Sample records for microstructure phase purity

  1. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  2. Shock and Microstructural Characterization of the α-ω Phase Transition in Titanium Crystals

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; Rigg, Paulo A.; Jones, David R.; Addessio, Francis L.; Trujillo, Carl P.; Saavedra, Ramon A.; Martinez, Daniel T.; Cerreta, Ellen K.

    2017-12-01

    A multicrystal comprised of a small number of large crystals of high-purity titanium and a [0001] oriented high-purity single crystal titanium sample were shock loaded using gas gun plate impact experiments. Tests were performed at stresses above the α {-}ω phase transition stress (for high-purity polycrystalline specimens) to observe the behavior of oriented crystals under similar conditions. Post-mortem characterization of the shocked microstructure was conducted on the single crystal sample to measure textures, and quantify phases and twinning. The apparent activation of plastic and transformation mechanisms was dependent upon crystal orientation. Specifically, the [0001] crystal showed a higher Hugoniot elastic limit than the [10\\bar{1}0] or [3\\bar{1}\\bar{4}4] orientations. The slope of velocity as a function of time was lower in the [0001] orientation than the other orientations during plastic deformation, indicating sluggish transformation kinetics for the α to ω phase transition for the [0001] oriented crystal. Microtexture measurements of a recovered [0001] oriented single crystal revealed the presence of retained ω phase after unloading, with orientations of the constituent phase fractions indicative of the forward α → ω transition, rather than the reverse ω → α transition, suggesting that the material never achieved a state of 100% ω phase.

  3. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases

    PubMed Central

    Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang

    2013-01-01

    Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705

  4. Microstructural studies of nanocrystalline α-alumina powder produced from Al13-cluster

    NASA Astrophysics Data System (ADS)

    Harun Al Rashid Megat Ahmad, Megat; Aziz Mohamed, Abdul; Ibrahim, Azmi; Seman Mahmood, Che; Giri Rachman Putra, Edy; Jamro, Rafhayudi; Kasim, Razali; Rawi Muhammad Zin, Muhammad

    2007-12-01

    Nanocrystalline alumina powder was produced from calcinations of Al13-oxalate precipitates at 1100 °C. A nearly normal distribution of agglomerated alumina powder was obtained with an average particle size of about 1 μm. XRD measurement confirmed that the alumina produced was of high purity and crystalline α-phase. Microstructural features of both the precipitates and alumina obtained were studied using the small angle neutron scattering (SANS) technique. SANS examinations show the formation of microstructures in the alumina powder of mass fractals type with dimension of ˜2.8 indicative of low intra-granular porosity.

  5. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  6. Microstructural development from interdiffusion and reaction between Usbnd Mo and AA6061 alloys annealed at 600° and 550 °C

    NASA Astrophysics Data System (ADS)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2016-08-01

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.

  7. Effect of the microstructure on electrical properties of high-purity germanium

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.

    2013-05-01

    The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.

  8. Microstructural studies of hydrogen damage in metastable stainless steels. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.

    1994-12-31

    The primary objective of this dissertation is to determine the role of microstructure in hydrogen-induced damage in austenitic stainless steels. Specific attention was focused on the interactions between hydrogen and the austenitic grain, twin boundaries and the matrix, and the associated phase transformations. An experimental program of research was conducted to determine the phase transformation and cracking path in hydrogen charged stainless steels. Normal-purity AISI 304 (Fe18CrYNi) and high-purity 305 (Fe18Cr12Ni) solution-annealet stainless steels were examined. The steels were cathodically charged with hydrogen at 1, 10 and 100 mA/sq cm at room temperature for 5 min. to 32 hours, inmore » an 1N H2SO4 solution with 0.25 g/l of NaAsO2 added as a hydrogen recombination poison. Resultant changes in microstructure and hydrogen damage due to charging and subsequent room temperature aging were studied by x-ray diffraction, optical microscope (in the Nomarski mode), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A new phase in 305 stainless steel was observed, and was identified as an epsilon(*) (hcp) hydride due to hydrogen charging. Two new phases in 304 stainless steel were found as gamma(*) (fcc) and epsilon(*) hydrides from hydrogen charging. The hydride formation mechanisms during charging were: (1) gamma yields gamma(*) hydride and (2) gamma yields epsilon yields epsilon(*) hydride. These hydrides are unstable and decomposed during room temperature aging in air. The decomposition mechanisms were: (1) epsilon(*) hydride (hcp) yields expanded epsilon (hcp) phase yields a (bcc) phase; (2) gamma(*) hydride yields gamma phase. The grain and twin boundary cracks were the results of charging and identified as the preferred cracking sites. Transgranular crack initiation and growth accompanied the decomposition of hydrides and were controlled by hydrogen outgassing during room temperature aging.« less

  9. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte

    NASA Astrophysics Data System (ADS)

    Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.

    2016-09-01

    A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.

  10. Microstructural development from interdiffusion and reaction between U–Mo and AA6061 alloys annealed at 600° and 550 °C

    DOE PAGES

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2016-05-10

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usingle bondMo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U–7 wt%Mo, U–10 wt%Mo, and U–12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanningmore » electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples U–Mo vs. high purity Al and binary Al–Si alloys. As a result, the diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.« less

  11. High temperature compounds for turbine vanes

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.; Cannon, R. M., Jr.

    1972-01-01

    Fabrication and microstructure control studies were conducted on SiC, Si3N4, and composites based on these compounds. Charpy mode impact testing to 2400 F established that beta-spodumene, lithium aluminum silicate, coated Si3N4, Si3N4 derived from alpha-Si3N4 powder, and SiC containing 5-25 v/o chopped C fibers had the most promising strengths. Several other composite systems had excellent microstructures and could prove interesting materials in the future. Stress-rupture testing on Si3N4 established that increasing 2000 F - 100 hour strengths were obtained for increasing grain size to at least 5 micrometers, increasing density and possibly increasing phase purity. These parameters became less important at 2400 F where it is thought a grain boundary phase controls strength.

  12. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.

    2016-05-23

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less

  13. Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc

    2015-07-01

    The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.

  14. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    NASA Astrophysics Data System (ADS)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  15. Zirconium diselenite microstructures, formation and mechanism

    NASA Astrophysics Data System (ADS)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  16. Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacchi, J.V., E-mail: jgiacchi@exa.unicen.edu.ar; Instituto de Fisica de Materiales Tandil; Morando, C.N.

    2011-01-15

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by the investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. This work focuses on the resulting microstructures arising from samples poured under industrial environment conditions, of three different Co-Cr-Mo alloys. For this purpose, we used: 1) an alloy built up from commercial purity constituents, 2) a remelted alloy and 3) a certified alloy for comparison. The characterization of the samples was achieved by using opticalmore » microscopy (OM) with a colorant etchant to identify the present phases and scanning electron microscopy (SE-SEM) and energy dispersion spectrometry (EDS) techniques for a better identification. In general the as-cast microstructure is a Co-fcc dendritic matrix with the presence of a secondary phase, such as the M{sub 23}C{sub 6} carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloys. Other minority phases were also reported and their presence could be linked to the cooling rate and the manufacturing process variables and environment. - Research Highlights: {yields}The solidification microstructure of an ASTM-F75 type alloy were studied. {yields}The alloys were poured under an industrial environment. {yields}Carbides and sigma phase identified by color metallography and scanning microscopy (SEM and EDS). {yields}Two carbide morphologies were detected 'blocky type' and 'pearlite type'. {yields}Minority phases were also detected.« less

  17. Grain Refining and Microstructural Modification during Solidification.

    DTIC Science & Technology

    1983-10-01

    was found to be insensitive to the iron concentration in the samples solidified in the levitated state but not in samples quenched from the liquid . The... liquid . The preliminary * results with niobium additions indicate that no appreciable grain refinement * is achieved when the samples are levitated in an...to the critical examination of the Cr-Ni phase diagram, by using high purity starting materials, and a containerless electromagnetic levitation

  18. Recent Developments in Ultra High Temperature Ceramics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.

    2009-01-01

    NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.

  19. Center for Dielectric Studies at the Pennsylvania State University,

    DTIC Science & Technology

    1983-05-01

    microstructure. The permittivity shows a weak peak near 100K which also has clear relaxation character and closely duplicates the behavior of higA purity...departures from the expected Curie-Weiss made by Demurov and Venevtsev.1 both hysteresis loops in P(E) behavior . Clearly. from the frequency response and...dielectric measurements, an powderl had second phase KzTa.O,,; powder II was completely anomalous behavior was observed by inelastic neutron scattering

  20. Nanostructure formation during accumulative roll bonding of commercial purity titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir

    2016-12-15

    In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less

  1. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  2. Influence of Strain Rate, Microstructure and Chemical and Phase Composition on Mechanical Behavior of Different Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Markovsky, P. E.; Bondarchuk, V. I.

    2017-07-01

    Taking three titanium commercial alloys: commercial purity titanium (c.p.Ti), Ti-6-4 (Ti-6(wt.%)Al-4V) and TIMETAL-LCB (Ti-1.5Al-4.5Fe-6.8Mo) as program materials, the influence of phase composition, microstructure and strain rate (varied from 8 × 10-4 to 1.81 × 10-1) on the mechanical behavior was studied. The size of the matrix phase ( α- or β-grains) and size of α + β intragranular mixture were varied. Such parameter such as tensile toughness (TT) was used for analysis of the mechanical behavior of the materials on tension with different rates. It was found that the TT values monotonically decreased with strain rate, except Ti-6-4 alloy with a globular type of microstructure. In single-phase α-material (c.p.Ti), tensile deformation led to the formation of voids at the intragranular cell substructure, and merging of these voids caused the formation of main crack. In two-phase α + β materials, the deformation defects were localized upon tension predominantly near the α/ β interphase boundaries, and subsequent fracture had different characters: In Ti-6-4 globular condition fracture started by formation of voids at the α/ β interphase boundaries, whereas in all other conditions the voids nucleated at the tips of α-lamellae/needles.

  3. Precipitation of T1 and θ′ Phase in Al-4Cu-1Li-0.25Mn During Age Hardening: Microstructural Investigation and Phase-Field Simulation

    PubMed Central

    Häusler, Ines; Schwarze, Christian; Bilal, Muhammad Umer; Valencia Ramirez, Daniela; Hetaba, Walid; Darvishi Kamachali, Reza; Skrotzki, Birgit

    2017-01-01

    Experimental and phase field studies of age hardening response of a high purity Al-4Cu-1Li-0.25Mn-alloy (mass %) during isothermal aging are conducted. In the experiments, two hardening phases are identified: the tetragonal θ′ (Al2Cu) phase and the hexagonal T1 (Al2CuLi) phase. Both are plate shaped and of nm size. They are analyzed with respect to the development of their size, number density and volume fraction during aging by applying different analysis techniques in TEM in combination with quantitative microstructural analysis. 3D phase-field simulations of formation and growth of θ′ phase are performed in which the full interfacial, chemical and elastic energy contributions are taken into account. 2D simulations of T1 phase are also investigated using multi-component diffusion without elasticity. This is a first step toward a complex phase-field study of T1 phase in the ternary alloy. The comparison between experimental and simulated data shows similar trends. The still unsaturated volume fraction indicates that the precipitates are in the growth stage and that the coarsening/ripening stage has not yet been reached. PMID:28772481

  4. Development of electrically insulating coatings for service in a lithium environment

    NASA Astrophysics Data System (ADS)

    Natesan, K.; Uz, M.; Wieder, S.

    2000-12-01

    Several experiments were conducted to develop electrically insulating CaO coatings on a V-4Cr-4Ti alloy for application in a Li environment. The coatings were developed by vapor-phase transport external to Li, and also in situ in a Li-Ca environment at elevated temperature. In the vapor-phase study, several geometrical arrangements were examined to obtain a uniform coating of Ca on the specimens, which were typically coupons measuring 5 to 10 × 5 × 1 mm 3. After Ca deposition from the vapor phase, the specimens were oxidized in a high-purity argon environment at 600°C to convert the deposited metal into oxide. The specimens exhibited insulating characteristics after this oxidation step. Several promising coated specimens were then exposed to high-purity Li at 500°C for 48-68 h to determine coating integrity. Microstructural characteristics of the coatings were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. Electrical resistances of the coatings were measured by a two-probe method between room temperature and 700°C before and after exposure to Li.

  5. Microstructure and phase composition of hypoeutectic Te-Bi alloy as evaporation source for photoelectric cathode

    NASA Astrophysics Data System (ADS)

    Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai

    2018-05-01

    A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.

  6. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    NASA Technical Reports Server (NTRS)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  7. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  8. Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Schlupp, Meike; Wichser, Adrian; Lothenbach, Barbara; Gorbar, Michal; Züttel, Andreas; Vogt, Ulrich F.

    2015-09-01

    Mineral-based membranes for high temperature alkaline electrolysis were developed by a phase inversion process with polysulfone as binder. The long-term stability of new mineral fillers: wollastonite, forsterite and barite was assessed by 8000 h-long leaching experiments (5.5 M KOH, 85 °C) combined with thermodynamic modelling. Barite has released only 6.22 10-4 M of Ba ions into the electrolyte and was selected as promising filler material, due to its excellent stability. Barite-based membranes, prepared by the phase inversion process, were further studied. The resistivity of these membranes in 5.5 M KOH was investigated as a function of membrane thickness and total porosity, hydrodynamic porosity as well as gas purities determined by conducting electrolysis at ambient conditions. It was found that a dense top layer resulting from the phase inversion process, shows resistivity values up to 451.0 ± 22 Ω cm, which is two orders of magnitude higher than a porous bulk membrane microstructure (3.89 Ω cm). Developed membranes provided hydrogen purity of 99.83 at 200 mA cm-2, which is comparable to previously used chrysotile membranes and higher than commercial state-of-the-art Zirfon 500utp membrane. These cost-effective polysulfone - barite membranes are promising candidates as asbestos replacement for commercial applications.

  9. Solidification processing of intermetallic Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  10. Size dependent exchange bias in single-phase Zn0.3Ni0.7Fe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan, Rajendra; Ghosh, Mritunjoy Prasad; Mukherjee, Samrat

    2018-07-01

    We report the microstructural and magnetic characterization of single phase nanocrystalline partially inverted Zn0.3Ni0.7Fe2O4 mixed spinel ferrite. The samples were annealed at 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. X-ray diffraction results indicate phase purity of all the samples and application of Debye- Scherrer yielded a crystallite size variation from 5 nm to 33 nm for the different samples. Magnetic measurements have revealed the freezing of interfacial spins which were the cause of the large horizontal M-H loop shift causing large exchange bias with high anisotropy. The magnetic measurements show a hysteresis loop with high effective anisotropy constant due to highly magnetically disordered surface spin at 5 K.

  11. Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron

    DOE PAGES

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean; ...

    2018-04-11

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Shuguang, E-mail: hustcsg@sohu.com; Zeng Kai; Li Haibin

    Dispersed rhombohedral NiS rods with high aspect ratios and rhombic dodecahedron-like cubic NiS{sub 2} crystals were prepared by solvothermal routes using NiCl{sub 2}.6H{sub 2}O and Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as reagents and ethylenediamine as a solvent, and 3D blossoming flower-like rhombohedral NiS microstructures were synthesized using different sulfur sources of thiourea. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy dispersion spectrometry and selected area electronic diffraction. All the products were pure and had good single crystalline nature. The synthesis parameters were of great importance on the purity and morphology of themore » products. The possible growth mechanisms have been discussed based on the analyses of the effects of sulfur sources and solvent on the crystal structures and detailed configurations of the products. The present work is likely to help the phase-controlled synthesis of other metal chalcogenides. - Graphical abstract: Rhombohedral NiS dispersed rods and 3D flower-like microstructures are evolved from dispersed nucleus and aggregate of nucleus, respectively, and the cross-sections of such rods are in equilateral triangle-like shape. Highlights: > 3D blossoming flower-like r-NiS microstructures are obtained. > Equilateral triangle-like cross-sections of r-NiS rods are observed. > Approach based on XRD analysis to phase-controlled synthesis is presented.« less

  13. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    PubMed Central

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  14. The effect of distribution of second phase on dynamic damage

    DOE PAGES

    Fensin, Saryu J.; Jones, David R.; Walker, Emily K.; ...

    2016-08-28

    For ductile metals, dynamic fracture occurs principally through void nucleation, growth, and coalescence at heterogeneities in the microstructure. Previous experimental research on high purity metals has shown that microstructural features, such as grain boundaries, inclusions, vacancies, and heterogeneities, can act as initial void nucleation sites. In addition, other research on two-phase materials has also highlighted the importance of the properties of a second phase itself in determining the dynamic response of the overall material. But, previous research has not investigated the effects of the distribution of a second phase on damage nucleation and evolution. To approach this problem in amore » systematic manner, two copper alloys with 1% lead materials, with the same Pb concentration but different Pb distributions, have been investigated. A new CuPb alloy was cast with a more homogeneous distribution of Pb as compared to a CuPb where the Pb congregated in large “stringer” type configurations. These materials were shock loaded at ~1.2 GPa and soft recovered. In-situ free surface velocity information, and post mortem metallography, reveals that even though the spall strength of both the materials were similar, the total extent and details of damage in the materials varied by 15%. This then suggests that altering the distribution of Pb in the Cu matrix leads to the creation of more void nucleation sites and also changed the rate of void growth.« less

  15. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  16. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less

  17. Deformability and size-based cancer cell separation using an integrated microfluidic device.

    PubMed

    Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi

    2015-11-07

    Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.

  18. Functional CuO Microstructures for Glucose Sensing

    NASA Astrophysics Data System (ADS)

    Ali, Gulzar; Tahira, Aneela; Mallah, Arfana Begum; Mallah, Sarfraz Ahmed; Ibupoto, Akila; Khand, Aftab Ahmed; Baradi, Waryani; Willander, Magnus; Yu, Cong; Ibupoto, Zafar Hussain

    2018-02-01

    CuO microstructures are produced in the presence of water-soluble amino acids by hydrothermal method. The used amino acids include isoleucine, alpha alanine, and arginine as a soft template and are used for tuning the morphology of CuO nanostructures. The crystalline and morphological investigations were carried out by x-ray diffraction (XRD) and scanning electron microscopy techniques. The XRD study has shown that CuO material obtained in the presence of different amino acids is of high purity and all have the same crystal phase. The CuO microstructures prepared in the presence of arginine were used for the development of sensitive and selective glucose biosensor. The linear range for the glucose detection are from 0.001 mM to 30 mM and limit of detection was found to be 0.0005 mM. The sensitivity was estimated around 77 mV/decade. The developed biosensor is highly selective, sensitive, stable and reproducible. The glucose biosensor was used for the determination of real human blood samples and the obtained results are satisfactory. The CuO material is functional therefore can be capitalized in wide range of applications such as lithium ion batteries, all oxide solar cells and supercapacitors.

  19. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  20. Co-Precipitation Synthesis of Gadolinium Aluminum Gallium Oxide (GAGG) via Different Precipitants

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Yang, Shenghui; Zhang, Ye; Jiang, Jun; Jiang, Haochuan

    2014-02-01

    In order to obtain a uniform transparent ceramic scintillator, well-dispersed fine starting powders with high-purity, small grain size, spherical morphology and high sinter-ability are necessary. In this study, Ce3+ doped gadolinium aluminum gallium garnet Gd3Al3Ga2O12 (GAGG) powders were synthesized by the co-precipitation method. NH4OH, NH4HCO3 and the mixed solution of NH4OH and NH4HCO3 were used as precipitants, respectively. The precursor composition, phase formation process, microstructure, morphology, particle size distribution and luminescent properties of obtained GAGG powders were measured. The results show that powders prepared using the mixed precipitant exhibit the best microstructural morphology, good sinter-ability and highest luminescent intensity. Pure GAGG polycrystalline powders could be obtained at about 950°C for 1.5 h and the average size of the particles is about 50 nm. The photoluminescence spectrum shows a strong green-yellow emission near 540 nm.

  1. Microstructural development during solidification of stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Allen, S. M.; Eagar, T. W.

    1989-10-01

    The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method, i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speed vs composition diagrams, which can be used to predict the primary mode of solidification and the microstructural morphology for different processing conditions. Furthermore, changes in the primary solidification mode were observed in alloys that lie on the chromium-rich side of the line of twofold saturation when they are cooled at high rates. These changes were explained by the presence of metastable austenite, which grows epitaxially and can dominate the solidification microstructure throughout the resolidified zone at high cooling rates.

  2. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  3. Behavior of Quartz and Carbon Black Pellets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    This paper studies the quartz and carbon black pellets at elevated temperature with varying temperature and gas atmosphere. High-purity quartz and commercial ultra-pure carbon black was mixed (carbon content vet. 15%), and then pelletized into particles of l-3mm in diameter. The stoichiometric analysis of the pellet during heating is studied in thermogravimetric analysis (TGA) furnace at different temperature in CO and Ar atmosphere. The microstructure, phase changes and element content of sample before/after heating is characterized by X-ray diffraction, scanning electron microscope, X-ray fluorescence and LECO analyzer. The reaction process can be divided into two stages. Higher temperature and argon atmosphere are the positive parameters for SiC formation.

  4. Reflecting heat shields made of microstructured fused silica

    NASA Technical Reports Server (NTRS)

    Congdon, W. M.

    1975-01-01

    Heat sheidls constructed from selected monodisperse distributions of high-purity fused-silica particles are efficient reflectors of visible and near-UV radiation generated in shock-layer of space probe during atmospheric entry.

  5. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    NASA Astrophysics Data System (ADS)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  6. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Subrata, E-mail: subrata.panda@univ-lorrain

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneitiesmore » in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.« less

  7. Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    NASA Technical Reports Server (NTRS)

    Shimada, M.; Tanaka, A.; Yamada, T.; Koizumi, M.

    1984-01-01

    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C.

  8. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  9. Fused silica reflecting heat shields for outer planet entry probes

    NASA Technical Reports Server (NTRS)

    Congdon, W. M.; Peterson, D. L.

    1975-01-01

    The development of slip-cast fused silica is discussed as a heat shield designed to meet the needs of outer-planet entry probes. The distinguishing feature of silica is its ability to reflect the radiation imposed by planetary-entry environments. This reflectivity is particularly sensitive to degradation by the presence of trace amounts of contaminants introduced by the starting materials or by processing. The microstructure of a silica configuration also significantly influences the reflectivity and other thermomechanical properties. The processing techniques attendant on controlling microstructure while maintaining purity are discussed. The selection of a starting material of essential purity precludes the use of purified natural quartz and requires the use of synthetic fused silica. The silica is characterized in a limited combined heating test environment. The surface mass loss is controlled by liquid runoff from a relatively low-temperature melt layer; the reflectance is basically maintained and the material achieves a surprisingly high heat of ablation.

  10. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  11. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modesmore » at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.« less

  12. Oxidation of TD nickel at 1050 C and 1200 C as compared with three grades of nickel of different purity

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Grisaffe, S. J.; Deadmore, D. L.

    1972-01-01

    The isothermal oxidation of three nickels of different purity, Ni-200, Ni-270, and JM-Ni, was compared with that of TD-Ni in air at 1050 and 1200 C. The samples were oxidized as ground, as polished, or as annealed and polished. Weight change, metal loss, scale thickness, oxide morphology, and scale texture were determined. In degree of oxidation, TD-Ni was nearly the same as the higher purity materials, Ni-270 and JM-Ni; and less pure Ni-200 oxidized more than the others. However, in microstructure and scale texture the TD-Ni more closely resembled Ni-200. Grinding only charged the texture of the oxides of Ni_200 and TD-Ni.

  13. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  14. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl3 Particles

    PubMed Central

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-01-01

    A series of Al-4Ti master alloys with various TiAl3 particles were prepared via pouring the pure aluminum added with K2TiF6 or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl3 particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl3 particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl3 particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl3 particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl3 particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl3 particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl3 particles prepared through different processes was almost identical. PMID:28773987

  15. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl₃ Particles.

    PubMed

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-10-26

    A series of Al-4Ti master alloys with various TiAl₃ particles were prepared via pouring the pure aluminum added with K₂TiF₆ or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl₃ particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl₃ particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl₃ particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl₃ particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl₃ particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl₃ particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl₃ particles prepared through different processes was almost identical.

  16. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  17. Effect of Nb on magnetic and mechanical properties of TbDyFe alloys

    NASA Astrophysics Data System (ADS)

    Wang, Naijuan; Liu, Yuan; Zhang, Huawei; Chen, Xiang; Li, Yanxiang

    2018-03-01

    The intrinsic brittleness in giant magnetostrictive material TbDyFe alloy has devastating influence on the machinability and properties of the alloy, thus affecting its applications. The purpose of this paper is to study the mechanical properties of the TbDyFe alloy by alloying with Nb element. The samples (Tb0.3Dy0.7)xFe2xNby (y = 0, 0.01, 0.04, 0.07, 0.1; 3x + y = 1) were melted in an arc melting furnace under high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance of the alloys were studied systematically. The results showed that NbFe2 phases were observed in the alloys with the addition of Nb. Moreover, both the NbFe2 phases and rare earth (RE)-rich phases were increased with the increasing of Nb element. The mechanical properties results revealed that the fracture toughness of the alloy with the addition of Nb enhanced 1.5-5 times of the Nb-free alloy. Both the NbFe2 phase and the RE-rich phase had the ability to prevent crack propagation, so that they can strengthen the REFe2 body. However, NbFe2 phase is a paramagnetic phase, which can reduce the magnetostrictive properties of the alloy by excessive precipitation.

  18. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    NASA Astrophysics Data System (ADS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  19. Effect of Microstructure on the Radioluminescence and Transparency of Ce-Doped Strontium Hafnate Ceramics

    PubMed Central

    van Loef, Edgar V.; Wang, Yimin; Miller, Stuart R.; Brecher, Charles; Rhodes, William H.; Baldoni, Gary; Topping, Stephen; Lingertat, Helmut; Sarin, Vinod K.; Shah, Kanai S.

    2011-01-01

    In this paper we report on the fabrication and characterization of SrHfO3:Ce ceramics. Powders were prepared by solid-state synthesis using metal oxides and carbonates. X-ray diffraction measurements showed that phase-pure SrHfO3 is formed at 1200°C. Inductively coupled plasma spectroscopy confirmed the purity and composition of each batch. SrHfO3 exhibits several phase changes in the solid, but this does not appear to be detrimental to the ceramics. Microprobe experiments showed uniform elemental grain composition, whereas aluminum added as charge compensation for trivalent cerium congregated at grain boundaries and triple points. Radioluminescence spectra revealed that the light yield decreases when the concentration of excess Sr increases. The decrease in the light yield may be related to the change of Ce3+ into Ce4+ ions. For stoichiometric SrHfO3:Ce, the light yield is about four times that of bismuth germanate (BGO), the conventional benchmark, indicating great potential for many scintillator applications. PMID:21339835

  20. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  1. Formation of Aluminide Coatings on Fe-Based Alloys by Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Pint, Bruce A; Cooley, Kevin M

    2008-01-01

    Aluminide and Al-containing coatings were synthesized on commercial ferritic (P91) and austenitic (304L) alloys via a laboratory chemical vapor deposition (CVD) procedure for rigorous control over coating composition, purity and microstructure. The effect of the CVD aluminizing parameters such as temperature, Al activity, and post-aluminizing anneal on coating growth was investigated. Two procedures involving different Al activities were employed with and without including Cr-Al pellets in the CVD reactor to produce coatings with suitable thickness and composition for coating performance evaluation. The phase constitution of the as-synthesized coatings was assessed with the aid of a combination of X-ray diffraction, electronmore » probe microanalysis, and existing phase diagrams. The mechanisms of formation of these CVD coatings on the Fe-based alloys are discussed, and compared with nickel aluminide coatings on Ni-base superalloys. In addition, Cr-Al pellets were replaced with Fe-Al metals in some aluminizing process runs and similar coatings were achieved.« less

  2. Low threshold field emission from high-quality cubic boron nitride films

    NASA Astrophysics Data System (ADS)

    Teii, Kungen; Matsumoto, Seiichiro

    2012-05-01

    Field emission performance of materials with mixed sp2/sp3 phases often depends upon the phase composition at the surface. In this study, the emission performance of high-quality cubic boron nitride (cBN) films is studied in terms of phase purity. Thick cBN films consisting of micron-sized grains are prepared from boron trifluoride gas by chemical vapor deposition in a plasma jet and an inductively coupled plasma. Both the bulk and surface phase purities as well as crystallinities of cBN evaluated by visible and ultraviolet Raman spectroscopy, glancing-angle x-ray diffraction, and x-ray photoelectron spectroscopy are the highest when the film is deposited in a plasma jet under an optimized condition. The emission turn-on field decreases with increasing the phase purity, down to around 5 V/μm for the highest cBN purity, due to the larger field enhancement, while it is higher than 14 V/μm without cBN (sp2-bonded hexagonal BN only). The results indicate that the total field enhancement for the high phase purity film is governed by the internal field amplification related to the surface coverage of more conductive cBN, rather than the external one related to the surface topology or roughness.

  3. SiO(x) nanoparticles synthesized by an evaporation and condensation process using induction melting of silicon and gas injection.

    PubMed

    Jang, Bo Yun; Lee, Jin Seok; Kim, Joon Soo

    2013-05-01

    SiO(x) nanoparticles were synthesized using a specially designed induction melting system equipped with a segmented graphite crucible. The graphite crucible with the segmented wall was the key to enhancing the evaporation rate due to the increase of the evaporation area and convection of the silicon melt. Injection of the gas mixture of oxygen (O2) and argon (Ar) on silicon (Si) melt caused the formation of SiO(x) nanoparticles. The evaporated SiO(x) nanoparticles were then cooled and condensed in a process chamber. The effects of the O2/Ar ratio in the injection gas on the microstructures of the SiO(x) nanoparticles were then investigated. Synthesized SiO(x) nanoparticles were proven to be of a homogeneous amorphous phase with average diameters of 30-35 nm. The microstructures were independent from the O2/Ar ratio of the injected gas. However, x increased from 1.36 to 1.84 as the O2/Ar ratio increased. The purity of the synthesized nanoparticles was about 99.9%. SiO(x) nanoparticles could be applied as the active anode material in a lithium (Li) ion secondary battery.

  4. Containerless drop tube solidification and grain refinement of NiAl3

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Curreri, P. A.; Kelly, M.; Workman, G.; Smith, A. M.; Bond, R.

    1984-01-01

    The possibility of undercooling Ni-Al alloys below the liquidus in order to produce a single phase peritectic structure by containerless drop tube solidification was studied. Containerless process is a technique for both high purity contamination free studies as well as for investigating the undercooling and rapid solidification of alloys by suppression of heterogeneous nucleation on container walls. In order to achieve large undercoolings one must avoid heterogeneous nucleation of crystallization. It was shown that the Marshall Space Flight Center drop tubes ae unique facilities for containerless solidification experiments and large undercoolings are possible with some alloys. The original goal of undercooling the liquid metal well below the liquidus to the peritectic temperature during containerless free to form primarily NiAl3 was achieved. The microstructures were interesting from another point of view. The microstructure from small diameter samples is greatly refined. Small dendrite arm spacings such as these could greatly facilitate the annealing and solid state transformation of the alloy to nearly 10% NiAl3 by reducing the distance over which diffusion needs to occur. This could minimize annealing time and might make it economically feasible to produce NiAl3 alloy.

  5. Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.

    2018-04-01

    Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.

  6. Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas.

    PubMed

    Xie, Jiangkun; Yan, Naiqiang; Qu, Zan; Yang, Shijian

    2012-01-01

    Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22 degrees C. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.

  7. High purity Fe3O4 from Local Iron Sand Extraction

    NASA Astrophysics Data System (ADS)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  8. Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials

    DOE PAGES

    Lind, Jonathan; Li, Shiu Fai; Kumar, Mukul

    2016-05-20

    The concept of twin-limited microstructures has been explored in the literature as a crystallographically constrained grain boundary network connected via only coincident site lattice (CSL) boundaries. The advent of orientation imaging has made classification of twin-related domains (TRD) or any other orientation cluster experimentally accessible in 2D using EBSD. With the emergence of 3D orientation mapping, a comparison of TRDs in measured 3D microstructures is performed in this paper and compared against their 2D counterparts. The TRD analysis is performed on a conventionally processed (CP) and a grain boundary engineered (EM) high purity copper sample that have been subjected tomore » successive anneal procedures to promote grain growth. Finally, the EM sample shows extremely large TRDs which begin to approach that of a twin-limited microstructure, while the TRDs in the CP sample remain relatively small and remote.« less

  9. Dynamic shear deformation in high purity Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen ismore » highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  11. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry Y. S.

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could improve IGCC process efficiency but the cost of the membrane reactor with membranes having current CO 2 permeance is high. Further research should be directed towards improving the performance of the membranes and developing cost-effective, scalable methods for fabrication of dual-phase membranes and membrane reactors.« less

  12. Lecithin-based microemulsion of a peptide for oral administration: preparation, characterization, and physical stability of the formulation.

    PubMed

    Cilek, Ayşe; Celebi, Nevin; Tirnaksiz, Figen

    2006-01-01

    The objective of our study was to prepare and characterize a stable microemulsion formulation for oral administration of a peptide, e.g., rh-insulin. The microemulsions were prepared using Labrafil M 1944 CS, Phospholipon 90G (lecithin), absolute alcohol, and bidistilled water. Commercially available soybean lecithins (namely, Phospholipon 80, phosphatidylcholine purity 76 +/- 3%, and Phospholipon 90G, phosphatidylcholine purity 93 +/- 3%) were used in the study. The results showed that the phase diagram obtained using a low purity lecithin was not similar to that obtained with a high purity lecithin. We observed that the microemulsion area was wider at the phase diagram obtained with the higher purity lecithin. We found that the extent of the microemulsion region depended upon both the purity of the lecithin and the surfactant/co-surfactant (s/co-s) mixing ratios (K(m)). The rheological studies showed that microemulsions followed a Newtonian behavior. Such physical characteristics as viscosity, turbidity, density, conductivity, refractive index, droplet size, physical appearance, and phase separation of the microemulsion were measured at different temperatures (4 degrees C, 25 degrees C, and 40 degrees C) during 6 months. The results indicated that the physical characteristics of the developed microemulsions did not change under different storage temperatures (p > 0.05).

  13. 3D modeling of unconstrained HPT process: role of strain gradient on high deformed microstructure formation

    NASA Astrophysics Data System (ADS)

    Ben Kaabar, A.; Aoufi, A.; Descartes, S.; Desrayaud, C.

    2017-05-01

    During tribological contact’s life, different deformation paths lead to the formation of high deformed microstructure, in the near-surface layers of the bodies. The mechanical conditions (high pressure, shear) occurring under contact, are reproduced through unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT test is developed to study the local deformation history leading to high deformed microstructure with nominal pressure and friction coefficient. For the present numerical study the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is high purity iron. The strain distribution in the sample bulk, as well as the main components of the strain gradients according to the spatial coordinates are investigated, with rotation angle of the anvil.

  14. Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.

    2018-05-01

    Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.

  15. Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method

    NASA Astrophysics Data System (ADS)

    Kanchana, P.; Sekar, C.

    2010-03-01

    Hydroxyapatite (HA) is a good candidate for bone substitutes due to its chemical and structural similarity to bone mineral. Hydroxyapatite has been grown by the gel method using sodium fluoride (NaF) as additive. The growth was carried out at room temperature under the physiological pH of 7.4. The addition of NaF has significantly reduced growth rate and the yield was much less when compared to pure system. The samples of pure and fluoride doped HA were sintered at 600, 900 and 1200 °C in ambient atmosphere. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) were adopted to investigate the influence of NaF on the morphology, crystallinity, stability and phase purity of HA. EDAX and FTIR studies confirm that the fluoride is doped into the hydroxyapatite. Powder XRD and TGA results suggested that the incorporation of fluorine into the HA matrix improves the phase formation and crystallinity. SEM studies show that the microstructural morphology of HA changes from the fibers for pure to granular structure for the fluoride doped.

  16. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.

    PubMed

    Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter

    2016-06-22

    Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.

  17. Luminescence in Ba2 Sr2 Al2 O7 :RE (RE = Tb(3) (+) ,Eu(3) (+) and Dy(3) (+) ) novel aluminate phosphors.

    PubMed

    Pardhi, S A; Panse, V R; Dhoble, S J

    2016-09-01

    The luminescence of novel rare earth (Tb(3) (+) , Eu(3) (+) and Dy(3) (+) )-activated Ba2 Sr2 Al2 O7 phosphors for solid-state lighting is presented. The aluminate phosphors were synthesized using a one-step combustion method. X-Ray diffraction, scanning electron microscopy and photoluminescence characterizations were performed to understand the mechanism of excitation and the corresponding emission in the as-prepared phosphor, as characterized the phase purity and microstructure. Improvements in the luminescence properties of the phosphors with rare earth concentration were observed. The phosphor hue could be tuned from blue, green and red by proper selection of rare earth ions in typical concentrations. Effective absorption in the near-ultraviolet region was observed, which makes the phosphor a potential candidate for ultraviolet light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1- x Ru x O2 by the microemulsion method

    NASA Astrophysics Data System (ADS)

    Saraswathy, Ramanathan

    2017-12-01

    Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  19. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Bryon W.; Reid, Obadiah G.; Coffey, David C.

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiencymore » of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.« less

  20. Nucleation study for an undercooled melt of intermetallic NiZr

    NASA Astrophysics Data System (ADS)

    Kobold, R.; Kolbe, M.; Hornfeck, W.; Herlach, D. M.

    2018-03-01

    Electrostatic levitation is applied in order to undercool liquid glass forming NiZr significantly below its melting temperature. For NiZr large undercoolings are found to be highly reproducible with this experimental method. One single NiZr sample of high purity is undercooled 200 consecutive times which leads to a distribution function of undercooling temperatures. Within a statistical approach of classical nucleation theory, the undercooling distribution is analyzed yielding parameters, e.g., a pre-exponential factor of KV ≈ 1035 m-3 s-1, which indicates homogeneous nucleation. This result is consistent with the crystallization behavior of NiZr at high undercooling and with the corresponding microstructural analysis. Since NiZr is a representative of the very common CrB structure type, with 132 isostructural phases existing, understanding its nucleation behavior adds important knowledge to the nucleation of binary alloys in general.

  1. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from HA sol, where the production rate was 20 g/h, which is only 16% of the total powder produced. The effects of Sr2+ and Mg2+ doping on bone cell-CaP interaction was further studied with osteoclast cells. Mg2+ doing was found to be an effective way of controlling osteoclast differentiation.

  2. Downstream processing of antibodies: single-stage versus multi-stage aqueous two-phase extraction.

    PubMed

    Rosa, P A J; Azevedo, A M; Ferreira, I F; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2009-12-11

    Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid-liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid-liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this extraction step leading to a final total purity of about 85%.

  3. Multiscale Microstructures and Microstructural Effects on the Reliability of Microbumps in Three-Dimensional Integration

    PubMed Central

    Huang, Zhiheng; Xiong, Hua; Wu, Zhiyong; Conway, Paul; Altmann, Frank

    2013-01-01

    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps. PMID:28788356

  4. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  5. Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering

    NASA Astrophysics Data System (ADS)

    Senol, Abdulkadir; Gulen, Mahir; Yildirim, Gurcan; Ozturk, Ozgur; Varilci, Ahmet; Terzioglu, Cabir; Belenli, Ibrahim

    2013-03-01

    In this study, we investigate the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto Soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt. %) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 ° C. Resistivity, Hall Effect, X-ray diffractometer (XRD), ultra violet-visible spectrometer (UV-vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. Furthermore, mobility, carrier density and conductivity characteristics of the samples prepared are carried out as function of temperature in the range of 80-300 K at the magnetic field of 0.550 T. The results obtained show that all the properties depend strongly on the annealing temperature and in fact the film annealed at 400 ° C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.

  6. Fabrication of a Mo based high temperature TZM alloy by non-consumable arc melting technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.P.; Krishnamurthy, N., E-mail: spc@barc.gov.in

    High temperature structural materials are in great demand for power, chemical and nuclear industries which can perform beyond 1000 °C as super alloys usually fail. In this regard, Mo based TZM alloy is capable of retaining strength up to 1500 °C with excellent corrosion compatibility against molten alkali metals. Hence, currently this alloy is considered an important candidate material for high temperature compact nuclear and fusion reactors. Due to reactive nature of Mo and having high melting point, manufacturing this alloy by conventional process is unsuitable. Powder metallurgy technique has limited success due to restriction in quantity and purity. Thismore » paper deals with fabrication of TZM alloy by nonconsumable tungsten arc melting technique. Initially a ternary master alloy of Mo-Ti-Zr was prepared which subsequently by dilution method, was converted into TZM alloy gradually by external addition of Mo and C in various proportions. A number of melting trials were conducted to optimize the process parameters like current, voltage and time to achieve desired alloy composition. The alloy was characterized with respect to composition, elemental distribution profile, microstructure, hardness profile and phase analysis. Well consolidated alloy button was obtained having desired composition, negligible material loss and having microstructure as comparable to standard TZM alloy. (author)« less

  7. Uncoupled surface spin induced exchange bias in α-MnO2 nanowires

    PubMed Central

    Li, Wenxian; Zeng, Rong; Sun, Ziqi; Tian, Dongliang; Dou, Shixue

    2014-01-01

    We have studied the microstructure, surface states, valence fluctuations, magnetic properties, and exchange bias effect in MnO2 nanowires. High purity α-MnO2 rectangular nanowires were synthesized by a facile hydrothermal method with microwave-assisted procedures. The microstructure analysis indicates that the nanowires grow in the [0 0 1] direction with the (2 1 0) plane as the surface. Mn3+ and Mn2+ ions are not found in the system by X-ray photoelectron spectroscopy. The effective magnetic moment of the manganese ions fits in with the theoretical and experimental values of Mn4+ very well. The uncoupled spins in 3d3 orbitals of the Mn4+ ions in MnO6 octahedra on the rough surface are responsible for the net magnetic moment. Spin glass behavior is observed through magnetic measurements. Furthermore, the exchange bias effect is observed for the first time in pure α-MnO2 phase due to the coupling of the surface spin glass with the antiferromagnetic α-MnO2 matrix. These α-MnO2 nanowires, with a spin-glass-like behavior and with an exchange bias effect excited by the uncoupled surface spins, should therefore inspire further study concerning the origin, theory, and applicability of surface structure induced magnetism in nanostructures. PMID:25319531

  8. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism

    NASA Astrophysics Data System (ADS)

    Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.

    2016-01-01

    Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).

  9. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants

    PubMed Central

    Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2011-01-01

    This paper reports preparation of a highly crystalline nano hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray and their in vitro and in vivo biological response. HA coatings were prepared on Ti using normal and supersonic plasma nozzles at different plate powers and working distances. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis show that the normal plasma nozzle lead to increased phase decomposition, high amorphous calcium phosphate (ACP) phase formation, and severe dehydroxylation of HA. In contrast, coatings prepared using supersonic nozzle retained the crystallinity and phase purity of HA due to relatively short exposure time of HA particles in the plasma. In addition, these coatings exhibited a microstructure that varied from porous and glassy structure at the coating-substrate interface to dense HA at the top surface. The microstructural analysis showed that the coating was made of multigrain HA particles of ~200 nm in size, which consisted of recrystallized HA grains in the size range of 15– 20 nm. Apart from the type of nozzle, working distance was also found to have a strong influence on the HA phase decomposition, while plate power had little influence. Depending on the plasma processing conditions, a coating thickness between 300 and 400 μm was achieved where the adhesive bond strengths were found to be between 4.8 MPa to 24 MPa. The cytotoxicity of HA coatings was examined by culturing human fetal osteoblast cells (hFOB) on coated surfaces. In vivo studies, using the cortical defect model in rat femur, evaluated the histological response of the HA coatings prepared with supersonic nozzle. After 2 weeks of implantation, osteoid formation was evident on the HA coated implant surface, which could indicate early implant- tissue integration in vivo. PMID:21552358

  10. Factors influencing the purity of electronic grade phosphine delivered to MOCVD tools

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Owens, Mitch; Raynor, Mark W.

    2010-04-01

    Increasing mobility of InP films with usage time of one PH 3 cylinder prompted an investigation into factors influencing the purity of delivered PH 3. The presence of hygroscopic H xPO y residues in a delivery system greatly increases the dry-down time compared to that of a clean system. Static delivery system tests show increasing H 2O concentration with time and twice the increase in PH 3 versus N 2 over 48 h indicating reaction of metal oxides in components with PH 3 to generate H 2O. Gas purity may also vary during cylinder usage. Depletion of a high-purity PH 3 cylinder shows consistently low gas phase H 2O levels before phase-break but increasing levels after phase-break, as the cylinder depressurizes. The results highlight the importance of using pure PH 3, employing rigorous cycle-purging procedures to prevent H xPO y contamination, switching out cylinders in good time and using purification technology to control H 2O.

  11. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arul Kumar, M.; Wroński, M.; McCabe, Rodney James

    In this study, a detailed statistical analysis is performed using Electron Back Scatter Diffraction (EBSD) to establish the effect of microstructure on twin nucleation and growth in deformed commercial purity hexagonal close packed (HCP) titanium. Rolled titanium samples are compressed along rolling, transverse and normal directions to establish statistical correlations for {10–12}, {11–21}, and {11–22} twins. A recently developed automated EBSD-twinning analysis software is employed for the statistical analysis. Finally, the analysis provides the following key findings: (I) grain size and strain dependence is different for twin nucleation and growth; (II) twinning statistics can be generalized for the HCP metalsmore » magnesium, zirconium and titanium; and (III) complex microstructure, where grain shape and size distribution is heterogeneous, requires multi-point statistical correlations.« less

  12. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study

    DOE PAGES

    Arul Kumar, M.; Wroński, M.; McCabe, Rodney James; ...

    2018-02-01

    In this study, a detailed statistical analysis is performed using Electron Back Scatter Diffraction (EBSD) to establish the effect of microstructure on twin nucleation and growth in deformed commercial purity hexagonal close packed (HCP) titanium. Rolled titanium samples are compressed along rolling, transverse and normal directions to establish statistical correlations for {10–12}, {11–21}, and {11–22} twins. A recently developed automated EBSD-twinning analysis software is employed for the statistical analysis. Finally, the analysis provides the following key findings: (I) grain size and strain dependence is different for twin nucleation and growth; (II) twinning statistics can be generalized for the HCP metalsmore » magnesium, zirconium and titanium; and (III) complex microstructure, where grain shape and size distribution is heterogeneous, requires multi-point statistical correlations.« less

  13. Shock induced damage in copper: A before and after, three-dimensional study

    NASA Astrophysics Data System (ADS)

    Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.

    2016-04-01

    We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.

  14. Biaxial deformation in high purity aluminum

    DOE PAGES

    Livescu, V.; Bingert, J. F.; Liu, C.; ...

    2015-09-25

    The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron backscatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. Recently micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum inmore » biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. We determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. Finally, these combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects.« less

  15. High-purity silica reflecting heat shield development

    NASA Technical Reports Server (NTRS)

    Congdon, W. M.

    1974-01-01

    A high-purity, fused-silica reflecting heat shield for the thermal protection of outer-planet probes was developed. Factors that strongly influence the performance of a silica heat shield were studied. Silica-bonded silica configurations, each prepared by a different technique, were investigated and rated according to its relative merits. Slip-casting was selected as the preferred fabrication method because it produced good reflectivity and good strength, and is relatively easy to scale up for a full-size outer-planet probe. The slips were cast using a variety of different particle sizes: continuous particle-size slips; monodisperse particle-size slips; and blends of monodisperse particle-size slips were studied. In general, smaller particles gave the highest reflectance. The monodisperse slips as well as the blend slips gave a higher reflectance than the continuous particle-size slips. An upgraded and fused natural quartz was used to study the effects of microstructure on reflectance and as the baseline to ascertain the increase in reflectance obtained from using a higher-purity synthetic material.

  16. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cady, C.M.; Chen, K.C.; Kotula, P.G.

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based uponmore » temperature and microstructure.« less

  17. Notched strength of beryllium powder and ingot sheets.

    NASA Technical Reports Server (NTRS)

    Moss, R. G.

    1972-01-01

    The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.

  18. Effect of microstructural parameters on the mechanical behavior of TiAlNb(Cr,Mo) alloys with γ+σ microstructure at ambient temperature

    DOE PAGES

    Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...

    2016-11-15

    The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less

  19. Investigating the performance of catalyst layer micro-structures with different platinum loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon

    In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greatermore » losses at decreased platinum loadings.« less

  20. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    NASA Technical Reports Server (NTRS)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.

  1. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    NASA Astrophysics Data System (ADS)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was prepared, La0.85Sr0.15MnO 3 (LSM) was selected as the cathode. Cells were tested at 800°C using humidified H2 as fuel. Cell with anode prepared by using pure water as non-solvent shows a maximum power density up to 437mW/cm 2. By comparing the anode geometry and electrochemical performance, it indicated that microstructure with longer finger-like pores and thinner macrovoid free layer close to the inner side of the tube is benefit to cell performance. Another factor that can affect the microstructure of anode support is the ratio of solvent and polymer binder. In this research, anode-supported MT-SOFCs have been fabricated by phase inversion method. The effect of the viscosity of the casting slurry on the microstructure of YSZ-NiO anode support has been investigated. The microstructure of the YSZ-NiO support can be effectively controlled by varying the slurry composition with different solvent and polymer binder content. Gas permeation and mechanical strength of the YSZ-NiO support have been measured and four YSZ-NiO anode supports have been chosen for subsequent cell fabrication. The effective conductivity of the different anode supports has been measured at room temperature after reduced. Anode-supported single cells with YSZ electrolyte and LSM/YSZ cathode are fabricated and tested. Maximum cell power densities of 606 mWcm-2, 449 mWcm -2, 339 mWcm-2 and 253 mWcm-2 have been obtained respectively at 750 °C with humidified hydrogen as fuel and ambient air as oxidant. The correlation between the cell electrochemical performance and anode microstructures has been discussed. Adjusting the slurry composition by introducing additive is also an effective approach to tailor the microstructure of the anode support. Poly(ethylene glycol) (PEG), which is a common applied polymer additive, was selected to fabricate the YSZ-NiO anode supports. The effect of molecular weight and amount of PEG additive on the thermodynamics of the casting solutions was characterized by measuring the coagulation value. Viscosity of the casting slurries was also measured and the influence of PEG additive on viscosity was studied and discussed. The presence of PEG in the casting slurry can greatly influence the final anode support microstructure. Based on the microstructure result and the measured gas permeation value, two anode supports were selected for cell fabrication. For cell with the anode support fabricated using slurry with PEG additive, a maximum cell power density of 704 mWcm-2 is obtained at 750 oC with humidified hydrogen as fuel and ambient air as oxidant; cell fabricated without any PEG additive shows the peak cell power density of 331 mWcm-2. The relationship between anode microstructure and cell performance was discussed. Anode-supported micro-tubular solid oxide fuel cells (MT-SOFCs) based on BaZr0.1Ce0.7Y0.1Yb0.1O 3-delta (BZCYYb) proton-conducting electrolyte have been prepared using a phase inversion method. Three sulfur-free polymer binder candidates ethyl cellulose (EC), polyvinylidene fluoride (PVDF), polyetherimide (PEI) and sulfur-containing polythersulfone (PESf) were used as polymer binders to fabricate NiO-BZCYYb anode. The overall influence of polymer binder on the anode supports was evaluated. Sulfide impurity generated from PESf was revealed by XRD and X-ray photoelectron spectroscopy (XPS). The difference in the anode microstructure for samples fabricated by different polymer binders was examined by scanning electron microscope (SEM) and analyzed by measuring the gas permeation data of the reduced samples. Single cells based on different anode supports were characterized in anode-supported MT-SOFCs with the cell configuration of Ni-BZCYYb anode, BZCYYb electrolyte and La0.6Sr 0.4Co0.2Fe0.8O3-delta (LSCF)-BZCYYb cathode at 650 °C using hydrogen as fuel and ambient air as oxidant. MT-SOFCs of the anode fabricated using PEI show maximum power density of 0.45 Wcm -2 compared with 0.35 Wcm-2 for cells fabricated with PESf. The difference in cell performance was attributed to the phase purity of the anode fabricated by different polymer binders. Sulfur-free polymer binder PEI exhibits advantages over the commonly applied PESf and other sulfur-free polymer binder candidates. To eliminate the skin layer formed close to the inner side of the tubular sample when using the phase inversion method. Polyethersulfone (PESf)-polyethylenimine (PEI) blend was employed as the polymer binder to fabricate the micro-tubular solid oxide fuel cells (MT-SOFCs). The potential impurity introduced in the anode support by the polymer binder was examined by XPS and the resulting novel microstructure was analyzed based on the backscattered electron (BSE) images. Cells fabricated with blend polymer binder showed significantly enhanced power output compared with those cells only fabricated with PEI or PESf. The improved cell performance demonstrated that using blend polymer as binder is a promising and versatile approach for MT-SOFC fabrication via phase inversion method. Finally, to investigate the effect of the anode microstructure on the total cell performance, two types of anode support with different microstructure were prepared via the phase inversion method at different temperature. Cells fabricated based on these two anode supports were tested at 750 °C with hydrogen or hydrogen mixture with fuel gas. The measured current density-voltage (I-V) curves were fitted by a polarization model, and several parameters were archived through the modeling process. The influence of the anode support on the total cell performance was discussed based on the calculated result.

  2. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  3. Improved electrochemical properties of a coin cell using LiMn 1.5Ni 0.5O 4 as cathode in the 5 V range

    NASA Astrophysics Data System (ADS)

    Singhal, Rahul; Das, Suprem R.; Oviedo, Osbert; Tomar, Maharaj S.; Katiyar, Ram S.

    Phase pure LiMn 1.5Ni 0.5O 4 powders were synthesized by a chemical synthesis route and were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode and lithium hexafluorophosphate (LiPF 6), dissolved in dimethyl carbonate (DMC) + ethylene carbonate (EC) [1:1, v/v ratio] as electrolyte. The spinel structure and phase purity of the powders were characterized using X-ray diffraction and micro-Raman spectroscopy. The presence of both oxidation and reduction peaks in the cyclic voltammogram revealed Li + extraction and insertion from the spinel structure. The charge-discharge characteristics of the coin cell were performed in the 3.0-4.8 V range. An initial discharge capacity of ∼140 mAh g -1 was obtained with 94% initial discharge capacity retention after 50 repeated cycles. The microstructures and compositions of the cathode before and after electrochemistry were investigated using scanning electron microscopy and energy-dispersive analysis by X-ray analysis, respectively. Using X-ray diffraction, Raman spectroscopy and electrochemical analysis, we correlated the structural stability and the electrochemical performance of this cathode.

  4. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  5. Electro-caloric effect in lead-free Sn doped BaTiO{sub 3} ceramics at room temperature and low applied fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab

    2014-09-15

    Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less

  6. Preparation and magnetic properties of the Sr-hexaferrite with foam structure

    NASA Astrophysics Data System (ADS)

    Guerrero, A. L.; Espericueta, D. L.; Palomares-Sánchez, S. A.; Elizalde-Galindo, J. T.; Watts, B. E.; Mirabal-García, M.

    2016-12-01

    This work reports an optimal way to fabricate strontium hexaferrite with porous-reticulated structure using a variation of the replication technique and taking two different precursors, one obtained from the coprecipitation and the other from the ceramic method. Changes made to the original replication technique include the addition of Arabic gum as binder, and the addition of ethylene glycol to form the ceramic sludge. In addition, some parameters such as the relation between solid material and liquid phase, the quantity of binder and the heat treatment were varied to obtain high quality magnetic foams. Two polymeric sponges were used as patterns, one with average pore size of 300 μm diameter and the other with 1100 μm. The characterization of the samples included the analysis of the structure and phase purity, the magnetic properties, the remanence properties, magnetic interactions and the microstructural characteristics. Results indicate that both, the powder precursors and the polymeric pattern play an important role in the configuration of the foam structure and this configuration has an important influence on the dipolar interactions which tend to demagnetize the samples. In addition, it was analyzed the behavior between the minimum value of the δM curves and the hysteresis properties.

  7. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells.

    PubMed

    Zhang, Xu; Munir, Rahim; Xu, Zhuo; Liu, Yucheng; Tsai, Hsinhan; Nie, Wanyi; Li, Jianbo; Niu, Tianqi; Smilgies, Detlef-M; Kanatzidis, Mercouri G; Mohite, Aditya D; Zhao, Kui; Amassian, Aram; Liu, Shengzhong Frank

    2018-05-01

    Ruddlesden-Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2 (MA) 3 Pb 4 I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2 (MA) 3 Pb 4 I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden-Popper perovskite structure and further improve optoelectronic and solar cell devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural characterization of sputter-deposited SS304+x aluminum (x = 0, 4, 7 and 10 wt.%) coatings and mechanically milled titanium, zirconium and hafnium powders

    NASA Astrophysics Data System (ADS)

    Seelam, Uma Maheswara Rao

    Study of the metastable phases obtained by non-equilibrium processing techniques has come a long way during the past five decades. New metastable phases have often given new perspectives to the research on synthesis of novel materials systems. Metastable materials produced by two non-equilibrium processing methods were studied for this dissertation---304-type austenitic stainless steel (SS304 or Fe-18Cr-8Ni)+aluminum coatings produced by plasma enhanced magnetron sputter-deposition (PEMS) and nanocrystalline Ti, Zr and Hf powders processed by mechanical milling (MM). The objective of the study was to understand the crystallographic and microstructural aspects of these materials. Four SS304+Al coatings with a nominal Al percentages of 0, 4, 7 and 10 wt.% in the coatings were deposited on an SS304 substrate by PEMS using SS304 and Al targets. The as-deposited coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and three-dimensional atom probe microscopy (3DAP). Surface morphology and chemical analysis were studied by SEM. Phase identification was carried out by XRD and TEM. The microstructural features of all the coatings, as observed in the TEM, consisted of columnar grains with the columnar grain width (a measure of grain size) increasing with an increase in the Al content. The coatings had grains with average grain sizes of about 100, 290, 320 and 980 nm, respectively for 0, 4, 7 and 10 wt.% Al. The observed grain structures and increase in grain size were related to substrate temperature during deposition. XRD results indicated that the Al-free coating consisted of the non-equilibrium ferrite and sigma phases. In the 4Al, 7Al and 10Al coatings, equilibrium ferrite and B2 phases were observed but no sigma phase was found. In 10Al coating, we were able to demonstrate experimentally using 3DAP studies that NiAl phase formation is preferred over the FeAl phase at nano scale. During mechanical milling of the hexagonal close packed (HCP) metals Hf, Ti and Zr powders, unknown nanocrystalline phases with face centered cubic (FCC) structure were found. The FCC phases could be either allotropes of the respective metals or impurity stabilized phases. However, upon MM under high purity conditions, it was revealed that the FCC phases were impurity stabilized. The decrease in crystallite size down to nanometer levels, an increase in atomic volume, lattice strain, and possible contamination were the factors responsible for the transformation.

  9. In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications.

    PubMed

    Bian, Dong; Deng, Jiuxu; Li, Nan; Chu, Xiao; Liu, Yang; Li, Wenting; Cai, Hong; Xiu, Peng; Zhang, Yu; Guan, Zhenpeng; Zheng, Yufeng; Kou, Yuhui; Jiang, Baoguo; Chen, Rongshi

    2018-02-07

    Ternary magnesium alloys with low combined addition of elements gadolinium and zinc were developed in the present work, with their microstructures, mechanical properties, in vitro degradation behaviors, and cytotoxicity being systematically studied. Furthermore, the Mg-1.8Zn-0.2Gd alloy, with the best in vitro performance, was implanted into Sprague Dawley rats to examine its in vivo degradation performance for up to 6 months. It was found that Mg-1.8Zn-0.2Gd, composed of a single α-Mg phase, owned excellent strength and toughness that were comparable to the CE marked MAGNEZIX, the mischmetal added Mg alloy. Owing to the uniform single-phased microstructure, the degradation rate of this alloy was around 0.12 mm/y measured by electrochemical testing, which was comparable to high purity magnesium. Moreover, the Mg-1.8Zn-0.2Gd alloy exhibited no cytotoxicity to L929, MG63, and VSMC cells. In vivo degradation characterized by micro-computed tomography revealed that the Mg-1.8Zn-0.2Gd implant could maintain structural integrity in the first 2 months, and serious degradation could be observed after 6 months. A remarkable 100% survival rate of experimental animals was observed with no negative effects on bone tissues. The implant and the surrounding bone were well integrated within 2 months, implying good biocompatibility and osteoconductivity of the experimental alloy. On the basis of the above findings, the feasibility of Mg-Zn-Gd alloys for use as orthopedic implants was systematically discussed. This study provides a new strategy for development of high-performance Mg-rare earth (RE)-based alloys with superior mechanical properties and corrosion resistance while effectively avoiding the possible standing toxic effect of RE elements.

  10. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  11. Microstructural evolution and thermal stability of Fe-Zr metastable alloys developed by mechanical alloying followed by annealing

    NASA Astrophysics Data System (ADS)

    Sooraj, S.; Muthaiah, V. M. Suntharavel; Kang, P. C.; Koch, Carl C.; Mula, Suhrit

    2016-09-01

    The effect of Zr (up to 1 at.%) addition on the formation of Fe-Zr metastable alloys and their thermal stability were investigated for their possible nuclear applications. Fe-xZr (x = 0.25, 0.5, 1%) alloys were synthesised by mechanical alloying under a high-purity argon atmosphere using stainless steel grinding media in a SPEX 8000M high energy mill. The milling was conducted for 20 h with a ball-to-powder weight ratio of 10:1. The formation of metastable solid solutions after milling was confirmed from the change in the Gibbs free energy analysis as per Miedema's model. The microstructural characterisation was carried out by analysis of X-ray diffraction, atomic force microscopy and transmission electron microscopy. The effect of Zr on the thermal stability of Fe-Zr alloys was investigated by extensive annealing experiments followed by microstructural analysis and microhardness measurements. The stabilisation was found to occur at 800 °C and thereafter, no significant change in the crystallite size was observed for the samples annealed between 800 and 1200 °C. The supersaturated solid solution, especially 1% Zr alloy, found to be highly stable up to 800 °C and the microhardness value of the same measured to be as high as 8.8 GPa corresponding to a crystallite size of 57 nm. The stabilisation effect has been discussed in the light of both the thermodynamic and kinetic mechanisms and the grain size stabilisation is attributed to the grain boundary segregation of Zr atoms and/or Zener pinning by nanoscale precipitation of the Fe2Zr phase.

  12. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  13. Recovery of high-purity silver directly from dilute effluents by an emulsion liquid membrane-crystallization process.

    PubMed

    Tang, Bing; Yu, Guojun; Fang, Jianzhang; Shi, Taihong

    2010-05-15

    An emulsion liquid membrane (ELM)-crystallization process, using hypophosphorous acid as a reducing agent in the internal aqueous phase, has been developed for the purpose of recovering high-purity silver directly from dilute industrial effluents (waste rinse water). After pretreatment with HNO(3), silver in waste rinse water can be reliably recovered with high efficiency through the established process. The main parameters in the process of ELM-crystallization include the concentration of carrier in the membrane phase, the concentration of reducing agent in the internal aqueous phase, and the treatment ratio, which influence the recovery efficiency to various extents and must be controlled carefully. The results indicated that more than 99.5% (wt.) of the silver ions in the external aqueous phase were extracted by the ELM-crystallization process, with an average efficiency of recovery of 99.24% (wt.) and a purity of 99.92% (wt.). The membrane phase can be used repeatedly without loss of the efficiency of recovery. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  14. Enhanced carbon monoxide sensing properties of TiO2 with exposed (0 0 1) facet: A combined first-principle and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-06-01

    In the present study, crystal-facet-dependent gas sensing performance was thoroughly investigated and sensing mechanism of TiO2 was elaborated in depth. Anatase TiO2 nano-polyhedron with highly reactive (0 0 1) facet was successfully synthesized via a one-pot hydrothermal method using fluoride as facet stabilizer and was utilized for fabrication of carbon monoxide gas sensors, followed by characterization of microstructure, phase-purity and gas-sensing properties. Chemiresistive properties of (0 0 1)-dominated gas sensor exhibit superior response to CO with a maximum response of 27.9 at 300 ppm in optimum working temperature as 350 °C. Particularly, first-principle calculation was carried out to expound the sensing mechanism, which shows that CO adsorption on (0 0 1) facet is more stable and favorable than that on normally exposed (1 0 1) facet, corroborating the reactive nature of (0 0 1) facet.

  15. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

    NASA Astrophysics Data System (ADS)

    Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang

    2018-02-01

    An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

  16. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    PubMed

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  17. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  18. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  19. High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

    PubMed

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  20. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    NASA Astrophysics Data System (ADS)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  1. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, D. L.; Kelly, A. M.; Alexander, D. J.

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less

  2. Toxicity Evaluation of Engineered Nanomaterials (Phase 1 Studies)

    DTIC Science & Technology

    2012-01-01

    Surface Chemistry on Cellular Response ...................................................................................................... 48...Gold Nanomaterial Solution Purity and Surface Chemistry Toxicity ................................................................. 18 Figure 7...Solution Purity and Surface Chemistry Control Although several studies have shown that both MPS and PEG are biocompatible, in order to ensure that

  3. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    NASA Astrophysics Data System (ADS)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.

  4. Relationships between microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Wu, G. Q.; Huang, Z.

    2018-03-01

    Through a statistical, quantitative analysis on microstructure of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy, the relationships between microstructure and mechanical properties and heat treatment temperatures were investigated. The results show that in Widmanstätten structure, the size of β grain is greatly increased with increasing annealing temperature. Static toughness is related to grain boundary alpha phase discontinuity, the tensile strength is related to acicular alpha phase interface length and acicular alpha phase proportion. In duplex microstructure, the tensile strength is related to the equiaxed alpha proportion. Elongation, static toughness and crack forming work are related to the equiaxed alpha proportion and negatively related to secondary phase proportion. The microstructure can be described quantitatively and the mechanical properties can be predicted by analysis of microstructure.

  5. Ordering-separation phase transitions in a Co3V alloy

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.

    2017-01-01

    The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.

  6. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.

  7. Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3.

    DTIC Science & Technology

    1986-03-27

    oxalate , citrate) salt solutions, from mixed alkoxide precursors or from hydrothermal solutions. Typical starting materials and reaction sequences...decomposition and calcination reactions to form the BaTiO compound. Both the oxalate and 3 hydrothermal processes show commnercial promise and are briefly...thermal decomposition of oxalates and by hydrothermal synthesis. As-received lots of mixed oxide and oxalate -derived powders had Ba:TI ratios of 0.997 and

  8. Impact of metal-induced degradation on the determination of pharmaceutical compound purity and a strategy for mitigation.

    PubMed

    Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L

    2011-04-05

    Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Controlling the polypyrrole microstructures using swollen liquid crystals as structure directing agent

    NASA Astrophysics Data System (ADS)

    Dutt, S.; Sharma, R.

    2017-10-01

    Microstructures of polypyrrole (PPy) with different morphology were synthesized using swollen liquid crystals (SLCs) as soft structure directing agents and confinement effect on the control of PPy microstructures have been thoroughly investigated. SLCs are the quaternary mixtures of aqueous phase: oil phase: surfactant: co-surfactant. Mesophases of PPy were synthesized by trapping small amount of pyrrole in the oil phase of SLCs. Spherical, fiber and rod-like microstructures of PPy were synthesized by adding ammonium persulphate (APS) as an oxidant under different synthesis conditions using SLCs. The possible mechanism for the formation of different PPy microstructures also proposed in this study.

  10. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paul, Surajit Kumar

    2013-07-01

    The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.

  11. Cupric oxide inclusions in cuprous oxide crystals grown by the floating zone method

    NASA Astrophysics Data System (ADS)

    Frazer, Laszlo; Chang, Kelvin B.; Poeppelmeier, Kenneth R.; Ketterson, John B.

    2015-06-01

    Phase-pure cuprous oxide (Cu2O) crystals are difficult to grow since cupric oxide can form within the crystal as the crystal is cooled to ambient conditions. Vacancies are the solute which causes precipitation of macroscopic defects. Therefore, even when a mostly phase-pure single crystal is used as a feed rod, cupric oxide inclusions persist in the recrystallized solid. Control of the thermal profile during crystal growth, however, can improve phase-purity; a slow counter-rotation rate of the feed and seed rods results in fewer inclusions. Cupric oxide can be removed by annealing, which produces a factor of 540 ± 70 increase in phase-purity.

  12. Cupric oxide inclusions in cuprous oxide crystals grown by the floating zone method

    PubMed Central

    Frazer, Laszlo; Chang, Kelvin B; Poeppelmeier, Kenneth R; Ketterson, John B

    2015-01-01

    Phase-pure cuprous oxide (Cu2O) crystals are difficult to grow since cupric oxide can form within the crystal as the crystal is cooled to ambient conditions. Vacancies are the solute which causes precipitation of macroscopic defects. Therefore, even when a mostly phase-pure single crystal is used as a feed rod, cupric oxide inclusions persist in the recrystallized solid. Control of the thermal profile during crystal growth, however, can improve phase-purity; a slow counter-rotation rate of the feed and seed rods results in fewer inclusions. Cupric oxide can be removed by annealing, which produces a factor of 540 ± 70 increase in phase-purity. PMID:27877798

  13. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb (At.%) Orthorhombic Alloy with Three Typical Microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo

    2018-01-01

    Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.

  14. Linking Initial Microstructure to ORR Related Property Degradation in SOFC Cathode: A Phase Field Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Y.; Cheng, T. -L.; Wen, Y. H.

    Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less

  15. Linking Initial Microstructure to ORR Related Property Degradation in SOFC Cathode: A Phase Field Simulation

    DOE PAGES

    Lei, Y.; Cheng, T. -L.; Wen, Y. H.

    2017-07-05

    Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less

  16. The effect of annealing on structure and hardness of (Fe-Cr)-50 at.% Al coatings synthesized by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ciswandi, Aryanto, Didik; Irmaniar, Tjahjono, Arif; Sudiro, Toto

    2018-05-01

    In this research, the deposition of (Fe-Cr)-50at.% Al coatings on low carbon steel was carried out by a mechanical alloying (MA) technique. The MA was performed in a shaker mill for 4 hours. Two types of Fe-Cr powders as starting material were used, high purity Fe-Cr powders: (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al, and Fe-Cr lump powder: (50FeCr)-50Al (in at.%). The coated samples were then annealed in a vacuum furnace at 700°C for 1h. The characterizations of coating structure before and after annealing were studied by XRD and SEM-EDX, while the coating hardness was measured by micro-Vickers hardness tester. Before annealing, all of coating composition were composed mainly of (Fe,Cr)Al phase. After annealing, the FeAl and Fe0.99Cr0.02Al0.99 intermetallic phases was formed in the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings. In addition, Fe2CrAlwas also found in the (Fe-25Cr)-50Al coating. Whilethe AlCr2 intermetallic phase was detected as the main phase of (50FeCr)-50Al coating. The cross-sectional microstructure showed that the (Fe-12.5Cr)-50Al and (Fe-25Cr)-50Al coatings have a smoother structure compared to (50FeCr)-50Al coating. The annealing led to intermetallic phase formation and an increasing coating hardness.

  17. Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Brinkman, Kyle S.; Lin, Ye; Su, Dong; Cocco, Alex P.; Nakajo, Arata; Degostin, Matthew B.; Chen-Wiegart, Yu-Chen Karen; Wang, Jun; Chen, Fanglin; Chu, Yong S.; Chiu, Wilson K. S.

    2014-04-01

    The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions.The microstructure and connectivity of the ionic and electronic conductive phases in composite ceramic membranes are directly related to device performance. Transmission electron microscopy (TEM) including chemical mapping combined with X-ray nanotomography (XNT) have been used to characterize the composition and 3-D microstructure of a MIEC composite model system consisting of a Ce0.8Gd0.2O2 (GDC) oxygen ion conductive phase and a CoFe2O4 (CFO) electronic conductive phase. The microstructural data is discussed, including the composition and distribution of an emergent phase which takes the form of isolated and distinct regions. Performance implications are considered with regards to the design of new material systems which evolve under non-equilibrium operating conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06684c

  18. The use of Whatman-31ET paper for an efficient method for radiochemical purity test of 131I-Hippuran

    NASA Astrophysics Data System (ADS)

    Rezka Putra, Amal; Maskur; Sugiharto, Yono; Chairuman; Hardi Gunawan, Adang; Awaludin, Rohadi

    2018-01-01

    Current chromatography methods used for radiochemical purity test of 131I-Hippuran is time consuming. Therefore, in this study we explored several static and mobile phases in order to have a chromatography method which is accurate and efficient or less time consuming. In this study, stationary phases (Whatman-1, 31ET, and 3MM papers) and several mobile phases were explored to separate 131I-Hippuran from its impurity (131I iodide ion). The results of this study showed that the most efficient chromatography system for measurement of radiochemical purity of 131I-Hippuran was by using Whatman-31ET paper and n-butanol: acetic acid: water (4:1:1) as a static phase and mobile phase respectively. Developing time for this method was of approximately 75.7 ± 2.7 minutes. The result of radiochemical purity (%RCP) of 131I-Hippuran measured with this chromatography system either using Whatman-1 or Whatman-31ET paper strips was 98.7%. The short size of Whatman-31ET paper strip (1 x 8 cm) was found to have shorter developing time compared to that of long size paper. This system showed a good separation of 131I-Hippuran from its impurities and gave %RCP of 98.1% ± 0.04% with developing time approximately 44.3 ± 9.4 minutes. The short size of Whatman-31ET paper strips was found to be more efficient compared to that of Whatman-1 and Whatman-3MM paper strips in term of developing time.

  19. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    PubMed Central

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  20. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography.

    PubMed

    Weisz, Adrian; Ridge, Clark D; Mazzola, Eugene P; Ito, Yoichiro

    2015-02-06

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3mg of B of >85% purity, and 91 mg of C of 65-72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. Published by Elsevier B.V.

  1. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.

    PubMed

    Wu, Zhenlong; Chen, Yu; Wang, Moran; Chung, Aram J

    2016-02-07

    Fluid inertia which has conventionally been neglected in microfluidics has been gaining much attention for particle and cell manipulation because inertia-based methods inherently provide simple, passive, precise and high-throughput characteristics. Particularly, the inertial approach has been applied to blood separation for various biomedical research studies mainly using spiral microchannels. For higher throughput, parallelization is essential; however, it is difficult to realize using spiral channels because of their large two dimensional layouts. In this work, we present a novel inertial platform for continuous sheathless particle and blood cell separation in straight microchannels containing microstructures. Microstructures within straight channels exert secondary flows to manipulate particle positions similar to Dean flow in curved channels but with higher controllability. Through a balance between inertial lift force and microstructure-induced secondary flow, we deterministically position microspheres and cells based on their sizes to be separated downstream. Using our inertial platform, we successfully sorted microparticles and fractionized blood cells with high separation efficiencies, high purities and high throughputs. The inertial separation platform developed here can be operated to process diluted blood with a throughput of 10.8 mL min(-1)via radially arrayed single channels with one inlet and two rings of outlets.

  2. Impact of optical and structural aging in As₂S₃ microstructured optical fibers on mid-infrared supercontinuum generation.

    PubMed

    Mouawad, O; Amrani, F; Kibler, B; Picot-Clémente, J; Strutynski, C; Fatome, J; Désévédavy, F; Gadret, G; Jules, J-C; Heintz, O; Lesniewska, E; Smektala, F

    2014-10-06

    We analyze optical and structural aging in As₂S₃ microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As₂S₃ MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process is well confirmed by the good matching between previous experimental results and the reported numerical simulations based on the generalized nonlinear Schrödinger equation.

  3. Processing and properties of SiC whisker- and particulate-reinforced reaction bonded Si3N4

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ewart, L.; Haggerty, J.; Cai, Z. Q.; Ritter, J.; Nair, S.

    1991-01-01

    The microstructure and mechanical properties of reaction bonded Si3N4 (RBSN) reinforced with SiC whiskers of particles were investigated using RBSN composites made from colloidally pressed octanol dispersions of high-purity Si powders mixed with either SiC whiskers or alpha-SiC particles. Results of investigations, revealing high conversions of Si to Si3N4, specific surface areas, and constant relative densities and strengths, showed that the uniform microstructure and small flaw size of the matrix were maintained in the composites and that no degradation of the reinforcements was taking place. Neither the monolithic nor the composite materials exhibited R-curve behavior. A modest increase in fracture toughness was observed only in the RBSN containing 33 vol pct SiC(p).

  4. Effects of Tube Processing on the Fatigue Life of Nitinol

    NASA Astrophysics Data System (ADS)

    Adler, Paul; Frei, Rudolf; Kimiecik, Michael; Briant, Paul; James, Brad; Liu, Chuan

    2018-03-01

    Nitinol tubes were manufactured from Standard Grade VIM-VAR ingots using Tube Manufacturing method "TM-1." Diamond-shaped samples were laser cut, shape set, then fatigued at 37 °C to 107 cycles. The 50, 5, and 1% probabilities of fracture were calculated as a function of number of cycles to fracture and compared with probabilities determined for fatigue data published by Robertson et al. (J Mech Behav Biomater 51:119-131, 2015). Robertson tested similar diamonds made from the same standard grade of Nitinol as in the current study, two other standard grades of Nitinol, and two high-purity grades of Nitinol expressly designed to improve fatigue life. Robertson's tubes were manufactured using Tube Manufacturing method "TM-2." Fatigue performance of TM-1 and TM-2 diamonds were compared: At 107 cycles, strain amplitudes corresponding to the three probabilities of fracture of the TM-1 diamonds were 2-3 times those of the TM-2 diamonds made from the same grade of Nitinol, and comparable to TM-2 diamonds made from the higher-purity materials. This difference is likely a result of the differences in tube manufacturing techniques and effects on resulting microstructures. Microstructural analyses of samples revealed a correlation between the median probability of fracture and median inclusion diameter that follows an inverse power-law function of the form y ≈ x -1.

  5. Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.

    2016-04-15

    A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less

  6. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    PubMed

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  7. Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders

    NASA Astrophysics Data System (ADS)

    Aydin, Huseyin; Alomair, Mashael; Wong, Wilson; Vo, Phuong; Yue, Stephen

    2017-02-01

    In the present work, metallic composite coatings of commercial purity Ti plus Ti6Al4V were produced by cold spraying to explore the effect of mixing on porosity and mechanical properties of the coatings. The coatings were deposited using N2 gas at 800 °C and 4 MPa pressure on 1020 steel substrate. Coating characteristics were studied by examining porosity percentages and Vickers's hardness. The microstructure was examined using optical and electron microscopy techniques. It was observed that mixing metal powders can lead to improvements in cold sprayability, specifically decreases in the porosity of the `matrix' powder. It is shown that a critical addition can significantly influence porosity, but above this critical level, there is a little change in porosity. Hardness differences between the two powders are considered to be the first-order influence, but differences in particle sizes and morphology may also be contributing factors.

  8. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the polycrystalline microstructure. The specific objectives of this work are 1) the development of etching techniques and electron backscatter diffraction strategies to characterize ferrite and martensite phases in steel; 2) the uncovering of a relationship between strength/ductility and material microstructure, 3) a statistical description to quantify the spatial distributions of these phases; and finally 4) the simulation of the microstructural evolution using parameters obtained from the experiments.

  9. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai

    Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less

  10. Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes

    DOE PAGES

    Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai

    2017-02-13

    Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less

  11. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  12. Heat capacity of high-purity lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, P.H.; Finnemore, D.K.; Bevolo, A.J.

    1980-04-01

    A study of the specific heat of high-purity single-phase dhcp La shows that this material is an intrinsic type-II superconductor with a kappa of about 2.4. The temperature dependence of the free energy is characteristic of an intermediate coupling superconductor with 2..delta../k/sub B/T/sub c/ approx. = 3.7.

  13. Arsine flow requirement for the flow modulation growth of high purity GaAs using adduct-grade triethylgallium

    NASA Astrophysics Data System (ADS)

    Pitts, B. L.; Emerson, D. T.; Shealy, J. R.

    1992-10-01

    Using arsine and triethylgallium with flow modulation, organometallic vapor phase epitaxy can produce high purity GaAs layers with V/III molar ratios near unity. We have estimated that under appropriate growth conditions the arsine incorporation efficiency into epitaxial GaAs can exceed 30%. The arsine flow requirement for obtaining good morphology has been identified over a range of substrate temperatures using adduct-grade triethylgallium. The process described reduces the environmental impact and life safety risk of the hydride based organometallic vapor phase epitaxial method.

  14. Experimental research of phase transitions in a melt of high-purity aluminum

    NASA Astrophysics Data System (ADS)

    Vorontsov, V. B.; Pershin, V. K.

    2017-12-01

    This scientific work is devoted to the studying of the genetic connection structures of solid and liquid phases. In this paper Fourier analysis of acoustic emission (AE) signals accompanying heating of high purity aluminum from the melting point up to 860 °C was performed. The experimental data allowed to follow the dynamics of disorder zones in the melt with increasing melt temperature up to their complete destruction. The presented results of spectral analysis of the signals were analyzed from the standpoint of the theory of cluster melting metals.

  15. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution

    NASA Technical Reports Server (NTRS)

    Sircar, S.; Chattopadhyay, K.; Mazumder, J.

    1992-01-01

    The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.

  16. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  17. Alpha2-Adrenergic Receptors and Breast Tumor Stroma: A Novel Pathway Driving Breast Cancer Growth and Metastasis

    DTIC Science & Technology

    2014-10-01

    TAF ) were isolated to determine if α2−AR activation directly modulates collagen microstructure. 15. SUBJECT TERMS Alpha2-adrenergic receptors, breast...group. 15 3) Significant results/key outcomes: Here we demonstrate the isolation of tumor associated fibroblasts ( TAF ) from 4T1 tumors. The goal...of these experiments was to determine the optimal conditions and appropriate markers for isolation of TAF and to optimize yield and purity of the

  18. Microstructural characteristics of σ phase and P phase in Ru-containing single crystal superalloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Jiajie, E-mail: jiajiehuo0618@163.com

    Microstructural instability caused by topologically close-packed (TCP) phase precipitation restricts the useful compositional range of advanced Ni-base single crystal superalloys in industrial applications. Limited systematic investigations of TCP formers (Cr and Mo) additions on microstructural evolution of both the σ phase and the P phase in Ru-containing single crystal superalloys have been reported. In this study, the microstructural characteristics of σ phase and P phase were investigated in three Ru-containing superalloys with different levels of Cr and Mo additions at 950 °C and 1100 °C by using phase extraction, X-ray diffraction, scanning electron microscope and high resolution transmission electron microscopy.more » The experimental results indicated that the high level additions of Cr and Mo promoted the formation of σ phase and P phase, respectively. The amount of σ phase was much higher than that of P phase after long term exposure at 950 °C and 1100 °C. The sheet-like σ phase existed in the alloy with higher Cr addition after thermal exposure at 950 °C and 1100 °C for 1000 h, while the needle-like P phase precipitated in high Mo content alloy after thermal exposure at 1100 °C for 1000 h and the intergrowth of σ phase and P phase was observed after thermal exposure at 950 °C for 500 h. Both the σ phase and P phase were enriched in Re, W, Cr and Mo, but the σ phase contained more Re and Cr while the P phase contained more Mo and Ni, and Ru was found in both phases. The nucleation of σ phase was much easier than P phase due to the more ledge steps in the interfacial structure between σ phase and matrix, as well as the higher partitioning ratios of Re, Cr and Mo. This study is helpful to understand the microstructural evolution of σ phase and P phase, and to optimize the alloy design in Ru-containing superalloys. - Highlights: •Microstructures of σ phase and P phase were characterized in detail. •Cr and Mo influenced the precipitation of σ phase and P phase, respectively. •Partitioning ratios and interfacial relationship decided precipitation behaviors.« less

  19. Crystal plasticity analysis of stress partitioning mechanisms and their microstructural dependence in advanced steels

    DOE PAGES

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less

  20. Phase Transformations and Microstructural Evolution: Part II

    DOE PAGES

    Clarke, Amy Jean

    2015-10-30

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less

  1. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Koopman, Mark; Xia, Yang; Paramore, James; Ravi Chandran, K. S.; Ren, Yang; Lu, Jun

    2015-12-01

    The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).

  2. Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo

    2015-10-01

    Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.

  3. Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-01-01

    In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less

  4. Thin films as a platform for understanding the conversion mechanism of FeF2 cathodes in lithium-ion microbatteries

    NASA Astrophysics Data System (ADS)

    Santos-Ortiz, Reinaldo

    Conversion material electrodes such as FeF2 possess the potential to deliver transformative improvements in lithium ion battery performance because they permit a reversible change of more than one Li-ion per 3d metal cation. They outperform current state of the art intercalation cathodes such as LiCoO2, which have volumetric and gravimetric energy densities that are intrinsically limited by single electron transfer. Current studies focus on composite electrodes that are formed by mixing with carbon (FeF 2-C), wherein the carbon is expected to act as a binder to support the matrix and facilitate electronic conduction. These binders complicate the understanding of the electrode-electrolyte interface (SEI) passivation layer growth, of Li agglomeration, of ion and electron transport, and of the basic phase transformation processes under electrochemical cycling. This research uses thin-films as a model platform for obtaining basic understanding to the structural and chemical foundations of the phase conversion processes. Thin film cathodes are free of the binders used in nanocomposite structures and may potentially provide direct basic insight to the evolution of the SEI passivation layer, electron and ion transport, and the electrochemical behavior of true complex phases. The present work consisted of three main tasks (1) Development of optimized processes to deposit FeF2 and LiPON thin-films with the required phase purity and microstructure; (2) Understanding their electron and ion transport properties and; (3) Obtaining insight to the correlation between structure and capacity in thin-film microbatteries with FeF2 thin-film cathode and LiPON thin-film solid electrolyte. Optimized pulsed laser deposition (PLD) growth produced polycrystalline FeF2 films with excellent phase purity and P42/mnm crystallographic symmetry. A schematic band diagram was deduced using a combination of UPS, XPS and UV-Vis spectroscopies. Room temperature Hall measurements reveal that as-deposited FeF2 is n-type with an electron mobility of 0.33 cm 2/V.s and a resistivity was 0.255 O.cm. The LiPON films were deposited by reactive sputtering in nitrogen, and the results indicate that the ionic conductivity is dependent on the amount of nitrogen incorporated into the film during processing. The highest ionic conductivity obtained was 1.431.9E-6 Scm-1 and corresponded to a chemical composition of Li1.9PO3.3N.21.

  5. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    NASA Astrophysics Data System (ADS)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  6. SABRE: Dark matter annual modulation detection in the northern and southern hemispheres

    NASA Astrophysics Data System (ADS)

    Tomei, C.

    2017-02-01

    SABRE (Sodium-iodide with Active Background REjection) is a new NaI(Tl) experiment designed to search for galactic Dark Matter through the annual modulation signature. SABRE will consist of highly pure NaI(Tl) crystals operated in an active liquid scintillator veto. The SABRE experiment will follow a two-phase approach. In the first phase, one high-purity NaI(Tl) crystal will be operated at LNGS in an active liquid scintillator veto with the goal of demonstrating backgrounds low enough for a sensitive test of the DAMA/LIBRA result. An unprecedented radio-purity for both the NaI powder and the crystal growth will be needed to achieve this goal. The second phase will consist in building two high-purity NaI(Tl) detector arrays, with a total mass of about 50 kg each, located at LNGS and in the Stawell Gold Mine in Australia. The operation of twin full-scale experiments in both the northern and the southern hemispheres will strengthen the reliability of the result against any possible seasonal systematic effect.

  7. Influence of Solution Treatment Duration on Microstructural Features of an Industrial Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy

    NASA Astrophysics Data System (ADS)

    Cojocaru, Vasile Dănuţ; Răducanu, Doina; Angelescu, Mariana Lucia; Vintilă, Adrian Nicolae; Şerban, Nicolae; Dan, Ioan; Cojocaru, Elisabeta Mirela; Cinca, Ion

    2017-08-01

    The microstructural changes induced by solution treatment of an industrial forged F53 Super Duplex Stainless Steel alloy were studied, in order to emphasize how component phases are influenced by heat treatment temperature and duration. The solution treatment was done at a temperature of 1100°C, with variable holding times: 0.6 ks (10 min), 3.6 ks (60 min) and 10.8 ks (180 min). Scanning electron microscopy-electron backscattered diffraction was used as main characterization technique, to obtain and analyse data referring to microstructural features, such as: nature and morphology of constituent phases, average grain-size and grain misorientation. It was shown that in all studied cases the microstructure consisted of a mixture of about 45% δ-Fe (ferrite) and 55% γ-Fe (austenite). Besides δ-Fe and γ-Fe phases, other phases were also identified, such as τ-phase (chromium-iron carbide), σ-phase (chromium-iron) and δ-(Cr-Fe) (ferrite).

  8. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  9. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  10. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding.

    PubMed

    Kwan, Charles C F; Wang, Zhirui

    2013-08-13

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.

  11. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding

    PubMed Central

    Kwan, Charles C.F.; Wang, Zhirui

    2013-01-01

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446

  12. Phase Transformations and Microstructural Evolution: Part I

    DOE PAGES

    Clarke, Amy Jean

    2015-08-29

    The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less

  13. Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Vuong Van; Nguyen, Truong Xuan

    2018-03-01

    Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.

  14. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spallation studies on shock loaded uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.

    1997-12-31

    Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three placesmore » in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.« less

  16. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less

  17. Tin Sulfide Phase Exploration: Dependence of Optoelectronic Properties on Microstructural Growth and Chemical Variations in Thin Film Material

    NASA Astrophysics Data System (ADS)

    Banai, Rona Elinor

    Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that conductivity type was not determined. Titanium, molybdenum, and aluminum contacts were tested for Ohmic and Schottky behavior using transmission line measurements. The complexity of its microstructure and flexibility in formation of varying phase and altered phase presents challenges to its use as a PV absorber.

  18. Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal

    NASA Astrophysics Data System (ADS)

    Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.

    2018-03-01

    The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.

  19. Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels

    NASA Astrophysics Data System (ADS)

    Anderson, T. D.; Dupont, J. N.; Perricone, M. J.; Marder, A. R.

    2007-01-01

    The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials.

  20. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2004-08-01

    Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

  1. Effect of Co Addition on the Microstructure, Martensitic Transformation and Shape Memory Behavior of Fe-Mn-Si Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Sujata, M.; Gouthama; Ray, Ranjit K.

    2013-01-01

    The effect of Co addition has been studied in Fe-30Mn-6Si- xCo ( x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (γ) up to 5 pct Co and beyond that becomes two-phase comprising γ and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic π-phases. The forward γ-ɛ martensite transformation start temperature ( M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ɛ-γ reverse transformation start temperature ( A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ɛ martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ɛ martensite.

  2. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals

    NASA Astrophysics Data System (ADS)

    Yu, Yifu; Nam, Gwang-Hyeon; He, Qiyuan; Wu, Xue-Jun; Zhang, Kang; Yang, Zhenzhong; Chen, Junze; Ma, Qinglang; Zhao, Meiting; Liu, Zhengqing; Ran, Fei-Rong; Wang, Xingzhi; Li, Hai; Huang, Xiao; Li, Bing; Xiong, Qihua; Zhang, Qing; Liu, Zheng; Gu, Lin; Du, Yonghua; Huang, Wei; Zhang, Hua

    2018-06-01

    Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T'-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T'-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T'-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.

  3. Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2017-12-01

    Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

  4. Microstructure and thermal characterization of dense bone and metals for biomedical use

    NASA Astrophysics Data System (ADS)

    Rodríguez, G. Peña; Calderón, A.; Hernández, R. A. Muñoz; Orea, A. Cruz; Méndez, M.; Sinencio, F. Sánchez

    2000-10-01

    We present a microstructural study and thermal diffusivity measurements at room temperature in two different sections of bull dense bone, bull bone and commercial hydroxyapatite, the last two in powder form. A comparison was realised between these measured values and those obtained from metallic samples frequently used in implants, as high purity titanium and 316L stainless steel. Our results show that the porosity and its orientation in the bone are two important factors for the heat flux through the bone. On the other hand, we obtained that the hydroxyapatite, in compact powder form, presents a thermal diffusivity value close to those obtained for the samples of bone which gives a good thermal agreement between these materials. Finally, it was obtained at one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and hydroxyapatite being this difference greater in titanium than in stainless steel.

  5. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    DOE PAGES

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less

  6. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  7. Topologically Close-packed Phase Formation in High Entropy Alloys: A Review of Calphad and Experimental Results

    NASA Astrophysics Data System (ADS)

    Guruvidyathri, K.; Hari Kumar, K. C.; Yeh, J. W.; Murty, B. S.

    2017-11-01

    One of the major challenges in high entropy alloy (HEA) research is to obtain single-phase solid solutions by proper selection of components and processing techniques. Often one encounters situations where topologically close-packed (TCP) phases are present in the HEA microstructures. TCP phases are a class of intermetallic phases that are in general considered undesirable. The ability to predict these phases in HEAs using the Calphad (CALculation of PHAse Diagrams) method has been shown to accelerate the identification of promising compositions. In this review, an analysis of the reported Calphad studies and corresponding microstructural information on HEAs is done to evaluate the success of the Calphad method for TCP phases. A total of 52 alloys with 123 post-heat treatment microstructures reported so far have been compared. Challenges and issues in experiments and calculations are brought out with a possible way forward.

  8. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Abraham, A. Godlyn; Manikandan, A.; Manikandan, E.; Vadivel, S.; Jaganathan, S. K.; Baykal, A.; Renganathan, P. Sri

    2018-04-01

    In this study, spinel magnesium cobalt ferrite (CoxMg1-xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanocomposites were synthesized successfully by modified sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as the source of divalent (Mg2+ and Co2+) and trivalent (Fe3+) cations, respectively and urea were used as the reducing (fuel) agent. The effects of cobalt ions on morphology, structural, optical, magnetic and photo-catalytic properties of spinel CoxMg1-xFe2O4 nanocomposites were investigated. Various characterization methods, including X-ray powder diffraction (XRD), high resolution scanning electron microscope (HR-SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and photo-catalytic degradation (PCD) activity were used to study the phase purity, microstructure, particle size, elemental composition, functional group determination, band gap calculation, magnetic properties and degradation efficiency of nanoparticles, respectively. The observed results showed that the final products consists cubic spinel phase with sphere-like nanoparticles morphologies. Furthermore, spinel Co0.6Mg0.4Fe2O4 nanocomposite showed highest PCD efficiency (98.55%) than other composition of ferrite nanoparticles.

  9. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.

    PubMed

    Guitar, A; Vigna, G; Luppo, M I

    2009-04-01

    Thermohydrogen processing (THP), a technique in which hydrogen is used as a temporary alloying element, can refine the microstructure and improve the final mechanical properties of the Ti-6 Al-4V alloy. THP allows microstructural modification of titanium alloys near net shape such as biomaterial components obtained by powder metallurgy and castings, since it does not require mechanical working. Two THP, called THP-A and THP-B, have been evaluated in samples of Ti-6Al-4V with a coarse and lamellar microstructure typical of castings and powder metallurgy. The THP-A is based in the eutectoid decomposition of the beta(H) phase to alpha phase and hydride phase. The THP-B is based in the isothermal decomposition of alpha('') martensite phase, obtained by quenching of hydrogenated samples. The refinement of the microstructure due to THP has been evaluated by means of optical and electron microscopy. Tensile tests showed that while both processes were able to increase the strength of the alloy as compared with the starting material, the ductility in samples subjected to THP-B was severely reduced.

  10. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGES

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  11. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less

  12. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-08-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less

  13. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    NASA Technical Reports Server (NTRS)

    Carro, G.; Flanagan, W. F.

    1992-01-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.

  14. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  15. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    NASA Astrophysics Data System (ADS)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at the W.M. Keck Center for 3D Innovation was used for fabrication due to the limited amount of niobium powder available. Sifting of the material for reuse was done inside a glovebox conditioned to sustain a positive pressure using nitrogen gas and help in delaying moisture adsorption by the powder. The initial step in the research was the optimization of the fabrication parameters to obtain nearly fully dense (% Relative density > 99%) components followed by the fabrication of application-specific parts to be used for measuring mechanical and physical properties. Such parts, which included a probe or antenna measuring ˜85mm tall, were used in the characterization of the thermal conductivity and the residual resistivity ratio of the material; both properties are important in SRF applications. The purity of the material was monitored at different stages from the niobium stock, to the plasma atomized powder, and finally, in the EBM-fabricated parts. For the niobium stock, niobium powder, and in EBM-fabricated parts, chemical analysis was performed using ICP fusion and LECO combustion. A residual gas analyzer (RGA) was used to monitor the vacuum environment during EBM fabrication. X-ray diffraction (XRD) was also used to assess the purity of EBM-fabricated niobium. A second milestone was the characterization of the tensile properties of EBM-fabricated niobium for the first time. These properties included the average yield and ultimate tensile strengths that measured 140MPa and 255MPa respectively. Measurements of the percent elongation were done using visual feedback from a video camera. Similarly, a boundary detection algorithm was used to approximate the percent reduction in area, because only rectangular specimens were available for experimentation. The measured values averaged 34% elongation and 98% reduction in area. Microscopy was also employed to characterize the microstructure of the EBM niobium and SEM images of the fractured specimens utilized in a fractography analysis. The microstructure observed in the horizontal plane of reference was of nearly equiaxed grains with a measured size of roughly 250mum. In the vertical plane, the microstructure was of columnar grains that elongated parallel to the EBM build direction. The fractography images revealed the ductile nature of the material with the presence of micro-void coalescence in the fracture surface. The mechanical properties and microstructure of EBM-fabricated niobium were compared against those of reactor grade niobium. As will be detailed later, the reactor grade niobium had yield and ultimate tensile strengths of 135MPa and 205MPa respectively. The percent elongation was measured at 45.2% and the percent reduction in area at 97.2% for the reactor grade niobium.

  16. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  17. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography.

    PubMed

    Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang

    2010-08-01

    Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.

  18. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  19. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  20. Electroextraction of boron from boron carbide scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less

  1. Effect of Reaction Period on Stoichiometry, Phase Purity, and Morphology of Hydrothermally Synthesized Cu2NiSnS4 Nanopowder

    NASA Astrophysics Data System (ADS)

    Babu, G. Sahaya Dennish; Shajan, X. Sahaya; Alwin, S.; Ramasubbu, V.; Balerao, Gopal M.

    2018-01-01

    The effect of reaction period on the phase purity, morphology, and stoichiometry of Cu2NiSnS4 (CNTS) nanopowder prepared by hydrothermal method has been investigated. Polyvinylpyrrolidone (PVP) and thioglycolic acid were used as capping agent and sulfur source, respectively. The presence of cubic stannite crystal structure and its phase purity were confirmed by powder x-ray diffraction analysis and Raman spectroscopy. Furthermore, the morphological, crystallographic, and optical features of the prepared CNTS nanopowder were characterized by field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible (UV-Vis) spectrophotometry. The elemental ratios of Cu/(Ni + Sn) and Ni/Sn showed that the stoichiometry of CNTS was maintained for the compounds synthesized at 230°C with reaction period of 24 h. The occurrence of Cu+, Ni2+, Sn4+, and S2- was evaluated by x-ray photoelectron spectroscopy. The prepared material was used as counter electrode in a dye-sensitized solar cell (DSSC) as an alternative to platinum (Pt), resulting in conversion efficiency of 0.92%. These results indicate that CNTS is a prospective material to replace conventional Pt-based counter electrodes in DSSCs.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halevy, I.; Zamir, G; Winterrose, M

    The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a {approx} 0.632) to Hexagonal (c/a {approx} 1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction {beta}-Ti/{alpha}-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The {alpha} phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume changemore » is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released.« less

  3. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, L.A. Jr.; Jones, E.M. Jr.; Hearn, D.

    1984-05-08

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150 to 250 F at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C[sub 3] to C[sub 6] and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom. 2 figs.

  4. Process for producing high purity isoolefins and dimers thereof by dissociation of ethers

    DOEpatents

    Smith, Jr., Lawrence A.; Jones, Jr., Edward M.; Hearn, Dennis

    1984-01-01

    Alkyl tertiary butyl ether or alkyl tertiary amyl ether is dissociated by vapor phase contact with a cation acidic exchange resin at temperatures in the range of 150.degree. to 250.degree. F. at LHSV of 0.1 to 20 to produce a stream consisting of unreacted ether, isobutene or isoamylene and an alcohol corresponding to the alkyl radical. After the alcohol is removed, the ether/isoolefin stream may be fractionated to obtain a high purity isoolefin (99+%) or the ether/isoolefin stream can be contacted in liquid phase with a cation acidic exchange resin to selectively dimerize the isoolefin in a highly exothermic reaction, followed by fractionation of the dimerization product to produce high purity diisoolefin (97+%). In the case where the alkyl is C.sub.3 to C.sub.6 and the corresponding alcohol is produced on dissociation of the ether, combined dissociation-distillation may be carried out such that isoolefin is the overhead product and alcohol the bottom.

  5. Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Li, R.; Stoica, M.; Liu, G.; Eckert, J.

    2010-07-01

    Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.

  6. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  7. Phase transformations in steels: Processing, microstructure, and performance

    DOE PAGES

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  8. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  9. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  10. Grain Size and Phase Purity Characterization of U 3Si 2 Pellet Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoggan, Rita E.; Tolman, Kevin R.; Cappia, Fabiola

    Characterization of U 3Si 2 fresh fuel pellets is important for quality assurance and validation of the finished product. Grain size measurement methods, phase identification methods using scanning electron microscopes equipped with energy dispersive spectroscopy and x-ray diffraction, and phase quantification methods via image analysis have been developed and implemented on U 3Si 2 pellet samples. A wide variety of samples have been characterized including representative pellets from an initial irradiation experiment, and samples produced using optimized methods to enhance phase purity from an extended fabrication effort. The average grain size for initial pellets was between 16 and 18 µm.more » The typical average grain size for pellets from the extended fabrication was between 20 and 30 µm with some samples exhibiting irregular grain growth. Pellets from the latter half of extended fabrication had a bimodal grain size distribution consisting of coarsened grains (>80 µm) surrounded by the typical (20-30 µm) grain structure around the surface. Phases identified in initial uranium silicide pellets included: U 3Si 2 as the main phase composing about 80 vol. %, Si rich phases (USi and U 5Si 4) composing about 13 vol. %, and UO 2 composing about 5 vol. %. Initial batches from the extended U 3Si 2 pellet fabrication had similar phases and phase quantities. The latter half of the extended fabrication pellet batches did not contain Si rich phases, and had between 1-5% UO 2: achieving U 3Si 2 phase purity between 95 vol. % and 98 vol. % U 3Si 2. The amount of UO 2 in sintered U 3Si 2 pellets is correlated to the length of time between U 3Si 2 powder fabrication and pellet formation. These measurements provide information necessary to optimize fabrication efforts and a baseline for future work on this fuel compound.« less

  11. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  12. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugce; Rollett, Anthony D.

    2018-02-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  13. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rzychoń, Tomasz, E-mail: tomasz.rzychon@polsl.pl; Kiełbus, Andrzej; Lityńska-Dobrzyńska, Lidia

    2013-09-15

    This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al{sub 11}RE{sub 3}phase, polyhedral precipitates of the Al{sub 2}RE phase and Al{sub 10}RE{sub 2}Mn{sub 7} phase. After annealing at 175 °C for 3000 h, no changes inmore » the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al{sub 11}RE{sub 3} phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys.« less

  14. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2017-12-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  15. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  16. Phase-field simulation of microstructure formation in technical castings - A self-consistent homoenthalpic approach to the micro-macro problem

    NASA Astrophysics Data System (ADS)

    Böttger, B.; Eiken, J.; Apel, M.

    2009-10-01

    Performing microstructure simulation of technical casting processes suffers from the strong interdependency between latent heat release due to local microstructure formation and heat diffusion on the macroscopic scale: local microstructure formation depends on the macroscopic heat fluxes and, in turn, the macroscopic temperature solution depends on the latent heat release, and therefore on the microstructure formation, in all parts of the casting. A self-consistent homoenthalpic approximation to this micro-macro problem is proposed, based on the assumption of a common enthalpy-temperature relation for the whole casting which is used for the description of latent heat production on the macroscale. This enthalpy-temperature relation is iteratively obtained by phase-field simulations on the microscale, thus taking into account the specific morphological impact on the latent heat production. This new approach is discussed and compared to other approximations for the coupling of the macroscopic heat flux to complex microstructure models. Simulations are performed for the binary alloy Al-3at%Cu, using a multiphase-field solidification model which is coupled to a thermodynamic database. Microstructure formation is simulated for several positions in a simple model plate casting, using a one-dimensional macroscopic temperature solver which can be directly coupled to the microscopic phase-field simulation tool.

  17. Deformation-Induced Microstructural Banding in TRIP Steels

    NASA Astrophysics Data System (ADS)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-05-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  18. Deformation-Induced Microstructural Banding in TRIP Steels

    NASA Astrophysics Data System (ADS)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-07-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  19. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    NASA Technical Reports Server (NTRS)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  20. Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.

    Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less

  1. Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes

    DOE PAGES

    Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.

    2018-01-12

    Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less

  2. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  3. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  4. Two-Phase Eutectic Growth in Al-Cu and Al-Cu-Ag

    NASA Astrophysics Data System (ADS)

    Senninger, Oriane; Peters, Matthew; Voorhees, Peter W.

    2018-02-01

    The microstructure developed by two-phase lamellar eutectics (α ) -(θ {-Al}2{Cu}) in Al-Cu and Al-Cu-Ag alloys is analyzed. A model of two-phase eutectic growth in multicomponent alloys is used to determine the scaling law of the eutectic microstructure using the alloy thermophysical properties. The application of the model to these alloys shows that the addition of Ag to Al-Cu alloys does not significantly change the length scale of the microstructure, which is in agreement with previous experimental studies. This is explained by the combined phenomena of the decrease in interface energies with the addition of Ag and the superheating of the (α ) phase interface induced by the Ag composition profile.

  5. Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses

    NASA Astrophysics Data System (ADS)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing

    2018-04-01

    We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.

  6. A novel method for the determination of chemical purity and assay of menaquinone-7. Comparison with the methods from the official USP monograph.

    PubMed

    Jedynak, Łukasz; Jedynak, Maria; Kossykowska, Magdalena; Zagrodzka, Joanna

    2017-02-20

    An HPLC method with UV detection and separation with the use of a C30 reversed phase analytical column for the determination of chemical purity and assay of menaquinone-7 (MK7) in one chromatographic run was developed. The method is superior to the methods published in the USP Monograph in terms of selectivity, sensitivity and accuracy, as well as time, solvent and sample consumption. The developed methodology was applied to MK7 samples of active pharmaceutical ingredient (API) purity, MK7 samples of lower quality and crude MK7 samples before purification. The comparison of the results revealed that the use of USP methodology could lead to serious overestimation (up to a few percent) of both purity and MK7 assay in menaquinone-7 samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    NASA Astrophysics Data System (ADS)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  8. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  9. Stable Eutectoid Transformation in Nodular Cast Iron: Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2017-01-01

    This paper presents a new microstructural model of the stable eutectoid transformation in a spheroidal cast iron. The model takes into account the nucleation and growth of ferrite grains and the growth of graphite spheroids. Different laws are assumed for the growth of both phases during and below the intercritical stable eutectoid. At a microstructural level, the initial conditions for the phase transformations are obtained from the microstructural simulation of solidification of the material, which considers the divorced eutectic and the subsequent growth of graphite spheroids up to the initiation of the stable eutectoid transformation. The temperature field is obtained by solving the energy equation by means of finite elements. The microstructural (phase change) and macrostructural (energy balance) models are coupled by a sequential multiscale procedure. Experimental validation of the model is achieved by comparison with measured values of fractions and radius of 2D view of ferrite grains. Agreement with such experiments indicates that the present model is capable of predicting ferrite phase fraction and grain size with reasonable accuracy.

  10. Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    NASA Astrophysics Data System (ADS)

    Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.

    2017-07-01

    Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.

  11. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE PAGES

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    2015-06-21

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  12. Simultaneous effect of crystal lattice and non magnetic substitution on magnetic properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Pradhan, Lagen Kumar; Pandey, Rabichandra; Kar, Manoranjan

    2018-05-01

    The aluminium doped barium hexaferrite BaFe12-xAlxO19 with x =0.0, 1.0, 2.0, 4.0 and 6.0 have been synthesized by the sol-gel method to modify the magnetic properties for technological applications. The crystal structure and phase purity of all the samples have been explored by employing the X-ray diffraction (XRD) technique. It confirms that the sample is nanocrystalline, hexagonal symmetry and all the intense peaks could be indexed to the P63/mmc space group. The obtained lattice parameters from the XRD analysis decrease with the increase in Al3+ content in the samples. The microstructural morphology and particle sizes of all samples were studied by using the Field Emission Scanning Electron Microscopy (FESEM-Hitachi-S4800) technique. The magnetic hysteresis (M-H) loops measurement has been carried out at room temperature by employing the vibrating sample magnetometer (VSM) over a field range of +20 kOe to -20 kOe. The magnetic hysteresis (M-H) loops revealed the ferromagnetic (hard magnetic materials) nature of the samples and, analyzed by using the Law of Approach to Saturation.

  13. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Jason Michael; Lessing, Paul Alan; Hoggan, Rita Elaine

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U 3Si 2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U 3Si 2 has been optimized and high phase purity U 3Si 2 has been successfully produced. Results are presentedmore » from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm 3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.« less

  14. Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy.

    PubMed

    Soni, V; Senkov, O N; Gwalani, B; Miracle, D B; Banerjee, R

    2018-06-11

    Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an "inverted" BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.

  15. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    DOE PAGES

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-09-15

    Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less

  16. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  17. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  18. Can biological homochirality result from a phase transition?

    PubMed

    Figureau, A; Duval, E; Boukenter, A

    1995-06-01

    The problem of chiral purity in living organisms is still one of the prominent difficulties in the study of the origins of life. In particular the parity non-conservation known to occur in weak interactions could not be related to this lack of symmetry: these physical forces, though universal, are very weak and up to now no amplification process had been proposed. In 1991, A. Salam remarked that, due to the attractive character of the parity violating force in electro-weak interactions, a phase transition at low temperature should exist, leading eventually to enantiomeric purity. We undertook then a series of experimental tests, looking for a sizeable change in the optical activity of cystine molecules. We found no evidence for the phase transition down to 0.01 K. The interpretation of these negative results will be discussed, and future experiments proposed.

  19. Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels

    PubMed Central

    Nagarkar, Radhika P.; Schneider, Joel P.

    2009-01-01

    Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061

  20. In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam

    Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less

  1. In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint

    DOE PAGES

    Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...

    2017-11-20

    Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less

  2. Fate of Colored Smoke Dyes

    DTIC Science & Technology

    1992-01-01

    4.13] have been applied to their estimation. This approach has the advantages of sensitivity and of not requiring high purity and known structures...Chrom absorbance detector, and an Alltech Econosil C-18 (10 micrometer) column (4.6 mm X 25 cm with guard column). The mobile phase, HPLC-grade methanol...water partition coefficient or vice versa. The HPLC method is of similar precision and has the advantage that known structure and purity of the dye are

  3. Realistic micromechanical modeling and simulation of two-phase heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Sreeranganathan, Arun

    This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyongwoon

    Microstructural characteristics of the CGHAZ (coarse grained heat affected zone) made of the 2.25Cr-1Mo-V-Ti material for the thermal power plant boiler tube were discussed using the technique of tint etching. To conduct the micro structural characterization, the sample on which CGHAZ was produced by using a high temperature thermal cycle simulator, Gleeble 3500 equipment was used for comparative analyses using the existing Nital etching (ASTM E407-74) and the alkaline etching (ASTM E40785). The latter was used to observe a specific phase. For the microstructure on which the alkaline etching was experimented, the shape of a black strip (Ghost microstructure) inmore » a few microns was observed, which was not observed from the Nital etching. It was found from the phase identifications based EPMA, EBSD and TEM experiments that the image of the black strip in a few microns represented the alpha phase in which C, Cr and Mo became segregated. In addition, it was verified that austenite and M{sub 23}C{sub 6} phase were present around the segregated zone. Based on such results, the mechanism by which the image of the black strip in a few microns was formed at the CGHAZ. In this study, we have investigated the mechanism of the appeared black strip in the CGHAZ. - Highlights: •Ghost microstructure was observed which was not observed from the nital etching. •Ghost microstructure has high concentrations of carbon and molybdenum than matrix. •Schematic illustration proposed of why Ghost microstructure was generated. •Ghost microstructure caused by partial dissolution of M{sub 23}C{sub 6} precipitation.« less

  5. Behavior of grain boundary chemistry and precipitates upon thermal treatment of controlled purity alloy 690

    NASA Astrophysics Data System (ADS)

    Angeliu, Thomas M.; Was, Gary S.

    1990-08-01

    Grain boundary composition and carbide composition and structure were characterized for various microstructures of controlled purity alloy 690. Heat treatments produced varying degrees of grain boundary chromium depletion and precipitate distributions which were characterized via scanning transmission electron microscopy (STEM). Convergent beam electron diffraction revealed that the dominant carbide is M23C6, and energy dispersive X-ray analysis (EDAX) determined that the metallic content was about 90 at. pct chromium. A discontinuous precipitation reaction was observed and is attributed to a high degree of carbon supersaturation. Grain boundary composition measurements confirm that chromium depletion is controlled by volume diffusion of chromium to chromium-rich grain boundary carbides in the temperature range of 873 to 1073 K. Grain boundary chromium levels as low as 18.8 at. pct were obtained by thermal treatment at 873 K for 250 hours and 973 K for 1 hour. A thermodynamic and kinetic model developed for alloy 600 was modified to describe the development of the chromium depletion profile in alloy 690 during thermal treatment. Experimentally measured chromium profiles agree well with the model results for the dependence of the chromium depletion zone width and depth on various input parameters. The establishment of the model for alloy 690 allows the chromium depletion zone width and depth to be computed as a function of alloy composition, grain size, and temperature. The chromium depletion profiles and the precipitate structure and composition of controlled purity 690 are compared to those of controlled purity 600. A thermodynamic analysis of the carbide stability indicates that other factors, such as favorable orientation relationships, play an important role in controlling the precipitation of Cr23C6 in nickel-base alloys.

  6. Plasma extraction rate enhancement scheme for a real-time and continuous blood plasma separation device using a sheathless cell concentrator

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Hyun; Kim, Kyongtae; Kim, Yong-Jun

    2018-02-01

    Microfluidic devices for plasma extraction are popular because they offer the advantage of smaller reagent consumption compared to conventional centrifugations. The plasma yield (volume percentage of plasma that can be extracted) is an important factor for diagnoses in microdevices with small reagent consumptions. However, recently designed microfluidic devices tend to have a low plasma yield because they have been optimized to improve the purity of extracted plasma. Thus, these devices require large amounts of reagents, and this complexity has eliminated the advantage of microfluidic devices that can operate with only small amounts of reagents. We therefore propose a continuous, real-time, blood plasma separation device, for plasma extraction rate enhancements. Moreover, a blood plasma separation device was designed to achieve improved plasma yields with high-purity efficiency. To obtain a high plasma yield, microstructures were placed on the bottom side of the channel to increase the concentration of blood cells. Plasma separation was then accomplished via microfluidic networks based on the Zweifach-Fung effect. The proposed device was fabricated based on the polydimethylsiloxane molding process using the SU-8 microfluidic channel for the fabrication of the mold and bottom structures. Human blood diluted in a phosphate buffered saline solution (25% hematocrit) was injected into the inlet of the device. The purity efficiencies were approximately equal to 96% with a maximum of 96.75% at a flow rate of 2 µl min-1, while the plasma yield was approximately 59% with a maximum of 59.92% at a flow rate of 4 µl min-1. Compared to results obtained using other devices, our proposed device could obtain comparable or higher plasma purity and a high plasma yield.

  7. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee

    Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during homogenization heat treatment at both length scales which include the (i) dissolution and transformation of the as-cast secondary phases; (ii) precipitation of dispersoids; and (iii) reprecipitation of some of the secondary phases during post-homogenization cooling. The kinetics of the phase transformations are mostly diffusion controlled except for the eta to S phase transformation in 7XXX alloys which is interface reaction rate controlled which has been implemented using a novel approach. Recommendations for homogenization temperature, time, cooling rates and compositions are made for Al-Si-Mg-Fe-Mn and Al-Zn-Cu-Mg-Zr alloys. The numerical model developed has been applied for a through process solidification-homogenization modeling of a Direct-Chill cast AA7050 cylindrical billet to study the radial variation of microstructure after solidification, homogenization and post-homogenization cooling.

  8. Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties, and Phase Shifting Ability of Ba(1-x) Sr(x)TiO3

    DTIC Science & Technology

    1993-09-01

    AD-A271 756 ARMY RESEARCH LABORATORY Investigation of the Effect of Various Oxide and Flouride Additives on the Microstructure, Electronic Properties ...NUMBERS Investigation of the Effect of Various Oxide and Fluoride Additives on the Microstructure, Electronic Properties , and Phase Shifting Ability of...dielectric properties . tunability. hysteresis. and grain size have been investigated. The homogeneity of the doped materials has been verified using

  9. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    PubMed

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  10. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  11. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  12. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.A. Christini; R.K. Dawless; S.P. Ray

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.« less

  13. Rapid isolation procedure for Δ9-tetrahydrocannabinolic acid A (THCA) from Cannabis sativa using two flash chromatography systems.

    PubMed

    Wohlfarth, Ariane; Mahler, Hellmut; Auwärter, Volker

    2011-10-15

    Two isolation procedures for Δ9-tetrahydrocannabinolic acid A (THCA), the biogenetic precursor in the biosynthesis of the psychoactive Δ9-tetrahydrocannabinol (THC) in the cannabis plant, are presented. Two flash chromatography systems that can be used independently from each other were developed to separate THCA from other compounds of a crude cannabis extract. In both systems UV absorption at 209 and 270 nm was monitored. Purity was finally determined by HPLC-DAD, NMR and GC-MS analysis with a focus on the impurity THC. System 1 consisted of a normal phase silica column (120 g) as well as cyclohexane and acetone--both spiked with the modifier pyridine--as mobile phases. Gradient elution was performed over 15 min. After the chromatographic run the fractions containing THCA fractions were pooled, extracted with hydrochloric acid to eliminate pyridine and evaporated to dryness. Loading 1800 mg cannabis extract yielded 623 mg THCA with a purity of 99.8% and a THC concentration of 0.09%. System 2 was based on a reversed-phase C18 column (150 g) combined with 0.55% formic acid and methanol as mobile phases. A very flat gradient was set over 20 minutes. After pooling the THCA-containing fractions methanol was removed in a rotary evaporator. THCA was re-extracted from the remaining aqueous phase with methyl tert-butyl ether. The organic phase was finally evaporated under high vacuum conditions. Loading 300 mg cannabis extract yielded 51 mg THCA with a purity of 98.8% and a THC concentration of 0.67%. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting

    NASA Astrophysics Data System (ADS)

    Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho

    2018-04-01

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.

  15. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Myeong; Kim, Sung-Joon; Kang, Nam Hyun; Cho, Kyung-Mox; Suh, Dong-Woo

    2009-12-01

    The effects of annealing conditions on microstructural evolution and mechanical properties have been investigated in low carbon, manganese TRIP (Mn TRIP) steel based on a 0.12C-6Mn-0.5Si-3Al alloy system. The microstructure of cold-rolled sheet subjected to annealing at 760 °C to 800 °C for 30 s to 1800 s consists of a recrystallized ferrite matrix and fine-grained austenite with a phase fraction of 25 % to 35 %. Variation of the annealing conditions remarkably influenced the characteristics of constituent phases and thus affected the tensile strength and elongation. Optimization of microstructural parameters such as grain size and fraction of constituent phases, which control the yield strength, overall work hardening, and the kinetics of strain-induced martensite formation, is thus critical for obtaining an exceptional mechanical balance of the alloy.

  16. Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Bales, Ben; Pollock, Tresa; Petzold, Linda

    2017-06-01

    Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.

  17. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  18. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less

  19. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.

  20. Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V

    NASA Astrophysics Data System (ADS)

    Worth, Brian D.; Jones, J. Wayne; Allison, John E.

    1995-11-01

    The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.

  1. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation

    NASA Astrophysics Data System (ADS)

    Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.

    2017-01-01

    The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.

  2. Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao

    2018-06-01

    The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

  3. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  4. 3D microstructural evolution of primary recrystallization and grain growth in cold rolled single-phase aluminum alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Zöllner, Dana; Field, David P.

    2018-04-01

    Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.

  5. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part I: Microstructural Predictions Based on a Subgroup Relation Between Phases

    PubMed Central

    Bendersky, L. A.; Roytburd, A.; Boettinger, W. J.

    1993-01-01

    Possible paths for the constant composition coherent transformation of BCC or B2 high temperature phases to low temperature HCP or Orthorhombic phases in the Ti-Al-Nb system are analyzed using a sequence of ciystallographic structural relationships developed from subgroup symmetry relations. Symmetry elements lost in each step of the sequence determine the possibilities for variants of the low symmetry phase and domains that can be present in the microstructure. The orientation of interdomain interfaces is determined by requiring the existence of a strain-free interface between the domains. Polydomain structures are also determined that minimize elastic energy. Microstructural predictions are made for comparison to experimental results given by Benderslcy and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. PMID:28053487

  6. Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Nicholson, K. S.; Nawaz, Q.; Peukert, W.; Distaso, M.

    2017-07-01

    Kesterites (CZT(S,Se)4) emerged as a favourable photovoltaic material, leading to solar cell efficiencies as high as 12.7%. The development of sustainable roll-to-roll printing processes that make use of Cu2ZnSnS4 (CZTS) nanoparticle inks requires the proper design of synthetic approaches and the understanding of the relation between process parameters and product purity. In the current paper, we developed this relationship by calculating a specific energy factor. A microwave-assisted synthetic method that operates at atmospheric pressure and makes use of eco-friendly solvents is established. Four solvents, i.e. ethylene glycol (EG), diethylene glycol (di-EG), triethylene glycol (tri-EG) and tetraethylene glycol (tet-EG) are compared and the temperature during the reaction is assessed by two different methods. In particular, two by-products have been identified, i.e. Cu2 - x S and a hexagonal phase. We show that the variation of reaction parameters such as power irradiation, type of solvent and precursor concentration influences the nanoparticles' sizes (from 12 to 6 nm) and also the temperature-time profile of reaction which, in turn, can be related to phase purity of CZTS nanoparticles. The results suggest that the product purity scales with the specific energy factor providing a useful tool to a rational design of high-quality CZTS nanoparticles.

  7. Phase transition of aragonite in abalone nacre

    NASA Astrophysics Data System (ADS)

    An, Yuanlin; Liu, Zhiming; Wu, Wenjian

    2013-04-01

    Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.

  8. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    PubMed

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  9. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    PubMed Central

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-01-01

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707

  10. A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.

    ERIC Educational Resources Information Center

    Yunus, W. Mahmood Mat; Ahmad, Maulana

    1996-01-01

    Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)

  11. Improved Boat For Liquid-Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1991-01-01

    Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.

  12. Numerical Study of Variation of Mechanical Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes †

    PubMed Central

    Sharifi, Hamid; Larouche, Daniel

    2014-01-01

    To study the variation of the mechanical behavior of binary aluminum copper alloys with respect to their microstructure, a numerical simulation of their granular structure was carried out. The microstructures are created by a repeated inclusion of some predefined basic grain shapes into a representative volume element until reaching a given volume percentage of the α-phase. Depending on the grain orientations, the coalescence of the grains can be performed. Different granular microstructures are created by using different basic grain shapes. Selecting a suitable set of basic grain shapes, the modeled microstructure exhibits a realistic aluminum alloy microstructure which can be adapted to a particular cooling condition. Our granular models are automatically converted to a finite element model. The effect of grain shapes and sizes on the variation of elastic modulus and plasticity of such a heterogeneous domain was investigated. Our results show that for a given α-phase fraction having different grain shapes and sizes, the elastic moduli and yield stresses are almost the same but the ultimate stress and elongation are more affected. Besides, we realized that the distribution of the θ phases inside the α phases is more important than the grain shape itself. PMID:28788607

  13. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    PubMed

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterova, E.V.; Bouvier, S.; Bacroix, B.

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less

  15. Effect of Alloying Elements on Nb-Rich Portion of Nb-Si-X Ternary Systems and In Situ Crack Observation of Nb-Si-Based Alloys

    NASA Astrophysics Data System (ADS)

    Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo

    2014-03-01

    To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.

  16. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  17. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  18. Human plasma-derived immunoglobulin G fractionated by an aqueous two-phase system, caprylic acid precipitation, and membrane chromatography has a high purity level and is free of detectable in vitro thrombogenic activity.

    PubMed

    Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T

    2015-02-01

    Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.

  19. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    NASA Astrophysics Data System (ADS)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.

  20. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  1. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  2. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    PubMed Central

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-01-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing. PMID:28145527

  3. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    PubMed

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d (110) ) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH 3 NH 3 PbI 3-x Cl x perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH 3 NH 3 PbI 3-x Cl x g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO 2 -based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH 3 NH 3 PbI 3-x Cl x perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  4. Damascus steel ledeburite class

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Pei; Fang, Zhigang Zak; Koopman, Mark

    The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H-2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well establishedmore » to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine alpha/alpha(2) within coarse beta grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of beta -> alpha + delta d at approximately 473 K (200 degrees C). (C) The Minerals, Metals & Materials Society and ASM International 2015« less

  6. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    PubMed

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of Initial Correlation and Quantum Coherence on the Energy Transfer, Purity and Entanglement

    NASA Astrophysics Data System (ADS)

    Meng, Xiangjia; Chen, Longxi

    2018-04-01

    We investigate the influences of the initial correlation and quantum coherence on a bipartite dissipative system which is modeled by two two-level quantum emitters driven by an external laser field. It is shown that the initial correlation can enhance or suppress the dynamical evolution of the energy transfer quantified by the excited-state population and the information flow between the two emitters characterized by the purity. We also present the degree of the influence of the initial correlation that is determined by the quantum coherence induced by a relative phase. By introducing Bloch sphere, we illustrate the relation between the energy transfer and the purity. In addition, a scheme for generating maximally entangled steady state is proposed.

  8. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    NASA Astrophysics Data System (ADS)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  9. Effects of white matter microstructure on phase and susceptibility maps.

    PubMed

    Wharton, Samuel; Bowtell, Richard

    2015-03-01

    To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. © 2014 Wiley Periodicals, Inc.

  10. Effects of White Matter Microstructure on Phase and Susceptibility Maps

    PubMed Central

    Wharton, Samuel; Bowtell, Richard

    2015-01-01

    Purpose To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). Methods The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. Results The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Conclusion Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. Magn Reson Med 73:1258–1269, 2015. © 2014 Wiley Periodicals, Inc. PMID:24619643

  11. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  12. Stability of phase transformation models for Ti-6Al-4V under cyclic thermal loading imposed during laser metal deposition

    NASA Astrophysics Data System (ADS)

    Klusemann, Benjamin; Bambach, Markus

    2018-05-01

    Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.

  13. Fractography of the high temperature hydrogen attack of a medium carbon steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Moorhead, R. D.

    1976-01-01

    Results are reported for an experimental study of the microscopic fracture processes associated with hydrogen attack of a commercially produced plain carbon steel in a well-controlled high-temperature hydrogen environment of high purity. In the experiments, sheet samples were exposed to laboratory-grade hydrogen at a pressure of 3.5 MN/sq m and a temperature of 575 C. The fractography of gas-filled fissures and failed tension specimens is analyzed in an effort to identify any predominant microstructural defect associated with fissure formation, the prevalent modes of fracture, and the contribution of gas-filled fissures to the overall failure process. It is found that the tensile properties of the examined steel were significantly degraded after as few as 136 hr of exposure to a high-purity hydrogen atmosphere at 575 C; that the yield strength, ultimate strength, and elongation at fracture were all reduced progressively with increasing exposure time; and that the yield and ultimate strengths were reduced more than 40% after 408 hr while elongation was reduced to less than 2%.

  14. Progress in Titanium Metal Powder Injection Molding.

    PubMed

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  15. Progress in Titanium Metal Powder Injection Molding

    PubMed Central

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458

  16. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  17. Factors Affecting Impact Toughness in Stabilized Intermediate Purity 21Cr Ferritic Stainless Steels and Their Simulated Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Anttila, Severi; Alatarvas, Tuomas; Porter, David A.

    2017-12-01

    The correlation between simulated weld heat-affected zone microstructures and toughness parameters has been investigated in four intermediate purity 21Cr ferritic stainless steels stabilized with titanium and niobium either separately or in combination. Extensive Charpy V impact toughness testing was carried out followed by metallography including particle analysis using electron microscopy. The results confirmed that the grain size and the number density of particle clusters rich in titanium nitride and carbide with an equivalent circular diameter of 2 µm or more are statistically the most critical factors influencing the ductile-to-brittle transition temperature. Other inclusions and particle clusters, as well as grain boundary precipitates, are shown to be relatively harmless. Stabilization with niobium avoids large titanium-rich inclusions and also suppresses excessive grain growth in the heat-affected zone when reasonable heat inputs are used. Thus, in order to maximize the limited heat-affected zone impact toughness of 21Cr ferritic stainless steels containing 380 to 450 mass ppm of interstitials, the stabilization should be either titanium free or the levels of titanium and nitrogen should be moderated.

  18. Spinodal decomposition of the gamma-phase upon quenching in the Ti-Al-Nb ternary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Ebrahimi, Fereshteh

    2010-01-01

    The {gamma}-TiAl with L1{sub 0} crystal structure shows extensive solubility for Nb at elevated temperatures. Recently (Rios et al., Acta materialia 2009; 57:6243), we have demonstrated that the high-Nb {gamma}-TiAl phase becomes unstable upon rapid cooling into a nano-scale two-phase microstructure. In this paper, using detailed compositional and microstructural analyses, we have demonstrated that this phase goes through a spinodal decomposition that results in the compositionally distinct phases identified as a lower-Nb {gamma}-phase and the h-phase, which is rich in Nb and forms by the ordering of this element in the {gamma}-phase.

  19. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems.

    PubMed

    Verheyen, Davy; Bolívar, Araceli; Pérez-Rodríguez, Fernando; Baka, Maria; Skåra, Torstein; Van Impe, Jan F

    2018-06-01

    Traditionally, predictive growth models for food pathogens are developed based on experiments in broth media, resulting in models which do not incorporate the influence of food microstructure. The use of model systems with various microstructures is a promising concept to get more insight into the influence of food microstructure on microbial dynamics. By means of minimal variation of compositional and physicochemical factors, these model systems can be used to study the isolated effect of certain microstructural aspects on microbial growth, survival and inactivation. In this study, the isolated effect on microbial growth dynamics of Listeria monocytogenes of two food microstructural aspects and one aspect influenced by food microstructure were investigated, i.e., the nature of the food matrix, the presence of fat droplets, and microorganism growth morphology, respectively. To this extent, fish-based model systems with various microstructures were used, i.e., a liquid, a second more viscous liquid system containing xanthan gum, an emulsion, an aqueous gel, and a gelled emulsion. Growth experiments were conducted at 4 and 10 °C, both using homogeneous and surface inoculation (only for the gelled systems). Results regarding the influence of the growth morphology indicated that the lag phase of planktonic cells in the liquid system was similar to the lag phase of submerged colonies in the xanthan system. The lag phase of submerged colonies in each gelled system was considerably longer than the lag phase of surface colonies on these respective systems. The maximum specific growth rate of planktonic cells in the liquid system was significantly lower than for submerged colonies in the xanthan system at 10 °C, while no significant differences were observed at 4 °C. The maximum cell density was higher for submerged colonies than for surface colonies. The nature of the food matrix only exerted an influence on the maximum specific growth rate, which was significantly higher in the viscous systems than in the gelled systems. The presence of a small amount of fat droplets improved the growth of L. monocytogenes at 4 °C, resulting in a shorter lag phase and a higher maximum specific growth rate. The obtained results could be useful in the determination of a set of suitable microstructural parameters for future predictive models that incorporate the influence of food microstructure on microbial dynamics. Copyright © 2018. Published by Elsevier B.V.

  20. Microstructure characterization via stereological relations — A shortcut for beginners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabst, Willi, E-mail: pabstw@vscht.cz; Gregorová, Eva; Uhlířová, Tereza

    Stereological relations that can be routinely applied for the quantitative characterization of microstructures of heterogeneous single- and two-phase materials via global microstructural descriptors are reviewed. It is shown that in the case of dense, single-phase polycrystalline materials (e.g., transparent yttrium aluminum garnet ceramics) two quantities have to be determined, the interface density (or, equivalently, the mean chord length of the grains) and the mean curvature integral density (or, equivalently, the Jeffries grain size), while for two-phase materials (e.g., highly porous, cellular alumina ceramics), one additional quantity, the volume fraction (porosity), is required. The Delesse–Rosiwal law is recalled and size measuresmore » are discussed. It is shown that the Jeffries grain size is based on the triple junction line length density, while the mean chord length of grains is based on the interface density (grain boundary area density). In contrast to widespread belief, however, these two size measures are not alternative, but independent (and thus complementary), measures of grain size. Concomitant with this fact, a clear distinction between linear and planar grain size numbers is proposed. Finally, based on our concept of phase-specific quantities, it is shown that under certain conditions it is possible to define a Jeffries size also for two-phase materials and that the ratio of the mean chord length and the Jeffries size has to be considered as an invariant number for a certain type of microstructure, i.e., a characteristic value that is independent of the absolute size of the microstructural features (e.g., grains, inclusions or pores). - Highlights: • Stereology-based image analysis is reviewed, including error considerations. • Recipes are provided for measuring global metric microstructural descriptors. • Size measures are based on interface density and mean curvature integral density. • Phase-specific quantities and a generalized Jeffries size are introduced. • Linear and planar grain size numbers are clearly distinguished and explained.« less

  1. Preparation & characterization of high purity Cu2 ZnSn(SxSe1-x)4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Negash, Bethlehem G.

    Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, colloidal synthesis of Cu 2ZnSn(SxSe1-x)4 offers a scalable, low cost and high-throughput route for manufacturing high efficiency thin-film solar cells. Hydrazine processed Cu2ZnSn(SxSe1-x )4 devices have reached a record power conversion efficiency (PCE) of 12.6%, much higher than the 9.6% reported for physical vapor deposition (PVD) systems.6,7. Despite high efficiencies, wet synthesis of nanoparticles, however, is made more complicated in multi-element, quaternary and quinary systems such as copper zinc tin sulfoselenide (CZTSSe) and copper indium gallium diselenide (CIGSe). One major disadvantage in these systems is growth of the desired quaternary or quinary phase in competition with unwanted binary and ternary phases with low energy of formation.8,9 Moreover, various reaction parameters such as reaction time, temperature, and choice of ligand also affect, chemical as well as physical properties of resulting nanoparticles. Understanding of the formation mechanisms of the particles is necessary in order to address some of these challenges in wet synthesis of CZTSSe nanoparticles. In this study, we investigate synthesis conditions & reaction parameters which yield high purity Cu2ZnSn(SxSe1-x) 4 nanoparticles as well as attempt to understand the growth mechanism of these nanoparticles. This was achieved by manipulating anion precursor preparation routes as well order in which precursors are introduced into a reaction system. We report a new solution based sulfoselenide preparation route which has been used to synthesize high purity Cu2ZnSn(S xSe1-x)4 nanoparticles. Uniform phase Cu 2ZnSn(SxSe1-x)4 nanoparticles were successfully synthesized over a wide range of varying chalcogen ratios. It was found that anion precursor solution plays a key role in determining the morphology & phase purity of the final nanoparticles, as observed from X-ray Diffraction (XRD) and Raman spectroscopy. A uniform sulfoselenide solution is needed to produce high purity Cu2ZnSn(SxSe1-x )4 nanoparticles with narrow phase distribution. Moreover, the relative reactivity of each anion must be balanced in order to yield uniform phase nanoparticles. The findings of this study as well as the reported mixed chalcogen precursor preparation route can be applied in various industries, including photovoltaics to produce uniform phase, solution processed sulfoselenide nanoparticles.

  2. In situ optical microscopy of the martensitic phase transformation of lithium

    NASA Astrophysics Data System (ADS)

    Krystian, M.; Pichl, W.

    2000-12-01

    The phase transformation of lithium was investigated by in situ optical microscopy in a helium cryostat. The martensite microstructure is composed of irregular segments which grow in rapid bursts from many nuclei to a final size of 10 to 20 μm and then are immobilized. A major part of the segments is arranged in groups of parallel lamellas. A theoretical consideration of lattice compatibility predicts the existence of an almost perfectly coherent habit-plane interface between bcc and 9R in lithium. Therefore, the irregular microstructure is interpreted by the presence of the disordered polytype phase. Comparison with an earlier investigation in comparably impure lithium indicates a strong influence of impurities on the transformation mechanism. The connections between the low-temperature phase diagram, the geometrical compatibility condition, and the martensite microstructure are discussed.

  3. Rapid fabrication of three-dimensional structures for dielectrophoretic sorting of lipid-containing organisms

    NASA Astrophysics Data System (ADS)

    Schor, Alisha R.; Buie, Cullen R.

    2016-10-01

    In this work, we demonstrate a microfluidic particle sorter consisting of three-dimensional, conducting microposts. Our sorter uses dielectrophoresis (DEP) to sort high- and low-lipid phenotypes of the yeast Yarrowia lipolytica. Y. lipolytica is one of the many microorganisms being explored as a hydrocarbon source for biodiesel, Omega-3 additives, and other products derived from fatty acids. A rapid, non-destructive, lipid-based sorting tool would accelerate the commercialization of these products. Our device consists of an array of 105, 25 μm wide gold microposts that span the height of a 15 μm channel. This array generates an electric field in a microfluidic device that is uniform through the channel height, but has a custom-shaped non-uniformity in the horizontal directions. This is crucial in order to achieve continuous sorting using DEP, as it ensures all cells are exposed to the same conditions throughout the channel height. By using very low currents (100 μA), we are able to electroplate these post arrays in fewer than 15 min. This is an order of magnitude improvement over previous reports of electroplated microstructures. With an applied signal of 250 MHz, 2.6 V pp in our device, we separate a heterogeneous population with a purity of 97.8% in the low-lipid stream and 71.4% in the high-lipid stream. The high-lipid stream purity can be improved by adjusting the spacing of the array. This unique protocol for the rapid fabrication of 3D microstructures has enabled the creation of a non-invasive sorting tool for genetically engineered, lipid-producing organisms. The ability to screen organisms based on lipid content will alleviate one of the major bottlenecks in commercialization of microbial biofuels.

  4. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    NASA Astrophysics Data System (ADS)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  5. Alloy Microstructure Dictates Corrosion Modes in THA Modular Junctions.

    PubMed

    Pourzal, Robin; Hall, Deborah J; Ehrich, Jonas; McCarthy, Stephanie M; Mathew, Mathew T; Jacobs, Joshua J; Urban, Robert M

    2017-12-01

    Adverse local tissue reactions (ALTRs) triggered by corrosion products from modular taper junctions are a known cause of premature THA failure. CoCrMo devices are of particular concern because cobalt ions and chromium-orthophosphates were shown to be linked to ALTRs, even in metal-on-polyethylene THAs. The most common categories of CoCrMo alloy are cast and wrought alloy, which exhibit fundamental microstructural differences in terms of grain size and hard phases. The impact of implant alloy microstructure on the occurring modes of corrosion and subsequent metal ion release is not well understood. The purpose of this study was to determine whether (1) the microstructure of cast CoCrMo alloy varies broadly between manufacturers and can dictate specific corrosion modes; and whether (2) the microstructure of wrought CoCrMo alloy is more consistent between manufacturers and has low implications on the alloy's corrosion behavior. The alloy microstructure of four femoral-stem and three femoral-head designs from four manufacturers was metallographically and electrochemically characterized. Three stem designs were made from cast alloy; all three head designs and one stem design were made from wrought alloy. Alloy samples were sectioned from retrieved components and then polished and etched to visualize grain structure and hard phases such as carbides (eg, M 23 C 6 ) or intermetallic phases (eg, σ phase). Potentiodynamic polarization (PDP) tests were conducted to determine the corrosion potential (E corr ), corrosion current density (I corr ), and pitting potential (E pit ) for each alloy. Four devices were tested within each group, and each measurement was repeated three times to ensure repeatable results. Differences in PDP metrics between manufacturers and between alloys with different hard phase contents were compared using one-way analysis of variance and independent-sample t-tests. Microstructural features such as twin boundaries and slip bands as well as corrosion damage features were viewed and qualitatively assessed in a scanning electron microscope. We found broad variability in implant alloy microstructure for both cast and wrought alloy between manufacturers, but also within the same implant design. In cast alloys, there was no difference in PDP metrics between manufacturers. However, coarse hard phases and clusters of hard phases (mainly intermetallic phases) were associated with severe phase boundary corrosion and pitting corrosion. Furthermore, cast alloys with hard phases had a lower E pit than those without (0.46 V, SD 0.042; 0.53 V, SD 0.03, respectively; p = 0.015). Wrought alloys exhibited either no hard phases or numerous carbides (M 23 C 6 ). However, the corrosion behavior was mainly affected by lattice defects and banded structures indicative of segregations that appear to be introduced during bar stock manufacturing. Alloys with banding had a lower E corr (p = 0.008) and higher I corr (p = 0.028) than alloys without banding (-0.76 V, SD 0.003; -0.73 V, SD 0.009; and 1.14 × 10 -4 mA/cm 2 , SD 1.47 × 10 -5 ; 5.2 × 10 -5 mA/cm 2 , SD 2.57 × 10 -5 , respectively). Alloys with carbides had a slightly higher E corr (p = 0.046) than those without (-0.755 V, SD 0.005; -0.761 V, SD 0.004); however, alloys with carbides exhibited more severe corrosion damage as a result of phase boundary corrosion, hard phase detachment, and subsequent local crevice corrosion. The observed variability in CoCrMo alloy microstructure of both cast and wrought components in this study appears to be an important issue to address, perhaps through better standards, to minimize in vivo corrosion. The finding of the banded structures within wrought alloys is especially concerning because it unfavorably influences the corrosion behavior independent of the manufacturer. The findings suggest that a homogeneous alloy microstructure with a minimal hard phase fraction exhibits more favorable corrosion behavior within the in vivo environment of modular taper junctions, thus lowering metal ion release and subsequently the risk of ALTRs to corrosion products. Also, the question arises if hard phases fulfill a useful purpose in metal-on-polyethylene bearings, because they may come with a higher risk of phase boundary corrosion and pitting corrosion and the benefit they provide by adding strength is not needed (unlike in metal-on-metal bearings). Implant failure resulting from corrosion processes within modular junctions is a major concern in THA. Our results suggest that implant alloy microstructure is not sufficiently standardized and may also dictate specific corrosion modes and subsequent metal ion release.

  6. Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration.

    PubMed

    Won, Sung Wook; Lim, Areum; Yun, Yeoung-Sang

    2013-06-01

    This work reports a direct way to recover metallic palladium with high purity from Pd(II)-sorbed polyethylenimine-modified Corynebacterium glutamicum biosorbent using a combined method of biosorption and incineration. This study is focused on the incineration part which affects the purity of recovered Pd. The incineration temperature and the amount of Pd loaded on the biosorbent were considered as major factors in the incineration process, and their effects were examined. The results showed that both factors significantly affected the enhancement of the recovery efficiency and purity of the recovered Pd. SEM-EDX and XRD analyses were used to confirm that Pd phase existed in the ash. As a result, the recovered Pd was changed from PdO to zero-valent Pd as the incineration temperature was increased from 600 to 900°C. Almost 100% pure metallic Pd was recovered with recovery efficiency above 99.0% under the conditions of 900°C and 136.9 mg/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Membrane-integrated fermentation system for improving the optical purity of D-lactic acid produced during continuous fermentation.

    PubMed

    Sawai, Hideki; Na, Kyungsu; Sasaki, Nanami; Mimitsuka, Takashi; Minegishi, Shin-ichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu

    2011-01-01

    This report describes the production of highly optically pure D-lactic acid by the continuous fermentation of Sporolactobacillus laevolacticus and S. inulinus, using a membrane-integrated fermentation (MFR) system. The optical purity of D-lactic acid produced by the continuous fermentation system was greater than that produced by batch fermentation; the maximum value for the optical purity of D-lactic acid reached 99.8% enantiomeric excess by continuous fermentation when S. leavolacticus was used. The volumetric productivity of the optically pure D-lactic acid was about 12 g/L/h, this being approximately 11-fold higher than that obtained by batch fermentation. An enzymatic analysis indicated that both S. laevolacticus and S. inulinus could convert L-lactic acid to D-lactic acid by isomerization after the late-log phase. These results provide evidence for an effective bio-process to produce D-lactic acid of greater optical purity than has conventionally been achieved to date.

  8. Miniature Distillation Column for Producing LOX From Air

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay C.

    2006-01-01

    The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column, respectively. Because distillation is a mass-transfer process, the purity of the product(s) can be increased by increasing the effectiveness of the mass-transfer process (increasing the mass-transfer coefficient) and/or by increasing the available surface area for mass transfer through increased column height. The diameter of a distillation column is fixed by pressure-drop and mass-flow requirements. The approach taken in designing the present distillation column to be short yet capable of yielding a product of acceptably high purity was to pay careful attention to design details that affect mass-transfer processes.

  9. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    NASA Astrophysics Data System (ADS)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  10. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences

    PubMed Central

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.

    2017-01-01

    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204

  11. Microstructural analyses of two high noble gold-platinum alloys before and after conditioning in a cell culture medium

    NASA Astrophysics Data System (ADS)

    Rudolf, R.; Anzel, I.; Gusel, L.; Stamenkovi, D.; Todorovi, A.; Colic, M.

    2010-12-01

    Microstructures of two high noble experimental Au-Pt alloys were compared before and after conditioning for biocompatibility, in order to identify phases and microelements responsible for the alloys' corrosive behaviour. Microstructural characterization was carried-out by optical and scanning electron microscopy, in addition to energy dispersive X-ray analysis. X-ray diffraction was applied to determine the phases' composition and their contribution in the alloys. Additionally, simultaneous thermal analysis was used to identify the temperatures of phase transformations. An overall assessment before conditioning showed that Au-Pt I is a two-phase alloy containing a dominant Au-rich α1 phase and a minor Pt-rich α2 phase, while the Au-Pt II alloy contains in addition three minor phases: AuZn3, Pt3Zn and Au1.4Zn0.52. The highest content of Zn (up to 6.76 wt.%) was detected in the Pt3Zn phase. After RPMI cell culture medium conditioning, the Pt3Zn and AuZn3 phases disappeared, suggesting that they are predominantly responsible for Zn loss and the lower corrosive stability of the Au-Pt II alloy.

  12. Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Özgün, Özgür; Dinler, İlyas

    2018-05-01

    Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.

  13. Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Özgün, Özgür; Dinler, İlyas

    2018-07-01

    Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.

  14. A Rotating Source Polarization Measurement Technique Using Two Circularly Polarized Antennas

    DTIC Science & Technology

    2016-07-15

    antenna with high polarization purity. The axial ratio of the polarization ellipse was determined from the ripple in the voltage received by the...is shown in Fig. 6. The linear phase progression has been removed from the phase measurements to show a ripple . The corresponding polarization ratio

  15. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  16. Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber

    PubMed Central

    Zhang, Shuzhi; Zhang, Shuling; Chen, Yanfei; Han, Jianchao; Zhang, Changjiang; Wang, Xiaopeng; Chen, Yuyong

    2017-01-01

    The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α) phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification. PMID:28772555

  17. On the effect of incremental forming on alpha phase precipitation and mechanical behavior of beta-Ti-10V-2Fe-3Al

    NASA Astrophysics Data System (ADS)

    Winter, S.; F-X Wagner, M.

    2016-03-01

    A combination of good ductility and fatigue resistance makes β-titanium alloys interesting for many current and potential future applications. The mechanical behavior is primarily determined by microstructural parameters like (beta phase) grain size, morphology and volume fraction of primary / secondary α-phase precipitates, and this allows changing and optimizing their mechanical properties across a wide range. In this study, we investigate the possibility to modify the microstructure of the high-strength beta titanium alloy Ti-10V-2Fe-3Al, with a special focus on shape and volume fraction of primary α-phase. In addition to the conventional strategy for precipitation of primary α, a special thermo-mechanical processing is performed; this processing route combines the conventional heat treatment with incremental forming during the primary α-phase annealing. After incremental forming, considerable variations in terms of microstructure and mechanical properties can be obtained for different thermo-mechanical processing routes. The microstructures of the deformed samples are characterized by globular as well as lamellar (bimodal) α precipitates, whereas conventional annealing only results in the formation of lamellar precipitates. Because of the smaller size, and the lower amount, of α-phase after incremental forming, tensile strength is not as high as after the conventional strategy. However, high amounts of grain boundary α and lamellar αp-phase in the undeformed samples lead to a significantly lower ductility in comparison to the matrix with bimodal structures obtained by thermo-mechanical processing. These results illustrate the potential of incremental forming during the annealing to modify the microstructure of the beta titanium Ti-10V-2Fe-3Al in a wide range of volume fractions and morphologies of the primary α phase, which in turn leads to considerably changes, and improved, mechanical properties.

  18. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  19. Phase Transformation and Creep of Mg-Al-Ca Based Die-Cast Alloys

    NASA Astrophysics Data System (ADS)

    Suzuki, Akane; Saddock, Nicholas D.; Jones, J. Wayne; Pollock, Tresa M.

    The microstructure and microstructural stability of die-cast AC53 (Mg-5Al-3Ca) and AXJ530 (Mg-5Al-3Ca-0.15Sr) have been investigated in detail by transmission electron microscopy (TEM). Both alloys have an as-cast microstructure of α-Mg with (Mg, Al)2Ca (dihexagonal C36) eutectic at grain boundaries. During aging at 573 K, the C36 phase transforms to Al2Ca (cubic Cl5) phase. These two phases have a crystallographic orientation relationship of (0001)C36//{111}C15 and [2110]C36//[011]C15, and the transformation from C36 to C15 occurs by a shear-assisted process. Despite this change in the phase constitution, the network structure of the intermetallic compound(s) surrounding α-Mg grains is fairly stable, morphologically, even after prolonged exposure at elevated temperature. In the α-Mg matrix phase, precipitation of Al2Ca was observed after aging for 360 ks at 573 K. The precipitates are disc-shaped with a habit plane of {111}C15//(0001)α. AXJ530 shows higher creep resistance than AC53. The dislocation substructure that evolved during creep deformation was investigated in both alloys, and the basal and non-basal slip of a-dislocation and other slip modes of a+c- dislocations were observed. The relationship between creep properties and microstructure is discussed.

  20. Microstructure and Mechanical Properties of Al2O3/Er3Al5O12 Binary Eutectic Ceramic Prepared by Bridgman Method

    PubMed Central

    Song, Caiyu; Wang, Shunheng; Liu, Juncheng; Zhai, Shuoyan

    2018-01-01

    Directionally solidified Al2O3/Er3Al5O12 (EAG) eutectic ceramic was prepared via vertical Bridgman method with high-frequency induction heating. The effects of the growth rate on the microstructure and mechanical properties of the solidified ceramic were investigated. The experimental results showed that there were no pores or amorphous phases in the directionally solidified Al2O3/EAG eutectic ceramic. Al2O3 phase was embedded in the EAG matrix phase, and the two phases were intertwined with each other to form a typical binary eutectic “hieroglyphic” structure. With the increase of growth rate, the phase size and spacing of the solidified Al2O3/EAG ceramic both decreased, and the growth rate and phase spacing satisfied the λ2v ≈ 60 formula of Jackson-Hunt theory. The cross section microstructure of the solidified ceramic always exhibited an irregular eutectic growth, while the longitudinal section microstructure presented a directional growth. The mechanical properties of the solidified ceramic gradually increased with the increase of growth rate, and the maximum hardness and fracture toughness could reach 21.57 GPa and 2.98 MPa·m1/2 respectively. It was considered that the crack deflection and branching could enhance the toughness of the solidified ceramic effectively. PMID:29601545

  1. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of 980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  2. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  3. Experimental constraints and theoretical bases for microstructural damage in plate boundary shear zones

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Cross, A. J.; Bercovici, D.

    2016-12-01

    (Ultra)mylonites from plate boundary shear zones are characterized by severe grain-size reduction and well-mixed mineral phases. The evolution from relatively undeformed tectonite protoliths to highly deformed (ultra)mylonites via the formation of new grain and phase boundaries is described as microstructural `damage.' Microstructural damage is important for two reasons: grain-size reduction is thought to result in significant rheological weakening, while phase mixing inhibits mechanical recovery and preserves the zone of weakness to be reactivated repeatedly throughout the tectonic cycle. Grain-size reduction by dynamic recrystallization has been studied extensively in both geologic and engineered materials, yet the progressive mixing of mineral phases during high pressure/temperature shear - the other essential element of damage or mylonitization - is not well understood. In this contribution we present new experimental results and theory related to two distinct phase mixing processes. First, we describe high strain torsion experiments on calcite and anhydrite mixtures and a simple geometric mixing model related to the stretching and thinning of monophase domains. Second, we describe a grain-switching mechanism that is driven by the surface-tension driven migration of newly formed interphase triple junctions. Unlike dynamic recrystallization, which occurs at relatively small strains, both phase mixing mechanisms described here appear to require extremely large strains, a prediction that is consistent with geologic observations. These data suggest that ductile shear zones experience long, transient intervals of microstructural evolution during which rheology is not at steady state. Microstructural damage may be interpreted as the product of several interconnected physical processes, which are collectively essential to the preservation of long-lived, Earth-like plate tectonics.

  4. Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.

    2012-12-01

    The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.

  5. Microstructural optimization of solid-state sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 mum). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 +/- 44.13 kg/mm 2) and Knoop (2098.50 +/- 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (˜4.5 MPa m ) are almost double that of Verco SiC (2.4 MPa m ), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.

  6. Microstructure and Corrosion Resistance of Laser-Welded Crossed Nitinol Wires.

    PubMed

    Dong, Peng; Yao, Runhua; Yan, Zheng; Yan, Zhifeng; Wang, Wenxian; He, Xiuli; Zhou, Jun

    2018-05-18

    Laser welding has been considered to be one of the most promising joining processes for Nitinol medical device manufacturing. Presently, there is still a limited understanding about how laser welding affects the microstructure and the resultant corrosion behaviors. This work aimed to reveal the microstructural factors that influence the corrosion resistance of laser-welded crossed Nitinol joints. The microstructures within various zones of the joints were characterized by using transmission electron microscopy (TEM), and the corrosion behaviors of the joints in 0.9% NaCl and Hank's solutions were studied. The base metal exhibits a single austenite (B2) phase and the highest corrosion resistance. The phase constituent of the fusion zone is the coexistence of the B2 matrix and some precipitates (T₂Ni, TiNi 3, and Ti₃Ni₄ particles), resulting in a slight decrease in corrosion resistance. The heat affected zone (HAZ) shows the austenite matrix but with the precipitation of R-phase, which considerably reduces the corrosion potential, making it the weakest zone.

  7. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  8. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  9. Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2016-10-01

    A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.

  10. Microstructure evolution and tensile properties of Zr-2.5wt%Nb pressure tubes processed from billets with different microstructures

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5wt%Nb pressure tubes. The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structure at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pei-quan; Li, Leijun, E-mail: leijun.li@ualberta.ca; Zhang, Chunbo

    The as-welded microstructure of laser-welded Ti-6Al-4V is characterized as a function of CO2 key-hole mode laser welding speed. Martensitic α′ is the predominant phase, with some α and retained β. Phase transformation is affected by the cooling rate through laser welding speed. A higher welding speed of 1.6 to 2.0 m/min produced more martensite α′ and less retained β in the welds. 1.4 m/min welding speed produced small amounts of α, besides the martensite α′. A trace of δ titanium hydride phase seems to have formed in the weld fusion zone. Moiré fringes are a common feature in the TEMmore » microstructure, due to abundance of multi-phase interfaces. Tensile twins and clusters of dislocations indicate that plastic deformation has happened in the as-welded microstructure, indicating the local stress levels to be approaching the yield stress on-cooling during laser welding.« less

  12. Phase Stability of a Powder Metallurgy Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, P.; Telesman, Jack; Gang, Anita

    2006-01-01

    Advanced powder metallurgy superalloy disks in aerospace turbine engines now entering service can be exposed to temperatures approaching 700 C, higher than those previously encountered. They also have higher levels of refractory elements, which can increase mechanical properties at these temperatures but can also encourage phase instabilities during service. Microstructural changes including precipitation of topological close pack phase precipitation and coarsening of existing gamma' precipitates can be slow at these temperatures, yet potentially significant for anticipated disk service times exceeding 1,000 h. The ability to quantify and predict such potential phase instabilities and degradation of capabilities is needed to insure structural integrity and air worthiness of propulsion systems over the full life cycle. A prototypical advanced disk superalloy was subjected to high temperature exposures, and then evaluated. Microstructural changes and corresponding changes in mechanical properties were quantified. The results will be compared to predictions of microstructure modeling software.

  13. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    NASA Astrophysics Data System (ADS)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  14. Electron microscopy investigations of purity of AlN interlayer in Al{sub x}Ga{sub 1-x}N/GaN heterostructures grown by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhara Rao, D. V.; Jain, Anubha; Lamba, Sushil

    2013-05-13

    The electron microscopy was used to characterize the AlN interlayer in Al{sub x}Ga{sub 1-x}N/AlN/GaN heterostructures grown by plasma assisted molecular beam epitaxy (PAMBE). We show that the AlN interlayer grown by PAMBE is without gallium and oxygen incorporation and the interfaces are coherent. The AlN interlayer has the ABAB stacking of lattice planes as expected for the wurtzite phase. High purity of AlN interlayer with the ABAB stacking leads to larger conduction band offset along with stronger polarization effects. Our studies show that the origin of lower sheet resistance obtained by PAMBE is the purity of AlN interlayer.

  15. Extinction coefficients and purity of single-walled carbon nanotubes.

    PubMed

    Zhao, B; Itkis, M E; Niyogi, S; Hu, H; Perea, D E; Haddon, R C

    2004-11-01

    Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.

  16. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.

    Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less

  17. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  18. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko

    2017-12-01

    This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10-3 s-1 to 1 s-1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, Tβ (880 890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above Tβ, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region.

  19. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    DOE PAGES

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; ...

    2016-04-25

    Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less

  20. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure

    PubMed Central

    Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko

    2017-01-01

    Abstract This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10−3 s−1 to 1 s−1) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β, continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+β) region. PMID:29152021

  1. Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (α+β) starting microstructure.

    PubMed

    Matsumoto, Hiroaki; Naito, Daiki; Miyoshi, Kento; Yamanaka, Kenta; Chiba, Akihiko; Yamabe-Mitarai, Yoko

    2017-01-01

    This work identifies microstructural conversion mechanisms during hot deformation (at temperatures ranging from 750 °C to 1050 °C and strain rates ranging from 10 -3  s -1 to 1 s -1 ) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy with a lamellar starting microstructure and establishes constitutive formulae for predicting the microstructural evolution using finite-element analysis. In the α phase, lamellae kinking is the dominant mode in the higher strain rate region and dynamic globularization frequently occurs at higher temperatures. In the β phase, continuous dynamic recrystallization is the dominant mode below the transition temperature, T β (880~890 °C). Dynamic recovery tends to be more active at conditions of lower strain rates and higher temperatures. At temperatures above T β , continuous dynamic recrystallization of the β phase frequently occurs, especially in the lower strain rate region. A set of constitutive equations modeling the microstructural evolution and processing map characteristic are established by optimizing the experimental data and were later implemented in the DEFORM-3D software package. There is a satisfactory agreement between the experimental and simulated results, indicating that the established series of constitutive models can be used to reliably predict the properties of a Ti-17 alloy after forging in the (α+ β ) region.

  2. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone

    NASA Astrophysics Data System (ADS)

    Hassani, Behzad; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Sabooni, Soheil; Vallant, Rudolf

    2016-07-01

    In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.

  3. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    NASA Astrophysics Data System (ADS)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.

  4. Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.

    2008-12-01

    The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.

  5. Processing, Microstructures and Properties of a Dual Phase Precipitation-Hardening PM Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schade, Christopher

    To improve the mechanical properties of PM stainless steels in comparison with their wrought counterparts, a PM stainless steel alloy was developed which combines a dual-phase microstructure with precipitation-hardening. The use of a mixed microstructure of martensite and ferrite results in an alloy with a combination of the optimum properties of each phase, namely strength and ductility. The use of precipitation hardening via the addition of copper results in additional strength and hardness. A range of compositions was studied in combination with various sintering conditions to determine the optimal thermal processing to achieve the desired microstructure. The microstructure could be varied from predominately ferrite to one containing a high percentage of martensite by additions of copper and a variation of the sintering temperature before rapid cooling. Mechanical properties (transverse rupture strength (TRS), yield strength, tensile strength, ductility and impact toughness) were measured as a function of the v/o ferrite in the microstructure. A dual phase alloy with the optimal combination of properties served as the base for introducing precipitation hardening. Copper was added to the base alloy at various levels and its effect on the microstructure and mechanical properties was quantified. Processing at various sintering temperatures led to a range of microstructures; dilatometry was used utilized to monitor and understand the transformations and the formation of the two phases. The aging process was studied as a function of temperature and time by measuring TRS, yield strength, tensile strength, ductility, impact toughness and apparent hardness. It was determined that optimum aging was achieved at 538°C for 1h. Aging at slightly lower temperatures led to the formation of carbides, which contributed to reduced hardness and tensile strength. As expected, at the peak aging temperature, an increase in yield strength and ultimate tensile strength as well as apparent hardness was found. Aging also lead to an unexpected and concurrent increase in ductility and impact toughness. The alloys also showed an increase in strain hardening on aging. The increase in ductility varied with the v/o martensite in the microstructure and was shown to occur after short time intervals at the optimum aging temperature. Compressive strength measurements revealed that the increase in ductility was due to the relaxation of residuals stresses that occur when the high temperature austenite transforms to martensite in the dual phase microstructure. The specific volume of martensite is much larger than that of austenite so that when the transformation takes place, a compressive stress is induced in the ferrite. In the sintered state, the residual stress leads to a higher work hardening rate in tension. When the alloy is aged, the work hardening rate is reduced and the ductility is increased compared with the sintered state, even though aging increases the strength and apparent hardness.

  6. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  7. A new method for the radiochemical purity measurement of ¹¹¹In-pentetreotide.

    PubMed

    Salgado-Garcia, Carlos; Montoza-Aguado, Manuel; Luna-Alcaide, Ana B; Segovia-Gonzalez, Maria M; de Mora, Elena Sanchez; Lopez-Martin, Juana; Ramos-Font, Carlos; Jimenez-Heffernan, Amelia

    2011-12-01

    The recommended method for the measurement of radiochemical purity (RCP) of ¹¹¹In-labelled pentetreotide is thin-layer chromatography with a silica gel as the stationary phase and a 0.1 N sodium citrate solution (pH 5) as the mobile phase. According to the supplier's instructions, the mobile phase must be prepared before the test is carried out, and the recommended stationary phase is off-market. We propose a new method for RCP measurement in which the mobile phase is acid citrate dextrose, solution A, which does not need to be prepared beforehand, and thin-layer chromatography is performed with a silica gel-impregnated glass fibre sheet as the stationary phase. We used both methods to measure the percentages of radiopharmaceutical and impurities. The range of RCP values obtained was 98.0-99.9% (mean=99.3%) by the standard method and 98.1-99.9% (mean=99.2%) by the new method. We observed no differences between the RCP values of both methods (P=0.070). The proposed method is suitable for RCP testing because it yields results that are in good agreement with those of the standard method and because it is easier to perform as the mobile-phase solution need not be prepared in advance.

  8. Effect of Exposure on the Mechanical Properties of Gamma MET PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Locci, I. E.; Shazly, M.; Prakash, V.

    2004-01-01

    The effect of a service environment exposure on the mechanical properties of a high Nb content TiAl alloy, Gamma MET PX , was assessed. Gamma MET PX, like other TiAl alloys, experiences a reduction of ductility following high temperature exposure. Exposure in Ar, air, and high-purity oxygen all resulted in a loss of ductility with the ductility reduction increasing with oxygen content in the exposure atmosphere. Embrittling mechanisms, including bulk microstructural changes, moisture induced environmental embrittlement, and near surface effects were investigated. The embrittlement has been shown to be a near-surface effect, most likely due to the diffusion of oxygen into the alloy.

  9. Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min, E-mail: lcxsunmin@163.com; Fu, Ruoyu; Chen, Jun

    2016-04-15

    A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due tomore » the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.« less

  10. Mesoscale Thermodynamically motivated Statistical Mechanics based Kinetic Model for Sintering monoliths

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.

  11. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Ding, X. F.; Lu, Y. H.; Shoji, T.

    2017-04-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2-11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging.

  12. The growth of metastable peritectic compounds

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.; Pirich, R. G.

    1981-01-01

    The influence of gravitationally driven thermosolutal convection on the directional solidification of peritectic alloys is considered as well as the relationships between the solidification processing conditions, and the microstructure, chemistry, and magnetic properties of such alloys. Analysis of directionally solidified Pb-Bi peritectic samples indicates that appreciable macrosegregation occurs due to thermosolutal convection and/or Soret diffusion. A peritectic solidification model which accounts for partial mixing in the liquid ahead of the planar solidification interface and describes macrosegregation has been developed. Two-phase dendritic and banded microstructures were grown in the Pb-Bi peritectic system, refined two-phase microstructures have were observed, and candidate formation mechanisms proposed. Material handling, containment, casting, microstructural and magnetic characterization techniques were developed for the Sm-Co system. Alloys produced with these procedures are homogeneous.

  13. Imaging subtle microstructural variations in ceramics with precision ultrasonic velocity and attenuation measurements

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Baaklini, George Y.

    1987-01-01

    Acoustic images of a silicon carbide ceramic disk were obtained using a precision scanning contact pulse echo technique. Phase and cross-correlation velocity, and attenuation maps were used to form color images of microstructural variations. These acoustic images reveal microstructural variations not observable with X-ray radiography.

  14. The deformation behavior and microstructure evolution of duplex Mg-9Li-1Al alloy during superplasticity tensile testing

    NASA Astrophysics Data System (ADS)

    Liu, Meiduo; Zheng, Haipeng; Zhang, Tianlong; Wu, Ruizhi

    2017-12-01

    The superplastic mechanical properties and microstructure evolution of the duplex Mg-9Li-1Al alloy were investigated. The tensile testing results show that, the elongation of the as-extruded Mg-9Li-1Al alloy reaches 510% at 573 K with a strain rate of 2×10-4 s-1. During the deformation process, the strips of α phase break into equiaxed structure. This phenomenon can be attributed to a particular dynamic recrystallization, which suggests that the β phase can recrystallize in the α phase due to the small misfit degree between α phase and β phase.

  15. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  16. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE PAGES

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...

    2017-09-07

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  17. Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates

    NASA Astrophysics Data System (ADS)

    Cross, A. J.; Skemer, P. A.

    2016-12-01

    Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.

  18. Microstructure Characterization of RERTR Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B. D. Miller; D. D. Keiser

    2008-09-01

    A variety of phases have the potential to develop in the irradiated fuels for the reduced enrichment research test reactor (RERTR) program. To study the radiation stability of these potential phases, three depleted uranium alloys were cast. The phases of interest were identified including U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, UAl4, and U6Mo4Al43. These alloys were irradiated with 2.6 MeV protons at 200ºC up to 3.0 dpa. The microstructure is characterized using SEM and TEM. Microstructural characterization for an archive dispersion fuel plate (U-7Mo fuel particles in Al-2%Si cladding) was also carried out. TEM sample preparation for the irradiated dispersion fuel has beenmore » developed.« less

  19. Liquid Phase Miscibility Gap Materials

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Markworth, A. J.

    1985-01-01

    The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.

  20. Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden-Popper Layered Perovskites.

    PubMed

    Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Stoumpos, Constantinos C; Soe, Chan Myae Myae; Yoo, Jinkyoung; Crochet, Jared; Tretiak, Sergei; Even, Jacky; Sadhanala, Aditya; Azzellino, Giovanni; Brenes, Roberto; Ajayan, Pulickel M; Bulović, Vladimir; Stranks, Samuel D; Friend, Richard H; Kanatzidis, Mercouri G; Mohite, Aditya D

    2018-02-01

    State-of-the-art light-emitting diodes (LEDs) are made from high-purity alloys of III-V semiconductors, but high fabrication cost has limited their widespread use for large area solid-state lighting. Here, efficient and stable LEDs processed from solution with tunable color enabled by using phase-pure 2D Ruddlesden-Popper (RP) halide perovskites with a formula (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n -1 Pb n I 3 n +1 are reported. By using vertically oriented thin films that facilitate efficient charge injection and transport, efficient electroluminescence with a radiance of 35 W Sr -1 cm -2 at 744 nm with an ultralow turn-on voltage of 1 V is obtained. Finally, operational stability tests suggest that phase purity is strongly correlated to stability. Phase-pure 2D perovskites exhibit >14 h of stable operation at peak operating conditions with no droop at current densities of several Amperes cm -2 in comparison to mixtures of 2D/3D or 3D perovskites, which degrade within minutes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of pigments for space-stable thermal control coatings

    NASA Technical Reports Server (NTRS)

    Campbell, W. B.; Smith, R. G.

    1972-01-01

    The identification and control of vapor phase reaction kinetics to produce pigments by homogeneous nucleation were achieved. A vapor phase apparatus was designed, fabricated, and calibrated through 1800 C. Vapor phase reactions were analyzed, calculations made, and powders of alumina, rutile, zinc orthotitanate (in a mixed phase), calcium tungstate, and lanthana were produced by homogeneous nucleation. Electron microscopy shows uniform particle morphology and size, and supports anticipated advantages of vapor-phase homogeneous nucleation; namely, purity, freedom from defects, and uniform particle sizing without grinding.

  2. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    NASA Astrophysics Data System (ADS)

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-10-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.

  3. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications.

    PubMed

    Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-10-20

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.

  4. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    PubMed Central

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-01-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921

  5. Spin conversion of positronium in NiO/Al2O3 catalysts observed by coincidence Doppler broadening technique

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Chen, Z. Q.; Wang, S. J.; Kawasuso, A.; Morishita, N.

    2010-07-01

    High-purity NiO/Al2O3 catalysts were prepared by mixing NiO and γ-Al2O3 nanopowders. X-ray diffraction patterns were measured to characterize the grain size and crystalline phase of the nanopowders. Positron-annihilation spectroscopy was used to study the microstructure and surface properties of the pores inside the NiO/Al2O3 catalysts. The positron lifetime spectrum comprises two short and two long lifetime components. The two long lifetimes τ3 and τ4 correspond to ortho-positronium (o-Ps) annihilated in microvoids and large pores, respectively. With increasing NiO content in the NiO/Al2O3 catalysts, both τ4 and its intensity I4 show continuous decrease. Meanwhile, the para-positronium (p-Ps) intensity, obtained from coincidence Doppler broadening spectra, increases gradually with NiO content. The different variation in o-Ps and p-Ps intensity suggests the ortho-para conversion of positronium in NiO/Al2O3 catalysts. X-ray photoelectron spectroscopy shows that Ni mainly exists in the form of NiO. The electron-spin-resonance measurements reveal that the ortho-para conversion of Ps is induced by the unpaired electrons of the paramagnetic centers of NiO.

  6. A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions

    NASA Astrophysics Data System (ADS)

    Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk

    2017-10-01

    A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.

  7. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting

    PubMed Central

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-01-01

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing. PMID:29710818

  8. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting.

    PubMed

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-04-29

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing.

  9. Thermal Effects on Microstructural Heterogeneity of Inconel 718 Materials Fabricated by Electron Beam Melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sames, William J.; Unocic, Kinga A.; Dehoff, Ryan R.

    2014-07-28

    Additive manufacturing (AM) technologies, also known as 3D printing, have demonstrated the potential to fabricate complex geometrical components, but the resulting microstructures and mechanical properties of these materials are not well understood due to unique and complex thermal cycles observed during processing. The electron beam melting (EBM) process is unique because the powder bed temperature can be elevated and maintained at temperatures over 1000 °C for the duration of the process. This results in three specific stages of microstructural phase evolution: (a) rapid cool down from the melting temperature to the process temperature, (b) extended hold at the process temperature,more » and (c) slow cool down to the room temperature. In this work, the mechanisms for reported microstructural differences in EBM are rationalized for Inconel 718 based on measured thermal cycles, preliminary thermal modeling, and computational thermodynamics models. The relationship between processing parameters, solidification microstructure, interdendritic segregation, and phase precipitation (δ, γ´, and γ´´) are discussed.« less

  10. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty

    PubMed Central

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko

    2014-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830

  11. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    NASA Astrophysics Data System (ADS)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  12. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less

  13. In Situ formation of microstructures near live cells using spatially structured near-infrared laser microbeam

    NASA Astrophysics Data System (ADS)

    Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.

    2011-03-01

    Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.

  14. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jimiao; Song, Min

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that themore » high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.« less

  15. Semi-industrial isolation of salicin and amygdalin from plant extracts using slow rotary counter-current chromatography.

    PubMed

    Du, Qizhen; Jerz, Gerold; Ha, Yangchun; Li, Lei; Xu, Yuanjin; Zhang, Qi; Zheng, Qunxiong; Winterhalter, Peterb; Ito, Yoichiro

    2005-05-13

    Salicin in the bark extract of Salix alba and amygdalin in the fruit extract of Semen armeniacae were each separated by slow rotary counter-current chromatography (SRCCC). The apparatus was equipped with a 40-L column made of 17 mm i.d. convoluted Teflon tubing. A 500g amount of crude extract containing salicin at 13.5% was separated yielding 63.5 g of salicin at 95.3% purity in 20h using methyl tert-butyl ether-l-butanol (1:3) saturated by methanol-water (1:5) as a stationary phase and methanol-water (1:5) saturated by methyl tert-butyl ether-1-butanol (1:3) as a mobile phase. A 400g amount of crude extract containing amygdalin at 55.3% was isolated to yield 221.2g of amygdalin at 94.1% purity in 19h using ethyl acetate-1-butanol (1:2) saturated by water as a stationary phase and water saturated by ethyl acetate-1-butanol (1:2) as a mobile phase. The flow rate of the mobile phase was 50 ml/min. The results show that industrial SRCCC separation of salicin and amygdalin is feasible using a larger column at a higher flow rate of the mobile phase.

  16. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  17. A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys

    PubMed Central

    Patel, Bhairav; Inam, Fawad; Reece, Mike; Edirisinghe, Mohan; Bonfield, William; Huang, Jie; Angadji, Arash

    2010-01-01

    Spark plasma sintering has been used for the first time to prepare the ASTM F75 cobalt–chromium–molybdenum (Co–Cr–Mo) orthopaedic alloy composition using nanopowders. In the preliminary work presented in this report, the effect of processing variables on the structural features of the alloy (phases present, grain size and microstructure) has been investigated. Specimens of greater than 99.5 per cent theoretical density were obtained. Carbide phases were not detected in the microstructure but oxides were present. However, harder materials with finer grains were produced, compared with the commonly used cast/wrought processing methods, probably because of the presence of oxides in the microstructure. PMID:20200035

  18. Response of DP 600 products to dynamic impact loads

    NASA Astrophysics Data System (ADS)

    Clark, Deidra Darcell

    The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.

  19. Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braecher, T.; Sebastian, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern

    2013-04-01

    We present the generation of propagating backward volume (BV) spin waves in a T shaped Ni{sub 81}Fe{sub 19} microstructure. These waves are created from counterpropagating Damon Eshbach spin waves, which are excited using microstrip antennas. By employing Brillouin light scattering microscopy, we show how the phase relation between the counterpropagating waves determines the mode generated in the center of the structure, and prove its propagation inside the longitudinally magnetized part of the T shaped microstructure. This gives access to the effective generation of backward volume spin waves with full control over the generated transverse mode.

  20. Manifestations of Dynamic Strain Aging in Soft-Oriented NiAl Single Crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The tensile and compressive properties of six NiAl-base single-crystal alloys have been investigated at temperatures between 77 and 1200 K. The normalized critical resolved shear stresses (CRSS/E) and work-hardening rates (Theta/E) for these alloys generally decreased with increasing temperature. However, anomalous peaks or plateaus for these properties were observed in conventional purity (CPNiAl), Si-doped (NiAl-Si), C-doped low Si (UF-NiAl1), and Mo-doped (NiAl-Mo) alloys at intermediate temperatures (600 to 1000 K). This anomalous behavior was not observed in high-purity, low interstitial material (HP-NiAl). Low or negative strain-rate sensitivities (SRS) also were observed in all six alloys in this intermediate temperature range. Coincident with the occurrence of negative strain-rate sensitivities was the observation of serrated stress-strain curves in the CPNiAl and NiAl-Si alloys. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main specie responsible for strain aging in NiAl is C but indicate that residual Si impurities can enhance the strain aging effects. The corresponding dislocation microstructures at low temperatures (300 to 600 K) were composed of well-defined cells. At intermediate temperatures (600 to 900 K), either poorly defined cells or coarse bands of localized slip, reminiscent of the vein structures observed in low-cycle fatigue specimens deformed in the DSA regime, were observed in conventional purity, Si-doped, and in Mo-doped alloys. In contrast, a well-defined cell structure persisted in the low interstitial, high-purity alloy. At elevated temperatures (greater than or equal to 1000 K), more uniformly distributed dislocations and sub-boundaries were observed in all alloys. These observations are consistent with the occurrence of DSA in NiAl single-crystal alloys at intermediate temperatures.

  1. Multi-Phase Field Models and Microstructural Evolution with Applications in Fuel Cell Technology

    NASA Astrophysics Data System (ADS)

    Davis, Ryan Scott

    The solid oxide fuel cell (SOFC) has shown tremendous potential as an efficient energy conversion device that may be instrumental in the transition to renewable resources. However, commercialization is hindered by many degradation mechanisms that plague long term stability. In this dissertation, computation methods are used to explore the relationship between the microstructure of the fuel cell anode and performance critical metrics. The phase field method and standard modeling procedures are introduced using a classic model of spinodal decomposition. This is further developed into a complete, multi-phase modeling framework designed for the complex microstructural evolution of SOFC anode systems. High-temperature coarsening of the metallic phase in the state-of-the-art SOFC cermet anode is investigated using our phase field model. A systematic study into the effects of interface properties on microstructural evolution is accomplished by altering the contact angle between constituent phases. It is found that metrics of catalytic activity and conductivity display undesirable minima near the contact angle of conventional SOFC materials. These results suggest that tailoring the interface properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs. Supported-metal catalyst systems are investigated in the first detailed study of their long-term stability and application to SOFC anode design. Porous support structures are numerically sintered to mimic specific fabrication techniques, and these structures are then infiltrated with a nanoscale catalyst phase ranging from 2% to 21% loading. Initially, these systems exhibit enhanced potential for catalytic activity relative to conventional cells. However, extended evolution results in severe degradation, and we show that Ostwald ripening and particle migration are key kinetic processes. Strong geometric heterogeneity in the support structure via a novel approach to nanopore formation is proposed as a potential solution for catalyst stabilization.

  2. The Effect of Microstructure and Pre-strain on the Change in Apparent Young's Modulus of a Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Kupke, A.; Hodgson, P. D.; Weiss, M.

    2017-07-01

    The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.

  3. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  4. Tannase-mediated biotransformation assisted separation and purification of theaflavin and epigallocatechin by high speed counter current chromatography and preparative high performance liquid chromatography: A comparative study.

    PubMed

    Xia, Guobin; Lin, Chunfang; Liu, Songbai

    2016-09-01

    A large scale isolation and purification of theaflavin (TF) and epigallocatechin (EGC) has been successfully developed by tannase-mediated biotransformation combining high-speed countercurrent chromatography. After tannase hydrolysis of a commercially available theaflavins extract (TE), the content of TF and EGC in tannase-mediated biotransformation product (TBP) achieved approximately 3 times enrichment. SEM studies revealed smooth tannase biotransformation and the possibility of recovery of the tannase. A single 1.5 hours' HSCCC separation for TF and EGC employing a two-phase solvent system could simultaneously produce 180.8 mg of 97.3% purity TF and 87.5 mg of 97.3% purity EGC. However, a preparative HPLC separation of maximum injection volume containing 120 mg TBP prepared 11.2 mg TF of 94.9% purity and 7.7 mg EGC of 89.9% purity. HSCCC separation demonstrated significant advantages over Prep HPLC in terms of sample loading size, separation time, environmental friendly solvent systems, and the production. © 2016 Wiley Periodicals, Inc.

  5. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-12-01

    Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { < 110 > _{γ } || < 1\\overline{1} 0 > _{θ } } { < 111 > _{α } || < 1\\overline{1} 0 > _{θ } } { < 110 > _{γ } || < 111 > _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

  6. Characterization of alloy 718 subjected to different thermomechanical treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Chinthaka; Song, Miao; Leonard, Keith

    2017-03-11

    Chemical phase and microstructural investigations of alloy 718 solution-annealed and age-hardened were performed in this study. We focused on the effects of solution annealing temperature, aging temperature and holding time, and the amount of intermediate cold work on the alloy. We also studied the formation of secondary phases such as γ’-phase, γ”-phase, and δ-phase, grain sizes, and any deformations of the microstructure with respect to the processed conditions. Statistics such as size and number densities of these precipitates with respect to the processing conditions were evaluated and a discussion on optimum conditions in obtaining finer and higher density of γ’-more » and γ”-phase precipitates is also presented.« less

  7. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  8. Effect of lattice-mismatch-induced strains on coupled diffusive and displacive phase transformations

    NASA Astrophysics Data System (ADS)

    Bouville, Mathieu; Ahluwalia, Rajeev

    2007-02-01

    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some material systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize mixed microstructures (such as retained austenite-martensite and pearlite-martensite mixtures) by an interplay between diffusive and displacive mechanisms, which can alter TTT and CCT diagrams. Depending on the conditions there can be competitive or cooperative nucleation of the two kinds of phases. The model also shows that small differences in volume changes can have noticeable effects on the early stages of martensite formation and on the resulting microstructures.

  9. Large-scale separation of antipsychotic alkaloids from Rauwolfia tetraphylla L. by pH-zone-refining fast centrifugal partition chromatography.

    PubMed

    Maurya, Anupam; Gupta, Shikha; Srivastava, Santosh K

    2013-01-01

    pH-zone-refining centrifugal partition chromatography was successively applied in the large-scale separation of close R(f) antipsychotic indole alkaloids directly from CHCl(3) fraction of Rauwolfia tetraphylla leaves. Two experiments with increasing mass from 500 mg to 3 g of crude alkaloid extracts (1C) of R. tetraphylla were carried out in normal-displacement mode using a two-phase solvent system composed of methyl tert-butyl ether/ACN/water (4:1:5, v/v/v) where HCl (12 mM) was added to the lower aqueous stationary phase as a retainer and triethylamine (5 mM) to the organic mobile phase as an eluter. The two centrifugal partition chromatography separations afforded a total of 162.6 mg of 10-methoxytetrahydroalstonine (1) and 296.5 mg of isoreserpiline (2) in 97% and 95.5% purity, respectively, along with a 400.9 mg mixture of α-yohimbine and reserpiline (3 and 4). Further, this mixture was resolved over medium pressure LC using TLC grade silica gel H (average particle size 10 μm), which afforded 160.4 mg of α-yohimbine (3) and 150.2 mg of reserpiline (4) in >95% purities. The purity of the isolated antipsychotic alkaloids was analyzed by high-performance LC and their structures were characterized on the basis of their 1D, 2D NMR and electrospray ionization-mass spectroscopic data. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The microstructure and composition of equilibrium phases formed in hypoeutectic Te-In alloy during solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Baoguang

    As a key tellurium atoms evaporation source for ultraviolet detection photocathode, the hypoeutectic Te{sub 75}In{sub 25} alloy was prepared by employing a slow solidification speed of about 10{sup −2} K/s. The microstructure and chemical composition of the equilibrium phases formed in the as-prepared alloy were studied in this research work. The experimental results show that the as-prepared Te-In alloy was constituted by primary In{sub 2}Te{sub 5} phase and eutectic In{sub 2}Te{sub 5}/Te phases. The eutectic In{sub 2}Te{sub 5}/Te phases are distributed in the grain boundaries of primary In{sub 2}Te{sub 5} phase. With the slow solidification speed, a pure eutectic Temore » phase without any excessive indium solute was obtained, where Te content of eutectic Te phase is 100 mass%. Moreover, it can be considered that the stress between the In{sub 2}Te{sub 5} and Te phases plays an important role in reducing the tellurium vapor pressure in Te{sub 75}In{sub 25} alloy. - Highlights: • The microstructure of Te-In alloy as an evaporation source was analyzed. • A pure eutectic Te phase was obtained by using a slow solidification speed method. • The relation between vapor pressure and inner-stress in the alloy was discussed.« less

  11. Combinatorial Solid-Phase Synthesis of Aromatic Oligoamides: A Research-Based Laboratory Module for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Fuller, Amelia A.

    2016-01-01

    A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…

  12. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  13. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  14. The microstructure and magnetic properties of melt-spun Fe 76Nd 16B 8 magnetic materials

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, G. C.; Dickenson, R. C.; Lawless, K. R.

    1986-02-01

    The origin of magnetic hardening has been examined in melt-spun Fe 76Nd 16B 8 samples heat-treated at around 700°C. Microstructure studies show the same phases as in sintered magnets consisting of Fe 14Nd 2B, Fe 4NdB 4 and two high-Nd content phases. These phases exist in both equiaxed and faceted crystallites of submicron size. Lorentz microscopy shows domain walls which end at grain boundaries indicating that they are pinned there.

  15. Microstructural investigations of 0.2% carbon content steel

    NASA Astrophysics Data System (ADS)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  16. Precipitation in Al-Cu-Li alloys: from the kinetics of T1 phase precipitation to microstructure development in friction stir welds

    NASA Astrophysics Data System (ADS)

    Deschamps, A.; de Geuser, F.; Decreus, B.; Malard, B.

    Al-Cu-Li based alloys are experiencing a rapid development for aerospace applications. The main hardening phase of this system (T1-Al2CuLi) forms as thin platelets (1 nm) that can reach diameters of 50 to 100 nm with remarkable stability in temperature. The nucleation, growth and thickening mechanisms of this phase are of crucial importance for the understanding of the microstructures resulting from simple to complex thermo-mechanical treatments, including friction stir welding of such alloys.

  17. Effect of Annealing Treatments on the Microstructure, Mechanical Properties and Corrosion Behavior of Direct Metal Laser Sintered Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Xu, Yangzi; Lu, Yuan; Sundberg, Kristin L.; Liang, Jianyu; Sisson, Richard D.

    2017-05-01

    An experimental investigation on the effects of post-annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V alloys has been conducted. The microstructure and phase evolution as affected by annealing treatment temperature were examined through scanning electron microscopy and x-ray diffraction. The tensile properties and Vickers hardness were measured and compared to the commercial Grade 5 Ti-6Al-4V alloy. Corrosion behavior of the parts was analyzed electrochemically in simulated body fluid at 37 °C. It was found out that the as-printed parts mainly composed of non-equilibrium α' phase. Annealing treatment allowed the transformation from α' to α phase and the development of β phase. The tensile test results indicated that post-annealing treatment could improve the ductility and decrease the strength. The as-printed Ti-6Al-4V part exhibits inferior corrosion resistance compared to the commercial alloy, and post-annealing treatment can reduce its susceptibility to corrosion by reducing the two-phase interface area.

  18. Influence of Homogenization on Microstructural Response and Mechanical Property of Al-Cu-Mn Alloy.

    PubMed

    Wang, Jian; Lu, Yalin; Zhou, Dongshuai; Sun, Lingyan; Li, Renxing; Xu, Wenting

    2018-05-29

    The evolution of the microstructures and properties of large direct chill (DC)-cast Al-Cu-Mn alloy ingots during homogenization was investigated. The results revealed that the Al-Cu-Mn alloy ingots had severe microsegregation and the main secondary phase was Al₂Cu, with minimal Al₇Cu₂Fe phase. Numerous primary eutectic phases existed in the grain boundary and the main elements were segregated at the interfaces along the interdendritic region. The grain boundaries became discontinuous, residual phases were effectively dissolved into the matrix, and the segregation degree of all elements was reduced dramatically during homogenization. In addition, the homogenized alloys exhibited improved microstructures with finer grain size, higher number density of dislocation networks, higher density of uniformly distributed θ' or θ phase (Al₂Cu), and higher volume fraction of high-angle grain boundaries compared to the nonhomogenized samples. After the optimal homogenization scheme treated at 535 °C for 10 h, the tensile strength and elongation% were about 24 MPa, 20.5 MPa, and 1.3% higher than those of the specimen without homogenization treatment.

  19. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  20. Phase transition in a multiferroic Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Veřtát, P.; Drahokoupil, J.; Perevertov, O.; Heczko, O.

    2016-08-01

    We studied martensitic phase transformation, crystal structure and twinned microstructure of resulting martensite of a Ni-Mn-Ga single crystal as essential conditions for magnetic shape memory effect. Thermal dependence of electric resistivity, magnetic susceptibility and dilatation measurements were measured to characterise kinetics of the transformation. With the help of XRD analysis and optical microscopy we evaluated the hierarchical twinning microstructure in the 10M martensite.

  1. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  2. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1986-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  3. Microstructure and Texture Evolutions of Biomedical Ti-13Nb-13Zr Alloy Processed by Hydrostatic Extrusion

    NASA Astrophysics Data System (ADS)

    Ozaltin, K.; Panigrahi, A.; Chrominski, W.; Bulutsuz, A. G.; Kulczyk, M.; Zehetbauer, M. J.; Lewandowska, M.

    2017-11-01

    A biomedical β-type Ti-13Nb-13Zr (TNZ) (wt pct) ternary alloy was subjected to severe plastic deformation by means of hydrostatic extrusion (HE) at room temperature without intermediate annealing. Its effect on microstructure, mechanical properties, phase transformations, and texture was investigated by light and electron microscopy, mechanical tests (Vickers microhardness and tensile tests), and XRD analysis. Microstructural investigations by light microscope and transmission electron microscope showed that, after HE, significant grain refinement took place, also reaching high dislocation densities. Increases in strength up to 50 pct occurred, although the elongation to fracture left after HE was almost 9 pct. Furthermore, Young's modulus of HE-processed samples showed slightly lower values than the initial state due to texture. Such mechanical properties combined with lower Young's modulus are favorable for medical applications. Phase transformation analyses demonstrated that both initial and extruded samples consist of α' and β phases but that the phase fraction of α' was slightly higher after two stages of HE.

  4. Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D Li xFePO 4 Nanoparticles from Surface Wetting and Coherency Strain

    DOE PAGES

    Welland, Michael J.; Karpeyev, Dmitry; O’Connor, Devin T.; ...

    2015-09-10

    We study the mesoscopic effects which suppress phase-segregation in Li xFePO 4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3nm to 40nm and examine the equilibrium microstructure and voltage profiles as a they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. Here, we find that the miscibility gap vanishes for particles of radius ~ 5 nm, and the solubility limits change with overall particle lithiation. The corresponding voltage plateau, indicative ofmore » phase-segregation, changes in extent and also vanishes. Surface wetting is found to have a strong effect on stabilizing a variety of microstructures, exaggerating the shifting of solubility limits, and shortening the voltage plateau.« less

  5. Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method

    NASA Astrophysics Data System (ADS)

    Naderi, P.; Masoudpanah, S. M.; Alamolhoda, S.

    2017-11-01

    In this research, lithium ferrite (Li0.5Fe2.5O4) powders were prepared by solution combustion synthesis using glycine and citric acid fuels at various fuel to oxidant molar ratios ( ϕ = 0.5, 1 and 1.5). Phase evolution, microstructure and magnetic properties were characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, electron microscopy and vibration sample magnetometry techniques. Single-phase lithium ferrite was formed using glycine fuel at all fuel to oxidant ratios, while some impurity α-Fe2O3 phase was appeared using citric acid fuel at ϕ ≥ 1. The phase and crystallite size mainly depended on the combustion rate through fuel type. Bulky microstructure observed for citric acid fuel was attributed to its slow combustion, while the fast exhausting of gaseous products led to spongy microstructure for glycine fuel. The highest saturation magnetization of 59.3 emu/g and coercivity of 157 Oe were achieved for the as-combusted powders using glycine fuel.

  6. Phase separated microstructure and dynamics of polyurethane elastomers under strain

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Padsalgikar, Ajay; Runt, James

    The molecular mobility of polyurethane elastomers is of the utmost importance in establishing physical properties for uses ranging from automotive tires and shoe soles to more sophisticated aerospace and biomedical applications. In many of these applications, chain dynamics as well as mechanical properties under external stresses/strains are critical for determining ultimate performance. In order to develop a more complete understanding of their mechanical response, we explored the effect of uniaxial strain on the phase separated microstructure and molecular dynamics of the elastomers. We utilize X-ray scattering to investigate soft segment and hard domain orientation, and broadband dielectric spectroscopy for interrogation of the dynamics. Uniaxial deformation is found to significantly perturb the phase-separated microstructure and chain orientation, and results in a considerable slowing down of the dynamics of the elastomers. Attenuated total reflectance Fourier transform infrared spectroscopy measurements of the polyurethanes under uniaxial deformation are also employed and the results are quantitatively correlated with mechanical tensile tests and the degree of phase separation from small-angle X-ray scattering measurements.

  7. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier

    2016-01-01

    The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.

  8. The microstructural changes of Ge2Sb2Te5 thin film during crystallization process

    NASA Astrophysics Data System (ADS)

    Xu, Jingbo; Qi, Chao; Chen, Limin; Zheng, Long; Xie, Qiyun

    2018-05-01

    Phase change memory is known as the most promising candidate for the next generation nonvolatile memory technology. In this paper, the microstructural changes of Ge2Sb2Te5 film, which is the most common choice of phase change memory material, has been carefully studied by the combination of several characterization techniques. The combination of resistance measurements, X-ray diffraction, Raman spectroscopy and X-ray reflectivity allows us to simultaneously extract the characteristics of microstructural changes during crystallization process. The existence of surface/interface Ge2Sb2Te5 layer has been proposed here based on X-ray reflectivity measurements. Although the total film thickness decreases, as a result of the phase transition from amorphous to metastable crystalline cubic and then to the stable hexagonal phase, the surface/interface thickness increases after crystallization. Moreover, the increase of average grain size, density and surface roughness has been confirmed during thermal annealing process.

  9. Phase transformations in a Cu−Cr alloy induced by high pressure torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korneva, Anna, E-mail: a.korniewa@imim.pl; Straumal, Boris; Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

    2016-04-15

    Phase transformations induced by high pressure torsion (HPT) at room temperature in two samples of the Cu-0.86 at.% Cr alloy, pre-annealed at 550 °C and 1000 °C, were studied in order to obtain two different initial states for the HPT procedure. Observation of microstructure of the samples before HPT revealed that the sample annealed at 550 °C contained two types of Cr precipitates in the Cu matrix: large particles (size about 500 nm) and small ones (size about 70 nm). The sample annealed at 1000 °C showed only a little fraction of Cr precipitates (size about 2 μm). The subsequentmore » HPT process resulted in the partial dissolution of Cr precipitates in the first sample and dissolution of Cr precipitates with simultaneous decomposition of the supersaturated solid solution in another. However, the resulting microstructure of the samples after HPT was very similar from the standpoint of grain size, phase composition, texture analysis and hardness measurements. - Highlights: • Cu−Cr alloy with two different initial states was deformed by HPT. • Phase transformations in the deformed materials were studied. • SEM, TEM and X-ray diffraction techniques were used for microstructure analysis. • HPT leads to formation the same microstructure independent of the initial state.« less

  10. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    PubMed Central

    Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi

    2015-01-01

    Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600

  11. Fractography of the high temperature hydrogen attack of a medium carbon steel

    NASA Technical Reports Server (NTRS)

    Melson, H. G.; Moorhead, R. D.

    1975-01-01

    Microscopic fracture processes were studied which are associated with hydrogen attack of a medium carbon steel in a well-controlled, high-temperature, high-purity hydrogen environment. Exposure to a hydrogen pressure and temperature of 3.5 MN/m2 and 575 C was found to degrade room temperature tensile properties with increasing exposure time. After 408 hr, yield and ultimate strengths were reduced by more than 40 percent and elongation was reduced to less than 2 percent. Initial fissure formation was found to be associated with manganese rich particles, most probably manganese oxide, aligned in the microstructure during the rolling operation. Fissure growth was found to be associated with a reduction in carbide content of the microstructure and was inhibited by the depletion of carbon. The interior surfaces of sectioned fissures or bubbles exhibit both primary and secondary cracking by intergranular separation. The grain surfaces were rough and rounded, suggesting a diffusion-associated separation process. Specimens that failed at room temperature after exposure to hydrogen were found to exhibit mixed mode fracture having varying amounts of intergranular separation, dimple formation, and cleavage, depending on exposure time.

  12. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  13. Eutectic Experiment Development for Space Processing

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1972-01-01

    A ground base test plan and a specimen evaluation scheme have been developed for the aluminum-copper eutectic solidification experiment to be run in the M518 multipurpose electric furnace during the Skylab mission. Besides thermal and solidification studies a detailed description is given of the quantitative metallographic technique which is appropriate for characterizing eutectic structures. This method should prove a key tool for evaluating specimen microstructure which is the most sensitive indicator of changes produced during solidification. It has been recommended that single grain pre-frozen eutectic specimens be used to simplify microstructural evaluation and to eliminate any porosity in the as-cast eutectic specimens. High purity (99.999%) materials from one supplier should be employed for all experiments. Laboratory studies indicate that porosity occurs in the MRC as-cast eutectic ingots but that this porosity can be eliminated by directional freezing. Chemical analysis shows that the MRC ingots are slightly Al rich and contain about .03% impurity. Because of the impurity content the lower cooldown rate (1.2 C/min) should be used for eutectic freezing if MRC material is used in the M518 furnace.

  14. Comparison of mechanical and microstructural properties of conventional and severe plastic deformation processes

    NASA Astrophysics Data System (ADS)

    Szombathelyi, V.; Krallics, Gy

    2014-08-01

    The effect of the deformation processes on yield stress, Vickers microhardness and dislocation density were investigated using commercial purity (A1050) and alloyed aluminum (Al 6082). For the evolution of the dislocation density X-ray line profile analysis was used. In the large plastic strain range the variation of mechanical and microstructure evolution of A1050 and of Al 6082 processed by equal channel angular pressing are investigated using route BC and route C. In the plastic strain range up to 3 plane strain compression test was used to evaluate mechanical properties. The hardness and the yield stress showed a sharp increase after the first pass. In the case of A1050 it was found that the two examined routes has not resulted difference in the flow stress. In the case of Al 6082 the effect of the routes on the yield stress is significant. The present results showed that in the comparable plastic strain range higher yield stress values can be achieved by plane strain compression test than by ECAP.

  15. Production of High-Purity Anhydrous Nickel(II) Perrhenate for Tungsten-Based Sintered Heavy Alloys

    PubMed Central

    Leszczyńska-Sejda, Katarzyna; Benke, Grzegorz; Kopyto, Dorota; Majewski, Tomasz; Drzazga, Michał

    2017-01-01

    This paper presents a method for the production of high-purity anhydrous nickel(II) perrhenate. The method comprises sorption of nickel(II) ions from aqueous nickel(II) nitrate solutions, using strongly acidic C160 cation exchange resin, and subsequent elution of sorbed nickel(II) ions using concentrated perrhenic acid solutions. After the neutralization of the resulting rhenium-nickel solutions, hydrated nickel(II) perrhenate is then separated and then dried at 160 °C to obtain the anhydrous form. The resulting compound is reduced in an atmosphere of dissociated ammonia in order to produce a Re-Ni alloy powder. This study provides information on the selected properties of the resulting Re-Ni powder. This powder was used as a starting material for the production of 77W-20Re-3Ni heavy alloys. Microstructure examination results and selected properties of the produced sintered heavy alloys were compared to sintered alloys produced using elemental W, Re, and Ni powders. This study showed that the application of anhydrous nickel(II) perrhenate in the production of 77W-20Re-3Ni results in better properties of the sintered alloys compared to those made from elemental powders. PMID:28772808

  16. Performance Comparison of Al-Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum.

    PubMed

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun

    2014-05-07

    Three types of Al-5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al-5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al-5Ti master alloy with blocky TiAl₃ particles clearly has better refining efficiency than the master alloy with mixed TiAl₃ particles and the master alloy with needle-like TiAl₃ particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl₃ crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle-like TiAl₃ crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle-like and blocky TiAl₃ particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time.

  17. Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia

    NASA Astrophysics Data System (ADS)

    Yang, C.; Trachenko, K.; Hull, S.; Todorov, I. T.; Dove, M. T.

    2018-05-01

    Large-scale molecular dynamics simulations have been used to study the microstructure in Y-doped ZrO2. From simulations performed as a function of composition the dependence of microstructure on composition is quantified, showing how it is formed from two coexisting phases, and the transformation to the stabilized cubic form is observed at higher concentrations of yttrium and higher temperatures. The effect of composition and temperature on oxygen diffusion is also studied, showing strong correlations between microstructure and diffusion.

  18. Effect of solidification rate on microstructure evolution in dual phase microalloyed steel

    PubMed Central

    Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.

    2016-01-01

    In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109

  19. Characterization of graded TiC layers deposited by HiPIMS method

    NASA Astrophysics Data System (ADS)

    Bohovicova, Jana; Bonova, Lucia; Halanda, Juraj; Ivan, Jozef; Mesko, Marcel; Advanced Technologies Research Institute Team; Institute of Electronic; Photonic Team

    2016-09-01

    An advanced yet recent development of sputter technique is high power impulse magnetron sputtering (HiPIMS), in which short, energetic pulses are applied to the target, leading to a formation of an ultra-dense plasma in front of the cathode, that provide a high degree of ionization of sputtered material, and consequently enable to control the energy and the direction of the deposition flux. This gives a possibility to alter composition and microstructure in a controlled manner, enables the optimization of TiC for tribological applications. The aim of this work is to link physical phenomena in transient HiPIMS discharges to microstructural and compositional properties of graded TiC thin films. It was found that Ti bottom layer is contamination free. Compared to the direct current magnetron sputtering films, we observed an element specific reduction of impurities measured by ERDA by a factor 3 for N, 4 for H and by a factor of 20 for O. The high purity of Ti layer is partly explained by gas rarefaction and the cleaning effect of the bombarding ions. Graphitization degree of carbon top layer was elucidated by Raman spectroscopy. The compositional effects are correlated with differences in the film microstructure revealed by SEM, XRD and TEM analysis. This work was supported by VEGA, Project No. 1/0503/15 and APVV, Project No. 15-0168.

  20. Effect of thermomechanical treatment on the microstructure, phase composition, and mechanical properties of Al-Cu-Mn-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Zuiko, I. S.; Gazizov, M. R.; Kaibyshev, R. O.

    2016-09-01

    The effect of the thermomechanical treatment on the microstructure, phase composition, and mechanical properties of heat-treatable AA2519 aluminum alloy (according to the classification of the Aluminum Association) has been considered. After solid-solution treatment, quenching, and artificial aging (T6 treatment) at 180°C for the peak strength, the yield stress, ultimate tensile strength, and elongation to failure are ~300 MPa, 435 MPa, and 21.7%, respectively. It has been shown that treatments that include intermediate plastic deformations with degrees of 7 and 15% (T87 and T815 treatments, respectively) have a significant effect on the phase composition and morphology of strengthening particles precipitated during peak aging T8X type, where X is pre-strain percent, treatments initiate the precipitation of significant amounts of particles of the θ'- and Ω-phases. After T6 treatment, predominantly homogeneously distributed particles of θ″-phase have been observed. Changes in the microstructure and phase composition of the AA2519 alloy, which are caused by intermediate deformation, lead to a significant increase in the yield stress and ultimate tensile strength (by ~40 and ~8%, respectively), whereas the plasticity decreases by 40-50%.

  1. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-09-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 °C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  2. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510

  3. Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.

    PubMed

    Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.

  4. Microstructural effects of Ramadan fasting on the brain: a diffusion tensor imaging study.

    PubMed

    Bakan, Ayse Ahsen; Yıldız, Seyma; Alkan, Alpay; Yetis, Huseyin; Kurtcan, Serpil; Ilhan, Mahmut Muzaffer

    2015-01-01

    We aimed to examine whether the brain displays any microstructural changes after a three-week Ramadan fasting period using diffusion tenson imaging. This study included a study and a control group of 25 volunteers each. In the study group, we examined and compared apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the participants during (phase 1) and after (phase 2) a period of fasting. The control group included individuals who did not fast. ADC and FA values obtained in phase 1 and phase 2 were compared between the study and control groups. In the study group, ADC values of hypothalamus and, to a lesser extent, of insula were lower in phase 1 compared with phase 2 and the control group. The FA values of amygdala, middle temporal cortex, thalamus and, to a lesser extent, of medial prefrontal cortex were lower in phase 1 compared with phase 2 and the control group. Phase 2 ADC and FA values of the study group were not significantly different compared with the control group at any brain location. A three-week Ramadan fasting period can cause microstructural changes in the brain, and diffusion tensor imaging enables the visualization of these changes. The identification of brain locations where changes occurred in ADC and FA values during fasting can be helpful in diagnostic imaging and understanding the pathophysiology of eating disorders.

  5. Microstructural effects of Ramadan fasting on the brain: a diffusion tensor imaging study

    PubMed Central

    Bakan, Ayse Ahsen; Yıldız, Seyma; Alkan, Alpay; Yetis, Huseyin; Kurtcan, Serpil; Ilhan, Mahmut Muzaffer

    2015-01-01

    PURPOSE We aimed to examine whether the brain displays any microstructural changes after a three-week Ramadan fasting period using diffusion tenson imaging. METHODS This study included a study and a control group of 25 volunteers each. In the study group, we examined and compared apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the participants during (phase 1) and after (phase 2) a period of fasting. The control group included individuals who did not fast. ADC and FA values obtained in phase 1 and phase 2 were compared between the study and control groups. RESULTS In the study group, ADC values of hypothalamus and, to a lesser extent, of insula were lower in phase 1 compared with phase 2 and the control group. The FA values of amygdala, middle temporal cortex, thalamus and, to a lesser extent, of medial prefrontal cortex were lower in phase 1 compared with phase 2 and the control group. Phase 2 ADC and FA values of the study group were not significantly different compared with the control group at any brain location. CONCLUSION A three-week Ramadan fasting period can cause microstructural changes in the brain, and diffusion tensor imaging enables the visualization of these changes. The identification of brain locations where changes occurred in ADC and FA values during fasting can be helpful in diagnostic imaging and understanding the pathophysiology of eating disorders. PMID:25835077

  6. Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel

    NASA Astrophysics Data System (ADS)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.

    2018-04-01

    In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.

  7. The influence of sintering temperature on microstructure and mechanical properties of Ni-Al intermetallics fabricated by SPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thömmes, A., E-mail: thoemmes.alexander@gmail.com; Shevtsova, L. I., E-mail: edeliya2010@mail.ru; Laptev, I. S., E-mail: ilya-laptev-nstu@mail.ru

    2015-10-27

    In the present study PN85Yu15 was used as elemental powder to produce a sintered compound with Ni3Al as main phase. The Spark Plasma Sintering (SPS) technique is used to compact the powders. The powder was sintered in a temperature range between 1000°C and 1150°C to observe the influence of the sintering temperature on the microstructure and the mechanical properties. The microstructure was observed with optical microscope (OM), the phase composition was characterized by X-ray diffraction (XRD) technique. Density and microhardness were observed and compared the values with the results of other researchers. The compressive-, density- and microhardness tests show asmore » clear result that with increasing the sintering temperature nearly all properties become better and also the microstructure studies show that porous places become less.« less

  8. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*

    PubMed Central

    Guo, Xing-zhong; Yang, Hui

    2005-01-01

    Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507

  9. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    PubMed

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  10. Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel

    NASA Astrophysics Data System (ADS)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.

    2018-06-01

    In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.

  11. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2018-02-01

    The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.

  12. Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Robert Alan

    1999-12-01

    Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 μm)more » copper layers sandwiched between the alumina (bulk) and niobium (127 μm). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400°C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200°C are fabricated.« less

  13. Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys

    PubMed Central

    Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander

    2018-01-01

    Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763

  14. Ultra-fine grained microstructure of metastable beta Ti-15Mo alloy and its effects on the phase transformations

    NASA Astrophysics Data System (ADS)

    Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.

    2017-05-01

    Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.

  15. Effect of solution treatment on microstructure and properties of duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Luo, J. M.; Huang, L. Q.; Wang, H. B.; Ma, C. W.

    2017-09-01

    The influence of solution treatment on microstructure and properties of 2205 duplex stainless steel (DSS) was studied. The microstructure, precipitates and corrosion resisting property were observed and analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM) and electrochemical methods. The results showed that a large number of brittle σ-phase precipitates, which deteriorate the plasticity and corrosion resistance of the material, were easy to produce in the duplex stainless steel under the low temperature. The precipitation of σ-phase can be decreased and the plasticity and corrosion resistance can be improved by increasing solution temperature. In addition, the ferrite content increases with the increase of solution temperature, while less affected by cooling rate.

  16. Deformation and fracture behavior of titanium-aluminum-niobium-(chromium,molybdenum) alloys with a gamma+sigma microstructure at ambient temperature

    NASA Astrophysics Data System (ADS)

    Kesler, Michael Steiner

    Titanium aluminides are of interest as a candidate material for aerospace turbine applications due to their high strength to weight ratio. gamma-TiAl + alpha2-Ti3Al alloys have recently been incorporated in the low pressure turbine region but their loss of strength near 750C limits their high temperature use. Additions of Nb have been shown to have several beneficial effects in gamma+alpha2 alloys, including enhancements in strength and ductility of the gamma-phase, along with the stabilization of the cubic BCC beta-phase at forging temperatures allowing for thermomechanical processing. In the ternary Ti-Al-Nb system at high Nb-contents above approximately 10at%, there exists a two-phase gamma-TiAl + sigma-Nb2Al region at and above current service temperature for the target application. Limited research has been conducted on the mechanical properties of alloys with this microstructure, though they have demonstrated excellent high temperature strength, superior to that of gamma+alpha2 alloys. Because the sigma-phase does not deform at room temperature, high volume fractions of this phase result in poor toughness and no tensile elongation. Controlling the microstructural morphology by disconnecting the brittle matrix through heat treatments has improved the toughness at room temperature. In this study, attempts to further improve the mechanical properties of these alloys were undertaken by reducing the volume fraction of the sigma-phase and controlling the scale of the gamma+sigma microstructure through the aging of a meta-stable parent phase, the beta- phase, that was quenched-in to room temperature. Additions of beta-stabilizing elements, Cr and Mo, were needed in order to quench-in the beta-phase. The room temperature mechanical properties were evaluated by compression, Vickers' indentation and single edge notch bend tests at room temperature. The formation of the large gamma-laths at prior beta- phase grain boundaries was found to be detrimental to ductility due to strain localization in this coarsened region of the microstructure. Furthermore, samples aged from beta- phase single crystals proved to have excellent combinations of strength and ductility under compression. In the single crystals, microcracking did not develop until much larger plastic strains were reached. Lowering the volume fraction of the sigma-phase proved to enhance the fracture toughness in these alloys. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  17. Separation of two major chalcones from Angelica keiskei by high-speed counter-current chromatography.

    PubMed

    Kil, Yun-Seo; Nam, Joo-Won; Lee, Jun; Seo, Eun Kyoung

    2015-08-01

    Angelica keiskei (Shin-sun cho) is an edible higher plant with the beneficial preventive effects on cancer, hypertension, and coronary heart disease. Two bioactive chalcones of Shin-sun cho, xanthoangelol (1) and 4-hydroxyderricin (2), were separated simultaneously by using high-speed counter-current chromatography with a two-phase solvent system composed of n-hexane-EtOAc-MeOH-H2O (9:5:9:4). Only nonconsuming processes, solvent fractionations and Sephadex LH-20 column chromatography, were conducted as presteps. Xanthoangelol (1, 35.9 mg, 99.9 % purity at 254 and 365 nm) and 4-hydroxyderricin (2, 4.4 mg, 98.7 % purity at 254 nm and 98.8 % purity at 365 nm) were successfully purified from 70 mg of the processed extract from A. keiskei. The structures of two compounds were confirmed by (1)H- and (13)C-NMR analysis.

  18. Phase stability, porosity distribution and microstructural evolution of amorphous Al{sub 50}Ti{sub 50} powders consolidated by electrical resistance sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.

    2015-03-30

    The effect of intensity and duration of the electrical resistance sintering process on the phase stability, porosity distribution and microstructural evolution of Al{sub 50}Ti{sub 50} amorphous powders is studied. The phase transformations during the consolidation process were determined by X-ray diffraction. The porosity distribution was observed by optical and scanning electron microscopy. The amorphous phase is partially transformed to the crystalline phase during the sintering process, and formation of AlTi and AlTi{sub 3} intermetallic compounds occurs for temperatures higher than 300 °C. Finally, it is observed that the compacts core have lower porosity and a higher tendency to the amorphous-crystallinemore » phase transformation than the periphery.« less

  19. Microstructure evolution and tensile properties of Zr-2.5 wt.% Nb pressure tubes processed from billets with different microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Pressurized heavy water reactors (PHWR) use zirconium-base alloys for their low neutron-absorption cross section, good mechanical strength, low irradiation creep, and high corrosion resistance in reactor atmospheres. Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5 wt%Nb pressure tubes., The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structuremore » at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.« less

  20. The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Petr; Švec, Martin; Král, Robert; Veselý, Jozef; Lukáč, Pavel; Vlasák, Tomáš

    2018-02-01

    The microstructural and high-temperature mechanical properties of Fe-26Al-xNb (x = 3 and 5 at. pct) are compared. The alloys were investigated "as cast" and after hot rolling at 1473 K (1200 °C). Scanning electron microscopes equipped with EDS and EBSD were used for the microstructure and phase identification. The addition of 3 at. pct of Nb into the Fe3Al matrix leads to the formation of C14 λ—Laves phase (Fe,Al)2Nb (LP) particles spread in the Fe3Al matrix, while an eutectic with thin lamellae of LP C14 λ—Laves phase (Fe,Al)2Nb and matrix is also formed in the iron aluminide with 5 at. pct of Nb. The presence of incoherent precipitates is connected with the enhancement of the high-temperature strength and creep resistance.

  1. Controlling the mechanical properties of carbon steel by thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Balavar, Mohsen; Mirzadeh, Hamed

    2018-01-01

    The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.

  2. Effect of Strain Restored Energy on Abnormal Grain Growth in Mg Alloy Simulated by Phase Field Methods

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Huang, Yuan-yuan

    2018-03-01

    Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.

  3. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  4. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    PubMed

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. Microstructure and properties of 17-4PH steel plasma nitrocarburized with a carrier gas containing rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, R.L., E-mail: ruiliangliu@126.com; Yan, M.F., E-mail: yanmufu@hit.edu.cn; Wu, Y.Q.

    2010-01-15

    The effect of rare earth addition in the carrier gas on plasma nitrocarburizing of 17-4PH steel was studied. The microstructure and crystallographically of the phases in the surface layer as well as surface morphology of the nitrocarburized specimens were characterized by optical microscope, X-ray diffraction and scanning tunneling microscope, respectively. The hardness of the surface layer was measured by using a Vickers hardness test. The results show that the incorporation of rare earth elements in the carrier gas can increase the nitrocarburized layer thickness up to 55%, change the phase proportion in the nitrocarburized layer, refine the nitrides in surfacemore » layer, and increase the layer hardness above 100HV. The higher surface hardening effect after rare earth addition is caused by improvement in microstructure and change in the phase proportion of the nitrocarburized layer.« less

  6. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  7. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  8. Evolution of Local Microstructures (ELMS): Spatial Instabilities of Coarsening

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin E.; Frazier, Donald O.; Rogers, Jan R.; Witherow, William K.; Downey, J. Patton; Facemire, Barbara R.

    1999-01-01

    This work examines the diffusional growth of discrete phase particles dispersed within a matrix. Engineering materials are microstructurally heterogeneous, and the details of the microstructure determine how well that material performs in a given application. Critical to the development of designing multiphase microstructures with long-term stability is the process of Ostwald ripening. Ripening, or phase coarsening, is a diffusion-limited process which arises in polydisperse multiphase materials. Growth and dissolution occur because fluxes of solute, driven by chemical potential gradients at the interfaces of the dispersed phase material, depend on particle size. The kinetics of these processes are "competitive," dictating that larger particles grow at the expense of smaller ones, overall leading to an increase of the average particle size. The classical treatment of phase coarsening was done by Todes, Lifshitz, and Slyozov, (TLS) in the limit of zero volume fraction, V(sub v), of the dispersed phase. Since the publication of TLS theory there have been numerous investigations, many of which sought to describe the kinetic scaling behavior over a range of volume fractions. Some studies in the literature report that the relative increase in coarsening rate at low (but not zero) volume fractions compared to that / 2 1/ 3 predicted by TLS is proportional to V(sub v)(exp 1/2), whereas others suggest V(sub v)(exp 1/3). This issue has been resolved recently by simulation studies at low volume fractions in three dimensions by members of the Rensselaer/MSFC team.

  9. Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2018-01-01

    2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.

  10. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    PubMed

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  11. The Influence on Microstructure and Microtexture on Fatigue Crack Initiation and Growth in Alpha + Beta Titanium

    DTIC Science & Technology

    2011-10-01

    crack growth, microstructure, EBSD, fractography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR NUMBER OF PAGES 6 19a...differences in thermomechanical processing routes have been correlated with variations in fatigue life through the use of quantitative fractography ...Keywords: fatigue, crack initiation, crack growth, microstructure, EBSD, fractography 1. Introduction Two-phase titanium alloys have the unique

  12. Effects of synthesis techniques on chemical composition, microstructure and dielectric properties of Mg-doped calcium titanate

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai; Sato, Nicha

    2018-04-01

    Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.

  13. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  14. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals

    NASA Astrophysics Data System (ADS)

    Battaile, Corbett; Owen, Steven; Moore, Nathan

    2017-06-01

    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  15. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-06-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  16. Mathematical modeling of microstructural development in hypoeutectic cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maijer, D.; Cockcroft, S.L.; Patt, W.

    A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less

  17. Influence of thermo-mechanical treatment in ferritic phase field on microstructure and mechanical properties of reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Prakash; Vanaja, J.; Laha, K.; Nageswara Rao, G. V. S.

    2018-03-01

    The present study focuses on the evaluation of microstructure and mechanical properties of reduced activation ferritic-martensitic (RAFM) steel (9Cr-1W-0.06Ta) subjected to thermo-mechanical treatment (TMT) in ferritic phase field. The results obtained were compared with the steel in conventional normalised plus tempered (N+T) condition. The microstructure of the steel in N+T and TMT conditions was assessed by optical and scanning electron microscopes. Hardness, tensile and creep studies were carried out and the results were correlated with the microstructural studies. While the TMT processed steel resulted in coarser prior austenite grains and exhibited ferritic microstructure with large distribution of fine M23C6 and MX precipitates, the N+T steel reveals tempered martensitic structure with finer prior austenitic grains with coarser M23C6 and MX precipitates. Although ferritic structure is present in TMT processed steel, it exhibits better tensile and creep rupture strengths than N+T steel due to the presence of increased dislocation density and finer distribution of precipitates.

  18. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-03-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  19. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  20. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM Study of Microstructures

    PubMed Central

    Bendersky, L. A.; Boettinger, W. J.

    1993-01-01

    Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488

  1. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.

  2. The effect of microstructure on the tensile and fatigue behavior of Ti-22Al-23Nb in air and vacuum

    NASA Astrophysics Data System (ADS)

    Luetjering, Stephanie

    Titanium aluminide alloys containing the ordered orthorhombic (O) phase, based on Ti2AlNb, exhibit high specific strengths at elevated temperature along with good room temperature tensile ductility and fracture toughness values. They are thus considered as potential materials for aerospace applications both in their monolithic form and as matrices in metal matrix composites. Microstructure/property relationships have been studied to a great extend with regard to tensile and creep properties. However, only little is known in the key areas of fatigue crack initiation, fatigue crack propagation and fatigue life. The main objective of this work therefore is to get a comprehensive understanding of the effects of microstructural parameters (such as volume fraction of the individual phases, their size and distribution) on the cyclic properties of O-based titanium aluminides. Furthermore, the performance of these alloys in aggressive environments, a critical issue for this alloy class, is being addressed. Tensile, isothermal fatigue, and fatigue crack growth (FCG) tests were conducted at 20°C and 540°C both in lab air and vacuum (pressure ≤ 1 x 10-6 torr) on three microstructural conditions of a representative O-based titanium alloy, Ti-22Al-23Nb. Results indicate a strong effect of microstructure on tensile and FCG properties, whereas only a slight influence of microstructure on the fatigue life is evident. The O phase contributes mainly to the material's yield stress. The tensile elongation is predominantly influenced by the beta phase volume fraction. The observed effect of microstructure on the FCG behavior is attributed to crack closure, crack front geometry and crystallographic texture. Environmental effects on the fatigue life are pronounced at elevated temperature and high applied stress amplitudes only. These conditions lead to premature crack initiation at the specimen's surface for testing in air, whereas testing in vacuum results in subsurface crack nucleation and an extended fatigue life of about two orders of magnitude. The FCG behavior is influenced by the environment at both 20°C and 540°C, proposing fatigue crack growth mechanisms enhanced by hydrogen embrittlement.

  3. Phase development in a U-7 wt.% Mo vs. Al-7 wt.% Ge diffusion couple

    NASA Astrophysics Data System (ADS)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2013-10-01

    Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)3 phase.

  4. Wet powder processing of sol-gel derived mesoporous silica-hydroxyapatite hybrid powders.

    PubMed

    Andersson, Jenny; Johannessen, Espen; Areva, Sami; Järn, Mikael; Lindén, Mika

    2006-08-01

    This paper describes a method by which a porous silica coating layer can be obtained on different apatite particles through a simple sol-gel synthesis route. Sol-gel derived powders of hydroxyapatite (HAP) and beta tricalciumphosphate (beta-TCP) were coated with a mesoporous silica using C16TAB (hexadecyltrimethylammonium bromide) as a template in order to induce mesophase formation. Further calcination of the material removes the template from the mesophase and leaves a highly ordered hexagonal arranged mesoporous silica structure with a core of HAP/beta-TCP. The phase purity of the SiO2/apatite composites has been thoroughly investigated by the means of FT-IR, XRD, and solid state 31P MAS NMR. The phase purity of these materials is shown to be dependent on the solubility properties of the used apatites. The hybrid materials are suitable as a multifunctional biomaterial where osteoconductive properties can be combined with drug delivery.

  5. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  6. Effect of Carbon on Microstructure and Mechanical Properties of Low C-1.6 pct Mn-0.1 pct Cr-0.3 pct Mo-0.0005 pct B Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Jeong, W. C.

    2014-11-01

    Effect of carbon on the microstructure and mechanical properties of 0.011 and 0.032 pct carbon dual-phase steels was investigated. r m value was increased to 1.52 at around 400 MPa tensile strength level through the optimal design in the steel chemistry and proper control of phase transformation during continuous galvanizing cycle. The isolated martensite particles are expected to increase the strength but are expected not to be desirable for the deep drawability.

  7. Microstructure design of low alloy transformation-induced plasticity assisted steels

    NASA Astrophysics Data System (ADS)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the requirement of the next generation AHSS. To further optimize the microstructure such that the designed criteria can be fully satisfied, further efforts have been made on two aspects: heat treatment and alloy addition. A multi-step BIT treatment was designed and successfully reduced the martensite content on the Fe-1.5Mn-1.5Si-0.3C alloy. Microstructure analysis showed a significant reduction on the volume fraction of martensite after the multi-step BIT as compared to the single BIT step. It was also found that, a slow cooling rate between the two BIT treatments resulted in a better combination of strength and ductility than rapid cooling or conventional one step BIT. Moreover, the athermal martensite formation can be fully suppressed by increasing the Mn content (Fe-3Mn-1Si-0.3C) and through carefully designed heat treatments. The athermal martensite-free alloy provided consistently better ductility than the martensite containing alloy. Finally, a microstructure based semi-empirical constitutive model has been developed to predict the monotonic tensile behavior of the multiphase TRIP assisted steels. The stress rule of mixture and isowork assumption for individual phases was presumed. Mecking-Kocks model was utilized to simulate the flow behavior of ferrite, bainitic ferrite and untransformed retained austenite. The kinetics of strain induced martensitic transformation was modeled following the Olson-Cohen method. The developed model has results in good agreements with the experimental results for both TRIP steels studied with same model parameters.

  8. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  9. Effects of Tungsten Addition on the Microstructure and Corrosion Resistance of Fe-3.5B Alloy in Liquid Zinc

    PubMed Central

    Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi

    2017-01-01

    The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759

  10. Effect of Long-Term Thermal Exposures on Microstructure and Impression Creep in 304HCu Grade Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.

    2017-10-01

    This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.

  11. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

    NASA Astrophysics Data System (ADS)

    Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang

    2015-07-01

    The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

  12. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    NASA Astrophysics Data System (ADS)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  13. Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Agnoli, Andrea; Bernacki, Marc; Logé, Roland; Franchet, Jean-Michel; Laigo, Johanne; Bozzolo, Nathalie

    2015-09-01

    The microstructure stability during δ sub-solvus annealing in Inconel 718 was investigated, focusing on the conditions that may lead to the development of very large grains (about 100 μm) in a recrystallized fine grained matrix (4 to 5 μm) despite the presence of second-phase particles. Microstructure evolution was analyzed by EBSD (grain size, intragranular misorientation) and SEM ( δ phase particles). Results confirm that, in the absence of stored energy, the grain structure is controlled by the δ phase particles, as predicted by the Smith-Zener equation. If the initial microstructure is strained ( ɛ < 0.1) before annealing, then low stored energy grains grow to a large extent, despite the Zener pinning forces exerted by the second-phase particles on the grain boundaries. Those selectively growing grains could be those of the initial microstructure that were the least deformed, or they could result from a nucleation process. The balance of three forces acting on boundary migration controls the growth process: if the sum of capillarity and stored energy driving forces exceeds the Zener pinning force, then selective grain growth occurs. Such phenomenon could be simulated, using a level set approach in a finite element context, by taking into account the three forces acting on boundary migration and by considering a realistic strain energy distribution (estimated from EBSD measurements).

  14. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy

    PubMed Central

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-01-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms−1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms−1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn; Huang, Shibo; Fu, M.W.

    Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content (GH4169, equivalent to Inconel 718) have been quantitatively investigated in this research. The typical microstructures of δ phases with the stick, mixed and needle shapes obviously present in Inconel 718 after the isothermal upsetting at the temperature of 980–1060 °C with the initial strain rate of 10{sup −3}–10{sup −1} s{sup −1}. It is found that the shape of the δ phase has a great effect on the mechanical properties of the alloy, viz., the stick δ phase behaves good plasticitymore » and the needle δ phase has good strength. In addition, the needle δ phase can be used to control the grain size as it can prevent grain growth. The combined effect of the localized necking and microvoid coalescence leads to the final ductile fracture of the GH4169 components with the needle δ phase. Both dislocation motion and atom diffusion are the root-cause for the needle δ phase to be firstly separated at grain boundary and then at sub-boundary. The formation mechanism of the needle δ phase is the new finding in this research. Furthermore, it is the primary mechanism for controlling the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content. - Highlights: • Shape of the δ phase takes great effect on mechanical property. • Needle δ phase plays a great role to prevent grain growth. • Needle δ phase can enhance the fracture strength. • Microstructure mechanism of the needle δ phase has been investigated. • Fracture behavior of the needle δ phase has been studied.« less

  16. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    PubMed

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  18. Method of manufacture of single phase ceramic superconductors

    DOEpatents

    Singh, J.P.; Poeppel, R.B.; Goretta, K.C.; Chen, N.

    1995-03-28

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of about 4 {mu}m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity. 25 figures.

  19. Method of manufacture of single phase ceramic superconductors

    DOEpatents

    Singh, Jitrenda P.; Poeppel, Roger B.; Goretta, Kenneth C.; Chen, Nan

    1995-01-01

    A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2) and that because of second phase precipitates, grain growth is prevented. The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C resulted in a fine-grain microstructure, with an average grain size of about 4 .mu.m. Post sintering annealing in a region of stability for the desired phase converts the second phases and limits grain growth. The method of pinning grain boundaries by small scale decompositive products and then annealing to convert its product to the desired phase can be used for other complex asides. Such a microstructure results in reduced microcracking, strengths as high as 230 MPa and high critical current density capacity.

  20. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  1. Effect of Interface Structure on the Microstructural Evolution of Ceramics

    DTIC Science & Technology

    2007-11-06

    because almost all the material properties are de - pendent upon their internal microstructures. Therefore, the microstructural evolution during the...growing interface de - pends upon the density of kinks on that interface. It fol- lows that the atomically smooth interface, which is char- acterized by...grain, and its de - tailed coarsening process has been treated elsewhere.139 During liquid-phase sintering, the formation of grain boundaries between

  2. A study on the effects of temperature and substrate structure on the templated two-phase film growth via a hybrid model

    NASA Astrophysics Data System (ADS)

    Lu, Xiao; Li, Jia; Zhu, Jian-Gang; Laughlin, David E.; Zhu, Jingxi

    2018-06-01

    Templated growth of two-phase thin films can achieve desirably ordered microstructures. In such cases, the microstructure of the growing films follows the topography of the template. By combining the Potts model Monte Carlo simulation and the "level set" method, an attempt was previously made to understand the physical mechanism behind the templated growth process. In the current work, this model is further used to study the effect of two parameters within the templated growth scenario, namely, the temperature and the geometric features of the template. The microstructure of the thin film grown with different lattice temperatures and domes is analyzed. It is found that within a moderate temperature range, the effect of geometric features took control of the ordering of the microstructure by its influence on the surface energy gradient. Interestingly, within this temperature range, as the temperature is increased, an ordered microstructure forms on a template without the optimal geometric features, which seems to be a result of competition between the kinetics and the thermodynamics during deposition. However, when the temperature was either above or below this temperature range, the template provided no guide to the whole deposition so that no ordered microstructure formed.

  3. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  4. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...

    2018-05-23

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  5. Effect of heat treatment on the microstructure of Co-Cr-W alloy fabricated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Chen, Changjun; Zhang, Min

    2018-04-01

    Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.

  6. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  7. In search of the elusive IrB{sub 2}: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816

    The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less

  8. Microstructures and superconducting properties of high performance MgB2 thin films deposited from a high-purity, dense Mg-B target.

    PubMed

    Li, G Z; Susner, M A; Bohnenstiehl, S D; Sumption, M D; Collings, E W

    2015-12-01

    High quality, c -axis oriented, MgB 2 thin films were successfully grown on 6H-SiC substrates using pulsed laser deposition (PLD) with subsequent in situ annealing. To obtain high purity films free from oxygen contamination, a dense Mg-B target was specially made from a high temperature, high pressure reaction of Mg and B to form large-grained (10~50 µm) MgB 2 . Microstructural analysis via electron microscopy found that the resulting grains of the film were composed of ultrafine columnar grains of 19-30 nm. XRD analysis showed the MgB 2 films to be c -axis oriented; the a -axis and c -axis lattice parameters were determined to be 3.073 ± 0.005 Å and 3.528 ± 0.010 Å, respectively. The superconducting critical temperature, T c,onset , increased monotonically as the annealing temperature was increased, varying from 25.2 K to 33.7 K. The superconducting critical current density as determined from magnetic measurements, J cm , at 5 K, was 10 5 A/cm 2 at 7.8 T; at 20 K, 10 5 A/cm 2 was reached at 3.1 T. The transport and pinning properties of these films were compared to "powder-in-tube" (PIT) and "internal-infiltration" (AIMI) processed wires. Additionally, examination of the pinning mechanism showed that when scaled to the peak in the pinning curve, the films follow the grain boundary, or surface, pinning mechanism quite well, and are similar to the response seen for C doped PIT and AIMI strands, in contrast to the behavior seen in undoped PIT wires, in which deviations are seen at high b ( b = B/B c2 ). On the other hand, the magnitude of the pinning force was similar for the thin films and AIMI conductors, unlike the values from connectivity-suppressed PIT strands.

  9. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  10. Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components.

    PubMed

    Matysiak, Hubert; Zagorska, Malgorzata; Andersson, Joel; Balkowiec, Alicja; Cygan, Rafal; Rasinski, Marcin; Pisarek, Marcin; Andrzejczuk, Mariusz; Kubiak, Krzysztof; Kurzydlowski, Krzysztof J

    2013-11-01

    The aim of this work was to characterize the microstructure of the as-cast Haynes ® 282 ® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray spectroscopy (EDS), wave length dispersive X-ray spectroscopy (WDS), auger electron spectroscopy (AES) and electron energy-loss spectrometry (EELS). The phases identified in the as-cast alloy include: γ (gamma matrix), γ' (matrix strengthening phase), (TiMoCr)C (primary carbide), TiN (primary nitride), σ (sigma-TCP phase), (TiMo)₂SC (carbosulphide) and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γ' appears mostly in the form of spherical, nanometric precipitates (74 nm), while coarser (113 nm) cubic γ' precipitates are present in the interdendritic areas. Volume fraction content of the γ' precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN), are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC), preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo)₂SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γ' matrix.

  11. Lead-germanium ohmic contact on to gallium arsenide formed by the solid phase epitaxy of germanium: A microstructure study

    NASA Astrophysics Data System (ADS)

    Radulescu, Fabian

    2000-12-01

    Driven by the remarkable growth in the telecommunication market, the demand for more complex GaAs circuitry continued to increase in the last decade. As a result, the GaAs industry is faced with new challenges in its efforts to fabricate devices with smaller dimensions that would permit higher integration levels. One of the limiting factors is the ohmic contact metallurgy of the metal semiconductor field effect transistor (MESFET), which, during annealing, induces a high degree of lateral diffusion into the substrate. Because of its limited reaction with the substrate, the Pd-Ge contact seems to be the most promising candidate to be used in the next generation of MESFET's. The Pd-Ge system belongs to a new class of ohmic contacts to compound semiconductors, part of an alloying strategy developed only recently, which relies on solid phase epitaxy (SPE) and solid phase regrowth to "un-pin" the Fermi level at the surface of the compound semiconductor. However, implementing this alloy into an integrated process flow proved to be difficult due to our incomplete understanding of the microstructure evolution during annealing and its implications on the electrical properties of the contact. The microstructure evolution and the corresponding solid state reactions that take place during annealing of the Pd-Ge thin films on to GaAs were studied in connection with their effects on the electrical properties of the ohmic contact. The phase transformations sequence, transition temperatures and activation energies were determined by combining differential scanning calorimetry (DSC) for thermal analysis with transmission electron microscopy (TEM) for microstructure identification. In-situ TEM annealing experiments on the Pd/Ge/Pd/GaAs ohmic contact system have permitted real time determination of the evolution of contact microstructure. The kinetics of the solid state reactions, which occur during ohmic contact formation, were determined by measuring the grain growth rates associated with each phase from the videotape recordings. With the exception of the Pd-GaAs interactions, it was found that four phase transformations occur during annealing of the Pd:Ge thin films on top of GaAs. The microstructural information was correlated with specific ohmic contact resistivity measurements performed in accordance with the transmission line method (TLM) and these results demonstrated that the Ge SPE growth on top of GaAs renders the optimal electrical properties for the contact. By using the focused ion beam (FIB) method to produce microcantilever beams, the residual stress present in the thin film system was studied in connection with the microstructure. Although, the PdGe/epi-Ge/GaAs seemed to be the optimal microstructural configuration, the presence of PdGe at the interface with GaAs did not damage the contact resistivity significantly. These results made it difficult to establish a charge transport mechanism across the interface but they explained the wide processing window associated with this contact.

  12. Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Hu, X. H.; Choi, K. S.

    Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different representative volume element (RVE) sizes are used to predict the size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson-Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the size-dependent fracture strains for multiphase materials. In addition to the RVE sizes, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Application of the derived fracture strain versus RVE size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less

  13. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Young Min; Kim, Nack J.; Yoo, Jang Yong

    2005-08-01

    The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.

  14. Effect of Cooling Rate on Microstructure of Two Kinds of High Nb Containing Tial Alloys

    NASA Astrophysics Data System (ADS)

    Chai, L. H.; Feng, Z. Y.; Xiang, Z. L.; Cui, Y. S.; Zhou, F.; Chen, Z. Y.

    2017-09-01

    In this paper, high Nb-TiAl alloys with Cr and W additions were prepared by Vacuum induction melting method, and then were heat treated under three different cooling rates of slow cooling, furnace cooling and air cooling. The phase composition of the alloy was analyzed by X ray diffraction, and the microstructure of the alloy was observed by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive analyzer. The results show that the microstructure of Ti45Al8Nb0.2Cr and Ti45Al8Nb0.2W are fully lamellar structure with the main phase composition of α+γ after 3 different heat treatment conditions. The grain size of the two alloys decreases with decreasing of cooling rate, and the grain size of the alloyed with Cr alloy is smaller than that of the alloyed with W alloy. Most of the original massive β phase at grain boundaries and lamellar interfaces dissolved after heat treatment, and the transformation of β phase is easier for Ti45Al8Nb0.2Cr.

  15. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    NASA Astrophysics Data System (ADS)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  16. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    NASA Astrophysics Data System (ADS)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  17. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  18. X-ray and optical crystallographic parameters investigations of high frequency induction melted Al-(alpha-Al(2)O(3)) alloys.

    PubMed

    Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y

    2010-01-01

    This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.

  19. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }< 110rangle and bar{B} { {bar{1}1bar{2}} }< bar{1}bar{1}0rangle simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }< 111rangle and D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  20. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

Top