Sample records for microstructural examination revealed

  1. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  2. Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V

    NASA Astrophysics Data System (ADS)

    Worth, Brian D.; Jones, J. Wayne; Allison, John E.

    1995-11-01

    The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.

  3. Spatial variations in a.c. susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  4. Spatial variations in ac susceptibility and microstructure for the YBa2Cu3O(7-x) superconductor and their correlation with room-temperature ultrasonic measurements

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.

    1991-01-01

    The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.

  5. As-received microstructure of a SiC/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.

    1988-01-01

    A silicon carbide fiber reinforced titanium (Ti-15V-3Cr-3Sn-3Al) composite is metallographically examined. Several methods for examining composite materials are investigated and documented. Polishing techniques for this material are described. An interference layering method is developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and transmission electron microscope (TEM) analyses are performed on the fiber/matrix interface. A detailed description of the fiber distribution as well as the microstructure of the fiber and matrix are presented.

  6. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  7. Heavy Deformation of Patented Near-Eutectoid Steel

    NASA Astrophysics Data System (ADS)

    Khanchandani, Heena; Banerjee, M. K.

    2018-01-01

    Evolution of microstructure in the patented near-eutectoid steel, forged under varying situations, is critically examined in the present investigation. Steel with 0.74 wt.% carbon is isothermally annealed at 500 °C to obtain fine pearlite microstructure. Steel samples, so patented, are subjected to mechanical deformation by forging at various temperatures with different amount of thickness reduction. Microstructural analyses have revealed that mechanical deformation by forging at lower temperatures brings about partial dissolution of cementite, which is followed by the formation of ɛ-carbide in the microstructures. In contrast, cementite is precipitated within ferrite matrix upon warm or hot forging at higher temperatures. It is further observed that increasing deformation percent during low-temperature forging reduces interlamellar spacing of pearlite, whereas an opposite trend is noticed in case of deformation at higher temperature; moreover, deformation induced the change in interlamellar spacing and formation of fine carbide phases in microstructures has caused appreciable enhancement in hardness of the steel.

  8. Characterization of the tensile and microstructural properties of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Johnson, W. S.

    1990-01-01

    This study examines a powder metallurgy aluminum alloy in the unreinforced state and with a discontinuous reinforcement of 15 v/o or 30 v/o SiC whisker or 15 v/o SiC particulate. The materials were extruded and then hot-rolled to three plate thicknesses of 6.35, 3.18 and 1.8 mm and were investigated in the as-fabricated and peak aged conditions. The influence of mechanical working on the reinforcement morphology and distribution were examined. A comparison of the mechanical properties was made and the elastic moduli of the reinforced materials were predicted using a micromechanics model. Fractography of tensile specimens revealed that the fracture process was dominated by the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement type. An analysis of these microstructural features and a description of the micromechanics model are presented in the paper.

  9. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    NASA Astrophysics Data System (ADS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  10. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  11. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    PubMed

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  12. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    PubMed Central

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-01-01

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919

  13. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  14. Thermal Modeling of Resistance Spot Welding and Prediction of Weld Microstructure

    NASA Astrophysics Data System (ADS)

    Sheikhi, M.; Valaee Tale, M.; Usefifar, GH. R.; Fattah-Alhosseini, Arash

    2017-11-01

    The microstructure of nuggets in resistance spot welding can be influenced by the many variables involved. This study aimed at examining such a relationship and, consequently, put forward an analytical model to predict the thermal history and microstructure of the nugget zone. Accordingly, a number of numerical simulations and experiments were conducted and the accuracy of the model was assessed. The results of this assessment revealed that the proposed analytical model could accurately predict the cooling rate in the nugget and heat-affected zones. Moreover, both analytical and numerical models confirmed that sheet thickness and electrode-sheet interface temperature were the most important factors influencing the cooling rate at temperatures lower than about T l/2. Decomposition of austenite is one of the most important transformations in steels occurring over this temperature range. Therefore, an easy-to-use map was designed against these parameters to predict the weld microstructure.

  15. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  16. Failure Analysis and Magnetic Evaluation of Tertiary Superheater Tube Used in Gas-Fired Boiler

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Patil, Sujay; Sah, Rameshwar; Krishna, P. C.; Eswarappa, B.

    2018-02-01

    Failure analysis was carried out on a prematurely failed tertiary superheater tube used in gas-fired boiler. The analysis includes a comparative study of visual examination, chemical composition, hardness and microstructure at failed region, adjacent and far to failure as well as on fresh tube. The chemistry was found matching to the standard specification, whereas the hardness was low in failed tube compared to the fish mouth opening region and the fresh tube. Microscopic examination of failed sample revealed the presence of spheroidal carbides of Cr and Mo predominantly along the grain boundaries. The primary cause of failure is found to be localized heating. Magnetic hysteresis loop (MHL) measurements were carried out to correlate the magnetic parameters with microstructure and mechanical properties to establish a possible non-destructive evaluation (NDE) for health monitoring of the tubes. The coercivity of the MHL showed a very good correlation with microstructure and mechanical properties deterioration enabling a possible NDE technique for the health monitoring of the tubes.

  17. The influence of microstructure on the tensile behavior of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Birt, Michael J.; Johnson, W. Steven

    1990-01-01

    The relationship between tensile properties and microstructure of a powder metallurgy aluminum alloy, 2009 was examined. The alloy was investigated both unreinforced and reinforced with 15 v/o SiC whiskers or 15 v/o SiC particulate to form a discontinuous metal matrix composite (MMC). The materials were investigated in the as-fabricated condition and in three different hot-rolled sheet thicknesses of 6.35, 3.18, and 1.8 mm. Image analysis was used to characterize the morphology of the reinforcements and their distributions within the matrix alloy. Fractographic examinations revealed that failure was associated with the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement. The results from these observations together with the matrix tensile data were used to predict the strengths and moduli of the MMC's using relatively simple models. The whisker MMC could be modeled as a short fiber composite and an attempt was made to model the particulate MMC as a dispersion/dislocation hardened alloy.

  18. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters.

    PubMed

    Sun, Minghao; He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Peng, Cheng; He, Yonghong; Ma, Hui

    2014-05-10

    Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.

  19. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    NASA Astrophysics Data System (ADS)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  20. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 2: Metallurgical and microhardness analysis.

    PubMed

    Al Jabbari, Youssef; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony

    2008-04-01

    This study involved testing and analyzing multiple retrieved prosthetic retaining screws after long-term use in vivo to: (1) detect manufacturing defects that could affect in-service behavior; (2) characterize the microstructure and alloy composition; and (3) further characterize the wear mechanism of the screw threads. Two new (control) screws from Nobel Biocare (NB) and 18 used (in service 18-120 months) retaining screws [12 from NB and 6 from Sterngold (SG)] were: (1) metallographically examined by light microscopy and scanning electron microscopy (SEM) to determine the microstructure; (2) analyzed by energy dispersive X-ray (EDX) microanalysis to determine the qualitative and semiquantitative average alloy and individual phase compositions; and (3) tested for Vickers microhardness. Examination of polished longitudinal sections of the screws using light microscopy revealed a significant defect in only one Group 4 screw. No significant defects in any other screws were observed. The defect was considered a "seam" originating as a "hot tear" during original casting solidification of the alloy. Additionally, the examination of longitudinal sections of the screws revealed a uniform homogeneous microstructure in some groups, while in other groups the sections exhibited rows of second phase particles. The screws for some groups demonstrated severe deformation of the lower threads and the bottom part of the screw leading to the formation of crevices and grooves. Some NB screws were comprised of Au-based alloy with Pt, Cu, and Ag as alloy elements, while others (Groups 4 and 19) were Pd-based with Ga, Cu, and Au alloy elements. The microstructure was homogeneous with fine or equiaxed grains for all groups except Group 4, which appeared inhomogeneous with anomalous grains. SG screws demonstrated a typical dendritic structure and were Au-based alloy with Cu and Ag alloy elements. There were differences in the microhardness of gold alloy screws from NB and SG as well as palladium alloy screws from NB. Significant differences within NB retaining screws and between NB and SG screws were found for microstructure, major alloy constituents, and microhardness.

  1. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  2. Microstructural change in electroformed copper liners of shaped charges upon plastic deformation at ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.

    2002-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.

  3. Microstructure of Dense Thin Sheets of gamma-TiAl Fabricated by Hot Isostatic Pressing of Tape-Cast Monotapes (Preprint)

    DTIC Science & Technology

    2007-02-01

    fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain

  4. Microstructural Effects on SCC Initiation PWR Primary Water Cold-Worked Alloy 600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    SCC initiation behavior of one mill annealed alloy 600 plate heat was investigated in simulated PWR primary water under constant load at yield stress with in-situ direct current potential drop (DCPD) monitoring for crack initiation. Twelve specimens were tested at similar cold work levels among which three showed much shorter SCC initiation times (<400 hrs) than the others (>1200 hrs). Post-test examinations revealed that these three specimens all feature an inhomogeneous microstructure where the primary crack always nucleated along the boundary of large elongated grains protruding normally into the gauge. In contrast, such microstructure was either not observed or didmore » not extend deep enough into the gauge in the other specimens exhibiting ~3-6X longer initiation times. In order to better understand the role of this microstructural inhomogeneity in SCC initiation, high-resolution microscopy was performed to compare carbide morphology and strain distribution between the long grains and normal grains, and their potential effects on SCC initiation are discussed in this paper.« less

  5. Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nie, Lifang; Liu, Juncheng; Zhang, Yujun; Liu, Meilin

    La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF) is the most widely used cathode material for intermediate temperature solid oxide fuel cells. In the present communication, porous LSCF cathodes are fabricated by tape casting, a low-cost and reproducible fabrication process. The effects of four different pore formers, namely, graphite, carbon black, rice starch, and corn starch, on the microstructure and electrochemical performance of the LSCF cathode are investigated. Examination of the microstructures reveals that the shape of the pores, the pore size, and the pore distribution in the final ceramic are related to the type of pore formers. Impedance analysis and cell testing show that the best performance is obtained from the cathode using graphite as the pore former. The microstructure indicates that graphite results in a porous LSCF cathode with a large surface area and high porosity, which can offer a considerably long triple phase boundary for catalytic reactions as well as channels for gas phase transport.

  6. Oxidizing annealing effects on VO2 films with different microstructures

    NASA Astrophysics Data System (ADS)

    Dou, Yan-Kun; Li, Jing-Bo; Cao, Mao-Sheng; Su, De-Zhi; Rehman, Fida; Zhang, Jia-Song; Jin, Hai-Bo

    2015-08-01

    Vanadium dioxide (VO2) films have been prepared by direct-current magnetron sputter deposition on m-, a-, and r-plane sapphire substrates. The obtained VO2 films display different microstructures depending on the orientation of sapphire substrates, i.e. mixed microstructure of striped grains and equiaxed grains on m-sapphire, big equiaxed grains on a-sapphire and fine-grained microstructure on r-sapphire. The VO2 films were treated by the processes of oxidation in air. The electric resistance and infrared transmittance of the oxidized films were characterized to examine performance characteristics of VO2 films with different microstructures in oxidation environment. The oxidized VO2 films on m-sapphire exhibit better electrical performance than the other two films. After air oxidization for 600 s at 450 °C, the VO2 films on m-sapphire show a resistance change of 4 orders of magnitude over the semiconductor-to-metal transition. The oxidized VO2 films on a-sapphire have the highest optical modulation efficiency in infrared region compared to other samples. The different performance characteristics of VO2 films are understood in terms of microstructures, i.e. grain size, grain shape, and oxygen vacancies. The findings reveal the correlation of microstructures and performances of VO2 films, and provide useful knowledge for the design of VO2 materials to different applications.

  7. Three dimensional microstructural network of elastin, collagen, and cells in Achilles tendons.

    PubMed

    Pang, Xin; Wu, Jian-Ping; Allison, Garry T; Xu, Jiake; Rubenson, Jonas; Zheng, Ming-Hao; Lloyd, David G; Gardiner, Bruce; Wang, Allan; Kirk, Thomas Brett

    2017-06-01

    Similar to most biological tissues, the biomechanical, and functional characteristics of the Achilles tendon are closely related to its composition and microstructure. It is commonly reported that type I collagen is the predominant component of tendons and is mainly responsible for the tissue's function. Although elastin has been found in varying proportions in other connective tissues, previous studies report that tendons contain very small quantities of elastin. However, the morphology and the microstructural relationship among the elastic fibres, collagen, and cells in tendon tissue have not been well examined. We hypothesize the elastic fibres, as another fibrillar component in the extracellular matrix, have a unique role in mechanical function and microstructural arrangement in Achilles tendons. It has been shown that elastic fibres present a close connection with the tenocytes. The close relationship of the three components has been revealed as a distinct, integrated and complex microstructural network. Notably, a "spiral" structure within fibril bundles in Achilles tendons was observed in some samples in specialized regions. This study substantiates the hierarchical system of the spatial microstructure of tendon, including the mapping of collagen, elastin and tenocytes, with 3-dimensional confocal images. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1203-1214, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    PubMed Central

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-01-01

    ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. PMID:26941105

  9. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.

    PubMed

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-04-15

    Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.

  10. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.

  11. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  12. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  13. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  14. Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy

    NASA Astrophysics Data System (ADS)

    Jung, Jaimyun; Yoon, Jae Ik; Kim, Jung Gi; Latypov, Marat I.; Kim, Jin You; Kim, Hyoung Seop

    2017-12-01

    Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood. In spite of extensive experimental and modeling efforts on correlating microstructural features with their twinning behavior, a clear relation among the large aggregate of grains is still lacking. In this work, we characterize the micromechanics of grain-to-grain interactions that contribute to twin evolution by investigating the mechanical twins near grain boundaries using a full-field crystal plasticity simulation of a twinning-induced plasticity steel deformed in uniaxial tension at room temperature. Microstructures are first observed through electron backscatter diffraction technique to obtain data to reconstruct a statistically equivalent microstructure through synthetic microstructure building. Grain-to-grain micromechanical response is analyzed to assess the collective twinning behavior of the microstructural volume element under tensile deformation. Examination of the simulated results reveal that grain interactions are capable of changing the local mechanical behavior near grain boundaries by transferring strain across grain boundary or localizing strain near grain boundary.

  15. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure

    PubMed Central

    Wilson, Laura E.; Chin, Karen

    2014-01-01

    The broad biogeographic distribution of Hesperornis fossils in Late Cretaceous Western Interior Seaway deposits has prompted questions about whether they endured polar winters or migrated between mid- and high latitudes. Here, we compare microstructures of hesperornithiform long bones from Kansas and the Arctic to investigate whether migration or Late Cretaceous polar climate affected bone growth. We also examine modern penguin bones to determine how migration and climate may influence bone growth in birds with known behaviours. Histological analysis of hesperornithiform samples reveals continuous bone deposition throughout the cortex, plus an outer circumferential layer in adults. No cyclic growth marks, zonation or differences in vasculature are apparent in the Hesperornis specimens. Comparatively, migratory Adélie and chinstrap penguin bones show no zonation or changes in microstructure, suggesting that migration is not necessarily recorded in avian bone microstructure. Non-migratory gentoos show evidence of rapid bone growth possibly associated with increased chick growth rates in high-latitude populations and large body size. The absence of histological evidence for migration in extinct Hesperornis and extant pygoscelid penguins may reflect that these birds reached skeletal maturity before migration or overwintering. This underscores the challenges of using bone microstructure to infer the effects of behaviour and climate on avian growth. PMID:26064560

  16. Disturbed Dreaming and the Instability of Sleep: Altered Nonrapid Eye Movement Sleep Microstructure in Individuals with Frequent Nightmares as Revealed by the Cyclic Alternating Pattern

    PubMed Central

    Simor, Péter; Bódizs, Róbert; Horváth, Klára; Ferri, Raffaele

    2013-01-01

    Study Objectives: Nightmares are disturbing mental experiences during sleep that usually result in abrupt awakenings. Frequent nightmares are associated with poor subjective sleep quality, and recent polysomnographic data suggest that nightmare sufferers exhibit impaired sleep continuity during nonrapid eye movement (NREM) sleep. Because disrupted sleep might be related to abnormal arousal processes, the goal of this study was to examine polysomnographic arousal-related activities in a group of nightmare sufferers and a healthy control group. Design: Sleep microstructure analysis was carried out by scoring the cyclic alternating pattern (CAP) in NREM sleep and the arousal index in rapid eye movement (REM) sleep on the second night of the polysomnographic examination. Setting: Hospital-based sleep research laboratory. Participants: There were 17 in the nightmare (NMs) group and 23 in the healthy control (CTLs) group. Interventions: N/A. Measurements and Results: The NMs group exhibited reduced amounts of CAP A1 subtype and increased CAP A2 and A3 subtypes, as well as longer duration of CAP A phases in comparison with CTLs. Moreover, these differences remained significant after controlling for the confounding factors of anxious and depressive symptoms. The absolute number and frequency of REM arousals did not differ significantly between the two groups. Conclusions: The results of our study indicate that NREM sleep microstructure is altered during nonsymptomatic nights of nightmares. Disrupted sleep in the NMs group seems to be related to abnormal arousal processes, specifically an imbalance in sleep-promoting and arousing mechanisms during sleep. Citation: Simor P; Bódizs R; Horváth K; Ferri R. Disturbed dreaming and the instability of sleep: altered nonrapid eye movement sleep microstructure in individuals with frequent nightmares as revealed by the cyclic alternating pattern. SLEEP 2013;36(3):413-419. PMID:23449753

  17. The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach

    NASA Astrophysics Data System (ADS)

    Croxall, S. A.; Hardy, M. C.; Stone, H. J.; Midgley, P. A.

    Nickel-base superalloys are aerospace materials that exhibit exceptional mechanical properties and corrosion resistance at very high temperatures. RR1000 is used in discs in gas turbine engines, where temperatures reach in excess of 650°C with high mechanical stresses. Study of the microstructure at the micron and sub-micron level has conventionally been undertaken using scanning electron microscope images, often meaning the underlying 3D microstructure can be inferred only with additional knowledge. Using a dual-beam workstation, we are able to interrogate directly the 3D microstructure using a serial sectioning approach. The 3D data set, typically (10µm)3 in volume, reveals microstructural detail with lateral resolution of circa 8nm and a depth resolution dictated by the slice thickness, typically 50nm. Morphological and volumetric analysis of the 3D reconstruction of RR1000 superalloy reveals microstructural details hitherto unseen.

  18. The effects of nucleation and solidification mechanisms on the microstructure and thermomechanical response of tin silver copper solder joints

    NASA Astrophysics Data System (ADS)

    Arfaei, Babak

    This work examines the nucleation mechanism of Sn in SnAgCu alloys and its effect on the microstructure of those solder joints. The nucleation rate of Sn in a SAC alloy was obtained by simultaneous calorimetric examination of the isothermal solidification of 88 flip chip Sn-Ag-Cu solder joints. Qualitative agreement with classic nucleation theory was observed, although it was concluded that the spherical cap model cannot be applied to explain the structure of nucleus. It was shown that the solidification temperature significantly affects the microstructure; samples that undercooled less than approximately 40oC revealed one or three large Sn grains, while interlaced twinning was observed in the samples that solidified at lower temperatures. In order to better understand the effect of microstructure on the thermomechanical properties of solder joints, a study of the dependence of room temperature shear fatigue lifetime on Sn grain number and orientation was conducted. This study examined the correlations of variations in fatigue life of solder balls with the microstructure of Sn-Ag-Cu solder. The mean fatigue lifetime was found to be significantly longer for samples with multiple Sn grains than for samples with single Sn grains. For single grain samples, correlations between Sn grain orientation (with respect to the loading direction) and lifetime were observed, providing insight on early failures in SnAgCu solder joints. Correlations between the lifetimes of single Sn grained, SAC205 solder joints with differences in Ag3Sn and Cu6Sn5 precipitate microstructures were investigated. It was found that Ag3Sn precipitates were highly segregated from Cu6Sn 5 precipitates on a length scale of approximately twenty microns. Furthermore, large (factor of two) variations of the Sn dendrite arm size were observed within given samples. Such variations in values of dendrite arm size within a single sample were much larger than observed variations of this parameter between individual samples. Few significant differences were observed in the average size of precipitates in different samples. While the earliest and latest lifetimes of single Sn grained samples were correlated with Sn grain orientation, effects of precipitate microstructure on lifetimes were not clearly delineated.

  19. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  20. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  1. Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Erryani, Aprilia; Lestari, Franciska P.; Nyoman Putrayasa, I.; Gede, P. A.; Kartika, Ika

    2017-03-01

    Magnesium alloys had been considered as promising biomedical devices due to their biocompatibility and biodegradability. In this present work, microstructure and corrosion properties of Mg-Zn-Ca-CaCO3 porous magnesium alloy were examined. Porous metals were fabricated through powder metallurgy process with CaCO3 addition as a foaming agent. CaCO3 content was varied (1, 5, and 10%wt) followed by sintering process in 650 °C in Argon atmosphere for 10 and 15 h. The microstructure of the resulted alloys was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry data (EDS). Further, to examine corrosion properties, electrochemical test were conducted using G750 Gamry Instrument in accordance with ASTM standard G5-94 in simulated body fluid (Hank’s solution). As it was predicted, increasing content of foaming agent was in line with the increasing of pore formation. The electrochemical testing indicated corrosion rate would increase along with the increasing of foaming agent. The porous Mg-Zn-Ca alloy which has more porosity and connecting area will corrode much faster because it can transport the solution containing chloride ion which accelerated the chemical reaction. Highest corrosion resistance was given by Mg-Zn-Ca-1CaCO3-10 h sintering with potential corrosion of  -1.59 VSCE and corrosion rate of 1.01 mmpy. From the microstructure after electrochemical testing, it was revealed that volcano shaped structure and crack would occur after exposure to Hank’s solution

  2. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.

    PubMed

    Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L

    2016-06-01

    White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.

  3. Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder

    PubMed Central

    Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.

    2016-01-01

    Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440

  4. Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy

    NASA Astrophysics Data System (ADS)

    Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.

    2013-12-01

    Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.

  5. Effect of microstructural evolution on mechanical and tribological properties of Ti-doped DLC films: How was an ultralow friction obtained?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fei; Li, Hongxuan; Ji, Li

    2016-05-15

    This paper examined the evolution of microstructure and its effect on the mechanical and tribological properties of ultralow friction Ti-doped diamondlike carbon (DLC) films, by adjusting the CH{sub 4}/Ar ratio under constant radio frequency discharge power and bias. The Raman, high resolution transmission electron microscopy, atomic force microscope and nanoindentation measurements consistently reveal or indicate the formation of curved graphene sheets or fullerenelike nanostructures with increasing CH{sub 4}/Ar ratio. The superior frictional performance (0.008–0.01) of Ti-DLC films can be attributed to the special microstructure related to the development of embedded fullerenelike nanostructures as a result of incorporation of TiO{sub 2}more » clusters. The contributing factors include high hardness and cohesion, excellent toughness, high load-bearing capacity, as well as the ultralow shear resistance transform layer and the excellent antioxidation stability brought by the doped Ti.« less

  6. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone nearmore » the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.« less

  7. Dissecting the mechanism of martensitic transformation via atomic-scale observations.

    PubMed

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-21

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.

  8. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    PubMed Central

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-01-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α′(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α′ martensite inclusion, the transition lattices at the ε/α′ interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283

  9. Post-irradiation examinations of a Zr2.5Nb pressure tube of the Karachi nuclear power plant (KANUPP)

    NASA Astrophysics Data System (ADS)

    Zaheer, Mohammed Sajjad; Akhtar, Javed Iqbal; Ahmad, Ejaz; Saleem, Muhammad; Hussain, Syed Mukarrum; Qureshi, Masroor Ahmad; Khan, Azmatullah; Ali, Rafaqat; Zafarullah, Muhammad

    1996-09-01

    The results of post-irradiation examinations of a pressure tube of fuel channel No. G-12 of KANUPP have been described. A detailed study was made in Canada by AECL. A parallel investigation on its seven rings of about 50 mm length each was also carried out at PINSTECH. Visual inspection showed normal oxidation effects. Gamma spectrometry showed the presence of 95Zr and 95Nb. Microstructural study revealed the characteristic alpha plus a transformed beta phase structure.

  10. The Microstructural and Property Changes of Laser Treated Electrodeposits

    DTIC Science & Technology

    1981-01-01

    corresponds to the center of the LASER beam path. Examination of the underlying steel reveals a transformation which appears to be untempered martensite ...specimen after LASER interaction time of 50 ms. Phase transformations have advanced through the complete thickness of the specimen. ii. Hardness plot through...cooling. 13 This technique of achieving homogeneous phase transformations in the surface with sufficient control of surface depth has formed the basis

  11. A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.

    PubMed

    Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I

    2017-06-15

    Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.

  12. Mechanical properties and electrical conductivity of Al 6101 and 6201 alloys processed by hydro-extrusion

    NASA Astrophysics Data System (ADS)

    Pakiela, Z.; Ludwichowska, K.; Ferenc, J.; Kulczyk, M.

    2014-08-01

    The aim of this work was to produce a material with high strength and electrical conductivity. Two aluminium alloys: Al 6101 and 6201 were used for investigation. Improvement of mechanical properties was obtained by severe plastic deformation, using Hydrostatic Extrusion (HE). To examine mechanical properties of the materials microhardness and tensile tests were carried out. Furthermore, the microstructure analysis was carried out using TEM and light microscopy. Electrical conductivity of materials was measured by 4-wire method. It was found that in the material processed by HE tensile strength and microhardness increased about twice. The biggest strength of 356 MPa was obtained for alloy 6201 after HE. In this case the reduction of a diameters from 20 to 5 mm was used. Examination of the microstructure revealed that as a result of HE grain size refinement to 0.5 micrometer occurred. It was also found that the material has the electric conductivity of about 52% IACS.

  13. Microstructural characterization of Ti-6Al-4V metal chips by focused ion beam (FIB) and transmission electron microscopy (TEM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Judy; Dong, Lei; Howe, Jane Y

    2011-01-01

    The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less

  14. Microstructural Integrity of the Corpus Callosum Linked with Neuropsychological Performance in Adolescents

    ERIC Educational Resources Information Center

    Fryer, Susanna L.; Frank, Lawrence R.; Spadoni, Andrea D.; Theilmann, Rebecca J.; Nagel, Bonnie J.; Schweinsburg, Alecia D.; Tapert, Susan F.

    2008-01-01

    Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16-18). Fractional anisotropy (FA) and mean diffusion (MD)…

  15. The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys

    DOE PAGES

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...

    2016-03-03

    In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less

  16. Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9% Cr Steel

    NASA Astrophysics Data System (ADS)

    Golański, Grzegorz; Zielińska-Lipiec, Anna; Zieliński, Adam; Sroka, Marek

    2017-03-01

    The paper presents the results of research on the X10CrMoVNbN9-1 (T91) steel after long-term service. The material for testing was taken from a pipe section of a boiler superheater coil serviced for around 105,000 h at the temperature of 540 °C, at the pressure of 12.5 MPa. A quantitative analysis including the measurement of mean diameter of subgrains and precipitates as well as the density of dislocations of the examined steel was performed by means of TEM. The microscopic tests of T91 steel were complemented with the results of tests on mechanical properties which included also the short creep tests. After service, the investigated steel was characterized by a retained lath microstructure of tempered martensite with fine subgrain and quite large density of dislocations as well as numerous precipitates. In the microstructure, apart from the particles of M23C6 and MX (VX, NbC, V-wings), the precipitates of Laves phase and single particles of Z phase were revealed. It has been shown that the extent of degradation of the T91 steel microstructure was minor, which resulted from its low temperature of service. Performed tests of mechanical properties showed that these properties fulfilled the minimum requirements for this steel in the as-received condition. A favorable influence of fine precipitates of Laves phase on mechanical properties was observed. Moreover, an insignificant influence of single precipitates of Z phase on the creep resistance of the examined steel was stated.

  17. Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature

    NASA Astrophysics Data System (ADS)

    Keya, Tahmina

    This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be considered when suitable as far as design modification is concerned. Above all, this study reveals important information about the pattern of microstructure, thus heat transfer mechanism inside a part which is useful to understand the SLM process.

  18. Imaging subtle microstructural variations in ceramics with precision ultrasonic velocity and attenuation measurements

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Baaklini, George Y.

    1987-01-01

    Acoustic images of a silicon carbide ceramic disk were obtained using a precision scanning contact pulse echo technique. Phase and cross-correlation velocity, and attenuation maps were used to form color images of microstructural variations. These acoustic images reveal microstructural variations not observable with X-ray radiography.

  19. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  20. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie, E-mail: zhanglinjie@mail.xjtu.edu.cn

    2014-07-01

    The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, somore » does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.« less

  2. Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints

    NASA Astrophysics Data System (ADS)

    Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.

    2017-04-01

    The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.

  3. Influence of Ni-P Coated SiC and Laser Scan Speed on the Microstructure and Mechanical Properties of IN625 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad

    2015-12-01

    Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.

  4. Examining the microtexture evolution in a hole-edge punched into 780 MPa grade hot-rolled steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, J.H.; Kim, M.S.

    The deformation behavior in the hole-edge of 780 MPa grade hot-rolled steel during the punching process was investigated via microstructure characterization and computational simulation. Microstructure characterization was conducted to observe the edges of punched holes through the thickness direction, and electron back-scattered diffraction (EBSD) was used to analyze the heterogeneity of the deformation. Finite element analysis (FEA) that could account for a ductile fracture criterion was conducted to simulate the deformation and fracture behaviors of 780 MPa grade hot-rolled steel during the punching process. Calculation of rotation rate fields at the edges of the punched holes during the punching processmore » revealed that metastable orientations in Euler space were confined to specific orientation groups. Rotation-rate fields effectively explained the stability of the initial texture components in the hole-edge region during the punching process. A visco-plastic self-consistent (VPSC) polycrystal model was used to calculate the microtexture evolution in the hole-edge region during the punching process. FEA revealed that the heterogeneous effective strain was closely related to the heterogeneity of the Kernel average misorientation (KAM) distribution in the hole-edge region. A simulation of the deformation microtexture evolution in the hole-edge region using a VPSC model was in good agreement with the experimental results. - Highlights: •We analyzed the microstructure in a hole-edge punched in HR 780HB steel. •Rotation rate fields revealed the stability of the initial texture components. •Heterogeneous effective stain was closely related to the KAM distribution. •VPSC model successfully simulated the deformation microtexture evolution.« less

  5. Influence of High Mn-Cu-Mo on Microstructure and Fatigue characteristics of Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Banavasi Shashidhar, M.; Ravishankar, K. S.; Naik Padmayya, S.

    2018-03-01

    The impacts of high Mn content on microstructure and fatigue characteristics of ADI at 300, 350 and 400 °C for 120 min have been examined. Optical microscopy images reveals bainite morphology only at 300°C. Higher Mn contents hinders bainite transformation in the locales of Mn and Mo segregation, where in stage II reaction initiates near the graphite nodules before stage I reaction ends away from the nodules which creates more unreacted austenite volume after cooling forming martensite around the periphery creating austenite-martensite zone at 350 °C and tremendously articulated at 400°C. Feathery ferrite laths, stable retained austenite and uniform density hardness in the matrix, promotes higher toughness and fatigue properties (250 MPa @ 106 cycles) at 300 °C. Presence of stage II carbides in the eutectic cell and austenite-martensite zone in the intercellular regions, due to their embrittlement in the matrix, makes easy crack path for initiation and propagation deteriorating properties at 350°C and above. SEM images of fatigue fractured surface revealed that at 300°C, showed a regular crack interconnecting graphite nodule, fatigue striation and quazi-cleavage fracture mode, and at 350 & 400°C reveals the carbide, austenite-martensite and porosity/defect final fracture region.

  6. Predictors of Memory in Healthy Aging: Polyunsaturated Fatty Acid Balance and Fornix White Matter Integrity.

    PubMed

    Zamroziewicz, Marta K; Paul, Erick J; Zwilling, Chris E; Barbey, Aron K

    2017-07-01

    Recent evidence demonstrates that age and disease-related decline in cognition depends not only upon degeneration in brain structure and function, but also on dietary intake and nutritional status. Memory, a potential preclinical marker of Alzheimer's disease, is supported by white matter integrity in the brain and dietary patterns high in omega-3 and omega-6 polyunsaturated fatty acids. However, the extent to which memory is supported by specific omega-3 and omega-6 polyunsaturated fatty acids, and the degree to which this relationship is reliant upon microstructure of particular white matter regions is not known. This study therefore examined the cross-sectional relationship between empirically-derived patterns of omega-3 and omega-6 polyunsaturated fatty acids (represented by nutrient biomarker patterns), memory, and regional white matter microstructure in healthy, older adults. We measured thirteen plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids, memory, and regional white matter microstructure in 94 cognitively intact older adults (65 to 75 years old). A three-step mediation analysis was implemented using multivariate linear regressions, adjusted for age, gender, education, income, depression status, and body mass index. The mediation analysis revealed that a mixture of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids is linked to memory and that white matter microstructure of the fornix fully mediates the relationship between this pattern of plasma phospholipid polyunsaturated fatty acids and memory. These results suggest that memory may be optimally supported by a balance of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids through the preservation of fornix white matter microstructure in cognitively intact older adults. This report provides novel evidence for the benefits of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acid balance on memory and underlying white matter microstructure.

  7. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziadoń, Andrzej

    2016-08-15

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, themore » following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.« less

  8. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  9. Microstructure and nutrient distribution in oats: influence on quality

    NASA Astrophysics Data System (ADS)

    Miller, S. Shea; Frégeau-Reid, Judith

    2009-05-01

    Oats have long been recognized as having superior quality among cereals with respect to protein and lipid composition as well as soluble dietary fibre (β-glucan). The microstructure and chemistry of oats influence oat quality, and thus are determinants of the end products derived from oats. Light and scanning electron microscopies have been used to elucidate microstructure and nutrient distribution in oats. The influence of variation in these parameters on oat quality can be demonstrated, from milling through to oat products for consumption. Milling quality is determined in part by hull architecture. SEM examination of oat hulls can help predict ease of dehulling, which affects the efficiency and economics of oat milling. In addition to protein and lipid, β-glucan is an important nutritional component of oats. Fluorescence microscopy can reveal both the relative amount and distribution of β-glucan in oat kernels. Consumption of oats or oat products containing β-glucan has been shown to have beneficial effects on carbohydrate and lipid metabolism. These health benefits have generated a demand for new and palatable ways to incorporate oats into the diet as consumer demand increases. To help meet this need, we have been investigating the use of micronized naked oats as a whole grain to be cooked and consumed as a rice alternative. Different varieties of naked oats had dramatically different acceptance levels from a sensory panel. SEM of the pericarp, light microscopy of the endosperm, and analyses of starch properties of the different varieties revealed differences that corresponded with sensory data.

  10. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less

  11. Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelles, D.S.

    Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.

  12. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  13. Connectivity Measures in EEG Microstructural Sleep Elements.

    PubMed

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease.

  14. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence of EEG microstructural elements. Network characterization of specified physiological or pathological EEG microstructural elements can potentially be of great importance in the understanding, identification, and prediction of health and disease. PMID:26924980

  15. Longitudinal changes in microstructural white matter metrics in Alzheimer's disease.

    PubMed

    Mayo, Chantel D; Mazerolle, Erin L; Ritchie, Lesley; Fisk, John D; Gawryluk, Jodie R

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current avenues of AD research focus on pre-symptomatic biomarkers that will assist with early diagnosis of AD. The majority of magnetic resonance imaging (MRI) based biomarker research to date has focused on neuronal loss in grey matter and there is a paucity of research on white matter. Longitudinal DTI data from the Alzheimer's Disease Neuroimaging Initiative 2 database were used to examine 1) the within-group microstructural white matter changes in individuals with AD and healthy controls at baseline and year one; and 2) the between-group microstructural differences in individuals with AD and healthy controls at both time points. 1) Within-group: longitudinal Tract-Based Spatial Statistics revealed that individuals with AD and healthy controls both had widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) with changes in the hippocampal cingulum exclusive to the AD group. 2) Between-group: relative to healthy controls, individuals with AD had lower FA and higher MD in the hippocampal cingulum, as well as the corpus callosum, internal and external capsule; corona radiata; posterior thalamic radiation; superior and inferior longitudinal fasciculus; fronto-occipital fasciculus; cingulate gyri; fornix; uncinate fasciculus; and tapetum. The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.

  16. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  17. Roles of microstructures on deformation response of 316 stainless steel made by 3D printing

    NASA Astrophysics Data System (ADS)

    Pham, Minh-Son; Hooper, Paul

    2017-10-01

    One of the main challenges in additive manufacturing (AM) of metals is to manufacture high quality materials and ensure the performance of AM materials in service duties. This challenge can only be solved when the relationships between build process parameters, microstructure and deformation behaviour are understood. This present study is part of holistic efforts at Imperial College to reveal such relationships. In this study, we present our study of porosity condition, grain morphology, texture and metastable phases in AM stainless steel 316. To provide samples for mechanical and microstructural study, cylindrical samples of stainless steel 316 were printed by powder-bed laser melting with a bi-directional hatch pattern. Scanning electron microscopy and electron backscattered diffraction were used to investigate fine microstructures (such as grain morphology, texture and crystal phases) after 3D printing and deformation. Subsequently, a detailed 3D structure of columnar grains in as-printed 316 steel is constructed thanks to microscopic observation. Most of grains in as-built samples have a spherical bowl morphology, and being stacked on others to form the columnar structure. Examinations on microstructures show that the small sub-grains in as-printed samples is likely responsible for high yield strength at room temperature (significantly higher than that of conventional steel). In addition, residual stresses after rapid cooling probably promote the deformation-induced twinning that assists the plasticity during deformation, leading to a good ductility of the AM steel (almost as same as that of conventional 316 steel). Currently, a more detailed study is being undertaken to confirm this hypothesis.

  18. Microstructural Abnormalities Were Found in Brain Gray Matter from Patients with Chronic Myofascial Pain

    PubMed Central

    Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong

    2016-01-01

    Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp; School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Ogura, Atsushi

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure inmore » an amorphous thin film was not revealed owing to detection difficulties.« less

  20. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  1. TEM investigation of ductile iron alloyed with vanadium.

    PubMed

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  2. Microstructural abnormalities in MEWDS demonstrated by ultrahigh resolution optical coherence tomography.

    PubMed

    Nguyen, My Hanh T; Witkin, Andre J; Reichel, Elias; Ko, Tony H; Fujimoto, James G; Schuman, Joel S; Duker, Jay S

    2007-01-01

    Histopathological studies of acute multiple evanescent white dot syndrome (MEWDS) have not been reported because of the transient and benign nature of the disease. Ultrahigh resolution optical coherence tomography (UHR-OCT), capable of high resolution in vivo imaging, offers a unique opportunity to visualize retinal microstructure in the disease. UHR-OCT images of the maculae of five patients with MEWDS were obtained and analyzed. Diagnosis was based on clinical presentation, examination, visual field testing, and angiography. UHR-OCT revealed disturbances in the photoreceptor inner/outer segment junction (IS/OS) in each of the five patients (six eyes) with MEWDS. In addition, thinning of the outer nuclear layer was seen in the case of recurrent MEWDS, suggesting that repeated episodes of MEWDS may result in photoreceptor atrophy. Subtle disruptions of the photoreceptor IS/OS are demonstrated in all eyes affected by MEWDS. UHR-OCT may be a useful adjunct to diagnosis and monitoring of MEWDS.

  3. An e.s.c.a. study of atomic oxygen interactions with phosphazene-coated polyimide films

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.; Finney, Lorie

    1991-01-01

    Metallic as well as most nonmetallic materials experience oxidation and mass loss via surface erosion in low earth orbit as shown in previous Space Shuttle flights. This study is an evaluation of select polyphosphazene polymers and their resistance to atomic oxygen attack. Electron spectroscopy for chemical analysis examinations of the surfaces of polyphosphazene coatings were monitored for microstructural changes induced during exposures to atomic oxygen. Sample exposures in oxygen plasmas and O(3P) beam were compared as to their effect on surface compositional changes in the polyphosphazene coating. High resolution line scans revealed rearrangements in the polymer backbone and scissioning reactions involving fluorocarbon units of long chain fluoroalkoxy pendant groups. Atom percents and peak areas of all species provided a detailed profile of the microstructural changes induced in phosphazene polymers as a result of exposures to atomic oxygen.

  4. Effect of the microstructure on the thermoelectric properties of polycrystalline lanthanum chalcogenides

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Wood, C.; Vandersande, J.; Zoltan, A.; Parker, J.; Danielson, L.; Alexander, M.; Whittenberger, D.

    1987-01-01

    Small amounts of second phase materials can have important effects on the thermoelectric properties of polycrystalline gamma-La(3-x)X4 (X-S, Te; X in the range of 0 to 1/3). Microscopic examination by SEM of hot pressed La(3-x)Te4 samples has revealed from 1-5 vol. pct of La2O2Te, an amount which is not detected by X-ray powder diffraction measurements. This amount of La2O2Te resulting from oxygen contamination can reduce the concentration of electrons by as much as 10 to 75 percent below the electron concentration calculated for single phase La(3-x)Te4 in the composition range of greatest interest. Small amounts of second phase materials can also lower the lattice thermal conductivity by scattering low frequency phonons. These results indicate that microstructural effects should be considered when electrical and thermal properties of polycrystalline materials are analyzed.

  5. Texture-Induced Anisotropy in an Inconel 718 Alloy Deposited Using Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.

    2014-01-01

    A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.

  6. Effects of synthesis techniques on chemical composition, microstructure and dielectric properties of Mg-doped calcium titanate

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai; Sato, Nicha

    2018-04-01

    Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.

  7. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  8. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  9. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  10. The Hollow Spheres of the Orgueil Meteorite: A Re-Examination

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Jerman, Gregory; Rossignold-Strick, Maritine

    2005-01-01

    In 1971, Rossignol-Strick and Barghoorn provided images and a description of a number of spherical hollow microstructures showing well-defined walls in acid macerated extract of the Orgueil CI carbonaceous meteorite. Other forms such as membranes and spiral shaped structures were also reported. The carbon-rich (kerogen) hollow spheres were found to be in a narrowly constrained distribution of sizes (mainly 7 to 10 microns in diameter). Electron microprobe analysis revealed that these spheres contained Carbon, possibly P, N, and K. It was established that these forms could not be attributed to pollen or other recent terrestrial contaminants. It was concluded that they most probably represented organic coatings on globules of glass, olivine or magnetite in the meteorite. However, recent studies of the Orgueil meteorite have been carried out at the NASA/Marshall Space Flight Center with the S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM). These investigations have revealed the presence of numerous carbon encrusted spherical magnetite platelets and spherical and ovoidal bodies of elemental iron in-situ in freshly fractured interior surfaces of the meteorite. Their size range is also very narrowly constrained (typically approximately 6 to 12 microns) in diameter. High resolution images reveal that these bodies are also encrusted with a thin carbonaceous sheath and are surrounded by short nanofibrils that are shown to be composed of high purity iron by EDAX elemental analysis. We present Secondary and Backscatter Electron FESEM images and associated EDAX elemental analyses and 2D X-ray maps of these forms as we re-examine the hollow spheres of Orgueil and attempt to determine if they are representatives of the same population of indigenous microstructures.

  11. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging.

    PubMed

    Callaghan, Martina F; Freund, Patrick; Draganski, Bogdan; Anderson, Elaine; Cappelletti, Marinella; Chowdhury, Rumana; Diedrichsen, Joern; Fitzgerald, Thomas H B; Smittenaar, Peter; Helms, Gunther; Lutti, Antoine; Weiskopf, Nikolaus

    2014-08-01

    A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19-75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging☆

    PubMed Central

    Callaghan, Martina F.; Freund, Patrick; Draganski, Bogdan; Anderson, Elaine; Cappelletti, Marinella; Chowdhury, Rumana; Diedrichsen, Joern; FitzGerald, Thomas H.B.; Smittenaar, Peter; Helms, Gunther; Lutti, Antoine; Weiskopf, Nikolaus

    2014-01-01

    A pressing need exists to disentangle age-related changes from pathologic neurodegeneration. This study aims to characterize the spatial pattern and age-related differences of biologically relevant measures in vivo over the course of normal aging. Quantitative multiparameter maps that provide neuroimaging biomarkers for myelination and iron levels, parameters sensitive to aging, were acquired from 138 healthy volunteers (age range: 19–75 years). Whole-brain voxel-wise analysis revealed a global pattern of age-related degeneration. Significant demyelination occurred principally in the white matter. The observed age-related differences in myelination were anatomically specific. In line with invasive histologic reports, higher age-related differences were seen in the genu of the corpus callosum than the splenium. Iron levels were significantly increased in the basal ganglia, red nucleus, and extensive cortical regions but decreased along the superior occipitofrontal fascicle and optic radiation. This whole-brain pattern of age-associated microstructural differences in the asymptomatic population provides insight into the neurobiology of aging. The results help build a quantitative baseline from which to examine and draw a dividing line between healthy aging and pathologic neurodegeneration. PMID:24656835

  13. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  14. BiVO4 microstructures with various morphologies: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Wu, Min; Jing, Qifeng; Feng, Xinyan; Chen, Limiao

    2018-01-01

    Bismuth vanadate (BiVO4) microstructures with dumbbell, rod, ellipsoid, sphere, and cake-like morphologies have been successfully fabricated by using a surfactant-free hydrothermal method, in which the morphology of the BiVO4 microstructures can be tuned by simply varying the molar ratio of Bi(NO)3·5H2O to NaVO3 in the starting materials. Based on a series of contrast experiments, the probable formation mechanism of the BiVO4 microstructures with multiple shapes have been proposed. The photocatalytic performances of the as-prepared BiVO4 microstructures have been evaluated by studying the degradation of Rhodamine B solutions under visible light irradiation. The results reveal that the cake-like BiVO4 microstructures exhibit the higher photocatalytic activity than other BiVO4 microstructures due to its high surface area and unique morphology.

  15. The microstructure of starchy food modulates its digestibility.

    PubMed

    Tian, Jinhu; Ogawa, Yukiharu; Shi, John; Chen, Shiguo; Zhang, Huiling; Liu, Donghong; Ye, Xingqian

    2018-06-05

    Starch is the main carbohydrate in human nutrition and shows a range of desired food properties. It has been demonstrated that fast digestion of starchy food can induce many health issues (e.g., hyperglycaemia, diabetes, etc.); therefore, how to modulate its digestion is an interesting topic. Previous studies have revealed that the microstructure and digestibility of starchy food of different botanical origin or from multiple processes are quite different; modulating starch digestion by retaining or altering its microstructure may be effective. In the present review, the current knowledge of the relationship between microstructural changes to starchy food and its digestibility at molecular, cell and tissue, and food processing levels is summarized. New technologies focused on microstructure studies and ways to manipulate food microstructure to modulate starch digestibility are also reviewed. In particular, some insights focusing on the future study of microstructure and the digestibility of starchy food are also suggested.

  16. Brainstem Involvement as a Cause of Central Sleep Apnea: Pattern of Microstructural Cerebral Damage in Patients with Cerebral Microangiopathy

    PubMed Central

    Duning, Thomas; Deppe, Michael; Brand, Eva; Stypmann, Jörg; Becht, Charlotte; Heidbreder, Anna; Young, Peter

    2013-01-01

    Background The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. Patients and Methods Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis. Results In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. Conclusion Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than conventional structural MRI and other advanced MR analyses tools in demonstrating these abnormalities. PMID:23637744

  17. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams. Revision 1

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with three quadrilateral, six pentagonal faces and two hexagonal faces consistent with the 3-6-2 Matzke cell. A compilation of 90 years of experimental data reveals that the average number of cell faces decreases linearly with the increasing ratio of quadrilateral to pentagonal faces. It is concluded that the Kelvin model is not supported by these experimental data.

  18. Influence of Selenization Time on Microstructural, Optical, and Electrical Properties of Cu2ZnGeSe4 Films

    NASA Astrophysics Data System (ADS)

    Swapna Mary, G.; Hema Chandra, G.; Anantha Sunil, M.; Gupta, Mukul

    2018-01-01

    We have studied the effects of selenization time on the microstructural, optical, and electrical properties of stacked (Cu/Se/ZnSe/Se/Ge/Se) × 4 layers to demonstrate growth of Cu2ZnGeSe4 (CZGSe) thin films. Electron beam evaporation was used to deposit CZGSe films on glass substrates for selenization in high vacuum at 450°C for different times (15 min, 30 min, 45 min, and 60 min). The incomplete reaction of the precursor layers necessitates selenization at higher temperature for different durations to achieve desirable microstructural and optoelectronic properties. Energy-dispersive spectroscopic measurements revealed that the stacked layers selenized at 450°C for 30 min were nearly stoichiometric with atomic ratios of Cu/(Zn + Ge) = 0.88, Zn/Ge = 1.11, and Se/(Cu + Zn + Ge) = 1.03. X-ray diffraction analysis revealed that the stacks selenized at 450°C for 30 min crystallized in tetragonal stannite structure. Selenization-time-dependent Raman measurements of the selenized stacks are systematically presented to understand the growth of CZGSe. The elemental distribution through depth as a function of selenization time was investigated using secondary-ion mass spectroscopy. The ionic valency of the constituent elements in CZGSe films selenized at 450°C for 30 min was examined using high-resolution x-ray photoelectron spectroscopy. Significant changes were observed in the surface morphology of the stacked layers with increase in selenization time. The effects of defects on the electrical properties and of binary phases on the optical properties are discussed.

  19. Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

    2011-01-01

    Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

  20. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.

    PubMed

    Badiei, N; Sowedan, A M; Curtis, D J; Brown, M R; Lawrence, M J; Campbell, A I; Sabra, A; Evans, P A; Weisel, J W; Chernysh, I N; Nagaswami, C; Williams, P R; Hawkins, K

    2015-01-01

    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.

  1. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of foods can be used to identify the important processing parameters that affect the quality of a product.

  2. Effect of the microstructure on electrical properties of high-purity germanium

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  3. Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2017-12-01

    Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

  4. Dysmorphology and microstructural degradation of the corpus callosum: Interaction of age and alcoholism.

    PubMed

    Pfefferbaum, Adolf; Adalsteinsson, Elfar; Sullivan, Edith V

    2006-07-01

    Chronic alcohol abuse is a ubiquitous health and societal problem, with a growing prevalence in the older population. Alcoholism is a source of substantial deterioration in brain tissue and has been consistently observed in vivo and postmortem in white matter. To quantify the potential compounded effect of age and alcoholism, we used conventional structural MRI and diffusion tensor imaging (DTI) to examine the macrostructural and microstructural integrity of the corpus callosum, one of the most prominent white matter structures of the brain, in 131 adults, age 27-75 years. Compared with the 74 controls, the 40 alcoholic men and 17 alcoholic women, who were abstinent from alcohol for an average of 3 months, showed similar patterns and extents of callosal shrinkage, which was greatest in the genu and body and less prominent in the splenium. Microstructural integrity was measured with DTI as fractional anisotropy, an index of intravoxel orientational coherence of white matter fibers, and bulk mean diffusivity, an index of the amount of intravoxel water motility. The macrostructural shrinkage was accompanied by abnormalities in anisotropy and diffusivity of the microstructural environment of these callosal regions, indicative of disruption of structural constituents of local brain white matter. Correlational analyses revealed an age-alcohol interaction, where older alcoholics had smaller genu and splenium and higher diffusivity in these regions than younger alcoholics. Significant correlations between regional MRI and DTI measures and performance on working memory, visuospatial ability, and gait and balance provided evidence for the functional ramifications of the callosal abnormalities in the alcoholics. Thus, despite abstinence from alcohol, the interaction of age and recent alcoholism history exerted a compounded untoward effect on callosal macrostructure and microstructure.

  5. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Tanhaei, S.; Gheisari, Kh.; Alavi Zaree, S. R.

    2018-06-01

    This study has evaluated the effect of different levels of cold rolling (from 0 to 50%) on the microstructural, magnetic, and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in NaCl (1 mol/L) + H2SO4 (0.5 mol/L) solution. Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process. Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagnetic α'-martensite phase under the stresses applied during cold rolling. This finding is in agreement with magnetic measurements using a vibrating sample magnetometer. Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage, representing a reduction in the material's work-hardening ability. Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy. In contrast to the uniform corrosion, wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects, the passive potential range and breakdown potential increased by cold working, showing greater resistance to pit nucleation. Although pits were formed, the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop, as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.

  7. Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children.

    PubMed

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Rekik, Islem; Zhang, Jishui; Zhang, Yue; Tian, Hongwei; Peng, Yun; He, Huiguang

    2016-05-01

    Tourette syndrome (TS) is a neurological disorder that causes uncontrolled repetitive motor and vocal tics in children. Examining the neural basis of TS churned out different research studies that advanced our understanding of the brain pathways involved in its development. Particularly, growing evidence points to abnormalities within the fronto-striato-thalamic pathways. In this study, we combined Tract-Based Spatial Statistics (TBSS) and Atlas-based regions of interest (ROI) analysis approach, to investigate the microstructural diffusion changes in both deep and superficial white matter (SWM) in TS children. We then characterized the altered microstructure of white matter in 27 TS children in comparison with 27 age- and gender-matched healthy controls. We found that fractional anisotropy (FA) decreases and radial diffusivity (RD) increases in deep white matter (DWM) tracts in cortico-striato-thalamo-cortical (CSTC) circuit as well as SWM. Furthermore, we found that lower FA values and higher RD values in white matter regions are correlated with more severe tics, but not tics duration. Besides, we also found both axial diffusivity and mean diffusivity increase using Atlas-based ROI analysis. Our work may suggest that microstructural diffusion changes in white matter is not only restricted to the gray matter of CSTC circuit but also affects SWM within the primary motor and somatosensory cortex, commissural and association fibers. Hum Brain Mapp 37:1903-1919, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Nondestructive evaluation of ceramic matrix composite combustor components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  9. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    NASA Astrophysics Data System (ADS)

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  10. Scanning and Transmission Electron Microscopy of High Temperature Materials

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  11. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G.

    2016-09-01

    The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids andmore » FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less

  12. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  13. Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.

    2013-12-15

    Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less

  14. Corrigendum to "Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams"

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15% and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50-57% of the cell faces were pentagonal while 24-28% were quadrilateral and 15-22% were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 Matzke cell

  15. Dry Sliding Wear Behavior and Subsurface Microstructure Evolution of Mg97Zn1Y2 Alloy in a Wide Sliding Speed Range

    NASA Astrophysics Data System (ADS)

    An, J.; Xuan, X. H.; Zhao, J.; Sun, W.; Liang, C.

    2016-12-01

    The wear properties of Mg97Zn1Y2 alloy were investigated using the pin-on-disk wear machine within a load range of 20-380 N and a sliding speed range of 0.2-4.0 m/s. Analysis of worn surfaces using scanning electron microscope and energy-dispersive x-ray spectrometer revealed that wear mechanisms including abrasion + oxidation, delamination accompanied by heavy surface oxidation and delamination operated in mild wear regime, while wear mechanisms such as severe plastic deformation, severe plastic deformation accompanied by spallation of oxidation layer and surface melting prevailed in severe wear regime. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The transformation of surface material from the deformed into dynamic recrystallization (DRX) microstructure was observed before and after mild-to-severe transition. The reason for mild-to-severe wear transition was identified as the transformation of strain hardening to DRX softening in subsurface. Mg97Zn1Y2 alloy has a superior mild-to-severe wear transition resistance to AZ alloys because of its higher recrystallization temperature. A novel model for evaluating the critical surface temperature of mild-to-severe wear transition was established using DRX kinetics.

  16. Microstructure and Corrosion Behavior of CrN and CrSiCN Coatings

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Yang, Qi; Huang, Xiao; Wei, Ronghua

    2010-07-01

    Three CrN-based coatings were deposited on 17-4PH stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The microstructure and corrosion resistance were evaluated to examine the effect of Si and C in the coatings. The three coating compositions were CrN(Cr0.69N0.31), CrSiCN-1 (Cr0.55Si0.014C0.14N0.3), and CrSiCN-2 (Cr0.43Si0.037C0.24N0.3). The testing results indicated that with the increase of Si concentration, the coating microstructure transformed from B1 structure to B1 + Si3N4 structure. All the three coating systems were subjected to electrochemical tests in 3.5% NaCl solution at room temperature. Potentiodynamic polarization results revealed that the CrSiCN-2 coating had a higher anodic current density and a lower corrosion potential when compared to the CrN and CrSiCN-1 coatings. Extended exposure in 3.5% NaCl caused several localized corrosion to the CrSiCN-2 coating due to the porous coating structure. Electrochemical impedance spectroscopic measurements demonstrated that the CrSiCN-1 has better corrosion resistance than CrN and CrSiCN-2.

  17. Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites

    PubMed Central

    2017-01-01

    In the present work, an aluminum metal matrix reinforced with (Al2O3) nanoparticles was fabricated as a surface composite sheet using friction stir processing (FSP). The effects of processing parameters on mechanical properties, hardness, and microstructure grain were investigated. The results revealed that multi-pass FSP causes a homogeneous distribution and good dispersion of Al2O3 in the metal matrix, and consequently an increase in the hardness of the matrix composites. A finer grain is observed in the microstructure examination in specimens subjected to second and third passes of FSP. The improvement in the grain refinement is 80% compared to base metal. The processing parameters, particularly rotational tool speed and pass number in FSP, have a major effect on strength properties and surface hardness. The ultimate tensile strength (UTS) and the average hardness are improved by 25% and 46%, respectively, due to presence of reinforcement Al2O3 nanoparticles. PMID:28885575

  18. MICROSTRUCTURAL ABNORMALITIES IN MEWDS DEMONSTRATED BY ULTRAHIGH RESOLUTION OPTICAL COHERENCE TOMOGRAPHY

    PubMed Central

    NGUYEN, MY HANH T.; WITKIN, ANDRE J.; REICHEL, ELIAS; KO, TONY H.; FUJIMOTO, JAMES G.; SCHUMAN, JOEL S.; DUKER, JAY S.

    2007-01-01

    Background Histopathological studies of acute multiple evanescent white dot syndrome (MEWDS) have not been reported because of the transient and benign nature of the disease. Ultrahigh resolution optical coherence tomography (UHR-OCT), capable of high resolution in vivo imaging, offers a unique opportunity to visualize retinal microstructure in the disease. Methods UHR-OCT images of the maculae of five patients with MEWDS were obtained and analyzed. Diagnosis was based on clinical presentation, examination, visual field testing, and angiography. Results UHR-OCT revealed disturbances in the photoreceptor inner/outer segment junction (IS/OS) in each of the five patients (six eyes) with MEWDS. In addition, thinning of the outer nuclear layer was seen in the case of recurrent MEWDS, suggesting that repeated episodes of MEWDS may result in photoreceptor atrophy. Conclusions Subtle disruptions of the photoreceptor IS/OS are demonstrated in all eyes affected by MEWDS. UHR-OCT may be a useful adjunct to diagnosis and monitoring of MEWDS. PMID:17420691

  19. Effect of microstructure on the impact toughness and temper embrittlement of SA508Gr.4N steel for advanced pressure vessel materials.

    PubMed

    Yang, Zhiqiang; Liu, Zhengdong; He, Xikou; Qiao, Shibin; Xie, Changsheng

    2018-01-09

    The effect of microstructure on the impact toughness and the temper embrittlement of a SA508Gr.4N steel was investigated. Martensitic and bainitic structures formed in this material were examined via scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy, and Auger electron spectroscopy (AES) analysis. The martensitic structure had a positive effect on both the strength and toughness. Compared with the bainitic structure, this structure consisted of smaller blocks and more high-angle grain boundaries (HAGBs). Changes in the ultimate tensile strength and toughness of the martensitic structure were attributed to an increase in the crack propagation path. This increase resulted from an increased number of HAGBs and refinement of the sub-structure (block). The AES results revealed that sulfur segregation is higher in the martensitic structure than in the bainitic structure. Therefore, the martensitic structure is more susceptible to temper embrittlement than the bainitic structure.

  20. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  1. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  2. Confocal Raman spectroscopic analysis of cross-linked ultra-high molecular weight polyethylene for application in artificial hip joints.

    PubMed

    Pezzotti, Giuseppe; Kumakura, Tsuyoshi; Yamada, Kiyotaka; Tateiwa, Toshiyuki; Puppulin, Leonardo; Zhu, Wenliang; Yamamoto, Kengo

    2007-01-01

    Confocal spectroscopic techniques are applied to selected Raman bands to study the microscopic features of acetabular cups made of ultra-high molecular weight polyethylene (UHMWPE) before and after implantation in vivo. The micrometric lateral resolution of a laser beam focused on the polymeric surface (or subsurface) enables a highly resolved visualization of 2-D conformational population patterns, including crystalline, amorphous, orthorhombic phase fractions, and oxidation index. An optimized confocal probe configuration, aided by a computational deconvolution of the optical probe, allows minimization of the probe size along the in-depth direction and a nondestructive evaluation of microstructural properties along the material subsurface. Computational deconvolution is also attempted, based on an experimental assessment of the probe response function of the polyethylene Raman spectrum, according to a defocusing technique. A statistical set of high-resolution microstructural data are collected on a fully 3-D level on gamma-ray irradiated UHMWPE acetabular cups both as-received from the maker and after retrieval from a human body. Microstructural properties reveal significant gradients along the immediate material subsurface and distinct differences are found due to the loading history in vivo, which cannot be revealed by conventional optical spectroscopy. The applicability of the confocal spectroscopic technique is valid beyond the particular retrieval cases examined in this study, and can be easily extended to evaluate in-vitro tested components or to quality control of new polyethylene brands. Confocal Raman spectroscopy may also contribute to rationalize the complex effects of gamma-ray irradiation on the surface of medical grade UHMWPE for total joint replacement and, ultimately, to predict their actual lifetime in vivo.

  3. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    DOEpatents

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  4. Microstructural evaluation of cumulative fatigue damage in a plant component sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.; Yoshida, K.

    1996-12-31

    Fatigue damage accumulated in a real plant was evaluated in terms of microstructural conditioning. Microstructural damage induced in laboratory by cyclic deformation near and below the fatigue limit was also examined. A Transmission Electron Microscopy (TEM) technique called the Selected Area Diffraction (SAD) method was employed in this study. In earlier studies, it was found that the SAD value indicating a magnitude of crystallographic misorientation in the substructure (dislocation cells) was increasing with the increase of fatigue damage accumulation. Small samples removed from PWR feed water nozzle welds were examined by the SAD. It was found that the damage statemore » measured by the SAD well agreed with the morphological evidence. Cyclic stresses near or below the fatigue limit were applied to samples taken from a SA508 steel plate at various stresses. The SAD value increased even below the fatigue limit, but there was no sign of microstructural conditioning below the stresses of 50% of the fatigue limit. These results suggested that at stresses below the current design curve (below half the fatigue limit) no microstructural conditioning proceeded. It was concluded that the microstructural method was effective to evaluate damage accumulation in real plant components, and also that the current design curve was adequate in terms of microstructural conditioning state.« less

  5. The Effect of Various Quenchants on the Hardness and Microstructure of 60-NITINOL

    NASA Technical Reports Server (NTRS)

    Thomas, Fransua

    2015-01-01

    The effect of various quenching media on the hardness and microstructure of 60 NITINOL (60 NiTi) were evaluated. Specimens of 60 NiTi were heat treated in air at 1000 degC for 30 min or 2 hr, then quench cooled by one of seven different methods. The microstructure and hardness of this material was examined post heat treatment. The results indicated that the quench method had little effect on the resulting hardness and microstructure of 60 NiTi.

  6. Ordering-separation phase transitions in a Co3V alloy

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.

    2017-01-01

    The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.

  7. Comparative thermal fatigue resistance of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Bizon, P. T.

    1981-01-01

    The thermal fatigue resistance of several oxide dispersion strengthened (ODS) alloys has been evaluated through cyclic exposure in fluidized beds. The ODS nickel-base alloy MA 754 and ODS iron-base alloy MA 956 as well as four experimental ODS Ni-16Cr-4.5Al base alloys with and without Ta additions were examined. Both bare and coated alloys were subjected to up to 6000 cycles where each cycle consisted of a 3 minute immersion in a fluidized bed at 1130 C followed by a 3 minute immersion in a bed at 357 C. Testing revealed that the thermal fatigue resistance of the ODS nickel-base alloys was excellent and about equal to that of directionally solidified superalloys. However, the thermal fatigue resistance of MA 956 was found to be poor. Metallographic examination of tested specimens revealed that, in general, the post-test microstructures can be rationalized on the basis of previous diffusion, mechanical property, and oxidation studies.

  8. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    NASA Astrophysics Data System (ADS)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods, to see if any suitable models exist that might be used to assist in designing with these cast alloys.

  9. Archaeometallurgical investigation of the iron anchor from the Tantura F shipwreck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronson, A.; Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Barkai, O.

    2013-04-15

    The Tantura F shipwreck was a coaster or a fishing vessel about 15.7 m long, discovered in the Dor/Tantura lagoon, Israel in 1995. It was dated to between the mid-7th and the end of the 8th centuries CE. Among the finds excavated were two T-shaped type iron anchors. Of the two anchors, one (anchor A) was thoroughly studied by archaeometallurgical methods in order to identify forge-welding lines, to determine the welding quality and to understand the manufacturing technology. The examinations included X-ray radiography, XRF analysis, optical microscopy, SEM/EDS observation and analysis, OES analysis and microhardness tests. The investigation included characterizationmore » of the composition, microstructure, thermal treatments, forge-welding junctions and slag analysis. The results revealed a heterogeneous microstructure, rich in glassy, fayalite and wüstite slag. Iron based phases included ferrite, pearlite, cementite and Widmanstätten plates, all typical to wrought iron. The forge-welds of Anchor A were located. Each arm was made of one piece, weighing about 2.5–3 kg and the shank was made of a few 1.5–2 kg pieces. The second anchor (anchor B) was only briefly examined visually and with a few radiographs, which support the results from anchor A. The research results revealed significant information about T-shaped anchors and their manufacturing process, including hot-working processes without any additional heat treatments, and folding techniques. The microstructure was similar to other ancient simple tools such as saws, sickles, axes and mortise chisels, and though the technology to make complicated structures and objects, such as swords, existed at that time, the anchors did not require this sophistication; thus simpler techniques were used, presumably because they were more cost-effective. - Highlights: ► Tantura F was a coaster dated to mid-7th–end-8th centuries. ► Two iron anchors were discovered at the Tantura F shipwreck-site. ► Anchor A was manufactured from heterogeneous wrought iron blooms. ► Forge-welding lines were detected using archaeometallurgical methods.« less

  10. Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel

    NASA Astrophysics Data System (ADS)

    Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng

    2018-03-01

    In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.

  11. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.

  12. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  13. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  14. Discovering the movement of life: osmosis and microstructure in 1826.

    PubMed

    Pickstone, J V

    1994-01-01

    RJH Dutrochet (1776-1847) may be remembered for his discovery of osmosis in 1826. This essay explores the meanings of that discovery within the science of the early nineteenth century, including contemporary ideas on plant and animal microstructure and on physical explanations for the phenomena of life. Dutrochet is revealed as a 'romantic' exponent of 'organic physics'.

  15. Development of dispersion-strengthened XD (trademark) Cu alloys for high heat-flux applications

    NASA Technical Reports Server (NTRS)

    Kumar, K. Sharvan

    1993-01-01

    In a previous effort sponsored by NASA LeRC, the XD(trademark) process was used to produce ZrB2 particulate reinforcements in Cu and the resulting extruded material was microstructurally characterized and evaluated in tension over a range of temperatures. A problem that was encountered in that study was microstructural inhomogeneity resulting from the frequent presence of 'ZrB2 agglomerates' that were several microns in size. The presence of these agglomerates was attributed to improper mixing of powders in the green compact used in the XD process for elemental boron powder segregation. In this program, several milling parameters were examined in an effort to optimize this processing step; two levels of ZrB2 reinforcements were considered (7 vol. percent and 15 vol. percent). Microstructures of the reacted powder mass were examined to verify the absence of these agglomerates. Larger bathes of powder were then mixed, reacted, machined to size, canned, and extruded. The microstructure and tensile properties of these extrusions were examined, and the measured properties were correlated with the observed microstructure. Large unreacted or partially reacted Zr particles were present. These particles affected the mechanical properties deleteriously, and their presence is attributed to insufficient heat of reaction during XD synthesis. Alternate processing routes are recommended.

  16. Densification, Microstructural Evolution, Mechanical Properties and Oxidation Study of CrB2 + EuB6 Composite

    NASA Astrophysics Data System (ADS)

    Raju, K.; Sonber, J. K.; Murthy, T. S. R. Ch.; Sairam, K.; Majumdar, S.; Kain, V.; Nageswar Rao, G. V. S.

    2018-05-01

    This paper reports the results of investigation on densification, microstructural evolution, mechanical properties and oxidation study of CrB2 + EuB6 composite. CrB2 + EuB6 (10 and 20 wt.%) composites have been fabricated by hot pressing at a temperature of 1700 °C and 35 MPa pressure. The hardness and flexural strength were measured in the range of 21.25-24.48 GPa and 171-199 MPa, respectively. The fracture toughness increased from 3.3 to 4.01 MPa m1/2 by the addition of 20% EuB6. Microstructural evolution revealed the uniform distribution of EuB6 and absence of any reaction product. Fracture surface analysis confirmed the presence of transgranular mode of fracture. Oxidation study at 1200 °C revealed that the developed composites have good oxidation resistance and followed the parabolic rate of oxidation.

  17. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  18. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  19. Magnetic domain pattern in hierarchically twinned epitaxial Ni-Mn-Ga films.

    PubMed

    Diestel, Anett; Neu, Volker; Backen, Anja; Schultz, Ludwig; Fähler, Sebastian

    2013-07-03

    Magnetic shape memory alloys exhibit a hierarchically twinned microstructure, which has been examined thoroughly in epitaxial Ni-Mn-Ga films. Here we analyze the consequences of this 'twin within twins' microstructure on the magnetic domain pattern. Atomic and magnetic force microscopy are used to probe the correlation between the martensitic microstructure and magnetic domains. We examine the consequences of different twin boundary orientations with respect to the substrate normal as well as variant boundaries between differently aligned twinned laminates. A detailed micromagnetic analysis is given which describes the influence of the finite film thickness on the formation of magnetic band domains in these multiferroic materials.

  20. Microstructural examination of

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.

  1. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and subsequent shape recovery experiments. Neutron diffraction techniques are also being applied to the investigation of novel high temperature SMAs with the objective of designing alloys with better stability, higher transition temperatures and ultimately superior durability.

  2. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.

    2015-04-01

    Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.

  3. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2010-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use the three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent with the 3-6-2 cell.

  4. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart

    2017-11-01

    Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Effect of austempering temperature on cavitation behaviour of unalloyed ADI material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dojcinovic, Marina; Eric, Olivera; Rajnovic, Dragan

    2013-08-15

    This paper provides an in-depth study and description of cavitation damage and microstructural changes in two types of unalloyed austempered ductile iron (ADI). ADI materials used were austempered at 300 and 400 °C having ausferrite microstructure with 16 and 31.4% of retained austenite, respectively. Metallographic examination was carried out to study the morphology of their cavitation-damaged surfaces. Cavitation damage was initiated at graphite nodules as well as in the interface between a graphite nodule and an ausferrite matrix. Furthermore, microcracking and ferrite/retained austenite morphology were proved to be of great importance for cavitation resistance. Mass loss rate revealed that ADImore » austempered at 400 °C has a higher cavitation resistance in water than ADI austempered at 300 °C. A higher amount of retained austenite in ADI austempered at 400 °C played an important role in increasing cavitation resistance. The good cavitation behaviour of ADI austempered at 400 °C was due to the matrix hardening by stress assisted phase transformation of retained austenite into martensite (SATRAM) phenomenon, as shown by X-ray diffraction analysis. - Highlights: • Cavitation rate of two ADI materials was tested. • ADI material with a lower hardness has had a lower cavitation rate. • The main reason is microstructural transformations during cavitation. • SATRAM phenomenon increases cavitation resistance.« less

  6. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    PubMed

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    PubMed

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  8. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.

    PubMed

    Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B

    2016-01-01

    We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  9. Phase transformations in steels: Processing, microstructure, and performance

    DOE PAGES

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  10. In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, J. W.; Shen, Y. F.; Zhang, C. S.

    Here, the microstructures and mechanical properties of a low-alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized carbides in ultrafine-grained (UFG) ferritic steel are examined. The average grain size of the studied steel is ~ 430 nm, and these grains coexist with numerous carbides. Neutron diffraction reveals that the intensity of (011) and (022) peaks for the UFG sample is significantly enhanced, suggesting that the (011)//RD texture is a result of the warm rolling process. The lattice parameter of UFG steel is smaller than that of a martensitic steel (M steel) counterpart, indicating a lower carbon concentration inmore » the lattice. The estimated dislocation densities for M steel and UFG steel are 2.59 × 10 14 cm –2 and 1.76 × 10 12 cm –2, respectively. The UFG steel reveals a nearly isotropic lattice strain response under initial tension from 0 to 450 MPa, where the lattice strains of the (110), (002), and (112) planes are identical. The increase of lattice strain of the (110) plane becomes smaller than that of the (002) and (112) planes as the stress exceeds 450 MPa, suggesting that the nanosized carbides contribute to the hardening ability by promoting the accumulation of geometrically necessary dislocations around the particles, and the (110) lattice becomes harder compared to the other two planes.« less

  11. In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel

    DOE PAGES

    Liang, J. W.; Shen, Y. F.; Zhang, C. S.; ...

    2018-04-25

    Here, the microstructures and mechanical properties of a low-alloy medium-carbon steel with a duplex microstructure composed of nanoscale spheroidized carbides in ultrafine-grained (UFG) ferritic steel are examined. The average grain size of the studied steel is ~ 430 nm, and these grains coexist with numerous carbides. Neutron diffraction reveals that the intensity of (011) and (022) peaks for the UFG sample is significantly enhanced, suggesting that the (011)//RD texture is a result of the warm rolling process. The lattice parameter of UFG steel is smaller than that of a martensitic steel (M steel) counterpart, indicating a lower carbon concentration inmore » the lattice. The estimated dislocation densities for M steel and UFG steel are 2.59 × 10 14 cm –2 and 1.76 × 10 12 cm –2, respectively. The UFG steel reveals a nearly isotropic lattice strain response under initial tension from 0 to 450 MPa, where the lattice strains of the (110), (002), and (112) planes are identical. The increase of lattice strain of the (110) plane becomes smaller than that of the (002) and (112) planes as the stress exceeds 450 MPa, suggesting that the nanosized carbides contribute to the hardening ability by promoting the accumulation of geometrically necessary dislocations around the particles, and the (110) lattice becomes harder compared to the other two planes.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inam, A., E-mail: aqil.ceet@pu.edu.pk; Brydson, R., E-mail: mtlrmdb@leeds.ac.uk; Edmonds, D.V., E-mail: d.v.edmonds@leeds.ac.uk

    The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite–pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite–pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite–pearlite microstructures was less uniformmore » than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions. - Highlights: • Metallography of formation of graphite particles in experimental carbon steel. • Potential for using graphite in steel as an internal lubricant during machining. • Microstructure features expected to influence improved machinability studied. • Influence of pre-anneal starting microstructure on graphite nucleation sites. • Influence of pre-anneal starting microstructure on graphite distribution. • Potential benefit is new free-cutting steel compositions without e.g. Pb alloying.« less

  13. A Mechanical, Microstructural, and Damage Study of Various Tailor Hot Stamped Material Conditions Consisting of Martensite, Bainite, Ferrite, and Pearlite

    NASA Astrophysics Data System (ADS)

    Bardelcik, Alexander; Vowles, Caryn J.; Worswick, Michael J.

    2018-04-01

    This paper examines the mechanical, microstructural, and damage characteristics of five different material conditions that were created using the tailored hot stamping process with in-die heating. The tailored material conditions, TMC1 to TMC5 (softest-hardest), were created using die temperatures ranging from 700 °C to 400 °C, respectively. The tensile strength (and total elongation) ranged from 615 MPa (0.24) for TMC1 to 1122 MPa (0.11) for TMC5. TMC3 and TMC4 exhibited intermediate strength levels, with almost no increase in total elongation relative to TMC5. FE-SEM microscopy was used to quantify the mixed-phase microstructures, which ranged in volume fractions of ferrite, pearlite, bainite, and martensite. High-resolution optical microscopy was used to quantify void accumulation and showed that the total void area fraction at 0.60 thickness strain was low for TMC1 and TMC5 ( 0.09 pct) and highest for TMC3 (0.31 pct). Damage modes were characterized and revealed that the poor damage behavior of TMC3 (martensite/bainite/ferrite composition) was a result of small martensitic grains forming at grain boundaries and grain boundary junctions, which facilitated void nucleation as shown by the highest measured void density for this particular material condition. The excellent ductility of TMC1 was a result of a large grained ferritic/pearlitic microstructure that was less susceptible to void nucleation and growth. Large titanium nitride (TiN) inclusions were observed in all of the tailored material conditions and it was shown that they noticeably contributed to the total void accumulation, specifically for the TMC3 and TMC4 material conditions.

  14. Sex differences in associations between white matter microstructure and gonadal hormones in children and adolescents with prenatal alcohol exposure.

    PubMed

    Uban, K A; Herting, M M; Wozniak, J R; Sowell, E R

    2017-09-01

    Despite accumulating evidence from animal models demonstrating that prenatal alcohol exposure (PAE) results in life-long neuroendocrine dysregulation, very little is known on this topic among humans with fetal alcohol spectrum disorders (FASD). We expected that alterations in gonadal hormones might interfere with the typical development of white matter (WM) myelination, and in a sex-dependent manner, in human adolescents with FASD. In order to investigate this hypothesis, we used diffusion tensor imaging (DTI) to assess: 1) whether or not sex moderates the impact of PAE on WM microstructure; and 2) how gonadal hormones relate to alterations in WM microstructure in children and adolescents affected by PAE. 61 youth (9 to 16 yrs.; 49% girls; 50% PAE) participated as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). DTI scans and passive drool samples were obtained to examine neurodevelopmental associations with testosterone (T) and dehydroepiandrosterone (DHEA) levels in boys and girls, and estradiol (E2) and progesterone (P) levels in girls. Tract-based spatial statistics were utilized to generate fractional anisotropy (FA) and mean diffusivity (MD) for 9 a priori WM regions of interest (ROIs). As predicted, alterations in FA were observed in adolescents with PAE relative to controls, and these differences varied by sex. Girls with PAE exhibited lower FA (Inferior fronto-occipital and Uncinate fasciculi) while boys with PAE exhibited higher FA (Callosal body, Cingulum, Corticospinal tract, Optic radiation, Superior longitudinal fasciculus) relative to age-matched controls. When gonadal hormone levels were examined in relation to DTI measures, additional group differences in FA were revealed, demonstrating that neuroendocrine factors are associated with PAE-related brain alterations. These findings provide human evidence that PAE relates to sex-specific differences in WM microstructure, and underlying alterations in gonadal hormone function may, in part, contribute to these effects. Determining PAE-effects on neuroendocrine function among humans is an essential first step towards developing novel clinical (e.g., assessment or intervention) tools that target hormone systems to improve on-going brain development among children and adolescents with FASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microstructural Effects on Initiation Behavior in HMX

    NASA Astrophysics Data System (ADS)

    Molek, Christopher; Welle, Eric; Hardin, Barrett; Vitarelli, Jim; Wixom, Ryan; Samuels, Philip

    Understanding the role microstructure plays on ignition and growth behavior has been the subject of a significant body of research within the detonation physics community. The pursuit of this understanding is important because safety and performance characteristics have been shown to strongly correlate to particle morphology. Historical studies have often correlated bulk powder characteristics to the performance or safety characteristics of pressed materials. We believe that a clearer and more relevant correlation is made between the pressed microstructure and the observed detonation behavior. This type of assessment is possible, as techniques now exist for the quantification of the pressed microstructures. Our talk will report on experimental efforts that correlate directly measured microstructural characteristics to initiation threshold behavior of HMX based materials. The internal microstructures were revealed using an argon ion cross-sectioning technique. This technique enabled the quantification of density and interface area of the pores within the pressed bed using methods of stereology. These bed characteristics are compared to the initiation threshold behavior of three HMX based materials using an electric gun based test method. Finally, a comparison of experimental threshold data to supporting theoretical efforts will be made.

  16. Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI

    PubMed Central

    Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe

    2016-01-01

    Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056

  17. FIB-SEM Sectioning Study of Decarburization Products in the Microstructure of HVOF-Sprayed WC-Co Coatings

    NASA Astrophysics Data System (ADS)

    Katranidis, Vasileios; Gu, Sai; Cox, David C.; Whiting, Mark J.; Kamnis, Spyros

    2018-05-01

    The thermal dissolution and decarburization of WC-based powders that occur in various spray processes are a widely studied phenomenon, and mechanisms that describe its development have been proposed. However, the exact formation mechanism of decarburization products such as metallic W is not yet established. A WC-17Co coating is sprayed intentionally at an exceedingly long spray distance to exaggerate the decarburization effects. Progressive xenon plasma ion milling of the examined surface has revealed microstructural features that would have been smeared away by conventional polishing. Serial sectioning provided insights on the three-dimensional structure of the decarburization products. Metallic W has been found to form a shell around small splats that did not deform significantly upon impact, suggesting that its crystallization occurs during the in-flight stage of the particles. W2C crystals are more prominent on WC faces that are in close proximity with splat boundaries indicating an accelerated decarburization in such sites. Porosity can be clearly categorized in imperfect intersplat contact and oxidation-generated gases via its shape.

  18. Linguistic Feature Development Across Grades and Genre in Elementary Writing.

    PubMed

    Hall-Mills, Shannon; Apel, Kenn

    2015-07-01

    As children develop skills in writing across academic contexts, clinicians and educators need to have a fundamental understanding of typical writing development as well as valid and reliable assessment methods. The purpose of this study was to examine the progression of linguistic elements in school-age children's narrative and expository writing development. Narrative and expository writing samples produced by 89 children in Grades 2 through 4 were analyzed at the microstructure and macrostructure levels. Measures of receptive vocabulary, word-level reading, and reading comprehension were obtained. Exploratory factor analyses revealed 4 microstructure factors (e.g., productivity, grammatical complexity, grammatical accuracy, and lexical density) and 1 macrostructure factor (e.g., a combination of organization, text structure, and cohesion). Multivariate analyses of covariance with reading comprehension as a covariate showed that productivity and macrostructure were sensitive to grade-level and genre differences and that expository grammatical complexity was sensitive to grade-level differences. Findings are discussed in light of grade-level standards for narrative and expository writing and current practices in writing assessment. Multiple suggestions are offered for clinical and educational implications, and specific directions are provided for future research.

  19. Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy

    PubMed Central

    Larianovsky, Natalya; Katz-Demyanetz, Alexander; Eshed, Eyal; Regev, Michael

    2017-01-01

    This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these properties. The main findings are that the HIP process is responsible for the appearance of a Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP process also led to a considerable increase in the mechanical properties of both materials under compression, with values found to be higher than those reported in the literature. Contrary to the compression properties, both materials were found to be highly brittle under tension, either during room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle fracture without any evidence of plastic deformation prior to fracture. PMID:28773245

  20. Microstructure and Mechanical Properties of Zn-Ni-Al₂O₃ Composite Coatings.

    PubMed

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia; Li, Yan

    2018-05-21

    Zn-Ni-Al₂O₃ composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al₂O₃. The energy-dispersive spectroscopy results show that the Al₂O₃ content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al₂O₃ particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al₂O₃ and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  1. Microstructures of Pd-containing dispersants for admixed dental amalgams.

    PubMed

    Chern Lin, J H; Greener, E H

    1991-10-01

    Blended Pd-containing dispersants were developed by the utilization of a Ag-Cu eutectic into which Pd was substituted for Ag or Cu in concentrations of up to 20 wt%. Compositions were melted either in argon-filled sealed vycor tubes or in a graphite-linked carbon crucible of an induction furnace with an argon blanket. Ingots of approximately 1.5 cm in diameter were sectioned to 0.2 cm in thickness and polished through standard metallographic polishing procedures. The possible compounds were identified by XRD. The microstructures of the alloys were examined by SEM/EDS. XRD analysis of the alloys revealed the preferential dissolution of Pd in Cu when the Pd concentration was less than or equal to 10 wt%. When the Pd concentration exceeded 20 wt%, Pd was found to be dissolved in both Ag and Pd. No Cu3Pd x-ray diffraction peaks were found for alloys with Pd concentration of up to 20 wt%. SEM/EDS analysis confirmed XRD results; lamellae of Ag and Cu-Pd were found in alloys with Pd concentration less than or equal to 10 wt%.

  2. Soldering In Space Investigation Video

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This video captures Mike Fincke melting solder during the first set of planned In-Space Soldering Investigation (ISSI) experiments onboard the International Space Station (ISS). In the video, Fincke touches the tip of the soldering iron to a wire wrapped with rosin-core solder. Review of the experiment video revealed melting kinetics, wetting characteristics, and equilibrium shape attainment of the solder charge. Samples returned to Earth were examined for porosity and flux distribution as well as microstructural development. ISSI's purpose was to find out how solder behaves in a weightless environment and promote our knowledge of fabrication and repair techniques that might be employed during extended space exploration missions.

  3. Microstructural examination of fatigue crack tip in high strength steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less

  4. Negative emotion impacts memory for verbal discourse in pediatric bipolar disorder.

    PubMed

    Jacobs, Rachel H; Pavuluri, Mani N; Schenkel, Lindsay S; Palmer, Anne; Shah, Khushbu; Vemuri, Deepthi; Whited, Stefanie; Little, Deborah M

    2011-05-01

    Cognitive and emotional deficits have been documented in youth with pediatric bipolar disorder (PBD); however, to date, a systematic evaluation of comprehension and memory for verbally presented information has not been conducted. The effect of emotion on comprehension and memory for verbally presented material also has not been examined. We examined whether youth with PBD have difficulty recalling the big picture (macrostructure) as well as the story details (microstructure). A total of 35 youth with PBD and 25 healthy controls completed an Affective Story Task. A psychological processing model allowed for the examination of both the macrostructure and microstructure of language comprehension. Youth with PBD were capable of comprehending the gist of the stories and were not impaired by emotion when comprehending and remembering macrostructure. However, negative emotional material was found to proactively interfere with the encoding and recall of microstructure. Level of depression appeared to impact recall of microstructure, but not macrostructure. Negatively valenced material may impair subsequent comprehension and memory for details among youth with PBD. This deficit could impact the daily functioning of these youth, as the perception of negative affect may derail aspects of successful comprehension and learning. © 2011 John Wiley and Sons A/S.

  5. Microstructure, microbial profile and quality characteristics of high-pressure-treated chicken nuggets.

    PubMed

    Devatkal, Suresh; Anurag, Rahul; Jaganath, Bindu; Rao, Srinivasa

    2015-10-01

    High-pressure processing (300 MPa for 5 min) as a non-thermal post-processing intervention was employed to improve the shelf life and qualities of cooked refrigerated chicken nuggets. Pomegranate peel extract (1%) was also used as a source of natural antioxidant and antimicrobial in chicken nuggets. Microstructure, microbial profile, instrumental colour, texture profile and lipid oxidation were evaluated. High-pressure treatment and pomegranate peel extract did not influence significantly the colour and textural properties of cooked chicken nuggets. Thiobarbituric acid reactive substance values significantly (p < 0.05) increased in pressure-treated nuggets. Microstructural studies revealed shrinkage in the structure and loosening of the dense network of meat emulsion due to high-pressure treatment. Pressure treatment resulted in a reduction of 2-3.0 log10 cfu/g in total plate count and Enterobacteriaceae count. Molecular characterization studies revealed that Enterobacter amnigenus and Enterobacter sp. in control and Bacillus licheniformis, Enterococcus gallinarum and Acinetobacter baumannii in high-pressure-treated chicken nuggets were the major spoilage bacteria. © The Author(s) 2014.

  6. A Systematic Study on Tooth Enamel Microstructures of Lambdopsalis bulla (Multituberculate, Mammalia) - Implications for Multituberculate Biology and Phylogeny

    PubMed Central

    Mao, Fangyuan; Wang, Yuanqing; Meng, Jin

    2015-01-01

    Tooth enamel microstructure is a reliable and widely used indicator of dietary interpretations and data for phylogenetic reconstruction, if all levels of variability are investigated. It is usually difficult to have a thorough examination at all levels of enamel structures for any mammals, especially for the early mammals, which are commonly represented by sparse specimens. Because of the random preservation of specimens, enamel microstructures from different teeth in various species are often compared. There are few examples that convincingly show intraspecific variation of tooth enamel microstructure in full dentition of a species, including multituberculates. Here we present a systematic survey of tooth enamel microstructures of Lambdopsalis bulla, a taeniolabidoid multituberculate from the Late Paleocene Nomogen Formation, Inner Mongolia. We examined enamel structures at all hierarchical levels. The samples are treated differently in section orientations and acid preparation and examined using different imaging methods. The results show that, except for preparation artifacts, the crystallites, enamel types, Schmelzmuster and dentition types of Lambdopsalis are relatively consistent in all permanent teeth, but the prism type, including the prism shape, size and density, may vary in different portions of a single tooth or among different teeth of an individual animal. The most common Schmelzmuster of the permanent teeth in Lambdopsalis is a combination of radial enamel in the inner and middle layers, aprismatic enamel in the outer layer, and irregular decussations in tooth crown area with great curvature. The prism seam is another comparably stable characteristic that may be a useful feature for multituberculate taxonomy. The systematic documentation of enamel structures in Lambdopsalis may be generalized for the enamel microstructure study, and thus for taxonomy and phylogenetic reconstruction, of multituberculates and even informative for the enamel study of other early mammals. PMID:26020958

  7. 3D Microstructural Architectures for Metal and Alloy Components Fabricated by 3D Printing/Additive Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Murr, L. E.; Amato, K. N.; Hernandez, J.; Shindo, P. W.; Gaytan, S. M.; Ramirez, D. A.; Medina, F.; Wicker, R. B.

    The layer-by-layer building of monolithic, 3D metal components from selectively melted powder layers using laser or electron beams is a novel form of 3D printing or additive manufacturing. Microstructures created in these 3D products can involve novel, directional solidification structures which can include crystallographically oriented grains containing columnar arrays of precipitates characteristic of a microstructural architecture. These microstructural architectures are advantageously rendered in 3D image constructions involving light optical microscopy and scanning and transmission electron microscopy observations. Microstructural evolution can also be effectively examined through 3D image sequences which, along with x-ray diffraction (XRD) analysis in the x-y and x-z planes, can effectively characterize related crystallographic/texture variances. This paper compares 3D microstructural architectures in Co-base and Ni-base superalloys, columnar martensitic grain structures in 17-4 PH alloy, and columnar copper oxides and dislocation arrays in copper.

  8. FIB–SEM tomography of 4th generation PWA 1497 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętara, Maciej, E-mail: zietara@agh.edu.pl; Kruk, Adam, E-mail: kruczek@agh.edu.pl; Gruszczyński, Adam, E-mail: gruszcz@agh.edu.pl

    2014-01-15

    The effect of creep deformation on the microstructure of the PWA 1497 single crystal Ni-base superalloy developed for turbine blade applications was investigated. The aim of the present study was to characterize quantitatively a superalloy microstructure and subsequent development of rafted γ′ precipitates in the PWA 1497 during creep deformation at 982 °C and 248 MPa up to rupture. The PWA1497 microstructure was characterized by scanning electron microscopy and FIB–SEM electron tomography. The 3D reconstruction of the PWA1497 microstructure is presented and discussed. - Highlights: • The microstructure of PWA1497 superalloy was examined using FIB–SEM tomography. • In case ofmore » modern single crystal superalloys, measurements of A{sub A} are adequate for V{sub V}. • During creep the γ channel width increases from 65 to 193 nm for ruptured specimen. • Tomography is a useful technique for quantitative studies of material microstructure.« less

  9. Effect of annealing conditions on the microstructure and magnetic properties of sintered Nd-Fe-B magnets as seen by magnetic small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Périgo, Élio A.; Titov, Ivan; Weber, Raoul; Mettus, Denis; Peral, Inma; Vallcorba, Oriol; Honecker, Dirk; Feoktystov, Artem; Michels, Andreas

    2018-03-01

    We have investigated the effect of the annealing conditions (heating rate and temperature) on the magnetic microstructure of sintered Nd-Fe-B magnets by means of magnetometry, scanning electron microscopy, high-energy synchrotron x-ray diffraction, and small-angle neutron scattering (SANS). While the temperature treatment has a strong effect on the coercivity (reduction by about 50% on annealing), the associated changes in the microstructure do surprisingly not show up (or at best only very weakly) in the neutron-scattering signal, which probes a mesoscopic real-space length scale ranging between about 1–300 nm. On the other hand, the x-ray data reveal microstructural changes in the Nd-rich phases, presumably due to modifications in grain-boundary regions. Moreover, we observe an unusual diamond-shaped angular anisotropy in the SANS cross section, which strongly points towards the existence of texture in the nuclear microstructure.

  10. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less

  11. The effects of RE and Si on the microstructure and corrosion resistance of Zn-6Al-3Mg hot dip coating

    NASA Astrophysics Data System (ADS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-12-01

    The effects of Si and RE on the microstructure and corrosion resistance of Zn-6Al-3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  12. Histological, chemical, and morphological reexamination of the ``heart'' of a small Late Cretaceous Thescelosaurus

    NASA Astrophysics Data System (ADS)

    Cleland, Timothy P.; Stoskopf, Michael K.; Schweitzer, Mary H.

    2011-03-01

    A three-dimensional, iron-cemented structure found in the anterior thoracic cavity of articulated Thescelosaurus skeletal remains was hypothesized to be the fossilized remains of the animal's four-chambered heart. This was important because the finding could be interpreted to support a hypothesis that non-avian dinosaurs were endothermic. Mammals and birds, the only extant organisms with four-chambered hearts and single aortae, are endotherms. The hypothesis that this Thescelosaurus has a preserved heart was controversial, and therefore, we reexamined it using higher-resolution computed tomography, paleohistological examination, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy. This suite of analyses allows for detailed morphological and chemical examination beyond what was provided in the original work. Neither the more detailed examination of the gross morphology and orientation of the thoracic "heart" nor the microstructural studies supported the hypothesis that the structure was a heart. The more advanced computed tomography showed the same three areas of low density as the earlier studies with no evidence of additional low-density areas as might be expected from examinations of an ex situ ostrich heart. Microstructural examination of a fragment taken from the "heart" was consistent with cemented sand grains, and no chemical signal consistent with a biological origin was detected. However, small patches of cell-like microstructures were preserved in the sandstone matrix of the thoracic structure. A possible biological origin for these microstructures is the focus of ongoing investigation.

  13. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    NASA Astrophysics Data System (ADS)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  14. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  15. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.

    2016-06-01

    Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.

  16. Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Dahar, Matthew; Aman, Ron; Harrysson, Ola; Beuth, Jack; Lewandowski, John J.

    2015-03-01

    This preliminary work documents the effects of test orientation with respect to build and beam raster directions on the fracture toughness and fatigue crack growth behavior of as-deposited EBM Ti-6Al-4V. Although ASTM/ISO standards exist for determining the orientation dependence of various mechanical properties in both cast and wrought materials, these standards are evolving for materials produced via additive manufacturing (AM) techniques. The current work was conducted as part of a larger America Makes funded project to begin to examine the effects of process variables on the microstructure and fracture and fatigue behavior of AM Ti-6Al-4V. In the fatigue crack growth tests, the fatigue threshold, Paris law slope, and overload toughness were determined at different load ratios, R, whereas fatigue precracked samples were tested to determine the fracture toughness. The as-deposited material exhibited a fine-scale basket-weave microstructure throughout the build, and although fracture surface examination revealed the presence of unmelted powders, disbonded regions, and isolated porosity, the resulting mechanical properties were in the range of those reported for cast and wrought Ti-6Al-4V. Remote access and control of testing was also developed at Case Western Reserve University to improve efficiency of fatigue crack growth testing.

  17. Quantifying the effect of 3D spatial resolution on the accuracy of microstructural distributions

    NASA Astrophysics Data System (ADS)

    Loughnane, Gregory; Groeber, Michael; Uchic, Michael; Riley, Matthew; Shah, Megna; Srinivasan, Raghavan; Grandhi, Ramana

    The choice of spatial resolution for experimentally-collected 3D microstructural data is often governed by general rules of thumb. For example, serial section experiments often strive to collect at least ten sections through the average feature-of-interest. However, the desire to collect high resolution data in 3D is greatly tempered by the exponential growth in collection times and data storage requirements. This paper explores the use of systematic down-sampling of synthetically-generated grain microstructures to examine the effect of resolution on the calculated distributions of microstructural descriptors such as grain size, number of nearest neighbors, aspect ratio, and Ω3.

  18. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  19. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-12-01

    Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { < 110 > _{γ } || < 1\\overline{1} 0 > _{θ } } { < 111 > _{α } || < 1\\overline{1} 0 > _{θ } } { < 110 > _{γ } || < 111 > _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

  20. The effects of magnetic and mechanical microstructures on the twinning stress in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Faran, Eilon; Benichou, Itamar; Givli, Sefi; Shilo, Doron

    2015-12-01

    The ferromagnetic 10M Ni-Mn-Ga alloy exhibits complex magnetic and mechanical microstructures, which are expected to form barriers for motion of macro twin boundaries. Here, the contributions of both microstructures to the magnitude of the twinning stress property are investigated experimentally. A series of uniaxial loading-unloading curves are taken under different orientation angles of a constant magnetic field. The different 180 ° magnetic domains microstructures that are formed across the twin boundary in each case are visualised using a magneto optical film. Analysis of the different loading curves and the corresponding magnetic microstructures show that the latter does not contribute to the barriers for twin boundary motion. In accordance, the internal resisting stress for twin boundary motion under any magnetic field can be taken as the twinning stress measured in the absence of an external field. In addition, a statistical analysis of the fine features in the loading profiles reveals that the barrier for twinning is associated with a μ m sized characteristic length scale. This length scale corresponds to the typical thickness of micro-twinning laminates that constitute a mechanical microstructure. These findings indicate that the magnitude of the twinning stress in 10M Ni-Mn-Ga is determined by the characteristic fine twinned mechanical microstructure of this alloy.

  1. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    NASA Astrophysics Data System (ADS)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  2. Creep resistance. [of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Malu, M.; Purushothaman, S.

    1976-01-01

    High-temperature structural applications usually require creep resistance because some average stress is maintained for prolonged periods. Alloy and microstructural design guidelines for creep resistance are presented through established knowledge on creep behavior and its functional dependences on alloy microstructure. Important considerations related to creep resistance of alloys as well as those that are harmful to high-temperature properties are examined. Although most of the creep models do not predict observed creep behavior quantitatively, they are sophisticated enough to provide alloy or microstructural design guidelines. It is shown that creep-resistant microstructures are usually in conflict with microstructures that improve such other properties as stress rupture ductility. Greater understanding of the effects of environments on creep and stress rupture behavior of materials is necessary before one can optimally design alloys for applications in different environments.

  3. Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kuc, Dariusz; Gawąd, Jerzy

    2011-01-01

    The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.

  4. A slice of an aluminum particle: Examining grains, strain and reactivity

    DOE PAGES

    McCollum, Jena; Smith, Dylan K.; Hill, Kevin J.; ...

    2016-09-12

    The Combustion Institute Micron-scale aluminum (Al) particles are plagued by incomplete combustion that inhibits their reactivity. One approach to improving reactivity is to anneal Al particles to increase dilatational (volumetric) strain which has also been linked to increased combustion performance. While optimal annealing temperatures have been identified (roughly 300 °C), little is known about cooling rate effects on particle combustion performance. This study examines the effect of quenching after annealing Al microparticles to 100, 200 and 300 °C on intra-particle dilatational strain and reactivity. Synchrotron X-ray diffraction analysis of the particles reveals the cooling rates in the range from 0.007 to 0.38 K/smore » have little effect on the dilatational strain of the aluminum-core, alumina-shell particles. The annealed and quenched Al particles were then combined with a metal oxidizer (copper oxide) to examine reactivity. Flame propagation experiments follow the same trend: flame speeds are unchanged until a critical annealing temperature of 300 °C is reached and performance is maintained for each annealing temperature regardless of cooling rate. These results show that altering the mechanical properties and combustion performance of Al particles is strongly dependent on the annealing temperature and unchanged with variation in cooling rate. The contributions from elastic and plastic deformation mechanisms on strain are also considered and additional experimental results are shown on the microstructure of an Al particle. Focused ion beam milling of an Al particle to electron transparency was combined with transmission electron microscope imaging in order to examine the microstructure of the Al particles. This confirmed that the Al microparticles have a polycrystalline structure shown by grains all exceeding 100 nm in size.« less

  5. The effect of axial crucible rotation on microstructural uniformity during horizontal directional solidification

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.

    1992-01-01

    The effects on microstructure of crucible orientation with respect to the earth's gravitational vector, g, during directional solidification of low-volume fraction copper and aluminum, Pb-Cu, and Sn-Al alloys are examined. It is demonstrated that horizontal alignment (i.e. perpendicular to g) in combination with axial rotation of the crucible during growth is sufficient to negate factors which initiate macrosegregation, e.g. density gradients attributed to temperature and/or compositional differences, and promotes a uniform microstructure.

  6. Effect of moderate magnetic annealing on the microstructure, quasi-static and viscoelastic mechanical behavior of a structural epoxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid

    2012-01-01

    In this study the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle x-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent tomore » the macro scale creep compliance was calculated using the aforementioned nano-creep data. Using the continuous complex compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter , A/d(0), from short term(80 ), creep tests and the creep compliance J(t) from the long term(2700 s) creep tests with the tan(δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that under low magnetic fields both the quasi-static and viscoelastic mechanical properties of the epoxy have been improved.« less

  7. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510

  8. Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.

    PubMed

    Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.

  9. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    PubMed

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  10. Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.

    PubMed

    Sun, Changquan Calvin

    2017-05-01

    To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.

  11. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  12. Understanding the Microstructure and Macrostructure of Passages among Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Lo, Lap-yan; Ho, Connie Suk-han; Wong, Yau-kai; Chan, David Wai-ock; Chung, Kevin Kien-hoa

    2016-01-01

    Understanding the microstructure and macrostructure of passages is important for reading comprehension. What cognitive-linguistic skills may contribute to understanding these two levels of structures has rarely been investigated. The present study examined whether some word-level and text-level cognitive-linguistic skills may contribute…

  13. Microscopical Examination of Ancient Silver Coins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistofidis, N.; Vourlias, G.; Pavlidou, El.

    2007-04-23

    The microstructure of three silver coins of the IIId century B.C. from the Illyrian king Monounios, the ancient Greek city of Dyrrachion and of Korkyra was studied with XRF and microscopy. From this investigation it turned out that these coins have different chemical composition and microstructure that imply different minting method.

  14. Microstructural examination of irradiated vanadium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelles, D.S.; Chung, H.M.

    1997-04-01

    Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

  15. Functional activity and white matter microstructure reveal the independent effects of age of acquisition and proficiency on second-language learning.

    PubMed

    Nichols, Emily S; Joanisse, Marc F

    2016-12-01

    Two key factors govern how bilingual speakers neurally maintain two languages: the speakers' second language age of acquisition (AoA) and their subsequent proficiency. However, the relative roles of these two factors have been difficult to disentangle given that the two can be closely correlated, and most prior studies have examined the two factors in isolation. Here, we combine functional magnetic resonance imaging with diffusion tensor imaging to identify specific brain areas that are independently modulated by AoA and proficiency in second language speakers. First-language Mandarin Chinese speakers who are second language speakers of English were scanned as they performed a picture-word matching task in either language. In the same session we also acquired diffusion-weighted scans to assess white matter microstructure, along with behavioural measures of language proficiency prior to entering the scanner. Results reveal gray- and white-matter networks involving both the left and right hemisphere that independently vary as a function of a second-language speaker's AoA and proficiency, focused on the superior temporal gyrus, middle and inferior frontal gyrus, parahippocampal gyrus, and the basal ganglia. These results indicate that proficiency and AoA explain separate functional and structural networks in the bilingual brain, which we interpret as suggesting distinct types of plasticity for age-dependent effects (i.e., AoA) versus experience and/or predisposition (i.e., proficiency). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The Effects of Helium Bubble Microstructure on Ductility in Annealed and HERF 21Cr-6Ni-9Mn Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosten, M.H.; Morgan, M.J.

    1998-01-01

    This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium withinmore » the matrix and away from the grain boundaries.« less

  17. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    NASA Astrophysics Data System (ADS)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  18. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuanqiang, Zhou; Xiangxiang, Gong; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure andmore » function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.« less

  19. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai

    2017-07-01

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  20. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  1. Psychopathic traits modulate microstructural integrity of right uncinate fasciculus in a community population.

    PubMed

    Sobhani, Mona; Baker, Laura; Martins, Bradford; Tuvblad, Catherine; Aziz-Zadeh, Lisa

    2015-01-01

    Individuals with psychopathy possess emotional and behavioral abnormalities. Two neural regions, involved in behavioral control and emotion regulation, are often implicated: amygdala and ventromedial prefrontal cortex (VMPFC). Recently, in studies using adult criminal populations, reductions in microstructural integrity of the white matter connections (i.e., uncinate fasciculus (UF)) between these two neural regions have been discovered in criminals with psychopathy, supporting the notion of neural dysfunction in the amygdala-VMPFC circuit. Here, a young adult, community sample is used to assess whether psychopathic traits modulate microstructural integrity of UF, and whether this relationship is dependent upon levels of trait anxiety, which is sometimes used to distinguish subtypes of psychopathy. Results reveal a negative association between psychopathic traits and microstructural integrity of UF, supporting previous findings. However, no moderation of the relationship by trait anxiety was discovered. Findings provide further support for the notion of altered amygdala-VMPFC connectivity in association with higher psychopathic traits.

  2. Using electric current to surpass the microstructure breakup limit

    PubMed Central

    Qin, Rongshan

    2017-01-01

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones. PMID:28120919

  3. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.

  4. X-ray Computed Tomography Imaging of the Microstructure of Sand Particles Subjected to High Pressure One-Dimensional Compression

    PubMed Central

    al Mahbub, Asheque; Haque, Asadul

    2016-01-01

    This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles. PMID:28774011

  5. X-ray Computed Tomography Imaging of the Microstructure of Sand Particles Subjected to High Pressure One-Dimensional Compression.

    PubMed

    Al Mahbub, Asheque; Haque, Asadul

    2016-11-03

    This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles.

  6. The Impact of Sex, Puberty, and Hormones on White Matter Microstructure in Adolescents

    PubMed Central

    Herting, Megan M.; Maxwell, Emily C.; Irvine, Christy

    2012-01-01

    Background: During adolescence, numerous factors influence the organization of the brain. It is unclear what influence sex and puberty have on white matter microstructure, as well as the role that rapidly increasing sex steroids play. Methods: White matter microstructure was examined in 77 adolescents (ages 10–16) using diffusion tensor imaging. Multiple regression analyses were performed to examine the relationships between fractional anisotropy (FA) and mean diffusivity (MD) and sex, puberty, and their interaction, controlling for age. Follow-up analyses determined if sex steroids predicted microstructural characteristics in sexually dimorphic and pubertal-related white matter regions, as well as in whole brain. Results: Boys had higher FA in white matter carrying corticospinal, long-range association, and cortico-subcortical fibers, and lower MD in frontal and temporal white matter compared with girls. Pubertal development was related to higher FA in the insula, while a significant sex-by-puberty interaction was seen in superior frontal white matter. In boys, testosterone predicted white matter integrity in sexually dimorphic regions as well as whole brain FA, whereas estradiol showed a negative relationship with FA in girls. Conclusions: Sex differences and puberty uniquely relate to white matter microstructure in adolescents, which can partially be explained by sex steroids. PMID:22002939

  7. Additive Manufacturing of Metastable Beta Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Yannetta, Christopher J.

    Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.

  8. Thermal stability of the microstructure of an aged Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1990-01-01

    The effects of thermal aging with and without an applied stress on the microstructure of a Nb-Zr-C alloy containing 0.9 wt percent Zr and 0.06 wt percent C were studied. Chemical analysis, metallographic examination, energy dispersive x-ray spectra of the bulk material, and chemical and x-ray analyses of the phase-extracted residue were used to characterize the microstructure. The samples examined were from a creep strength study involving hot and cold working, and various combinations of exposure to temperatures ranging from 1350 to 1755 K with and without applied load for times as long as 34,000 plus hours. The results showed that the initial microstructure consisted primarily of orthorombic precipitates of Nb sub 2 C which were partially or completely transformed to face-centered cubic carbides of nb and Zr, (Zr, Nb)C, upon prolonged exposure to elevated temperatures. Furthermore, it was found that the microstructure of the alloy is extremely stable owing to the very finely distributed precipitates throughout its matrix and along the grain boundaries. The lattice parameters of the cubic carbides were determed to vary from 0.458 to 0.465 nm as the Zr/Nb ratio varied from 38/62 to 75/25.

  9. Microscopy and Microanalysis of Blood in a Snake Head Fish, Channa gachua Exposed to Environmental Pollution.

    PubMed

    Pala, Eva M; Dey, Sudip

    2016-02-01

    Conventional and highly sophisticated analytical methods (Cyria et al., 1989; Massar et al., 2012a) were used to analyze micro-structural and micro-analytical aspects of the blood of snake head fish, Channa gachua, exposed to municipal wastes and city garbage. Red (RBC) and white blood cell (WBC) counts and hemhemoglobin content were found to be higher in pollution affected fish as compared with control. Scanning electron microscopy revealed the occurrence of abnormal erythrocytes such as crenated cells, echinocytes, lobopodial projections, membrane internalization, spherocytes, ruptured cells, contracted cells, depression, and uneven elongation of erythrocyte membranes in fish inhabiting the polluted sites. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of silicon and lead in the RBCs of pollution affected fish. Significance of the study includes the highly sophisticated analytical approach, which revealed the aforementioned micro-structural abnormalities.

  10. Utilizing Controlled Vibrations in a Microgravity Environment to Understand and Promote Microstructural Homogeneity During Floating-Zone Crystal Growth

    NASA Technical Reports Server (NTRS)

    Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.

    2001-01-01

    Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing endwall vibration.

  11. Utilizing Controlled Vibrations in a Microgravity Environment to Understand and Promote Microstructural Homogeneity During Float-Zone Crystal Growth

    NASA Technical Reports Server (NTRS)

    Anilkumar, A. V.; Bhowmick, J.; Grugel, R. N.a

    2000-01-01

    Our previous experiments with NaNO3 float-zones revealed that steady thermocapillary flow can be balanced/offset by the controlled surface streaming flow induced by end-wall vibration. In the current experiments we are examining the effects of streaming flow on steadying/stabilizing nonsteady thermocapillary flow in such zones. To this effect we have set up a controlled NaNO3 half-zone experiment, where the processing parameters, like zone dimensions and temperature gradients, can be easily varied to generate nonsteady thermocapillary flows. In the present paper we present preliminary results of our investigations into stabilizing such flows by employing end-wall vibration.

  12. Insights to Meteorites and Impact Processes provided by Advanced EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Palasse, Laurie; Berlin, Jana; Goran, Daniel; Tagle, Roald; Hamers, Maartje; Assis Fernandes, Vera; Deutsch, Alexander; Schulte, Peter; Salge, Tobias

    2013-04-01

    Electron backscatter diffraction (EBSD) is a powerful analytical technique for assessing the petrographic texture of rocks and the crystallographic orientation of minerals therein using a scanning electron microscope (SEM). Innovations in EBSD technology include colour-coded forescattered electron (FSE) images, high resolution and highly sensitive EBSD detectors, together with advanced EDS integration. It allows to accurately identify and discriminate different phases, and to investigate microstructures related to shock metamorphism. As an example, shocked carbonates and shocked quartz reveal a complex thermal history during post-shock cooling. (A) EBSD studies of calcite ejecta particles from the Chicxulub impact event, at the K-Pg boundary of El Guayal, Mexico (~520 km SW of the Chicxulub crater centre) display various microstructures [1] and spherulitic calcite ejecta particles reveal a fibre texture of elongated crystals with a preferred orientation. This indicates the presence of carbonate melts which were ejected at T>1240°C and P>40 bar from upper target lithologies and crystallized at cooling rates of ~100´s °C/s [2]. The calcite particles of El Guayal and the K/Pg boundary of La Lajilla (~1000 km W of the crater centre) show distinct microstructures represented by unoriented, equiaxed crystals with random orientation distribution. It documents recrystallization upon impact induced thermal stress at T>550°C during prolonged atmospheric transport. (B) Combined EBSD, FSE and cathodoluminescence (CL) studies of semi-amorphous shocked quartz of Chicxulub, Ries and Popigai impactites, reveal various microstructures. Colour-coded FSE imaging reveal recrystallized/deformed bands in Ries and Popigai samples indicative of planar deformation features. EBSD studies of Popigai allow to distinguish twinned Qz, α-Qz and α-cristobalite along the transition zone between shocked gneiss clast and impact melt. Recrystallized Qz grains are associated with amorphous SiO2. For Chicxulub, the brecciated impact melt rock from borehole Yaxcopoil-1 (Unit 5, 861.72 m) [3] reveals that the ballen microstructure is only semi-amorphous and cross cuts a fine grained recrystallised microstructure. (C) CB chondrite Gujba: EDS and EBSD data were acquired simultaneously to study chemical and physical interactions between preexisting metal particles and the invading silicate-rich impact melt matrix. Metal particles appear to have different thermal histories. Some of them consist of many small grains (average diameter ~10 µm), which have a similar orientation when they are surrounded by arcuate Fe,Cr-sulfides. [4]. Acknowledgements: P. Claeys, R.H. Jones, ICDP and the Museum of Natural History Berlin for providing samples. References: [1] T. Salge (2007) PhD thesis, Humboldt Universität zu Berlin, 130p. [2] A. P. Jones et al. (2000) Lect. Notes in Earth Sciences 91: 343-361. [3] M. J. Nelson et al. (2012) GCA 86: 1-20. [4]. J. Berlin et al. (2013) 44th LPSC # 2439

  13. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault energies on deformed microstructures of steels. {yields} Correlations between texture and occurrence of mechanical twinning are discussed. {yields} Evolutions of dislocations and crystallite are analyzed by line profile analysis.« less

  14. Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao

    2018-06-01

    The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

  15. Influence of thermo-mechanical treatment in ferritic phase field on microstructure and mechanical properties of reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Prakash; Vanaja, J.; Laha, K.; Nageswara Rao, G. V. S.

    2018-03-01

    The present study focuses on the evaluation of microstructure and mechanical properties of reduced activation ferritic-martensitic (RAFM) steel (9Cr-1W-0.06Ta) subjected to thermo-mechanical treatment (TMT) in ferritic phase field. The results obtained were compared with the steel in conventional normalised plus tempered (N+T) condition. The microstructure of the steel in N+T and TMT conditions was assessed by optical and scanning electron microscopes. Hardness, tensile and creep studies were carried out and the results were correlated with the microstructural studies. While the TMT processed steel resulted in coarser prior austenite grains and exhibited ferritic microstructure with large distribution of fine M23C6 and MX precipitates, the N+T steel reveals tempered martensitic structure with finer prior austenitic grains with coarser M23C6 and MX precipitates. Although ferritic structure is present in TMT processed steel, it exhibits better tensile and creep rupture strengths than N+T steel due to the presence of increased dislocation density and finer distribution of precipitates.

  16. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  17. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    NASA Astrophysics Data System (ADS)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  18. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.

    PubMed

    Wu, Jian-Ping; Swift, Benjamin John; Becker, Thomas; Squelch, Andrew; Wang, Allan; Zheng, Yong-Chang; Zhao, Xuelin; Xu, Jiake; Xue, Wei; Zheng, Minghao; Lloyd, David; Kirk, Thomas Brett

    2017-06-01

    Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. Corallite wall and septal microstructure in scleractinian reef corals: comparison of molecular clades within the family Faviidae.

    PubMed

    Budd, Ann F; Stolarski, Jarosław

    2011-01-01

    Recent molecular phylogenies conflict with traditional scleractinian classification at ranks ranging from suborder to genus, challenging morphologists to discover new characters that better agree with molecular data. Such characters are essential for including fossils in analyses and tracing evolutionary patterns through geologic time. We examine the skeletal morphology of 36 species belonging to the traditional families Faviidae, Merulinidae, Pectiniidae, and Trachyphylliidae (3 Atlantic, 14 Indo-Pacific, 2 cosmopolitan genera) at the macromorphological, micromorphological, and microstructural levels. Molecular analyses indicate that the families are not monophyletic groups, but consist of six family-level clades, four of which are examined [clade XV = Diploastrea heliopora; clade XVI = Montastraea cavernosa; clade XVII ("Pacific faviids") = Pacific faviids (part) + merulinids (part) + pectiniids (part) + M. annularis complex; clade XXI ("Atlantic faviids") = Atlantic faviids (part) + Atlantic mussids]. Comparisons among molecular clades indicate that micromorphological and microstructural characters (singly and in combination) are clade diagnostic, but with two exceptions, macromorphologic characters are not. The septal teeth of "Atlantic faviids" are paddle-shaped (strong secondary calcification axes) or blocky, whereas the septal teeth of "Pacific faviids" are spine-shaped or multidirectional. Corallite walls in "Atlantic faviids" are usually septothecal, with occasional trabeculothecal elements; whereas corallite walls in "Pacific faviids" are usually trabeculothecal or parathecal or they contain abortive septa. Exceptions include subclades of "Pacific faviids" consisting of a) Caulastraea and Oulophyllia (strong secondary axes) and b) Cyphastrea (septothecal walls). Diploastrea has a diagnostic synapticulothecal wall and thick triangular teeth; Montastraea cavernosa is also distinct, possessing both "Pacific faviid" (abortive septa) and "Atlantic faviid" (paddle-shaped teeth) attributes. The development of secondary axes is similar in traditional Atlantic faviids and mussids, supporting molecular results placing them in the same clade. Subclades of "Pacific faviids" reveal differences in wall structure and the arrangement and distinctiveness of centers of rapid accretion. Copyright © 2010 Wiley-Liss, Inc.

  20. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    PubMed Central

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248

  1. Impact of Microstructure on MoS 2 Oxidation and Friction

    DOE PAGES

    Curry, John F.; Wilson, Mark A.; Luftman, Henry S.; ...

    2017-07-31

    In this work, we demonstrate the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures—amorphous and planar/highly-ordered—before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showedmore » a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. Finally, XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.« less

  2. Impact of Microstructure on MoS 2 Oxidation and Friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, John F.; Wilson, Mark A.; Luftman, Henry S.

    In this work, we demonstrate the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures—amorphous and planar/highly-ordered—before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showedmore » a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. Finally, XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.« less

  3. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong

    2015-07-01

    The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.

  4. Assessing the Microstructure of Written Language Using a Retelling Paradigm

    ERIC Educational Resources Information Center

    Puranik, Cynthia S.; Lombardino, Linda J.; Altmann, Lori J. P.

    2008-01-01

    Purpose: The primary goal of this study was to document the progression of the microstructural elements of written language in children at 4 grade levels. The secondary purpose was to ascertain whether the variables selected for examination could be classified into valid categories that reflect the multidimensional nature of writing. Method:…

  5. Orientation Dependence of the Deformation Microstructure of Ta-4%W after Cold-Rolling

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ma, G. Q.; Godfrey, A.; Shu, D. Y.; Chen, Q.; Wu, G. L.

    2017-07-01

    One of the common features of deformed face-centered cubic metals with medium to high stacking fault energy is the formation of geometrically necessary dislocation boundaries. The dislocation boundary arrangements in refractory metals with body-centered cubic crystal structure are, however, less well known. To address this issue a Ta-4%W alloy was cold rolled up to 70% in thickness in the present work. The resulting deformation microstructures were characterized by electron back-scattering diffraction and the dislocation boundary arrangements in each grain were revealed using sample-frame misorientation axis maps calculated using an in-house code. The maps were used to analyze the slip pattern of individual grains after rolling, revealing an orientation dependence of the slip pattern.

  6. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation technique but also increased significantly the ability to predict and/or interpret natural microstructures. This contribution will present the most recent developments in in-situ and numerical modelling of deformation and recrystallisation microstructures in rocks and in ice.

  7. A study of the microstructural and mechanical properties of novel spring steels

    NASA Astrophysics Data System (ADS)

    Harris-Pointer, Cheryl Faye

    This work is concerned with track spring components manufactured by Pandrol from a SiMn alloy in the quenched and tempered condition. For many years low to medium carbon based spring steel has been manufactured via an oil quench temper route producing components with suitable mechanical and microstructural properties. The current problem facing the spring manufacturer with the traditional heat treatment route involve a number of technical issues including a sensitivity to temper embrittlement and susceptibility to stress corrosion cracking. In addition, economic factors and component handling problems led Pandrol to seek solutions via the manufacturing process and materials selection. A programme of research was therefore proposed to identify a possible replacement alloy system and production route which could exclude the costly tempering operation and instil a degree of production control. The initial program of work involved the examination of several alloy systems based loosely around three separate microstructures, i.e. a fully pearlitic, bainitic and martensitic microstructure. In turn, each alloy was examined and assessed with respect to their suitability for the industrial application given their mechanical properties.From the initial research, a selected number of promising alloy systems were examined further, namely a chromium molybdenum alloy, salt bath quenched to produce a bainitic microstructure, a water quenched low carbon chromium and low carbon boron martensitic type alloy. The low carbon boron alloy was considered the most promising, with similar mechanical properties in both the plain bar and clip form compared to the existing Pandrol alloy. However, concern was raised over the amount of plastic deformation (permanent set) suffered by a clip component whilst in service. In response to this, the use of cold work was examined to further strengthen the microstructure with notable success.On identifying several possible alternative alloy systems to replace the existing oil quenched and tempered variant, the second stage of this research work concentrated on understanding the degree and type of microstructural strengthening involved on each particular alloy system. The effect of plastic deformation in each alloy type was also thoroughly investigated via transmission electron microscopy / true stress strain analysis and an attempt was made to relate microstructural changes to obtained mechanical properties. In addition the work hardening characteristics of the tempered microstructure were investigated, and compared to the straight through hardened variants. Qualitative Transmission Electron Microscopy studies confirmed that dislocation density / mobility played a crucial role in determining the work hardening rate. This project has studied the phenomena of work hardening in body centred cubic materials in the through hardened and untempered condition. A series of novel alloys have been developed with strengths equal to or above an oil quenched and tempered counterpart. However, these new alloys do not require a temper treatment thereby removing the risk of temper embrittlement. A clearer understanding of the work hardening characteristics has been developed through an assessment of the work hardening coefficient of these material variants.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, K. X.; Wang, J. J.; Yuan, Z.

    The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. Themore » results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.« less

  9. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  10. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    NASA Astrophysics Data System (ADS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-08-01

    Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  11. Observations of brine drainage networks and microstructure of first-year sea ice

    NASA Astrophysics Data System (ADS)

    Cole, D. M.; Shapiro, L. H.

    1998-09-01

    Brine drainage networks and the microstructure of first-year sea ice have been examined at two locations near Barrow, northern Alaska. A method for obtaining full-depth sections of ice sheets up to 1.8 m thick is presented and shown to provide information on the spatial distribution and geometry of brine drainage networks on a scale of meters. A number of such sections from the two test sites are presented which reveal a greater variety of main channel and side branch configurations than is typically observed in ice grown in the laboratory. Vertical and horizontal micrographs and thin section photographs were obtained in November 1993, and March and May 1994 at a test site in the relatively protected Elson Lagoon. The resulting time series of photographic records provide detailed information on the size, shape, and spatial distribution of the brine- and gas-filled inclusions and a means to quantify their size and shape changes with time. An example of the changes with time in inclusion sizes and aspect ratios in the vertical and horizontal directions for a depth of 0.2 m, with a given thermal history is also presented.

  12. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    NASA Astrophysics Data System (ADS)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  13. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    PubMed Central

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia

    2018-01-01

    Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391

  14. Formation mechanisms for the dominant kinks with different angles in InP nanowires.

    PubMed

    Zhang, Minghuan; Wang, Fengyun; Wang, Chao; Wang, Yiqian; Yip, SenPo; Ho, Johnny C

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.

  15. Formation mechanisms for the dominant kinks with different angles in InP nanowires

    PubMed Central

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties. PMID:24910572

  16. The dimensionality of between-person differences in white matter microstructure in old age.

    PubMed

    Lövdén, Martin; Laukka, Erika Jonsson; Rieckmann, Anna; Kalpouzos, Grégoria; Li, Tie-Qiang; Jonsson, Tomas; Wahlund, Lars-Olof; Fratiglioni, Laura; Bäckman, Lars

    2013-06-01

    Between-person differences in white matter microstructure may partly generalize across the brain and partly play out differently for distinct tracts. We used diffusion-tensor imaging and structural equation modeling to investigate this issue in a sample of 260 adults aged 60-87 years. Mean fractional anisotropy and mean diffusivity of seven white matter tracts in each hemisphere were quantified. Results showed good fit of a model positing that individual differences in white matter microstructure are structured according to tracts. A general factor, although accounting for variance in the measures, did not adequately represent the individual differences. This indicates the presence of a substantial amount of tract-specific individual differences in white matter microstructure. In addition, individual differences are to a varying degree shared between tracts, indicating that general factors also affect white matter microstructure. Age-related differences in white matter microstructure were present for all tracts. Correlations among tract factors did not generally increase as a function of age, suggesting that aging is not a process with homogenous effects on white matter microstructure across the brain. These findings highlight the need for future research to examine whether relations between white matter microstructure and diverse outcomes are specific or general. Copyright © 2011 Wiley Periodicals, Inc.

  17. Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system.

    PubMed

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-06-27

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.

  18. Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System

    PubMed Central

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-01-01

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114

  19. Mapping White Matter Microstructure in the One Month Human Brain.

    PubMed

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  20. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions.

    PubMed

    Dewey, James B; Dhar, Sumitrajit

    2017-11-01

    Behavioral hearing thresholds and otoacoustic emission (OAE) spectra often exhibit quasiperiodic fluctuations with frequency. For behavioral and OAE responses to single tones-the latter referred to as stimulus-frequency otoacoustic emissions (SFOAEs)-this microstructure has been attributed to intracochlear reflections of SFOAE energy between its region of generation and the middle ear boundary. However, the relationship between behavioral and SFOAE microstructures, as well as their presumed dependence on the properties of the SFOAE-generation mechanism, have yet to be adequately examined. To address this, behavioral thresholds and SFOAEs evoked by near-threshold tones were compared in 12 normal-hearing female subjects. The microstructures observed in thresholds and both SFOAE amplitudes and delays were found to be strikingly similar. SFOAE phase accumulated an integer number of cycles between the frequencies of microstructure maxima, consistent with a dependence of microstructure periodicity on SFOAE propagation delays. Additionally, microstructure depth was correlated with SFOAE magnitude in a manner resembling that predicted by the intracochlear reflection framework, after assuming reasonable values of parameters related to middle ear transmission. Further exploration of this framework may yield more precise estimates of such parameters and provide insight into their frequency dependence.

  1. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    NASA Astrophysics Data System (ADS)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  2. Investigation of microstructural and physical characteristics of nano composite tin oxide-doped Al3+ in Zn2+ based composite coating by DAECD technique

    NASA Astrophysics Data System (ADS)

    Anawe, P. A. L.; Fayomi, O. S. I.; Popoola, A. P. I.

    In other to overcome the devastating deterioration of mild steel in service, Zn-based embedded Al/SnO2 composite coatings have been considered as reinforcing alternative replacements to the more traditional deposition for improved surface properties by using Dual Anode Electrolytic Co-deposition (DAECD) technique from chloride bath. The structural characterization of the starting materials and deposited coating are evaluated using scanning electron microscopy (SEM), equipped with energy dispersive X-ray spectroscopy (EDX) elemental analysis and atomic force microscope (AFM). The hardness behaviour, wear and intermetallic distribution was examined by diamond based microhardness tester, CETR reciprocating sliding test rig and X-ray diffractometer (XRD) respectively. The corrosion properties of the developed coating were examined in 3.5% NaCl. The microstructure of the deposited sample obtained at 7% SnO2, revealed fine-grains deposit of the Al/SnO2 on the mild steel surface. The results showed that the Al/SnO2 strengthening alloy plays a significant role in impelling the wear and corrosion behaviour of Zn-Al/SnO2 coatings in an aggressive saline environment. Interestingly Zn-30Al-7Sn-chloride showed the highest wear and improved corrosion resistance due to Al/SnO2 oxide passive film that forms during anodic polarization. This work established that co-deposition of mild steel with Al/SnO2 is auspicious in increasing the anti-wear and corrosion progression.

  3. Microstructure characterization of advanced protective Cr/CrN+a-C:H/a-C:H:Cr multilayer coatings on carbon fibre composite (CFC).

    PubMed

    Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B

    2016-06-01

    Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex.

    PubMed

    Schweitzer, Mary H; Wittmeyer, Jennifer L; Horner, John R; Toporski, Jan K

    2005-03-25

    Soft tissues are preserved within hindlimb elements of Tyrannosaurus rex (Museum of the Rockies specimen 1125). Removal of the mineral phase reveals transparent, flexible, hollow blood vessels containing small round microstructures that can be expressed from the vessels into solution. Some regions of the demineralized bone matrix are highly fibrous, and the matrix possesses elasticity and resilience. Three populations of microstructures have cell-like morphology. Thus, some dinosaurian soft tissues may retain some of their original flexibility, elasticity, and resilience.

  5. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    NASA Astrophysics Data System (ADS)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new microstructure exhibited a somewhat lower strength but much high general and local formabilities. In this thesis, both the physical and mechanical metallurgy of these steels and processes will be discussed. This research has shown that simple compositions and processes can result in DP steels with so-called Generation III properties.

  6. White Matter Microstructure Predicts Autistic Traits in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Cooper, Miriam; Thapar, Anita; Jones, Derek K.

    2014-01-01

    Traits of autism spectrum disorder (ASD) in children with attention-deficit/hyperactivity disorder (ADHD) have previously been found to index clinical severity. This study examined the association of ASD traits with diffusion parameters in adolescent males with ADHD (n = 17), and also compared WM microstructure relative to controls (n = 17).…

  7. Biotite Comminution in Phyllosilicate Rich Mylonites: Microstructural and Nanostructural Observations

    NASA Astrophysics Data System (ADS)

    Aslin, J.; Mariani, E.; Dawson, K.

    2017-12-01

    Micas are one of the most important mineral groups with regard to the strength and rheology of the Earth's crust. This is a result of their distinct weakness relative to other silicate phases coupled with their generally high abundance at mid-crustal conditions. Despite this, relatively little is known regarding the mechanisms of viscous deformation in micas. The samples used in this study were collected from the Cossato-Mergozzo-Brissago (C-M-B) line, an amphibolite facies mylonitic shear zone in Northern Italy. The granitoid and metasedimentary protoliths of this 100 -150 m wide shear zone ensure a high but variable phyllosilicate content within predominantly quartzofelspathic lithologies. Initial microstructural analysis using optical and scanning electron microscopy (SEM) reveals a significant change in biotite deformation behaviour with increasing strain. At low strains kinking and basal glide dominate, however at higher strain biotite undergoes a dramatic grain size reduction which is at first concentrated along grain edges and kink band boundaries but later involves the entire grain. In the highest strain samples examined, biotite only survives as a component of a very fine grained matrix. In contrast, muscovite, also present in these rocks, remains coarse, forming kinked and bent mica fish even to high strains. The comminution of biotite is of critical importance to the microstructural evolution of these mylonites as it facilitates the development of an interconnected network of fine and potentially very weak grains. However, the mechanism responsible is not clear. We use transmission electron microscopy (TEM) to observe and characterise the intracrystalline structure of the biotite in these samples both prior to and after this grain size reduction has taken place. A better understanding of the nano-scale microstructures produced by natural deformation in micas will aid in determining the mechanisms which control the way these important crustal minerals accommodate strain.

  8. Dynamic association between perfusion and white matter integrity across time since injury in Veterans with history of TBI.

    PubMed

    Clark, Alexandra L; Bangen, Katherine J; Sorg, Scott F; Schiehser, Dawn M; Evangelista, Nicole D; McKenna, Benjamin; Liu, Thomas T; Delano-Wood, Lisa

    2017-01-01

    Cerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI. 37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI. Regression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum ( p  < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI. Our results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury.

  9. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging.

    PubMed

    Gong, Nan-Jie; Wong, Chun-Sing; Chan, Chun-Chung; Leung, Lam-Ming; Chu, Yiu-Ching

    2014-10-01

    Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that were complementary to diffusivity metrics. Kurtosis together with diffusivity can more comprehensively characterize microstructural compositions and age-related changes than diffusivity alone. Combined with proper model, it may also assist in providing neurobiological interpretations of the identified alterations. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Phase transformation in thiamine hydrochloride tablets: Influence on tablet microstructure, physical properties, and performance.

    PubMed

    Chakravarty, Paroma; Suryanarayanan, Raj; Govindarajan, Ramprakash

    2012-04-01

    The objective of this article was to monitor phase transformation in thiamine hydrochloride, from a nonstoichiometric hydrate (NSH) to a hemihydrate (HH), in stored tablets, prepared both by direct compression and wet granulation, and to relate the storage-induced phase transformation with changes in tablet microstructure, physical properties, and performance. Raman spectroscopy revealed complete NSH → HH transformation in tablets, within 30 h of storage at 40°C/75% relative humidity. When the tablets were prepared by wet granulation of NSH alone, there was a marked increase in both tablet volume and hardness on storage. However, when microcrystalline cellulose (MCC) was included in granulation, the resulting stored tablets also exhibited a pronounced increase in disintegration time. In contrast, tablets prepared by dry processing via compression of a NSH-MCC physical mixture did not exhibit any changes in properties, despite the in situ solid form conversion. Scanning electron microscopy revealed growth of needle-like HH crystals in all stored tablets and mercury porosimetry revealed considerable changes in the pore size distribution during storage. Longer storage led to crystal growth (Ostwald ripening), causing further gradual but less dramatic changes in properties. The phase transformation and the complex interparticulate associations in the tablet influenced the changes in tablet microstructure, compact physical properties, and product behavior. Copyright © 2011 Wiley Periodicals, Inc.

  11. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  12. Variation in White Matter Connectivity Predicts the Ability to Remember Faces and Discriminate Their Emotions

    PubMed Central

    Unger, Ashley; Alm, Kylie H.; Collins, Jessica A.; O’Leary, Jacqueline M.; Olson, Ingrid R.

    2017-01-01

    Objective The extended face network contains clusters of neurons that perform distinct functions on facial stimuli. Regions in the posterior ventral visual stream appear to perform basic perceptual functions on faces, while more anterior regions, such as the ventral anterior temporal lobe and amygdala, function to link mnemonic and affective information to faces. Anterior and posterior regions are interconnected by a long-range white matter tracts however it is not known if variation in connectivity of these pathways explains cognitive performance. Methods Here, we used diffusion imaging and deterministic tractography in a cohort of 28 neurologically normal adults ages 18–28 to examine microstructural properties of visual fiber pathways and their relationship to certain mnemonic and affective functions involved in face processing. We investigated how inter-individual variability in two tracts, the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF), related to performance on tests of facial emotion recognition and face memory. Results Results revealed that microstructure of both tracts predicted variability in behavioral performance indexed by both tasks, suggesting that the ILF and IFOF play a role in facilitating our ability to discriminate emotional expressions in faces, as well as to remember unique faces. Variation in a control tract, the uncinate fasciculus, did not predict performance on these tasks. Conclusions These results corroborate and extend the findings of previous neuropsychology studies investigating the effects of damage to the ILF and IFOF, and demonstrate that differences in face processing abilities are related to white matter microstructure, even in healthy individuals. PMID:26888615

  13. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  14. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  15. Effect of LID (Registered) processing on the microstructure and mechanical properties of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo titanium foil-gauge materials

    NASA Technical Reports Server (NTRS)

    Balckburn, Linda B.

    1987-01-01

    A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.

  16. Matrix remodeling between cells and cellular interactions with collagen bundle

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Sun, Bo

    When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.

  17. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE PAGES

    Cheng, G.; Choi, K. S.; Hu, X.; ...

    2017-04-05

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  18. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X.

    The deformation limits of various DP980 steels are examined in this study with deformation instability theory. Under uniaxial tension, overall stress-strain curves of the material are estimated based on simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, actual microstructure-based finite element (FE) method is used to explicitly resolve the deformation incompatibilities between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for the various DP980 considered. Undermore » complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  19. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X.

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  20. Nonlinear optical effects in organic microstructures

    NASA Astrophysics Data System (ADS)

    Novikov, Vladimir B.; Mamonov, Evgeniy A.; Kopylov, Denis A.; Mitetelo, Nikolai V.; Venkatakrishnarao, D.; Narayana, YSLV; Chandrasekar, R.; Murzina, Tatiana V.

    2017-05-01

    Organic microstructures attract much attention due to their unique properties originating from the design of their shape and optical parameters. In this work we discuss the linear, second- and third-order nonlinear optical effects in arrays and in individual organic microstructures composed by self-assembling technique and formed randomly on top of a solid substrate. The structures under study consist of micro-spheres, -hemispheres or -frustums made of red laser dye and reveal an intense fluorescence (FL) in the visible spectral range. Importantly, that due to a high value of the refractive index and confined geometry, such micro-structures support the excitation of whispering gallery modes (WGM), which brings about strong and spectrally-selected light localization. We show that an amplification of the nonlinear optical effects is observed for these structures as compared to a homogeneous dye film of similar composition. The obtained data are in agreement with the results of the FDTD calculations performed for the structures of different dimensions. Perspectives of application of such type of organic nonlinear microresonators in optical devices are discussed.

  1. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE PAGES

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...

    2017-04-13

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  2. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  3. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    PubMed

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  4. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    PubMed

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  5. Microstructure and Corrosion Resistance of Laser-Welded Crossed Nitinol Wires.

    PubMed

    Dong, Peng; Yao, Runhua; Yan, Zheng; Yan, Zhifeng; Wang, Wenxian; He, Xiuli; Zhou, Jun

    2018-05-18

    Laser welding has been considered to be one of the most promising joining processes for Nitinol medical device manufacturing. Presently, there is still a limited understanding about how laser welding affects the microstructure and the resultant corrosion behaviors. This work aimed to reveal the microstructural factors that influence the corrosion resistance of laser-welded crossed Nitinol joints. The microstructures within various zones of the joints were characterized by using transmission electron microscopy (TEM), and the corrosion behaviors of the joints in 0.9% NaCl and Hank's solutions were studied. The base metal exhibits a single austenite (B2) phase and the highest corrosion resistance. The phase constituent of the fusion zone is the coexistence of the B2 matrix and some precipitates (T₂Ni, TiNi 3, and Ti₃Ni₄ particles), resulting in a slight decrease in corrosion resistance. The heat affected zone (HAZ) shows the austenite matrix but with the precipitation of R-phase, which considerably reduces the corrosion potential, making it the weakest zone.

  6. Effects of welding heat and travel speed on the impact property and microstructure of FC welds

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo; Jeong, Sang Hoon; Lim, Dong Yong; Yun, Jin Oh; Kim, Myung Hyun

    2010-10-01

    This paper is concerned with the effects of welding heat (current x voltage = W) and travel speed (v) on the impact property and microstructure of FC (flux cored) welds. Two sets of plate were welded under different welding conditions such as higher W, v and lower W, v, while maintaining identical heat input. We evaluated the effects of each factor by Charpy impact test and observation of the microstructure, and then compared these data with the results of the numerical temperature analysis. The size of the re-heated zone was increased as the v value decreased, and the results of numerical analysis also revealed the same tendency. Cooling rate of welds (both of as-welded and re-heated zones) decreased as the W value increased. Despite identical heat input conditions, the use of lower W and v made the microstructure finer and increased the volume fraction of AF, thereby leading to a substantial improvement of the impact property.

  7. 748 K (475 °C) Embrittlement of Duplex Stainless Steel: Effect on Microstructure and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Örnek, Cem; Burke, M. G.; Hashimoto, T.; Engelberg, D. L.

    2017-04-01

    22Cr-5Ni duplex stainless steel (DSS) was aged at 748 K (475 °C) and the microstructure development correlated to changes in mechanical properties and fracture behavior. Tensile testing of aged microstructures confirmed the occurrence of 748 K (475 °C) embrittlement, which was accompanied by an increase of strength and hardness and loss of toughness. Aging caused spinodal decomposition of the ferrite phase, consisting of Cr-enriched α″ and Fe-rich α' and the formation of a large number of R-phase precipitates, with sizes between 50 and 400 nm. Fracture surface analyses revealed a gradual change of the fracture mode from ductile to brittle delamination fracture, associated with slip incompatibility between ferrite and austenite. Ferrite became highly brittle after 255 hours of aging, mainly due to the presence of precipitates, while austenite was ductile and accommodated most plastic strain. The fracture mechanism as a function of 748 K (475 °C) embrittlement is discussed in light of microstructure development.

  8. Evolution of hardness, microstructure, and strain rate sensitivity in a Zn-22% Al eutectoid alloy processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.

    2014-08-01

    Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.

  9. Microstructural studies of nanocrystalline α-alumina powder produced from Al13-cluster

    NASA Astrophysics Data System (ADS)

    Harun Al Rashid Megat Ahmad, Megat; Aziz Mohamed, Abdul; Ibrahim, Azmi; Seman Mahmood, Che; Giri Rachman Putra, Edy; Jamro, Rafhayudi; Kasim, Razali; Rawi Muhammad Zin, Muhammad

    2007-12-01

    Nanocrystalline alumina powder was produced from calcinations of Al13-oxalate precipitates at 1100 °C. A nearly normal distribution of agglomerated alumina powder was obtained with an average particle size of about 1 μm. XRD measurement confirmed that the alumina produced was of high purity and crystalline α-phase. Microstructural features of both the precipitates and alumina obtained were studied using the small angle neutron scattering (SANS) technique. SANS examinations show the formation of microstructures in the alumina powder of mass fractals type with dimension of ˜2.8 indicative of low intra-granular porosity.

  10. Biomimetic microstructures for photonic and fluidic synergies

    NASA Astrophysics Data System (ADS)

    Vasileiou, Maria; Mpatzaka, Theodora; Alexandropoulos, Dimitris; Vainos, Nikolaos A.

    2017-08-01

    Nature-inspired micro- and nano-structures offer a unique platform for the development of novel synergetic systems combining photonic and microfluidic functionalities. In this context, we examine the paradigm of butterfly Vanessa cardui and develop artificial diffractive microstructures inspired by its natural designs. Softlithographic and nanoimprint protocols are developed to replicate surfaces of natural specimens. Further to their optical behavior, interphases tailored by such microstructures exhibit enhanced hydrophobic properties, as compared to their planar counterparts made of the same materials. Such synergies exploited by new design approaches pave the way to prospective optofluidic, lab-on-chip and sensing applications.

  11. The effect of microstructure on 650 C fatigue crack growth in P/M Astroloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Miner, R. V.

    1983-01-01

    The effect of microstructure on fatigue crack propagation at 650 C has been studied in a P/M nickel-base superalloy, Astroloy. Crack propagation data were obtained in air and vacuum at 20 cpm with a modified compact tension specimen. The rate of crack growth, da/dn, was correlated with the stress intensity range. Key microstructural variables examined were grain size and the distribution and size of the strengthening gamma prime phase. A fine grain size less than 20 microns always promoted rapid, intergranular failure, while a large grain size promoted slower, transgranular failure which decreased as the size and volume fraction of aging gamma prime was manipulated so as to increase alloy strength. The rapid, intergranular mode of failure of the fine grain microstructures was suppressed in vacuum.

  12. Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen

    2017-10-01

    Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.

  13. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less

  14. Microstructure and physicochemical properties reveal differences between high moisture buffalo and bovine Mozzarella cheeses.

    PubMed

    Nguyen, Hanh T H; Ong, Lydia; Lopez, Christelle; Kentish, Sandra E; Gras, Sally L

    2017-12-01

    Mozzarella cheese is a classical dairy product but most research to date has focused on low moisture products. In this study, the microstructure and physicochemical properties of both laboratory and commercially produced high moisture buffalo Mozzarella cheeses were investigated and compared to high moisture bovine products. Buffalo and bovine Mozzarella cheeses were found to significantly differ in their microstructure, chemical composition, organic acid and proteolytic profiles but had similar hardness and meltability. The buffalo cheeses exhibited a significantly higher ratio of fat to protein and a microstructure containing larger fat patches and a less dense protein network. Liquid chromatography mass spectrometry detected the presence of only β-casein variant A2 and a single β-lactoglobulin variant in buffalo products compared to the presence of both β-casein variants A1 and A2 and β-lactoglobulin variants A and B in bovine cheese. These differences arise from the different milk composition and processing conditions. The differences in microstructure and physicochemical properties observed here offer a new approach to identify the sources of milk used in commercial cheese products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelaturu, Phalgun; Jana, Saumyadeep; Mishra, Rajiv S.

    Here, failure by fatigue is a common problem associated with cast aluminum alloys due to defects like shrinkage porosities, non-metallic inclusions, etc. Friction stir processing (FSP) has recently emerged as an effective technique for local modification of microstructure. This study investigates the fatigue crack initiation and growth mechanisms in cast and FSPed A356 aluminum alloy. Two sets of parameters were used to friction stir the cast alloy resulting in the complete modification the cast microstructure to a wrought microstructure. Both the FSPed microstructures exhibited severe abnormal grain growth (AGG) after heat treatment leading to a multimodal grain size distribution –more » the grain sizes ranging from a few microns to a few millimeters. One of the FSP conditions displayed an excellent improvement in fatigue life by an order of magnitude, while the other condition displayed an unexpectedly large scatter in fatigue lives. Detailed study of the fractured fatigue specimens by electron back scattered diffraction (EBSD) revealed that both, fatigue crack initiation and propagation, were intimately tied to the grain size as well as the grain misorientations in the microstructure.« less

  16. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy

    DOE PAGES

    Nelaturu, Phalgun; Jana, Saumyadeep; Mishra, Rajiv S.; ...

    2018-01-11

    Here, failure by fatigue is a common problem associated with cast aluminum alloys due to defects like shrinkage porosities, non-metallic inclusions, etc. Friction stir processing (FSP) has recently emerged as an effective technique for local modification of microstructure. This study investigates the fatigue crack initiation and growth mechanisms in cast and FSPed A356 aluminum alloy. Two sets of parameters were used to friction stir the cast alloy resulting in the complete modification the cast microstructure to a wrought microstructure. Both the FSPed microstructures exhibited severe abnormal grain growth (AGG) after heat treatment leading to a multimodal grain size distribution –more » the grain sizes ranging from a few microns to a few millimeters. One of the FSP conditions displayed an excellent improvement in fatigue life by an order of magnitude, while the other condition displayed an unexpectedly large scatter in fatigue lives. Detailed study of the fractured fatigue specimens by electron back scattered diffraction (EBSD) revealed that both, fatigue crack initiation and propagation, were intimately tied to the grain size as well as the grain misorientations in the microstructure.« less

  17. Localized Pulsed Electrodeposition Process for Three-Dimensional Printing of Nanotwinned Metallic Nanostructures.

    PubMed

    Daryadel, Soheil; Behroozfar, Ali; Morsali, S Reza; Moreno, Salvador; Baniasadi, Mahmoud; Bykova, Julia; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2018-01-10

    Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less

  19. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  20. The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL)

    NASA Astrophysics Data System (ADS)

    Amalia, N.; Hidayatullah, S.; Nurfadilla; Subaer

    2017-03-01

    The objective of this research is to study the influence of organic fibers on the mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fibers (PFL). Geopolymers were synthesized by using alkali activated of class C-fly ash added manually with short pineapple fiber leaves (PFL) and then cured at 60°C for 1 hour. The resulting composites were stored in open air for 28 days prior to mechanical and microstructure characterizations. The samples were subjected to compressive and flexural strength measurements, heat resistance as well as acid attack (1M H2SO4 solution). The microstructure of the composites were examined by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The measurement showed that the addition of pineapple fibers was able to improve the compressive and flexural strength of geopolymers. The resulting hybrid composites were able to resist fire to a maximum temperature of 1500°C. SEM examination showed the presence of good bond between geopolymer matrix and pineapple fibers. It was also found that there were no chemical constituents of geopolymers leached out during acid liquid treatment. It is concluded that hybrid composite geopolymers-pineapple fibers are potential composites for wide range applications.

  1. Mechanical and Microstructural Characterization of a New Corrosion Resistant Stainless Steel

    NASA Astrophysics Data System (ADS)

    Voiculescu, I.; Geantă, V.; Stefănoiu, R.; Cotruţ, C.; Ciocoiu, R.; Ionescu, M.

    2018-06-01

    The paper investigates the manner in which the chemical composition and delivery status of a new type of stainless steel, highly alloyed with Ni and Cr, affect mechanical properties, microstructure and corrosion resistance. The results obtained during the mechanical test (tensile, compression, Charpy test and micro-hardness) have revealed promising values. During the corrosion test, the preferential attack of the reagent (Aqua regia) located on the grain boundaries, inclusions or polyhedral precipitates have been observed. On the corroded surfaces, some localized pitting effects on grain boundaries have been revealed. The analyses of the parameter values recorded during the corrosion test revealed that the corrosion current density had a low value, comparable to that of other specific types of stainless steels. The actual Icorr (1.089 µA/cm2) value measured for the experimental alloy proves good resistance to corrosion in 3% NaCl saline solution. The estimated rate of corrosion presented acceptable values (0.011 mm/year).

  2. White matter microstructure mediates the relationship between cardiorespiratory fitness and spatial working memory in older adults.

    PubMed

    Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I

    2016-05-01

    White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Microstructures and magnetic properties of Co-Al-O granular thin films

    NASA Astrophysics Data System (ADS)

    Ohnuma, M.; Hono, K.; Onodera, H.; Ohnuma, S.; Fujimori, H.; Pedersen, J. S.

    2000-01-01

    The microstructures of Co-Al-O thin films of wide varieties of compositions are studied by transmission electron microscopy and small angle x-ray scattering (SAXS). In the superparamagnetic specimens, high resolution electron microscope images reveal that isolated spherical Co particles are surrounded by an amorphous aluminum oxide matrix. However, in the soft ferromagnetic films, the shape of the Co particles is prolate ellipsoidal. SAXS intensities from the soft magnetic specimens decrease inversely with the wave vector, q, in a low wave-vector region, while an interparticle interference peak is observed for the superparamagnetic specimens. The scattering profiles of the soft magnetic films imply that the Co particles have a cylindrical shape and are randomly oriented. The correlation between the magnetic properties and the microstructures is discussed.

  4. Recrystallization and superplasticity at 300 C in an aluminum-magnesium alloy

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Mcnelley, T. R.; Mcqueen, H. J.

    1991-01-01

    Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-10Mg-0.1Zr alloy at 300 C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.

  5. Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Wei

    Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.

  6. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Effect of Co Addition on the Microstructure, Martensitic Transformation and Shape Memory Behavior of Fe-Mn-Si Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Sujata, M.; Gouthama; Ray, Ranjit K.

    2013-01-01

    The effect of Co addition has been studied in Fe-30Mn-6Si- xCo ( x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (γ) up to 5 pct Co and beyond that becomes two-phase comprising γ and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic π-phases. The forward γ-ɛ martensite transformation start temperature ( M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ɛ-γ reverse transformation start temperature ( A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ɛ martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ɛ martensite.

  8. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  9. Microstructural Characterization of Thermomechanical and Heat-Affected Zones of an Inertia Friction Welded Astroloy

    NASA Astrophysics Data System (ADS)

    Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.

    2014-08-01

    The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  10. Microstructural Changes in Inconel 740 After Long-Term Aging in the Presence and Absence of Stress

    NASA Astrophysics Data System (ADS)

    Unocic, K. A.; Shingledecker, J. P.; Tortorelli, P. F.

    2014-12-01

    The Ni-based alloy, Inconel® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this paper, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented. The primary focus was on the development of the eta η (Ni3Ti) phase and coarsening of coherent γ'-Ni3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. However, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.

  11. Microstructural and bulk property changes in hardened cement paste during the first drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Nishioka, Yukiko; Igarashi, Go

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreasedmore » for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.« less

  12. Comparison of Microstructures and Mechanical Properties for Solid and Mesh Cobalt-Base Alloy Prototypes Fabricated by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Gaytan, S. M.; Murr, L. E.; Martinez, E.; Martinez, J. L.; Machado, B. I.; Ramirez, D. A.; Medina, F.; Collins, S.; Wicker, R. B.

    2010-12-01

    The microstructures and mechanical behavior of simple, as-fabricated, solid geometries (with a density of 8.4 g/cm3), as-fabricated and fabricated and annealed femoral (knee) prototypes, and reticulated mesh components (with a density of 1.5 g/cm3) all produced by additive manufacturing (AM) using electron beam melting (EBM) of Co-26Cr-6Mo-0.2C powder are examined and compared in this study. Microstructures and microstructural issues are examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD), while mechanical properties included selective specimen tensile testing and Vickers microindentation hardness (HV) and Rockwell C-scale hardness (HRC) measurements. Orthogonal (X-Y) melt scanning of the electron beam during AM produced unique, orthogonal and related Cr23C6 carbide (precipitate) arrays (a controlled microstructural architecture) with dimensions of 2 μm in the build plane perpendicular to the build direction, while connected carbide columns were formed in the vertical plane, parallel to the build direction, with microindentation hardnesses ranging from 4.4 to 5.9 GPa, corresponding to a yield stress and ultimate tensile strength (UTS) of 0.51 and 1.45 GPa with elongations ranging from 1.9 to 5.3 pct. Annealing produced an equiaxed fcc grain structure with some grain boundary carbides, frequent annealing twins, and often a high density of intrinsic {111} stacking faults within the grains. The reticulated mesh strut microstructure consisted of dense carbide arrays producing an average microindentation hardness of 6.2 GPa or roughly 25 pct higher than the fully dense components.

  13. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel plate showed the best overall mechanical properties of the studied bi-metallic bonded panels. Bond properties were nominally inferior to constituent bulk material properties and fracture toughness values, in particular, were quite low for all bonded laminates. Delamination near the copper alloy-stainless steel interface was the dominate failure mode in the bi-metallic panels. The joining processes caused microstructural alterations in the bond interfacial regions including: microporosity, new precipitate formation, existing precipitate morphology changes and interdiffusion of constituent elements.

  14. Microstructural Evolution of Nanocrystalline Diamond Films Due to CH4/Ar/H2 Plasma Post-Treatment Process.

    PubMed

    Lin, Sheng-Chang; Yeh, Chien-Jui; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan

    2015-10-07

    Plasma post-treatment process was observed to markedly enhance the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films. TEM examinations reveal that the prime factor which improves the EFE properties of these films is the coalescence of ultrasmall diamond grains (∼5 nm) forming large diamond grains about hundreds of nanometers accompanied by the formation of nanographitic clusters along the grain boundaries due to the plasma post-treatment process. OES studies reveal the presence of large proportion of atomic hydrogen and C2 (or CH) species, which are the main ingredients that altered the granular structure of the UNCD films. In the post-treatment process, the plasma interacts with the diamond films by a diffusion process. The recrystallization of diamond grains started at the surface region of the material, and the interaction zone increased with the post-treatment period. The entire diamond film can be converted into a nanocrystalline granular structure when post-treated for a sufficient length of time.

  15. Effect of ultrasound on electrochemical chloride extraction from mortar

    NASA Astrophysics Data System (ADS)

    Chen, Yiqun; Yao, Wu; Zuo, Junqing

    2018-03-01

    In this paper, the effect of auxiliary ultrasound on electrochemical chloride extraction (ECE) was studied. The chloride removal efficiency was investigated by examining the chloride content with ultrasound-assisted ECE and changing the introducing time of ultrasound. The experimental results showed that removal of chloride ions was noted to be more effective in ECE treatment assisted with ultrasound treatment (UT). In addition, the lower w/c ratio led to more distinct effect of ultrasonic cavitation on chloride removal. Electrochemical behaviors measured with different treatment revealed that UT treatment was effective on moderating the corrosion condition. Microstructural analyses revealed a significant alteration in composition and morphology of cementitious phases with UT treatment. Pull-out tests indicated that ultrasound had a certain negative impact on the bond strength. Although the effect of introducing ultrasound in the first 2 weeks or the last 2 weeks on the extraction efficiency was not obvious, intermittent ultrasound could not only ensure the chloride extraction efficiency, but also reduce the adverse effect of ultrasound on the bond strength.

  16. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    USDA-ARS?s Scientific Manuscript database

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  17. [Compressive and bend strength of experimental admixed high copper alloys].

    PubMed

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  18. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  19. Microstructural investigations of 0.2% carbon content steel

    NASA Astrophysics Data System (ADS)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  20. The influence of manufacturing processes on the microstructure, grain boundary characteristics and SCC behavior of Alloy 690 steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarver, J.M.; Doherty, P.E.; Doyle, D.M.

    1995-12-31

    Thermally treated Alloy 690 is the tubing material of choice for replacement steam generators in the United States. Throughout the world, it is manufactured using different melting and thermomechanical processing methods. The influence of different processing steps on the intergranular stress corrosion cracking (IGSCC) behavior of Alloy 690 has not been thoroughly evaluated. Evaluations were performed on Alloy 690 steam generator tubing produced using several different melting practices and thermomechanical processing procedures. The evaluations included extensive microstructural examinations as well as constant extension rate (CERT) tests. The CERT test results indicated that the thermally treated Alloy 690 tubing which wasmore » subjected to higher annealing temperatures displayed the highest degree of resistance to stress corrosion cracking (SCC). Examination of the microstructures indicated that the microstructural changes which are produced by increased annealing temperatures are subtle. In an attempt to further elucidate and quantify the effect of manufacturing processes on corrosion behavior, grain boundary character distribution (GBCD) measurements were performed on the same materials which were CERT tested. Analysis of GBCDs of the samples used in this study indicate that Alloy 690 exhibits a significantly larger fraction of special boundaries as compared to Alloy 600 and Alloy 800, regardless of the processing history of the tubing. Preliminary results indicate that a correlation may exist between processing method, GBCD`s and degree of IGSCC exhibited by the thermally treated samples examined in this study.« less

  1. Pre- and post-irradiation characterization and properties measurements of ZrC coated surrogate TRISO particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevamurthy, Gokul; Katoh, Yutai; Hunn, John D

    2010-09-01

    Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometricmore » compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size enhancement during both heat treatment and irradiation. However, these samples experienced irradiation induced softening similar to stoichiometric ZrC samples.« less

  2. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  3. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.

  4. Unusual inhomogeneous microstructures in charge glass state of PbCrO3

    NASA Astrophysics Data System (ADS)

    Kurushima, Kosuke; Tsukasaki, Hirofumi; Ogata, Takahiro; Sakai, Yuki; Azuma, Masaki; Ishii, Yui; Mori, Shigeo

    2018-05-01

    We investigated the microstructures and local structures of perovskite PbCrO3, which shows a metal-to-insulator transition and a 9.8% volume collapse, by electron diffraction, high-resolution transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). It is revealed that the charge glass state is characterized by the unique coexistence of the crystalline state with a cubic symmetry on average and the noncrystalline state. HAADF-STEM observation at atomic resolution revealed that Pb ions were displaced from the ideal A site position of the cubic perovskite structure, which gives rise to characteristic diffuse scatterings around the fundamental Bragg reflections. These structural inhomogeneities are crucial to the understanding of the unique physical properties in the charge glass state of PbCrO3.

  5. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    NASA Astrophysics Data System (ADS)

    Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.; Hwu, Y. K.; Yi, J. M.

    2015-09-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  6. Revealing microstructure and dislocation behavior in BAlN/AlGaN heterostructures

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Wu, Feng; Park, Young Jae; tahtamouni, T. M. Al; Liao, Che-Hao; Guo, Wenzhe; Alfaraj, Nasir; Li, Kuang-Hui; Anjum, Dalaver H.; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang

    2018-01-01

    We reveal the microstructure and dislocation behavior in 20-pair B0.14Al0.86N/Al0.70Ga0.30N multiple-stack heterostructures (MSHs) exhibiting an increasing dislocation density along the c-axis, which is attributed to the continuous generation of dislocations (edge and mixed-type) within the individual B0.14Al0.86N layers. At the MSH interfaces, the threading dislocations were accompanied by a string of V-shape pits extending to the surface, leading to interface roughening and the formation of surface columnar features. Strain maps indicated an approximately 1.5% tensile strain and 1% compressive strain in the B0.14Al0.86N and Al0.70Ga0.30N layers, respectively. Twin structures were observed, and the MSH eventually changed from monocrystalline to polycrystalline.

  7. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    NASA Astrophysics Data System (ADS)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-11-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc...) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate ( Vc) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50°C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed.

  8. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.

    PubMed

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan

    2016-01-20

    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.

  9. Thermomechanical Fatigue Durability of T650-35/PMR-15 Sheet Molding Compound

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Sutter, James K.; Benson, Dianne

    1998-01-01

    Although polyimide based composites have been used for many years in a wide variety of elevated temperature applications, very little work has been done to examine the durability and damage behavior under more prototypical thermomechanical fatigue (TMF) loadings. Synergistic effects resulting from simultaneous temperature and load cycling can potentially lead to enhanced, if not unique, damage modes and contribute to a number of nonlinear deformation responses. The goal of this research was to examine the effects of a TMF loading spectrum, representative of a gas turbine engine compressor application, on a polyimide sheet molding compound (SMC). High performance SMCs present alternatives to prepreg forms with great potential for low cost component production through less labor intensive, more easily automated manufacturing. To examine the issues involved with TMF, a detailed experimental investigation was conducted to characterize the durability of a T650-35/PMR-15 SMC subjected to TMF mission cycle loadings. Fatigue damage progression was tracked through macroscopic deformation and elastic stiffness. Additional properties, such as the glass transition temperature (T(sub g) and dynamic mechanical properties were examined. The fiber distribution orientation was also characterized through a detailed quantitative image analysis. Damage tolerance was quantified on the basis of residual static tensile properties after a prescribed number of TMF missions. Detailed microstructural examinations were conducted using optical and scanning electron microscopy to characterize the local damage. The imposed baseline TMF missions had only a modest impact on inducing fatigue damage with no statistically significant degradation occurring in the measured macroscopic properties. Microstructural damage was, however, observed subsequent to 100 h of TMF cycling which consisted primarily of fiber debonding and transverse cracking local to predominantly transverse fiber bundles. The TMF loadings did introduce creep related effects (strain accumulation) which led to rupture in some of the more aggressive stress scenarios examined. In some cases this creep behavior occurred at temperatures in excess of 150 C below commonly cited values for T(sub g). Thermomechanical exploratory creep tests revealed that the SMC was subject to time dependent deformation at stress/temperature thresholds of 150 MPa/230 C and 170 MPa/180 C.

  10. Microstructures of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants.

    PubMed

    Tufekci, E; Brantley, W A; Mitchell, J C; McGlumphy, E A

    1997-01-01

    The purpose of this study was to investigate the microstructure of plasma-sprayed hydroxyapatite coatings and the elemental composition near the coating-substrate interface for two commercial implants, using the scanning electron microscope. Both coating surfaces and cross-sectioned specimens were examined. The results indicated that while the surface microstructures of both implants were consistent with the plasma-spraying process, the scale of the constituents was much finer for one product. In cross-section, both coatings exhibited minimal porosity and intimate contact with the titanium alloy substrate. It was found that limited interdiffusion of titanium and calcium occurred near the interface.

  11. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    NASA Astrophysics Data System (ADS)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  12. Peculiar Features of Microstructure Formation and Microhardness Variations During Torsional Straining of Tantalum Specimens in Bridgman Anvils

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Tymentsev, A. N.; Korznikov, A. V.

    2015-04-01

    Using the method of transmission electron microscopy, peculiar features of evolution of microstructure and variations in microhardness of Та are investigated under torsional loading in the Bridgman anvil as a function of plastic deformation at room temperature. A quantitative examination of grain and defect's structure of the material under study and the values of local internal stresses is performed in different loading stages. The mechanisms of formation of submicrocrystalline and nanostructured states are analyzed and so is the microstructure variation as a function of the defect-structure characteristics, strain level, and spacing from the axis of torsion.

  13. The microstructure and microhardness of friction stir welded dissimilar copper/Al-5% Mg alloys

    NASA Astrophysics Data System (ADS)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    A friction stir welded joint between copper and aluminum alloy has been investigated and characterized for the microstructure and microhardness number distribution. The microstructural evolution of the joint is studied using optical microscopy and microhardness. The mechanical characteristics in structural zones of FSW joints are determined by Vickers microhardness measurements. Samples were cut across the cross section. It is shown that intermetallic Cu/Al particles are formed at interfaces. The intermetallics microhardness in the dissimilar aluminum/cooper FSW joint differs from that of the joint produced by fusion welding. The grain structures obtained in different dissimilar joint zones are examined.

  14. Microstructure evolution in dissimilar AA6060/copper friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    Friction stir welding process has been applied for making a dissimilar copper/aluminum alloy joint. The grain microstructure and mechanical properties of the obtained joint were studied. The structure of the cross-section of the FSW compound was analyzed. The microstructural evolution of the joint was examined using optical microscopy. The mechanical properties of the intermetallic particles were evaluated by measuring the microhardness according to the Vickers method. The microhardness of the intermetallic particles was by a factor of 4 lower than that of the particles obtained by fusion welding. The results of the investigations enable using friction stir welding for making dissimilar joints.

  15. The effect of microstructure on the fracture toughness of titanium alloys

    NASA Technical Reports Server (NTRS)

    Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.

    1974-01-01

    The microstructure of the alpha titanium alloy Ti-5Al-2.5Sn and the metastable beta titanium alloy Beta 3 was examined. The material was from normal and extra low interstitial grade plates which were either air-cooled or furnace-cooled from an annealing treatment. Beta 3 was studied in alpha-aged and omega-aged plates which were heat treated to similar strength levels. Tensile and plane strain fracture toughness tests were conducted at room temperature on the alpha-aged material. The microstructure and fracture mechanisms of alloys were studied using optical metallography, electron microscopy, microprobe analyses, and texture pole figures. Future experiments are described.

  16. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review.

    PubMed

    Ibrahim, N; Parsa, A; Hassan, B; van der Stelt, P; Wismeijer, D

    2013-01-01

    Several dental implant studies have reported that radiographic evaluation of bone quality can aid in reducing implant failure. Bone quality is assessed in terms of its quantity, density, trabecular characteristics and cells. Current imaging modalities vary widely in their efficiency in assessing trabecular structures, especially in a clinical setting. Most are very costly, require an extensive scanning procedure coupled with a high radiation dose and are only partially suitable for patient use. This review examines the current literature regarding diagnostic imaging assessment of trabecular microstructure prior to oral implant placement and suggests cone beam CT as a method of choice for evaluating trabecular bone microstructure.

  17. Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure

    NASA Astrophysics Data System (ADS)

    Grunlan, Jaime; Gerberich, William; Francis, Lorraine

    2000-03-01

    In an effort to lower the percolation threshold of carbon black-filled polymer composites, various polymer microstructures were examined. Composites were prepared using polyvinyl acetate (PVAc) latex, PVAc water-dispersible powder and polyvinylpyrrolidone (PVP) solution as the matrix starting material. Composites prepared using the particulate microstructures showed a significantly lowered percolation threshold relative to an equivalently prepared composite using the PVP solution. The PVAc latex-based composites has a percolation threshold of 3 volthe PVP solution-based composite yielded a percolation threshold near 15 voloccupied by polymer particles, the particulate matrix-based composites create a segregated CB network at low filler concentration.

  18. Effect of SiC Nanowhisker on the Microstructure and Mechanical Properties of WC-Ni Cemented Carbide Prepared by Spark Plasma Sintering

    PubMed Central

    Fu, Zhiqiang; Wang, Chengbiao

    2014-01-01

    Ultrafine tungsten carbide-nickel (WC-Ni) cemented carbides with varied fractions of silicon carbide (SiC) nanowhisker (0–3.75 wt.%) were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC) and tantalum carbide (TaC) as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS) Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker. PMID:25003143

  19. Synthesis of Ti-6Al-4V alloy with nano-TiN microstructure via spark plasma sintering technique

    NASA Astrophysics Data System (ADS)

    E Falodun, O.; Obadele, B. A.; Oke, S. R.; E Maja, M.; Olubambi, P. A.

    2017-12-01

    The effect of nano-TiN dispersion strengthened Ti-6Al-4V via spark plasma sintering method has been investigated. Ti-6Al-4V with 4 vol. percent of nano-TiN were mixed in a Turbula shaker mixer for 8 h at a speed of 49 rpm and the admixed powders were sintered at sintering temperature range of 1000 - 1100 °C, holding time of 10-30 mins, heating rate of 100 °C/min under an applied pressure of 50 MPa. The morphology of the as-received and sintered compacts was examined by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and phase analysis was done by X-ray diffractometry (XRD). The sintered compacts without nano-TiN reveal lamellar structure while reinforced Ti-6Al-4V with nano-TiN shows a bimodal structure and titanium nitride has a great influence on a grain growth at high temperature. Furthermore, the microstructural formation mechanism was investigated. With the addition of the content of Ti-6Al-4V with 4 vol.% of nano-TiN, the micro-hardness also improved and this was due to homogenous distribution of TiN in Ti-6Al-4V matrix.

  20. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic

    PubMed Central

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W.

    2011-01-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11–59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate. PMID:21368216

  1. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic.

    PubMed

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W

    2011-03-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.

  2. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microstructure Evolution During Stainless Steel-Copper Vacuum Brazing with a Ag/Cu/Pd Filler Alloy: Effect of Nickel Plating

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Laik, A.; Mishra, P.

    2017-03-01

    Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.

  4. The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Özgür, E-mail: oozgun@bingol.edu.tr; Yılmaz, Ramazan; Özkan Gülsoy, H.

    In this study, the effect of aging heat treatment on fracture toughness and impact strength of Ni-625 superalloy fabricated by using powder injection molding (PIM) method was examined. After a feedstock was prepared by mixing the prealloyed Ni-625 superalloy powder, which was fabricated by gas atomisation, with a polymeric binder system and then it was granulated, it was shaped through the use of injection. The molded specimens were sintered at 1300 °C for 3 h after a two-stage debinding process. Once the sintered specimens were treated in the solution at 1150 °C for 2 h, they were quenched. Aging treatmentmore » was performed by keeping specimens at 745 °C for 22 h. Fracture toughness and impact tests were performed on sintered and aged specimens. Microstructure examinations were performed by using optical microscope, scanning electron microscope, and transmission electron microscope. The results revealed that aging heat treatment led to the formation of some carbides and intermetallic phases in the microstructure. While the hardness of the aged specimens increased due to these phases, their fracture toughness and impact strength values decreased. - Highlights: • Ni-625 superalloy components were produced by means of powder injection molding. • The produced components were subjected to aging treatment. • Aging process provided approximately 50% increase in the hardness of components. • Intermetallic precipitates, carbides and TCP phases occurred within the aged parts. • Fracture toughness and impact strength values decreased due to the hard phases.« less

  5. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  6. PVA/NaCl/MgO nanocomposites-microstructural analysis by whole pattern fitting method

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Somashekar, R.; Nagabhushana, B. M.

    2018-04-01

    The nanofillers in the macromolecular matrix have displayed noteworthy changes in the structure and reactivity of the polymer nanocomposites. Novel functional materials usually consist of defects and are largely disordered. The intriguing properties of these materials are often attributed to defects. X-ray line profiles from powder diffraction reveal the quantitative information about size distribution and shape of diffracting domains which governs the contribution from small conventional X-ray diffraction (XRD) techniques to enumerate the microstructural information. In this study the MgO nanoparticles were prepared by solution combustion method and PVA/NaCl/MgO nanocomposite films were synthesized by the solvent cast method. Microstructural parameters viz crystal defects like stacking faults and twin faults, compositional inhomogeneity, crystallite size and lattice strain (g in %), were extracted using whole pattern fitting method.

  7. Microstructure and Mechanical Properties of Recycled Aggregate Concrete in Seawater Environment

    PubMed Central

    Yue, Pengjun; Tan, Zhuoying; Guo, Zhiying

    2013-01-01

    This study aims to conduct research about the microstructure and basic properties of recycled aggregate concrete under seawater corrosion. Concrete specimens were fabricated and tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. The basic properties of recycled aggregate concrete (RAC) including the compressive strength, the elastic modulus, and chloride penetration depth were explicitly investigated. And the microstructure of recycled concrete aggregate (RCA) was revealed to find the seawater corrosion by using scanning electron microscope (SEM). The results showed that higher amount of the RCA means more porosity and less strength, which could lower both the compressive strength and resistance to chloride penetration. This research could be a guide in theoretical and numerical analysis for the design of RAC structures. PMID:24453830

  8. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  9. Spray Characteristics and Tribo-Mechanical Properties of High-Velocity Arc-Sprayed WC-W2C Iron-Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Kokalj, D.

    2017-10-01

    In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.

  10. The microstructural dependence of wear resistance in austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  11. Effects of Bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal.

    PubMed

    Zheng, L; Li, D; Li, Z-L; Kang, L-N; Jiang, Y-Y; Liu, X-Y; Chi, Y-P; Li, Y-Q; Wang, J-H

    2017-12-01

    This study evaluated the effects of Bacillus fermentation on soybean meal protein (SBMP) microstructure and major anti-nutritional factors (ANFs) in soybean meal (SBM). The Bacillus siamensis isolate JL8 producing high yield of protease at 519·1 U g -1 was selected for the laboratory production of fermented soybean meal (FSBM). After 24 h fermentation, the FSBM showed better properties compared with those of SBM, the ANFs such as glycinin, β-conglycinin and trypsin inhibitor significantly decreased by 86·0, 70·3 and 95·01%, while in vitro digestibility and absorbability increased by 8·7 and 18·9% respectively. Scanning electron microscopy (SEM) image of fermented soybean meal protein showed smaller aggregates and looser network than that of SBMP. Secondary structure examination of proteins revealed fermentation significantly decreased the content of β-sheet structure by 43·2% and increased the random coil structure by 59·9%. It is demonstrated that Bacillus fermentation improved the nutritional quality of SBM through degrading ANFs and changing the microstructure of SBMP. There is limited information about the structural property changes of soybean protein during fermentation. In this study, physicochemical analysis of soybean meal protein showed evidence that the increase in in vitro digestibility and absorbability of fermented soybean meal reflected the decrease in β-conformation and destruction of original structure in soybean meal protein. The results directly gained the understanding of nutritional quality improvement of soybean meal by Bacillus fermentation, and supply the potential use of Bacillus siamensis for fermented soybean meal production. © 2017 The Society for Applied Microbiology.

  12. Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T.

    PubMed

    Beaujoin, Justine; Palomero-Gallagher, Nicola; Boumezbeur, Fawzi; Axer, Markus; Bernard, Jeremy; Poupon, Fabrice; Schmitz, Daniel; Mangin, Jean-François; Poupon, Cyril

    2018-06-01

    The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.

  13. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Jauhari, Iswadi

    2016-07-01

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag3Sn and Cu6Sn5), especially the Cu6Sn5 IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  14. Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.

    2018-03-01

    Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.

  15. Discussion on Microwave-Matter Interaction Mechanisms by In Situ Observation of "Core-Shell" Microstructure during Microwave Sintering.

    PubMed

    Liu, Wenchao; Xu, Feng; Li, Yongcun; Hu, Xiaofang; Dong, Bo; Xiao, Yu

    2016-02-23

    This research aims to deepen the understanding of the interaction mechanisms between microwave and matter in a metal-ceramic system based on in situ synchrotron radiation computed tomography. A special internal "core-shell" microstructure was discovered for the first time and used as an indicator for the interaction mechanisms between microwave and matter. Firstly, it was proved that the microwave magnetic field acted on metal particles by way of inducing an eddy current in the surface of the metal particles, which led to the formation of a "core-shell" microstructure in the metal particles. On this basis, it was proposed that the ceramic particles could change the microwave field and open a way for the microwave, thereby leading to selective heating in the region around the ceramic particles, which was verified by the fact that all the "core-shell" microstructure was located around ceramic particles. Furthermore, it was indicated that the ceramic particles would gather the microwaves, and might lead to local heating in the metal-ceramic contact region. The focusing of the microwave was proved by the quantitative analysis of the evolution rate of the "core-shell" microstructure in a different region. This study will help to reveal the microwave-matter interaction mechanisms during microwave sintering.

  16. Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadayyon, Ghazal, E-mail: Ghazal.tadayyon@gmail.co

    The main objective of this work was to investigate the thermomechanical behavior and microstructural changes of a Ti-rich NiTi shape memory alloy (SMA). The microstructural and texture evolution of aged NiTi alloy at different degrees of deformation were elicited by transmission electron microscopy (TEM). An effort was made to correlate results obtained from the tensile test with results from microstructure studies. The undeformed sample reveals a self-accommodated morphology with straight and well defined twin boundaries. At different stages of deformation, diverse mechanisms were involved. These mechanisms include marstraining, detwinning accompanied by dislocation movement, and finally, severe plastic deformation, subdivision andmore » amorphization of the matrix. Under increasing strains, high density lattice defects were generated and the morphology of B19’ became disordered. - Graphical abstract: The summary of microstructure changes of the martensite twins during tensile deformation in polycrystalline NiTi SMAs. - Highlights: • Initial elastic response, dislocation avalanche and deformation bands were studied. • < 011 > Type II twin accompanied by detwinned area after 2% cold work was observed. • Visible parallel fine stacking faults showed plastic flow of the material. • At higher strains, subgrains changed to recrystallized, finely amorphous structure.« less

  17. Non-destructive and three-dimensional measurement of local strain development during tensile deformation in an aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Miura, H.; Toda, H.

    2015-08-01

    Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.

  18. Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys

    NASA Astrophysics Data System (ADS)

    Król, M.; Tański, T.; Sitek, W.

    2015-11-01

    The influence of Zn amount and solidification rate on the characteristic temperature of the evaluation of magnesium dendrites during solidification at different cooling rates (0.6-2.5°C) were examined by thermal derivative analysis (TDA). The dendrite coherency point (DCP) is presented with a novel approach based on second derivative cooling curve. Solidification behavior was examined via one thermocouple thermal analysis method. Microstructural assessments were described by optical light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These studies showed that utilization of d2T/dt2 vs. the time curve methodology provides for analysis of the dendrite coherency point

  19. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke

    2016-03-15

    In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porositymore » inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are determined by tension and compression testing.« less

  20. Reactive Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Shpargel, Tarah; Singh, M.; Morscher, Gregory; Asthana, Rajiv

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading.

  1. Microstructural design in low alloy steels

    NASA Technical Reports Server (NTRS)

    Honeycombe, R. W. K.

    1982-01-01

    The evolution of microalloyed steels from plain carbon steels is examined with emphasis on grain size control by use of Nb, Ti and V additions and by the application of controlled rolling. The structural changes during controlled rolling are described as well as the influence of alloying elements on these changes, and on the final microstructure. The achievement of high strength and toughness is discussed including the role of inclusions.

  2. Hierarchically-driven Approach for Quantifying Materials Uncertainty in Creep Deformation and Failure of Aerospace Materials

    DTIC Science & Technology

    2016-07-01

    characteristics and to examine the sensitivity of using such techniques for evaluating microstructure. In addition to the GUI tool, a manual describing its use has... Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures, Metallurgical and...driven approach for quanti - fying materials uncertainty in creep deformation and failure of aerspace materials, Multi-scale Structural Mechanics and

  3. Active Metal Brazing of Carbon-Carbon Composites to Titanium

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G.; Asthana, R.

    2004-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSil. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint which led to good wetting, spreading, and metallurgical bond formation via interdiffusion.

  4. Current issues and problems in welding science

    NASA Astrophysics Data System (ADS)

    David, S. A.; Debroy, T.

    1992-07-01

    Recent advances in welding science are examined with consideration given to the progress made in understanding physical processes of welding and in understanding weldment microstructure and properties and the correlation between microstructure and properties of the welds. Particular attention is given to the methods used for intelligent control and automation of welding. Also discussed are issues and problems that were brought to the surface by technological advances and interdisciplinary research on welding.

  5. Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment

    PubMed Central

    Metzler-Baddeley, Claudia; Hunt, Sarah; Jones, Derek K.; Leemans, Alexander; Aggleton, John P.

    2012-01-01

    Objective: To examine the pattern of association between microstructure of temporal lobe connections and the breakdown of episodic memory that is a core feature of mild cognitive impairment (MCI). Methods: Twenty-five individuals with MCI and 20 matched controls underwent diffusion MRI and cognitive assessment. Three temporal pathways were reconstructed by tractography: fornix, parahippocampal cingulum (PHC), and uncinate fasciculus. Tissue volume fraction—a tract-specific measure of atrophy—and microstructural measures were derived for each tract. To test specificity of associations, a comparison tract (corticospinal tract) and control cognitive domains were also examined. Results: In MCI, tissue volume fraction was reduced in the fornix. Axial and radial diffusivity were increased in uncinate and PHC implying more subtle microstructural change. In controls, tissue volume fraction in the fornix was the predominant correlate of free recall. In contrast, in MCI, the strongest relationship was with left PHC. Microstructure of uncinate and PHC also correlated with recognition memory, and recognition confidence, in MCI. Conclusions: Episodic memory in MCI is related to the structure of multiple temporal association pathways. These associations are not confined to the fornix, as they are in healthy young and older adults. In MCI, because of a compromised fornix, alternative pathways may contribute disproportionally to episodic memory performance. PMID:23175726

  6. Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Martinez, E.; Gaytan, S. M.; Ramirez, D. A.; Machado, B. I.; Shindo, P. W.; Martinez, J. L.; Medina, F.; Wooten, J.; Ciscel, D.; Ackelid, U.; Wicker, R. B.

    2011-11-01

    Microstructures and a microstructural, columnar architecture as well as mechanical behavior of as-fabricated and processed INCONEL alloy 625 components produced by additive manufacturing using electron beam melting (EBM) of prealloyed precursor powder are examined in this study. As-fabricated and hot-isostatically pressed ("hipped") [at 1393 K (1120 °C)] cylinders examined by optical metallography (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive (X-ray) spectrometry (EDS), and X-ray diffraction (XRD) exhibited an initial EBM-developed γ″ (bct) Ni3Nb precipitate platelet columnar architecture within columnar [200] textured γ (fcc) Ni-Cr grains aligned in the cylinder axis, parallel to the EBM build direction. Upon annealing at 1393 K (1120 °C) (hot-isostatic press (HIP)), these precipitate columns dissolve and the columnar, γ, grains recrystallized forming generally equiaxed grains (with coherent {111} annealing twins), containing NbCr2 laves precipitates. Microindentation hardnesses decreased from 2.7 to 2.2 GPa following hot-isostatic pressing ("hipping"), and the corresponding engineering (0.2 pct) offset yield stress decreased from 0.41 to 0.33 GPa, while the UTS increased from 0.75 to 0.77 GPa. However, the corresponding elongation increased from 44 to 69 pct for the hipped components.

  7. Biological strategy for the fabrication of highly ordered aragonite helices: the microstructure of the cavolinioidean gastropods

    PubMed Central

    Checa, Antonio G.; Macías-Sánchez, Elena; Ramírez-Rico, Joaquín

    2016-01-01

    The Cavolinioidea are planktonic gastropods which construct their shells with the so-called aragonitic helical fibrous microstructure, consisting of a highly ordered arrangement of helically coiled interlocking continuous crystalline aragonite fibres. Our study reveals that, despite the high and continuous degree of interlocking between fibres, every fibre has a differentiated organic-rich thin external band, which is never invaded by neighbouring fibres. In this way, fibres avoid extinction. These intra-fibre organic-rich bands appear on the growth surface of the shell as minuscule elevations, which have to be secreted differentially by the outer mantle cells. We propose that, as the shell thickens during mineralization, fibre secretion proceeds by a mechanism of contact recognition and displacement of the tips along circular trajectories by the cells of the outer mantle surface. Given the sizes of the tips, this mechanism has to operate at the subcellular level. Accordingly, the fabrication of the helical microstructure is under strict biological control. This mechanism of fibre-by-fibre fabrication by the mantle cells is unlike that any other shell microstructure. PMID:27181457

  8. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhtar, F.; Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore; Guo, S.J.

    2008-01-15

    This study deals with the processing, microstructure, and wear behavior of TiC-reinforced stainless steel matrix composites, containing 50 to 70 wt.% TiC. Powder technology was used to successfully fabricate the composites. The microstructure of the composite was characterized by scanning electron microscopy. The microstructural study revealed that the TiC particles were distributed uniformly in the steel matrix phase. Interface debonding and microcracks were not observed in the composite. The composite hardness increased with TiC content. The fretting wear resistance of the composites was studied against high speed steel. The wear mechanisms are discussed by means of microscopical observations on themore » worn surfaces. The wear was severe at higher wear loads and lower TiC content. Microplowing of the stainless steel matrix was found to be the dominant wear mechanism. Heavy microplowing and rapid removal of material from the wear surface was observed at high wear load. The variation of wear loss with volume fraction and mean free path of the binder phase is also reported.« less

  9. Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin; Bell, Ryan; Zuhlke, Craig A.; Wang, Meiyu; Alexander, Dennis R.; Gogos, George; Shield, Jeffrey E.

    2017-10-01

    Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or super-hydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained α-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material.

  10. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  11. Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.

    2015-07-01

    A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.

  12. Microstructural and Textural Differences Induced by Water and Furnace Cooling in Commercially Pure Zr Annealed in the α + β Region

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu

    2018-07-01

    In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.

  13. Nanostructure formation during accumulative roll bonding of commercial purity titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir

    2016-12-15

    In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less

  14. Microstructural and Textural Differences Induced by Water and Furnace Cooling in Commercially Pure Zr Annealed in the α + β Region

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu

    2018-03-01

    In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.

  15. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  16. Structural white matter asymmetries in relation to functional asymmetries during speech perception and production.

    PubMed

    Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René

    2013-12-01

    Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.

  17. Microstructure and composition analysis of low-Z/low-Z multilayers by combining hard and resonant soft X-ray reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.

    2016-06-28

    Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less

  18. Microstructure and Mechanical Properties of Extruded Gamma Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, I.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at %) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  19. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  20. Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments

    NASA Astrophysics Data System (ADS)

    Zieliński, Tomasz G.

    2017-11-01

    The paper proposes and investigates computationally-efficient microstructure representations for sound absorbing fibrous media. Three-dimensional volume elements involving non-trivial periodic arrangements of straight fibres are examined as well as simple two-dimensional cells. It has been found that a simple 2D quasi-representative cell can provide similar predictions as a volume element which is in general much more geometrically accurate for typical fibrous materials. The multiscale modelling allowed to determine the effective speeds and damping of acoustic waves propagating in such media, which brings up a discussion on the correlation between the speed, penetration range and attenuation of sound waves. Original experiments on manufactured copper-wire samples are presented and the microstructure-based calculations of acoustic absorption are compared with the corresponding experimental results. In fact, the comparison suggested the microstructure modifications leading to representations with non-uniformly distributed fibres.

  1. A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, John A.; Frankel, Dana; Prasannavenkatesan, Rajesh

    Nickel Titanium (NiTi) alloys are often used in biomedical devices where failure due to mechanical fatigue is common. For other alloy systems, computational models have proven an effective means of determining the relationship between microstructural features and fatigue life. This work will extend the subset of those models which were based on crystal plasticity to examine the relationship between microstructure and fatigue life in NiTi alloys. It will explore the interaction between a spherical inclusion and the material’s free surface along with several NiTi microstructures reconstructed from 3D imaging. This work will determine the distance at which the free surfacemore » interacts with an inclusion and the effect of applied strain of surface-inclusion interaction. The effects of inclusion-inclusion interaction, matrix voiding, and matrix strengthening are explored and ranked with regards to their influence on fatigue life.« less

  2. Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Mieskowski, D. M.

    1985-01-01

    Room temperature, 700-, 1000-, 1200-, and 1370-C examinations of the effect of 1.7-2.6 mol pct rare earth oxide additions to sintered Si3N4 are conducted. While the room temperature-1000 C bend strengths were higher for this material with Y2O3 additions than with CeO2, La2O3, or Sm2O3, the reverse was true at 1200-1370 C. This phenomenon is explained on the basis of microstructural differences, since quantitative microscopy of SEM replicas showed the Si3N4-Y2O3 composition to contain both a higher percentage of elongated grains and a coarser microstructure than the other three alternatives. The elongated grains appear to increase this composition's low temperature strength irrespective of microstructural coarseness; this coarseness, however, decreases strength relative to the other compositions at higher temperatures.

  3. A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys

    DOE PAGES

    Moore, John A.; Frankel, Dana; Prasannavenkatesan, Rajesh; ...

    2016-06-06

    Nickel Titanium (NiTi) alloys are often used in biomedical devices where failure due to mechanical fatigue is common. For other alloy systems, computational models have proven an effective means of determining the relationship between microstructural features and fatigue life. This work will extend the subset of those models which were based on crystal plasticity to examine the relationship between microstructure and fatigue life in NiTi alloys. It will explore the interaction between a spherical inclusion and the material’s free surface along with several NiTi microstructures reconstructed from 3D imaging. This work will determine the distance at which the free surfacemore » interacts with an inclusion and the effect of applied strain of surface-inclusion interaction. The effects of inclusion-inclusion interaction, matrix voiding, and matrix strengthening are explored and ranked with regards to their influence on fatigue life.« less

  4. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne

    An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.

  5. Microstructure and Mechanical Properties of Laser Welded Titanium 6Al-4V

    NASA Astrophysics Data System (ADS)

    Mazumder, J.; Steen, W. M.

    1982-05-01

    Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.

  6. Cause of Thermal Fatigue Cracking in Metroliner Wheels

    DOT National Transportation Integrated Search

    1977-03-01

    One new wheel and two used wheels (one with a thermal crack in the tread) were examined for mechanical properties, macrostructure, microstructure, and residual stresses. Similar examinations were conducted on three new wheels which were first subject...

  7. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    PubMed

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  8. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  9. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE PAGES

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    2017-09-14

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  10. Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Kim, Hyosim; Gigax, Jonathan G.; Chen, Di; Wei, Chao-Chen; Garner, F. A.; Shao, Lin

    2017-10-01

    We studied the radiation-induced microstructural evolution of an oxide-dispersion-strengthened (ODS) ferritic alloy, MA956, to 180 dpa using 3.5 MeV Fe2+ ions. Post-irradiation examination showed that voids formed rather early and almost exclusively at the particle-matrix interfaces. Surprisingly, voids formed even in the injected interstitial zone. Comparisons with studies on other ODS alloys with smaller and largely coherent dispersoids irradiated at similar conditions revealed that the larger and not completely coherent oxide particles in MA956 serve as defect collectors which promote nucleation of voids at their interface. The interface configuration, which is related to particle type, crystal structure and size, is one of the important factors determining the defect-sink properties of particle-matrix interfaces.

  11. Structural and magnetic properties of barium-gadolinium hexaferrites

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba 1-xGd x)O·5.25Fe 2O 3 ( x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe 2O 3) and GdFeO 3 were detected in the remaining samples. Coercivity ( Hc) shows remarkably high values, ˜293 kA/m for x=0.20 and 0.30 with a maximum of 322 kA/m for x=0.25. Specific saturation magnetization ( σsat) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  12. Enhancement of Ti-containing hydrogenated carbon (Tisbnd C:H) films by high-power plasma-sputtering

    NASA Astrophysics Data System (ADS)

    Gwo, Jyh; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Shyong

    2012-02-01

    Ti-containing amorphous hydrogenated carbon (Tisbnd C:H) thin films were deposited on stainless steel SS304 substrates by high-power pulsed magnetron sputtering (HPPMS) in an atmosphere of mixed Ar and C2H2 gases using titanium metal as the cathodic material. The multilayer structure of the deposited film had a Tisbnd TiCsbnd DLC gradient to improve adhesion and reduce residual stress. This study investigates the effects of substrate bias and target-to-substrate distance on the mechanical properties of Tisbnd C:H films. Film properties, including composition, morphology, microstructure, mechanical, and tribology, were examined by glow discharge spectroscopy (GDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and a nanoindenter and a pin-on-disk tribometer. Experiments revealed impressive results.

  13. Microstructural Changes in Inconel ® 740 After Long-Term Aging in the Presence and Absence of Stress

    DOE PAGES

    Unocic, Kinga A.; Shingledecker, John Paul; Tortorelli, Peter F.

    2014-11-18

    The Ni-based alloy, Inconel ® 740, is being extensively examined for use in advanced ultrasupercritical steam boilers because its precipitation-strengthened microstructure appears to offer the necessary creep strength under the high temperatures and pressures (up to 760°C and 35 MPa) needed for high efficiency power generation. However, because this application requires extremely long lifetimes under these conditions (up to 30 years), long-term microstructure stability is a major concern. In this study, results from microstructural analyses of Inconel 740 specimens aged at 700 and 750°C in the presence and absence of creep loading for times up to ~31,000 h are presented.more » The primary focus was on the development of the eta η (Ni 3Ti) phase and coarsening of coherent γ'-Ni 3(Al,Ti) precipitates and its depletion near eta/matrix interfaces. Finally, however, despite these processes, Inconel 740 showed adequate long-term microstructural stability to assure adequate creep strength for the intended application.« less

  14. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.

    PubMed

    Salguero, Laura; Saadat, Fatemeh; Sevostianov, Igor

    2014-10-17

    The paper analyzes the connection between microstructure of the osteonal cortical bone and its overall elastic properties. The existing models either neglect anisotropy of the dense tissue or simplify cortical bone microstructure (accounting for Haversian canals only). These simplifications (related mostly to insufficient mathematical apparatus) complicate quantitative analysis of the effect of microstructural changes - produced by age, microgravity, or some diseases - on the overall mechanical performance of cortical bone. The present analysis fills this gap; it accounts for anisotropy of the dense tissue and uses realistic model of the porous microstructure. The approach is based on recent results of Sevostianov et al. (2005) and Saadat et al. (2012) on inhomogeneities in a transversely-isotropic material. Bone's microstructure is modeled according to books of Martin and Burr (1989), Currey (2002), and Fung (1993) and includes four main families of pores. The calculated elastic constants for porous cortical bone are in agreement with available experimental data. The influence of each of the pore types on the overall moduli is examined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  16. Age-related differences in autism: The case of white matter microstructure.

    PubMed

    Koolschijn, P Cédric M P; Caan, Matthan W A; Teeuw, Jalmar; Olabarriaga, Sílvia D; Geurts, Hilde M

    2017-01-01

    Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeslack, W.A. III; Hurley, J.; Paskell, T.

    1994-12-31

    Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less

  18. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  19. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  20. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    PubMed Central

    Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-01-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm−3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation. PMID:29765652

  1. Grain boundary engineering: fatigue fracture

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-04-01

    Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.

  2. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  3. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.

    2016-05-23

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less

  4. Ecomorph or Endangered Coral? DNA and Microstructure Reveal Hawaiian Species Complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli

    PubMed Central

    Forsman, Zac H.; Concepcion, Gregory T.; Haverkort, Roxanne D.; Shaw, Ross W.; Maragos, James E.; Toonen, Robert J.

    2010-01-01

    M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity. PMID:21151995

  5. Ecomorph or endangered coral? DNA and microstructure reveal hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli.

    PubMed

    Forsman, Zac H; Concepcion, Gregory T; Haverkort, Roxanne D; Shaw, Ross W; Maragos, James E; Toonen, Robert J

    2010-12-02

    M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity.

  6. Multimodal MRI for early diabetic mild cognitive impairment: study protocol of a prospective diagnostic trial.

    PubMed

    Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Yu-Chuan; Nan, Hai-Yan; Yang, Yang; Liu, Zhi-Cheng; Wang, Wen; Cui, Guang-Bin

    2016-08-24

    Type 2 diabetes mellitus (T2DM) is a risk factor for dementia. Mild cognitive impairment (MCI), an intermediary state between normal cognition and dementia, often occurs during the prodromal diabetic stage, making early diagnosis and intervention of MCI very important. Latest neuroimaging techniques revealed some underlying microstructure alterations for diabetic MCI, from certain aspects. But there still lacks an integrated multimodal MRI system to detect early neuroimaging changes in diabetic MCI patients. Thus, we intended to conduct a diagnostic trial using multimodal MRI techniques to detect early diabetic MCI that is determined by the Montreal Cognitive Assessment (MoCA). In this study, healthy controls, prodromal diabetes and diabetes subjects (53 subjects/group) aged 40-60 years will be recruited from the physical examination center of Tangdu Hospital. The neuroimaging and psychometric measurements will be repeated at a 0.5 year-interval for 2.5 years' follow-up. The primary outcome measures are 1) Microstructural and functional alterations revealed with multimodal MRI scans including structure magnetic resonance imaging (sMRI), resting state functional magnetic resonance imaging (rs-fMRI), diffusion kurtosis imaging (DKI), and three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL); 2) Cognition evaluation with MoCA. The second outcome measures are obesity, metabolic characteristics, lifestyle and quality of life. The study will provide evidence for the potential use of multimodal MRI techniques with psychometric evaluation in diagnosing MCI at prodromal diabetic stage so as to help decision making in early intervention and improve the prognosis of T2DM. This study has been registered to ClinicalTrials.gov ( NCT02420470 ) on April 2, 2015 and published on July 29, 2015.

  7. The burden of microstructural damage modulates cortical activation in elderly subjects with MCI and leuko-araiosis. A DTI and fMRI study.

    PubMed

    Mascalchi, Mario; Ginestroni, Andrea; Toschi, Nicola; Poggesi, Anna; Cecchi, Paolo; Salvadori, Emilia; Tessa, Carlo; Cosottini, Mirco; De Stefano, Nicola; Pracucci, Giovanni; Pantoni, Leonardo; Inzitari, Domenico; Diciotti, Stefano

    2014-03-01

    The term leuko-araiosis (LA) describes a common chronic affection of the cerebral white matter (WM) in the elderly due to small vessel disease with variable clinical correlates. To explore whether severity of LA entails some adaptive reorganization in the cerebral cortex we evaluated with functional MRI (fMRI) the cortical activation pattern during a simple motor task in 60 subjects with mild cognitive impairment and moderate or severe (moderate-to-severe LA group, n = 46) and mild (mild LA group, n = 14) LA extension on visual rating. The microstructural damage associated with LA was measured on diffusion tensor data by computation of the mean diffusivity (MD) of the cerebral WM and by applying tract based spatial statistics (TBSS). Subjects were examined with fMRI during continuous tapping of the right dominant hand with task performance measurement. Moderate-to-severe LA group showed hyperactivation of left primary sensorimotor cortex (SM1) and right cerebellum. Regression analyses using the individual median of WM MD as explanatory variable revealed a posterior shift of activation within the left SM1 and hyperactivation of the left SMA and paracentral lobule and of the bilateral cerebellar crus. These data indicate that brain activation is modulated by increasing severity of LA with a local remapping within the SM1 and increased activity in ipsilateral nonprimary sensorimotor cortex and bilateral cerebellum. These potentially adaptive changes as well lack of contralateral cerebral hemisphere hyperactivation are in line with sparing of the U fibers and brainstem and cerebellar WM tracts and the emerging microstructual damage of the corpus callosum revealed by TBSS with increasing severity of LA. Copyright © 2012 Wiley Periodicals, Inc.

  8. Microstructural characterization of ultra thin copper interconnects

    NASA Astrophysics Data System (ADS)

    Yang, Hee-Dong

    The present study investigates the defects related to reliability issues, such as physical failures developed during processing and end use. In the first part of this study, kinetic analysis using the Johnson-Mehl-Avrami (JMA) model demonstrates that a self-annealing mechanism in electroplated Cu films depends on the film properties, such as thickness and the amount of crystal defects in an as-deposited state. In order to obtain the evidence of such defects, the microstructural characterization of defects in ultra thin copper interconnects using transmission electron microscopy (TEM) is presented. Examination of the defects using TEM reveals that voids filled with gas form as a lens shape along the {110} habit planes of the copper matrix. In the second part of this study, methodology and results of an electro-thermal-fatigue (ETF) testing, designed for early detection of process defects, are presented. Such ETF testing combines high-density current electrical stressing and thermal cycling to accelerate the evolution of defects in Cu interconnects. In ETF testing, the evolution of defects provides the nucleation sites for voids which open or close during thermal cycling. Then, the accumulation of voids creates the change in resistance when they reach a critical size. As a result of voids evolution, the high current density and high joule heating create a transient resistance increase. ETF testing reveals two failure modes, and the mode-I failure has the importance in detecting defects. The number of cycles to failure in ETF testing decreases with higher current density, but the rate of thermal cycling has no effect. Results from this investigation suggest that impurities in the copper electrodeposition process must be carefully controlled to achieve reliable ultra thin copper interconnects.

  9. Grain Boundary Sliding in Deforming Wehrlite: Rheology and Microstructure

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Hirth, G.; Cooper, R. F.; Kruckenberg, S. C.

    2016-12-01

    Elastic anisotropy of Earth's upper mantle used to be attributed exclusively to dislocation creep. However, recent experimental results suggest that crystallographic preferred orientation (CPO) in olivine, which contributes to elastic anisotropy, could also form during grain boundary sliding [e.g., 1-3]. Nevertheless, the fundamental problem of how CPO forms during grain boundary sliding is not fully understood. Our current efforts examine the grain-size-sensitive flow of wehrlite, to characterize the influence of the second phase (clinopyroxene) both on olivine CPO formation as well as the propensity of grain boundary sliding and accumulated strain to effect solid-state phase separation (i.e., metamorphic layering). Creep tests on fine-grain-size (2-5 µm) olivine and clinopyroxene aggregates (T =1100-1200ºC; P = 1.5 GPa; γ=3-7) have been conducted. These reveal strong type-B fabric for olivine. Characterization of effects of grain size, temperature and applied strain rate reveal the grain size dependence, stress exponent and activation energy of the flow kinetics of wehrlite. The stress exponent, which is similar to stress exponent for harzburgite reported by Sundberg & Cooper [1], and grain-size dependence suggest that the dominant deformation mechanism in our experiments may be grain boundary sliding. A large stress drop in early segments of experiments suggest an evolution of microstructure. The Fourier transform of backscatter images demonstrates that there exists a direction of foliation, defined by Ol-Cpx heterophase boundaries, which may be the key to understand the development of CPO formation. [1] Sundberg, M. & Cooper, R. F., J. Geophys. Res., 2008. [2] Miyazaki, T., Sueyoshi, K., and Hiraga, T., Nature, 2013. [3] Tielke, J. A., L. N. Hansen, M. Tasaka, C. Meyers, M. E. Zimmerman, and D. L. Kohlstedt, J. Geophys. Res., 2016.

  10. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  11. Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness

    NASA Astrophysics Data System (ADS)

    Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.

  12. Effect of microstructure on the detonation initiation in energetic materials

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Jackson, T. L.

    2017-12-01

    In this work we examine the role of the microstructure on detonation initiation of energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The deposition term is based on simulations of void collapse at the microscale, modeled at the mesoscale as hot-spots, while the reaction rate at the mesoscale is modeled using density-based kinetics. We carry out two-dimensional simulations of random packs of HMX crystals in a binder. We show that mean particle size, size distribution, and particle shape have a major effect on the transition between detonation and no-detonation, thus highlighting the importance of the microstructure for shock-induced initiation.

  13. Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys

    DOE PAGES

    Yu, Xinghua; Mazumder, B.; Miller, M. K.; ...

    2015-01-19

    Nanostructured ferritic alloys, which have complex microstructures which consist of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters, are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This paper evaluates microstructure of friction stir welded nanostructured ferritic alloys using electron microscopy and atom probe tomography techniques. Atom probe tomography results revealed that nanoclusters are coarsened and inhomogeneously distributed in the stir zone and thermomechanically affected zone. Three hypotheses on coarsening of nanoclusters are presented. Finally, the hardness difference in different regions of friction stir weld has been explained.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  15. Processing of MnBi bulk magnets with enhanced energy product

    DOE PAGES

    Poudyal, Narayan; Liu, Xubo; Wang, Wei; ...

    2016-02-23

    Here, we report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH) max of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH) max value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

  16. Observation of martensitic transformation in Ni50Mn41Cu4Sn5 Heusler alloy prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.

    2017-05-01

    Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.

  17. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.

    2018-06-01

    The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.

  18. Microstructural comparison of the kinematics of discrete and continuum dislocations models

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Po, Giacomo

    2015-12-01

    The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.

  19. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    NASA Technical Reports Server (NTRS)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  20. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  1. Influence of Starting Powders on Hydroxyapatite Coatings Fabricated by Room Temperature Spraying Method.

    PubMed

    Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young

    2015-08-01

    Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water.

  2. Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes

    NASA Astrophysics Data System (ADS)

    Yin, Deshun; Qu, Pengfei

    2018-02-01

    Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.

  3. Controlling the mechanical properties of carbon steel by thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Balavar, Mohsen; Mirzadeh, Hamed

    2018-01-01

    The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.

  4. Correlative microscopy of detergent granules.

    PubMed

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries). © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  5. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  6. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  7. An in vitro study of the microstructure, composition and nanoindentation mechanical properties of remineralizing human dental enamel

    NASA Astrophysics Data System (ADS)

    Arsecularatne, J. A.; Hoffman, M.

    2014-08-01

    This paper describes the results of an in vitro investigation on the interrelations among microstructure, composition and mechanical properties of remineralizing human dental enamel. Polished enamel samples have been demineralized for 10 min in an acetic acid solution (at pH 3) followed by remineralization in human saliva for 30 and 120 min. Microstructure variations of sound, demineralized and remineralized enamel samples have been analysed using focused ion beam, scanning electron microscopy and transmission electron microscopy, while their compositions have been analysed using energy dispersive x-ray. Variations in the mechanical properties of enamel samples have been assessed using nanoindentation. The results reveal that, under the selected conditions, only partial remineralization of the softened enamel surface layer occurs where some pores remain unrepaired. As a result, while the nanoindentation elastic modulus shows an improvement following remineralization, hardness does not.

  8. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure.

    PubMed

    Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei

    2011-01-04

    In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.

  9. The effect of forging history on the strength and microstructure of TDNiCr /Ni-20Cr-2ThO2/

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1975-01-01

    Forging variables were evaluated to determine their influence on the elevated temperature strength and microstructure of TDNiCr. Grain size was the principal microstructural feature related to elevated temperature strength and was controlled primarily by the thermomechanical variables of forging temperature and final annealing condition. Tests at 1366 K revealed a factor of eight increase in tensile strength as grain size increased from 1 to 150 microns, while stress-rupture strength improved by three to five times as grain size increased from 15 to 150 microns. Forged material of grain size greater than or equal to about 150 microns displayed a level of elevated temperature strength comparable to that of optimized TDNiCr sheet. The presence of a preponderance of small twins and a strong preferred orientation may have also been factors contributing to the excellent high temperature strength of large grain forged material.

  10. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  11. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

  12. Computational Simulation of Thermal and Spattering Phenomena and Microstructure in Selective Laser Melting of Inconel 625

    NASA Astrophysics Data System (ADS)

    Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.

    Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.

  13. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    PubMed

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Effect of post weld heat treatment on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Xin, Jijun; Fang, Chao; Song, Yuntao; Wei, Jing; Xu, Shen; Wu, Jiefeng

    2017-04-01

    The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.

  15. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  16. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  17. The ASMEx snow slab experiment: snow microwave radiative transfer (SMRT) model evaluation

    NASA Astrophysics Data System (ADS)

    Sandells, Melody; Löwe, Henning; Picard, Ghislain; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    A major uncertainty in snow microwave modelling to date has been the treatment of the snow microstructure. Although observations of microstructural parameters such as the optical grain diameter, specific surface area and correlation length have improved drastically over the last few years, scale factors have been used to derive the parameters needed in microwave emission models from these observations. Previous work has shown that a major difference between electromagnetic models of scattering coefficients is due to the specific snow microstructure models used. The snow microwave radiative transfer model (SMRT) is a new model developed to advance understanding of the role of microstructure and isolate different assumptions in existing microwave models that collectively hinder interpretation of model intercomparison studies. SMRT is implemented in Python and is modular, thus allows switching between different representations in its various components. Here, the role of microstructure is examined with the Improved Born Approximation electromagnetic model. The model is evaluated against scattering and absorption coefficients derived from radiometer measurements of snow slabs taken as part of the Arctic Snow Microstructure Experiment (ASMEx), which took place in Sodankylä, Finland over two seasons. Microtomography observations of slab samples were used to determine parameters for five microstructure models: spherical, exponential, sticky hard sphere, Teubner-Strey and Gaussian random field. SMRT brightness temperature simulations are also compared with radiometric observations of the snow slabs over a reflector plate and an absorber substrate. Agreement between simulations and observations is generally good except for slabs that are highly anisotropic.

  18. Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.

  19. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae.

    PubMed

    Badilatti, Sandro D; Christen, Patrik; Parkinson, Ian; Müller, Ralph

    2016-12-08

    Osteoporosis is a major medical burden and its impact is expected to increase in our aging society. It is associated with low bone density and microstructural deterioration. Treatments are available, but the critical factor is to define individuals at risk from osteoporotic fractures. Computational simulations investigating not only changes in net bone tissue volume, but also changes in its microstructure where osteoporotic deterioration occur might help to better predict the risk of fractures. In this study, bone remodeling simulations with a mechanical feedback loop were used to predict microstructural changes due to osteoporosis and their impact on bone fragility from 50 to 80 years of age. Starting from homeostatic bone remodeling of a group of seven, mixed sex whole vertebrae, five mechanostat models mimicking different biological alterations associated with osteoporosis were developed, leading to imbalanced bone formation and resorption with a total net loss of bone tissue. A model with reduced bone formation rate and cell sensitivity led to the best match of morphometric indices compared to literature data and was chosen to predict postmenopausal osteoporotic bone loss in the whole group. Thirty years of osteoporotic bone loss were predicted with changes in morphometric indices in agreement with experimental measurements, and only showing major deviations in trabecular number and trabecular separation. In particular, although being optimized to match to the morphometric indices alone, the predicted bone loss revealed realistic changes on the organ level and on biomechanical competence. While the osteoporotic bone was able to maintain the mechanical stability to a great extent, higher fragility towards error loads was found for the osteoporotic bones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: (I) Synthesis, structural and microstructural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.

    Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less

  1. Effect of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of Ti-4Al-1Mn Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.

    2018-05-01

    Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.

  2. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less

  3. A novel approach to making microstructure measurements in the ice-covered Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Guthrie, J.; Morison, J.; Fer, I.

    2014-12-01

    As part of the 2014 Field Season of the North Pole Environmental Observatory, a 7-day microstructure experiment was performed. A Rockland Scientific Microrider with 2 FP07 fast response thermistors and 2 SBE-7 micro-conductivity probes was attached to a Seabird 911+ Conductivity-Temperature-Depth unit to allow for calibration of the microstructure probes against the highly accurate Seabird temperature and conductivity sensors. From a heated hut, the instrument package was lowered through a 0.75-m hole in the sea ice down to 350 m depth using a lightweight winch powered with a 3-phase, frequency-controlled motor that produced a smooth, controlled lowering speed of 25 cm s-1. Focusing on temperature and conductivity microstructure and using the special winch removed many of the complications involved with the use of free-fall microstructure profilers under the ice. The slow profiling speed permits calculation of Χ, the dissipation of thermal variance, without relying on fits to theoretical spectra to account for the unresolved variance. The dissipation rate of turbulent kinetic energy, ɛ, can then be estimated using the temperature gradient spectrum and the Ruddick et al. [2001] maximum likelihood method. Outside of a few turbulent patches, thermal diffusivity ranged between O(10-7) and O(10-6) m2s-1, resulting in negligible turbulent heat fluxes. Estimated ɛ was often at or below the noise level of most shear-based microstructure profilers. The noise level of Χ is estimated at O(10-11) °C2s-1, revealing the utility and applicability of this technique in future Arctic field work.

  4. Microstructural Anisotropy of Magnetocaloric Gadolinium Cylinders: Effect on the Mechanical Properties of the Material

    PubMed Central

    Petrovič, Darja Steiner; Šturm, Roman; Naglič, Iztok; Markoli, Boštjan; Pepelnjak, Tomaž

    2016-01-01

    The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces. PMID:28773502

  5. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Bakhtiar, E-mail: engrbakhtiaralikhan@gmail.com; Sabri, Mohd Faizul Mohd, E-mail: faizul@um.edu.my; Jauhari, Iswadi, E-mail: iswadi@um.edu.my

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCsmore » size (Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5}), especially the Cu{sub 6}Sn{sub 5} IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.« less

  6. A longitudinal study of computerized cognitive training in stroke patients - effects on cognitive function and white matter.

    PubMed

    Nyberg, Claudia Kim; Nordvik, Jan Egil; Becker, Frank; Rohani, Darius A; Sederevicius, Donatas; Fjell, Anders M; Walhovd, Kristine B

    2018-05-01

    Background Computerized cognitive training is suggested to enhance attention and working memory functioning following stroke, but effects on brain and behavior are not sufficiently studied and longitudinal studies assessing brain and behavior relationships are scarce. Objective The study objectives were to investigate relations between neuropsychological performance post-stroke and white matter microstructure measures derived from diffusion tensor imaging (DTI), including changes after 6 weeks of working memory training. Methods In this experimental training study, 26 stroke patients underwent DTI and neuropsychological tests at 3 time points - before and after a passive phase of 6 weeks, and again after 6 weeks of working memory training (Cogmed QM). Fractional anisotropy (FA) was extracted from stroke-free brain areas to assess the white matter microstructure. Twenty-two participants completed the majority of training (≥18/25 sessions) and were entered into longitudinal analyses. Results Significant correlations between FA and baseline cognitive functions were observed (r = 0.58, p = 0.004), however, no evidence was found of generally improved cognitive functions following training or of changes in white matter microstructure. Conclusions While white matter microstructure related to baseline cognitive function in stroke patients, the study revealed no effect on cognitive functions or microstructural changes in white matter in relation to computerized working memory training.

  7. SLM processing-microstructure-mechanical property correlation in an aluminum alloy produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Alejos, Martin Fernando

    Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.

  8. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    PubMed

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  9. Effect of isothermal heat treatment on microstructure and mechanical properties of Reduced Activation Ferritic Martensitic steel

    NASA Astrophysics Data System (ADS)

    Chandravathi, K. S.; Sasmal, C. S.; Laha, K.; Parameswaran, P.; Nandagopal, M.; Vijayanand, V. D.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-04-01

    Hardness, tensile properties and microstructural changes in 9Cr-1W-0.06Ta-0.22V-0.08C Reduced Activation Ferritic-Martensitic steel have been investigated after subjecting the steel with isothermal heat treatments for 5 min at temperatures in the range 973-1473 K (below Ac1 to above Ac3 transformation temperatures) followed by oil quenching and tempering at 1033 K for 1 h. These studies have been carried out in an effort to assess the strength of the steel at different microstructural conditions. Optical, scanning and transmission electron microscopic investigations have been carried out to assess the microstructural changes of the steel upon various heat treatments. The steel developed predominantly tempered martensitic structure after the heat treatments. The hardness, tensile strength and the prior austenitic grain size of the steel exhibited minimum values for soaking heat treatment in the intercritical temperature range (i.e.) between Ac1 and Ac3; whereas the ductility was maximum. With increase in isothermal heat treatment temperature above Ac3, hardness, tensile strength and grain size of the steel were found to increase with consequent decrease in tensile ductility. TEM investigations revealed that the coarsening of subgrain and precipitates at grain and sub-grain boundaries on heat treatment of the steel in the inter-critical temperature range. The tensile properties of the steel have been correlated with microstructure.

  10. Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidarzadeh, A., E-mail: ak.hz62@gmail.com

    Microstructural evolution during friction stir welding of single-phase brass and corresponding mechanical properties were investigated. For this purpose, 2 mm thick brass plate was friction stir welded at a rotational speed of 450 rpm and traverse speed of 100 mm/min. The microstructure of the joint was studied using optical microscopy, scanning electron microscopy equipped with electron back scattered diffraction system, and scanning transmission electron microscopy. The mechanical properties were measured using hardness and tensile tests. The formation of subgrains and their transformation into new grains in conjunction with existence of A{sub 1}{sup ⁎}, A{sub 2}{sup ⁎} and C texture componentsmore » revealed that the continuous dynamic recrystallization plays a dominant role in the microstructural evolution. However, grain boundary bulging, along with the formation of twin boundaries, and presence of the G texture component showed that the discontinues dynamic recrystallization may participate in the new grain formation. Furthermore, the different strengthening mechanisms, which caused the higher strength of the joint, were discussed. - Highlights: •Microstructural evolution during FSW of a single phase brass was investigated. •CDRX and DDRX were the main mechanisms of the grain structure formation during FSW. •GDRX and SRX were not contributed in grain structure formation. •The lamellas TBs were formed in the SZ of the joints. •Grain boundary, dislocation, and texture effects resulted in higher strength.« less

  11. Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responses

    NASA Astrophysics Data System (ADS)

    Borges, Joel; Ferreira, Catarina G.; Fernandes, João P. C.; Rodrigues, Marco S.; Proença, Manuela; Apreutesei, Mihai; Alves, Eduardo; Barradas, Nuno P.; Moura, Cacilda; Vaz, Filipe

    2018-05-01

    Thin films containing monometallic (Ag,Au) and bimetallic (Ag–Au) noble nanoparticles were dispersed in TiO2, using reactive magnetron sputtering and post-deposition thermal annealing. The influence of metal concentration and thermal annealing in the (micro)structural evolution of the films was studied, and its correlation with the localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) behaviours was evaluated. The Ag/TiO2 films presented columnar to granular microstructures, developing Ag clusters at the surface for higher annealing temperatures. In some cases, the films presented dendrite-type fractal geometry, which led to an almost flat broadband optical response. The Au/TiO2 system revealed denser microstructures, with Au nanoparticles dispersed in the matrix, whose size increased with annealing temperature. This microstructure led to the appearance of LSPR bands, although some Au segregation to the surface hindered this effect for higher concentrations. The structural results of the Ag–Au/TiO2 system suggested the formation of bimetallic Ag–Au nanoparticles, which presence was supported by the appearance of a single narrow LSPR band. In addition, the Raman spectra of Rhodamine-6G demonstrated the viability of these systems for SERS applications, with some indication that the Ag/TiO2 system might be preferential, contrasting to the notorious behaviour of the bimetallic system in terms of LSPR response.

  12. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  13. White matter connectivity and aerobic fitness in male adolescents.

    PubMed

    Herting, Megan M; Colby, John B; Sowell, Elizabeth R; Nagel, Bonnie J

    2014-01-01

    Exercise has been shown to have positive effects on the brain and behavior throughout various stages of the lifespan. However, little is known about the impact of exercise on neurodevelopment during the adolescent years, particularly with regard to white matter microstructure, as assessed by diffusion tensor imaging (DTI). Both tract-based spatial statistics (TBSS) and tractography-based along-tract statistics were utilized to examine the relationship between white matter microstructure and aerobic exercise in adolescent males, ages 15-18. Furthermore, we examined the data by both (1) grouping individuals based on aerobic fitness self-reports (high fit (HF) vs. low fit (LF)), and (2) using VO2 peak as a continuous variable across the entire sample. Results showed that HF youth had an overall higher number of streamline counts compared to LF peers, which was driven by group differences in corticospinal tract (CST) and anterior corpus callosum (Fminor). In addition, VO2 peak was negatively related to FA in the left CST. Together, these results suggest that aerobic fitness relates to white matter connectivity and microstructure in tracts carrying frontal and motor fibers during adolescence. Furthermore, the current study highlights the importance of considering the environmental factor of aerobic exercise when examining adolescent brain development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, F. S.

    1974-01-01

    Studies which have been done in an earth-based laboratory environment have generally not yielded specimens with the degree of perfection required of the eutectic microstructure to provide test data to evaluate their nonstructural applications. It has been recognized that the low-g environment of an orbiting space laboratory provides a unique environment to re-examine the process of solidification with the goal of producing better microstructures. The objective of this program is to evaluate the feasibility of using the space environment for producing eutectics with microstructures which can be of value on earth. In carrying out this objective, evaluative investigations were carried out on the technology of solidification in a 1-g environment to provide sound baseline data for planning space laboratory experiments.

  15. Splenium microstructure is related to two dimensions of reading skill.

    PubMed

    Frye, Richard E; Hasan, Khader; Xue, Lian; Strickland, David; Malmberg, Benjamin; Liederman, Jacqueline; Papanicolaou, Andrew

    2008-10-29

    Inconsistent differences in the corpus callosum (CC) structure between dyslexic readers (DRs) and typical readers (TRs) have been reported. We examine differences in CC splenium microstructure and the association of splenium microstructure with reading-related skills. Nine DRs and 18 TRs completed a reading skills battery and diffusion tensor imaging. DRs had higher splenium fractional anisotropy (FA) and axial diffusivity (LA) as compared with TRs. Retrieval of orthographic information from the language lexicon was negatively associated with FA and LA within both reading groups. Phonological awareness was positively associated with splenium FA and LA in TRs but not DRs. This study suggests two white matter pathways that may be differentially associated with reading skills in the CC splenium.

  16. Microstructural Characteristics of High Rate Plastic Deformation in Elektron™ WE43 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph; Brennan, Sarah T.; Sohn, Yongho; Davis, Bruce; DeLorme, Rick; Cho, Kyu

    High strain rate deformation of WE43 magnesium alloy was carried out by high velocity impacts, and the characteristics and mechanisms of microstructural damage were examined. Six samples were subjected to a variety of high velocity impact loadings that resulted in both partial and full damage. Optical, scanning and transmission electron microscopy analyses were performed in order to identify regions of shear localization. These regions were used to map, both quantitatively and qualitatively, the effects of deformation on the microstructure. Shear localization was observed in every sample, and its depth was measured. Evidence of shear localization was observed to a greater extent in samples with partial damage while fracturing was observed more frequently in samples with full damage.

  17. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    NASA Astrophysics Data System (ADS)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-08-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  18. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  19. The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering

    PubMed Central

    Cui, Guodong; Wei, Xialu; Olevsky, Eugene A.; German, Randall M.; Chen, Junying

    2016-01-01

    High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. The compressive strength and energy absorption characteristics of the FPSPS processed specimens are examined here to be correspondingly improved as a result of the refined microstructure. PMID:28773617

  20. Nondestructive examination of decarburised layer of steels using eddy current and magnetic Barkhausen noise testing techniques

    NASA Astrophysics Data System (ADS)

    Falahat, S.; Ghanei, S.; Kashefi, M.

    2018-04-01

    Eddy current and Barkhausen noise nondestructive testing techniques were considered to evaluate the magnetic properties of the decarburised steels as a function of microstructure. To make changes in decarburising depth, carbon steel samples were austenitised at 890 °C for 120-270 min. Considering different decarburised depths, height, position and width of the noise profiles were extracted in order to analyse the magnetic Barkhausen noise measurements. Next, the eddy current test was performed to detect the changes in the microstructure through decarburising of the steel taking into account the impedance variations. According to the results, both techniques allow us to detect changes in the magnetic properties of the decarburised steels and link them with their microstructural changes, nondestructively.

  1. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data.

    PubMed

    Daducci, Alessandro; Canales-Rodríguez, Erick J; Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C; Thiran, Jean-Philippe

    2015-01-15

    Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy

    DOE PAGES

    Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.; ...

    2016-05-31

    Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. In this study, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge–discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed formore » the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Lastly, our results show that electrochemically induced solid–solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.« less

  3. Right Fronto-Subcortical White Matter Microstructure Predicts Cognitive Control Ability on the Go/No-go Task in a Community Sample.

    PubMed

    Hinton, Kendra E; Lahey, Benjamin B; Villalta-Gil, Victoria; Boyd, Brian D; Yvernault, Benjamin C; Werts, Katherine B; Plassard, Andrew J; Applegate, Brooks; Woodward, Neil D; Landman, Bennett A; Zald, David H

    2018-01-01

    Go/no-go tasks are widely used to index cognitive control. This construct has been linked to white matter microstructure in a circuit connecting the right inferior frontal gyrus (IFG), subthalamic nucleus (STN), and pre-supplementary motor area. However, the specificity of this association has not been tested. A general factor of white matter has been identified that is related to processing speed. Given the strong processing speed component in successful performance on the go/no-go task, this general factor could contribute to task performance, but the general factor has often not been accounted for in past studies of cognitive control. Further, studies on cognitive control have generally employed small unrepresentative case-control designs. The present study examined the relationship between go/no-go performance and white matter microstructure in a large community sample of 378 subjects that included participants with a range of both clinical and subclinical nonpsychotic psychopathology. We found that white matter microstructure properties in the right IFG-STN tract significantly predicted task performance, and remained significant after controlling for dimensional psychopathology. The general factor of white matter only reached statistical significance when controlling for dimensional psychopathology. Although the IFG-STN and general factor tracts were highly correlated, when both were included in the model, only the IFG-STN remained a significant predictor of performance. Overall, these findings suggest that while a general factor of white matter can be identified in a young community sample, white matter microstructure properties in the right IFG-STN tract show a specific relationship to cognitive control. The findings highlight the importance of examining both specific and general correlates of cognition, especially in tasks with a speeded component.

  4. DIFFUSION OF MAGNESIUM AND MICROSTRUCTURES IN Mg+ IMPLANTED SILICON CARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Edwards, Danny J.; Jung, Hee Joon

    2014-08-28

    Following our previous reports [ 1- 3], further isochronal annealing (2 hrs.) of the monocrystalline 6H-SiC and polycrystalline CVD 3C-SiC was performed at 1573 and 1673 K in Ar environment. SIMS data indicate that observable Mg diffusion in 6H-SiC starts and a more rapid diffusion in CVD 3C-SiC occurs at 1573 K. The implanted Mg atoms tend to diffuse deeper into the undamaged CVD 3C-SiC. The microstructure with Mg inclusions in the as-implanted SiC has been initially examined using high-resolution STEM. The presence of Mg in the TEM specimen has been confirmed based on EDS mapping. Additional monocrystalline 3C-SiC samplesmore » have been implanted at 673 K to ion fluence 3 times higher than the previous one. RBS/C analysis has been performed before and after thermal annealing at 1573 K for 12 hrs. Isothermal annealing at 1573 K is being carried out and Mg depth profiles being measured. Microstructures in both the as-implanted and annealed samples are also being examined using STEM.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility,more » leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.« less

  6. Multi-modal porous microstructure for high temperature fuel cell application

    NASA Astrophysics Data System (ADS)

    Wejrzanowski, T.; Haj Ibrahim, S.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G.

    2018-01-01

    In this study, the effect of microstructure of porous nickel electrode on the performance of high temperature fuel cell is investigated and presented based on a molten carbonate fuel cell (MCFC) cathode. The cathode materials are fabricated from slurry consisting of nickel powder and polymeric binder/solvent mixture, using the tape casting method. The final pore structure is shaped through modifying the slurry composition - with or without the addition of porogen(s). The manufactured materials are extensively characterized by various techniques involving: micro-computed tomography (micro-XCT), scanning electron microscopy (SEM), mercury porosimetry, BET and Archimedes method. Tomographic images are also analyzed and quantified to reveal the evolution of pore space due to nickel in situ oxidation to NiO, and infiltration by the electrolyte. Single-cell performance tests are carried out under MCFC operation conditions to estimate the performance of the manufactured materials. It is found that the multi-modal microstructure of MCFC cathode results in a significant enhancement of the power density generated by the reference cell. To give greater insight into the understanding of the effect of microstructure on the properties of the cathode, a model based on 3D tomography image transformation is proposed.

  7. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  8. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  9. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  11. Microstructural investigation of aluminum-graphene nano platelets composites prepared by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Sreearravind, M.; Peddavarapu, Sreehari; Raghuraman, S.

    2018-04-01

    Recently, Graphene has attracted a large variety of scientific communities due to its inimitable properties. Typically, Graphene Nanoplatelets (GNPs) are ideal reinforcements for the production of nanocomposites due to its excellent mechanical properties for strength enhancement. This paper reports the Aluminum-Graphene Nanoplatelets (Al/GNPs) composites synthesized through powder metallurgy method. The microstructural investigation was carried out to study the GNPs integration on the Al matrix. For this study, the samples Al-2wt% GNPs, Al-3wt% GNPs and Al- 4wt% GNPs are high-energy ball milled at 200rpm and sintered at 500°C,550°C, and 600°C. Microstructural characterization is carried out with optical microscopy, Scanning electron microscopy. Rockwell hardness test is conducted to evaluate the hardness behavior in Al/GNPs. Microstructural analysis revealed the homogeneous dispersion of GNPs in the Al matrix in all the samples. It is observed that the existence of the graphene nanoparticles and the rise of their concentrations in the aluminum matrix (2 wt.% to 4 wt.%) as reinforcement in addition to rising the sintering temperature (450°C to 600°C) greatly improve the mechanical properties of Al/GNPs composites.

  12. Effect of Nitrogen on Transformation Behaviors and Microstructure of V-N Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang

    Multi-pass deformation simulation tests were performed on V-N microalloyed steels with different nitrogen addition by using a Gleeble-3800 thermo-mechanical simulator and the corresponding continuous cooling transformation (CCT) diagrams were determined by thermal dilation method and metallographic method. The deformed austenite transformation behavior and resultant microstructure of the tested steels were studied. Furthermore, the effect of nitrogen addition on the transformation behavior and microstructure evolution was analyzed. The results show that the transformed microstructures in the three tested steels are ferrite, pearlite and bainite respectively while the transformation temperatures are not the same. For the two tested steel with higher nitrogen additions, higher ferrite start temperature and critical cooling rates are observed. Furthermore, an increase in nitrogen addition leads to increasing quantities of ferrite and the transformed ferrite is smaller in size. The hardness test results reveal that the hardness number increases with increasing nitrogen addition at low cooling rate while the value tends to be smaller due to increasing nitrogen addition at high cooling rate. Therefore, the hardness number of the steel with high nitrogen addition is not so sensitive to cooling rate as that of the steel with low nitrogen addition.

  13. The Effect of Ca Content on the Microstructure, Hardness and Tensile Properties of AZ81 Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Allameh, S. H.; Emamy, M.

    2017-05-01

    The effects of various Ca contents (0.1-4 wt.%) on the microstructure and tensile properties of AZ81 magnesium alloy were investigated with the contribution of an analytical method. Ca addition (up to 1.0 wt.%) refined the alloy microstructure but further addition of Ca resulted in a coarse structure and introduced large dendrites within the grains. The changes in the microstructures revealed that Al4Ca, Al2Ca, τ-Mg32(A1,Zn)49 and ɛ-MgZn intermetallics are formed in the alloy as a result of Ca addition and Al consumption. The assessment of tensile properties of AZ81-1.0 wt.%Ca alloy showed the optimum values of yield strength and ultimate tensile strength, while AZ81-0.7 wt.%Ca alloy showed maximum elongation. The reduction in tensile properties of the cast alloy by the addition of more Ca was attributed to grain coarsening and evolution of a network of intermetallic compounds. FF study of tensile fractured surfaces indicated that Ca addition encourages brittle mode of fracture propagating through precipitated intermetallics in the structure.

  14. Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    McGhee, Paul

    The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.

  15. Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel

    NASA Astrophysics Data System (ADS)

    Huilgol, Prashant; Rajendra Udupa, K.; Udaya Bhat, K.

    2018-02-01

    Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.

  16. Effect of Long-Term Thermal Exposures on Microstructure and Impression Creep in 304HCu Grade Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.

    2017-10-01

    This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.

  17. Temperature-Driven Structural and Morphological Evolution of Zinc Oxide Nano-Coalesced Microstructures and Its Defect-Related Photoluminescence Properties

    PubMed Central

    Lim, Karkeng; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Al-Hardan, N.H.; Mansor, Ishak; Chiu, Weesiong

    2016-01-01

    In this paper, we address the synthesis of nano-coalesced microstructured zinc oxide thin films via a simple thermal evaporation process. The role of synthesis temperature on the structural, morphological, and optical properties of the prepared zinc oxide samples was deeply investigated. The obtained photoluminescence and X-ray photoelectron spectroscopy outcomes will be used to discuss the surface structure defects of the prepared samples. The results indicated that the prepared samples are polycrystalline in nature, and the sample prepared at 700 °C revealed a tremendously c-axis oriented zinc oxide. The temperature-driven morphological evolution of the zinc oxide nano-coalesced microstructures was perceived, resulting in transformation of quasi-mountain chain-like to pyramidal textured zinc oxide with increasing the synthesis temperature. The results also impart that the sample prepared at 500 °C shows a higher percentage of the zinc interstitial and oxygen vacancies. Furthermore, the intensity of the photoluminescence emission in the ultraviolet region was enhanced as the heating temperature increased from 500 °C to 700 °C. Lastly, the growth mechanism of the zinc oxide nano-coalesced microstructures is discussed according to the reaction conditions. PMID:28773425

  18. Substance-use initiation moderates the effect of stress on white-matter microstructure in adolescents.

    PubMed

    Zhai, Zu Wei; Yip, Sarah W; Morie, Kristen P; Sinha, Rajita; Mayes, Linda C; Potenza, Marc N

    2018-04-01

    While childhood stress may contribute risk to substance-use initiation and differences in brain white-matter development, understanding of the potential impact of substance-use initiation on the relationship between experienced stress and white-matter microstructure remains limited. This study examined whether substance-use initiation moderated the effect of perceived stress on white-matter differences using measures of primary white-matter fiber anisotropy. Forty adolescents (age 14.75 ± .87 years) were assessed on the Perceived Stress Scale, and 50% were determined to have presence of substance-use initiation. White-matter microstructure was examined using primary-fiber orientations anisotropy, which may reflect white-matter integrity, modeled separately from other fiber orientations in the same voxels. Analyses were conducted on regions of interest previously associated with childhood stress and substance use. Lower perceived stress and presence of substance-use initiation were related to greater right cingulum primary-fiber measures. Substance-use-initiation status moderated the association between perceived stress and right cingulum primary-fiber measures, such that higher perceived stress was associated with lower right cingulum primary-fiber anisotropy in adolescents without substance-use initiation, but not in those with substance-use initiation. Findings in primary-fiber anisotropy suggest differences in right cingulum white-matter integrity is associated with substance-use initiation in higher-stress adolescents. This reflects a possible pre-existing risk factor, an impact of early substance use, or a combination thereof. Examination of potential markers associated with substance-use initiation in white-matter microstructure among stress-exposed youth warrant additional investigation as such biomarkers may inform efforts relating to tailored interventions. (Am J Addict 2018;27:217-224). © 2018 American Academy of Addiction Psychiatry.

  19. Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita

    2014-01-01

    Corrosion resistant, strain tolerant MAX phase coatings are of interest for turbine applications. Thin Cr2AlC MAX phase wafers were vacuum diffusion bonded to an advanced turbine disk alloy, LSHR, at 1100 C. The interface, examined by optical and scanning electron microscopy, revealed a primary diffusion zone consisting of 10 micrometers of beta-Ni(Co)Al, decorated with various NiCoCrAl, MC and M3B2 precipitates. On the Cr2AlC side, an additional 40 micrometers Al-depletion zone of Cr7C3 formed in an interconnected network with the beta-Ni(Co)Al. Oxidation of an exposed edge at 800 C for 100 h produced a fine-grained lenticular alumina scale over Cr2AlC and beta-Ni(Co)Al, with coarser chromia granules over the Cr7C3 regions. Subsequent growth of the diffusion layers was only 5 micrometers in total. A residual stress of 500 MPa was estimated for the MAX phase layer, but no interfacial damage was observed. Subsequent tests for 1000 h reveal similar results.

  20. In Situ Observation of Kinetic Processes of Lath Bainite Nucleation and Growth by Laser Scanning Confocal Microscope in Reheated Weld Metals

    NASA Astrophysics Data System (ADS)

    Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong

    2017-12-01

    The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.

  1. The effect of brazing parameters on corrosion behavior of brazed aluminum joints

    NASA Astrophysics Data System (ADS)

    Ghasimakbari, Farzam; Hadian, Ali Mohammad; Ershadrad, Soheil; Omidazad, Amir Mansour

    2018-01-01

    Fluid transmission pipes made of aluminum are widely used in petrochemical industries. For many applications, they have to be brazed to each other. The brazed joints, in many cases, are encountered with corrosive medias. This paper reports a part of a work to investigate the corrosion behavior of brazed AA6061 using AA4047 as filler metal with and without the use of flux under different brazing atmospheres. The samples brazed under air, vacuum, argon, and hydrogen atmospheres. The interfacial area of the joints was examined to ensure being free of any defects. The sides of each test piece were covered with an insulator and the surface of the joint was encountered to polarization test. The results revealed a significant difference of corrosion resistance. The samples that brazed under argon and hydrogen atmospheres had better corrosion resistance than other samples. The microstructure of the corroded joints revealed that the presence of defects, impurities due to use of flux and depth of filter metal penetration in base metal are crucial variables on the corrosion resistance of the joints.

  2. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study.

    PubMed

    Gehricke, Jean-G; Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L Tugan

    2017-01-01

    This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.

  3. The brain anatomy of attention-deficit/hyperactivity disorder in young adults – a magnetic resonance imaging study

    PubMed Central

    Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L. Tugan

    2017-01-01

    Background This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Methods Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Results Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. Conclusion An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker. PMID:28406942

  4. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less

  6. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-10-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  7. Effect of Cooling Rate on Microstructure and Centerline Segregation of a High-Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Ye, Qibin; Liu, Zhenyu; Wang, Guodong

    Ultra-fast cooling (UFC) has been increasingly applied in industry, but accompanying with great changes of rolling strategy. It is therefore of importance to evaluate the characteristics of steels produced by UFC as compared to those processed by conventional accelerated cooling (ACQ. The present study examines the microstructure through thickness and centerline segregation of solute elements between UFC and ACC steels, both of which were rolled at a final rolling temperature at around non-recrystallized temperature. UFC steel showed the pronounced microstructural transition from lath-type bainite with Widmanstätten ferrite at subsurface to acicular ferrite in an average size of 5 µm dispersed with degenerate pearlite in the interior. In contrast, ACC steel had the homogeneous microstructure through the thickness, which was distinguished with coarser polygonal ferrite grains and pearlite nodules. Moreover, the centerline segregation was significantly suppressed by applying UFC at a higher cooling rate of 40 K/s compared to 17K/s for ACC steel. The significant differences in the microstructure and centerline segregation caused by various cooling rate is discussed from the view of γ→α transformation.

  8. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    PubMed Central

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel

    2017-01-01

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199

  9. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  10. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less

  11. Investigation on Microstructure and Mechanical Properties of Continuous and Pulsed Current Gas Tungsten Arc Welded alloy 600

    NASA Astrophysics Data System (ADS)

    Srikanth, A.; Manikandan, M.

    2018-02-01

    The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.

  12. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  13. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    PubMed

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.

  14. Microstructural evolution of ion-irradiated sol–gel-derived thin films

    DOE PAGES

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...

    2017-07-17

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  15. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2011-01-01

    Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.

  16. The microstructural evolution, crystallography, and thermal processing of ultrahigh carbon Fe-1.85 pct C melt-spun ribbon

    NASA Technical Reports Server (NTRS)

    Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.

    1993-01-01

    A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.

  17. YBa_2Cu_3O_{7-δ} : in pursuit of the ideal microstructure

    NASA Astrophysics Data System (ADS)

    Smith, D. S.; Suasmoro, S.; Lejeune, M.; Rabier, J.; Denanot, M. F.; Heintz, J. M.; Magro, C.; Bonnet, J. P.

    1992-02-01

    This paper examines the role of different factors in the microstructure of ceramic YBa2Cu3O{7-δ} with emphasis on its electrical response. In particular we discuss : 1. the effect of microstructural variations on j_c and ρ_{300}, 2. measurement of j_c, 3. the presence of minor phases and carbonates, 4. oxygen uptake and microcracks, 5. plastic deformation and related structural defects. Dans cet article, nous examinons d'une part la réponse électrique de céramiques supraconductrices massives de type YBa2Cu3O{7-δ} et d'autre part sa relation avec la microstructure. Nous présenterons successivement : 1. L'incidence de modifications microstructurales sur les valeurs de j_c et ρ_{300}, 2. les mesures expérimentales de j_c, 3. la présence de phases minoritaires et de carbonates, 4. la reprise d'oxygène et la microfissuration, 5. la déformation plastique et les défauts structuraux associés.

  18. Understanding the Microstructure and Macrostructure of Passages Among Chinese Elementary School Children.

    PubMed

    Lo, Lap-Yan; Ho, Connie Suk-Han; Wong, Yau-Kai; Chan, David Wai-Ock; Chung, Kevin Kien-Hoa

    2016-12-01

    Understanding the microstructure and macrostructure of passages is important for reading comprehension. What cognitive-linguistic skills may contribute to understanding these two levels of structures has rarely been investigated. The present study examined whether some word-level and text-level cognitive-linguistic skills may contribute differently to the understanding of microstructure and macrostructure respectively. Seventy-nine Chinese elementary school children were tested on some cognitive-linguistic skills and literacy skills. It was found that word reading fluency and syntactic skills predicted significantly the understanding of microstructure of passages after controlling for age and IQ; while morphological awareness, syntactic skills, and discourse skills contributed significantly to understanding of macrostructure. These findings suggest that syntactic skills facilitate children's access of meaning from grammatical structures, which is a fundamental process in gaining text meaning at any level of reading comprehension. Discourse skills also allow readers to understand the cohesive interlinks within and between sentences and is important for a macro level of passage understanding.

  19. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  20. Micropillar compression study of the influence of size and internal boundary on the strength of HT9 tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Lim, Sangyeob; Shin, Chansun; Heo, Jungwoo; Kim, Sangeun; Jin, Hyung-Ha; Kwon, Junhyun; Guim, Hwanuk; Jang, Dongchan

    2018-05-01

    HT9, a ferritic/martensitic steel, is a candidate structural material for next-generation advanced reactors. Its microstructure is a typical tempered martensite showing a hierarchical lath-block-and-packet structure. We investigate the specimen size effect and strengthening contribution of various microstructural boundaries manifested in the compression tests of micropillars with diameters ranging from 0.5 to 17 μm. It is observed that micropillars with diameters larger than 3 μm show uniform deformation and plastic flow curves comparable to the bulk flow curve. Localized deformation by a few pronounced slip bands occurs in micropillars with diameters smaller than 1 μm, and the yield strength is reduced. Careful examination of the sizes of the microstructural features and cross-sections of the micropillars shows that the block boundaries are the most effective strengthening boundaries in tempered martensitic microstructure. The bulk mechanical properties of HT9 can be evaluated from a micropillar with diameter as low as 3 μm.

  1. Shock induced damage in copper: A before and after, three-dimensional study

    NASA Astrophysics Data System (ADS)

    Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.

    2016-04-01

    We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.

  2. Microstructure and hardness of bovine enamel in roselle extract solution

    NASA Astrophysics Data System (ADS)

    Dame, M. T.; Noerdin, A.; Indrani, D. J.

    2017-08-01

    The aim of this study was to analyze the effect of roselle extract solution on the microstructure and hardness of bovine enamel. Ten bovine teeth and a 5% concentration of roselle extract solution were prepared. Immersions of each bovine tooth in roselle extract solution were conducted up to 60 minutes. The bovine enamel surface was characterized in hardness and microscopy. It was apparent that the initial hardness was 328 KHN, and after immersion in 15 and 60 min, the values decrease to 57.4 KHN and 11 KHN, respectively. Scanning electron microscopy (SEM) revealed changes in enamel rods after immersion in the roselle extract solution.

  3. Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting

    NASA Astrophysics Data System (ADS)

    Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.

    2018-05-01

    Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.

  4. Toward the existence of ultrafast diffusion paths in Cu with a gradient microstructure: Room temperature diffusion of Ni

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Lu, K.; Wilde, G.; Divinski, S.

    2008-09-01

    Room temperature diffusion of Ni63 in Cu with a gradient microstructure prepared by surface mechanical attrition treatment (SMAT) was investigated by applying the radiotracer technique. The results reveal significant penetration of Ni into the nanostructured layer. The relevant diffusivity is higher than that along the conventional high-angle grain boundaries by about six orders of magnitude. This behavior is associated with a higher energy state of internal interfaces produced via plastic deformation. The diffusivity in the top surface layer is somewhat smaller than that in the subsurface layer. This fact is related to nanotwin formation in the former during SMAT.

  5. Grayscale photomask fabricated by laser direct writing in metallic nano-films.

    PubMed

    Guo, Chuan Fei; Cao, Sihai; Jiang, Peng; Fang, Ying; Zhang, Jianming; Fan, Yongtao; Wang, Yongsheng; Xu, Wendong; Zhao, Zhensheng; Liu, Qian

    2009-10-26

    The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.

  6. The microstructure and magnetic properties of Cu/CuO/Ni core/multi-shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Shi, Jie; Zhang, Xiaofeng; Hao, Shijie; Liu, Yinong; Feng, Chun; Cui, Lishan

    2018-04-01

    Multifunctional metal/oxide/metal core/multi-shell nanowire arrays were prepared mostly by physical or chemical vapor deposition. In our study, the Cu/CuO/Ni core/multi-shell nanowire arrays were prepared by AAO template-electrodeposition and oxidation processes. The Cu/Ni core/shell nanowire arrays were prepared by AAO template-electrodeposition method. The microstructure and chemical compositions of the core/multi-shell nanowires and core/shell nanowires have been characterized using transmission electron microscopy with HADDF-STEM and X-ray diffraction. Magnetization measurements revealed that the Cu/CuO/Ni and Cu/Ni nanowire arrays have high coercivity and remanence ratio.

  7. Effect of process parameters on microstructure and mechanical properties of friction stir welded joints: A review

    NASA Astrophysics Data System (ADS)

    Wanare, S. P.; Kalyankar, V. D.

    2018-04-01

    Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.

  8. Novel Amalgams for In-Space Fabrication of Replacement Parts

    NASA Technical Reports Server (NTRS)

    Cochran, Calvin T.; Van Hoose, James R.; Grugel, R. N.

    2012-01-01

    Being able to fabricate replacement parts during extended space flight missions precludes the weight, storage volume, and speculation necessary to accommodate spares. Amalgams, widely used in dentistry, are potential candidates for fabricating parts in microgravity environments as they are moldable, do not require energy for melting, and do not pose fluid handling problems. Unfortunately, amalgams have poor tensile strength and the room temperature liquid component is mercury. To possibly resolve these issues a gallium-indium alloy was substituted for mercury and small steel fibers were mixed in with the commercial alloy powder. Subsequent microscopic examination of the novel amalgam revealed complete bonding of the components, and mechanical testing of comparable samples showed those containing steel fibers to have a significant improvement in strength. Experimental procedures, microstructures, and test results are presented and discussed in view of further improving properties.

  9. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 1: Synthesis

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate powders high in alumina content were synthesized by the sol-gel process utilizing various methods of preparation. Properties and microstructural effects related to these syntheses were examined. After heating to 600 C for 2 h in flowing air, the powders were amorphous with the metal oxides comprising 87 percent of the weight and uncombusted organics the remainder. DTA of dried powders revealed a T(sub g) at approximately 835 C and an exotherm near 900 C due to crystallization. Powders derived from aluminum secbutoxide consisted of particles with a mean diameter 5 microns less than those from aluminum isopropoxide. Powders synthesized with aluminum isopropoxide produced agglomerates comprised of rod shaped particulates while powders made with the secbutoxide precursor produced irregular glassy shards. Compacts formed from these powders required different loadings for equivalent densities according to the method of synthesis.

  10. Thermomechanical treatment for improved neutron irradiation resistance of austenitic alloy (Fe-21Cr-32Ni)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Tan; J. T. Busby; H. J. M. Chichester

    2013-06-01

    An optimized thermomechanical treatment (TMT) applied to austenitic alloy 800H (Fe-21Cr-32Ni) had shown significant improvements in corrosion resistance and basic mechanical properties. This study examined its effect on radiation resistance by irradiating both the solution-annealed (SA) and TMT samples at 500 degrees C for 3 dpa. Microstructural characterization using transmission electron microscopy revealed that the radiation-induced Frank loops, voids, and y'-Ni3(Ti,Al) precipitates had similar sizes between the SA and TMT samples. The amounts of radiation-induced defects and more significantly y' precipitates, however, were reduced in the TMT samples. These reductions would approximately reduce by 40.9% the radiation hardening compared tomore » the SA samples. This study indicates that optimized-TMT is an economical approach for effective overall property improvements.« less

  11. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  12. PTCR characteristics and microstructure of porous (Ba,Sr)TiO3 ceramics prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Ju; Tang, Dongxu; Park, K.; Cho, Won-Seung

    2010-02-01

    Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.

  13. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s-1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  14. High cycle fatigue in the transmission electron microscope

    DOE PAGES

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  15. Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam

    2015-05-01

    Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

  16. Thermoelectric properties of In and I doped PbTe

    NASA Astrophysics Data System (ADS)

    Bali, Ashoka; Chetty, Raju; Sharma, Amit; Rogl, Gerda; Heinrich, Patrick; Suwas, Satyam; Misra, Dinesh Kumar; Rogl, Peter; Bauer, Ernst; Mallik, Ramesh Chandra

    2016-11-01

    A systematic study of structural, microstructural, and thermoelectric properties of bulk PbTe doped with indium (In) alone and co-doped with both indium and iodine (I) has been done. X-ray diffraction results showed all the samples to be of single phase. Scanning electron microscopy (SEM) results revealed the particle sizes to be in the range of micrometers, while high resolution transmission electron microscopy was used to investigate distinct microstructural features such as interfaces, grain boundaries, and strain field domains. Hall measurement at 300 K revealed the carrier concentration ˜1019 cm-3 showing the degenerate nature which was further seen in the electrical resistivity of samples, which increased with rising temperature. Seebeck coefficient indicated that all samples were n-type semiconductors with electrons as the majority carriers throughout the temperature range. A maximum power factor ˜25 μW cm-1 K-2 for all In doped samples and Pb0.998In0.003Te1.000I0.003 was observed at 700 K. Doping leads to a reduction in the total thermal conductivity due to enhanced phonon scattering by mass fluctuations and distinct microstructure features such as interfaces, grain boundaries, and strain field domains. The highest zT of 1.12 at 773 K for In doped samples and a zT of 1.1 at 770 K for In and I co-doped samples were obtained.

  17. High cycle fatigue in the transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  18. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  19. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  20. Electron Backscatter Diffraction (EBSD) Analysis and U-Pb Geochronology of the Oldest Lunar Zircon: Constraining Early Lunar Differentiation and Dating Impact-Related Deformation

    NASA Technical Reports Server (NTRS)

    Timms, Nick; Nemchin, Alexander; Grange, Marion; Reddy, Steve; Pidgeon, Bob; Geisler, Thorsten; Meyer, Chuck

    2009-01-01

    The evolution of the early moon was dominated by two processes (i) crystallization of the Lunar Magma Ocean (LMO) and differentiation of potassium-rare earth element-phosphorous-rich residual magma reservoir referred to as KREEP, and (ii) an intense meteorite bombardment referred to as lunar cataclysm . The exact timing of these processes is disputed, and resolution relies on collection and interpretation of precise age data. This study examines the microstructure and geochronology of zircon from lunar impact breccias collected during the Apollo 17 mission. A large zircon clast within lunar breccia 72215,195 shows sector zoning in optical microscopy, cathodoluminescence (CL) imaging and Raman mapping, and indicates that it was a relict fragment of a much larger magmatic grain. Sensitive high resolution ion microprobe (SHRIMP) U-Pb analysis of the zircon shows that U and Th concentration correlate with sector zoning, with darkest CL domains corresponding with high-U and Th (approx.150 and approx.100 ppm respectively), and the brightest-CL sectors containing approx.30-50 ppm U and approx.10-20 ppm Th. This indicates that variations in optical CL and Raman properties correspond to differential accumulation of alpha-radiation damage in each sector. Electron backscatter diffraction (EBSD) mapping shows that the quality of electron backscatter patterns (band contrast) varies with sector zoning, with the poorest quality patterns obtained from high-U and Th, dark-CL zones. EBSD mapping also reveals a deformation microstructure that is cryptic in optical, CL and Raman imaging. Two orthogonal sets of straight discrete and gradational low-angle boundaries accommodate approx.12 misorientation across the grain. The deformation bands are parallel to the crystallographic {a}-planes of the zircon, have misorientation axes parallel to the c-axis, and are geometrically consistent with formation by dislocation creep associated with <100>{010} slip. The deformation bands are unlike curved morphology of crystal-plastic microstructures in tectonically deformed terrestrial zircon, and geometrically similar to dislocation microstructures reported in experimentally shocked zircon. We interpret these crystal-plastic deformation microstructures to have resulted from a significant impact, either directly from impact shock, or during ductile flow directly following the impact. The deformation bands appear to continue undeflected through the non-indexed, radiation-damaged areas of the grain, which suggests that the orientation variation predates any significant mechanical weakening from radiation damage in the grain, and therefore occurred early in its history.

Top