in an Al Melt Using Al-Ti-C-CuO Powder Mixtures. Part I: Microstructural Evolution and Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hee; Lee, Jung-Moo; Kim, Su-Hyeon

    2014-11-01

    Al matrix composites reinforced with TiC particles are fabricated by a thermally activated reaction of Al-Ti-C powder mixtures in an Al melt. In the presence of CuO, reactant mixtures in the form of a pellet added to molten Al at temperatures higher than 1093 K (820 °C) instantly reach the peak temperature over 1785 K (1512 °C), followed by combustion wave propagation with in situ synthesizing TiC with a size of approximately 1 μm. Incomplete reaction products such as unreacted C, Al3Ti, and TiC aggregates are also observed. The pellet microstructure evolution upon the combustion reaction indicates that preheating temperature, i.e., the initial melt temperature, affects both the thermodynamic and kinetic characteristics of the reaction, and thereby influences the final microstructure of the Al/TiC composites. Based on the experimental and theoretical results, a sequence of the reaction leading upto the in situ synthesis of TiC is illustrated and the corresponding mechanism for the present process is proposed.

  16. Microstructure Evolution of Cold-Sprayed Al-Si Alloy Coatings on γ-TiAl During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-08-01

    This paper investigated the influence of heat treatment on the microstructure of Al-Si alloy coati