Science.gov

Sample records for microvascular endothelial cell

  1. Differentiation state determines neural effects on microvascular endothelial cells

    SciTech Connect

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  2. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke

    PubMed Central

    Yu, Qi-jin; Tao, Hong; Wang, Xin; Li, Ming-chang

    2015-01-01

    Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endothelial cells with regards expression of specific ion transporters and receptors, and contain fewer fenestrations and pinocytotic vesicles. Brain microvascular endothelial cells also synthesize several factors that influence blood vessel function. This review describes the morphological characteristics and functions of brain microvascular endothelial cells, and summarizes current knowledge regarding changes in brain microvascular endothelial cells during stroke progression and therapies. Future studies should focus on identifying mechanisms underlying such changes and developing possible neuroprotective therapeutic interventions. PMID:26807131

  3. The expression of ADAMTS13 in human microvascular endothelial cells.

    PubMed

    Wang, Anyou; Duan, Qiaohong; Wu, Jingsheng; Liu, Xin; Sun, Zimin

    2016-06-01

    ADAMTS13, as a specific von Willebrand factor (VWF)-cleaving protease, prevents microvascular thrombosis of VWF/platelet thrombi. It has been reported that human vascular endothelial cells could also synthesize and secrete ADAMTS13, and these reports were focused in human umbilical vascular endothelial cells. Considering the particularity of its huge quantity and structure of human microvascular endothelial cells (HMECs) in the body, whether ADAMTS13 is expressed in HMECs also needs to be confirmed. To investigate whether ADAMTS13 is expressed in HMECs. Real-time PCR (RT-PCR) amplification detected ADAMTS13 mRNA in HMEC-1 cell line. The expression and distribution of ADAMTS13 protein and VWF were detected by fluorescence immunoassay and western blot. We observed the expression and distribution of ADAMTS13 in HMECs. We confirmed the expression of ADAMTS13 mRNA in HMEC-1, and found that there were some partly common distributions of ADAMTS13 protein and VWF. This study provides the evidence that HMECs also express ADAMTS13. HMECs might also be a primary source for human plasma ADAMTS13. The overlap region for the distribution of ADAMTS13 and VWF suggests that ADAMTS13 might have a potential regulation role for VWF inside cells.

  4. Serum factors involved in human microvascular endothelial cell morphogenesis.

    PubMed

    Harvey, Kevin; Siddiqui, Rafat A; Sliva, Daniel; Garcia, Joe G N; English, Denis

    2002-09-01

    Our previous studies have demonstrated that lipid and protein angiogenic factors operate in tandem to induce optimal angiogenic responses in vivo. This study was undertaken to clarify the nature of the substances in human serum that are responsible for its remarkable ability to promote capillary morphogenesis in vitro. The ability of dilute (2%) human serum to promote the morphogenic differentiation of human dermal microvascular endothelial cells on Matrigel supports was depleted by more than 50% by treatment of the serum with activated charcoal, a procedure that effectively removes biologically active lipid growth factors. The remainder of the activity within serum was lost on heating to 60 degrees C for 60 minutes, indicating the involvement of a protein in the response. The ability of charcoal-treated serum to promote capillary morphogenesis was completely restored by the addition of sphingosine 1-phosphate (SPP, 500 nmol/L), but other lipids thought to be released into serum during clotting were ineffective. In addition, basic fibroblast growth factor (bFGF) effectively restored the ability of heat-treated serum to promote endothelial cell morphogenesis, but other protein growth factors, including vascular endothelial growth factor and platelet-derived growth factor, were ineffective. Together, SPP and bFGF were as effective as whole serum in promoting capillary morphogenesis. Responses to purified SPP were entirely sensitive to the effects of preexposure of the cells to pertussis toxin, whereas responses to bFGF were entirely pertussis toxin-resistant. Consistent with our hypothesis that two distinct factors in serum play a role in promoting capillary morphogenesis, responses induced by serum were inhibited approximately 50% by preexposure of endothelial cells to pertussis toxin. We conclude that platelet-released SPP acts in conjunction with circulating bFGF to promote capillary formation by microvascular endothelial cells. Lipid and protein growth factors

  5. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed Central

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics. PMID:27313624

  6. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    NASA Technical Reports Server (NTRS)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P < 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1-14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10-50 microM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular

  7. NAP reduces murine microvascular endothelial cells proliferation induced by hyperglycemia.

    PubMed

    D'Amico, Agata Grazia; Scuderi, Soraya; Maugeri, Grazia; Cavallaro, Sebastiano; Drago, Filippo; D'Agata, Velia

    2014-11-01

    Hyperglycemia has been identified as a risk factor responsible for micro- and macrovascular complications in diabetes. NAP (Davunetide) is a peptide whose neuroprotective actions are widely demonstrated, although its biological role on endothelial dysfunctions induced by hyperglycemia remains uninvestigated. In the present study we hypothesized that NAP could play a protective role on hyperglycemia-induced endothelial cell proliferation. To this end we investigated the effects of NAP on an in vitro model of murine microvascular endothelial cells grown in high glucose for 7 days. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and cyclin D1 protein expression analysis revealed that NAP treatment significantly reduces viability and proliferation of the cells. Hyperglycemia induced the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphatidylinositol-3 kinase/Akt pathways in a time-dependent manner. NAP treatment reduced the phosphorylation levels of ERK and AKT in cells grown in high glucose. These evidences suggest that NAP might be effective in the regulation of endothelial dysfunction induced by hyperglycemia.

  8. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    PubMed

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  9. Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells

    SciTech Connect

    Noguer, Oriol Villena, Joan; Lorita, Jordi; Vilaro, Senen; Reina, Manuel

    2009-03-10

    The formation of new blood vessels, or angiogenesis, is a necessary process during development but also for tumour growth and other pathologies. It is promoted by different growth factors that stimulate endothelial cells to proliferate, migrate, and generate new tubular structures. Syndecans, transmembrane heparan sulphate proteoglycans, bind such growth factors through their glycosaminoglycan chains and could transduce the signal to the cytoskeleton, thus regulating cell behaviour. We demonstrated that syndecan-2, the major syndecan expressed by human microvascular endothelial cells, is regulated by growth factors and extracellular matrix proteins, in both bidimensional and tridimensional culture conditions. The role of syndecan-2 in 'in vitro' tumour angiogenesis was also examined by inhibiting its core protein expression with antisense phosphorothioate oligonucleotides. Downregulation of syndecan-2 reduces spreading and adhesion of endothelial cells, enhances their migration, but also impairs the formation of capillary-like structures. These results suggest that syndecan-2 has an important function in some of the necessary steps that make up the angiogenic process. We therefore propose a pivotal role of this heparan sulphate proteoglycan in the formation of new blood vessels.

  10. Isolation of primary murine brain microvascular endothelial cells.

    PubMed

    Ruck, Tobias; Bittner, Stefan; Epping, Lisa; Herrmann, Alexander M; Meuth, Sven G

    2014-11-14

    The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.

  11. The role of intrinsic apoptotic signaling in hemorrhagic shock-induced microvascular endothelial cell barrier dysfunction.

    PubMed

    Sawant, Devendra A; Tharakan, Binu; Hunter, Felicia A; Childs, Ed W

    2014-11-01

    Hemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated "intrinsic" apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability. Hemorrhagic shock results in overexpression of Bcl-2 family of pro-apoptotic protein, BAK, in the microvascular endothelial cells. The increase in BAK initiates "intrinsic" apoptotic signaling cascade with the release of mitochondrial cytochrome c in the cytoplasm and activation of downstream effector caspase-3, leading to loss of endothelial cell barrier integrity. Thus, this review article offers a brief overview of important findings from our past and present research work along with new leads for future research. The summary of our research work will provide information leading to different avenues in developing novel strategies against microvascular hyperpermeability following hemorrhagic shock.

  12. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells

    PubMed Central

    Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria

    1997-01-01

    Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302

  13. Conditioned Media from Microvascular Endothelial Cells Cultured in Simulated Microgravity Inhibit Osteoblast Activity

    PubMed Central

    Cazzaniga, Alessandra; Castiglioni, Sara; Maier, Jeanette A. M.

    2014-01-01

    Background and Aims. Gravity contributes to the maintenance of bone integrity. Accordingly, weightlessness conditions during space flight accelerate bone loss and experimental models in real and simulated microgravity show decreased osteoblastic and increased osteoclastic activities. It is well known that the endothelium and bone cells cross-talk and this intercellular communication is vital to regulate bone homeostasis. Because microgravity promotes microvascular endothelial dysfunction, we anticipated that the molecular cross-talk between endothelial cells exposed to simulated microgravity and osteoblasts might be altered. Results. We cultured human microvascular endothelial cells in simulated microgravity using the rotating wall vessel device developed by NASA. Endothelial cells in microgravity show growth inhibition and release higher amounts of matrix metalloproteases type 2 and interleukin-6 than controls. Conditioned media collected from microvascular endothelial cells in simulated microgravity were used to culture human osteoblasts and were shown to retard osteoblast proliferation and inhibit their activity. Discussion. Microvascular endothelial cells in microgravity are growth retarded and release high amounts of matrix metalloproteases type 2 and interleukin-6, which might play a role in retarding the growth of osteoblasts and impairing their osteogenic activity. Conclusions. We demonstrate that since simulated microgravity modulates microvascular endothelial cell function, it indirectly impairs osteoblastic function. PMID:25210716

  14. Host defenses to Rickettsia rickettsii infection contribute to increased microvascular permeability in human cerebral endothelial cells.

    PubMed

    Woods, Michael E; Olano, Juan P

    2008-03-01

    Rickettsiae are arthropod-borne intracellular bacterial pathogens that primarily infect the microvascular endothelium leading to systemic spread of the organisms and the major pathophysiological effect, increased microvascular permeability, and edema in vital organs such as the lung and brain. Much work has been done on mechanisms of immunity to rickettsiae, as well as the responses of endothelial cells to rickettsial invasion. However, to date, no one has described the mechanisms of increased microvascular permeability during acute rickettsiosis. We sought to establish an in vitro model of human endothelial-target rickettsial infection using the etiological agent of Rocky Mountain spotted fever, Rickettsia rickettsii, and human cerebral microvascular endothelial cells. Endothelial cells infected with R. rickettsii exhibited a dose-dependent decrease in trans-endothelial electrical resistance, which translates into increased monolayer permeability. Additionally, we showed that the addition of pro-inflammatory stimuli essential to rickettsial immunity dramatically enhanced this effect. This increase in permeability correlates with dissociation of adherens junctions between endothelial cells and is not dependent on the presence of nitric oxide. Taken together, these results demonstrate for the first time that increased microvascular permeability associated with rickettsial infection is partly attributable to intracellular rickettsiae and partly attributable to the immune defenses that have evolved to protect the host from rickettsial spread.

  15. Gene expression microarray data from human microvascular endothelial cells supplemented with a low concentration of niacin

    PubMed Central

    Hughes-Large, Jennifer M.; Borradaile, Nica M.

    2016-01-01

    The systemic lipid modifying drug, niacin, can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions, possibly through activation of niacin receptors “Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity” (Hughes-Large et al. 2014). Here we provide accompanying data collected using Affymetrix GeneChip microarrays to identify changes in gene expression in human microvascular endothelial cells treated with 10 μM niacin. Statistical analyses of robust multi-array average (RMA) values revealed that only 16 genes exhibited greater than 1.3-fold differential expression. Of these 16, only 5 were identified protein coding genes, while 3 of the remaining 11 genes appeared to be small nuclear/nucleolar RNAs. Altered expression of EFCAB4B, NAP1L2, and OR13C8 was confirmed by real time quantitative PCR. PMID:26937468

  16. Gene expression microarray data from human microvascular endothelial cells supplemented with a low concentration of niacin.

    PubMed

    Hughes-Large, Jennifer M; Borradaile, Nica M

    2016-03-01

    The systemic lipid modifying drug, niacin, can directly improve human microvascular endothelial cell angiogenic function under lipotoxic conditions, possibly through activation of niacin receptors "Niacin receptor activation improves human microvascular endothelial cell angiogenic function during lipotoxicity" (Hughes-Large et al. 2014). Here we provide accompanying data collected using Affymetrix GeneChip microarrays to identify changes in gene expression in human microvascular endothelial cells treated with 10 μM niacin. Statistical analyses of robust multi-array average (RMA) values revealed that only 16 genes exhibited greater than 1.3-fold differential expression. Of these 16, only 5 were identified protein coding genes, while 3 of the remaining 11 genes appeared to be small nuclear/nucleolar RNAs. Altered expression of EFCAB4B, NAP1L2, and OR13C8 was confirmed by real time quantitative PCR.

  17. Human microvascular endothelial cells express receptors for platelet-derived growth factor

    SciTech Connect

    Beitz, J.G.; Kim, Insoon; Calabresi, P.; Frackelton, A.R. Jr. )

    1991-03-01

    Endothelial cells have been widely thought to be unresponsive to platelet-derived growth factor (PDGF, a major growth factor released from stimulated platelets at the sites of vascular insults) and devoid of PDGF receptors. Nevertheless, in examining the growth-factor responses of microvascular endothelial cells isolated from human omental adipose tissue, the authors were surprised to detect PDGF-induced tyrosine phosphorylation of a 180-kDa glycoprotein, subsequently identified as the cellular receptor for PDGF by specific immunoprecipitation. Scatchard analysis of {sup 125}I-labeled PDGF binding to human microvascular endothelial cells revealed 30,000 PDGF receptors per cell with a K{sub d} of 0.14 nM. Normal cellular consequences of receptor activation were also observed, including tyrosine phosphorylation of a 42-kDa protein and serine phosphorylation of ribosomal protein S6. Furthermore, PDGF was mitogenic for these cells. Microvascular endothelial cells play a central role in neovascularization required for wound healing and solid tumor growth. Thus, the discovery of functional PFDG receptors on human microvascular endothelial cells suggests a direct role for PDGF in this process.

  18. Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells.

    PubMed

    Wu, Feng; Schuster, David P; Tyml, Karel; Wilson, John X

    2007-01-01

    The production of reactive oxygen species (ROS) is central to the etiology of endothelial dysfunction in sepsis. Endothelial cells respond to infection by activating NADPH oxidases that are sources of intracellular ROS and potential targets for therapeutic administration of antioxidants. Ascorbate is an antioxidant that accumulates in these cells and improves capillary blood flow, vascular reactivity, arterial blood pressure, and survival in experimental sepsis. Therefore, the present study tested the hypothesis that ascorbate regulates NADPH oxidases in microvascular endothelial cells exposed to septic insult. We observed that incubation with Escherichia coli lipopolysaccharide (LPS) and interferon-gamma (IFNgamma) increased NADPH oxidase activity and expression of the enzyme subunit p47phox in mouse microvascular endothelial cells of skeletal muscle origin. Pretreatment of the cells with ascorbate prevented these increases. Polyethylene glycol-conjugated catalase and selective inhibitors of Jak2 also abrogated induction of p47phox. Exogenous hydrogen peroxide induced p47phox expression that was prevented by pretreatment of the cells with ascorbate. LPS+IFNgamma or hydrogen peroxide activated the Jak2/Stat1/IRF1 pathway and this effect was also inhibited by ascorbate. In conclusion, ascorbate blocks the stimulation by septic insult of redox-sensitive Jak2/Stat1/IRF1 signaling, p47phox expression, and NADPH oxidase activity in microvascular endothelial cells. Because endothelial NADPH oxidases produce ROS that can cause endothelial dysfunction, their inhibition by ascorbate may represent a new strategy for sepsis therapy.

  19. The effect of moesin overexpression on ageing of human dermal microvascular endothelial cells.

    PubMed

    Lee, Ju Hee; Hong, In Ae; Oh, Sang Ho; Kwon, Yeon Sook; Cho, Soo Hyun; Lee, Kwang Hoon

    2009-11-01

    Senescence of microvascular endothelial cells is known to play an important role in the pathophysiology of vascular diseases related to ageing, but the accurate mechanism or related genes are not known. Moesin, a cytoskeletal protein and the most potent candidate as an ageing-related protein, showed obvious changes in expression when compared before and after ageing. In this study, a lentivirus was used to overexpress moesin in endothelial cells. The expression of cell cycle mediators such as p16, cyclin D1 and cdk4, which can be the markers of ageing, was compared by RNA and was shown to be suppressed in moesin overexpressed endothelial cells. In conclusion, it can be said that the expression of moesin delays senescence of human dermal microvascular endothelial cells and this fundamental discovery can be used as a basis for understanding the mechanism of ageing and age-related diseases.

  20. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells.

    PubMed

    Sabiiti, Wilber; May, Robin C

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB.

  1. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction

  2. Venlafaxine protects methylglyoxal-induced apoptosis in the cultured human brain microvascular endothelial cells.

    PubMed

    Lv, Qinghua; Gu, Chengyao; Chen, Caijing

    2014-05-21

    It was reported that venlafaxine protects microvascular endothelial cells injury in several models. But the mechanisms of venlafaxine protects cell injury still poor understanding. Here, we shows that in the cultured human brain microvascular endothelial cells (HBMEC), we found that venlafaxine protects methylglyoxal (MGO)-induced cell injury, and the venlafaxine significant reduction in the level of reactive oxygen species, down-regulated expression of pro-apoptotic activated caspase-3 and Bax, increased BDNF release and expression of anti-apoptotic Bcl-2 in the cultured HBMEC. Furthermore, we found that venlafaxine inhibits MGO-induced phosphorylation of JNK. Moreover, venlafaxine increased AKT phosphorylation and the protective effects of venlafaxine was inhibited by PI3K/AKT inhibitor. These findings suggest that venlafaxine protects MGO-induced HBMEC injury through PI3K/AKT and JNK pathway as the potential underlying mechanisms of HBMEC injury in diabetes.

  3. Characterizing nanoscale changes in the activity of VEGFR-2 on glioma microvascular endothelial cell membranes using atomic force microscopy

    PubMed Central

    Zhou, Dexiang; Zhan, Shengquan; Zhou, Dong; Wang, Peng; Chen, Guangzhong; Qin, Kun; Lin, Xiaofeng

    2017-01-01

    The aim of the current study was to demonstrate the distribution of VEGFR-2 on glioma microvascular endothelial cells on a nanoscale and investigate changes in VEGFR-2 activity following treatment with the VEGFR-2 inhibitor and agonist sorafenib and bradykinin, respectively. Three groups were evaluated in this study: Control glioma microvascular endothelial cells, sorafenib-treated glioma microvascular endothelial cells and bradykinin-treated glioma microvascular endothelial cells. Changes in the activity of VEGFR-2 on the glioma microvascular endothelial cell membranes following treatment with sorafenib and bradykinin were characterized by atomic force microscopy (AFM). Colloidal gold-labeled immune complexes and AFM were used to visualize the distribution of VEGFR-2 on the cell membranes. In the control group, VEGFR-2, which was observed as numerous globular structures, was evenly distributed on the cell surface membranes. The majority of the receptors were active. In the sorafenib group, only a few globular structures were observed on the cell membranes, with a density significantly lower than that in the control group (P<0.01). Furthermore, compared with the control group, fewer of the receptors were active. In the bradykinin group, numerous globular structures were densely distributed on the cell membranes, with a density significantly higher than that in the control group (P<0.01). The distribution and activity of VEGFR-2 on glioma microvascular endothelial cell membranes treated with sorafenib and bradykinin suggested that the activity of VEGFR-2 could be regulated by its inhibitor or agonist. PMID:28352319

  4. Involvement of the cellular prion protein in the migration of brain microvascular endothelial cells.

    PubMed

    Watanabe, Takuya; Yasutaka, Yuki; Nishioku, Tsuyoshi; Kusakabe, Sae; Futagami, Koujiro; Yamauchi, Atsushi; Kataoka, Yasufumi

    2011-06-01

    The conversion of cellular prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion disease. Although PrP(C) is a ubiquitous glycoprotein that is present in various cell types, the physiological role of PrP(C) remains obscure. The present study aimed to determine whether PrP(C) mediates migration of brain microvascular endothelial cells. Small interfering RNAs (siRNAs) targeting PrP(C) were transfected into a mouse brain microvascular endothelial cell line (bEND.3 cells). siPrP1, selected among three siRNAs, reduced mRNA and protein levels of PrP(C) in bEND.3 cells. Cellular migration was evaluated with a scratch-wound assay. siPrP1 suppressed migration without significantly affecting cellular proliferation. This study provides the first evidence that PrP(C) may be necessary for brain microvascular endothelial cells to migrate into damaged regions in the brain. This function of PrP(C) in the brain endothelium may be a mechanism by which the neurovascular unit recovers from an injury such as an ischemic insult.

  5. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    PubMed

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts.

  6. Induction of Brain Microvascular Endothelial Cell Urokinase Expression by Cryptococcus neoformans Facilitates Blood-Brain Barrier Invasion

    PubMed Central

    Stie, Jamal; Fox, Deborah

    2012-01-01

    The invasive ability of the blood-borne fungal pathogen Cryptococcus neoformans can be enhanced through interactions with host plasma components, such as plasminogen. Previously we showed by in vitro studies that plasminogen coats the surface of C. neoformans and is converted to the active serine protease, plasmin, by host plasminogen activators. Viable, but not formaldehyde- or sodium azide-killed, cryptococcal strains undergo brain microvascular endothelial cell-dependent plasminogen-to-plasmin activation, which results in enhanced, plasmin-dependent cryptococcal invasion of primary bovine brain microvascular endothelial cells and fungal ability to degrade plasmin substrates. In the present work, brain microvascular endothelial cells cultured with viable, but not killed, cryptococcal strains led to significant increases in both urokinase mRNA transcription and cell-associated urokinase protein expression. Soluble urokinase was also detected in conditioned medium from brain microvascular endothelial cells cultured with viable, but not killed, C. neoformans. Exposure of plasminogen pre-coated viable C. neoformans to conditioned medium from strain-matched brain microvascular endothelial cell-fungal co-cultures resulted in plasminogen-to-plasmin activation and plasmin-dependent cryptococcal invasion. siRNA-mediated silencing of urokinase gene expression or the use of specific inhibitors of urokinase activity abrogated both plasminogen-to-plasmin activation on C. neoformans and cryptococcal-brain microvascular endothelial cell invasion. Our results suggest that pathogen exploitation of the host urokinase-plasmin(ogen) system may contribute to C. neoformans virulence during invasive cryptococcosis. PMID:23145170

  7. Demonstration of actin filament stress fibers in microvascular endothelial cells in situ.

    PubMed

    Nehls, V; Drenckhahn, D

    1991-07-01

    We have developed a method for immunostaining the microvascular tree of rat mesenteric windows in situ. The procedure consists of three steps, i.e., mild fixation with formaldehyde, controlled proteolytic digestion of the mesothelial layer, and permeabilization with acetone. Discrimination between different microvascular segments was possible by double-fluorescent staining with antibodies to the smooth muscle isoform of alpha-actin and to nonmuscle myosin from platelets. Antibodies to nonmuscle myosin labeled numerous longitudinally oriented cables in endothelial cells of all microvascular segments (arterioles, metarterioles, pre-, mid-, and postcapillaries, small venules). Occasionally, the myosin-containing cables displayed the interrupted sarcomere-like staining pattern that is diagnostic for stress fibers. In contrast, staining of actin filaments with phalloidin-rhodamin resulted in a noninterrupted, continuous fluorescence of the stress fibers. A possible functional role of microvascular endothelial stress fibers is to serve as a tensile cytoskeletal scaffold that stabilizes the tubular, three-dimensional geometry of microvessels and, in addition, to help the endothelium resist the shear forces created by blood flow and by collision with red and white blood cells.

  8. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles

    PubMed Central

    Freitag, Tanja C.

    2015-01-01

    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone. PMID:26676791

  9. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    SciTech Connect

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S. . E-mail: atarnawski@yahoo.com

    2007-02-09

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling.

  10. Platelets play an important role in TNF-induced microvascular endothelial cell pathology.

    PubMed Central

    Lou, J.; Donati, Y. R.; Juillard, P.; Giroud, C.; Vesin, C.; Mili, N.; Grau, G. E.

    1997-01-01

    Tumor necrosis factor-alpha (TNF) is known to be an important mediator in the pathogenesis of several inflammatory diseases. Vascular endothelial cells represent a major target of TNF effects. Platelet sequestration has been found in brain microvessels during experimental cerebral malaria and lung in experimental pulmonary fibrosis, implying that it may participate in TNF-dependent microvascular pathology. In this study, we investigated the mechanisms of platelet-endothelial interaction, using co-cultures between platelets and TNF-activated mouse brain microvascular endothelial cells (MVECs). Adhesion and fusion of platelets to MVECs was evidenced by electron microscopy, dye transfer, and flow cytometry. It was induced by TNF and interferon-gamma and depended on LFA-1 expressed on the platelet surface and ICAM-1 expressed on MVECs. The adhesion and fusion also led to the transfer of platelet markers on the MVEC surface, rendering these more adherent for leukocytes, and to an enhanced MVEC sensitivity to TNF-induced injury. These results suggest that platelets can participate in TNF-induced microvascular pathology. Images Figure 2 Figure 3 Figure 6 PMID:9358766

  11. The Proangiogenic Effect of Iroquois Homeobox Transcription Factor Irx3 in Human Microvascular Endothelial Cells*

    PubMed Central

    Scarlett, Kisha; Pattabiraman, Vaishnavi; Barnett, Petrina; Liu, Dong; Anderson, Leonard M.

    2015-01-01

    Angiogenesis is a dynamic process required for embryonic development. However, postnatal vascular growth is characteristic of multiple disease states. Despite insights into the multistep process in which adhesion molecules, extracellular matrix proteins, growth factors, and their receptors work in concert to form new vessels from the preexisting vasculature, there remains a lack of insight of the nuclear transcriptional mechanisms that occur within endothelial cells (ECs) in response to VEGF. Iroquois homeobox gene 3 (Irx3) is a transcription factor of the Iroquois family of homeobox genes. Irx homeodomain transcription factors are involved in the patterning and development of several tissues. Irx3 is known for its role during embryogenesis in multiple organisms. However, the expression and function of Irx3 in human postnatal vasculature remains to be investigated. Here we show that Irx3 is expressed in human microvascular endothelial cells, and expression is elevated by VEGF stimulation. Genetic Irx3 gain and loss of function studies in human microvascular endothelial cells resulted in the modulation of EC migration during wound healing, chemotaxis and invasion, and tubulogenesis. Additionally, we observed increased delta-like ligand 4 (Dll4) expression, which suggests an increase in EC tip cell population. Finally, siRNA screening studies revealed that transient knockdown of Hey1, a downstream Notch signaling mediator, resulted in increased Irx3 expression in response to VEGF treatment. Strategies to pharmacologically regulate Irx3 function in adult endothelial cells may provide new therapies for angiogenesis. PMID:25512384

  12. Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells.

    PubMed

    Milkiewicz, Malgorzata; Uchida, Cassandra; Gee, Eric; Fudalewski, Tomasz; Haas, Tara L

    2008-11-01

    Elevated shear stress within the skeletal muscle microvasculature is implicated in the induction of a longitudinal splitting form of angiogenesis, which is characterized by the lack of basement membrane breakage. We investigated whether the transcriptional regulator, Ets-1, is responsive to changes in hemodynamic forces and if so, whether Ets-1 controls microvascular endothelial cell integrity by inducing the expression of inhibitors of matrix degrading proteases. Rats were treated with prazosin for 2, 4, and 7 days to increase in microvascular shear stress in hindlimb skeletal muscles. In complimentary in vitro experiments, rat microvascular skeletal muscle endothelial cells were exposed to laminar shear stress (15 dyne/cm(2)) for 0.5, 2, and 24 h. TaqMan PCR analysis of laser microdissected capillaries isolated from EDL muscles demonstrated transient (after 2 days) induction of Ets-1 gene expression. In cultured cells, a transient up-regulation of Ets-1 mRNA was observed after 2 h shear stimulation, accompanied by increased phosphorylation of Ets-1 and enhanced Ets-1 DNA binding activity. This response was modulated by ERK1/2 and p38 MAP kinases, but was not dependent on NOS or COX-2 activity. PAI-1, TIMP-1 and TIMP-3 mRNA were elevated significantly in prazosin treated EDL, and in response to shear stimulation in vitro. In cultured endothelial cells, Ets-1 RNA interference abolished the shear-induced increases in Ets-1, PAI-1, TIMP-1, and TIMP-3 mRNA expression. These results suggest that enhanced laminar shear stress may act to preserve the integrity of microvascular walls in part through Ets-1-dependent induction of protease inhibitors.

  13. Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells.

    PubMed

    Bassino, Eleonora; Gasparri, Franco; Giannini, Valentina; Munaron, Luca

    2015-05-01

    Human follicle dermal papilla cells (FDPC) are a specialized population of mesenchymal cells located in the skin. They regulate hair follicle (HF) development and growth, and represent a reservoir of multipotent stem cells. Growing evidence supports the hypothesis that HF cycling is associated with vascular remodeling. Follicular keratinocytes release vascular endothelial growth factor (VEGF) that sustains perifollicular angiogenesis leading to an increase of follicle and hair size. Furthermore, several human diseases characterized by hair loss, including Androgenetic Alopecia, exhibit alterations of skin vasculature. However, the molecular mechanisms underlying HF vascularization remain largely unknown. In vitro coculture approaches can be successfully employed to greatly improve our knowledge and shed more light on this issue. Here we used Transwell-based co-cultures to show that FDPC promote survival, proliferation and tubulogenesis of human microvascular endothelial cells (HMVEC) more efficiently than fibroblasts. Accordingly, FDPC enhance the endothelial release of VEGF and IGF-1, two well-known proangiogenic growth factors. Collectively, our data suggest a key role of papilla cells in vascular remodeling of the hair follicle.

  14. Macro- and microvascular endothelial cells in vitro: maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics

    SciTech Connect

    Stolz, D.B.; Jacobson, B.S. )

    1991-02-01

    Microvascular endothelial cells from bovine adrenal medulla and brain and macrovessel endothelial cells from bovine aorta were isolated and cultured under similar conditions in order to determine morphologic and biochemical heterogeneity in vitro. All three cell types exhibited nearly identical ultrastructural morphology and two-dimensional gel protein patterns of {sup 35}S-methionine-labeled whole cells. Two-dimensional gel analysis of {sup 35}S-methionine-labeled plasma membrane proteins however, revealed two-dimensional gel protein patterns unique to the tissue type from which the endothelial cells were isolated. This suggests that the functional significance of these specific endothelial cell types is manifested primarily in surface-associated proteins and that many of the differences are sustained in culture. To determine the potential of aorta, brain, and adrenal medulla endothelial cell (EC) cultures to respond to developmentally significant signals, morphology, growth pattern, and cell surface proteins were monitored in the presence and absence of growth factors. A 17 to 26% increase in cell density as well as an increase in the number of elongated and overlapping cells resulted when all three EC types were exposed to a mitogenic medium. Additionally, expression of specific glycoprotein profiles, as determined by Concanavalin A Western blotting of two-dimensional gels, was dependent on the presence or absence of growth factors in the medium. The ability to induce this morphologic and biochemical variation in the three endothelial cell types was maintained into later passage. Taken together, these data imply that endothelial cells isolated from different tissues exhibit and maintain biochemical heterogeneity and do not completely dedifferentiate into a common endothelial cell type in culture.

  15. Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis.

    PubMed

    Rossi, Antonella; Gabbrielli, Erica; Villano, Marilisa; Messina, Mario; Ferrara, Francesco; Weber, Elisabetta

    2010-12-01

    Fibrillin microfibrils constitute a scaffold for elastin deposition in the wall of arteries and form the anchoring filaments that connect the lymphatic endothelium to surrounding elastic fibers. We previously reported that fibrillin is deposited in a honeycomb pattern in bovine arterial endothelial cells, which also deposit microfibril-associated glycoprotein (MAGP)-1, whereas thoracic duct endothelial cells form an irregular web. The present immunohistochemical study was designed to verify whether lymphatic and blood human dermal microvascular endothelial cells (HDMECs) isolated from human foreskin by the sequential use of a pan-endothelial marker, CD31, and the lymphatic specific marker, D2-40, deposit fibrillin and MAGP-1. In both cell types, fibrillin and MAGP-1 co-localized and were deposited with different patterns of increasing complexity co-existing in the same culture. Fibrillin microfibrils formed a wide-mesh honeycomb leaving fibrillin-free spaces that were gradually filled. This modality of fibrillin deposition, similar to that of bovine large artery endothelial cells, was basically the same in blood and lymphatic HDMECs. In some lymphatic HDMECs, fibrillin was initially deposited as uniformly scattered short fibrillin strands probably as a result of anchoring filaments carried over from the vessels of origin. Our findings show that blood and lymphatic endothelial cells participate in fibrillin deposition in human skin.

  16. Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4

    PubMed Central

    Suresh, Karthik; Servinsky, Laura; Reyes, Jose; Baksh, Syeda; Undem, Clark; Caterina, Michael; Pearse, David B.

    2015-01-01

    In acute respiratory distress syndrome, both reactive oxygen species (ROS) and increased intracellular calcium ([Ca2+]i) are thought to play important roles in promoting endothelial paracellular permeability, but the mechanisms linking ROS and [Ca2+]i in microvascular endothelial cells are not known. In this study, we assessed the effect of hydrogen peroxide (H2O2) on [Ca2+]i in mouse and human lung microvascular endothelial cells (MLMVEC and HLMVEC, respectively). We found that in both MLMVECs and HLMVECs, exogenously applied H2O2 increased [Ca2+]i through Ca2+ influx and that pharmacologic inhibition of the calcium channel transient receptor potential vanilloid 4 (TRPV4) attenuated the H2O2-induced Ca2+ influx. Additionally, knockdown of TRPV4 in HLMVEC also attenuated calcium influx following H2O2 challenge. Administration of H2O2 or TRPV4 agonists decreased transmembrane electrical resistance (TER), suggesting increased barrier permeability. To explore the regulatory mechanisms underlying TRPV4 activation by ROS, we examined H2O2-induced Ca2+ influx in MLMVECs and HLMVECs with either genetic deletion, silencing, or pharmacologic inhibition of Fyn, a Src family kinase. In both MLMVECs derived from mice deficient for Fyn and HLMVECs treated with either siRNA targeted to Fyn or the Src family kinase inhibitor SU-6656 for 24 or 48 h, the H2O2-induced Ca2+ influx was attenuated. Treatment with SU-6656 decreased the levels of phosphorylated, but not total, TRPV4 protein and had no effect on TRPV4 response to the external agonist, GSK1016790A. In conclusion, our data suggest that application of exogenous H2O2 increases [Ca2+]i and decreases TER in microvascular endothelial cells via activation of TRPV4 through a mechanism that requires the Src kinase Fyn. PMID:26453519

  17. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    PubMed

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  18. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis.

    PubMed Central

    Marx, M; Perlmutter, R A; Madri, J A

    1994-01-01

    Microvascular endothelial cells in vivo exhibit a plastic phenotype, forming a nonproliferative, differentiated capillary network, while retaining their ability to respond to injury by proliferation, migration and neovascularization. The presence of PDGF receptors and PDGF responsiveness in microvascular endothelial cells and the significance of PDGF isoforms in the control of endothelial cell growth and differentiation remain controversial. Since culture of microvascular endothelial cells in a three-dimensional (3D) system induced cell differentiation and angiogenesis and inhibited proliferation, the present study investigates the role of different extracellular matrix environments in inducing different microvascular endothelial cell phenotypes on microvascular endothelial cell PDGF receptor expression and PDGF responsiveness. In conventional two-dimensional (2D) culture, microvascular endothelial cells expressed both PDGF receptor alpha and beta chains. Suramin treatment demonstrated continuous downregulation of the alpha receptor surface expression. PDGF BB and, to a lesser extent, PDGF AB were mitogenic in 2D-culture, PDGF AA failed to induce any proliferative response despite inducing receptor autophosphorylation. During in vitro angiogenesis induced by 3D-culture, both PDGF receptors were rapidly downregulated. Assessment of cell proliferation showed quiescent cells and PDGF unresponsiveness. We conclude that the induction of a differentiated phenotype during in vitro angiogenesis (tube formation) driven in part by the spatial organization of the surrounding matrix is associated with a downregulation of PDGF receptors. Identification of the molecular cell-matrix interactions involved in this receptor regulation may allow for targeted manipulation of cell growth in vivo and lead to novel therapeutic applications for PDGF. Images PMID:7506710

  19. Differential susceptibility of equine and mouse brain microvascular endothelial cells to equine herpesvirus 1 infection.

    PubMed

    Hasebe, R; Kimura, T; Nakamura, K; Ochiai, K; Okazaki, K; Wada, R; Umemura, T

    2006-04-01

    Equine herpesvirus 1 (EHV-1) shows endotheliotropism in the central nervous system (CNS) of infected horses. However, infection of endothelial cells has not been observed in the CNS of infected mice. To explore the basis for this difference in endotheliotropism, we compared the susceptibility of equine brain microvascular endothelial cells (EBMECs) and mouse brain microvascular endothelial cells (MBMECs) to EHV-1 infection. The kinetics of viral growth in EBMECs was typical of a fully productive infection whereas viral infection in MBMECs seemed to be nonproductive. Immunofluorescence microscopy using anti-EHV-1 polyclonal antibody demonstrated viral antigen in infected EBMECs, but not infected MBMECs. EHV-1 immediate early (IE), early (ICP0), and late (gB, gD and gK) transcripts were expressed in infected EBMECs. However, none of these genes was detected in infected MBMECs by reverse transcription-polymerase chain reaction. Electron microscopic examination at the stage of viral entry showed that viral particles were present within uncoated vesicles in the cytoplasm of EBMECs, but absent from those of MBMECs. These results suggest that viral entry is an important determinant of the susceptibility of EBMECs and MBMECs to EHV-1 infection.

  20. Human brain microvascular endothelial cells resist elongation due to shear stress.

    PubMed

    Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C

    2015-05-01

    Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier.

  1. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    PubMed

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  2. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Gräfe, C.; Slabu, I.; Wiekhorst, F.; Bergemann, C.; von Eggeling, F.; Hochhaus, A.; Trahms, L.; Clement, J. H.

    2016-06-01

    Crossing the blood-brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood-brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles’ shape, material, size, and coating.

  3. Concise Review: Tissue-Specific Microvascular Endothelial Cells Derived from Human Pluripotent Stem Cells

    PubMed Central

    Wilson, Hannah K.; Canfield, Scott G.; Shusta, Eric V.; Palecek, Sean P.

    2014-01-01

    Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed towards tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell co-culture, directed differentiation, and direct reprogramming strategies. PMID:25070152

  4. The Effects of Copper on Brain Microvascular Endothelial Cells and Claudin Via Apoptosis and Oxidative Stress.

    PubMed

    Wang, Jian; Chen, Junquan; Tang, Zhaoxin; Li, Ying; Hu, Lianmei; Pan, Jiaqiang

    2016-11-01

    Many neurodegenerative diseases are related to copper although the effects on brain microvascular endothelial cells (BMECs) are poorly understood. In the present study, a primary BMEC culture model was established to evaluate the effects of copper on brain microvascular endothelial cells and whether claudin-1, claudin-3, claudin-5, and claudin-12 isoforms contribute to apoptosis and intrinsic antioxidant activity. Our results showed that copper ions had dual effects on BMECs by regulating intracellular reactive oxygen species (ROS) levels. Copper levels between 30 and 120 μM could enhance viability and promote proliferation. On the other hand, copper cytotoxicity was a result of apoptosis indicating a redox-independent manner of cell death. Expression levels of claudins were also regulated by copper in a concentration-dependent manner. We identified four claudin isoforms (1, 3, 5, and 12) and showed that their expression levels were regulated as a group by copper. Antioxidant activity of BMECs was also copper regulated, and superoxide dismutase and catalase were the main contributors to BMEC antioxidant functions. Together, our results indicated that copper had dual effects on BMEC growth and intrinsic antioxidant activities played a crucial role in BMEC survival and tight junction.

  5. EFFECT OF IRRADIATION ON MICROVASCULAR ENDOTHELIAL CELLS OF PAROTID GLANDS IN THE MINIATURE PIG

    PubMed Central

    Xu, Junji; Yan, Xing; Gao, Runtao; Mao, Lisha; Cotrim, Ana P.; Zheng, Changyu; Zhang, Chunmei; Baum, Bruce J.; Wang, Songlin

    2013-01-01

    Purpose To evaluate the effect of irradiation on microvascular endothelial cells in miniature pig parotid glands. Methods and Materials A single 25-Gy dose of irradiation (IR) was delivered to parotid glands of 6 miniature pigs. Three other animals served as non-IR controls. Local blood flow rate in glands was measured pre- and post-IR with an ultrasonic Doppler analyzer. Samples of parotid gland tissue were taken at 4 h, 24 h, 1 week, and 2 weeks after IR for microvascular density (MVD) analysis and sphingomyelinase (SMase) assay. Histopathology and immunohistochemical staining (anti-CD31 and anti-AQP1) were used to assess morphological changes. MVD was determined by calculating the number of CD31- or AQP1-stained cells per field. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay was used to detect apoptotic cells. The activity of acid and neutral Mg2+-dependent SMase (ASMase and NSMase, respectively) was also assayed. Results Local parotid gland blood flow rate decreased rapidly at 4 h post-IR and remained below control levels throughout the 14-day observation period. Parotid MVD also declined from 4 to 24 hours and remained below control levels thereafter. The activity levels of ASMase and NSMase in parotid glands increased rapidly from 4 to 24 h post-IR and then declined gradually. The frequency of detecting apoptotic nuclei in the glands followed similar kinetics. Conclusions Single-dose IR led to a significant reduction of MVD and local blood flow rate, indicating marked damage to microvascular endothelial cells in miniature pig parotid glands. The significant and rapid increases of ASMase and NSMase activity levels may be important in this IR-induced damage. PMID:20832188

  6. Effect of Irradiation on Microvascular Endothelial Cells of Parotid Glands in the Miniature Pig

    SciTech Connect

    Xu Junji; Yan Xing; Gao Runtao; Mao Lisha; Cotrim, Ana P.; Zheng Changyu; Zhang Chunmei; Baum, Bruce J.; Wang Songlin

    2010-11-01

    Purpose: To evaluate the effect of irradiation on microvascular endothelial cells in miniature pig parotid glands. Methods and Materials: A single 25-Gy dose of irradiation (IR) was delivered to parotid glands of 6 miniature pigs. Three other animals served as non-IR controls. Local blood flow rate in glands was measured pre- and post-IR with an ultrasonic Doppler analyzer. Samples of parotid gland tissue were taken at 4 h, 24 h, 1 week, and 2 weeks after IR for microvascular density (MVD) analysis and sphingomyelinase (SMase) assay. Histopathology and immunohistochemical staining (anti-CD31 and anti-AQP1) were used to assess morphological changes. MVD was determined by calculating the number of CD31- or AQP1-stained cells per field. A terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay was used to detect apoptotic cells. The activity of acid and neutral Mg{sup 2+}-dependent SMase (ASMase and NSMase, respectively) was also assayed. Results: Local parotid gland blood flow rate decreased rapidly at 4 h post-IR and remained below control levels throughout the 14-day observation period. Parotid MVD also declined from 4 to 24 hours and remained below control levels thereafter. The activity levels of ASMase and NSMase in parotid glands increased rapidly from 4 to 24 h post-IR and then declined gradually. The frequency of detecting apoptotic nuclei in the glands followed similar kinetics. Conclusions: Single-dose IR led to a significant reduction of MVD and local blood flow rate, indicating marked damage to microvascular endothelial cells in miniature pig parotid glands. The significant and rapid increases of ASMase and NSMase activity levels may be important in this IR-induced damage.

  7. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.

    PubMed Central

    Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T

    1993-01-01

    Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815

  8. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions.

    PubMed

    Carvalho, Cristina; Katz, Paige S; Dutta, Somhrita; Katakam, Prasad V G; Moreira, Paula I; Busija, David W

    2014-01-01

    We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.

  9. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin.

    PubMed

    Brailoiu, Eugen; Shipsky, Megan M; Yan, Guang; Abood, Mary E; Brailoiu, G Cristina

    2017-02-15

    Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca(2+) concentration in RBMVEC via Ca(2+) release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca(2+) influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.

  10. Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells

    PubMed Central

    Wu, Limin; Walas, Samantha; Leung, Wendy; Sykes, David B.; Wu, Jiang; Lo, Eng H.; Lok, Josephine

    2014-01-01

    Neuroinflammation contributes to the pathophysiology of diverse diseases including stroke, traumatic brain injury, Alzheimer's Disease, Parkinson's Disease, and multiple sclerosis, resulting in neurodegeneration and loss of neurological function. The response of the microvascular endothelium often contributes to neuroinflammation. One such response is the up-regulation of endothelial adhesion molecules which facilitate neutrophil adhesion to the endothelium and their migration from blood to tissue. Neuregulin-1 (NRG1) is an endogenous growth factor which has been reported to have anti-inflammatory effects in experimental stroke models. We hypothesized that NRG1 would decrease the endothelial response to inflammation, and result in a decrease in neutrophil adhesion to endothelial cells. We tested this hypothesis in an in-vitro model of cytokine-induced endothelial injury, in which human brain microvascular endothelial cells (BMECs) were treated with IL-1β, along with co-incubation with vehicle or NRG1-β. Outcome measures included protein levels of endothelial ICAM-1, VCAM-1, and E-selectin; as well as the number of neutrophils that adhere to the endothelial monolayer. Our data show that NRG1-β decreased the levels of VCAM-1, E-selectin, and neutrophil adhesion to brain microvascular endothelial cells activated by IL1-β. These findings open new possibilities for investigating NRG1 in neuroprotective strategies in brain injury. PMID:24863743

  11. TGFB1 disrupts the angiogenic potential of microvascular endothelial cells of the corpus luteum.

    PubMed

    Maroni, Dulce; Davis, John S

    2011-07-15

    Cyclical formation and regression of the ovarian corpus luteum is required for reproduction. During luteal regression, the microvasculature of the corpus luteum is extensively disrupted. Prostaglandin F2α, a primary signal for luteal regression, induces the expression of transforming growth factor β1 (TGFB1) in the corpus luteum. This study determined the actions of TGFB1 on microvascular endothelial cells isolated from the bovine corpus luteum (CLENDO cells). We hypothesized that TGFB1 participates in the disruption of the microvasculature during luteal regression. TGFB1 activated the canonical SMAD signaling pathway in CLENDO cells. TGFB1 (1 ng/ml) significantly reduced both basal and fetal-calf-serum-stimulated DNA synthesis, without reducing cell viability. TGFB1 also significantly reduced CLENDO cell transwell migration and disrupted the formation of capillary-like structures when CLENDO cells were plated on Matrigel. By contrast, CLENDO cells plated on fibrillar collagen I gels did not form capillary-like structures and TGFB1 induced cell death. Additionally, TGFB1 caused loss of VE-cadherin from cellular junctions and loss of cell-cell contacts, and increased the permeability of confluent CLENDO cell monolayers. These studies demonstrate that TGFB1 acts directly on CLENDO cells to limit endothelial cell function and suggest that TGFB1 might act in the disassembly of capillaries observed during luteal regression.

  12. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability

    PubMed Central

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Guo, Nancy Lan; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a member of perfluoroalkyl acids (PFAA) containing an 8-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are one of the strongest in organic chemistry and widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level. PMID:20391123

  13. Impact of Calcium Signaling during Infection of Neisseria meningitidis to Human Brain Microvascular Endothelial Cells

    PubMed Central

    Asmat, Tauseef M.; Tenenbaum, Tobias; Jonsson, Ann-Beth

    2014-01-01

    The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells. PMID:25464500

  14. A simple method for isolating and culturing the rat brain microvascular endothelial cells.

    PubMed

    Liu, Yang; Xue, Qiang; Tang, Qing; Hou, Min; Qi, Hongyi; Chen, Gang; Chen, Weihai; Zhang, Jifen; Chen, Yi; Xu, Xiaoyu

    2013-11-01

    Brain microvascular endothelial cells (BMECs), a main component of the blood-brain barrier, play a critical role in the pathogenesis of many brain diseases. The primary culture of BMECs has been used in various models for studying cerebrovascular diseases in vitro. However, there are still several problems existing in the isolation and cultivation of primary rat BMECs, such as low yield, contamination with other cell types, and requirement of a large number of animals and expensive growth factor. In this study, we describe a simple, economical (without any growth factor) and repeatable method to obtain endothelial cells with high purity (>99%) and yield (about 2.2×10(7) per rat) from cerebral cortexes of neonatal rat, mainly from gray matter. In vitro examinations determined that the isolated cells expressed typical phenotypic markers of differentiated brain endothelium such as multiple drug resistant protein, von Willebrand factor, platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31), and intercellular adhesion molecule (ICAM). These cells also possessed morphological and ultra-structural characteristics that were observed by phase contrast microscope and electric microscope. Then GFAP and α-SMA were used, respectively, to identify astrocyte and pericyte which were potential to contaminate primary culturing of BMECs. And specific reaction of endothelial cells to external stimulation was tested by culture with TNF-α for 24h. All these results of our experiments supply that our protocol provides an effective and reliable method to obtain high purity and yield of rat BMECs and offers a useful tool for studying cellular physiology, cerebrovascular diseases, brain tumors, blood-brain barrier and neurovascular units, etc.

  15. Metformin Represses Glucose Starvation Induced Autophagic Response in Microvascular Endothelial Cells and Promotes Cell Death.

    PubMed

    Samuel, Samson Mathews; Ghosh, Suparna; Majeed, Yasser; Arunachalam, Gnanapragasam; Emara, Mohamed M; Ding, Hong; Triggle, Chris R

    2017-03-05

    Metformin, the most frequently administered drug for the treatment of type 2 diabetes, is being investigated for its potential in the treatment of various types of cancer; however, the cellular basis for this putative anti-cancer action remains controversial. In the current study we examined the effect of metformin on endoplasmic reticulum (ER) stress and autophagy in glucose-starved micro-vascular endothelial cells (MECs). The rationale for our experimental protocol is that in a growing tumor MECs are subjected to hypoxia and nutrient/glucose starvation that results from the reduced supply and relatively high consumption of glucose. Mouse MECs (MMECs) were glucose-starved for up to 48h in the absence or presence of metformin (50μM and 2mM) and the status of ER stress, autophagic, cell survival and apoptotic markers were assessed. Activation of ER stress and autophagy was observed in glucose starved MECs as evidenced by the significant increase in the levels of ER stress and autophagic markers while accumulation of LC3B stained punctae in the MECs confirmed autophagic activation. Treatment with 2mM metformin, independent of AMPK, significantly reversed glucose starvation induced ER stress and autophagy in MECs, but, at 24h, did not decrease cell viability; however, at 48h, persistent ER stress and metformin associated inhibition of autophagy decreased cell viability, caused cell cycle arrest in G2/M and increased the number of cells in the sub-G0/G1 phase of cell cycle. Treatment with metformin reduced phosphorylation of Akt and mTOR and inhibited downstream targets of mTOR. Our findings support the argument that treatment with metformin when used in combination with glycolytic inhibitors will inhibit pro-survival autophagy and promote cell death and potentially prove to be the basis for an effective anti-cancer strategy.

  16. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions

    PubMed Central

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-01-01

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types. PMID:27661112

  17. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions.

    PubMed

    Thuringer, Dominique; Boucher, Jonathan; Jego, Gaetan; Pernet, Nicolas; Cronier, Laurent; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-11-08

    Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.

  18. Adherence to human lung microvascular endothelial cells (HMVEC-L) of Plasmodium vivax isolates from Colombia

    PubMed Central

    2013-01-01

    Background For years Plasmodium vivax has been considered the cause of benign malaria. Nevertheless, it has been observed that this parasite can produce a severe disease comparable to Plasmodium falciparum. It has been suggested that some physiopathogenic processes might be shared by these two species, such as cytoadherence. Recently, it has been demonstrated that P. vivax-infected erythrocytes (Pv-iEs) have the capacity to adhere to endothelial cells, in which intercellular adhesion molecule-1 (ICAM-1) seems to be involved in this process. Methods Adherence capacity of 21 Colombian isolates, from patients with P. vivax mono-infection to a microvascular line of human lung endothelium (HMVEC-L) was assessed in static conditions and binding was evaluated at basal levels or in tumor necrosis factor (TNF) stimulated cells. The adherence specificity for the ICAM-1 receptor was determined through inhibition with an anti-CD54 monoclonal antibody. Results The majority of P. vivax isolates, 13 out of 21 (61.9%), adhered to the HMVEC-L cells, but P. vivax adherence was at least seven times lower when compared to the four P. falciparum isolates. Moreover, HMVEC-L stimulation with TNF led to an increase of 1.6-fold in P. vivax cytoadhesion, similar to P. falciparum isolates (1.8-fold) at comparable conditions. Also, blockage of ICAM-1 receptor with specific antibodies showed a significant 50% adherence reduction. Conclusions Plasmodium vivax isolates found in Colombia are also capable of adhering specifically in vitro to lung endothelial cells, via ICAM-1 cell receptor, both at basal state and after cell stimulation with TNF. Collectively, these findings reinforce the concept of cytoadherence for P. vivax, but here, to a different endothelial cell line and using geographical distinct isolates, thus contributing to understanding P. vivax biology. PMID:24080027

  19. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    PubMed Central

    Wang, Lefeng; Mehta, Sanjay; Brock, Michael

    2017-01-01

    Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction. PMID:28250575

  20. Role of JNK in network formation of human lung microvascular endothelial cells

    PubMed Central

    Medhora, Meetha; Dhanasekaran, Anuradha; Pratt, Phillip F.; Cook, Craig R.; Dunn, Laurel K.; Gruenloh, Stephanie K.; Jacobs, Elizabeth R.

    2010-01-01

    The signaling mechanisms in vasculogenesis and/or angiogenesis remain poorly understood, limiting the ability to regulate growth of new blood vessels in vitro and in vivo. Cultured human lung microvascular endothelial cells align into tubular networks in the three-dimensional matrix, Matrigel. Overexpression of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates the ERK, JNK, and p38 pathways, inhibited network formation of these cells. Adenoviral-mediated overexpression of recombinant MKP-3 (a dual specificity phosphatase that specifically inactivates the ERK pathway) and dominant negative or constitutively active MEK did not attenuate network formation in Matrigel compared with negative controls. This result suggested that the ERK pathway may not be essential for tube assembly, a conclusion which was supported by the action of specific MEK inhibitor PD 184352, which also did not alter network formation. Inhibition of the JNK pathway using SP-600125 or L-stereoisomer (L-JNKI-1) blocked network formation, whereas the p38 MAPK blocker SB-203580 slightly enhanced it. Inhibition of JNK also attenuated the number of small vessel branches in the developing chick chorioallantoic membrane. Our results demonstrate a specific role for the JNK pathway in network formation of human lung endothelial cells in vitro while confirming that it is essential for the formation of new vessels in vivo. PMID:18263671

  1. Microvascular endothelial cells exhibit optimal aspect ratio for minimizing flow resistance.

    PubMed

    Sumagin, Ronen; Brown, Carl W; Sarelius, Ingrid H; King, Michael R

    2008-04-01

    A recent analytical solution of the three-dimensional Stokes flow through a bumpy tube predicts that for a given bump area, there exists an optimal circumferential wavenumber which minimizes flow resistance. This study uses measurements of microvessel endothelial cell morphology to test whether this prediction holds in the microvasculature. Endothelial cell (EC) morphology was measured in blood perfused in situ microvessels in anesthetized mice using confocal intravital microscopy. EC borders were identified by immunofluorescently labeling the EC surface molecule ICAM-1 which is expressed on the surface but not in the EC border regions. Comparison of this theory with extensive in situ measurements of microvascular EC geometry in mouse cremaster muscle using intravital microscopy reveals that the spacing of EC nuclei in venules ranging from 27 to 106 microm in diameter indeed lies quite close to this predicted optimal configuration. Interestingly, arteriolar ECs are configured to minimize flow resistance not in the resting state, but at the dilated vessel diameter. These results raise the question of whether less organized circulatory systems, such as that found in newly formed solid tumors or in the developing embryo, may deviate from the optimal bump spacing predicted to minimize flow resistance.

  2. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    PubMed

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  3. [Knockdown of RUNX3 inhibits hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells].

    PubMed

    Liu, Yanhua; Li, Bingong; Wang, Yuqin; Wang, Delong; Zou, Jin; Ke, Xuan; Hao, Yanqin

    2016-12-01

    Objective To investigate the effects of Runt-related transcription factor 3 (RUNX3) knockdown on hypoxia-induced endothelial-to-mesenchymal transition (EndoMT) of human cardiac microvascular endothelial cells (HCMECs), and elucidate the underlying molecular mechanism. Methods HCMECs were cultured in hypoxic conditions and infected with RUNX3-RNAi lentivirus to knock-down the expression of RUNX3. Reverse transcription PCR was performed to detect the mRNA expressions of RUNX3 and EndoMT related genes such as CD31, vascular endothelial cadherin (VE-cadherin), α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1); Western blotting was used to determine the protein expressions of RUNX3, CD31, α-SMA and another molecules involved in EndoMT; and immunofluorescence cytochemistry was applied to observe the colocalization of CD31 and α-SMA. Results Hypoxia induced the transition of HCMECs to mesenchymal cells. Hypoxia up-regulated the expression of TGF-β2, Smad2/3, phosphorylation of Smad2/3 (p-Smad2/3), Notch-1, Hes1, and Hey1; knockdown of RUNX3 down-regulated the levels of Smad2/3, p-Smad2/3, Hes1, and Hey1 to different extents, and raised the levels of TGF-β2 and Notch-1. Conclusion Knockdown of RUNX3 in HCMECs attenuates hypoxia-induced EndoMT via partially inhibiting TGF-β and Notch signaling pathway.

  4. Fermented Chinese Formula Shuan-Tong-Ling Protects Brain Microvascular Endothelial Cells against Oxidative Stress Injury

    PubMed Central

    Tan, Lingjing; Zhang, Xiang; Wang, Jinfeng; Li, Xiaoli; Huang, Weifeng; Yang, Songbai

    2016-01-01

    Fermented Chinese formula Shuan-Tong-Ling (STL), composed of fourteen medicinal herbs, was an experiential formula by Dr. Zhigang Mei for treating vascular encephalopathy, but the underlying mechanisms remained unknown. In this study, we aimed to investigate the protective effects of fermented STL on hydrogen peroxide- (H2O2-) induced injury in rat brain microvascular endothelial cells (BMECs) and the possible mechanisms. Cultured BMECs were treated with H2O2, STL, or nicotinamide (NAM, a SIRT1 inhibitor). Then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was employed to detect cell proliferation and senescence-associated beta-galactosidase (SA-β-gal) was used to examine cell senescence. Cell nuclei were observed by 4′,6-diamidino-2-phenylindole. Additionally, changes in reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) levels were measured. Expression of SIRT1, p21, and PGC-1α was determined by western blot. Cell proliferation significantly increased with STL treatment in a dose-dependent manner. H2O2 treatment could intensify cell senescence and nuclei splitting or pyknosis. With STL treatment, the reduced ROS level was accompanied by increased SOD and GSH activity. Further assays showed upregulation of SIRT1 and PGC-1α and downregulation of p21 after STL treatment. The results revealed that STL could protect BMECs against oxidative stress injury at least partially through the SIRT1 pathway. PMID:28096886

  5. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    PubMed

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  6. Tongxinluo Reverses the Hypoxia-suppressed Claudin-9 in Cardiac Microvascular Endothelial Cells

    PubMed Central

    Liu, Kun; Wang, Xiu-Juan; Li, Yan-Ning; Li, Bin; Qi, Jin-Sheng; Zhang, Jing; Wang, Yu

    2016-01-01

    Background: Claudin-5, claudin-9, and claudin-11 are expressed in endothelial cells to constitute tight junctions, and their deficiency may lead to hyperpermeability, which is the initiating process and pathological basis of cardiovascular disease. Although tongxinluo (TXL) has satisfactory antianginal effects, whether and how it modulates claudin-5, claudin-9, and claudin-11 in hypoxia-stimulated human cardiac microvascular endothelial cells (HCMECs) have not been reported. Methods: In this study, HCMECs were stimulated with CoCl2 to mimic hypoxia and treated with TXL. First, the messenger RNA (mRNA) expression of claudin-5, claudin-9, and claudin-11 was confirmed. Then, the protein content and distribution of claudin-9, as well as cell morphological changes were evaluated after TXL treatment. Furthermore, the distribution and content histone H3K9 acetylation (H3K9ac) in the claudin-9 gene promoter, which guarantees transcriptional activation, were examined to explore the underlying mechanism, by which TXL up-regulates claudin-9 in hypoxia-stimulated HCMECs. Results: We found that hypoxia-suppressed claudin-9 gene expression in HCMECs (F = 7.244; P = 0.011) and the hypoxia-suppressed claudin-9 could be reversed by TXL (F = 61.911; P = 0.000), which was verified by its protein content changes (F = 29.142; P = 0.000). Moreover, high-dose TXL promoted the cytomembrane localization of claudin-9 in hypoxia-stimulated HCMECs, with attenuation of cell injury. Furthermore, high-dose TXL elevated the hypoxia-inhibited H3K9ac in the claudin-9 gene promoter (F = 37.766; P = 0.000), activating claudin-9 transcription. Conclusions: The results manifested that TXL reversed the hypoxia-suppressed claudin-9 by elevating H3K9ac in its gene promoter, playing protective roles in HCMECs. PMID:26879018

  7. Hydroxysafflor yellow A protects methylglyoxal-induced injury in the cultured human brain microvascular endothelial cells.

    PubMed

    Li, Wenlu; Liu, Jie; He, Ping; Ni, Zhenzhen; Hu, Yangmin; Xu, Huimin; Dai, Haibin

    2013-08-09

    Individuals with diabetes have high concentration of methylglyoxal (MGO) and have advanced glycation end-products (AGEs) which play an important role in vascular complications, such as stroke. Our previous data demonstrated that hydroxysafflor yellow A (HSYA), a major active chemical component of the safflower yellow pigment, had antiglycation effect on the AGEs formation in vitro. It is not known whether HSYA can protect against MGO-induced injury in cultured human brain microvascular endothelial cells (HBMEC). Using cultured HBMEC, cell injury was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, lactate dehydrogenase (LDH) release and AnnexinV/PI staining. Advanced glycogen end-products and caspase-3 formation were measured by Western blotting. Incubation of MGO for 24h concentration-dependently induced HBMEC injury, which was protected by HSYA from 10 to 100 μmol/l. Caspase-3 expression and AnnexinV/PI staining illustrated that the protection of HSYA was probably associated with inhibiting cell apoptosis. What's more, MGO promoted AGEs accumulation in the cultured HBMEC, which was also inhibited by 100 μmol/l HSYA. Thus, our results proved that HSYA could inhibit MGO-induced injury in the cultured HBMEC, which was associated with its antiglycation effect.

  8. [Effects of transient exposure to high glucose on biological behaviors of human dermal microvascular endothelial cells].

    PubMed

    Qiao, L; Yang, H Z; Li, X C; Huang, X Q; Yuan, B; Zhou, Z D

    2017-02-20

    Objective: To observe the effects of transient exposure to high glucose on biological behaviors of human dermal microvascular endothelial cells cultured in vitro. Methods: The dividing method and treatment of cells for the detection of all indexes in this study were as follows. Human dermal microvascular endothelial cells of the 4th passage were divided into 3 groups according to the random number table, with 12 wells in each group. Cells in control group (C) were cultured with complete culture solution containing 5 mmol/L D-glucose for 7 d. Cells in transient high glucose group (THG) were cultured with complete culture solution containing 30 mmol/L D-glucose for 2 d and complete culture solution containing 5 mmol/L D-glucose for 5 d. Cells in prolonged high glucose group (PHG) were cultured with complete culture solution containing 30 mmol/L D-glucose for 7 d. (1) The cell morphology in groups C and PHG on culture day 7 and that in group THG on culture day 2 and 7 was observed by inverted optical microscope. (2) On culture day 0, 2, 4, and 7, cell proliferation rate was determined by cell viability analyzing counter. (3) After culture day 2, the scratch experiment was performed, and the cells were further cultured. At post scratch hour (PSH) 0, 24, 48, 72, 96, and 120, the scratch area was measured, and the cell migration rates of the latter 5 time points were calculated. (4) On culture day 0, 2, 4, and 7, the cell apoptosis rate was determined by cell analyzer. (5) Cells were seeded into Matrigel to culture for 24 h after culture day 7. The formation of vessel-like structure was observed by inverted optical microscope. The length and number of branch point of vessel-like structure were calculated. (6) On culture day 2, 4, and 7, mRNA expression of vascularization-related gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) was determined with real-time fluorescent quantitative reverse transcription polymerase chain reaction. Data were processed with

  9. Hyperosmolarity attenuates TNFα–mediated pro-inflammatory activation of human pulmonary microvascular endothelial cells

    PubMed Central

    Banerjee, Anirban; Moore, Ernest E.; McLaughlin, Nathan J.; Lee, Luis; Jones, Wilbert L.; Johnson, Jeffrey L.; Nydam, Trevor L.; Silliman, Christopher C.

    2013-01-01

    Firm neutrophil (PMN)-endothelial (EC) adhesion is crucial to the PMN-mediated hyperinflammation observed in acute lung injury. Hypertonic saline (HTS) used for resuscitation of hemorrhagic shock has been associated with a decreased incidence of PMN-mediated lung injury/acute respiratory distress syndrome. We hypothesize that physiologically accessible hypertonic incubation (170mM vs. 140mM, osmolarity ranging from 360-300 mOsm/L) inhibits pro-inflammatory activation of human pulmonary microvascular endothelial cells (HMVECs). Pro-inflammatory activation of HMVECs was investigated in response to TNFα including IL-8 release, ICAM-1 surface expression, PMN adhesion, and signaling mechanisms under both isotonic (control) and hypertonic conditions. Hyperosmolarity alone had no effect on either basal IL-8 release or ICAM-1 surface expression, but did lead to concentration-dependent decreases in TNFα–induced IL-8 release, ICAM-1 surface expression, and PMN:HMVEC adhesion. Conversely, HTS activated p38 mitogen-activated protein kinase (MAPK) and enhanced TNFα activation of p38 MAPK. Despite this basal activation, hyperosmolar incubation attenuated TNFα stimulated IL-8 release and ICAM-1 surface expression and subsequent PMN adherence, while p38 MAPK inhibition did not further influence the effects of hyperosmolar conditions on ICAM-1 surface expression. In addition, TNFα induced NF-kB DNA binding, but HTS conditions attenuated this by 31% (p<0.01). In conclusion, HTS reduces PMN:HMVEC adhesion as well as TNFα-induced pro-inflammatory activation of primary HMVECs via attenuation of NF-kB signaling. PMID:23364439

  10. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    PubMed Central

    Wilkinson, Emma L.; Sidaway, James E.

    2016-01-01

    ABSTRACT Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes. PMID:27543060

  11. Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells

    PubMed Central

    Kusindarta, Dwi Liliek; Wihadmadyatami, Hevi; Haryanto, Aris

    2016-01-01

    Aim: This research was conducted to identify the expression of choline acetyltransferase (ChAT) in human cerebral microvascular endothelial cells (HCMECs) and to clarify the capability of Ocimum sanctum Linn. ethanolic extract to stimulate the presence of ChAT in the aging HCMECs. Materials and Methods: In this study, we perform an in vitro analysis some in the presence of an ethanolic extract of O. sanctum Linn. as a stimulator for the ChAT expression. HCMECs are divided become two groups, the first is in low passage cells as a model of young aged and the second is in a high passage as a model of aging. Furthermore to analysis the expression of ChAT without and with extract treatments, immunocytochemistry and flow cytometry analysis were performed. In addition, ChAT sandwich enzyme-linked immunosorbent assay is developed to detect the increasing activity of the ChAT under normal, and aging HCMECs on the condition treated and untreated cells. Results: In our in vitro models using HCMECs, we found that ChAT is expressed throughout intracytoplasmic areas. On the status of aging, the ethanolic extract from O. sanctum Linn. is capable to stimulate and restore the expression of ChAT. The increasing of ChAT expression is in line with the increasing activity of this enzyme on the aging treated HCMECs. Conclusions: Our observation indicates that HCMECs is one of the noncholinergic cells which is produced ChAT. The administrated of O. sanctum Linn. ethanolic extract may stimulate and restore the expression of ChAT on the deteriorating cells of HCMECs, thus its may give nerve protection and help the production of acetylcholine. PMID:28096604

  12. Cinnamaldehyde reduces IL-1beta-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells.

    PubMed

    Guo, Jian-You; Huo, Hai-Ru; Zhao, Bao-Sheng; Liu, Hong-Bin; Li, Lan-Fang; Ma, Yue-Ying; Guo, Shu-Ying; Jiang, Ting-Liang

    2006-05-10

    Cinnamaldehyde is a principle compound isolated from Guizhi-Tang, which is a famous traditional Chinese medical formula used to treat influenza, common cold and other pyretic conditions. The aim of the present study was to investigate the effects of cinnamaldehyde on expression and activity of cyclooxygenase (COX) and prostaglandin E(2) (PGE(2)) in rat cerebral microvascular endothelial cells (RCMEC). RCMEC were cultured, and identified by immunohistochemistry for von Willebrand factor in cytoplasm of the cells. Then cells were incubated in M199 medium containing interleukin (IL)-1beta in the presence or absence of cinnamaldehyde. After incubation, the medium was collected and the amount of PGE(2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, mRNA expression and activity of COX were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) with SYBR Green dye and ELISA respectively. Positive immunostaining for von Willebrand factor was present diffusely in the cytoplasm of >95% RCMEC. IL-1beta increased the mRNA expression and activity of COX-2, and production of PGE(2) in a dose- and time-dependent manner in RCMEC, while mRNA and activity of COX-1 were not significantly altered. Cinnamaldehyde significantly decreased IL-1beta-induced COX-2 activity and PGE(2) production in a dose-dependent manner, while it showed no inhibitory effect on IL-1beta-induced COX-2 mRNA expression in cultured RCMEC. In conclusion, cinnamaldehyde reduces IL-1beta-induced COX-2 activity, but not IL-1beta-induced COX-2 mRNA expression, and consequently inhibits production of PGE(2) in cultured RCMEC.

  13. Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis.

    PubMed Central

    Sankar, S; Mahooti-Brooks, N; Bensen, L; McCarthy, T L; Centrella, M; Madri, J A

    1996-01-01

    Microvascular endothelial cells (RFCs) cultured in two-dimensional (2D) cultures proliferate rapidly and exhibit an undifferentiated phenotype. Addition of transforming growth factor beta1 (TGFbeta1) increases fibronectin expression and inhibits proliferation. RFCs cultured in three-dimensional (3D) type I collagen gels proliferate slowly and are refractory to the anti-proliferative effects of TGF beta1. TGF beta1 promotes tube formation in 3D cultures. TGF beta1 increases fibronectin expression and urokinase plasminogen activator (uPA) activity and plasminogen activator inhibitor-1 (PAI-1) levels in 3D cultures. Since the TGF beta type I and II receptors have been reported to regulate different activities induced by TGF beta1, we compared the TGF beta receptor profiles on cells in 2D and 3D cultures. RFCs in 3D cultures exhibited a significant loss of cell surface type II receptor compared with cells in 2D cultures. The inhibitory effect of TGF beta1 on proliferation is suppressed in transfected 2D cultures expressing a truncated form of the type II receptor, while its stimulatory effect on fibronectin production is reduced in both 2D and 3D transfected cultures expressing a truncated form of the type I receptor. These data suggest that the type II receptor mediates the antiproliferative effect of TGF beta1 while the type I receptor mediates the matrix response of RFCs to TGF beta1 and demonstrate that changes in the matrix environment can modulate the surface expression of TGF beta receptors, altering the responsiveness of RFCs to TGF beta1. PMID:8617876

  14. Mycoplasmal cerebral vasculopathy in a lymphoma patient: presumptive evidence of Mycoplasma pneumoniae microvascular endothelial cell invasion in a brain biopsy.

    PubMed

    Rhodes, Roy H; Monastersky, Bruce T; Tyagi, Rachana; Coyne, Thomas

    2011-10-15

    A 73-year-old man had episodic encephalopathy, ataxia and neuropathy. Symptoms largely resolved but adenopathy later lead to the diagnosis of a low-grade follicular lymphoma. The neurological symptoms soon recurred with new pontine calcifications identified by computed tomography. Brain biopsy revealed microvascular endothelial cell nuclear changes. Electron microscopy identified small polymorphic bacteria without a cell wall and with terminal and attachment organelles within endothelial cells and clustered in some microvascular lumina. Immunostaining was positive for Mycoplasma pneumoniae and convalescent serum enzyme immunoassay was positive for M. pneumoniae IgG. The patient again recovered and he was neurologically stable 33 months after the initial episode. The ultrastructural findings of the bacterial cells are distinctive of some mycoplasmal species when compared to other small bacteria. Mycoplasma-like organisms are reported in four autopsied patients who had chronic encephalopathy, movement disorders, and some of the same light- and electron-microscopic findings in the brain as our patient. Direct neuroinvasion by Mycoplasma species has been suggested, while anatomic observations in our patient and in the four autopsy cases show microvascular invasion but not parenchymal invasion. Most mycoplasmal encephalitis may be immune-mediated. The frequency of neurovascular invasion is not known. It may be rare and it may persist.

  15. Ca2+ homeostasis in microvascular endothelial cells from an insulin-dependent diabetic model: role of endosomes/lysosomes

    NASA Astrophysics Data System (ADS)

    Sanka, Shankar C.; Bennett, David C.; Rojas, Jose D.; Tasby, Geraldine B.; Meininger, Cynthia J.; Wu, Guoyao; Wesson, Donald E.; Pfarr, Curtis M.; Martinez-Zaguilan, Raul

    2000-04-01

    Cytosolic Ca2+ ([Ca2+]cyt) regulates several cellular functions, e.g. cell growth, contraction, secretion, etc. In many cell types, ion homeostasis appears to be coupled with glucose metabolism. In certain cell types, a strict coupling between glycolysis and the activity of Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPases (SERCA) has been suggested. Glucose metabolism is altered in diabetes. We hypothesize that: (1) Ca2+ homeostasis is altered in microvascular endothelial cells from diabetic animals due to the dysfunction of glycolysis coupling the activity of SERCA; (2) endosomal/lysosomal compartments expressing SERCA are involved in the dysfunction associated with diabetes.

  16. BMPRII influences the response of pulmonary microvascular endothelial cells to inflammatory mediators.

    PubMed

    Vengethasamy, Leanda; Hautefort, Aurélie; Tielemans, Birger; Belge, Catharina; Perros, Frédéric; Verleden, Stijn; Fadel, Elie; Van Raemdonck, Dirk; Delcroix, Marion; Quarck, Rozenn

    2016-11-01

    Mutations in the bone morphogenetic protein receptor (BMPR2) gene have been observed in 70 % of patients with heritable pulmonary arterial hypertension (HPAH) and in 11-40 % with idiopathic PAH (IPAH). However, carriers of a BMPR2 mutation have only 20 % risk of developing PAH. Since inflammatory mediators are increased and predict survival in PAH, they could act as a second hit inducing the development of pulmonary hypertension in BMPR2 mutation carriers. Our specific aim was to determine whether inflammatory mediators could contribute to pulmonary vascular cell dysfunction in PAH patients with and without a BMPR2 mutation. Pulmonary microvascular endothelial cells (PMEC) and arterial smooth muscle cells (PASMC) were isolated from lung parenchyma of transplanted PAH patients, carriers of a BMPR2 mutation or not, and from lobectomy patients or lung donors. The effects of CRP and TNFα on mitogenic activity, adhesiveness capacity, and expression of adhesion molecules were investigated in PMECs and PASMCs. PMECs from BMPR2 mutation carriers induced an increase in PASMC mitogenic activity; moreover, endothelin-1 secretion by PMECs from carriers was higher than by PMECs from non-carriers. Recruitment of monocytes by PMECs isolated from carriers was higher compared to PMECs from non-carriers and from controls, with an elevated ICAM-1 expression. CRP increased adhesion of monocytes to PMECs in carriers and non-carriers, and TNFα only in carriers. PMEC from BMPR2 mutation carriers have enhanced adhesiveness for monocytes in response to inflammatory mediators, suggesting that BMPR2 mutation could generate susceptibility to an inflammatory insult in PAH.

  17. Collagen-nanofiber hydrogel composites promote contact guidance of human lymphatic microvascular endothelial cells and directed capillary tube formation.

    PubMed

    Laco, Filip; Grant, M Helen; Black, Richard A

    2013-06-01

    Collagen and fibronectin matrices are known to stimulate migration of microvascular endothelial cells and the process of tubulogenesis, but the physical, chemical, and topographical cues for directed vessel formation have yet to be determined. In this study, growth, migration, elongation, and tube formation of human lymphatic microvascular endothelial cells (LECs) were investigated on electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(L-lactic-co-D-lactic acid) (PLDL) nanofiber-coated substrates, and correlated with fiber density and diameter. Directed migration of LECs was observed in the presence of aligned nanofibers, whereas random fiber alignment slowed down migration and growth of LECs. Cell guidance was significantly enhanced in the presence of more hydrophobic PLDL polymer nanofibers compared to PLGA (10:90). Subsequent experiments with tube-forming assays reveal the ability of resorbable hydrophobic nanofibers >300 nm in diameter to promote cell guidance in collagen gels without direct cell-fiber contact, in contrast to the previously reported contact-guidance phenomena. Our results show that endothelial cell guidance is possible within nanofiber/collagen-gel constructs that mimic the native extracellular matrix in terms of size and orientation of fibrillar components.

  18. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    SciTech Connect

    Nakao, Atsunori; Kaczorowski, David J.; Zuckerbraun, Brian S.; Lei Jing; Faleo, Gaetano; Deguchi, Kentaro; McCurry, Kenneth R.; Billiar, Timothy R.; Kanno, Shinichi

    2008-03-14

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.

  19. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro

    PubMed Central

    Üllen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang

    2012-01-01

    2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase–hydrogen peroxide–chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood–brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. PMID:22982051

  20. Chemokine-Like Factor 1-Derived C-Terminal Peptides Induce the Proliferation of Dermal Microvascular Endothelial Cells in Psoriasis

    PubMed Central

    Tan, Yaqi; Wang, Yixuan; Li, Li; Xia, Jinyu; Peng, Shiguang; He, Yanling

    2015-01-01

    Psoriasis is an inflammatory disease characterized by the abnormal proliferation of skin cells, including dermal microvascular endothelial cells. Recently, chemokine-like factor 1 (CKLF1) was found to participate in the local inflammation and cell proliferation. To explore its role in the pathogenesis of psoriasis, the expression of both CKLF1 and its receptor (CCR4) was determined in the psoriatic lesions. Also, the effect of the C-terminal peptides (C19 and C27) of CKLF1 on the proliferation of human umbilical vein endothelial cells was studied in vitro. By immunohistochemistry and immunofluorescence, the expression of both CKLF1 and CCR4 was determined in the psoriatic lesions. The effect of C-terminal peptides on human umbilical vein endothelial cells (HUVECs) was studied in vitro by the evaluation of cell proliferation and apoptosis. The in vivo assessment was performed accordingly through the subcutaneous injection peptides on BALB/c mice. The results showed that, by immunohistochemistry, both CKLF1 and CCR4 were increasingly expressed in psoriatic lesions as compared to normal skins. Moreover, the primary umbilical vein endothelial cells exhibited higher proliferation ratio under the C19 or C27 stimulation, which was even enhanced by the addition of psoriatic sera or TNF-α. Furthermore, the enhancement of peptide simulation was accompanied with the activation of ERK1/2-MAPKs pathway. In addition, such effect of C19 and C27 was mirrored by the hyperproliferation of cutaneous microvessels in BALB/c mice that were subcutaneously injected with the two peptides. Therefore, we concluded that CKLF1 plays a role in the pathogenesis of psoriasis by promoting the proliferation of microvascular endothelial cells that possibly correlates with ERK1/2-MAPKs activation. PMID:25915746

  1. Galectin-1 suppresses methamphetamine induced neuroinflammation in human brain microvascular endothelial cells: Neuroprotective role in maintaining blood brain barrier integrity.

    PubMed

    Parikh, Neil U; Aalinkeel, R; Reynolds, J L; Nair, B B; Sykes, D E; Mammen, M J; Schwartz, S A; Mahajan, S D

    2015-10-22

    Methamphetamine (Meth) abuse can lead to the breakdown of the blood-brain barrier (BBB) integrity leading to compromised CNS function. The role of Galectins in the angiogenesis process in tumor-associated endothelial cells (EC) is well established; however no data are available on the expression of Galectins in normal human brain microvascular endothelial cells and their potential role in maintaining BBB integrity. We evaluated the basal gene/protein expression levels of Galectin-1, -3 and -9 in normal primary human brain microvascular endothelial cells (BMVEC) that constitute the BBB and examined whether Meth altered Galectin expression in these cells, and if Galectin-1 treatment impacted the integrity of an in-vitro BBB. Our results showed that BMVEC expressed significantly higher levels of Galectin-1 as compared to Galectin-3 and -9. Meth treatment increased Galectin-1 expression in BMVEC. Meth induced decrease in TJ proteins ZO-1, Claudin-3 and adhesion molecule ICAM-1 was reversed by Galectin-1. Our data suggests that Galectin-1 is involved in BBB remodeling and can increase levels of TJ proteins ZO-1 and Claudin-3 and adhesion molecule ICAM-1 which helps maintain BBB tightness thus playing a neuroprotective role. Galectin-1 is thus an important regulator of immune balance from neurodegeneration to neuroprotection, which makes it an important therapeutic agent/target in the treatment of drug addiction and other neurological conditions.

  2. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis.

    PubMed

    Salomon, Carlos; Ryan, Jennifer; Sobrevia, Luis; Kobayashi, Miharu; Ashman, Keith; Mitchell, Murray; Rice, Gregory E

    2013-01-01

    Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC) are known to release paracrine factors (some of which are contained within exosomes) that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC). pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6) and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC) isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml) of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™). The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS). Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2) exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01). Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05) and increased hPMEC tube formation by 7.2 fold (p<0.05). MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both

  3. Cocaine Inhibits Store-Operated Ca2+ Entry in Brain Microvascular Endothelial Cells: Critical Role for Sigma-1 Receptors

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Console-Bram, Linda M; Soboloff, Jonathan; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-01-01

    Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum. Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism promoted by depletion of intracellular Ca2+ stores, in rat brain microvascular endothelial cells. Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies provide an unprecedented role for Sig-1R as a SOCE inhibitor. PMID:26467159

  4. Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors.

    PubMed

    Brailoiu, G Cristina; Deliu, Elena; Console-Bram, Linda M; Soboloff, Jonathan; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2016-01-01

    Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum (ER). Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca(2+) entry (SOCE), a Ca(2+) influx mechanism promoted by depletion of intracellular Ca(2+) stores, in rat brain microvascular endothelial cells (RBMVEC). Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies indicate an unprecedented role for Sig-1R as a SOCE inhibitor.

  5. Rickettsia rickettsii infection of human macrovascular and microvascular endothelial cells reveals activation of both common and cell type-specific host response mechanisms.

    PubMed

    Rydkina, Elena; Turpin, Loel C; Sahni, Sanjeev K

    2010-06-01

    Although inflammation and altered barrier functions of the vasculature, due predominantly to the infection of endothelial cell lining of small and medium-sized blood vessels, represent salient pathological features of human rickettsioses, the interactions between pathogenic rickettsiae and microvascular endothelial cells remain poorly understood. We have investigated the activation of nuclear transcription factor-kappa B (NF-kappaB) and p38 mitogen-activated protein (MAP) kinase, expression of heme oxygenase 1 (HO-1) and cyclooxygenase 2 (COX-2), and secretion of chemokines and prostaglandins after Rickettsia rickettsii infection of human cerebral, dermal, and pulmonary microvascular endothelial cells in comparison with pulmonary artery cells of macrovascular origin. NF-kappaB and p38 kinase activation and increased HO-1 mRNA expression were clearly evident in all cell types, along with relatively similar susceptibility to R. rickettsii infection in vitro but considerable variations in the intensities/kinetics of the aforementioned host responses. As expected, the overall activation profiles of macrovascular endothelial cells derived from human pulmonary artery and umbilical vein were nearly identical. Interestingly, cerebral endothelial cells displayed a marked refractoriness in chemokine production and secretion, while all other cell types secreted various levels of interleukin-8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) in response to infection. A unique feature of all microvascular endothelial cells was the lack of induced COX-2 expression and resultant inability to secrete prostaglandin E(2) after R. rickettsii infection. Comparative evaluation thus yields the first experimental evidence for the activation of both common and unique cell type-specific host response mechanisms in macrovascular and microvascular endothelial cells infected with R. rickettsii, a prototypical species known to cause Rocky Mountain spotted fever in humans.

  6. Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress.

    PubMed Central

    Shono, T; Ono, M; Izumi, H; Jimi, S I; Matsushima, K; Okamoto, T; Kohno, K; Kuwano, M

    1996-01-01

    Oxygen radicals are induced under various pathologic conditions associated with neovascularization. Oxygen radicals modulate angiogenesis in cultured human microvascular endothelial cells by an unknown mechanism. Treatment of human microvascular endothelial cells for 15 min with 0.1 to 0.5 mM hydrogen peroxide (H2O2) or 100 U of tumor necrosis factor alpha per ml induced tubular morphogenesis in type I collagen gels. Gel shift assays with nuclear extracts demonstrated that H2O2 increases the binding activities of two transcription factors, NF-kappaB and AP-1, but not of Spl. Tumor necrosis factor alpha increased the binding activities of all three factors. A supershift assay with specific antibodies against JunB, JunD, and c-Jun (Jun family) showed that the antibody against c-Jun supershifted the AP-1 complex after H2O2 treatment. Coadministration of the antisense sequence of NF-kappaB inhibited H2O2-dependent tubular morphogenesis, and the antisense c-Jun oligonucleotide caused partial inhibition. The angiogenic factor responsible for H2O2-induced tubular morphogenesis was examined. Cellular mRNA levels of vascular endothelial growth factor and interleukin-8 (IL-8), but not those of transforming growth factor alpha, were increased after treatment with 0.5 mM H2O2. Coadministration of anti-IL-8 antibody inhibited tubular morphogenesis enhanced by H2O2, and IL-8 itself also enhanced the formation of tube-like structures. Treatment with antisense NF-kappaB oligonucleotide completely blocked H2O2-dependent IL-8 production by endothelial cells. The tubular morphogenesis of vascular endothelial cells after treatment with oxidative stimuli and its possible association with NF-kappaB and IL-8, is examined. PMID:8754823

  7. Effect of angiopoietin-like protein 4 on rat pulmonary microvascular endothelial cells exposed to LPS

    PubMed Central

    WANG, YUXI; CHEN, HAILONG; LI, HAILONG; ZHANG, JINGWEN; GAO, YANYAN

    2013-01-01

    Pulmonary microvascular endothelial cells (PMVECs) possess highly proliferative and angiogenic capacities and are localized at the critical interface between the blood and microvessel wall; they are the primary targets of inflammatory cytokines during lung inflammation. Angiopoietin-like protein 4 (Angptl4) is a circulating protein that has recently been implicated in the regulation of angiogenesis and metastasis. This study aimed to investigate the effect of Angptl4 on rat PMVECs (RPMVECs) exposed to lipopolysaccharide (LPS). The cell culture was stimulated with LPS. Total Angptl4 cDNA was obtained from Source BioScience. The PCR product was cloned into the pcDNA3.1-eGFP or the pcDNA3.1-eGFP-Angptl4 vector, which were then transfected into the RPMVECs using SuperFect transfection reagent. The Angptl4 mRNA levels, protein levels and cell morphology of the RPMVECs in the experimental groups were detected using real time-PCR, western blot analysis, MTT assay, ELISA and confocal microscopy methods, respectively. The Angptl4 expression vector, pcDNA3.1-eGFP-Angptl4, was successfully constructed. The Angptl4 mRNA level in the LPS-pcDNA3.1-eGFP-transfected group (blank control) was slightly increased and was significantly higher in the experimental group compared with the empty vector and blank control group with significant differences. Pro-apoptotic caspase-8, -9 and Bax protein were inhibited, while p-AKT/AKT and p-MEK1/2 protein expression was also decreased. The rosiglitazone group had significantly decreased levels of the inflammatory cytokine, tumor necrosis factor (TNF)-α (P<0.01). The overexpression of Angptl4 inhibited the LPS-induced increase in the permeability of the RPMVECs, which was associated with the depolymerization of central F-actin in the RPMVECs. In conclusion, our study demonstrates that the overexpression of Angptl4 exerts protective, anti-inflammatory and anti-angiogenic effects. It represents a novel therapeutic target gene for the treatment

  8. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells.

    PubMed

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J; Otterson, Mary F; Stoner, Gary D; Shaker, Reza; Rafiee, Parvaneh

    2015-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat's digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial cell-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer.

  9. Expression and significance of fgl2 prothrombinase in cardiac microvascular endothelial cells of rats with type 2 diabetes.

    PubMed

    Ding, Yanping; Liu, Kun; Wang, Yan; Su, Guanhua; Deng, Heping; Zeng, Qiutang; Liao, Yuhua; Wang, Zhaohui

    2010-10-01

    Microthrombosis may be involved in the pathogenesis of cardiac microangiopathy due to diabetes. Recent studies have shown that fibrinogen-like protein 2 (fgl2) plays a pivotal role in microthrombosis in viral hepatitis, acute vascular xenograft rejection and cytokine-induced fetal loss syndrome. The current study was designed to examine the expression of fgl2 in microvascular endothelial cells and investigate the effects of microthrombi due to fgl2 on cardiac function and structure in rats with type 2 diabetes. Following induction of type 2 diabetes, 24 rats were observed dynamically. Fgl2 expression and related cardiac microthrombosis were examined. Local or circulating TNF-α was measured. Coronary flow (CF) per min was calculated as an index of cardiac microcirculation. Cardiac function and morphology were evaluated. It was found that Fgl2 was highly expressed in cardiac microvascular endothelial cells of rats with type 2 diabetes, which was promoted by local or circulating TNF-α. The Fgl2 expression was associated with cardiac hyaline microthrombosis. In parallel with the fgl2 expression, CF per min, cardiac diastolic or systolic function and cardiac morphology were aggravated to some extent. It was concluded that in rats with type 2 diabetes, microthrombosis due to fgl2 contributes to the impairment of cardiac diastolic or systolic function and morphological changes.

  10. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  11. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells

    PubMed Central

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L.; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J.; Otterson, Mary F.; Stoner, Gary D.; Shaker, Reza; Rafiee, Parvaneh

    2014-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat’s digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer. PMID:25446010

  12. Proteomic differences between microvascular endothelial cells and the EA.hy926 cell line forming three-dimensional structures.

    PubMed

    Ma, Xiao; Sickmann, Albert; Pietsch, Jessica; Wildgruber, Robert; Weber, Gerhard; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2014-03-01

    Proteomic changes of two types of human endothelial cells (ECs) were determined and compared to morphological alterations occurring during the scaffold-free in vitro formation of 3D structures resembling vascular intimas. The EA.hy926 cell line and human microvascular ECs (HMVECs) were cultured on a random positioning machine or static on ground (normal gravity) for 5 and 7 days, before their morphology was examined and their protein content was analysed by MS after free-flow electrophoretic separation. A total of 1175 types of proteins were found in EA.hy926 cells and 846 in HMVEC forming 3D structures faster than the EA.hy926 cells. Five hundred and eighty-four of these kinds of proteins were present in both types of cells. They included a number of metabolic enzymes, of structure-related and stress proteins. Comparing proteins of EA.hy926 cells growing either adherently on ground or in 3D aggregates on the random positioning machine revealed that ribosomal proteins were enhanced, while tubes are formed and various components of 26S proteasomes remained prevalent in static normal gravity control cells only. The fast developing tube-like 3D structures of HMVEC suggested a transient augmentation of ribosomal proteins during the 3D assembling of ECs.

  13. Influence of curvature on the morphology of brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 μm and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  14. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers.

    PubMed

    Lin, Mei-Na; Shang, De-Shu; Sun, Wei; Li, Bo; Xu, Xin; Fang, Wen-Gang; Zhao, Wei-Dong; Cao, Liu; Chen, Yu-Hua

    2013-06-04

    Bone marrow-derived mesenchymal stem cells (MSC) represent an important and easily available source of stem cells for potential therapeutic use in neurological diseases. The entry of circulating cells into the central nervous system by intravenous administration requires, firstly, the passage of the cells across the blood-brain barrier (BBB). However, little is known of the details of MSC transmigration across the BBB. In the present study, we employed an in vitro BBB model constructed using a human brain microvascular endothelial cell monolayer to study the mechanism underlying MSC transendothelial migration. Transmigration assays, transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) flux assays showed that MSC could transmigrate through human brain microvascular endothelial cell monolayers by a paracellular pathway. Cell fractionation and immunofluorescence assays confirmed the disruption of tight junctions. Inhibition assays showed that a Rho-kinase (ROCK) inhibitor (Y27632) effectively promoted MSC transendothelial migration; conversely, a PI3K inhibitor (LY294002) blocked MSC transendothelial migration. Interestingly, adenovirus-mediated interference with ROCK in MSC significantly increased MSC transendothelial migration, and overexpression of a PI3K dominant negative mutant in MSC cells could block transendothelial migration. Our findings provide clear evidence that the PI3K and ROCK pathways are involved in MSC migration through human brain microvascular endothelial cell monolayers. The information yielded by this study may be helpful in constructing gene-modified mesenchymal stem cells that are able to penetrate the BBB effectively for cell therapy.

  15. Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier.

    PubMed

    Qureshi, Humaira; Hamid, Saeed S; Ali, Syed Shayan; Anwar, Javeria; Siddiqui, Anwar Ali; Khan, Naveed Ahmed

    2015-05-01

    Aflatoxins are mycotoxins produced by Aspergillus spp. Although AFB1 is implicated as a carcinogen in hepatocellular carcinoma, brain autopsies in affected areas have revealed its presence in 81% of cases. Given its haematogenous spread, here we determined the cytotoxic effects of AFB1 on primary human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, human umbilical vein endothelial cells (HUVEC) as well as immortalized epithelial cells of human hepatocellular carcinoma (Huh7). The cell types were exposed to AFB1 (3-32 nM) for 24 h and release of lactate dehydrogenase was measured as cell cytotoxicity marker. Furthermore, DNA was collected from both cell types and DNA adduct formation was determined by immunoblot using anti-AFB1-DNA adduct antibody. At 32 nM, AFB1 killed >85% HBMEC, while controls showed minimal effects (P < .05). Similar concentrations of AFB1 showed 22% cell death of HUVEC, while the same concentration did not kill Huh7. At low concentrations, in other words, 3.2 nM, AFB1 produced DNA adduct formation in HBMEC, while high concentration (32 nM) did not form DNA adducts. For HUVEC, 16 nM and 32 nM exhibited DNA adduct formation. For Huh7, 3.2 nM did not form DNA adducts, while 32 nM exhibited DNA adduct formation. For the first time, we report that AFB1 affected the viability of primary endothelial cells but not immortalized Huh7 cells. Cytotoxicity of brain endothelial cells suggests extra-hepatic complications post-AFB1 exposure.

  16. Gene expression analysis reveals marked differences in the transcriptome of infantile hemangioma endothelial cells compared to normal dermal microvascular endothelial cells

    PubMed Central

    2013-01-01

    Background Infantile hemangiomas are benign vascular tumors primarily found on the skin in 10% of the pediatric population. The etiology of this disease is largely unknown and while large scale genomic studies have examined the transcriptomes of infantile hemangioma tumors as a whole, no study to date has compared the global gene expression profiles of pure infantile hemangioma endothelial cells (HEMECs) to that of normal human dermal microvascular endothelial cells (HDMVECs). Methods To shed light on the molecular differences between these normal and aberrant dermal endothelial cell types, we performed whole genome microarray analysis on purified cultures of HEMECs and HDMVECs. We then utilized qPCR and immunohistochemistry to confirm our microarray results. Results Our array analysis identified 125 genes whose expression was upregulated and 104 genes whose expression was downregulated by greater than two fold in HEMECs compared to HDMVECs. Bioinformatics analysis revealed three major classifications of gene functions that were altered in HEMECs including cell adhesion, cell cycle, and arachidonic acid production. Several of these genes have been reported to be critical regulators and/or mutated in cancer, vascular tumors, and vascular malformations. We confirmed the expression of a subset of these differentially expressed genes (ANGPT2, ANTXR1, SMARCE1, RGS5, CTAG2, LTBP2, CLDN11, and KISS1) using qPCR and utilized immunohistochemistry on a panel of paraffin embedded infantile hemangioma tumor tissues to demonstrate that the cancer/testis antigen CTAG2 is highly abundant in vessel-dense proliferating infantile hemangiomas and with significantly reduced levels during tumor involution as vascular density decreases. Conclusion Our data reveal that the transcriptome of HEMECs is reflective of a pro-proliferative cell type with altered adhesive characteristics. Moveover, HEMECs show altered expression of many genes that are important in the progression and prognosis

  17. Expression of VEGF-related proteins in cultured human brain microvascular endothelial cells and pericytes after exposure to methylmercury.

    PubMed

    Hirooka, Takashi; Yamamoto, Chika; Yasutake, Akira; Eto, Komyo; Kaji, Toshiyuki

    2013-01-01

    The localization of neuropathological lesions along deep sulci and fissures is one of the characteristics of a cerebrum damaged by methylmercury. Edematous changes in white matter have been proposed as the cause of the localization of lesions; however, the molecular mechanisms underlying methylmercury-induced edema remain unclear. Since the vascular endothelial growth factor (VEGF) system regulates vascular permeability and can be involved in the progression of edematous changes, we examined the effect of methylmercury on the expression of VEGF-related proteins in cultured human brain microvascular endothelial cells and pericytes. After methylmercury exposure, mRNA and protein levels of VEGF-A in pericytes and placenta growth factor (PlGF) and VEGF-receptor-1/-2 in endothelial cells were elevated. The induction of pericyte VEGF-A expression was independent of hypoxia-inducible factor-α and hypoxia-response element signaling. Taken together, these results suggest that methylmercury activates the VEGF system in brain microvessels in a paracrine fashion. When the activation occurs in narrow areas such as along the deep sulci in the cerebrum, hyperpermeability and subsequent edematous changes would cause a circulatory disturbance and result in neural cell damage. We propose this as a reason for the localization of the neuropathological lesions along the deep sulci and fissures in the cerebral cortex, such as the calcarine fissure, in patients with Minamata disease.

  18. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  19. Molecular and Cellular Characterization of Space Flight Effects on Microvascular Endothelial Cell Function - PreparatoryWork for the SFEF Project

    NASA Astrophysics Data System (ADS)

    Balsamo, Michele; Barravecchia, Ivana; Mariotti, Sara; Merenda, Alessandra; De Cesari, Chiara; Vukich, Marco; Angeloni, Debora

    2014-12-01

    Exposure to microgravity during space flight (SF) of variable length induces suffering of the endothelium (the cells lining all blood vessels), mostly responsible for health problems found in astronauts and animals returning from space. Of interest to pre-nosological medicine, the effects of microgravity on astronauts are strikingly similar to the consequences of sedentary life, senescence and degenerative diseases on Earth, although SF effects are accelerated and reversible. Thus, microgravity is a significant novel model for better understanding of common pathologies. A comprehensive cell and molecular biology study is needed in order to explain pathophysiological findings after SFs. This project will study the effects of microgravity and cosmic radiation on endothelial cells (ECs) cultured on the International Space Station through analysis of 1) cell transcriptome, 2) DNA methylome, 3) DNA damage and cell senescence, 4) variations in cell cycle and cell morphology. This project has been selected by the European Space Agency and the Italian Space Agency and is presently in preparation. The ground study presented here was performed to determine the biological and engineering requirements that will allow us to retrieve suitable samples after culturing, fixing and storing ECs in space. We expect to identify molecular pathways activated by space microgravity in microvascular ECs, which may shed light on pathogenic molecular mechanisms responsible for endothelial suffering shared by astronauts and individuals affected with aging, degenerative and sedentary life-associated pathologies on Earth.

  20. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells.

    PubMed

    Iwao, Beniko; Yara, Miki; Hara, Naomi; Kawai, Yuiko; Yamanaka, Tsuyoshi; Nishihara, Hiroshi; Inoue, Takeshi; Inazu, Masato

    2016-02-01

    In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation.

  1. The multifaceted responses of primary human astrocytes and brain microvascular endothelial cells to the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed

    Brissette, Catherine A; Kees, Eric D; Burke, Margaret M; Gaultney, Robert A; Floden, Angela M; Watt, John A

    2013-08-16

    The vector-borne pathogen, Borrelia burgdorferi, causes a multi-system disorder including neurological complications. These neurological disorders, collectively termed neuroborreliosis, can occur in up to 15% of untreated patients. The neurological symptoms are probably a result of a glial-driven, host inflammatory response to the bacterium. However, the specific contributions of individual glial and other support cell types to the pathogenesis of neuroborreliosis are relatively unexplored. The goal of this project was to characterize specific astrocyte and endothelial cell responses to B. burgdorferi. Primary human astrocytes and primary HBMEC (human brain microvascular endothelial cells) were incubated with B. burgdorferi over a 72-h period and the transcriptional responses to the bacterium were analyzed by real-time PCR arrays. There was a robust increase in several surveyed chemokine and related genes, including IL (interleukin)-8, for both primary astrocytes and HBMEC. Array results were confirmed with individual sets of PCR primers. The production of specific chemokines by both astrocytes and HBMEC in response to B. burgdorferi, including IL-8, CXCL-1, and CXCL-10, were confirmed by ELISA. These results demonstrate that primary astrocytes and HBMEC respond to virulent B. burgdorferi by producing a number of chemokines. These data suggest that infiltrating phagocytic cells, particularly neutrophils, attracted by chemokines expressed at the BBB (blood-brain barrier) may be important contributors to the early inflammatory events associated with neuroborreliosis.

  2. Improvement of RNA fingerprinting efficiency for the analysis of differential gene expression in human cardiac macro- and microvascular endothelial cells.

    PubMed

    Bongrazio, M; Gräfe, M; Pries, A R; Gaehtgens, P; Zakrzewicz, A

    2001-06-01

    RNA fingerprinting by arbitrarily primed PCR (RAP-PCR) is a powerful tool to screen differential gene expression. However, PCR-based screening techniques show a high incidence of false positive results (40-90%). In order to increase the efficiency and feasibility of RAP-PCR, the original protocol was modified and applied to analyse differential gene expression in human coronary macro- (HCEC) and microvascular (HCMEC) endothelial cells. The major modifications introduced were: (i) the use of two primers for PCR amplification, instead of reverse-transcription primer alone; (ii) the use of three cycles at low stringency followed by further amplification at high stringency; (iii) optimization of amplification cycle number, template amount, and concentration of primers, dNTP, Mg(2+); (iv) detection of fingerprints by silver staining; and (v) direct sequencing using RAP-PCR primers. Analysis of untreated and TNF alpha -stimulated (100 U ml(-1)for 1, 4, and 24 h) HCEC and HCMEC displayed 11 differentially expressed products by 18 primer combinations. Confirmation of results by RT-PCR showed that the rate of false positives attributable to our screening method was less than 20%. Among detected RAP-PCR products, the expression of Mn-superoxide dismutase, A20 zinc finger protein, and three novel genes (A/a, 4/d, 7/c) was more strongly modulated by TNF in HCEC than HCMEC. A further novel gene (B/e) was strongly expressed in HCMEC while only barely detectable in HCEC. In conclusion, modification of RAP-PCR strongly reduced the incidence of false positives, eliminated a radioactive requirement, and allowed sequencing without prior cloning, supplying an improved technology able to identify new differentially expressed genes between macro- and microvascular endothelial cells.

  3. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions.

    PubMed

    Wilhelmsen, Kevin; Farrar, Katherine; Hellman, Judith

    2013-08-23

    The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.

  4. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane.

    PubMed

    Eldridge, Brittany N; Xing, Fei; Fahrenholtz, Cale D; Singh, Ravi N

    2017-03-09

    There is a growing interest in the use of multiwalled carbon nanotubes (MWCNTs) to treat diseases of the brain. Little is known about the effects of MWCNTs on human brain microvascular endothelial cells (HBMECs), which make up the blood vessels in the brain. In our studies, we evaluate the cytotoxicity of MWCNTs and acid oxidized MWNCTs, with or without a phospholipid-polyethylene glycol coating. We determined the cytotoxic effects of MWCNTs on both tissue-mimicking cultures of HBMECs grown on basement membrane and on monolayer cultures of HBMECs grown on plastic. We also evaluated the effects of MWCNT exposure on the capacity of HBMECs to form rings after plating on basement membrane, a commonly used assay to evaluate angiogenesis. We show that tissue-mimicking cultures of HBMECs are less sensitive to all types of MWCNTs than monolayer cultures of HBMECs. Furthermore, we found that MWCNTs have little impact on the capacity of HBMECs to form rings. Our results indicate that relative cytotoxicity of MWCNTs is significantly affected by the type of cell culture model used for testing, and supports further research into the use of tissue-mimicking endothelial cell culture models to help bridge the gap between in vitro and in vivo toxicology.

  5. Exposure to Lipopolysaccharide and/or Unconjugated Bilirubin Impair the Integrity and Function of Brain Microvascular Endothelial Cells

    PubMed Central

    Cardoso, Filipa L.; Kittel, Ágnes; Veszelka, Szilvia; Palmela, Inês; Tóth, Andrea; Brites, Dora; Deli, Mária A.; Brito, Maria A.

    2012-01-01

    Background Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Methodology/Principal Findings Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. Conclusions LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period. PMID:22586454

  6. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells

    SciTech Connect

    Gerritsen, M.E.; Burke, T.M.; Allen, L.A.

    1988-03-01

    In the present study we determined the uptake and disposition of glucose in serum-deprived rabbit coronary microvessel endothelial (RCME) cells. RCME cells exhibited stereospecific hexose uptake inhibited by cytochalasin B. Pretreatment of the RCME cells with potassium cyanide or 2,4-dinitrophenol inhibited 2-deoxyglucose uptake but not 3-O-methylglucose transport. A major proportion (30-60%) of the 2-deoxyglucose present in the RCME cells was not phosphorylated. These two observations suggested that the rate-limiting step in the uptake of 2-deoxyglucose was not transport but rather the phosphorylation of 2-deoxyglucose to 2-deoxyglucose 6-phosphate. When glucose-deprived cells were incubated 2 hr with (U-14C)glucose the disposition of the label was as follows: glycogen 60%, acid-soluble fraction 30%, and lipid less than 5%. In contrast glucose-fed cells exhibited lower overall glucose incorporation, and a slightly different disposition: glycogen 45%, acid-soluble fraction 50%, and lipid 5%. Glucose-deprived RCME cells also exhibited greater basal levels of 2-deoxyglucose uptake compared to glucose-fed cells. RCME cells incubated in the absence of glucose and serum for 16 hr exhibited dose-dependent insulin stimulation of hexose uptake and subsequent metabolism to macromolecules (i.e., glycogen and the acid-soluble fraction). Significant effects of insulin were observed with concentrations as low as 2 x 10(-10) M, well within the physiological range. In contrast, cells preincubated in serum-free culture medium containing 5.5 mM glucose did not exhibit insulin-enhanced hexose uptake or glucose metabolism (even at doses as high as 10(-7) M). These studies indicate that the effects of insulin on rabbit coronary microvascular endothelial cell glucose uptake and metabolism require both serum and glucose deprivation.

  7. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  8. Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells.

    PubMed

    Thangjam, Gagan S; Birmpas, Charalampos; Barabutis, Nektarios; Gregory, Betsy W; Clemens, Mary Ann; Newton, Joseph R; Fulton, David; Catravas, John D

    2016-05-15

    The ability of anti-heat shock protein 90 (Hsp90) drugs to attenuate NF-κB-mediated transcription is the major basis for their anti-inflammatory properties. While the molecular mechanisms underlying this effect are not clear, they appear to be distinct in human endothelial cells. We now show for the first time that type 2 sirtuin (Sirt-2) histone deacetylase binds human NF-κB target gene promoter and prevents the recruitment of NF-κB proteins and subsequent assembly of RNA polymerase II complex in human lung microvascular endothelial cells. Hsp90 inhibitors stabilize the Sirt-2/promoter interaction and impose a "transcriptional block," which is reversed by either inhibition or downregulation of Sirt-2 protein expression. Furthermore, this process is independent of NF-κB (p65) Lysine 310 deacetylation, suggesting that it is distinct from known Sirt-2-dependent mechanisms. We demonstrate that Sirt-2 is recruited to NF-κB target gene promoter via interaction with core histones. Upon inflammatory challenge, chromatin remodeling and core histone H3 displacement from the promoter region removes Sirt-2 and allows NF-κB/coactivator recruitment essential for RNA Pol II-dependent mRNA induction. This novel mechanism may have important implications in pulmonary inflammation.

  9. Fibrin and collagen differentially but synergistically regulate sprout angiogenesis of human dermal microvascular endothelial cells in 3-dimensional matrix.

    PubMed

    Feng, Xiaodong; Tonnesen, Marcia G; Mousa, Shaker A; Clark, Richard A F

    2013-01-01

    Angiogenesis is a highly regulated event involving complex, dynamic interactions between microvascular endothelial cells and extracellular matrix (ECM) proteins. Alteration of ECM composition and architecture is a hallmark feature of wound clot and tumor stroma. We previously reported that during angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. However, the role of 3D ECM in the regulation of angiogenesis associated with wound healing and tumor growth is not well defined. This study investigates the correlation of sprout angiogenesis and ECM microenvironment using in vivo and in vitro 3D angiogenesis models. It demonstrates that fibrin and type I collagen 3D matrices differentially but synergistically regulate sprout angiogenesis. Thus blocking both integrin alpha v beta 3 and integrin alpha 2 beta 1 might be a novel strategy to synergistically block sprout angiogenesis in solid tumors.

  10. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation.

  11. Proteomic analysis of human brain microvascular endothelial cells reveals differential protein expression in response to enterovirus 71 infection.

    PubMed

    Luo, Wenying; Zhong, Jiayu; Zhao, Wei; Liu, Jianjun; Zhang, Renli; Peng, Liang; Hong, Wenxu; Huang, Sheng He; Cao, Hong

    2015-01-01

    2D DIGE technology was employed on proteins prepared from human brain microvascular endothelial cells (HBMEC), to study the differentially expressed proteins in cells at 0 h, 1 h, 16 h, and 24 h after infection. Proteins found to be differentially expressed were identified with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDITOF/TOF MS) analysis. We identified 43 spots showing changes of at least 2.5 fold up- or downregulated expressions in EV71-infected cells at different time when comparing to control, and 28 proteins could be successfully identified by MALDI TOF/TOF mass spectrometry analysis. 4 proteins were significantly upregulated, and 6 proteins were downregulated, another 18 proteins were different expression at different incubation time. We identified changes in the expression of 12 cellular metabolism-related proteins, 5 molecules involved in cytoskeleton, 3 molecules involved in energy metabolism, 2 molecules involved in signal transduction, 1 molecule involved in the ubiquitin-proteasome pathway, 1 molecule involved in cell cycle, 1 molecule involved in apoptosis-related protein, 1 molecular chaperone, and 2 unknown proteins. These findings build up a comprehensive profile of the HBMEC proteome and provide a useful basis for further analysis of the pathogenic mechanism that underlies EV71 infections to induce severe neural complications.

  12. Carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury through histamine H₁ and H₂ receptors in vitro.

    PubMed

    Zhang, Luyi; Yao, Ke; Fan, Yanying; He, Ping; Wang, Xiaofen; Hu, Weiwei; Chen, Zhong

    2012-12-01

    Although it is believed that carnosine has protective effects on various cell types, its effect on microvascular endothelial cells has not been well defined. In the present study, we investigated the protective effects of carnosine in microvascular endothelial cells using an in vitro rotenone-induced oxidative stress model. Mouse brain microvascular endothelial cells were exposed to 1 μmol/L rotenone for 18 h. In some experiments, carnosine (100 nmol/L-1 mmol/L) was added 30 min prior to rotenone exposure. When used, histamine receptor antagonists (100 nmol/L-10 μmol/L) were added 15 min before carnosine treatment. After rotenone exposure, apoptosis of microvascular cells was analysed by Hoechst 33342 staining, whereas mitochondrial membrane potential was assessed by JC-1 staining. Intracellular carnosine and histamine levels were determined using HPLC or ultra-HPLC. Over the range 1 μmol/L-1 mmol/L, carnosine concentration-dependently decreased the number of apoptotic cells after 18 h exposure to rotenone. This effect was reversed by the histamine H1 receptor antagonists pyrilamine and diphenhydramine (1 and 10 μmol/L) and the H2 receptor antagonists cimetidine (100 nmol/L-10 μmol/L) and zolatidine (10 μmol/L). α-Fluoromethylhistidine (100 μmol/L), a selective and irreversible inhibitor of histidine decarboxylase, also significantly inhibited the protective effects of carnosine. At 0.1 mmol/L, carnosine restored the decrease in mitochondrial membrane potential after 6 h exposure to 1 μmol/L rotenone and this effect was also reversed by the H1 and H2 receptor antagonists. Moreover, intracellular carnosine levels increased as early as 1 h after carnosine treatment, whereas intracellular histamine levels increased 18 h after carnosine treatment. The results of the present study indicate that carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury via histamine H1 and H2 receptors. The

  13. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes.

    PubMed

    Kriegel, Alison J; Baker, Maria Angeles; Liu, Yong; Liu, Pengyuan; Cowley, Allen W; Liang, Mingyu

    2015-10-01

    The goal of this study was to systematically identify endogenous microRNAs (miRNAs) in endothelial cells that regulate mRNAs encoded by genes relevant to hypertension. Small RNA deep sequencing was performed in cultured human microvascular endothelial cells. Of the 50 most abundant miRNAs identified, 30 had predicted target mRNAs encoded by genes with known involvement in hypertension or blood pressure regulation. The cells were transfected with anti-miR oligonucleotides to inhibit each of the 30 miRNAs and the mRNA abundance of predicted targets was examined. Of 95 miRNA-target pairs examined, the target mRNAs were significantly upregulated in 35 pairs and paradoxically downregulated in 8 pairs. The result indicated significant suppression of the abundance of mRNA encoded by ADM by endogenous miR-181a-5p, ATP2B1 by the miR-27 family, FURIN by miR-125a-5p, FGF5 by the let-7 family, GOSR2 by miR-27a-3p, JAG1 by miR-21-5p, SH2B3 by miR-30a-5p, miR-98, miR-181a-5p, and the miR-125 family, TBX3 by the miR-92 family, ADRA1B by miR-22-3p, ADRA2A by miR-30a-5p and miR-30e-5p, ADRA2B by miR-30e-5p, ADRB1 by the let-7 family and miR-98, EDNRB by the miR-92 family, and NOX4 by the miR-92 family, miR-100-5p, and miR-99b-5p (n=3-9; P<0.05 versus scrambled anti-miR). Treatment with anti-miR-21 decreased blood pressure in mice fed a 4% NaCl diet. Inhibition of the miRNAs targeting NOX4 mRNA increased H2O2 release from endothelial cells. The findings indicate widespread, tonic control of mRNAs encoded by genes relevant to blood pressure regulation by endothelial miRNAs and provide a novel and uniquely informative basis for studying the role of miRNAs in hypertension.

  14. Generation of Brain Microvascular Endothelial-Like Cells from Human Induced Pluripotent Stem Cells by Co-Culture with C6 Glioma Cells

    PubMed Central

    Minami, Haruka; Tashiro, Katsuhisa; Okada, Atsumasa; Hirata, Nobue; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki; Kawabata, Kenji

    2015-01-01

    The blood brain barrier (BBB) is formed by brain microvascular endothelial cells (BMECs) and tightly regulates the transport of molecules from blood to neural tissues. In vitro BBB models from human pluripotent stem cell (PSCs)-derived BMECs would be useful not only for the research on the BBB development and function but also for drug-screening for neurological diseases. However, little is known about the differentiation of human PSCs to BMECs. In the present study, human induced PSCs (iPSCs) were differentiated into endothelial cells (ECs), and further maturated to BMECs. Interestingly, C6 rat glioma cell-conditioned medium (C6CM), in addition to C6 co-culture, induced the differentiation of human iPSC-derived ECs (iPS-ECs) to BMEC-like cells, increase in the trans-endothelial electrical resistance, decreased in the dextran transport and up-regulation of gene expression of tight junction molecules in human iPS-ECs. Moreover, Wnt inhibitors attenuated the effects of C6CM. In summary, we have established a simple protocol of the generation of BMEC-like cells from human iPSCs, and have demonstrated that differentiation of iPS-ECs to BMEC-like cells is induced by C6CM-derived signals, including canonical Wnt signals. PMID:26061227

  15. EGb 761 protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury and exerts inhibitory effect on ATM pathway.

    PubMed

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2016-12-14

    Ginkgo biloba extract (EGb 761) has been widely clinically used to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injuried MVECs were treated with EGb 761, then cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and the protein level of ATM, γ-H2AX, p53, Bax were measured. ATM siRNA was transfected to study the changes of protein in ATM pathway. EGb 761 presented protective effect on H/R-injuried MVECs with decreasing cell death, apoptosis and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, Bax. Overall, these findings verify EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on ATM pathway and apoptosis of EGb 761 via dampening ROS.

  16. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages

    PubMed Central

    Sun, Li; Wang, Xu; Zhou, Yu; Zhou, Run-Hong; Ho, Wen-Zhe; Li, Jie-Liang

    2017-01-01

    Human brain microvascular endothelial cells (HBMECs), the major cell type in the blood-brain barrier (BBB), play a key role in maintaining brain homeostasis. However, their role in the BBB innate immunity against HIV invasion of the central nervous system (CNS) remains to be determined. Our early work showed that TLR3 signaling of HBMECs could produce the antiviral factors that inhibit HIV replication in macrophages. The present study examined whether exosomes from TLR3-activated HBMECs mediate the intercellular transfer of antiviral factors to macrophages. Primary human macrophages could take up exosomes from TLR3-activated HBMECs. HBMECs-derived exosomes contained multiple antiviral factors, including several key IFN-stimulated genes (ISGs; ISG15, ISG56, and Mx2) at mRNA and protein levels. The depletion of exosomes from TLR3-activated HBMECs culture supernatant diminished HBMECs-mediated anti-HIV activity in macrophages. In conclusion, we demonstrate that exosomes shed by HBMECs are able to transport the antiviral molecules to macrophages. This finding suggests the possibility that HIV nonpermissive BBB cells (HBMECs) can help to restore the antiviral state in HIV-infected macrophages, which may be a defense mechanism against HIV neuroinvasion. PMID:27496004

  17. Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial

    PubMed Central

    Dan, Mo; Tseng, Michael T; Wu, Peng; Unrine, Jason M; Grulke, Eric A; Yokel, Robert A

    2012-01-01

    Purpose: Ceria engineered nanomaterials (ENMs) have current commercial applications and both neuroprotective and toxic effects. Our hypothesis is that ceria ENMs can associate with brain capillary cells and/or cross the blood–brain barrier. Methods: An aqueous dispersion of ∼5 nm ceria ENM was synthesized and characterized in house. Its uptake space in the Sprague Dawley rat brain was determined using the in situ brain perfusion technique at 15 and 20 mL/minute flow rates; 30, 100, and 500 μg/mL ceria perfused for 120 seconds at 20 mL/minute; and 30 μg/mL perfused for 20, 60, and 120 seconds at 20 mL/minute. The capillary depletion method and light and electron microscopy were used to determine its capillary cell and brain parenchymal association and localization. Results: The vascular space was not significantly affected by brain perfusion flow rate or ENM, demonstrating that this ceria ENM did not influence blood–brain barrier integrity. Cerium concentrations, determined by inductively coupled plasma mass spectrometry, were significantly higher in the choroid plexus than in eight brain regions in the 100 and 500 μg/mL ceria perfusion groups. Ceria uptake into the eight brain regions was similar after 120-second perfusion of 30, 100, and 500 μg ceria/mL. Ceria uptake space significantly increased in the eight brain regions and choroid plexus after 60 versus 20 seconds, and it was similar after 60 and 120 seconds. The capillary depletion method showed 99.4% ± 1.1% of the ceria ENM associated with the capillary fraction. Electron microscopy showed the ceria ENM located on the endothelial cell luminal surface. Conclusion: Ceria ENM association with brain capillary endothelial cells saturated between 20 and 60 seconds and ceria ENM brain uptake was not diffusion-mediated. During the 120-second ceria ENM perfusion, ceria ENM predominately associated with the surface of the brain capillary cells, providing the opportunity for its cell uptake or redistribution

  18. Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells.

    PubMed

    Na, Wonho; Shin, Jee Y; Lee, Jee Y; Jeong, Sangyun; Kim, Won-Sun; Yune, Tae Y; Ju, Bong-Gun

    2017-01-01

    The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.

  19. Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells.

    PubMed

    Shin, Sooan; Paul-Satyaseela, Maneesh; Maneesh, Paul-Satyaseela; Lee, Jong-Seok; Romer, Lewis H; Kim, Kwang Sik

    2006-01-01

    Group B streptococcus (GBS), the leading cause of neonatal meningitis, has been shown to invade human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. GBS invasion of HBMEC has been shown to require the host cell actin cytoskeleton rearrangements. The present study examined the mechanisms underlying actin cytoskeleton rearrangements that are involved in type III GBS invasion of HBMEC. We showed that type III GBS invasion was inhibited by genistein, a general tyrosine kinase inhibitor (mean 54% invasion decrease at 100 microM), and LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor (mean 70% invasion decrease at 50 microM), but not by PP2, an inhibitor of the Src family tyrosine kinases. We subsequently showed that the focal adhesion kinase (FAK) was the one of the host proteins tyrosine phosphorylated by type III GBS. Over-expression of a dominant negative form of the FAK C-terminal domain significantly decreased type III GBS invasion of HBMEC (mean 51% invasion decrease). In addition, we showed that FAK phosphorylation correlated with its association of paxillin, an adapter protein of actin filament, and PI3-kinase subunit p85. This is the first demonstration that FAK phosphorylation and its association with paxillin and PI3 kinase play a key role in type III GBS invasion of HBMEC.

  20. Protective effects of total flavonoids in Caragana against hypoxia/reoxygenation-induced injury in human brain microvascular endothelial cells.

    PubMed

    He, Qian-Song; Zhang, Li; Fan, Zi-Yuan; Feng, Guo; Wang, Fu-Jiang; Liu, Zheng-Qi; Tang, Ting; Kuang, Shi-Xiang

    2017-02-22

    This study aimed to explore the protective effect of total flavonoids in Caragana against hypoxia/reoxygenation (H/R)-induced injury in human brain microvascular endothelial cells (BMECs). Human BMECs were selected and assigned into control, H/R, H/R+NMP, H/R+Low dose, H/R+Moderate dose, H/R+High dose groups. MTT and Transwell assays were used to detect cell viability and migration, respectively. Cell adhesion rate and tube formation were also detected. Real-time polymerase chain reaction (RT-PCR) and Western blotting were performed to test HIF-1α, VEGF and Notch1 mRNA and protein expressions. Compared with the H/R group, the cell viability rates in the H/R+NMP, H/R+Moderate dose and H/R+High dose groups were increased. The cell adhesion rates in the H/R+NMP, H/R+Moderate dose and H/R+High dose groups were significantly different from those in the H/R group. As compared to the H/R group, the cell migration abilities in the H/R+NMP, H/R+Moderate dose and H/R+High dose groups were enhanced. Compared with the H/R group, the number and length of tubes of BMECs in the H/R+NMP, H/R+High dose and H/R+Moderate dose groups were increased. HIF-1α, VEGF and Notch1 mRNA and protein expressions were higher in the H/R+Low dose, H/R+Moderate dose and H/R+High dose groups than in the H/R group. These findings revealed that total flavonoids in Caragana can protect BMECs from H/R-induced injury in a dose-dependent manner and it also may promote angiogenesis in BMECs by activating HIF- 1α-VEGF-Notch 1 signaling pathway.

  1. PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells.

    PubMed

    Motta, Carla; D'Angeli, Floriana; Scalia, Marina; Satriano, Cristina; Barbagallo, Davide; Naletova, Irina; Anfuso, Carmelina Daniela; Lupo, Gabriella; Spina-Purrello, Vittoria

    2015-08-15

    Inhibitors of PARP-1(Poly(ADP-ribose) polymerase-1) act by competing with NAD(+), the enzyme physiological substrate, which play a protective role in many pathological conditions characterized by PARP-1 overactivation. It has been shown that PARP-1 also promotes tumor growth and progression through its DNA repair activity. Since angiogenesis is an essential requirement for these activities, we sought to determine whether PARP inhibition might affect rat brain microvascular endothelial cells (GP8.3) migration, stimulated by C6-glioma conditioned medium (CM). Through wound-healing experiments and MTT analysis, we demonstrated that PARP-1 inhibitor PJ-34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide] abolishes the migratory response of GP8.3 cells and reduces their viability. PARP-1 also acts in a DNA independent way within the Extracellular-Regulated-Kinase (ERK) signaling cascade, which regulates cell proliferation and differentiation. By western analysis and confocal laser scanning microscopy (LSM), we analyzed the effects of PJ-34 on PARP-1 expression, phospho-ERK and phospho-Elk-1 activation. The effect of MEK (mitogen-activated-protein-kinase-kinase) inhibitor PD98059 (2-(2-Amino-3-methoxyphenyl)-4 H-1-benzopyran-4-one) on PARP-1 expression in unstimulated and in CM-stimulated GP8.3 cells was analyzed by RT-PCR. PARP-1 expression and phospho-ERK activation were significantly reduced by treatment of GP8.3 cells with PJ-34 or PD98059. By LSM, we further demonstrated that PARP-1 and phospho-ERK are coexpressed and share the same subcellular localization in GP8.3 cells, in the cytoplasm as well as in nucleoplasm. Based on these data, we propose that PARP-1 and phospho-ERK interact in the cytosol and then translocate to the nucleus, where they trigger a proliferative response. We also propose that PARP-1 inhibition blocks CM-induced endothelial migration by interfering with ERK signal-transduction pathway.

  2. Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress.

    PubMed

    Li, Wenlu; Xu, Hongjiao; Hu, Yangmin; He, Ping; Ni, Zhenzhen; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin

    2013-01-01

    Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10-100 µmol/l. What's more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress.

  3. VE-cadherin involved in the pulmonary microvascular endothelial cell barrier injury induced by angiotensin II through modulating the cellular apoptosis and skeletal rearrangement

    PubMed Central

    Wu, Zhiyong; Liu, Huagang; Ren, Wei; Dai, Feifeng; Chang, Jinxing; Li, Bowen

    2016-01-01

    Objective: Angiotensin II (AngII) involved in the pathogenesis of pulmonary injury through impairing the integrity of pulmonary microvascular endothelial barrier, but the mechanism is still not clear. We aim to determine the roles of VE-cadherin, playing crucial roles in the adhesion of the vascular endothelial barrier and the barrier function, in the pulmonary microvascular endothelial cell (PMVEC) barrier injury mediated by AngII. Methods: Mice acute lung injury (ALI) model was induced through pumping of AngII. The infiltration of macrophages and neutrophils as well as the PMVEC permeability were determined in order to determine the barrier injury in vivo and in vitro. Knockdown of VE-cadherin was established using siRNA technique, and its roles in the apoptosis and skeletal rearrangement in the PMVECs were evaluated. Results: After AngII interference, the expression of VE-cadherin in the PMVECs and pulmonary tissues in mice was down-regulated. Upon VE-cadherin knockdown through siRNA technique, AngII induced susceptibility of PMVECs to apoptosis. Knockdown of VE-cadherin contributed to the skeletal rearrangement in the endothelial cells, together with increase of permeability. Conclusions: VE-cadherin expression is closely related to the apoptosis and skeletal rearrangement of PMVECs induced by AngII. PMID:27830014

  4. Systemic sclerosis sera affect fibrillin-1 deposition by dermal blood microvascular endothelial cells: therapeutic implications of cyclophosphamide

    PubMed Central

    2013-01-01

    Introduction Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs. Methods Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis. Results Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed

  5. Insulin-like growth factor-1 secreted by brain microvascular endothelial cells attenuates neuron injury upon ischemia.

    PubMed

    Wang, Jun; Tang, Yibo; Zhang, Wei; Zhao, Haiping; Wang, Runjun; Yan, Yangyang; Xu, Liwei; Li, Pengtao

    2013-08-01

    Insulin-like growth factor (IGF)-1 is essential for the development of the nervous system, and is present in many cell types. Relatively little is known about IGF-1 expression in brain microvascular endothelial cells (BMECs). For in vivo studies, we examined the expression of IGF-1 and insulin-like growth factor-binding protein (IGFBP)-2 after focal cerebral ischemia for 12 h, 24 h, 3 days and 7 days, utilizing a permanent middle cerebral artery occlusion (MCAO) model in rats. For in vitro studies, we examined the levels of IGF-1 and IGFBP-2 in the culture medium or primary culture of BMECs injured by oxygen-glucose deprivation (OGD). Then, we elucidated the protective effects of IGF-1 on cortical neurons injured by OGD and the possible mechanism. In addition, we investigated the effect of BMEC-conditioned medium on IGF-1 receptor expression in neurons. The results showed that IGF-1 expression increased in serum and brain tissue, whereas IGFBP-2 expression decreased in brain tissue of MCAO-injured rats. In primary culture of BMECs, the expression levels of IGF-1 and IGFBP-2 were significantly higher under OGD conditions in culture. IGF-1 administration improved neuron viability upon normoxia or OGD, and upregulated p-Akt expression. This effect was reversed by LY294002, a specific inhibitor of the phosphoinositide 3-kinase-Akt signaling pathway. Furthermore, conditioned medium from OGD-treated BMECs substantially suppressed neuron viability and the expression of IGF-1 receptor simultaneously. These data demonstrate that therapeutic strategies that prioritize the early recovery of the IGF-1 system in BMECs might be promising in ischemic injury.

  6. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier

    PubMed Central

    Verma, Saguna; Lo, Yeung; Chapagain, Moti; Lum, Stephanie; Kumar, Mukesh; Gurjav, Ulziijargal; Luo, Haiyan; Nakatsuka, Austin; Nerurkar, Vivek R.

    2009-01-01

    Neurological complications such as inflammation, failure of the blood-brain barrier (BBB), and neuronal death contribute to the mortality and morbidity associated with WNV-induced meningitis. Compromised BBB indicates the ability of the virus to gain entry into the CNS via the BBB, however, the underlying mechanisms, and the specific cell types associated with WNV-CNS trafficking are not well understood. Brain microvascular endothelial cells, main component of the BBB, represent a barrier to virus dissemination into the CNS and could play key role in WNV spread via hematogenous route. To investigate WNV entry into the CNS, we infected primary human brain microvascular endothelial (HBMVE) cells with the neurovirulent strain of WNV (NY99) and examined WNV replication kinetics together with the changes in the expressions of key tight junction proteins (TJP) and cell adhesion molecules (CAM). WNV infection of HBMVE cells was productive as analyzed by plaque assay and qRT-PCR, and did not induce cytopathic effect. Increased mRNA and protein expressions of TJP (claudin-1) and CAM (vascular cell adhesion molecule and E-selectin) were observed at days 2 and 3 after infection, respectively, which coincided with the peak in WNV replication. Further, using an in vitro BBB model comprised of HBMVE cells, we demonstrate that cell-free WNV can cross the BBB, without compromising the BBB integrity. These data suggest that infection of HBMVE cells can facilitate entry of cell-free virus into the CNS without disturbing the BBB, and increased CAM may assist in the trafficking of WNV-infected immune cells into the CNS, via ‘Trojan horse’ mechanism, thereby contributing to WNV dissemination in the CNS and associated pathology. PMID:19135695

  7. MiR-466b-1-3p regulates P-glycoprotein expression in rat cerebral microvascular endothelial cells.

    PubMed

    Yang, Xiaobo; Ren, Weimin; Shao, Yiye; Chen, Yinghui

    2017-04-03

    Epilepsy is one of the most common neurological disorders, and approximately one-third of epilepsy cases are resistant to treatment with anti-epileptic drug (AED). P-glycoprotein (P-gp) is a multi-drug transporter that is thought to play a pivotal role in multiple drug resistance (MDR) in epilepsy. The regulatory mechanism of P-gp remains largely unknown; however, recent studies have demonstrated that microRNAs (miRNAs) may regulate the chemo-resistance mediated by P-gp. This study investigated the effect of specific miRNAs that regulate P-gp expression in rat cerebral microvascular endothelial cells (RCMECs). Primary cultures of RCMECs were treated with phenobarbital (PB) at various concentrations to induce P-gp overexpression. MiRNA microarrays were used to investigate the expression profiles of miRNAs in the resistant RCMECs induced by PB and corresponding non-resistant cells. Our data demonstrated decreased miR-466b-1-3p expression in the resistant cells compared with the non-resistant cells. Moreover, the recombinant RNA of 466b-1-3p (mimic) and the artificial antisense RNA of miR-466b-1-3p (inhibitor) were constructed and transfected into resistant RCMECs. The expression and function of P-gp were measured by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry using rhodamine efflux. The mRNA and protein levels of P-gp increased as the concentration of PB increased, whereas miR-466b-1-3p levels decreased with increasing PB concentrations (P<0.05). The miR-466b-1-3p mimic down-regulated P-gp expression, whereas the miR-466b-1-3p inhibitor up-regulated P-gp expression (P<0.05). These findings demonstrate that miR-466b-1-3p may regulate PB-induced P-gp expression in RCMECs.

  8. Human Pulmonary Microvascular Endothelial Cells Support Productive Replication of Highly Pathogenic Avian Influenza Viruses: Possible Involvement in the Pathogenesis of Human H5N1 Virus Infection

    PubMed Central

    Zeng, Hui; Pappas, Claudia; Belser, Jessica A.; Houser, Katherine V.; Zhong, Weiming; Wadford, Debra A.; Stevens, Troy; Balczon, Ron; Katz, Jacqueline M.

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses. PMID:22072765

  9. Gap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis.

    PubMed

    Thuringer, Dominique; Jego, Gaetan; Berthenet, Kevin; Hammann, Arlette; Solary, Eric; Garrido, Carmen

    2016-05-10

    Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvascular endothelial cells (HMEC). When HMEC are loaded with miR-145-5p mimics, the miR-145 level drastically increases in SW480. The functional inhibition of gap junctions, using either a gap channel blocker or siRNA targeting Cx43, prevents this increase. The transfer of miR-145 also occurs from SW480 to HMEC but not in non-contact co-cultures, excluding the involvement of soluble exosomes. The miR-145 transfer to SW480 up-regulates their Cx43 expression and inhibits their ability to promote angiogenesis. Our results indicate that the gap junctional communication can inhibit tumor growth by transferring miRs from one endothelial cell to neighboring tumor cells. This "bystander" effect could find application in cancer therapy.

  10. Metformin induces up-regulation of blood-brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells.

    PubMed

    Takata, Fuyuko; Dohgu, Shinya; Matsumoto, Junichi; Machida, Takashi; Kaneshima, Shuji; Matsuo, Mai; Sakaguchi, Shinya; Takeshige, Yuki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2013-04-19

    Blood-brain barrier (BBB) disruption occurs frequently in CNS diseases and injuries. Few drugs have been developed as therapeutic candidates for facilitating BBB functions. Here, we examined whether metformin up-regulates BBB functions using rat brain microvascular endothelial cells (RBECs). Metformin, concentration- and time-dependently increased transendothelial electrical resistance of RBEC monolayers, and decreased RBEC permeability to sodium fluorescein and Evans blue albumin. These effects of metformin were blocked by compound C, an inhibitor of AMP-activated protein kinase (AMPK). AMPK stimulation with an AMPK activator, AICAR, enhanced BBB functions. These findings indicate that metformin induces up-regulation of BBB functions via AMPK activation.

  11. Anti-platelet factor 4/heparin antibodies from patients with heparin-induced thrombocytopenia provoke direct activation of microvascular endothelial cells.

    PubMed

    Blank, Miri; Shoenfeld, Yehuda; Tavor, Sigal; Praprotnik, Sonja; Boffa, Marie Claire; Weksler, Babette; Walenga, M Jeanine; Amiral, Jean; Eldor, Amiram

    2002-02-01

    Heparin-induced thrombocytopenia (HIT) is a serious complication that occurs in approximately 1-5% of patients treated with heparin and may be associated with severe thrombotic events. HIT is mediated by antibodies directed mostly to epitope(s) formed by complexes between heparin or other anionic mucopolysaccharides and platelet factor 4 (PF4). Anti-PF4/heparin IgG antibodies from six patients with HIT were affinity purified and assessed for interaction with human microvascular and macrovascular endothelial cells (EC). The antibodies directly activated primary cultures of human bone marrow microvascular EC (HBMEC) and SV40 immortalized HBMEC (TrHBMEC) only in the presence of PF4, but did not activate macrovascular human umbilical vein EC (HUVEC) under the same conditions. These antibodies were found to bind to TrHBMEC through the F(ab)(2) portion of the anti-PF4/heparin IgG. TrHBMEC activation was characterized by an augmented release of IL-6, von Willebrand factor, soluble thrombomodulin, and by an elevated expression of the adhesion molecules P-selectin, E-selectin and vascular cellular endothelial molecule-I to different degrees. Enhanced monocyte adhesion to PF4/heparin antibody-treated TrHBMEC (33-72% adhesion) was also observed. None of these effects occurred with unstimulated HUVEC. However, pre-treatment of HUVEC with tumor necrosis factor-alpha resulted in the same changes observed with microvascular EC exposed to the HIT antibodies. Our findings indicate that anti-PF4/heparin antibodies directly activate microvascular EC while interaction with macrovascular EC requires pre-activation. These results may explain some of the specific clinical manifestations in HIT.

  12. Antiangiogenic Effect of (±)-Haloperidol Metabolite II Valproate Ester [(±)-MRJF22] in Human Microvascular Retinal Endothelial Cells.

    PubMed

    Olivieri, Melania; Amata, Emanuele; Vinciguerra, Shila; Fiorito, Jole; Giurdanella, Giovanni; Drago, Filippo; Caporarello, Nunzia; Prezzavento, Orazio; Arena, Emanuela; Salerno, Loredana; Rescifina, Antonio; Lupo, Gabriella; Anfuso, Carmelina Daniela; Marrazzo, Agostino

    2016-11-10

    (±)-MRJF22 [(±)-2], a novel prodrug of haloperidol metabolite II (sigma-1 receptor antagonist/sigma-2 receptor agonist ligand) obtained by conjugation to valproic acid (histone deacetylase inhibitor) via an ester bond, exhibits antiangiogenic activity, being able to reduce human retinal endothelial cell (HREC) viability in a comparable manner to bevacizumab. Moreover, (±)-2 was able to significantly reduce viable cells count, endothelial cell migration, and tube formation in vascular endothelial growth factor A (VEGF-A) stimulated HREC cultures.

  13. NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia: NEU1 restrains endothelial cell migration, whereas NEU3 does not.

    PubMed

    Cross, Alan S; Hyun, Sang Won; Miranda-Ribera, Alba; Feng, Chiguang; Liu, Anguo; Nguyen, Chinh; Zhang, Lei; Luzina, Irina G; Atamas, Sergei P; Twaddell, William S; Guang, Wei; Lillehoj, Erik P; Puché, Adam C; Huang, Wei; Wang, Lai-Xi; Passaniti, Antonino; Goldblum, Simeon E

    2012-05-04

    The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.

  14. Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-κB

    PubMed Central

    Binion, David G.; Wellner, Michael; Behmaram, Behnaz; Floer, Martin; Mitton, Elizabeth; Nie, Linghui; Zhang, Zhihong; Otterson, Mary F.

    2010-01-01

    Radiation therapy is an essential modality in the treatment of colorectal cancers. Radiation exerts an antiangiogenic effect on tumors, inhibiting endothelial proliferation and survival in the tumor microvasculature. However, damage from low levels of irradiation can induce a paradoxical effect, stimulating survival in endothelial cells. We used human intestinal microvascular endothelial cells (HIMEC) to define effects of radiation on these gut-specific endothelial cells. Low-level irradiation (1–5 Gy) activates NF-κB and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is involved in cell cycle reentry and cell survival in HIMEC. A downstream target of PI3K/Akt is mammalian target of rapamycin (mTOR), which contributes to endothelial proliferation and angiogenesis. The aim of this study was to investigate the signaling molecules involved in the radiosensitizing effects of curcumin on HIMEC subjected to low levels of irradiation. We have demonstrated that exposure of HIMEC to low levels of irradiation induced Akt and mTOR phosphorylation, which was attenuated by curcumin, rapamycin, LY294002, and mTOR small interference RNA (siRNA). Activation of NF-κB by low levels of irradiation was inhibited by curcumin, SN-50, and mTOR siRNA. Curcumin also induced apoptosis by induction of caspase-3 cleavage in irradiated HIMEC. In conclusion, curcumin significantly inhibited NF-κB and attenuated the effect of irradiation-induced prosurvival signaling through the PI3K/Akt/mTOR and NF-κB pathways in these gut-specific endothelial cells. Curcumin may be a potential radiosensitizing agent for enhanced antiangiogenic effect in colorectal cancer radiation therapy. PMID:20299603

  15. Effect of oxygen and glucose deprivation on VEGF and its receptors in microvascular endothelial cells co-cultured with mast cells.

    PubMed

    Wang, Zhihua; Tao, Jianping; Zhang, Qingyong; Wei, Meng

    2015-09-01

    The aim of this study was to determine the correlation between angiogenesis and the differential expression of vascular endothelial growth factor (VEGF) and its receptors in myocardial microvascular endothelial cells (MMVECs) co-cultured with mast cells (MCs) or mast cell granules (MCGs) under oxygen and glucose deprivation (OGD). MMVECs and MCs were isolated from Wistar rats. MCs spontaneously degranulated in OGD. The expression of VEGF peaked at 8 h and decreased from 16 h in OGD. However, the expression of its receptor, fms-like tyrosine kinase-1 (Flt-1), and fetal liver kinase-1 (Flk-1), decreased significantly, and angiogenic potential of MMVECs decreased in OGD. Expression of VEGF, Flt-1, and Flk-1 increased significantly when MMVECs were co-cultured with MCGs or active MCs, but MCs had only a limited ability to induce angiogenesis in OGD. The angiogenic potential of MMVECs cultured in OGD (even with MCGs) was inferior to that of MMVECs cultured under normoxic conditions. OGD have a profound effect on angiogenesis, which is more pronounced than the effect of MCs on angiogenesis.

  16. Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus.

    PubMed

    Lima-Junior, Raimundo Sousa; Mello, Cintia da Silva; Siani, Antonio Carlos; Valente, Ligia M Marino; Kubelka, Claire Fernandes

    2013-11-01

    Dengue is the major Arbovirus in the world, annually causing morbidity and death. Severe dengue is associated with changes in the endothelial barrier function due to the production of inflammatory mediators by immune cells and by the endothelium. Dengue virus (DENV) replicates efficiently in human endothelial cells in vitro and elicits immune responses resulting in endothelial permeability. Uncaria tomentosa (Willd.) DC.(Rubiaceae), known as cat's claw, has been used in folk medicine for the treatment of a wide-array of symptoms, and several scientific studies reported its antiviral, immunomodulatory, anti-inflammatory and antioxidant properties. Here we infected a human lineage of dermal microvascular endothelial cells (HMEC-1) with DENV-2 and treated it with an alkaloidal fraction from U. tomentosa bark (AFUT). We showed antiviral and immunomodulatory activities of U. tomentosa by determining the NS1 antigen and IL-8 in supernatant of DENV-2 infected HMEC-1. Furthermore, by measurement of transendothelial electrical resistance (TEER) we demonstrated, for the first time, that a plant derivative contributed to the reduction of paracellular permeability in DENV-2 infected HMEC-1. We also showed that IL-8 contributed significantly to the induction of permeability. Although further investigations should be conducted before a new drug can be suggested, our in vitro data support evidence that AFUT could be potentially useful in developing a treatment for severe dengue.

  17. GPR40/FFA1 and Neutral Sphingomyelinase Are Involved in Palmitate-Boosted Inflammatory Response of Microvascular Endothelial Cells to LPS

    PubMed Central

    Lu, Zhongyang; Li, Yanchun; Jin, Junfei; Zhang, Xiaoming; Hannun, Yusuf A.; Huang, Yan

    2015-01-01

    Objectives Increased levels of both saturated fatty acids (SFAs) and lipopolysaccharide (LPS) are associated with type 2 diabetes. However, it remains largely unknown how SFAs interact with LPS to regulate inflammatory responses in microvascular endothelial cells (MIC ECs) that are critically involved in atherosclerosis as a diabetic complication. In this study, we compared the effects of LPS, palmitic acid (PA), the most abundant saturated fatty acid, or the combination of LPS and PA on interleukin (IL)-6 expression by MIC ECs and explored the underlying mechanisms. Methods Human cardiac MIC ECs were treated with LPS, PA and LPS plus PA and the regulatory pathways including receptors, signal transduction, transcription and post-transcription, and sphingolipid metabolism for IL-6 expression were investigated. Results G protein-coupled receptor (GPR)40 or free fatty acid receptor 1 (FFA1), but not toll-like receptor 4, was involved in PA-stimulated IL-6 expression. PA not only stimulated IL-6 expression by itself, but also remarkably enhanced LPS-stimulated IL-6 expression via a cooperative stimulation on mitogen-activated protein kinase and nuclear factor kappa B signaling pathways, and both transcriptional and post-transcriptional activation. Furthermore, PA induced a robust neutral sphingomyelinase (nSMase)-mediated sphingomyelin hydrolysis that was involved in PA-augmented IL-6 upregulation. Conclusion PA boosted inflammatory response of microvascular endothelial cells to LPS via GPR40 and nSMase. PMID:25795558

  18. Peoniflorin suppresses tumor necrosis factor-α induced chemokine production in human dermal microvascular endothelial cells by blocking nuclear factor-κB and ERK pathway.

    PubMed

    Chen, Tao; Guo, Zai-Pei; Jiao, Xiao-Yan; Jia, Rui-Zhen; Zhang, Yu-Hong; Li, Jing-Yi; Huang, Xu-Lei; Liu, Hong-Jie

    2011-07-01

    Peoniflorin (PF) extracted from the root of Paeonia lactiflora pall displays anti-inflammation and antioxidant properties in several animal models. Chemokines are vital for directing the movement of circulating leukocytes to the sites of inflammation and are involved in the pathogenesis of various inflammatory skin diseases. Herein, we investigated the effects and potential mechanisms of PF on tumor necrosis factor-α (TNF-α) induced chemokine production in human dermal microvascular endothelial cells. Human dermal microvascular endothelial cell line (HMEC-1) was treated by TNF-α with or without PF. PF markedly attenuated TNF-α-induced chemokines (including CCL2, CCL5, CCL20, CXCL8, CXCL16 and CX3CL1) mRNA expression in HMEC-1. PF also reduced the secretion of these chemokines in culture supernatants. In addition, endothelial activation in the presence of PF markedly blocked the chemotactic activities of TNF-α-stimulated HMEC-1 supernatant on promyelocytic leukemia cell line (HL-60) or the acute mature monocytic leukemia cell line (THP-1) cell migration. Furthermore, Western blot data revealed TNF-α upregulated phosphorylation of inhibitor of κB-α (IκBα) and phosphorylation of extracellular signal-regulated kinase (ERK)1/2, which was almost completely reversed by PF. Finally, PF inhibited nuclear factor-κB (NF-κB) nuclear translocation to the nucleus. Taken together, our data provide the first evidence that PF has an anti-inflammatory ability against TNF-α-induced chemokine production and leukocyte migration, which may be at least partly related to the inhibition of NF-κB and ERK pathway. PF may be a candidate medicine for the treatment of inflammatory skin diseases.

  19. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation.

    PubMed

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1's downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.

  20. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation

    PubMed Central

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke. PMID:27630541

  1. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    PubMed

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  2. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype

    PubMed Central

    Gerecht, Sharon; Searson, Peter C.

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2–4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research. PMID:27070801

  3. In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse.

    PubMed Central

    Kaul, D K; Fabry, M E; Costantini, F; Rubin, E M; Nagel, R L

    1995-01-01

    Intravascular sickling, red cell-endothelium interaction, and altered microvascular responses have been suggested to contribute to the pathophysiology of human sickle cell disease, but have never been demonstrated under in vivo flow. To address this issue, we have examined a transgenic mouse line, alphaHbetaSbetaS-Antilles [betaMDD] which has a combined high (78%) expression of beta S and beta S-Antilles globins. In vivo microcirculatory studies using the cremaster muscle preparation showed adhesion of red cells, restricted to postcapillary venules, in transgenic mice but not in control mice. Electron microscopy revealed distinct contacts between the red cell membrane and the endothelium surface. Some red cells exhibiting sickling were regularly observed in the venular flow. Infusion of transgenic mouse red cells into the ex vivo mesocecum vasculature also showed adhesion of mouse red cells exclusively in venules. Under resting conditions (pO2, 15-20 mmHg), there were no differences in the cremaster microvascular diameters of control and transgenic mice; however, transgenic mice showed a drastic reduction in microvascular red cell velocities (Vrbc) with maximal Vrbc decrease (> 60%) occurring in venules, the sites of red cell adhesion and sickling. Local, transient hyperoxia (pO2, 150 mmHg) resulted in striking differences between control and transgenic mice. In controls, oxygen caused a 69% arteriolar constriction, accompanied by 75% reduction in Vrbc. In contrast, in transgenic mice, hyperoxia resulted in only 8% decrease in the arteriolar diameter and in 68% increase in VrBC; the latter is probably due to an improved flow behavior of red cells as a consequence of unsickling. In summary, the high expression of human sickle hemoglobin in the mouse results not only in intravascular sickling but also red cell-endothelium interaction. The altered microvascular response to oxygen could be secondary to blood rheological changes, although possible intrinsic differences

  4. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells.

    PubMed

    Kokubu, Yasuhiro; Yamaguchi, Tomoko; Kawabata, Kenji

    2017-04-29

    Brain-derived microvascular endothelial cells (BMECs), which play a central role in blood brain barrier (BBB), can be used for the evaluation of drug transport into the brain. Although human BMEC cell lines have already been reported, they lack original properties such as barrier integrity. Pluripotent stem cells (PSCs) can be used for various applications such as regenerative therapy, drug screening, and pathological study. In the recent study, an induction method of BMECs from PSCs has been established, making it possible to more precisely study the in vitro human BBB function. Here, using induced pluripotent stem (iPS) cell-derived BMECs, we examined the effects of oxygen-glucose deprivation (OGD) and OGD/reoxygenation (OGD/R) on BBB permeability. OGD disrupted the barrier function, and the dysfunction was rapidly restored by re-supply of the oxygen and glucose. Interestingly, TNF-α, which is known to be secreted from astrocytes and microglia in the cerebral ischemia, prevented the restoration of OGD-induced barrier dysfunction in an apoptosis-independent manner. Thus, we could establish the in vitro BBB disease model that mimics the cerebral ischemia by using iPS cell-derived BMECs.

  5. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  6. Oxidative Stress Induced by Cigarette Smoke Extracts in Human Brain Cells (T98G) and Human Brain Microvascular Endothelial Cells (HBMEC) in Mono- and Co-Culture.

    PubMed

    Kim, Ju-Hyeong; Cho, Myung-Haing; Choi, Kyung-Chul; Lee, Kyuhong; Kim, Kwang-Sik; Shim, Soon-Mi

    2015-01-01

    The objective of the current study was to examine oxidative stress induced by cigarette smoke extract (CSE) or cigarette smoke condensate (CSC) in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture systems. Cell viability of T98G cells exposed to CSC (0.05-4 mg/ml) was significantly decreased compared to CSE (0.025-20%). There were no marked differences between quantities of reactive oxygen species (ROS) generation by either CSE (2, 4, and 10%) or CSC (0.2, 0.4, and 0.8 mg/ml) treatment compared to control. However, a significant effect was noted in ROS generation following CSC incubation at 4mg/ml. Cellular integrity of HBMEC decreased to 74 and 64% within 120 h of exposure at the IC50 value of CSE and CSC, respectively. This study suggests that chronic exposure to cigarette smoking might initiate damage to the blood-brain barrier.

  7. Overexpression of actin-depolymerizing factor blocks oxidized low-density lipoprotein-induced mouse brain microvascular endothelial cell barrier dysfunction.

    PubMed

    Wang, Jun; Sun, Lu; Si, Yan-Fang; Li, Bao-Min

    2012-12-01

    The aim of present work was to elucidate the role of actin-depolymerizing factor (ADF), an important regulator of actin cytoskeleton, in the oxidized low-density lipoprotein (ox-LDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to ox-LDL. Treatment with LDL served as control. It was found that ADF mRNA level and protein expression were decreased when exposed to ox-LDL in MBMECs. Then, we investigated the influence of ADF overexpression on ox-LDL-treated MBMECs. Structurally, overexpression of ADF inhibited ox-LDL-induced F-actin formation. Functionally, overexpression of ADF attenuated ox-LDL-induced disruption of endothelial barrier marked by restoration of transendothelial electrical resistance, permeability of Evans Blue and expression of tight junction-associated proteins including ZO-1 and occludin, and blocked ox-LDL-induced oxidative stress marked by inhibition of reactive oxygen species (ROS) formation and activity of NADPH oxidase and Nox2 expression. However, overexpression of ADF in control cells had no significant effect on endothelial permeability and ROS formation. In conclusion, overexpression of ADF blocks ox-LDL-induced disruption of endothelial barrier. In addition, siRNA-mediated downregulation of ADF expression aggravated ox-LDL-induced disruption of endothelial barrier and ROS formation. These findings identify ADF as a key signaling molecule in the regulation of BBB integrity and suggest that ADF might be used as a target to modulate diseases accompanied by ox-LDL-induced BBB compromise.

  8. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    PubMed

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries.

  9. The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells.

    PubMed

    Nelin, Leif D; White, Hilary A; Jin, Yi; Trittmann, Jennifer K; Chen, Bernadette; Liu, Yusen

    2016-05-01

    Endothelial cells are essential for normal lung function: they sense and respond to circulating factors and hemodynamic alterations. In inflammatory lung diseases such as acute respiratory distress syndrome, endothelial cell apoptosis is an inciting event in pathogenesis and a prominent pathological feature. Endothelial cell apoptosis is mediated by circulating inflammatory factors, which bind to receptors on the cell surface, activating signal transduction pathways, leading to caspase-3-mediated apoptosis. We hypothesized that yes and src have differential effects on caspase-3 activation in human pulmonary microvascular endothelial cells (hPMVEC) due to differential downstream signaling effects. To test this hypothesis, hPMVEC were treated with siRNA against src (siRNAsrc), siRNA against yes (siRNAyes), or their respective scramble controls. After recovery, the hPMVEC were treated with cytomix (LPS, IL-1β, TNF-α, and IFN-γ). Treatment with cytomix induced activation of the extracellular signal-regulated kinase (ERK) pathway and caspase-3-mediated apoptosis. Treatment with siRNAsrc blunted cytomix-induced ERK activation and enhanced cleaved caspase-3 levels, while treatment with siRNAyes enhanced cytomix-induced ERK activation and attenuated levels of cleaved caspase-3. Inhibition of the ERK pathway using U0126 enhanced cytomix-induced caspase-3 activity. Treatment of hPMVEC with cytomix induced Akt activation, which was inhibited by siRNAsrc. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway using LY294002 prevented cytomix-induced ERK activation and augmented cytomix-induced caspase-3 cleavage. Together, our data demonstrate that, in hPMVEC, yes activation blunts the ERK cascade in response to cytomix, resulting in greater apoptosis, while cytomix-induced src activation induces the phosphatidylinositol 3-kinase pathway, which leads to activation of Akt and ERK and attenuation of apoptosis.

  10. Hexachlorobenzene promotes angiogenesis in vivo, in a breast cancer model and neovasculogenesis in vitro, in the human microvascular endothelial cell line HMEC-1.

    PubMed

    Pontillo, Carolina; Español, Alejandro; Chiappini, Florencia; Miret, Noelia; Cocca, Claudia; Alvarez, Laura; Kleiman de Pisarev, Diana; Sales, María Elena; Randi, Andrea Silvana

    2015-11-19

    Exposure to environmental pollutants may alter proangiogenic ability and promotes tumor growth. Hexachlorobenzene (HCB) is an organochlorine pesticide found in maternal milk and in lipid foods, and a weak ligand of the aryl hydrocarbon receptor (AhR). HCB induces migration and invasion in human breast cancer cells, as well as tumor growth and metastasis in vivo. In this study, we examined HCB action on angiogenesis in mammary carcinogenesis. HCB stimulates angiogenesis and increases vascular endothelial growth factor (VEGF) expression in a xenograft model with the human breast cancer cell line MDA-MB-231. Human microvascular endothelial cells HMEC-1 exposed to HCB (0.005, 0.05, 0.5 and 5μM) showed an increase in cyclooxygenase-2 (COX-2) and VEGF protein expression involving AhR. In addition, we found that HCB enhances VEGF-Receptor 2 (VEGFR2) expression, and activates its downstream pathways p38 and ERK1/2. HCB induces cell migration and neovasculogenesis in a dose-dependent manner. Cells pretreatment with AhR, COX-2 and VEGFR2 selective inhibitors, suppressed these effects. In conclusion, our results show that HCB promotes angiogenesis in vivo and in vitro. HCB-induced cell migration and tubulogenesis are mediated by AhR, COX-2 and VEGFR2 in HMEC-1. These findings may help to understand the association among HCB exposure, angiogenesis and mammary carcinogenesis.

  11. Key genes and proteins involved in CTCM-reducing microvascular endothelial cell permeability induced by SLT-IIv using gene chips and DIGE.

    PubMed

    Yi, Pengfei; Guo, Yang; Wang, Xin; Mu, Xiang; Wei, Xubin

    2010-01-01

    An Affymetrix mouse genome array and differential in-gel electrophoresis (DIGE) techniques were used to investigate the pharmacological mechanisms of a mixture of herbs, designated CTCM, a compound of traditional Chinese medicine, for the treatment of increased permeability in mouse intestinal microvascular endothelial cells (MIMECs) induced by the Shiga-like toxin type II variant (SLT-IIv). MIMECs were challenged with 10microg/ml SLT-IIv for 12h and then treated with CTCM at a concentration of 200microg/ml for 12h. Total RNA and proteins from each treatment group were extracted from cultured MIMECs for analysis by the Affymetrix GeneChip Mouse Genome 430 2.0 microarray and DIGE. The results obtained demonstrated that there were one genes downregulated and one genes upregulated, one protein downregulated and four proteins upregulated in the SLT-IIv group compared to the control group. In the CTCM group, four genes were upregulated, three genes were downregulated, a single protein was downregulated and a single protein was upregulated when compared to the control group. When the CTCM-treated group was compared to the SLT-IIv group, expression of one gene was found to be increased, and all other genes were decreased, with five proteins downregulated. Analysis of the data suggested that CTCM specifically and effectively reduced microvascular endothelial cell permeability to SLT-IIv in the treatment of pig edema disease. In the CTCM-treated group, hspa9 expression was increased in both gene chip and DIGE analysis, so it may be a key protein in reducing cell permeability and utilized in medical treatments.

  12. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells

    PubMed Central

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-01-01

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs. PMID:27166184

  13. Effect of caveolin-1 on the expression of tight junction-associated proteins in rat glioma-derived microvascular endothelial cells

    PubMed Central

    Li, Yao; Liu, Li-Bo; Ma, Teng; Wang, Ping; Xue, Yi-Xue

    2015-01-01

    Caveolin-1 affects the permeability of blood-tumor barrier (BTB) by regulating the expression of tight junction-associated proteins. However, the effect is still controversial. In the present work, we studied the regulative effect of caveolin-1 on the expression of tight junction-associated proteins and BTB via directly silencing and overexpressing of caveolin-1 by recombinant adenovirus transduction of glioma-derived microvascular endothelial cells in rat brain. The results show that the caveolin-1 downregulation resulted in decreased expression of tight junction-associated proteins, opening of tight junctions, and increasing the permeability of BTB, whereas the overexpression of caveolin-1 presented the opposite effects. Therefore, we conclude that caveolin-1 regulates the expression of tight junction-associated proteins in a positive manner, which further plays a role in the regulation of BTB permeability. This finding provides a novel therapeutic target for selectively opening of BTB. PMID:26722502

  14. Upregulation of COX-2/PGE2 by ET-1 mediated through Ca2+-dependent signals in mouse brain microvascular endothelial cells.

    PubMed

    Lin, Chih-Chung; Hsieh, Hsi-Lung; Chi, Pei-Ling; Yang, Chien-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-06-01

    Endothelin-1 (ET-1), a proinflammatory mediator, is elevated in the regions of several brain inflammatory disorders, implying that ET-1 may contribute to inflammatory responses. The deleterious effects of ET-1 on brain endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in mouse brain microvascular endothelial cells (bEnd.3 cells) remain unclear. Herein, we investigated the effects of Ca2+-dependent protein kinases on ET-1-induced COX-2 expression and PGE2 release in bEnd.3 cells. The data obtained with Western blotting, reverse transcription PCR, and intracellular Ca2+ analyses showed that ET-1-induced COX-2 expression was mediated through phosphatidylinositol-phospholipase C (PI-PLC) and phosphatidylcholine-phospholipase C (PC-PLC)/Ca2+-dependent activation of protein kinase C-alpha (PKC-α) and calmodulin kinase II (CaMKII) cascades. Next, we demonstrated that ET-1 stimulated intracellular Ca2+ increase, phoshorylation of PKC-α, CaMKII, and mitogen-activated protein kinases (MAPKs) (ERK1/2, p38 MAPK, and JNK1/2) and then activated the activating transcription factor 2 (ATF2)/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. Moreover, the data of chromatin immunoprecipitation and promoter reporter assay demonstrated that the activated ATF2/AP-1 and p300 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in these cells. Taken together, these results demonstrate that in bEnd.3 cells, Ca2+-dependent PKC-α and CaMKII linking to MAPKs, ATF2/AP-1, and p300 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2/PGE2 system upregulated by ET-1 on brain microvascular endothelial cells may provide rational

  15. Particulate matter from indoor environments of classroom induced higher cytotoxicity and leakiness in human microvascular endothelial cells in comparison with those collected from corridor.

    PubMed

    Chua, M L; Setyawati, M I; Li, H; Fang, C H Y; Gurusamy, S; Teoh, F T L; Leong, D T; George, S

    2016-09-23

    We investigated the physicochemical properties (size, shape, elemental composition, and endotoxin) of size resolved particulate matter (PM) collected from the indoor and corridor environments of classrooms. A comparative hazard profiling of these PM was conducted using human microvascular endothelial cells (HMVEC). Oxidative stress-dependent cytotoxicity responses were assessed using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and high content screening (HCS), and disruption of monolayer cell integrity was assessed using fluorescence microscopy and transwell assay. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) analysis showed differences in the morphology and elemental composition of PM of different sizes and origins. While the total mass of PM collected from indoor environment was lower in comparison with those collected from the corridor, the endotoxin content was substantially higher in indoor PM (e.g., ninefold higher endotoxin level in indoor PM8.1-20 ). The ability to induce oxidative stress-mediated cytotoxicity and leakiness in cell monolayer were higher for indoor PM compared to those collected from the corridor. In conclusion, this comparative analysis suggested that indoor PM is relatively more hazardous to the endothelial system possibly because of higher endotoxin content.

  16. Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli

    PubMed Central

    Yang, Ruicheng; Huang, Fei; Fu, Jiyang; Dou, Beibei; Xu, Bojie; Miao, Ling; Liu, Wentong; Yang, Xiaopei; Tan, Chen; Chen, Huanchun; Wang, Xiangru

    2016-01-01

    Accumulating studies have indicated the influence of long non-coding RNAs (lncRNAs) on various biological processes as well as disease development and progression. However, the lncRNAs involved in bacterial meningitis and their regulatory effects are largely unknown. By RNA-sequencing, the transcriptional profiles of host lncRNAs in primary human brain microvascular endothelial cells (hBMECs) in response to meningitic Escherichia coli were demonstrated. Here, 25,257 lncRNAs were identified, including 24,645 annotated lncRNAs and 612 newly found ones. A total of 895 lncRNAs exhibited significant differences upon infection, among which 382 were upregulated and 513 were downregulated (≥2-fold, p < 0.05). Via bioinformatic analysis, the features of these lncRNAs, their possible functions, and the potential regulatory relationships between lncRNAs and mRNAs were predicted. Moreover, we compared the transcriptional specificity of these differential lncRNAs among hBMECs, human astrocyte cell U251, and human umbilical vein endothelial cells, and demonstrated the novel regulatory effects of proinflammatory cytokines on these differential lncRNAs. To our knowledge, this is the first time the transcriptional profiles of host lncRNAs involved in E. coli-induced meningitis have been reported, which shall provide novel insight into the regulatory mechanisms behind bacterial meningitis involving lncRNAs, and contribute to better prevention and therapy of CNS infection. PMID:27958323

  17. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    PubMed

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  18. The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro.

    PubMed

    Gerő, Domokos; Torregrossa, Roberta; Perry, Alexis; Waters, Alicia; Le-Trionnaire, Sophie; Whatmore, Jacqueline L; Wood, Mark; Whiteman, Matthew

    2016-11-01

    The development of diabetic vascular complications is initiated, at least in part, by mitochondrial reactive oxygen species (ROS) production in endothelial cells. Hyperglycemia induces superoxide production in the mitochondria and initiates changes in the mitochondrial membrane potential that leads to mitochondrial dysfunction. Hydrogen sulfide (H2S) supplementation has been shown to reduce the mitochondrial oxidant production and shows efficacy against diabetic vascular damage in vivo. However, the half-life of H2S is very short and it is not specific for the mitochondria. We have therefore evaluated two novel mitochondria-targeted anethole dithiolethione and hydroxythiobenzamide H2S donors (AP39 and AP123 respectively) at preventing hyperglycemia-induced oxidative stress and metabolic changes in microvascular endothelial cells in vitro. Hyperglycemia (HG) induced significant increase in the activity of the citric acid cycle and led to elevated mitochondrial membrane potential. Mitochondrial oxidant production was increased and the mitochondrial electron transport decreased in hyperglycemic cells. AP39 and AP123 (30-300nM) decreased HG-induced hyperpolarisation of the mitochondrial membrane and inhibited the mitochondrial oxidant production. Both H2S donors (30-300nM) increased the electron transport at respiratory complex III and improved the cellular metabolism. Targeting H2S to mitochondria retained the cytoprotective effect of H2S against glucose-induced damage in endothelial cells suggesting that the molecular target of H2S action is within the mitochondria. Mitochondrial targeting of H2S also induced >1000-fold increase in the potency of H2S against hyperglycemia-induced injury. The high potency and long-lasting effect elicited by these H2S donors strongly suggests that these compounds could be useful against diabetic vascular complications.

  19. Development and Validation of an In-Cell Western for Quantifying P-Glycoprotein Expression in Human Brain Microvascular Endothelial (hCMEC/D3) Cells.

    PubMed

    McInerney, Mitchell P; Pan, Yijun; Short, Jennifer L; Nicolazzo, Joseph A

    2017-01-05

    An in-cell western (ICW) protocol detecting the relative expression of P-glycoprotein (P-gp) in human cerebro-microvascular endothelial cells (hCMEC/D3) was developed and optimized, with the intention of improving throughput relative to western blotting (WB). For validation of the ICW protocol, hCMEC/D3 cells were incubated with known P-gp upregulators (10 μM rifampicin and 5 μM SR12813) and treated with siRNA targeted against MDR1, before measuring changes in P-gp expression, using both ICW and WB in parallel. To confirm a relationship between the detected P-gp expression and function, the uptake of the P-gp substrate rhodamine-123 was assessed following SR12813 treatment. Rifampicin and SR12813 significantly upregulated P-gp expression (1.5-fold and 1.9-fold, respectively) compared to control, as assessed by the ICW protocol. WB analysis of the same treatments revealed 1.4-fold and 1.5-fold upregulations. MDR1 siRNA reduced P-gp abundance by 20% and 35% when assessed by ICW and WB, respectively. SR12813 treatment reduced rhodamine-123 uptake by 18%, indicating that the observed changes in P-gp expression by ICW were associated with comparable functional changes. The correlation of P-gp upregulation by WB, rhodamine-123 uptake, and the ICW protocol provide validation of a new ICW method as an alternative method for quantification of P-gp in hCMEC/D3 cells.

  20. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  1. Mast cells positive to tryptase, endothelial cells positive to protease-activated receptor-2, and microvascular density correlate among themselves in hepatocellular carcinoma patients who have undergone surgery

    PubMed Central

    Ammendola, Michele; Sacco, Rosario; Sammarco, Giuseppe; Piardi, Tullio; Zuccalà, Valeria; Patruno, Rosa; Zullo, Alessandra; Zizzo, Nicola; Nardo, Bruno; Marech, Ilaria; Crovace, Alberto; Gadaleta, Cosmo Damiano; Pessaux, Patrick; Ranieri, Girolamo

    2016-01-01

    Background Mast cells (MCs) can stimulate angiogenesis, releasing several proangiogenic cytokines stored in their cytoplasm. In particular MCs can release tryptase, a potent in vivo and in vitro proangiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated protein kinase phosphorylation. Nevertheless, no data are available concerning the relationship between MC density positive to tryptase (MCDPT), endothelial cells positive to PAR-2 forming microvascular density (PAR-2-MVD), and classical MVD (C-MVD) in hepatocellular carcinoma (HCC) angiogenesis. This study analyzed the correlation between MCDPT, PAR-2-MVD, and C-MVD, each correlated to the others and to the main clinicopathological features, in early HCC patients who underwent surgery. Methods A series of 53 HCC patients with early stage (stage 0 according to the Barcelona Clinic Liver Cancer Staging Classification) were selected and then underwent surgery. Tumor tissue samples were evaluated by means of immunohistochemistry and image analysis methods in terms of number of MCDPT, PAR-2-MVD, and C-MVD. Results A significant correlation between MCDPT, PAR-2-MVD, and C-MVD groups, each correlated to the others, was found by Pearson t-test analysis (r ranged from 0.67 to 0.81; P-value ranged from 0.01 to 0.03). No other significant correlation was found. Conclusion Our in vivo pilot data suggest that MCDPT and PAR-2-MVD may play a role in HCC angiogenesis and could be further evaluated as a target of antiangiogenic therapy. PMID:27499640

  2. Effects of cinnamaldehyde on PGE2 release and TRPV4 expression in mouse cerebral microvascular endothelial cells induced by interleukin-1beta.

    PubMed

    Ma, Yue-Ying; Huo, Hai-Ru; Li, Cang-Hai; Zhao, Bao-Sheng; Li, Lan-Fang; Sui, Feng; Guo, Shu-Ying; Jiang, Ting-Liang

    2008-03-01

    Cinnamaldehyde is a principle compound isolated from Guizhi-Tang (GZT), which is a famous traditional Chinese medical formula used to treat influenza, common cold and other pyretic conditions. Transient receptor potential vanilloid subtype 4 (TRPV4) is expressed in the anterior hypothalamus and may act as thermosensor. The purpose of the present study was to investigate the effects of cinnamaldehyde on the production of prostaglandin E2 (PGE2) and the expression of TRPV4 in mouse cerebral microvascular endothelial cell strain (b.End3). In the research work, the b.End3 cells were cultured in DMEM medium containing interleukin-1beta (IL-1beta) in the presence or absence of ruthenium red (RR), a kind of known TRPV4 inhibitor, or different concentrations of cinnamaldehyde. The results suggested that IL-1beta significantly increase production of PGE2 and cinnamaldehyde evidently decrease IL-1beta-induced PGE2 production, while RR showed no inhibitory effect on PGE2 production. Moreover, it was identified that TRPV4 was expressed at the mRNA and protein levels in b.End3 cells. IL-1beta could up-regulate the expression of TRPV4, RR and cinnamaldehyde could down-regulate the high expression of mRNA and protein of TRPV4 by IL-1beta induced in b.End3 cells. In conclusion, cinnamaldehyde decreased the production of PGE2 and the expression of TRPV4 in b.End3 cells induced by IL-1beta.

  3. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II.

    PubMed

    Wu, Zhiyong; Wang, Zhiwei; Dai, Feifeng; Liu, Huagang; Ren, Wei; Chang, Jinxing; Li, Bowen

    2016-01-01

    Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement.

  4. Dephosphorylation of Y685-VE-Cadherin Involved in Pulmonary Microvascular Endothelial Barrier Injury Induced by Angiotensin II

    PubMed Central

    Wang, Zhiwei; Dai, Feifeng; Liu, Huagang; Ren, Wei; Chang, Jinxing; Li, Bowen

    2016-01-01

    Angiotensin II (AngII) caused pulmonary microvascular endothelial barrier injury, which induced acute aortic dissection (AAD) combined with acute lung injury (ALI). However, the exact mechanism is unclear. We investigated the role of dephosphorylation of Y685-VE-cadherin in the AngII induced pulmonary microvascular endothelial barrier injury. Mice or pulmonary microvascular endothelial cells (PMVECs) were divided into control group, AngII group, AngII+PP2 (Src kinase inhibitor) group, and PP2 group. PP2 was used to inhibit the phosphorylation of Y685-VE-cadherin. Pathological changes, infiltration of macrophages and neutrophils, and pulmonary microvascular permeability were used to determine the pulmonary microvascular endothelial barrier function. Flow cytometry was used to determine the apoptosis of PMVECs, and immunofluorescence was used to determine the skeletal arrangement. Transendothelial resistance was used to detect the permeability of endothelial barrier. Phosphorylation of Y685-VE-cadherin was significantly reduced after AngII stimulation (P < 0.05), together with skeletal rearrangement, and elevation of endothelial permeability which finally induced endothelial barrier injury. After PP2 interference, the phosphorylation of Y685-VE-cadherin was further reduced and the endothelial permeability was further elevated. These data indicated that AngII could induce pulmonary injury by triggering endothelial barrier injury, and such process may be related to the dephosphorylation of Y685-VE-cadherin and the endothelial skeletal rearrangement. PMID:28119542

  5. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications.

    PubMed

    Laranjeira, Marta S; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  6. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    PubMed Central

    Laranjeira, Marta S; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. PMID:27877662

  7. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    NASA Astrophysics Data System (ADS)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  8. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    PubMed

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-02-20

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.

  9. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis

    PubMed Central

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-01-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal

  10. Immunoglobulin M-enriched human intravenous immunoglobulins reduce leukocyte-endothelial cell interactions and attenuate microvascular perfusion failure in normotensive endotoxemia.

    PubMed

    Hoffman, Johannes N; Fertmann, Jan M; Vollmar, Brigitte; Laschke, Matthias W; Jauch, Karl W; Menger, Michael D

    2008-01-01

    Clinical studies indicate potential differences in the efficacy of immunoglobulin (Ig) preparations in patients with sepsis. A recent meta-analysis showed improved survival rates with IgM-enriched Igs. It was the objective of the present study to characterize microcirculatory actions of different clinically used Ig preparations in a rodent endotoxin model by intravital microscopy. Male Syrian golden hamsters 6 to 8 weeks old with a body weight of 60 to 80 g were investigated by intravital fluorescence microscopy. Endotoxemia was induced by administration of 2 mg/kg (i.v.) endotoxin (LPS, Escherichia coli). Two different Ig preparations containing IgM, IgA, and IgG (intravenous IgM group; n = 6; 5 mL Pentaglobin/kg body weight, i.v.) or exclusively IgG (intravenous IgG group; n = 5; 5 mL Flebogamma/kg body weight, i.v.) were applied 5 min before LPS. Saline-treated endotoxemic animals served as controls (control; n = 8). In controls, LPS induced massive leukocyte-endothelial cell interactions, pronounced microvascular leakage, a decrease of systemic platelet count, and distinct capillary perfusion failure (P < 0.05). Both intravenous IgM and IgG reduced venular leakage (P< 0.05) and ameliorated the decrease in platelet count (P < 0.05). Of interest, intravenous IgM was capable of significantly (P< 0.05) reducing leukocyte adhesion in venules. This was associated with normalization of capillary perfusion at 24 h of endotoxemia, whereas intravenous IgG could not prevent LPS-mediated microvascular perfusion failure. We demonstrate that IgM-enriched Igs are superior to IgG alone in attenuating LPS-induced leukocytic inflammation and microcirculatory dysfunction. Our findings can explain better efficacy of IgM-enriched Igs in patients with severe sepsis.

  11. The CXCL10/CXCR3 axis promotes cardiac microvascular endothelial cell migration via the p38/FAK pathway in a proliferation-independent manner.

    PubMed

    Xia, Jing-Bo; Mao, Cheng-Zhou; Chen, Zhuo-Ying; Liu, Guang-Hui; Wu, Hai-Yan; Zhou, Deng-Cheng; Park, Kyu-Sang; Zhao, Hui; Kim, Soo-Ki; Cai, Dong-Qing; Qi, Xu-Feng

    2016-04-01

    CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.

  12. Soluble mediators produced by the crosstalk between microvascular endothelial cells and dengue-infected primary dermal fibroblasts inhibit dengue virus replication and increase leukocyte transmigration.

    PubMed

    Bustos-Arriaga, José; Mita-Mendoza, Neida K; Lopez-Gonzalez, Moises; García-Cordero, Julio; Juárez-Delgado, Francisco J; Gromowski, Gregory D; Méndez-Cruz, René A; Fairhurst, Rick M; Whitehead, Stephen S; Cedillo-Barrón, Leticia

    2016-04-01

    When dengue virus (DENV)-infected mosquitoes use their proboscis to probe into human skin during blood feeding, both saliva and virus are released. During this process, cells from the epidermis and dermis layers of the skin, along with small blood vessels, may get exposed to or infected with DENV. In these microenvironments of the skin, the presence of DENV initiates a complex interplay among the DENV-infected and non-infected neighboring cells at the initial bite site. Previous studies suggested that DENV-infected human dermal fibroblasts (HDFs) participate in the immune response against DENV by secreting soluble mediators of innate immunity. In the present study, we investigated whether DENV-infected HDFs activate human dermal microvascular endothelial cells (HDMECs) in co-cultures. Our results suggest that co-cultures of DENV-infected HDFs and HDMECs elicit soluble mediators that are sufficient to reduce viral replication, activate HDMECs, and induce leukocyte migration through HDMEC monolayers. These effects were partly dependent on HDF donor and DENV serotype, which may provide novel insights into the natural variation in host susceptibility to DENV disease.

  13. Sevoflurane prevents lipopolysaccharide-induced barrier dysfunction in human lung microvascular endothelial cells: Rho-mediated alterations of VE-cadherin.

    PubMed

    Huang, Yiran; Tan, Qindong; Chen, Rui; Cao, Biao; Li, Wenhong

    Acute lung injury (ALI) mainly occurs as increased permeability of lung tissue and pleural effusion. Inhaled anesthetic sevoflurane has been demonstrated to alleviate lung permeability by upregulating junction proteins after ischemia-reperfusion. However, the exact mechanisms of its protective effect on reperfusion injury remain elusive. The aim of this study was to assess possible preconditioning with sevoflurane in an in vitro model of lipopolysaccharide (LPS)-induced barrier dysfunction in human lung microvascular endothelial cells (HMVEC-Ls). In this study, HMVEC-Ls were exposed to minimum alveolar concentration of sevoflurane for 2 h. LPS significantly increased the permeability of HMVEC-L. Moreover, the distribution of junction protein, vascular endothelial (VE)-cadherin, in cell-cell junction area and the total expression in HMVEC-Ls were significantly decreased by LPS treatment. However, the abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly reversed by pretreatment with sevoflurane. Furthermore, LPS-induced activation of the RhoA/ROCK signaling pathway was significantly inhibited with sevoflurane. Such activation, abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly inhibited with sevoflurane pretreatment or knockdown of RhoA or ROCK-2. In conclusion, sevoflurane prevented LPS-induced rupture of HMVEC-L monolayers by suppressing the RhoA/ROCK-mediated VE-cadherin signaling pathway. Our results may explain, at least in part, some beneficial effects of sevoflurane on pulmonary dysfunction such as ischemia-reperfusion injury.

  14. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase

    PubMed Central

    Shao, Beili; Bayraktutan, Ulvi

    2014-01-01

    Blood–brain barrier disruption represents a key feature in hyperglycaemia-aggravated cerebral damage after an ischaemic stroke. Although the underlying mechanisms remain largely unknown, activation of protein kinase C (PKC) is thought to play a critical role. This study examined whether apoptosis of human brain microvascular endothelial cells (HBMEC) might contribute to hyperglycaemia-evoked barrier damage and assessed the specific role of PKC in this phenomenon. Treatments with hyperglycaemia (25 mM) or phorbol myristate acetate (PMA, a protein kinase C activator, 100 nM) significantly increased NADPH oxidase activity, O2•- generation, proapoptotic protein Bax expression, TUNEL-positive staining and caspase-3/7 activities. Pharmacological inhibition of NADPH oxidase, PKC-a, PKC-ß or PKC-ßI via their specific inhibitors and neutralisation of O2•- by a cell-permeable superoxide dismutase mimetic, MnTBAP normalised all the aforementioned increases induced by hyperglycaemia. Suppression of these PKC isoforms also negated the stimulatory effects of hyperglycaemia on the protein expression of NADPH oxidase membrane-bound components, Nox2 and p22-phox which determine the overall enzymatic activity. Silencing of PKC-ßI gene through use of specific siRNAs abolished the effects of both hyperglycaemia and PMA on endothelial cell NADPH oxidase activity, O2•- production and apoptosis and consequently improved the integrity and function of an in vitro model of human cerebral barrier comprising HBMEC, astrocytes and pericytes. Hyperglycaemia-mediated apoptosis of HBMEC contributes to cerebral barrier dysfunction and is modulated by sequential activations of PKC-ßI and NADPH oxidase. PMID:24936444

  15. Endothelial Cell Death, Angiogenesis, and Microvascular Function after Castration in an Androgen-Dependent Tumor: Role of Vascular Endothelial Growth Factor

    NASA Astrophysics Data System (ADS)

    Jain, Rakesh K.; Safabakhsh, Nina; Sckell, Axel; Chen, Yi; Jiang, Ping; Benjamin, Laura; Yuan, Fan; Keshet, Eli

    1998-09-01

    The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone--ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone--ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.

  16. Differentially expressed genes of human microvascular endothelial cells in response to anti-dengue virus NS1 antibodies by suppression subtractive hybridization.

    PubMed

    Yin, Yue; Jiang, Lan; Fang, Danyun; Jiang, Lifang; Zhou, Junmei

    2013-06-01

    It has been previously shown that anti-dengue virus (DENV) nonstructural protein NS1 antibodies could act as autoantibodies that direct against one or more of the host's own proteins, which has potential implications for dengue hemorrhagic fever pathogenesis. In the present study, we have employed suppression subtractive hybridization (SSH) to identify the differentially expressed genes from human microvascular endothelial cells (HMEC-1) in response to anti-dengue virus type 2 NS1 antibodies (anti-DENV2 NS1 Abs). A total of 35 clones from the SSH cDNA library were randomly selected for further analysis using bioinformatics tools after vector screening. After searching for sequence homology in NCBI GenBank database with BLASTN and BLASTX programs, 23 obtained sequences with significant matches (E-values <1×10(-4)) in the SSH library. The predicted genes in the subtracted library include immune response molecules (CD59 antigen preproprotein preproprotein, MURR1), signal transduction molecules (Nuclear casein kinase and cyclin-dependent kinase substrate 1), calcium-binding proteins (S100A6, Annexin A2 isoform 1/2), and cell-membrane component (Yip1 domain family). From these clones, 5 upregulated genes were selected for differential expression profiling by real-time RT-PCR to confirm their upregulated status. The results confirmed their differential upregulation, and thus verified the success of SSHs and the likely involvement of these genes in dengue pathogenesis.

  17. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.

    PubMed Central

    Mackic, J B; Stins, M; McComb, J G; Calero, M; Ghiso, J; Kim, K S; Yan, S D; Stern, D; Schmidt, A M; Frangione, B; Zlokovic, B V

    1998-01-01

    A soluble monomeric form of Alzheimer's amyloid-beta (1-40) peptide (sAbeta1-40) is present in the circulation and could contribute to neurotoxicity if it crosses the brain capillary endothelium, which comprises the blood-brain barrier (BBB) in vivo. This study characterizes endothelial binding and transcytosis of a synthetic peptide homologous to human sAbeta1-40 using an in vitro model of human BBB. 125I-sAbeta1-40 binding to the brain microvascular endothelial cell monolayer was time dependent, polarized to the apical side, and saturable with high- and low-affinity dissociation constants of 7.8+/-1.2 and 52.8+/-6.2 nM, respectively. Binding of 125I-sAbeta1-40 was inhibited by anti-RAGE (receptor for advanced glycation end products) antibody (63%) and by acetylated low density lipoproteins (33%). Consistent with these data, transfected cultured cells overexpressing RAGE or macrophage scavenger receptor (SR), type A, displayed binding and internalization of 125I-sAbeta1-40. The internalized peptide remains intact > 94%. Transcytosis of 125I-sAbeta1-40 was time and temperature dependent, asymmetrical from the apical to basolateral side, saturable with a Michaelis constant of 45+/-9 nM, and partially sensitive to RAGE blockade (36%) but not to SR blockade. We conclude that RAGE and SR mediate binding of sAbeta1-40 at the apical side of human BBB, and that RAGE is also involved in sAbeta1-40 transcytosis. PMID:9710442

  18. p130Cas Scaffolds the Signalosome To Direct Adaptor-Effector Cross Talk during Kaposi's Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells

    PubMed Central

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules

  19. Aryl hydrocarbon Receptor is Necessary to Protect Fetal Human Pulmonary Microvascular Endothelial Cells against Hyperoxic Injury: Mechanistic Roles of Antioxidant Enzymes and RelB

    PubMed Central

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly (ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. PMID:25831079

  20. Photodynamic efficacy of liposome-delivered hypocrellin B in microvascular endothelial cells in vitro and chicken combs in vivo: a potential photosensitizer for port wine stain

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Yang, Z. F.; Zou, X. B.; Zhu, J. G.; Deng, H.; Zhao, J. Q.; Gu, Y.

    2013-02-01

    Photodynamic therapy (PDT) has been proved a successful method for port wine stain (PWS), but the prolonged skin photosensitivity induced by the photosensitizers used currently seriously limits the clinical application of PDT. In this study, we investigate the feasibility of hypocrellin B (HB), a promising second-generation photosensitizer for the treatment of PWS. The photodynamic effect of liposome-delivered HB was evaluated in vitro with microvascular endothelial cells (MEC) and in vivo with chicken combs. The dark cytotoxicity and photocytotoxicity of liposomal HB in MEC were evaluated using the MTT assay. Gross and histological examinations were performed to investigate the selective occlusion of the superficial dermal microvasculature in the chicken comb. The result showed that photocytotoxicity of liposomal HB was dependent on both light dose and drug concentration. PDT with HB (0.5-1 mg kg-1) and a light dose of 120 J cm-2 showed selective destruction of the superficial dermal microvasculature of the chicken comb, leaving the overlying epidermis intact. This is the first study to investigate the potential efficacy of HB-PDT as a novel modality for the treatment of PWS. These findings suggest that liposomal HB is a safe and effective photosensitizer for PWS.

  1. Post-mortem culture of Balamuthia mandrillaris from the brain and cerebrospinal fluid of a case of granulomatous amoebic meningoencephalitis, using human brain microvascular endothelial cells.

    PubMed

    Jayasekera, Samantha; Sissons, James; Tucker, Julie; Rogers, Claire; Nolder, Debbie; Warhurst, David; Alsam, Selwa; White, Jonathan M L; Higgins, E M; Khan, Naveed Ahmed

    2004-10-01

    The first isolation in the UK of Balamuthia mandrillaris amoebae from a fatal case of granulomatous amoebic meningoencephalitis is reported. Using primary cultures of human brain microvascular endothelial cells (HBMECs), amoebae were isolated from the brain and cerebrospinal fluid (CSF). The cultures showed a cytopathic effect at 20-28 days, but morphologically identifiable B. mandrillaris amoebae were seen in cleared plaques in subcultures at 45 days. The identification of the organism was later confirmed using PCR on Chelex-treated extracts. Serum taken while the patient was still alive reacted strongly with slide antigen prepared from cultures of the post-mortem isolate, and also with those from a baboon B. mandrillaris strain at 1:10,000 in indirect immunofluorescence, but with Acanthamoeba castellanii (Neff) at 1:160, supporting B. mandrillaris to be the causative agent. If the presence of amoebae in the post-mortem CSF reflects the condition in life, PCR studies on CSF and on biopsies of cutaneous lesions may also be a valuable tool. The role of HBMECs in understanding the interactions of B. mandrillaris with the blood-brain barrier is discussed.

  2. Nitric oxide from brain microvascular endothelial cells may initiate the compensatory response to mild hypoxia of astrocytes in a hypoxia-inducible factor-1α dependent manner

    PubMed Central

    Shi, Qinghai; Liu, Xin; Wang, Ning; Zheng, Xinchuan; Fu, Jianfeng; Zheng, Jiang

    2016-01-01

    The physiological level of nitric oxide (NO) released by brain microvascular endothelial cells (BMECs) at normoxia can block the degradation of hypoxia-inducible factor-1α (HIF-1α) in astrocytes and initiate the compensatory response to hypoxia. However, it is unclear whether this occurs at mild hypoxia. This study was to investigate the expression of HIF-1α, VEGF and LDHA and the lactic acid production in astrocytes with or without co-culture with BMECs after mild hypoxia exposure. During mild hypoxia (5% O2), exogenous NO blocked the degradation of HIF-1α in astrocytes but up-regulated the transcription of VEGF and LDHA, accompanied by elevated expression of VEGF protein and increased production of lactic acid. This was further confirmed by silencing of HIF-1α expression in astrocytes. In astrocytes co-cultured with primary rat BMEC under mild hypoxia, NO was released by the BMECs and prevented the degradation of HIF-1α in astrocytes, leading to the up-regulated mRNA expression of VEGF and LDHA, elevated VEGF protein expression and increased production of lactic acid. In BMECs, NO was derived from intracellular eNOS. Based on these findings, we hypothesize that, under mild hypoxia, even though astrocytes do not respond to hypoxia, NO produced by BMECs may transmit a hypoxia signal to astrocytes, triggering their adaptive response via HIF-1α. PMID:27904676

  3. LDL-Lipids from patients with hypercholesterolaemia and Alzheimer’s disease are inflammatory to microvascular endothelial cells: Mitigation by statin intervention

    PubMed Central

    Dias, H. K. I.; Brown, C. L. R.; Polidori, M. C.; Lip, G.Y.H.

    2016-01-01

    Elevated LDL concentration in mid-life increases the risk of developing Alzheimer’s disease (AD) in later life. Increased oxidative modification (oxLDL) and nitration is observed during dementia and hypercholesterolemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVEC) were maintained on transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naïve, normo- and hyperlipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40mg simvastatin intervention/day for three months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after three months. LDL isolated from statin-naïve hyperlipidaemic, AD and AD-plus subjects was more oxidised (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared to control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 Vs 3.95±0.2nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml Vs 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7nmol/mg protein) compared to untreated cells (23.8±1.2 vs nmol/mg protein). Basolateral IL-6 secretion was increased by LDL-lipids from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared to healthy subject lipids (18.6±3.6 pg/ml). LDL-Lipids isolated after statin intervention did not affect endothelial function. In summary, LDL-lipids from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVEC. In vivo intervention with statins reduces the damaging effects of LDL-lipids on HMVEC. PMID

  4. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    SciTech Connect

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  5. Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention.

    PubMed

    Porto, Italo; De Maria, Giovanni Luigi; Leone, Antonio Maria; Dato, Ilaria; D'Amario, Domenico; Burzotta, Francesco; Niccoli, Giampaolo; Trani, Carlo; Biasucci, Luigi Marzio; Bolognese, Leonardo; Crea, Filippo

    2013-09-15

    Endothelial progenitor cells (EPCs) are released from the bone marrow during cardiac ischemic events, potentially influencing vascular and myocardial repair. We assessed the clinical and angiographic correlates of EPC mobilization at the time of primary percutaneous coronary intervention in 78 patients with ST elevation myocardial infarction and the impact of both baseline and follow-up EPC levels on left ventricular (LV) remodeling. Blood samples were drawn from the aorta and the culprit coronary artery for cytofluorimetric EPC detection (CD34+CD45dimKDR+ cells, in percentage of cytofluorimetric counts). Area at risk was assessed by Bypass Angioplasty Revascularization Investigation myocardial jeopardy index, thrombotic burden as thrombus score and microvascular obstruction (MVO) as a combination of ST segment resolution and myocardial blush grade. Echocardiographic evaluation of LV remodeling was performed at 1-year follow-up in 54 patients, whereas peripheral EPC levels were reassessed in 40 patients. EPC levels during primary percutaneous coronary intervention were significantly higher in intracoronary than in aortic blood (0.043% vs 0.0006%, p <0.001). Both intracoronary and aortic EPC were related to area at risk extent, to intracoronary thrombus score (p <0.001), and inversely to MVO (p = 0.001). Peripheral EPC levels at 1-year follow-up were lower in patients with LV remodeling than in those without (0.001% [0.001 to 0.002] vs 0.003% [0.002 to 0.010]; p = 0.01) and independently predicted absence of remodeling at multivariate analysis. In conclusion, a rapid intracoronary EPC recruitment takes place in the early phases of ST elevation myocardial infarction, possibly reflecting an attempted reparative response. The extent of this mobilization seems to be correlated to the area at risk and to the amount of MVO. Persistently low levels of EPC are associated to LV remodeling.

  6. Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx

    PubMed Central

    Salmon, Andrew H.J.; Neal, Christopher R.; Sage, Leslie M.; Glass, Catherine A.; Harper, Steven J.; Bates, David O.

    2009-01-01

    Aims In this study, we wished to determine whether angiopoietin-1 (Ang1) modified the permeability coefficients of non-inflamed, intact continuous, and fenestrated microvessels in vivo and to elucidate the underlying cellular mechanisms. Methods and results Permeability coefficients were measured using the Landis–Michel technique (in frog and rat mesenteric microvessels) and an oncopressive permeability technique (in glomeruli). Ang1 decreased water permeability (LP: hydraulic conductivity) in continuous and fenestrated microvessels and increased the retention of albumin (σ: reflection coefficient) in continuous microvessels. Endothelial glycocalyx is common to these anatomically distinct microvascular beds, and contributes to the magnitude of both LP and σ. Ang1 treatment increased the depth of endothelial glycocalyx in intact microvessels and increased the content of glycosaminoglycan of cultured microvascular endothelial cell supernatant. Ang1 also prevented the pronase-induced increase in LP (attributable to selective removal of endothelial glycocalyx by pronase) by restoration of glycocalyx at the endothelial cell surface. The reduction in permeability was inhibited by a cell transport inhibitor, Brefeldin. Conclusion Ang1 modifies basal microvessel permeability coefficients, in keeping with previous reports demonstrating reduced solute flux in inflamed vessels. Anatomical, biochemical, and physiological evidence indicates that modification of endothelial glycocalyx is a novel mechanism of action of Ang1 that contributes to these effects. PMID:19297368

  7. Brain Invasion by Mouse Hepatitis Virus Depends on Impairment of Tight Junctions and Beta Interferon Production in Brain Microvascular Endothelial Cells

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) have shown neuroinvasive properties in humans and animals secondary to replication in peripheral organs, but the mechanism of neuroinvasion is unknown. The major aim of our work was to evaluate the ability of CoVs to enter the central nervous system (CNS) through the blood-brain barrier (BBB). Using the highly hepatotropic mouse hepatitis virus type 3 (MHV3), its attenuated variant, 51.6-MHV3, which shows low tropism for endothelial cells, and the weakly hepatotropic MHV-A59 strain from the murine coronavirus group, we investigated the virus-induced dysfunctions of BBB in vivo and in brain microvascular endothelial cells (BMECs) in vitro. We report here a MHV strain-specific ability to cross the BBB during acute infection according to their virulence for liver. Brain invasion was observed only in MHV3-infected mice and correlated with enhanced BBB permeability associated with decreased expression of zona occludens protein 1 (ZO-1), VE-cadherin, and occludin, but not claudin-5, in the brain or in cultured BMECs. BBB breakdown in MHV3 infection was not related to production of barrier-dysregulating inflammatory cytokines or chemokines by infected BMECs but rather to a downregulation of barrier protective beta interferon (IFN-β) production. Our findings highlight the importance of IFN-β production by infected BMECs in preserving BBB function and preventing access of blood-borne infectious viruses to the brain. IMPORTANCE Coronaviruses (CoVs) infect several mammals, including humans, and are associated with respiratory, gastrointestinal, and/or neurological diseases. There is some evidence that suggest that human respiratory CoVs may show neuroinvasive properties. Indeed, the severe acute respiratory syndrome coronavirus (SARS-CoV), causing severe acute respiratory syndrome, and the CoVs OC43 and 229E were found in the brains of SARS patients and multiple sclerosis patients, respectively. These findings suggest that hematogenously spread

  8. Involvement of ROCK-mediated endothelial tension development in neutrophil-stimulated microvascular leakage

    PubMed Central

    Breslin, Jerome W.; Sun, Hengrui; Xu, Wenjuan; Rodarte, Charles; Moy, Alan B.; Wu, Mack H.; Yuan, Sarah Y.

    2009-01-01

    Neutrophil-induced coronary microvascular barrier dysfunction is an important pathophysiological event in heart disease. Currently, the precise cellular and molecular mechanisms of neutrophil-induced microvascular leakage are not clear. The aim of this study was to test the hypothesis that rho kinase (ROCK) increases coronary venular permeability in association with elevated endothelial tension. We assessed permeability to albumin (Pa) in isolated porcine coronary venules and in coronary venular endothelial cell (CVEC) monolayers. Endothelial barrier function was also evaluated by measuring transendothelial electrical resistance (TER) of CVEC monolayers. In parallel, we measured isometric tension of CVECs grown on collagen gels. Transference of constitutively active (ca)-ROCK protein into isolated coronary venules or CVEC monolayers caused a significant increase in Pa and decreased TER in CVECs. The ROCK inhibitor Y-27632 blocked the ca-ROCK-induced changes. C5a-activated neutrophils (106/ml) also significantly elevated venular Pa, which was dose-dependently inhibited by Y-27632 and a structurally distinct ROCK inhibitor, H-1152. In CVEC monolayers, activated neutrophils increased permeability with a concomitant elevation in isometric tension, both of which were inhibited by Y-27632 or H-1152. Treatment with ca-ROCK also significantly increased CVEC monolayer permeability and isometric tension, coupled with actin polymerization and elevated phosphorylation of myosin regulatory light chain on Thr18/Ser19. The data suggest that during neutrophil activation, ROCK promotes microvascular leakage in association with actin-myosin-mediated tension development in endothelial cells. PMID:16172166

  9. N-n-butyl Haloperidol Iodide Protects against Hypoxia/Reoxygenation Injury in Cardiac Microvascular Endothelial Cells by Regulating the ROS/MAPK/Egr-1 Pathway.

    PubMed

    Lu, Shishi; Zhang, Yanmei; Zhong, Shuping; Gao, Fenfei; Chen, Yicun; Li, Weiqiu; Zheng, Fuchun; Shi, Ganggang

    2016-01-01

    Endothelium dysfunction induced by reactive oxygen species (ROS) is an important initial event at the onset of myocardial ischemia/reperfusion in which the Egr-1 transcription factor often serves as a master switch for various damage pathways following reperfusion injury. We hypothesized that an intracellular ROS/MAPK/Egr-1 signaling pathway is activated in cardiac microvascular endothelial cells (CMECs) following hypoxia/reoxygenation (H/R). ROS generation, by either H/R or the ROS donor xanthine oxidase-hypoxanthine (XO/HX) activated all three MAPKs (ERK1/2, JNK, p38), and induced Egr-1 expression and Egr-1 DNA-binding activity in CMECs, whereas ROS scavengers (EDA and NAC) had the opposite effect following H/R. Inhibitors of all three MAPKs individually inhibited induction of Egr-1 expression by H/R in CMECs. Moreover, N-n-butyl haloperidol (F2), previously shown to protect cardiomyocytes subjected to I/R, dose-dependently downregulated H/R-induced ROS generation, MAPK activation, and Egr-1 expression and activity in CMECs, whereas XO/HX and MAPK activators (EGF, anisomycin) antagonized the effects of F2. Inhibition of the ROS/MAPK/Egr-1 signaling pathway, by either F2, NAC, or inhibition of MAPK, increased CMEC viability and the GSH/GSSG ratio, and decreased Egr-1 nuclear translocation. These results show that the ROS/MAPK/Egr-1 signaling pathway mediates H/R injury in CMECs, and F2 blocks this pathway to protect against H/R injury and further alleviate myocardial I/R injury.

  10. Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells.

    PubMed

    Zhou, Yan; Tao, Jing; Yu, Hao; Ni, Jinjing; Zeng, Lingbing; Teng, Qihui; Kim, Kwang Sik; Zhao, Guo-Ping; Guo, Xiaokui; Yao, Yufeng

    2012-03-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several gram-negative bacteria. Based on sequence analysis, we found that a cluster of Escherichia coli virulence factors (EVF) encoding a putative T6SS exists in the genome of the meningitis-causing E. coli K1 strain RS218. The T6SS-associated deletion mutants exhibited significant defects in binding to and invasion of human brain microvascular endothelial cells (HBMEC) compared with the parent strain. Hcp family proteins (the hallmark of T6SS), including Hcp1 and Hcp2, were localized in the bacterial outer membrane, but the involvements of Hcp1 and Hcp2 have been shown to differ in E. coli-HBMEC interaction. The deletion mutant of hcp2 showed defects in the bacterial binding to and invasion of HBMEC, while Hcp1 was secreted in a T6SS-dependent manner and induced actin cytoskeleton rearrangement, apoptosis, and the release of interleukin-6 (IL-6) and IL-8 in HBMEC. These findings demonstrate that the T6SS is functional in E. coli K1, and two Hcp family proteins participate in different steps of E. coli interaction with HBMEC in a coordinate manner, e.g., binding to and invasion of HBMEC, the cytokine and chemokine release followed by cytoskeleton rearrangement, and apoptosis in HBMEC. This is the first demonstration of the role of T6SS in meningitis-causing E. coli K1, and T6SS-associated Hcp family proteins are likely to contribute to the pathogenesis of E. coli meningitis.

  11. N-n-butyl Haloperidol Iodide Protects against Hypoxia/Reoxygenation Injury in Cardiac Microvascular Endothelial Cells by Regulating the ROS/MAPK/Egr-1 Pathway

    PubMed Central

    Lu, Shishi; Zhang, Yanmei; Zhong, Shuping; Gao, Fenfei; Chen, Yicun; Li, Weiqiu; Zheng, Fuchun; Shi, Ganggang

    2017-01-01

    Endothelium dysfunction induced by reactive oxygen species (ROS) is an important initial event at the onset of myocardial ischemia/reperfusion in which the Egr-1 transcription factor often serves as a master switch for various damage pathways following reperfusion injury. We hypothesized that an intracellular ROS/MAPK/Egr-1 signaling pathway is activated in cardiac microvascular endothelial cells (CMECs) following hypoxia/reoxygenation (H/R). ROS generation, by either H/R or the ROS donor xanthine oxidase-hypoxanthine (XO/HX) activated all three MAPKs (ERK1/2, JNK, p38), and induced Egr-1 expression and Egr-1 DNA-binding activity in CMECs, whereas ROS scavengers (EDA and NAC) had the opposite effect following H/R. Inhibitors of all three MAPKs individually inhibited induction of Egr-1 expression by H/R in CMECs. Moreover, N-n-butyl haloperidol (F2), previously shown to protect cardiomyocytes subjected to I/R, dose-dependently downregulated H/R-induced ROS generation, MAPK activation, and Egr-1 expression and activity in CMECs, whereas XO/HX and MAPK activators (EGF, anisomycin) antagonized the effects of F2. Inhibition of the ROS/MAPK/Egr-1 signaling pathway, by either F2, NAC, or inhibition of MAPK, increased CMEC viability and the GSH/GSSG ratio, and decreased Egr-1 nuclear translocation. These results show that the ROS/MAPK/Egr-1 signaling pathway mediates H/R injury in CMECs, and F2 blocks this pathway to protect against H/R injury and further alleviate myocardial I/R injury. PMID:28111550

  12. Statins suppress glucose-induced plasminogen activator inhibitor-1 expression by regulating RhoA and nuclear factor-κB activities in cardiac microvascular endothelial cells.

    PubMed

    Ni, Xiao-Qing; Zhu, Jian-Hua; Yao, Ning-Hua; Qian, Juan; Yang, Xiang-Jun

    2013-01-01

    The aim of this study was to investigate the possible proinflammatory signaling pathways involved in statin inhibition of glucose-induced plasminogen activator inhibitor-1 (PAI-1) expression in cardiac microvascular endothelial cells (CMECs). Primary rat CMECs were grown in the presence of 5.7 or 23 mmol/L glucose. PAI-1 mRNA and protein expression levels were measured by realtime polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay, respectively. A pull-down assay was performed to determine RhoA activity. IκBα protein expression was measured by Western blotting, nuclear factor (NF)-κB activation was detected by electrophoretic mobility shift assay and its transcription activity was determined by a dual luciferase reporter gene assay. PAI-1 mRNA and protein expression levels were both increased with high glucose concentrations, but they were significantly suppressed by simvastatin and atorvastatin treatment (P < 0.01) and the effects were reversed by mevalonate (100 μmol/L) and geranylgeranyl pyrophosphate (10 μmol/L) but not farnesyl pyrophosphate (10 μmol/L). Such effects were similar to those of a RhoA inhibitor, C3 exoenzyme (5 μg/mL), inhibitors of RhoA kinase (ROCK), Y-27632 (10 μmol/L) and hydroxyfasudil (10 μmol/L) and an NF-κB inhibitor, BAY 11-7082 (5 μmol/L). High glucose-induced RhoA and NF-κB activations in CMECs were both significantly inhibited by statins (P < 0.01). Simvastatin and atorvastatin equally suppress high glucose-induced PAI-1 expression. These effects of statins may occur partly by regulating the RhoA/ROCK-NF-κB pathway. The multifunctional roles of statins may be particularly beneficial for patients with metabolic syndrome.

  13. Qi-Shen-Yi-Qi Dripping Pills Promote Angiogenesis of Ischemic Cardiac Microvascular Endothelial Cells by Regulating MicroRNA-223-3p Expression

    PubMed Central

    Dai, Guo-Hua; Liu, Ning; Zhu, Jing-Wei; Yao, Jing; Yang, Chun; Ma, Pei-Ze; Song, Xian-Bo

    2016-01-01

    Traditional Chinese medicine (TCM) research shows that Qi-Shen-Yi-Qi Dripping Pills (QSYQ) can promote ischemic cardiac angiogenesis. Studies have shown that microRNAs (miRNAs) are the key component of gene regulation networks, which play a vital role in angiogenesis and cardiovascular disease. Mechanisms involving miRNA by which TCM promotes ischemic cardiac angiogenesis have not been reported. We found that microRNA-223-3p (mir-223-3p) was the core miRNA of angiogenesis of rats ischemic cardiac microvascular endothelial cells (CMECs) and inhibited angiogenesis by affecting RPS6KB1/HIF-1α signal pathway in previous study. Based on the results, we observed biological characteristics and optimal dosage for QSYQ intervening in rats ischemic CMECs angiogenesis and concluded that QSYQ low-dose group had the strongest ability to promote angiogenesis of ischemic myocardium. Using miRNA chip and real-time PCR techniques in this study, we identified mir-223-3p as the pivotal miRNA in QSYQ that regulated angiogenesis of ischemic CMECs. From real-time PCR and western blot analysis, research showed that gene and protein expression of factors located RPS6KB1/HIF-1α signaling pathway, including HIF-1α, VEGF, MAPK, PI3K, and AKT, were significantly upregulated by QSYQ to regulate angiogenesis of ischemic CMECs. This study showed that QSYQ promote ischemic cardiac angiogenesis by downregulating mir-223-3p expression in rats ischemic CMECs. PMID:27057198

  14. The Interaction between Circulating Complement Proteins and Cutaneous Microvascular Endothelial Cells in the Development of Childhood Henoch-Schönlein Purpura

    PubMed Central

    Yang, Yao-Hsu; Tsai, I-Jung; Chang, Chun-Jung; Chuang, Ya-Hui; Hsu, Hui-Yao; Chiang, Bor-Luen

    2015-01-01

    Objective In addition to IgA, the deposition of complement (C)3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP). The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP. Methods Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA). The expression of C3a receptor (C3aR), C5a receptor (CD88), E-selectin, intercellular adhesion molecule 1 (ICAM-1), C3, C5, interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d) was evaluated either by flow cytometry or by ELISA. Results At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001), C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001), and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001), but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner. Conclusion In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels. PMID:25760949

  15. Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction

    PubMed Central

    Darwish, Ilyse; Liles, W Conrad

    2013-01-01

    Recent evidence suggests that loss of endothelial barrier function and resulting microvascular leak play important mechanistic roles in the pathogenesis of infection-related end-organ dysfunction and failure. Several distinct therapeutic strategies, designed to prevent or limit infection-related microvascular endothelial activation and permeability, thereby mitigating end-organ injury/dysfunction, have recently been investigated in pre-clinical models. In this review, these potential therapeutic strategies, namely, VEGFR2/Src antagonists, sphingosine-1-phosphate agonists, fibrinopeptide Bβ15–42, slit2N, secinH3, angiopoietin-1/tie-2 agonists, angiopoietin-2 antagonists, statins, atrial natriuretic peptide, and mesenchymal stromal (stem) cells, are discussed in terms of their translational potential for the management of clinical infectious diseases. PMID:23863603

  16. Methodological issues in the assessment of skin microvascular endothelial function in humans.

    PubMed

    Cracowski, Jean-Luc; Minson, Christopher T; Salvat-Melis, Muriel; Halliwill, John R

    2006-09-01

    The study of microvascular function can be performed in humans using laser Doppler flowmetry of the skin. This technology lends itself to a wide range of applications for studying the endothelial function of skin blood vessels. We review the advantages and limitations of postocclusive hyperemia, local thermal hyperemia, acetylcholine iontophoresis, flowmotion and association with microdialysis as tools with which to investigate skin microvascular endothelial function in humans. Postocclusive hyperemia, thermal hyperemia and acetylcholine iontophoresis provide integrated indexes of microvascular function rather than specific endothelial markers. However, they are valuable tools and can be used as surrogate endpoints in clinical trials in which the assessment of microvascular function in humans is required.

  17. Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2.

    PubMed

    Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N.  Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells.

  18. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    PubMed

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  19. Transcellular targeting of fiber- and hexon-modified adenovirus vectors across the brain microvascular endothelial cells in vitro.

    PubMed

    Laakkonen, Johanna P; Engler, Tatjana; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Olivier; Kreppel, Florian; Kochanek, Stefan

    2012-01-01

    In central nervous system (CNS)-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular delivery of targeted adenovirus (Ad) vectors across the blood-brain barrier (BBB) in vitro models. As a proof-of-principle ligand, maleimide-activated full-length human transferrin (hTf) was covalently attached to cysteine-modified Ad serotype 5 vectors either to its fiber or hexon protein. In transcytosis experiments, hTf-coupled vectors were shown to be redirected across the BBB models, the transcytosis activity of the vectors being dependent on the location of the capsid modification and the in vitro model used. The transduction efficiency of hTf-targeted vectors decreased significantly in confluent, polarized cells, indicating that the intracellular route of the vectors differed between unpolarized and polarized cells. After transcellular delivery the majority of the hTf-modified vectors remained intact and partly capable of gene transfer. Altogether, our results demonstrate that i) covalent attachment of a ligand to Ad capsid can mediate transcellular targeting across the cerebral endothelium in vitro, ii) the attachment site of the ligand influences its transcytosis efficiency and iii) combined genetic/chemical modification of Ad vector can be used as a versatile platform for the development of Ad vectors for transcellular targeting.

  20. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    PubMed

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  1. Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains.

    PubMed

    Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra

    2014-03-01

    Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.

  2. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications

    PubMed Central

    Fortunato, Tiago M.; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A.; Pula, Giordano

    2016-01-01

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs. PMID:27141997

  3. Association of Microvascular Function and Endothelial Biomarkers With Clinical Outcome in Dengue: An Observational Study

    PubMed Central

    Yacoub, Sophie; Lam, Phung Khanh; Vu, Le Hoang Mai; Le, Thi Lien; Ha, Ngo Thanh; Toan, Tran Thi; Van, Nguyen Thu; Quyen, Nguyen Than Ha; Le Duyen, Huynh Thi; Van Kinh, Nguyen; Fox, Annette; Mongkolspaya, Juthathip; Wolbers, Marcel; Simmons, Cameron Paul; Screaton, Gavin Robert; Wertheim, Heiman; Wills, Bridget

    2016-01-01

    Background. The hallmark of severe dengue is increased microvascular permeability, but alterations in the microcirculation and their evolution over the course of dengue are unknown. Methods. We conducted a prospective observational study to evaluate the sublingual microcirculation using side-stream dark-field imaging in patients presenting early (<72 hours after fever onset) and patients hospitalized with warning signs or severe dengue in Vietnam. Clinical findings, microvascular function, global hemodynamics assessed with echocardiography, and serological markers of endothelial activation were determined at 4 time points. Results. A total of 165 patients were enrolled. No difference was found between the microcirculatory parameters comparing dengue with other febrile illnesses. The proportion of perfused vessels (PPV) and the mean flow index (MFI) were lower in patients with dengue with plasma than those without leakage (PPV, 88.1% vs 90.6% [P = .01]; MFI, 2.1 vs 2.4 [P = .007]), most markedly during the critical phase. PPV and MFI were correlated with the endothelial activation markers vascular cell adhesion molecule 1 (P < .001 for both) and angiopoietin 2 (P < .001 for both), negatively correlated. Conclusions. Modest microcirculatory alterations occur in dengue, are associated with plasma leakage, and are correlate with molecules of endothelial activation, angiopoietin 2 and vascular cell adhesion molecule 1. PMID:27230099

  4. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells

    PubMed Central

    Kono, Ken; Hiruma, Hitomi; Kobayashi, Shingo; Sato, Yoji; Tanaka, Masaru; Sawada, Rumi; Niimi, Shingo

    2016-01-01

    Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials. PMID:27348615

  5. A comparative study of the cell cycle status and primitive cell adhesion molecule profile of human CD34+ cells cultured in stroma-free versus porcine microvascular endothelial cell cultures.

    PubMed

    Chute, J P; Saini, A A; Kampen, R L; Wells, M R; Davis, T A

    1999-02-01

    Porcine microvascular endothelial cells (PMVECs) plus cytokines support a rapid proliferation and expansion of human CD34+CD38- cells that are capable of multilineage engraftment within the bone marrow of a secondary host. CD34+CD38- cells contain the self-renewing, long-term culture-initiating cells (LTC-IC) that are ideal targets for retroviral gene transfer experiments. Previous experiments attempting retroviral infection of CD34+CD38- cells have failed partly because these cells do not enter cell cycle in response to cytokine combinations. In this study, we determined the cell cycle status and the cell adhesion molecule profile on purified CD34+ cells and the CD34+CD38- subset before and after ex vivo expansion on PMVECs. Purified human CD34+ cells were cocultured with PMVECs for 7 days in the presence of optimal concentrations of granulocyte/macrophage-colony-stimulating factor (GM-CSF) + interleukin (IL)-3 + IL-6 + stem cell factor (SCF) + Flt-3 ligand. The total CD34+ population and the CD34+CD38- subset increased 8.4- and 67-fold, respectively, with absolute increases in the number of colony-forming unit-granulocyte macrophage (CFU-GM) (28.2-fold), CFU-Mix (8.7 fold), and burst-forming unit-erythroid (BFU-E) (4.0-fold) progenitor cells. After 7 days of coculture with PMVECs, 44% of the CD34+CD38+ subset were found to be in G1, and 51% were in G2/S/M phase of the cell cycle. More remarkably, 53% of the CD34+CD38- subset were in G1, and 17% were in G2/S/M phase after 7 days of PMVEC coculture. In contrast, only 22% of the CD34+CD38- subset remaining after 7 days of stroma-free culture were in G1, and 6% were in G2/S/M phase. Despite the high level of cellular activation and proliferation induced by PMVEC coculture, the surface expression of adhesion molecules CD11a (LFA-1), CD11b, CD15s (sialyl-Lewis x), CD43, and CD44 (HCAM) on the total CD34+ population was maintained, and the surface expression of CD49d (VLA-4), CD54 (ICAM), CD58, and CD62L (L selectin

  6. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    SciTech Connect

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  7. Salvianolic acid B improves the disruption of high glucose-mediated brain microvascular endothelial cells via the ROS/HIF-1α/VEGF and miR-200b/VEGF signaling pathways.

    PubMed

    Yang, Ming-Chao; You, Fu-Li; Wang, Zhe; Liu, Xiang-Nan; Wang, Yan-Feng

    2016-09-06

    The study investigated the roles and mechanisms of Salvianolic acid B (Sal B) on permeability of rat brain microvascular endothelial cells (RBMECs) exposed to high glucose. The results demonstrated that Sal B greatly up-regulated the expression of tight junction (TJ) proteins and decreased the permeability of RBMECs compared with the control group. And the increase of reactive oxidative species (ROS) production, the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) protein induced by high glucose were antagonized by Sal B. In addition, a great decrease of microRNA-200b (miR-200b) was observed in the RBMECs under high-glucose condition, which was significantly increased by Sal B pretreatment. And overexpression of miR-200b markedly attenuated the RBMECs permeability and inhibited the expression of VEGF protein by targeting with 3'-UTR of its mRNA. This led to the conclusion that Sal B-mediated improvement of blood-brain barrier dysfunction induced by high-glucose is related to the ROS/HIF-1α/VEGF and miR-200b/VEGF signaling pathways.

  8. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion

    PubMed Central

    Lee, Dae Hyun; Dane, Martijn J. C.; van den Berg, Bernard M.; Boels, Margien G. S.; van Teeffelen, Jurgen W.; de Mutsert, Renée; den Heijer, Martin; Rosendaal, Frits R.; van der Vlag, Johan; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion. PMID:24816787

  9. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  10. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    PubMed

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases.

  11. Calyculin A Reveals Serine/Threonine Phosphatase Protein Phosphatase 1 as a Regulatory Nodal Point in Canonical Signal Transducer and Activator of Transcription 3 Signaling of Human Microvascular Endothelial Cells

    PubMed Central

    Zgheib, Carlos; Zouein, Fouad A.; Chidiac, Rony; Kurdi, Mazen

    2012-01-01

    Vascular inflammation is initiated by stimuli acting on endothelial cells. A clinical feature of vascular inflammation is increased circulating interleukin 6 (IL-6) type cytokines such as leukemia inhibitory factor (LIF), but their role in vascular inflammation is not fully defined. IL-6 type cytokines activate transcription factor signal transducer and activator of transcription 3 (STAT3), which has a key role in inflammation and the innate immune response. Canonical STAT3 gene induction is due to phosphorylation of (1) Y705, leading to STAT3 dimerization and DNA binding and (2) S727, enhancing homodimerization and DNA binding by recruiting p300/CBP. We asked whether enhancing S727 STAT3 phosphorylation using the protein phosphatase 1 (PP1) inhibitor, calyculin A, would enhance LIF-induced gene expression in human microvascular endothelial cells (HMEC-1). Cotreatment with calyculin A and LIF markedly increased STAT3 S727 phosphorylation, without affecting the increase in the nuclear fraction of STAT3 phosphorylated on Y705. PP2A inhibitors, okadaic acid and fostriecin, did not enhance STAT3 S727 phosphorylation. Surprisingly, calyculin A eliminated LIF-induced gene expression: (1) calyculin A reduced binding of nuclear extracts to a STAT3 consensus site, thereby reducing the overall level of binding observed with LIF; and (2) calyculin A caused p300/CBP phosphorylation, thus resulting in reduced acetylation activity and degradation. Together, these findings reveal a pivotal role of a protein serine/threonine phosphatases that is likely PP1 in HMEC in controlling STAT3 transcriptional activity. PMID:22142222

  12. Usefulness of retinal microvascular endothelial dysfunction as a predictor of coronary artery disease.

    PubMed

    Al-Fiadh, Ali H; Wong, Tien Y; Kawasaki, Ryo; Clark, David J; Patel, Sheila K; Freeman, Melanie; Wilson, Andrew; Burrell, Louise M; Farouque, Omar

    2015-03-01

    Endothelial dysfunction is a key feature of atherosclerosis. Retinal microvascular endothelial function can be assessed using noninvasive dynamic vessel imaging techniques. Whether it is impaired in subjects with coronary artery disease (CAD) is unknown. The aim of this study was to examine the relation of retinal microvascular endothelial function with CAD. Vascular studies were performed in 197 prospectively recruited subjects divided into 2 groups: those without CAD but ≥2 cardiovascular risk factors (non-CAD controls; n = 119) and those with stable CAD (n = 78). Retinal microvascular endothelial dysfunction was assessed by measuring retinal arteriolar and venular dilatation to flicker light, a nitric oxide-dependent phenomenon, expressed as percentage increase over baseline diameter. Fingertip pulse-volume amplitude was measured to calculate reactive hyperaemia index and brachial artery flow-mediated dilatation assessed as measures of peripheral microvascular and conduit vessel endothelial function, respectively. Mean retinal arteriolar dilatation was attenuated in patients with CAD compared with non-CAD controls (1.51 ± 1.51% vs 2.37 ± 1.95%, p = 0.001). Retinal arteriolar dilatation was independently associated with CAD after adjustment for age, gender, cardiovascular risk factors, and medication use (odds ratio 1.60, 95% confidence interval 1.14 to 2.25, p = 0.007). Reactive hyperaemia index and flow-mediated dilatation were not different. In conclusion, the capacity of retinal arterioles to dilate in response to flicker light is an independent predictor of the presence of CAD and suggests that retinal microvascular endothelial dysfunction is a marker for underlying CAD.

  13. Donor antibodies to HNA-3a implicated in TRALI reactions prime neutrophils and cause PMN-mediated damage to human pulmonary microvascular endothelial cells in a two-event in vitro model.

    PubMed

    Silliman, Christopher C; Curtis, Brian R; Kopko, Patricia M; Khan, Samina Y; Kelher, Marguerite R; Schuller, Randy M; Sannoh, Baindu; Ambruso, Daniel R

    2007-02-15

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. Antibodies to HNA-3a are commonly implicated in TRALI. We hypothesized that HNA-3a antibodies prime neutrophils (PMNs) and cause PMN-mediated cytotoxicity through a two-event pathogenesis. Isolated HNA-3a+ or HNA-3a- PMNs were incubated with plasma containing HNA-3a antibodies implicated in TRALI, and their ability to prime the oxidase was measured. Human pulmonary microvascular endothelial cells (HMVECs) were activated with endotoxin or buffer, HNA-3a+ or HNA-3a- PMNs were added, and the coculture was incubated with plasma+/-antibodies to HNA-3a. PMN-mediated damage was measured by counting viable HMVECs/mm2. Plasma containing HNA-3a antibodies primed the fMLP-activated respiratory burst of HNA-3a+, but not HNA-3a-, PMNs and elicited PMN-mediated damage of LPS-activated HMVECs when HNA-3a+, but not HNA-3a-, PMNs were used. Thus, antibodies to HNA-3a primed PMNs and caused PMN-mediated HMVEC cytotoxicity in a two-event model identical to biologic response modifiers implicated in TRALI.

  14. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  15. CTC-Endothelial Cell Interactions during Metastasis

    DTIC Science & Technology

    2014-06-01

    study of CTC-Endothelial interactions, as it introduced cell aggregation in the chamber, likely because of the presence of contaminating RBCs in PBMC...interactions, as it introduced cell aggregation in the chamber, likely because of the presence of contaminating RBCs in PBMC preparations, which disturbed the...microvascular endothelium via E- selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the

  16. Effects of hyperoxia on microvascular cells in vitro

    SciTech Connect

    D'Amore, P.A.; Sweet, E.

    1987-02-01

    Microvascular cells are most vulnerable to direct oxygen damage. Using an in vitro model system we have investigated the effect of elevated oxygen on the proliferation, morphology, and integrity of microvascular endothelial cells (EC) and pericytes. Cultivation of these cells at oxygen concentrations of 40% for 1 wk resulted in the inhibition of EC proliferation but had no effect on the growth of the pericytes. Similarly, hyperoxia induced a dramatic change in the shape of the EC, increasing their spread area by close to six-fold. Under the same conditions, the spread area of the pericytes was unaffected. To understand the effect of the hyperoxic treatment on the cells, the integrity of various membrane systems was assessed. /sup 51/Cr release was used to monitor plasma membrane integrity. There was no difference in chromium release by EC and pericytes over the 7 d of growth under normoxic and hyperoxic conditions. Mitochondrial integrity was examined by staining the cells with Rhodamine 123, which is selectively accumulated by the mitochondria. The staining pattern of the mitochondria of both EC and pericytes was altered by growth in the elevated oxygen. Finally, the lysosomes were visualized using acridine orange. The acridine orange staining pattern revealed enlarged and perinuclear lysosomes in the EC but no change in the pericyte lysosomal staining pattern. Thus, the cells of the microvasculature seem to be differentially affected by hyperoxia, a fact that may be significant in the etiology of reperfusion injury, ischemic disease, and pathologies associated with prematurity.

  17. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Parameswaran, Uma; Piera, Kim A; Price, Ric N; Yeo, Tsin W; Anstey, Nicholas M

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  18. Parasite Biomass-Related Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Vivax Malaria

    PubMed Central

    Barber, Bridget E.; William, Timothy; Grigg, Matthew J.; Parameswaran, Uma; Piera, Kim A.; Price, Ric N.; Yeo, Tsin W.; Anstey, Nicholas M.

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  19. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  20. miR-146a Attenuates Inflammatory Pathways Mediated by TLR4/NF-κB and TNFα to Protect Primary Human Retinal Microvascular Endothelial Cells Grown in High Glucose

    PubMed Central

    Ye, Eun-Ah; Steinle, Jena J.

    2016-01-01

    Pathological mechanisms underlying diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. A growing body of evidence shows that microRNA (miRNA) play important roles in pathological mechanisms involved in diabetic retinopathy, as well as possessing potential as novel therapeutic targets. The hypothesis of this study was that miR-146a plays a key role in attenuating hyperglycemia-induced inflammatory pathways through reduced TLR4/NF-κB and TNFα signaling in primary human retinal microvascular endothelial cells (REC). We cultured human REC in normal (5 mM) glucose or transferred to high glucose medium (25 mM) for 3 days. Transfection was performed on REC with miRNA mimic (hsa-miR-146a-5p). Our results demonstrate that miR-146a expression was decreased in human REC cultured in high glucose. Overexpression of miR-146a using mimics reduced the levels of TLR4/NF-κB and TNFα in REC cultured in high glucose. Both MyD88-dependent and -independent signaling were decreased by miR-146a overexpression in REC in high glucose conditions. The results suggest that miR-146a is a potential therapeutic target for reducing inflammation in REC through inhibition of TLR4/NF-κB and TNFα. Our study will contribute to understanding of diabetic retinal pathology, as well as providing important clues to develop therapeutics for clinical applications. PMID:26997759

  1. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy

    PubMed Central

    Lu, Qian-Yi; Chen, Wei; Lu, Li; Zheng, Zhi; Xu, Xun

    2014-01-01

    Diabetic retinopathy (DR) is a well-known serious complication of diabetes mellitus (DM), and can eventually advance to end-stage blindness. In the early stage of DR, endothelial cell barrier disorganized primarily and tight junction (TJ) protein composition transformed subsequently. The small GTPase RhoA and its downstream effector Rho-associated coiled-coil containing protein kinase 1 (ROCK1) regulate a mass of cellular processes, including cell adherence, proliferation, permeability and apoptosis. Although RhoA inhibitors have provided substantial clinical benefit as hypertonicity therapeutics, their use is limited by complex microenvironment as DR. While ample evidence indicates that TJ can be influenced by the RhoA/ROCK1 signaling, the underlying mechanisms remain incompletely understood. Here, we have uncovered a significant signaling network involved in diabetic retinal microvascular endothelial dysfunction (RMVED). Our results indicated that the activation of RhoA/ROCK1 pathway due to high glucose played a key role in microvascular endothelial cell dysfunction (MVED) by way of directly inducing TJ proteins over-expression during DR. We demonstrated that inhibition of RhoA/ROCK1 may attenuate the hypertonicity of endothelial cell caused by high glucose microenvironment meanwhile. Besides, chemical and pharmacological inhibitors of RhoA/ROCK1 pathway may partly block inflammation due to DR. Simultaneously, the apoptosis aroused by high glucose was also prevented considerably by fasudil, a kind of pharmacological inhibitor of RhoA/ROCK1 pathway. These findings indicate that RhoA/ROCK1 signaling directly modulates MVED, suggesting a novel therapeutic target for DR. PMID:25400825

  2. Adult cutaneous hemangiomas are composed of nonreplicating endothelial cells.

    PubMed

    Tuder, R M; Young, R; Karasek, M; Bensch, K

    1987-12-01

    Thirty-four human "cherry" dermal hemangiomas were studied by electron microscopy, immunohistochemistry, and cell culture to assess the neoplastic nature of these lesions. Electron microscopy of nine hemangiomas revealed a pronounced thickening of the basement membrane (0.6 to 14 micron) in 93% of the total 158 vascular structures examined within the lesions. This increase was caused mainly by multiple layers of basal lamina, which were irregular in outline and frequently associated with pericytes. Basement membrane changes were present both in the periphery of the hemangiomas, as well as in the center of the lesions. Immature vessels could not be identified and mitoses were absent in all endothelial cells. Using an immunohistochemical marker (Ki67) specific for proliferating cells in G2 and S phases, positive staining was not found in the endothelial cells lining the hemangiomatous vessels, whereas basal epidermal keratinocytes in the same preparations and cultured microvascular endothelial cells expressed the antigen. Endothelial cells of nine hemangiomas did not stain with an activation-related antibody (E12) specific for endothelial cells. When endothelial cells from 14 hemangiomas were isolated and cultured under conditions that support the growth of normal human skin microvascular endothelial cells, the cells of hemangiomatous origin failed to grow. We conclude that the adult hemangiomas may not be true neoplasms, but a tissue overgrowth composed of mature vessels resembling dermal venules, lined by endothelial cells with virtually no turnover.

  3. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    PubMed

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  4. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  5. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  6. Human microvascular endothelial cellular interaction with atomic N-doped DLC compared with Si-doped DLC thin films.

    PubMed

    Okpalugo, T I T; Murphy, H; Ogwu, A A; Abbas, G; Ray, S C; Maguire, P D; McLaughlin, J; McCullough, R W

    2006-08-01

    This article reports results of endothelial cell interaction with atom beam source N-doped a-C:H (diamond-like carbon, DLC) as it compares with that of Si-doped DLC thin films. The RF plasma source exhibits up to 40% N-dissociation and N-atomic fluxes of approximately 0.85 x 10(18) atoms/s, which ensures better atomic nitrogen incorporation. Two different types of nitrogen species (with and without the use of sweep plates to remove charged ions) were employed for nitrogen doping. The number of attached endothelial cells is highest on Si-DLC, followed by the N-DLC (where the sweep plates were used to remove ions), the N-DLC (without the use of sweep plates), undoped DLC, and finally the uncoated sample. The contact angle values for these films suggest that water contact angle is higher in the atomic nitrogen neutral films and Si-DLC films compared to the ionized-nitrogen specie doped films and undoped DLC thin films, suggesting that the more hydrophobic films, semiconducting films, and film with relieved stress have better interaction with human microvascular endothelial cells. It seems evident that N-doping increases the Raman I(D)/I(G) ratios, whereas N-neutral doping decreases it slightly and Si-doping decreases it even further. In this study, lower Raman I(D)/I(G) ratios are associated with increased sp(3)/sp(2) ratio, an increased H concentration, photoluminescence intensity, and a higher endothelial cellular adhesion. These investigations could be relevant to biocompatibility assessment of nanostructured biomaterials and tissue engineering.

  7. Pitfalls in assessing microvascular endothelial barrier function: impedance-based devices versus the classic macromolecular tracer assay

    PubMed Central

    Bischoff, Iris; Hornburger, Michael C.; Mayer, Bettina A.; Beyerle, Andrea; Wegener, Joachim; Fürst, Robert

    2016-01-01

    The most frequently used parameters to describe the barrier properties of endothelial cells (ECs) in vitro are (i) the macromolecular permeability, indicating the flux of a macromolecular tracer across the endothelium, and (ii) electrical impedance of ECs grown on gold-film electrodes reporting on the cell layer’s tightness for ion flow. Due to the experimental differences between these approaches, inconsistent observations have been described. Here, we present the first direct comparison of these assays applied to one single cell type (human microvascular ECs) under the same experimental conditions. The impact of different pharmacological tools (histamine, forskolin, Y-27632, blebbistatin, TRAP) on endothelial barrier function was analyzed by Transwell® tracer assays and two commercial impedance devices (xCELLigence®, ECIS®). The two impedance techniques provided very similar results for all compounds, whereas macromolecular permeability readings were found to be partly inconsistent with impedance. Possible reasons for these discrepancies are discussed. We conclude that the complementary combination of both approaches is highly recommended to overcome the restrictions of each assay. Since the nature of the growth support may contribute to the observed differences, structure-function relationships should be based on cells that are consistently grown on either permeable or impermeable growth supports in all experiments. PMID:27025965

  8. AM966, an Antagonist of Lysophosphatidic Acid Receptor 1, Increases Lung Microvascular Endothelial Permeability through Activation of Rho Signaling Pathway and Phosphorylation of VE-Cadherin

    PubMed Central

    Cai, Junting; Suber, Tomeka

    2017-01-01

    Maintenance of pulmonary endothelial barrier integrity is important for reducing severity of lung injury. Lysophosphatidic acid (LPA) regulates cell motility, cytoskeletal rearrangement, and cell growth. Knockdown of LPA receptor 1 (LPA1) has been shown to mitigate lung injury and pulmonary fibrosis. AM966, an LPA1 antagonist exhibiting an antifibrotic property, has been considered to be a future antifibrotic medicine. Here, we report an unexpected effect of AM966, which increases lung endothelial barrier permeability. An electric cell-substrate sensing (ECIS) system was used to measure permeability in human lung microvascular endothelial cells (HLMVECs). AM966 decreased the transendothelial electrical resistance (TEER) value immediately in a dose-dependent manner. VE-cadherin and f-actin double immunostaining reveals that AM966 increases stress fibers and gap formation between endothelial cells. AM966 induced phosphorylation of myosin light chain (MLC) through activation of RhoA/Rho kinase pathway. Unlike LPA treatment, AM966 had no effect on phosphorylation of extracellular signal-regulated kinases (Erk). Further, in LPA1 silencing cells, we observed that AM966-increased lung endothelial permeability as well as phosphorylation of VE-cadherin and focal adhesion kinase (FAK) were attenuated. This study reveals that AM966 induces lung endothelial barrier dysfunction, which is regulated by LPA1-mediated activation of RhoA/MLC and phosphorylation of VE-cadherin. PMID:28348461

  9. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome: influence of arterial hypertension.

    PubMed

    Prázný, M; Jezková, J; Horová, E; Lazárová, V; Hána, V; Kvasnicka, J; Pecen, L; Marek, J; Skrha, J; Krsek, M

    2008-01-01

    The aim of the study was to evaluate skin microvascular reactivity (MVR) and possible influencing factors (fibrinolysis, oxidative stress, and endothelial function) in patients with Cushing's syndrome. Twenty-nine patients with active Cushing's syndrome (ten of them also examined after a successful operation) and 16 control subjects were studied. Skin MVR was measured by laser Doppler flowmetry during post-occlusive (PORH) and thermal hyperemia (TH). Malondialdehyde and Cu,Zn-superoxide dismutase were used as markers of oxidative stress. Fibrinolysis was estimated by tissue plasminogen activator (tPA) and its inhibitor (PAI-1). N-acetyl-beta-glucosaminidase, E-selectin, P-selectin, and ICAM-1 were used as markers of endothelial function. Oxidative stress and endothelial dysfunction was present in patients with hypercortisolism, however, increased concentration of ICAM-1 was also found in patients after the operation as compared to controls (290.8+/-74.2 vs. 210.9+/-56.3 ng.ml(-1), p<0.05). Maximal perfusion was significantly lower in patients with arterial hypertension during PORH and TH (36.3+/-13.0 vs. 63.3+/-32.4 PU, p<0.01, and 90.4+/-36.6 vs. 159.2+/-95.3 PU, p<0.05, respectively) and similarly the velocity of perfusion increase during PORH and TH was lower (3.2+/-1.5 vs. 5.2+/-3.4 PU.s(-1), p<0.05, and 0.95+/-0.6 vs. 1.8+/-1.1 PU.s(-1), p<0.05, respectively). The most pronounced impairment of microvascular reactivity was present in patients with combination of arterial hypertension and diabetes mellitus.

  10. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling

    PubMed Central

    Malinovskaya, Natalia A.; Komleva, Yulia K.; Salmin, Vladimir V.; Morgun, Andrey V.; Shuvaev, Anton N.; Panina, Yulia A.; Boitsova, Elizaveta B.; Salmina, Alla B.

    2016-01-01

    Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies. PMID:27990124

  11. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  12. The Association of Serum Vascular Endothelial Growth Factor and Ferritin in Diabetic Microvascular Disease

    PubMed Central

    Guo, Li; Jiang, Fang; Tang, Yue-Ting; Si, Meng-Ya

    2014-01-01

    Abstract Background: Vascular endothelial growth factor (VEGF) is involved in the pathogenesis of diabetic microvascular disease. Most diabetes patients have higher serum levels of ferritin that may participate in diabetic vascular complications through high oxidative stress induced by iron. However, the mechanistic link between ferritin and VEGF is obscure. The study investigated the association of VEGF and ferritin in patients with diabetic microvascular disease. Patients and Methods: Sixty patients with type 2 diabetes mellitus (T2DM) and 26 healthy individuals were selected in this study. Serum ferritin, VEGF, hematological parameters, and clinical data were assessed in this cohort. The Spearman rank method was used to evaluate the associations among them. Results: Serum levels of VEGF and ferritin were significantly higher in diabetes patients compared with the controls; levels of both were elevated with development of the disease. There were positive correlations between VEGF and glucose levels and between VEGF and ferritin in diabetes groups, especially in patients with diabetic retinopathy. Positive correlations were also found between VEGF level and the parameters of age, hemoglobin, and albumin in patients with diabetes hypertension. Conclusions: Our data suggest that high ferritin levels in T2DM are closely related to the development of diabetic vascular complications through interaction with VEGF. PMID:24279470

  13. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells.

    PubMed

    Huang, Minghai; Wang, Bowen; Wan, Pengxia; Liang, Xuanwei; Wang, Xiaoran; Liu, Ying; Zhou, Qiang; Wang, Zhichong

    2015-02-01

    Knowledge of the microenvironment (niche) of stem cells is helpful for stem-cell-based regenerative medicine. In the eye, limbal epithelial stem cells (corneal epithelial stem cells) provide the self-renewal capacity of the corneal epithelium and are essential for maintaining corneal transparency and vision. Limbal epithelial stem cell deficiency results in significant visual deterioration. Successful treatment of this type of blinding disease requires studies of the limbal epithelial stem cells and their microenvironment. We investigate the function of the limbal microvascular net and the limbal stroma in the maintenace of the limbal epithelial stem cell niche in vivo and examine the regulation of limbal epithelial stem cell survival, proliferation and differentiation in vivo. We assess the temporal and spatial changes in the expression patterns of the following markers during a six-month follow-up of various rabbit limbal autograft transplantation models: vascular endothelial cell marker CD31, corneal epithelium differentiation marker K3, limbal epithelial stem-cell-associated markers P63 and ABCG2 and proliferating cell nuclear marker Ki67. Our results suggest that limbal epithelial stem cells cannot maintain their stemness or proliferation without the support of the limbal microvascular net microenvironment. Thus, both the limbal microvascular net and the limbal stroma play important roles as components of the limbal epithelial stem cell niche maintaining limbal epithelial stem cell survival and proliferation and the avoidance of differentiation. The limbal stroma constitutes the structural basis of the limbal epithelial stem cell niche and the limbal microvascular net is a requirement for this niche. These new insights should aid the eventual construction of tissue-engineered cornea for corneal blind patients in the future.

  14. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  15. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  16. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  17. Impaired endothelial function and microvascular asymmetrical dimethylarginine in angiotensin II-infused rats: effects of tempol.

    PubMed

    Wang, Dan; Luo, Zaiming; Wang, Xiaoyan; Jose, Pedro A; Falck, John R; Welch, William J; Aslam, Shakil; Teerlink, Tom; Wilcox, Christopher S

    2010-11-01

    Angiotensin (Ang) II causes endothelial dysfunction, which is associated with cardiovascular risk. We investigated the hypothesis that Ang II increases microvascular reactive oxygen species and asymmetrical dimethylarginine and switches endothelial function from vasodilator to vasoconstrictor pathways. Acetylcholine-induced endothelium-dependent responses of mesenteric resistance arterioles were assessed in a myograph and vascular NO and reactive oxygen species by fluorescent probes in groups (n=6) of male rats infused for 14 days with Ang II (200 ng/kg per minute) or given a sham infusion. Additional groups of Ang or sham-infused rats were given oral Tempol (2 mmol · L(-1)). Ang II infusion increased mean blood pressure (119±5 versus 89±7 mm Hg; P<0.005) and plasma malondialdehyde (0.57±0.02 versus 0.37±0.05 μmol · L(-1); P<0.035) and decreased maximal endothelium-dependent relaxation (18±5% versus 54±6%; P<0.005) and hyperpolarizing (19±3% versus 29±3%; P<0.05) responses and NO activity (0.9±0.1 versus 1.6±0.2 U; P<0.01) yet enhanced endothelium-dependent contraction responses (23±5% versus 5±5%; P<0.05) and reactive oxygen species production (0.82±0.05 versus 0.15±0.03 U; P<0.01). Ang II decreased the expression of dimethylarginine dimethylaminohydrolase 2 and increased asymmetrical dimethylarginine in vessels (450±50 versus 260±35 pmol/mg of protein; P<0.01) but not plasma. Tempol prevented any significant changes with Ang II. In conclusion, Ang redirected endothelial responses from relaxation to contraction, reduced vascular NO, and increased asymmetrical dimethylarginine. These effects were dependent on reactive oxygen species and could, therefore, be targeted with effective antioxidant therapy.

  18. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  19. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    SciTech Connect

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-12-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain.

  20. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on endothelial cells.

    PubMed

    Dietmann, Anelia; Millonig, Alban; Combes, Valery; Couraud, Pierre-Olivier; Kachlany, Scott C; Grau, Georges E

    2013-01-01

    Aggregatibacter actinomycetemcomitans is a human pathogen that produces leukotoxin (LtxA) as a major virulence factor. In this study the effect of LtxA on microvascular endothelial cell viability and phenotype was studied. High doses of single LtxA treatment (500 ng/ml to 5 μg/ml) significantly and irreversibly decreased cell proliferation and induced apoptosis, as assessed by tetrazolium salt and annexin V assay, respectively. Apoptosis was partially inhibited by the pan-caspase inhibitor, z-VAD-fmk. LtxA caused a cell cycle arrest in the G2/M phase after 72 h. Between 500 ng/ml and 5 μg/ml, after long- or short-term stimulation LtxA increased the expression of ICAM-1 and VCAM-1, as well as the percentages of endothelial cells expressing these adhesion molecules. Thus, A. actinomycetemcomitans LtxA has substantial pro-inflammatory effects on human brain endothelial cells by upregulation of ICAM-1 and VCAM-1. Furthermore, LtxA in higher concentration was found to decrease proliferation and induces apoptosis in microvascular endothelial cells.

  1. Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells

    PubMed Central

    Goligorsky, M.S.; Hirschi, K.

    2016-01-01

    This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review. PMID:27451101

  2. Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity.

    PubMed

    Ungvari, Zoltan; Podlutsky, Andrej; Sosnowska, Danuta; Tucsek, Zsuzsanna; Toth, Peter; Deak, Ferenc; Gautam, Tripti; Csiszar, Anna; Sonntag, William E

    2013-12-01

    Cerebromicrovascular rarefaction is believed to play a central role in cognitive impairment in patients receiving whole-brain irradiation therapy. To elucidate the mechanism underlying the deleterious effects of γ-irradiation on the cerebral microcirculation, rat primary cerebromicrovascular endothelial cells (CMVECs) were irradiated in vitro. We found that in CMVECs, γ-irradiation (2-8 Gy) elicited increased DNA damage, which was repaired less efficiently in CMVECs compared with neurons, microglia, and astrocytes. Increased genomic injury in CMVECs associated with increased apoptotic cell death. In the surviving cells, γ-irradiation promotes premature senescence (indicated by SA-β-galactosidase positivity and upregulation of p16 (INK4a) ), which was associated with impaired angiogenic capacity (decreased proliferation and tube-forming capacity). γ-Irradiated CMVECs acquired a senescence-associated secretory phenotype, characterized by upregulation of proinflammatory cytokines and chemokines (including IL-6, IL-1α, and MCP-1). Collectively, increased vulnerability of γ-irradiated CMVECs and their impaired angiogenic capacity likely contribute to cerebromicrovascular rarefaction and prevent regeneration of the microvasculature postirradiation. The acquisition of a senescence-associated secretory phenotype in irradiated CMVECs is biologically highly significant as changes in the cytokine microenvironment in the hippocampus may affect diverse biological processes relevant for normal neuronal function (including regulation of neurogenesis and the maintenance of the blood brain barrier).

  3. Endothelial colony forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury.

    PubMed

    Collett, Jason A; Mehrotra, Purvi; Crone, Allison; Shelley, W Christopher; Yoder, Mervin C; Basile, David P

    2017-02-22

    Damage to endothelial cells contributes to acute kidney injury (AKI) by leading to impaired perfusion. Endothelial colony-forming cells (ECFCs) are endothelial precursor cells with high proliferative capacity, pro-angiogenic activity, and in vivo vessel forming potential. We hypothesized that ECFCs may ameliorate the degree of AKI and/or promote repair of the renal vasculature following ischemia/reperfusion (I/R). Rat pulmonary microvascular ECs (PMVEC) with high proliferative potential were compared with pulmonary artery ECs (PAEC) with low proliferative potential in rats subjected to renal I/R. PMVEC administration reduced renal injury and hastened recovery as indicated by serum creatinine and tubular injury scores, while PAEC did not. Vehicle-treated control animals showed consistent reductions in renal medullary blood flow (MBF) within 2 hours of reperfusion, while PMVEC protected against loss in MBF as measured by laser Doppler. Interestingly, PMVEC mediated protection occurred in the absence of homing to the kidney. Conditioned medium (CM) from human cultured cord blood ECFC also conveyed beneficial effects against I/R injury and loss of MBF. Moreover, ECFC-CM significantly reduced the expression of adhesion molecules such as ICAM-1 and p-selectin, and decreased the number of differentiated lymphocytes typically recruited into the kidney following renal ischemia. Taken together, these data suggest that ECFC secrete factors that preserve renal function post ischemia, in part, by preserving microvascular function.

  4. Microvascular density and endothelial area correlate with Ki-67 proliferative index in surgically-treated pancreatic ductal adenocarcinoma patients

    PubMed Central

    AMMENDOLA, MICHELE; SACCO, ROSARIO; MARECH, ILARIA; SAMMARCO, GIUSEPPE; ZUCCALÀ, VALERIA; LUPOSELLA, MARIA; PATRUNO, ROSA; GIORDANO, MARCELLA; RUGGIERI, EUSTACHIO; ZIZZO, NICOLA; GADALETA, COSMO DAMIANO; RANIERI, GIROLAMO

    2015-01-01

    Previous experimental and clinical data have indicated that tumour cell proliferation is associated with angiogenesis; in addition, an increased microvascular density (MVD) of tumours has been associated with poor prognosis in solid and haematological malignancies. However, limited data exists regarding the association between tumour cell proliferation and angiogenesis in primary tumour tissue from pancreatic ductal adenocarcinoma (PDAC) patients; therefore, the present study aimed to investigate this association. A series of 31 PDAC patients with stage Tumour (T)2–3 Node (N)0–1 Metastasis (M)0 were recruited into the present study and subsequently underwent surgery. PDAC tissue and adjacent normal tissue (ANT), resected during surgery, were evaluated using immunohistochemistry and image analysis methods to determine MVD, endothelial area (EA) and Ki-67 expression, which is an indicator of cell proliferation rate. The results demonstrated a correlation between the above parameters with each other as well as the main clinico-pathological features of PDAC. Significant differences were identified in MVD, EA and Ki-67 proliferation index between PDAC and ANT. It was demonstrated that MVD, EA and Ki-67 proliferation index were significantly correlated with each other in tumour tissue (r=0.69–0.81; P=0.001–0.003). However, no other significant correlations were identified. These data therefore suggested that angiogenesis and cell proliferation rate were significantly increased in PDAC compared with ANT, which provides a biological basis for the potential use of novel combinations of angiogenesis inhibitors and anti-proliferative chemotherapeutic drugs in the treatment of PDAC. PMID:26622606

  5. High microvascular endothelial water permeability in mouse lung measured by a pleural surface fluorescence method.

    PubMed Central

    Carter, E P; Olveczky, B P; Matthay, M A; Verkman, A S

    1998-01-01

    Transport of water between the capillary and airspace compartments in lung encounters serial barriers: the alveolar epithelium, interstitium, and capillary endothelium. We previously reported a pleural surface fluorescence method to measure net capillary-to-airspace water transport. To measure the osmotic water permeability across the microvascular endothelial barrier in intact lung, the airspace was filled with a water-immiscible fluorocarbon. The capillaries were perfused via the pulmonary artery with solutions of specified osmolalites containing a high-molecular-weight fluorescent dextran. An increase in perfusate osmolality produced a prompt decrease in surface fluorescence due to dye dilution in the capillaries, followed by a slower return to initial fluorescence as capillary and lung interstitial osmolality equilibrate. A mathematical model was developed to determine the osmotic water permeability coefficient (Pf) of lung microvessels from the time course of pleural surface fluorescence. As predicted, the magnitude of the prompt change in surface fluorescence increased with decreased pulmonary artery perfusion rate and increased osmotic gradient size. With raffinose used to induce the osmotic gradient, Pf was 0.03 cm/s at 23 degrees C and was reduced 54% by 0.5 mM HgCl2. Temperature dependence measurements gave an Arrhenius activation energy (Ea) of 5.4 kcal/mol (12-37 degrees C). The apparent Pf induced by the smaller osmolytes mannitol and glycine was 0.021 and 0.011 cm/s (23 degrees C). Immunoblot analysis showed approximately 1.4 x 10(12) aquaporin-1 water channels/cm2 of capillary surface, which accounted quantitatively for the high Pf. These results establish a novel method for measuring osmotically driven water permeability across microvessels in intact lung. The high Pf, low Ea, and mercurial inhibition indicate the involvement of molecular water channels in water transport across the lung endothelium. PMID:9545071

  6. 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity.

    PubMed

    Pelclová, Daniela; Prázny, Martin; Skrha, Jan; Fenclová, Zdenka; Kalousová, Marta; Urban, Pavel; Navrátil, Tomás; Senholdová, Zdenka; Smerhovsky, Zdenek

    2007-09-01

    Vascular function was examined in subjects with long-term high level of serum 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) during their follow-up visits. Their earlier mean peak TCDD level at the time of exposure in 1965-1968 was estimated in the range of 3300-74 000 pg/g lipids. Ten former pesticide production workers heavily exposed to TCDD (age 57 +/- 2 years, TCDD about 170 pg/g lipids) were examined in 2001. Extended group of 15 TCDD-exposed men (age 59 +/- 3 years, TCDD about 130 pg/g lipids) underwent the same examination in 2004. Findings were compared with a control group of 14 healthy men (age 54 +/- 2 years). Skin microvascular reactivity (MVR) was measured by laser Doppler perfusion monitoring in the forearm during post-occlusive reactive hyperemia (PORH) and thermal hyperemia (TH). Several parameters of MVR in men exposed to TCDD were significantly impaired, compared with the control group and further progression of the impairment of MVR has been observed between years 2001 and 2004. Serum concentration of E-selectin and inhibitor of tissue plasminogen activator 1 (PAI-1) was significantly higher in exposed subjects (56.0 +/- 18.4 ng/mL versus 40.0 +/- 12.0 ng/mL, P = 0.022 and 90.9 +/- 33.3 ng/mL versus 45.0 +/- 18.0, P = 0.002, respectively). In addition, PORH in the forearm was significantly negatively associated with SOD activity (r = -0.77, P = 0.009) as well as the velocity of perfusion increase during TH (r = -0.68, P = 0.03) and TH% (r = -0.78, P = 0.008). Our data document the presence of endothelial dysfunction in TCDD-exposed men.

  7. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells.

    PubMed Central

    Cunningham, A C; Zhang, J G; Moy, J V; Ali, S; Kirby, J A

    1997-01-01

    Human lung alveolar epithelial cells constitutively express class II major histocompatibility complex (MHC). Human lung microvascular endothelial and small airway epithelial cells can be induced to express class II MHC by stimulation with the pro-inflammatory cytokine interferon-gamma. The levels of class II MHC on lung epithelial and endothelial cells were comparable to those seen on an Epstein-Barr virus (EBV)-transformed B-cell line. However, the costimulatory molecules B7-1 and B7-2 were not expressed. The ability of the class II MHC expressing human lung parenchymal cells to present alloantigen to CD4+ T lymphocytes was investigated. Freshly isolated human alveolar epithelial cells (type II pneumocytes) and monolayers of interferon-gamma-stimulated small airway epithelial and lung microvascular endothelial cells were co-cultured with allogeneic CD4+ T lymphocytes and proliferation determined by [3H]thymidine incorporation. A clear difference was observed between effects of the epithelial and endothelial cells on CD4+ T-lymphocyte activation. Alveolar and small airway epithelial cells failed to stimulate the proliferation of allogeneic CD4+ T lymphocytes whereas lung microvascular endothelial cells did stimulate proliferation. This difference could not be explained by the levels of class II MHC or the lack of B7-1 and B7-2 solely. Microvascular endothelial cells, and not alveolar or small airway epithelial cells, possess B7-independent costimulatory pathways. PMID:9301537

  8. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells.

    PubMed

    Scarritt, Michelle E; Pashos, Nicholas C; Motherwell, Jessica M; Eagle, Zachary R; Burkett, Brian J; Gregory, Ashley N; Mostany, Ricardo; Weiss, Daniel J; Alvarez, Diego F; Bunnell, Bruce A

    2016-12-12

    Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that hemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells (HUVECs) were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells (PAECs) and rat pulmonary vein endothelial cells (PVECs) attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells (MVECs) deposited mostly in microvessels. Combination seeding of PAECs, PVECs, and MVECs led to positive VE-cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. This article is protected by copyright. All rights reserved.

  9. Low dose radiation-induced endothelial cell retraction.

    PubMed

    Kantak, S S; Diglio, C A; Onoda, J M

    1993-09-01

    We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.

  10. Transcript Analysis Reveals a Specific HOX Signature Associated with Positional Identity of Human Endothelial Cells

    PubMed Central

    Toshner, Mark; Dunmore, Benjamin J.; McKinney, Eoin F.; Southwood, Mark; Caruso, Paola; Upton, Paul D.; Waters, John P.; Ormiston, Mark L.; Skepper, Jeremy N.; Nash, Gerard; Rana, Amer A.; Morrell, Nicholas W.

    2014-01-01

    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole “HOX transcriptome” of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity. PMID:24651450

  11. Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.

    PubMed

    Toshner, Mark; Dunmore, Benjamin J; McKinney, Eoin F; Southwood, Mark; Caruso, Paola; Upton, Paul D; Waters, John P; Ormiston, Mark L; Skepper, Jeremy N; Nash, Gerard; Rana, Amer A; Morrell, Nicholas W

    2014-01-01

    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.

  12. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection.

    PubMed

    Kinnecom, Katie; Pachter, Joel S

    2005-12-01

    Laser capture microdissection (LCM) of the major cell types comprising brain microvessels offers a powerful technology to explore the molecular basis of the blood-brain barrier in health and disease. However, the ability to selectively retrieve endothelial or perivascular cells, without cross-contamination from the other, has proven difficult. Additionally, histochemical methods previously described for use with LCM have not allowed for identification of all the different size branches of the microvascular tree. Here, we describe a double immunostaining method, combining bright-field and fluorescence microscopy, and using an extensive dehydration with xylene, to clearly identify and spatially resolve endothelial from perivascular cells within all size microvascular branches in frozen brain sections. LCM of these sections, coupled with RNA analysis by reverse-transcription polymerase chain reaction, revealed that captured endothelial cells show endothelial markers but no detectable markers for astrocytes or smooth muscle cells/pericytes. Conversely, captured astrocytes or smooth muscle cells/pericytes demonstrate their respective markers, but not those of endothelial cells. This approach has applicability to microarray analysis, thereby enabling global gene profiling of the different cell types along the entirety of the brain microvascular tree.

  13. Early gene response of human brain endothelial cells to Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene expression of human brain microvascular endothelial cells (HBMEC) to Listeria monocytogenes at 4 hour infection was analyzed. Four hours after infection, the expression of 456 genes of HBMEC had changed (p<0.05). We noted that many active genes were involved in the formyl-methionylleucylph...

  14. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  15. Decrease of fibrinolytic activity in human endothelial cells by arsenite.

    PubMed

    Jiang, Shinn-Jong; Lin, Tsun-Mei; Wu, Hua-Lin; Han, Huai-Song; Shi, Guey-Yueh

    2002-01-01

    Blackfoot disease (BFD) is an endemic peripheral vascular occlusive disease that occurred in the southwest coast of Taiwan. It is believed that arsenic in the drinking water from artesian wells plays an important role in the development of the disease. We have previously shown that BFD patients had significant lower tissue-type plasminogen activator (t-PA) antigen level and higher plasminogen activator inhibitor, Type 1 (PAI-1) antigen level than normal controls. The purpose of this study was to investigate the effects of arsenite on the fibrinolytic and anticoagulant activities of cultured macrovascular and microvascular endothelial cells. Incubation of human microvascular endothelial cells (HMEC-1), but not human umbilical vein endothelial cells (HUVECs), with arsenite caused a decrease of t-PA mRNA level, a rise of both PAI-1 mRNA level and PAI activity. Arsenite could also inhibit the thrombomodulin (TM) mRNA expression and reduce the TM antigen level in HMEC-1. In conclusion, arsenite had a greater effect on HMEC-1 as compared to HUVECs in lowering the fibrinolytic activity and may be responsible for the reduced capacity of fibrinolysis associated with BFD.

  16. Fibroblast nemosis induces angiogenic responses of endothelial cells

    SciTech Connect

    Enzerink, Anna; Rantanen, Ville; Vaheri, Antti

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  17. Endothelial Cell Growth and Differentiation on Collagen-Immobilized Polycaprolactone Nanowire Surfaces.

    PubMed

    Leszczak, Victoria; Baskett, Dominique A; Popat, Ketul C

    2015-06-01

    The success of cardiovascular implants is associated with the development of an endothelium on material surface, critical to the prevention of intimal hyperplasia, calcification and thrombosis. A thorough understanding of the interaction between vascular endothelial cells and the biomaterial involved is essential in order to have a successful application which promotes healing and regeneration through integration with native tissue. In this study, we have developed collagen immobilized nanostructured surfaces with controlled arrays of high aspect ratio nanowires for the growth and maintenance of human microvascular endothelial cells (HMVECs). The nanowire surfaces were fabricated from polycaprolactone using a novel nanotemplating technique, and were immobilized with collagen utilizing an aminolysis method. The collagen immobilized nanowire surfaces were characterized using contact angle measurements, scanning electron microscopy and X-ray photoelectron spectroscopy. Human microvascular endothelial cells were used to evaluate the efficacy of the collagen immobilized nanowire surfaces to promote cell adhesion, proliferation, viability and differentiation. The results presented here indicate significantly higher cellular adhesion, proliferation and viability on nanowire and collagen immobilized surfaces as compared to the control surface. Further, HMVECs have a more elongated body and low shape factor on nanostructured surfaces. The differentiation potential of collagen immobilized nanowire surfaces was also evaluated by immunostaining and western blotting for key endothelial cell markers that are expressed when human microvascular endothelial cells are differentiated. Results indicate that expression of VE-cadherin is increased on collagen immobilized surfaces while the expression of von Willebrand factor is statistically similar on all surfaces.

  18. Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

    PubMed Central

    Hida, Yasuhiro; Maishi, Nako; Towfik, Alam Mohammad; Inoue, Nobuo; Shindoh, Masanobu; Hida, Kyoko

    2013-01-01

    There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment. PMID:24260373

  19. Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation.

    PubMed

    Carroll, Patrick A; Brazeau, Elizabeth; Lagunoff, Michael

    2004-10-10

    Kaposi's sarcoma-associated herpesvirus (KSHV) is necessary for KS, a highly vascularized tumor predominated by endothelial-derived spindle cells that express markers of lymphatic endothelium. Following KSHV infection of TIME cells, an immortalized human dermal microvascular endothelial cell (DMVEC) line, expression of many genes specific to lymphatic endothelium, including VEGFR3, podoplanin, LYVE-1, and Prox-1, is significantly increased. Increases in VEGFR3 and podoplanin protein are also demonstrated following latent infection. Examination of cytokine secretion showed that KSHV infection significantly induces hIL-6 while strongly inhibiting secretion of IL-8, a gene product that is decreased by differentiation of blood to lymphatic endothelial cells. These studies support the hypotheses that latent KSHV infection of blood endothelial cells drives their differentiation to lymphatic endothelial cells.

  20. Origins of circulating endothelial cells and endothelial outgrowth from blood

    PubMed Central

    Lin, Yi; Weisdorf, Daniel J.; Solovey, Anna; Hebbel, Robert P.

    2000-01-01

    Normal adults have a small number of circulating endothelial cells (CEC) in peripheral blood, and endothelial outgrowth has been observed from cultures of blood. In this study we seek insight into the origins of CEC and endothelial outgrowth from cultures of blood. Fluorescence in situ hybridization analysis of blood samples from bone marrow transplant recipients who had received gender-mismatched transplants 5–20 months earlier showed that most CEC in fresh blood had recipient genotype. Endothelial outgrowth from the same blood samples after 9 days in culture (5-fold expansion) was still predominantly of the recipient genotype. In contrast, endothelial outgrowth after ∼1 month (102-fold expansion) was mostly of donor genotype. Thus, recipient-genotype endothelial cells expanded only ∼20-fold over this period, whereas donor-genotype endothelial cells expanded ∼1000-fold. These data suggest that most CEC in fresh blood originate from vessel walls and have limited growth capability. Conversely, the data indicate that outgrowth of endothelial cells from cultures of blood is mostly derived from transplantable marrow-derived cells. Because these cells have more delayed outgrowth but a greater proliferative rate, our data suggest that they are derived from circulating angioblasts. PMID:10619863

  1. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  2. An ultrastructural analysis of endothelial change paralleling platelet aggregation in a light/dye model of microvascular insult.

    PubMed Central

    Povlishock, J. T.; Rosenblum, W. I.; Sholley, M. M.; Wei, E. P.

    1983-01-01

    Those microvascular endothelial events that parallel the evolution of platelet aggregation were evaluated in a well-controlled animal model. Cat pial microvessels were observed through a cranial window while local platelet aggregation was produced by intravenous injection of sodium fluorescein and simultaneous exposure of the pial vessels to light from a filtered mercury lamp that excited the fluorescein. The vessels were fixed in situ when the in vivo observations of a preselected vessel indicated early, intermediate, or advanced aggregation in that vessel. The preselected vessel was then harvested for ultrastructural study together with adjacent vessels from the illuminated field. These vessels and appropriate controls were compared in semiserial thin sections. The onset of platelet aggregation in both venules and arterioles was accompanied by focal endothelial lucency, vacuole formation, luminal membrane rupture, and swelling of the nuclear envelope. These changes were not found in control material. With intermediate aggregation these changes were more common, while with advanced aggregation these abnormalities occurred together with focal endothelial denudation. Thus, in this model denudation occurred only with advanced aggregation and was not a prerequisite for aggregation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:6824062

  3. Anti-TNFα therapy transiently improves high density lipoprotein cholesterol levels and microvascular endothelial function in patients with rheumatoid arthritis: a Pilot Study

    PubMed Central

    2012-01-01

    Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166

  4. Fibrinogen Induces Alterations of Endothelial Cell Tight Junction Proteins

    PubMed Central

    PATIBANDLA, PHANI K.; TYAGI, NEETU; DEAN, WILLIAM L.; TYAGI, SURESH C.; ROBERTS, ANDREW M.; LOMINADZE, DAVID

    2009-01-01

    We previously showed that an elevated content of fibrinogen (Fg) increased formation of filamentous actin and enhanced endothelial layer permeability. In the present work we tested the hypothesis that Fg binding to endothelial cells (ECs) alters expression of actin-associated endothelial tight junction proteins (TJP). Rat cardiac microvascular ECs were grown in gold plated chambers of an electrical cell-substrate impedance system, 8-well chambered, or in 12-well plates. Confluent ECs were treated with Fg (2 or 4 mg/ml), Fg (4 mg/ml) with mitogen-activated protein kinase (MEK) kinase inhibitors (PD98059 or U0126), Fg (4 mg/ml) with anti-ICAM-1 antibody or BQ788 (endothelin type B receptor blocker), endothelin-1, endothelin-1 with BQ788, or medium alone for 24 h. Fg induced a dose-dependent decrease in EC junction integrity as determined by transendothelial electrical resistance (TEER). Western blot analysis and RT-PCR data showed that the higher dose of Fg decreased the contents of TJPs, occludin, zona occluden-1 (ZO-1), and zona occluden-2 (ZO-2) in ECs. Fg-induced decreases in contents of the TJPs were blocked by PD98059, U0126, or anti-ICAM-1 antibody. While BQ788 inhibited endothelin-1-induced decrease in TEER, it did not affect Fg-induced decrease in TEER. These data suggest that Fg increases EC layer permeability via the MEK kinase signaling pathway by affecting occludin, ZO-1, and ZO-2, TJPs, which are bound to actin filaments. Therefore, increased binding of Fg to its major EC receptor, ICAM-1, during cardiovascular diseases may increase microvascular permeability by altering the content and possibly subcellular localization of endothelial TJPs. PMID:19507189

  5. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    PubMed

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  6. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors

    PubMed Central

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E.; O’Carroll, Simon J.; Graham, E. Scott

    2016-01-01

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors. PMID:26813587

  7. Identification of hepatic microvascular adhesion-related genes of human colon cancer cells using random homozygous gene perturbation.

    PubMed

    Márquez, Joana; Kohli, Manu; Arteta, Beatriz; Chang, Shaojing; Li, Wu-Bo; Goldblatt, Michael; Vidal-Vanaclocha, Fernando

    2013-11-01

    Random homozygous gene perturbation (RHGP), in combination with liver sinusoidal endothelial cell (LSEC) adhesion screening of clonal colon cancer cells with perturbed genes, was used to identify genes contributing to the hepatic microvascular adhesion of colon cancer cells. Plasmid vector encoding transactivator and gene search vector were transfected into HT-29 human colorectal cancer cells to create a HT-29 RHGP cell library; the adhesion of these library cells to primary cultured mouse LSEC significantly decreased in the presence of RSL1 ligand (inducer), indicating that most of the genes contributing to HT-29 adhesion to LSEC were altered. Next, HT-29 RHGP cell library fractions with upregulated or silenced LSEC adhesion-related genes were isolated. Around 160 clones having altered expression in LSEC adhesion-related genes were obtained, and nine relevant protein-coding genes were identified. Some were proadhesive genes detected because of their overexpression in adherent HT-29 cells (DGCR8 and EFEMP1 genes) and their silenced status in nonadherent HT-29 cells (DGKE, DPY19L1, KIAA0753, PVR and USP11 genes). Others were antiadhesive genes detected because of their overexpression in nonadherent HT-29 cells (ITPKC gene) and their silenced status in adherent HT-29 cells (PPP6R2 gene). Silencing of PVR, DGCR8 and EFEMP1 genes decreased adhesion to LSEC and hepatic microvascular retention of HT-29 cells. The results conclude that RHGP was a valuable strategy for the discovery of mechanisms regulating microvascular adhesion of circulating colon cancer cells before hepatic metastasis formation. Identified genes may contribute to understand the metastatic process of colon cancer and to discovering molecular targets for hepatic metastasis therapeutics.

  8. Microvascular response to red blood cell transfusion in trauma patients.

    PubMed

    Weinberg, Jordan A; MacLennan, Paul A; Vandromme-Cusick, Marianne J; Angotti, Jonathan M; Magnotti, Louis J; Kerby, Jeffrey D; Rue, Loring W; Barnum, Scott R; Patel, Rakesh P

    2012-03-01

    Trauma patients are often transfused allogeneic red blood cells (RBCs) in an effort to augment tissue oxygen delivery. However, the effect of RBC transfusion on microvascular perfusion in this patient population is not well understood. To this end, we investigated the effect of RBC transfusion on sublingual microvascular perfusion in trauma patients. Sublingual microcirculation was imaged at bedside with a sidestream dark-field illumination microscope before and after transfusion of one RBC unit in hemodynamically stable, anemic trauma patients. The perfused proportion of capillaries (PPC) before and after transfusion was determined, and the percent change in capillary perfusion following transfusion (ΔPPC) calculated. Sublingual microcirculation was observed in 30 patients. Mean age was 47 (SD, 21) years, mean Injury Severity Score was 29 (SD, 16), and mean pretransfusion hemoglobin was 7.5 (SD, 0.9) g/dL. No patients had a mean arterial pressure of less than 65 mmHg (mean, 89 [SD, 17] mmHg) or lactate of greater than 2.5 mmol/L (mean, 1.1 [SD, 0.3] mmol/L). Following transfusion, ΔPPC ranged from +68% to -36% and was found to inversely correlate significantly with pretransfusion PPC (Spearman r = -0.63, P = 0.0002). Pretransfusion PPC may be selectively deranged in otherwise stable trauma patients. Patients with relatively altered baseline PPC tend to demonstrate improvement in perfusion following transfusion, whereas those with relatively normal perfusion at baseline tend to demonstrate either no change or, in fact, a decline in PPC. Bedside sublingual imaging may have the potential to detect subtle perfusion defects and ultimately inform clinical decision making with respect to transfusion.

  9. Microvascular Response to Red Blood Cell Transfusion in Trauma Patients

    PubMed Central

    Weinberg, Jordan A.; MacLennan, Paul A.; Vandromme–Cusick, Marianne J.; Angotti, Jonathan M.; Magnotti, Louis J.; Kerby, Jeffrey D.; Rue, Loring W.; Barnum, Scott R.; Patel, Rakesh P.

    2014-01-01

    Background Trauma patients are often transfused allogeneic red blood cells (RBCs) in an effort to augment tissue oxygen delivery. However, the effect of RBC transfusion on microvascular perfusion in this patient population is not well understood. To this end, we investigated the effect of RBC transfusion on sublingual microvascular perfusion in trauma patients. Methods Sublingual microcirculation was imaged at bedside with a sidestream dark field illumination microscope before and after transfusion of one RBC unit in hemodynamically stable, anemic trauma patients. The proportion of perfused capillaries (PPC) pre- and post-transfusion was determined, and the percent change in capillary perfusion following transfusion (ΔPPC) calculated. Results Sublingual microcirculation was observed in 30 patients. Mean age was 47 (SD=21), mean ISS was 29 (SD=16), and mean pre-transfusion hemoglobin was 7.5 g/dL (SD=0.9). No patients had MAP < 65 mm Hg (mean 89 mm Hg, SD 17) or lactate > 2.5 mmol/L (mean 1.1 mmol/L, SD 0.3). Following transfusion, ΔPPC ranged from +68% to -36% and was found to inversely correlate significantly with pre-transfusion PPC (Spearman r= -0.63, p=0.0002). Conclusions Pre-transfusion PPC may be selectively deranged in otherwise stable trauma patients. Patients with relatively altered baseline PPC tend to demonstrate improvement in perfusion following transfusion, while those with relatively normal perfusion at baseline tend to demonstrate either no change or, in fact, a decline in PPC. Bedside sublingual imaging may have the potential to detect subtle perfusion defects and ultimately inform clinical decision making with respect to transfusion. PMID:22344313

  10. Endothelial cell micropatterning: Methods, effects, and applications

    PubMed Central

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2012-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines endothelial cell micropatterning research by exploring both the many alternative methods used to alter endothelial cell morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in endothelial cell proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, is discussed. PMID:21761242

  11. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  12. Shear stress and 17beta-estradiol modulate cerebral microvascular endothelial Na-K-Cl cotransporter and Na/H exchanger protein levels.

    PubMed

    Chang, Elaine; O'Donnell, Martha E; Barakat, Abdul I

    2008-01-01

    Ion transporters of blood-brain barrier (BBB) endothelial cells play an important role in regulating the movement of ions between the blood and brain. During ischemic stroke, reduction in cerebral blood flow is accompanied by transport of Na and Cl from the blood into the brain, with consequent brain edema formation. We have shown previously that a BBB Na-K-Cl cotransporter (NKCC) participates in ischemia-induced brain Na and water uptake and that a BBB Na/H exchanger (NHE) may also participate. While the abrupt reduction of blood flow is a prominent component of ischemia, the effects of flow on BBB NKCC and NHE are not known. In the present study, we examined the effects of changes in shear stress on NKCC and NHE protein levels in cerebral microvascular endothelial cells (CMECs). We have shown previously that estradiol attenuates both ischemia-induced cerebral edema and CMEC NKCC activity. Thus, in the present study, we also examined the effects of estradiol on NKCC and NHE protein levels in CMECs. Exposing CMECs to steady shear stress (19 dyn/cm(2)) increased the abundance of both NKCC and NHE. Estradiol abolished the shear stress-induced increase in NHE but not NKCC. Abrupt reduction of shear stress did not alter NKCC or NHE abundance in the absence of estradiol, but it decreased NKCC abundance in estradiol-treated cells. Our results indicate that changes in shear stress modulate BBB NKCC and NHE protein levels. They also support the hypothesis that estradiol attenuates edema formation in ischemic stroke in part by reducing the abundance of BBB NKCC protein.

  13. Utilization of Microgravity Bioreactor for Differentiation and Growth of Human Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chu-Huang; Pellis, Neal R.

    1997-01-01

    The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.

  14. [Transplantation of corneal endothelial cells].

    PubMed

    Amano, Shiro

    2002-12-01

    Though conventional corneal transplantation has achieved great success, it still has several drawbacks including limited availability of donor corneas, recurrent allograft rejection, and subsequent graft failure in certain cases. Reconstructing clinically usable corneas by applying the technology of regenerative medicine can offer a solution to these problems, as well as making corneal transplantation a non-emergency surgery and enabling the usage of banked corneal cells. In the present study, we focused on corneal endothelium that is critical for corneal transparency and investigated the reconstruction of cornea utilizing cultured human corneal endothelial cells (HCECs). We succeeded in steadily culturing HCECs by using culture dishes pre-coated with extracellular matrix produced by calf corneal endothelial cells and culture media that contained basic fibroblast growth factor and fetal bovine serum. We performed the following analysis utilizing these cultured HCECs. The older the donor was, the more frequently large senescent cells appeared in the passaged HCECs. The telomeres of HCECs were measured as terminal restriction fragments (TRF) by Southern blotting. HCECs, in vivo from donors in their seventies had a long TRFs of over 12 kilobases. Passaging shortened the TRFs but there was no difference in TRFs among donors of various ages. These results indicated that shortening of telomere length is not related to senescence of HCECs. We investigated the role of advanced glycation end products (AGEs) in the senescence of in vivo HCECs. The results indicated that AGE-protein in the aqueous humor is endocytosed into HCECs via AGE receptors expressed on the surface of HCECs and damages HCECs by producing reactive oxygen species and inducing apoptosis, suggesting that AGEs, at least partly, cause the senescence of HECEs. HCECs were cultured using adult human serum instead of bovine serum to get rid of bovine material that can be infected with prions. Primary and passage

  15. Cross-Talk between CLL Cells and Bone Marrow Endothelial Cells: Role of Signal Transducer and Activator of Transcription-3

    PubMed Central

    Badoux, Xavier; Bueso-Ramos, Carlos; Harris, David; Li, Ping; Liu, Zhiming; Burger, Jan; O’Brien, Susan; Ferrajoli, Alessandra; Keating, Michael J.; Estrov, Zeev

    2014-01-01

    Summary Chronic lymphocytic leukemia (CLL) bone marrow is characterized by increased angiogenesis. However, the molecular mediators of neovascularization and the biological significance of increased endothelial cell proliferation in CLL require further investigation. Because signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL we studied the role of STAT3 in modulating vascular endothelial growth factor (VEGF) expression and the effect of vascular endothelial cells on CLL cells. Using chromatin immunoprecipitation (ChIP) we found that anti-STAT3 antibodies immunoprecipitated DNA of STAT3, VEGF and other STAT3-regulated genes. In addition, STAT3-short interfering RNA significantly reduced mRNA levels of VEGF in CLL cells suggesting that STAT3 induces VEGF expression in CLL. Remarkably, bone marrow CLL cells expressed high levels of VEGF and high VEGF levels were detected in the plasma of patients with untreated CLL and correlated with white blood cell count. CLL bone marrow biopsies revealed increased microvascular density and attachment of CLL cells to endothelial cells. Co-culture of CLL and human umbilical vein endothelial cells (HUVEC) cells showed a similar attachment. Furthermore, co-culture studies with HUVEC showed that HUVEC protected CLL cells from spontaneous apoptosis by direct cell-to-cell contact as assessed by flow cytometry using Annexin V. Our data suggest that constitutively activated STAT3 induces VEGF production by CLL cells and CLL cells derive a survival advantage from endothelial cells via cell-to cell contact. PMID:21733558

  16. PPAR Gamma and Angiogenesis: Endothelial Cells Perspective

    PubMed Central

    2016-01-01

    We summarize the current knowledge concerning PPARγ function in angiogenesis. We discuss the mechanisms of action for PPARγ and its role in vasculature development and homeostasis, focusing on endothelial cells, endothelial progenitor cells, and bone marrow-derived proangiogenic cells. PMID:28053991

  17. GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor β/Activin Receptor-like Kinase 5 Signaling*

    PubMed Central

    Froese, Natali; Kattih, Badder; Breitbart, Astrid; Grund, Andrea; Geffers, Robert; Molkentin, Jeffery D.; Kispert, Andreas; Wollert, Kai C.; Drexler, Helmut; Heineke, Joerg

    2011-01-01

    Understanding the transcriptional regulation of angiogenesis could lead to the identification of novel therapeutic targets. We showed here that the transcription factor GATA6 is expressed in different human primary endothelial cells as well as in vascular endothelial cells of mice in vivo. Activation of endothelial cells was associated with GATA6 nuclear translocation, chromatin binding, and enhanced GATA6-dependent transcriptional activation. siRNA-mediated down-regulation of GATA6 after growth factor stimulation led to a dramatically reduced capacity of macro- and microvascular endothelial cells to proliferate, migrate, or form capillary-like structures on Matrigel. Adenoviral overexpression of GATA6 in turn enhanced angiogenic function, especially in cardiac endothelial microvascular cells. Furthermore, GATA6 protected endothelial cells from undergoing apoptosis during growth factor deprivation. Mechanistically, down-regulation of GATA6 in endothelial cells led to increased expression of transforming growth factor (TGF) β1 and TGFβ2, whereas enhanced GATA6 expression, accordingly, suppressed Tgfb1 promoter activity. High TGFβ1/β2 expression in GATA6-depleted endothelial cells increased the activation of the activin receptor-like kinase 5 (ALK5) and SMAD2, and suppression of this signaling axis by TGFβ neutralizing antibody or ALK5 inhibition restored angiogenic function and survival in endothelial cells with reduced GATA6 expression. Together, these findings indicate that GATA6 plays a crucial role for endothelial cell function and survival, at least in part, by suppressing autocrine TGFβ expression and ALK5-dependent signaling. PMID:21127043

  18. Role of endothelial cell-selective adhesion molecule in hematogeneous metastasis

    PubMed Central

    Cangara, Husni M.; Ishida, Tatsuro; Hara, Tetsuya; Sun, Li; Toh, Ryuji; Rikitake, Yoshiyuki; Kundu, Ramendra K.; Quertermous, Thomas; Hirata, Ken-ichi; Hayashi, Yoshitake

    2016-01-01

    The spread of malignant cells from a localized tumor is thought to be directly related to the number of microvessels in the tumor. The endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin superfamily that mediates homophilic interactions between endothelial cells. Previous studies have indicated that ESAM regulates angiogenesis in the primary tumor growth and endothelial permeability. In this study, we aimed to further elucidate the role of ESAM in tumor metastasis through angiogenic processes. ESAM expression was higher in hypervascular metastatic tumor tissues than in normal tissues in human lungs. Cell culture studies found that conditioned medium from B16F10 melanoma cells increased ESAM expression in endothelial cells and promoted endothelial migration and tube formation. The B16F10 medium-induced endothelial migration and tube formation were significantly attenuated when ESAM was downregulated by siRNA transfection. Intravenous injection of B16F10 cells into ESAM+/+ and ESAM−/− mice for comparison of metastatic potential resulted in the number of metastatic lung nodules in ESAM−/− mice being 83% lower than of those in ESAM+/+ mice. The microvascular density in the tumor was also lower in ESAM−/− than in ESAM+/+ mice. These findings indicate that ESAM regulates tumor metastasis through endothelial cell migration and tube formation in metastatic nodules. Inhibition of ESAM may therefore inhibit tumor metastasis by inhibiting the angiogenic processes. PMID:20153339

  19. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells.

    PubMed

    Nojiri, Takashi; Hosoda, Hiroshi; Tokudome, Takeshi; Miura, Koichi; Ishikane, Shin; Otani, Kentaro; Kishimoto, Ichiro; Shintani, Yasushi; Inoue, Masayoshi; Kimura, Toru; Sawabata, Noriyoshi; Minami, Masato; Nakagiri, Tomoyuki; Funaki, Soichiro; Takeuchi, Yukiyasu; Maeda, Hajime; Kidoya, Hiroyasu; Kiyonari, Hiroshi; Shioi, Go; Arai, Yuji; Hasegawa, Takeshi; Takakura, Nobuyuki; Hori, Megumi; Ohno, Yuko; Miyazato, Mikiya; Mochizuki, Naoki; Okumura, Meinoshin; Kangawa, Kenji

    2015-03-31

    Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.

  20. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells

    PubMed Central

    Nojiri, Takashi; Hosoda, Hiroshi; Tokudome, Takeshi; Miura, Koichi; Ishikane, Shin; Otani, Kentaro; Kishimoto, Ichiro; Shintani, Yasushi; Inoue, Masayoshi; Kimura, Toru; Sawabata, Noriyoshi; Minami, Masato; Nakagiri, Tomoyuki; Funaki, Soichiro; Takeuchi, Yukiyasu; Maeda, Hajime; Kidoya, Hiroyasu; Kiyonari, Hiroshi; Shioi, Go; Arai, Yuji; Hasegawa, Takeshi; Takakura, Nobuyuki; Hori, Megumi; Ohno, Yuko; Miyazato, Mikiya; Mochizuki, Naoki; Okumura, Meinoshin; Kangawa, Kenji

    2015-01-01

    Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A–nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells. PMID:25775533

  1. Endothelial cell adhesion and growth within a bioassay chamber using microstamped ECM proteins

    NASA Astrophysics Data System (ADS)

    Rubenstein, David A.; Frame, Mary D.

    2011-06-01

    Our goal was to evaluate microvascular endothelial cell growth on microstamped patterns of extracellular matrix proteins (ECM). A combination of photo- and soft-lithography was used to make features ˜100 μm deep and 150μm wide. Polydimethylsiloxane imprints of features produced positive molds used to stamp collagen I, IV, laminin and fibronectin onto cleaned hydrophilic or hydrophobic glass coverslips. Human dermal microvascular endothelial cells were seeded at an initial density of 800 cells cm-2, and cultured for three days. Explanted murine aortas, serving as an initial source for autologous endothelial cells, were perfused at 240 μL min-1 for 1 day. Cell morphology was also quantified on both the non-patterned glass and within the microstamped patterns. Viability was high (>90%) on all microstamped proteins, regardless of glass hydrophobicity. Viability was reduced on bare hydrophobic glass. Cell density was 4 or 8 fold higher on microstamped ECM proteins compared with hydrophilic or hydrophobic glass, respectively. Confluence was approached more rapidly on microstamped proteins. Thus, rapid concentrated growth of endothelial cells was markedly enhanced within microstamped ECM patterns on hydrophilic and hydrophobic glass.

  2. Ischemia-induced endothelial cell dysfunction.

    PubMed

    Keep, R F; Andjelkovic, A V; Stamatovic, S M; Shakui, P; Ennis, S R

    2005-01-01

    Hemorrhagic transformation upon reperfusion therapy has focused attention on ischemia-induced endothelial dysfunction. This study examined whether hyperglycemia may induce hemorrhagic transformation by enhancing endothelial mitochondrial damage during ischemia and whether preconditioning (PC) stimuli may limit ischemia-induced endothelial damage. In vivo, rats received 2.8 M D-glucose or arabinose (1 ml/100 g; i.p.) prior to undergoing two hours of middle cerebral artery occlusion and transcardiac fixation for electron microscopy. In vitro, brain endothelial cells were exposed to a PC impulse (short-term oxygen glucose deprivation; OGD) prior to an injurious event (5 hours OGD). Endothelial injury was assessed by measuring lactate dehydrogenase release. Hyperglycemia during cerebral ischemia resulted in marked changes in endothelial morphology and mitochondrial swelling. Thus, in the ischemic hemisphere, there was no evidence of endothelial mitochondrial swelling in normoglycemic rats (mean profile width 0.22 +/- 0.04 vs. 0.17 +/- 0.01 microm in contralateral hemisphere) but there was marked swelling in hyperglycemic rats (0.44 +/- 0.02 microm). In vitro, cells preconditioned with one hour of OGD one day prior to 5 hours of OGD, showed reduced lactate dehydrogenase release (p < 0.05). In conclusion, hyperglycemia may have specific adverse effects on endothelial cell mitochondria during ischemia. Preventing those effects may help to ameliorate blood-brain barrier disruption on reperfusion. Insights into how to prevent endothelial injury may come from determining the mechanisms involved in endothelial preconditioning.

  3. Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells.

    PubMed

    Csiszar, Anna; Sosnowska, Danuta; Tucsek, Zsuzsanna; Gautam, Tripti; Toth, Peter; Losonczy, Gyorgy; Colman, Ricki J; Weindruch, Richard; Anderson, Rozalyn M; Sonntag, William E; Ungvari, Zoltan

    2013-03-01

    Moderate caloric restriction (CR) without malnutrition increases healthspan in virtually every species studied, including nonhuman primates. In mice, CR exerts significant microvascular protective effects resulting in increased microvascular density in the heart and the brain, which likely contribute to enhanced tolerance to ischemia and improved cardiac performance and cognitive function. Yet, the underlying mechanisms by which CR confer microvascular protection remain elusive. To test the hypothesis that circulating factors triggered by CR regulate endothelial angiogenic capacity, we treated cultured human endothelial cells with sera derived from Macaca mulatta on long-term (over 10 years) CR. Cells treated with sera derived from ad-libitum-fed control monkeys served as controls. We found that factors present in CR sera upregulate vascular endothelial growth factor (VEGF) signaling and stimulate angiogenic processes, including endothelial cell proliferation and formation of capillary-like structures. Treatment with CR sera also tended to increase cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology) and adhesion to collagen. Collectively, we find that circulating factors induced by CR promote endothelial angiogenic processes, suggesting that increased angiogenesis may be a potential mechanism by which CR improves cardiac function and prevents vascular cognitive impairment.

  4. Localized α4 Integrin Phosphorylation Directs Shear Stress-Induced Endothelial Cell Alignment

    PubMed Central

    Goldfinger, Lawrence E.; Tzima, Eleni; Stockton, Rebecca; Kiosses, William B.; Kinbara, Kayoko; Tkachenko, Eugene; Gutierrez, Edgar; Groisman, Alex; Nguyen, Phu; Chien, Shu; Ginsberg1, Mark H.

    2009-01-01

    Vascular endothelial cells respond to laminar shear stress by aligning in the direction of flow, a process which may contribute to athero-protection. Here we report that localized α4 integrin phosphorylation is a mechanism for establishing the directionality of shear stress-induced alignment in microvascular endothelial cells. Within 5 minutes of exposure to a physiological level of shear stress, endothelial α4 integrins became phosphorylated on Ser988. In wounded monolayers, phosphorylation was enhanced at the downstream edges of cells relative to the source of flow. The shear-induced α4 integrin phosphorylation was blocked by inhibitors of cAMP-dependent protein kinase A (PKA), an enzyme involved in the alignment of endothelial cells under prolonged shear. Moreover, shear-induced localized activation of the small GTPase Rac1, which specifies the directionality of endothelial alignment, was similarly blocked by PKA inhibitors. Furthermore, endothelial cells bearing a non-phosphorylatable α4(S988A) mutation failed to align in response to shear stress, thus establishing α4 as a relevant PKA substrate. We thereby show that shear-induced PKA-dependent α4 integrin phosphorylation at the downstream edge of endothelial cells promotes localized Rac1 activation, which in turn directs cytoskeletal alignment in response to shear stress. PMID:18583710

  5. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  6. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.

    PubMed

    Paulus, Walter J; Tschöpe, Carsten

    2013-07-23

    Over the past decade, myocardial structure, cardiomyocyte function, and intramyocardial signaling were shown to be specifically altered in heart failure with preserved ejection fraction (HFPEF). A new paradigm for HFPEF development is therefore proposed, which identifies a systemic proinflammatory state induced by comorbidities as the cause of myocardial structural and functional alterations. The new paradigm presumes the following sequence of events in HFPEF: 1) a high prevalence of comorbidities such as overweight/obesity, diabetes mellitus, chronic obstructive pulmonary disease, and salt-sensitive hypertension induce a systemic proinflammatory state; 2) a systemic proinflammatory state causes coronary microvascular endothelial inflammation; 3) coronary microvascular endothelial inflammation reduces nitric oxide bioavailability, cyclic guanosine monophosphate content, and protein kinase G (PKG) activity in adjacent cardiomyocytes; 4) low PKG activity favors hypertrophy development and increases resting tension because of hypophosphorylation of titin; and 5) both stiff cardiomyocytes and interstitial fibrosis contribute to high diastolic left ventricular (LV) stiffness and heart failure development. The new HFPEF paradigm shifts emphasis from LV afterload excess to coronary microvascular inflammation. This shift is supported by a favorable Laplace relationship in concentric LV hypertrophy and by all cardiac chambers showing similar remodeling and dysfunction. Myocardial remodeling in HFPEF differs from heart failure with reduced ejection fraction, in which remodeling is driven by loss of cardiomyocytes. The new HFPEF paradigm proposes comorbidities, plasma markers of inflammation, or vascular hyperemic responses to be included in diagnostic algorithms and aims at restoring myocardial PKG activity.

  7. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    NASA Astrophysics Data System (ADS)

    Strobel, Claudia; Oehring, Hartmut; Herrmann, Rudolf; Förster, Martin; Reller, Armin; Hilger, Ingrid

    2015-05-01

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  8. Apicobasal polarity of brain endothelial cells

    PubMed Central

    Worzfeld, Thomas

    2015-01-01

    Normal brain homeostasis depends on the integrity of the blood–brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood–brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases. PMID:26661193

  9. Liver cyst cytokines promote endothelial cell proliferation and development.

    PubMed

    Brodsky, Kelley S; McWilliams, Ryan R; Amura, Claudia R; Barry, Nicholas P; Doctor, R Brian

    2009-10-01

    Autosomal dominant polycystic kidney (ADPKD) is highly prevalent genetic disease. Liver cyst disease is the most common extrarenal manifestation in ADPKD and accounts for up to 10% of ADPKD morbidity and mortality. The clinical features of ADPKD liver disease arise from dramatic increases in liver cyst volumes. To identify mechanisms that promote liver cyst growth, the present study characterized the degree of vascularization of liver cyst walls and determined that cyst-specific cytokines and growth factors can drive endothelial cell proliferation and development. Microscopic techniques demonstrated liver cyst walls are well vascularized. A comparative analysis found the vascular density in free liver cyst walls was greater in mice than in humans. Treatment of human micro-vascular endothelial cells (HMEC-1) with human liver cyst fluid (huLCF) induced a rapid increase in vascular endothelium growth factor receptor 2 (VEGFR2) phosphorylation that persisted for 45-60 min and was blocked by 20 microM SU5416, a VEGFR tyrosine kinase inhibitor. Similarly, huLCF treatment of HMEC-1 cells induced an increase in the cell proliferation rate (131 +/- 6% of control levels; P > 0.05) and the degree of vascular development ('tube' diameter assay: 92 +/- 14 microm for huLCF vs. 12 +/- 7 microm for vehicle); P > 0.05). Both cell proliferation and vascular development were sensitive to SU5416. These studies indicate that factors secreted by liver cyst epithelia can activate VEGF signaling pathways and induce endothelial cell proliferation and differentiation. The present studies suggest that targeting VEGFR2-dependent angiogenesis may be an effective therapeutic strategy in blocking ADPKD liver cyst vascularization and growth.

  10. Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium perfringens type C enteritis in pigs.

    PubMed

    Schumacher, V L; Martel, A; Pasmans, F; Van Immerseel, F; Posthaus, H

    2013-07-01

    Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.

  11. Blood cells and endothelial barrier function

    PubMed Central

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    Abstract The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  12. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talk.

    PubMed

    Donnini, Sandra; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2010-03-01

    The protective effect exerted by angiotensin-converting enzyme inhibitors (ACEI) in cardiovascular diseases caused by endothelial injury and aging has been attributed to the restoration of endothelial cell functions. Recently, we demonstrated a central role of the fibroblast growth factor-2 (FGF-2)/FGF receptor-1 system in mediating the acquisition of an angiogenic phenotype in coronary microvascular endothelium exposed to ACEI. Here, we report on the rescuing effect of ACEI on impaired endothelium and the intracellular signaling mechanisms that lead endothelial cells to enter apoptosis and to senesce. Conditions mimicking pathological cell damage (serum deprivation) lead to endothelial apoptosis as evidenced by increased caspase-3 activity. ACEI enhanced cell survival through activation of prosurvival and antiaging signals involving Akt phosphorylation, endothelial nitric-oxide synthase (eNOS) expression and activation, FGF-2 and telomerase catalytic subunit (TERT) up-regulation, and delayed senescence. In microvascular endothelial cells exposed to ACEI, Akt/eNOS pathway-dependent FGF-2 was necessary for gene transcription of TERT. These protective effects were particularly evident for sulfhydryl-containing ACEI (zofenoprilat), which were reported to exhibit potent antioxidant effects. In conclusion, ACEI with antioxidant properties up-regulate eNOS, FGF-2, and TERT mRNA, which favor endothelial cell survival and prolong their lifespan, thus restoring endothelial cell functions after vascular damage. These effects could explain the beneficial effects of these drugs in various cardiovascular diseases associated with endothelial injury and aging.

  13. Reprogramming Human Endothelial to Hematopoietic Cells Requires Vascular Induction

    PubMed Central

    Sandler, Vladislav M.; Lis, Raphael; Liu, Ying; Kedem, Alon; James, Daylon; Elemento, Olivier; Butler, Jason M.; Scandura, Joseph M.; Rafii, Shahin

    2014-01-01

    Summary Generating engraftable human hematopoietic cells from autologous tissues promises new therapies for blood diseases. Directed differentiation of pluripotent stem cells yields hematopoietic cells that poorly engraft. Here, we devised a method to phenocopy the vascular-niche microenvironment of hemogenic cells, thereby enabling reprogramming of human endothelial cells (ECs) into engraftable hematopoietic cells without transition through a pluripotent intermediate. Highly purified non-hemogenic human umbilical vein-ECs (HUVECs) or adult dermal microvascular ECs (hDMECs) were transduced with transcription factors (TFs), FOSB, GFI1, RUNX1, and SPI1 (FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of hematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPP). These reprogrammed ECs- into human-MPPs (rEC-hMPPs) acquire colony-forming cell (CFC) potential and durably engraft in immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (NK, B) progeny. Conditional expression of FGRS transgenes, combined with vascular-induction, activates endogenous FGRS genes endowing rEC-hMPPs with a transcriptional and functional profile similar to self-renewing MPPs. Our approach underscores the role of inductive cues from vascular-niche in orchestrating and sustaining hematopoietic specification and may prove useful for engineering autologous hematopoietic grafts to treat inherited and acquired blood disorders. PMID:25030167

  14. HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE

    PubMed Central

    Gimbrone, Michael A.; Cotran, Ramzi S.; Folkman, Judah

    1974-01-01

    Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration. PMID:4363161

  15. Caveolae protect endothelial cells from membrane rupture during increased cardiac output

    PubMed Central

    Cheng, Jade P.X.; Mendoza-Topaz, Carolina; Howard, Gillian; Chadwick, Jessica; Shvets, Elena; Cowburn, Andrew S.; Dunmore, Benjamin J.; Crosby, Alexi; Morrell, Nicholas W.

    2015-01-01

    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo. PMID:26459598

  16. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    PubMed Central

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  17. Morphology of microvascular changes and endothelial regeneration in experimental ozone-induced parathyroiditis. III. Some pathologic considerations

    SciTech Connect

    Atwal, O.S.; Pemsingh, R.S.

    1981-03-01

    Proliferation of the vascular endothelium of the parathyroid glands of dogs exposed to ozone inhalation was studied. Direct observation of mitoses in the endothelial cells were made. Focal hemorrhages in the form of the presence of erythrocytes, clotting, and fibrin deposition in the extravascular spaces were seen. Ultrastructural analysis of transverse section of blood vessels showed intravascular platelet aggregation. Lymphoid cells were observed in the lumen of the blood vessels as well as in the perivascular areas as infiltrates. The possibility is discussed that present vascular reactions signify the morphologic equivalent of an immunologic response.

  18. Tissue Engineering Special Feature: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo

    NASA Astrophysics Data System (ADS)

    Ford, Millicent C.; Bertram, James P.; Royce Hynes, Sara; Michaud, Michael; Li, Qi; Young, Michael; Segal, Steven S.; Madri, Joseph A.; Lavik, Erin B.

    2006-02-01

    A microvascular network is critical for the survival and function of most tissues. We have investigated the potential of neural progenitor cells to augment the formation and stabilization of microvascular networks in a previously uncharacterized three-dimensional macroporous hydrogel and the ability of this engineered system to develop a functional microcirculation in vivo. The hydrogel is synthesized by cross-linking polyethylene glycol with polylysine around a salt-leached polylactic-co-glycolic acid scaffold that is degraded in a sodium hydroxide solution. An open macroporous network is formed that supports the efficient formation of tubular structures by brain endothelial cells. After subcutaneous implantation of hydrogel cocultures in mice, blood flow in new microvessels was apparent at 2 weeks with perfused networks established on the surface of implants at 6 weeks. Compared to endothelial cells cultured alone, cocultures of endothelial cells and neural progenitor cells had a significantly greater density of tubular structures positive for platelet endothelial cell adhesion molecule-1 at the 6-week time point. In implant cross sections, the presence of red blood cells in vessel lumens confirmed a functional microcirculation. These findings indicate that neural progenitor cells promote the formation of endothelial cell tubes in coculture and the development of a functional microcirculation in vivo. We demonstrate a previously undescribed strategy for creating stable microvascular networks to support engineered tissues of desired parenchymal cell origin. microvasculature | neural stem cells | polymer | scaffold

  19. Antibodies to endothelial cells in Behçet's disease: cell-binding heterogeneity and association with clinical activity.

    PubMed Central

    Cervera, R; Navarro, M; López-Soto, A; Cid, M C; Font, J; Esparza, J; Reverter, J C; Monteagudo, J; Ingelmo, M; Urbano-Márquez, A

    1994-01-01

    OBJECTIVES--To investigate the prevalence and characteristics of antibodies to endothelial cells (aEC) from large vessel and from microvasculature in a group of patients with Behçet's disease (BD) to determine the relationship of these antibodies with clinical and laboratory features of the disease. METHODS--Thirty patients with BD were prospectively and consecutively studied. The aEC were determined by enzyme-linked immunosorbent assay (ELISA) using endothelial cells derived from human umbilical vein (large vessel) as well as from retroperitoneal adipose tissue (microvasculature). RESULTS--Fifteen patients (50%) had aEC, either directed to large vessel [8(26%) patients] or microvascular [13(43%) patients] endothelial cells. The percentage of active patients was significantly higher in the aEC-positive group [12(80%) patients] compared with the aEC-negative group [5(33%) patients] (p < 0.05). CONCLUSIONS--Patients with BD have a high prevalence of aEC when microvascular endothelial cells are used in the assay. These antibodies seem to be a marker of disease activity in this condition, previously considered as negative for autoantibodies. PMID:8203957

  20. Endothelial progenitor cells in cardiovascular diseases

    PubMed Central

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome. PMID:25126384

  1. Development of Ascorbate Transporters in Brain Cortical Capillary Endothelial Cells in Culture

    PubMed Central

    Qiao, Huan; May, James M.

    2008-01-01

    Ascorbic acid in its reduced form is not transported across the capillary endothelial cell blood-brain barrier. This is thought to be due to absence of the SVCT2, a specific transporter for ascorbate. To assess this directly we prepared primary cultures of mouse cortical microvascular endothelial cells. When still in the capillaries, these cells did not express the SVCT2 protein as assessed by immunocytochemistry and by immunoblotting. However, during several days in culture, they developed SVCT2 expression and showed ascorbate transport rates comparable to those in immortalized endothelial cell lines. SVCT2 expression was inversely proportional to cell density, was enhanced by culture at low physiologic plasma ascorbate concentrations, was inhibited by ascorbate concentrations expected in the brain interstitium, and was stimulated by cobalt ions. Expression of the SVCT2 was associated with ascorbate-dependent maturation and release of type IV collagen by the cells in culture. Although the SVCT2 is induced by culture of cortical capillary endothelial cells, its absence in vivo remains perplexing, given the need for intracellular ascorbate to facilitate type IV collagen maturation and release by endothelial cells. PMID:18394593

  2. Roles of LOX-1 in microvascular dysfunction.

    PubMed

    Lubrano, Valter; Balzan, Silvana

    2016-05-01

    Studies from human and animal models with metabolic disease and hypertension highlight atrophic remodeling, reduced lumen size and thinner vascular walls of microvessels with profound density reduction. This impaired vascular response limits the perfusion of peripheral tissues inducing organ damage. These conditions are strongly associated with oxidative stress and in particular with the up-regulation of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Several factors such as cytokines, shear stress, and advanced glycation end-products, especially oxLDL, can up-regulate LOX-1. The activation of this receptor induces the production of adhesion molecules, cytokines and the release of reactive oxygen species via NADPH oxidase. LOX-1 is considered a potent mediator of endothelial dysfunction and it is significantly associated with reduced microvascular endothelium NO-dependent vasodilation in hypercholesterolemia and hypertension. Microvascular endothelial cells increased the expression of IL-6 in association with the increased concentration of LDL and its degree of oxidation. Moreover, increased IL-6 levels are associated with up-regulation of LOX-1 in a dose-dependent manner. Another consequence of microvascular inflammation is the generation of small amounts of ROS, similar to those induced by low concentration of oxLDL (<5 μg/mL) which induces capillary tube formation of endothelial cells, through LOX-1 up-regulation. In light of its central role, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases and microvascular disorders.

  3. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition.

    PubMed

    Krishnan, Shanmugarajan; Szabo, Emese; Burghardt, Isabel; Frei, Karl; Tabatabai, Ghazaleh; Weller, Michael

    2015-09-08

    Glioblastoma are among the most angiogenic tumors. The molecular mechanisms that control blood vessel formation by endothelial cells (EC) in glioblastoma remain incompletely understood. Transforming growth factor-β (TGF-β) is a key regulatory cytokine that has proinvasive and stemness-maintaining autocrine properties in glioblastoma and confers immunosuppression to the tumor microenvironment. Here we characterize potential pro- and anti-angiogenic activities of TGF-β in the context of glioblastoma in vitro, using human brain-derived microvascular endothelial cells (hCMEC/D3) and glioblastoma-derived endothelial cells (GMEC) as model systems. We find that TGF-β induces vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) mRNA expression and protein release in a TGF-β receptor (TβR) II / activin-like kinase (ALK)-5-dependent manner under normoxia and hypoxia, defining potential indirect proangiogenic activity of TGF-β in glioblastoma. In parallel, exogenous TGF-β has also inhibitory effects on EC properties and induces endothelial-mesenchymal transition (EndMT) in hCMEC and GMEC. Accordingly, direct inhibition of endogenous TGF-β/ALK-5 signalling increases EC properties such as tube formation, von-Willebrand factor (vWF) and claudin (CLDN) 5 expression. Yet, the supernatant of TGF-β-stimulated hCMEC and GMEC strongly promotes EC-related gene expression and tube formation in a cediranib-sensitive manner. These observations shed light on the complex pro- and anti-angiogenic pathways involving the cross-talk between TGF-β and VEGF/PLGF signalling in glioblastoma which may involve parallel stimulation of angiogenesis and EndMT in distinct target cell populations.

  4. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling.

    PubMed

    Mistry, Rajesh K; Murray, Thomas V A; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R; Santos, Celio; Eaton, Philip; Shah, Ajay M; Brewer, Alison C

    2016-01-22

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production.

  5. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling*

    PubMed Central

    Mistry, Rajesh K.; Murray, Thomas V. A.; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R.; Santos, Celio; Eaton, Philip; Shah, Ajay M.; Brewer, Alison C.

    2016-01-01

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production. PMID:26620565

  6. Hypoxia Increases Breast Cancer Cell-Induced Lymphatic Endothelial Cell Migration12

    PubMed Central

    Mikhaylova, Maria; Mori, Noriko; Wildes, Flonné B; Walczak, Piotr; Gimi, Barjor; Bhujwalla, Zaver M

    2008-01-01

    Because tumors are characterized by hypoxic environments, we used a novel in vitro noninvasive magnetic resonance imaging assay to examine the influence of invasive MDA-MB-231 breast cancer cells on the invasion and migration of human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) under normoxic and hypoxic conditions. Nonmalignant immortalized MCF-12A human mammary epithelial cells instead of cancer cells or chambers with HMVEC-dLy alone were used as controls for comparison. HMVEC-dLy cells were labeled with a T2 contrast agent (Feridex), and their invasion and migration through extracellular matrix under normoxic and hypoxic conditions were monitored using magnetic resonance imaging. A significant increase in the invasion and migration of HMVEC-dLy cells was detected in the presence of cancer cells, which further increased significantly under hypoxic conditions. HMVEC-dLy cells formed interconnecting strands extending toward the cancer cells under normoxic but not under hypoxic conditions. Following reoxygenation, these interconnecting strands, extending from HMVEC-dLy cells toward the cancer cells, were observed. These data demonstrate the importance of hypoxia in lymphatic endothelial cell invasion and migration through extracellular matrix in the presence of cancer cells. PMID:18392137

  7. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins.

    PubMed

    Yuan, Dongdong; Sun, Guoliang; Zhang, Rui; Luo, Chenfang; Ge, Mian; Luo, Gangjian; Hei, Ziqing

    2015-11-01

    Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.

  8. Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

    PubMed Central

    Kurachi, Masashi; Mikuni, Masahiko; Ishizaki, Yasuki

    2016-01-01

    We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases. PMID:27403742

  9. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  10. Endothelial cell dynamics in vascular remodelling.

    PubMed

    Barbacena, Pedro; Carvalho, Joana R; Franco, Claudio A

    2016-01-01

    In this ESCHM 2016 conference talk report, we summarise two recently published original articles Franco et al. PLoS Biology 2015 and Franco et al. eLIFE 2016. The vascular network undergoes extensive vessel remodelling to become fully functional. Is it well established that blood flow is a main driver for vascular remodelling. It has also been proposed that vessel pruning is a central process within physiological vessel remodelling. However, despite its central function, the cellular and molecular mechanisms regulating vessel regression, and their interaction with blood flow patterns, remain largely unexplained. We investigated the cellular process governing developmental vascular remodelling in mouse and zebrafish. We established that polarised reorganization of endothelial cells is at the core of vessel regression, representing vessel anastomosis in reverse. Moreover, we established for the first time an axial polarity map for all endothelial cells together with an in silico method for the computation of the haemodynamic forces in the murine retinal vasculature. Using network-level analysis and microfluidics, we showed that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/11 renders endothelial cells more sensitive to shear, resulting in axial polarisation at lower shear stress levels. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  11. FOXO1 Mediates the Autocrine Effect of Endothelin-1 on Endothelial Cell Survival

    PubMed Central

    Cifarelli, Vincenza; Lee, Sojin; Kim, Dae Hyun; Zhang, Ting; Kamagate, Adama; Slusher, Sandra; Bertera, Suzanne; Luppi, Patrizia; Trucco, Massimo

    2012-01-01

    Chronic hyperglycemia exerts a deleterious effect on endothelium, contributing to endothelial dysfunction and microvascular complications in poorly controlled diabetes. To understand the underlying mechanism, we studied the effect of endothelin-1 (ET-1) on endothelial production of Forkhead box O1 (FOXO1), a forkhead transcription factor that plays an important role in cell survival. ET-1 is a 21-amino acid peptide that is secreted primarily from endothelium. Using adenovirus-mediated gene transfer approach, we delivered FOXO1 cDNA into cultured human aorta endothelial cells. FOXO1 was shown to stimulate B cell leukemia/lymphoma 2-associated death promoter (BAD) production and promote cellular apoptosis. This effect was counteracted by ET-1. In response to ET-1, FOXO1 was phosphorylated and translocated from the nucleus to cytoplasm, resulting in inhibition of BAD production and mitigation of FOXO1-mediated apoptosis. Hyperglycemia stimulated FOXO1 O-glycosylation and promoted its nuclear localization in human aorta endothelial cells. This effect accounted for unbridled FOXO1 activity in the nucleus, contributing to augmented BAD production and endothelial apoptosis under hyperglycemic conditions. FOXO1 expression became deregulated in the aorta of both streptozotocin-induced diabetic mice and diabetic db/db mice. This hyperglycemia-elicited FOXO1 deregulation and its ensuing effect on endothelial cell survival was corrected by ET-1. Likewise, FoxO1 deregulation in the aorta of diabetic mice was reversible after the reduction of hyperglycemia by insulin therapy. These data reveal a mechanism by which FOXO1 mediated the autocrine effect of ET-1 on endothelial cell survival. FOXO1 deregulation, resulting from an impaired ability of ET-1 to control FOXO1 activity in endothelium, may contribute to hyperglycemia-induced endothelial lesion in diabetes. PMID:22570335

  12. Role of mitochondrial dysfunction in hyperglycaemia-induced coronary microvascular dysfunction: Protective role of resveratrol.

    PubMed

    Joshi, Mandar S; Williams, David; Horlock, Duncan; Samarasinghe, Thilini; Andrews, Karen L; Jefferis, Ann-Maree; Berger, Philip J; Chin-Dusting, Jaye P; Kaye, David M

    2015-05-01

    Microvascular complications are now recognized to play a major role in diabetic complications, and understanding the mechanisms is critical. Endothelial dysfunction occurs early in the course of the development of complications; the precise mechanisms remain poorly understood. Mitochondrial dysfunction may occur in a diabetic rat heart and may act as a source of the oxidative stress. However, the role of endothelial cell-specific mitochondrial dysfunction in diabetic vascular complications is poorly studied. Here, we studied the role of diabetes-induced abnormal endothelial mitochondrial function and the resultant endothelial dysfunction. Understanding the role of endothelial mitochondrial dysfunction in diabetic vasculature is critical in order to develop new therapies. We demonstrate that hyperglycaemia leads to mitochondrial dysfunction in microvascular endothelial cells, and that mitochondrial inhibition induces endothelial dysfunction. Additionally, we show that resveratrol acts as a protective agent; resveratrol-mediated mitochondrial protection may be used to prevent long-term diabetic cardiovascular complications.

  13. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction

    PubMed Central

    Priestley, Jessica R. C.; Kautenburg, Katie E.; Casati, Marc C.; Endres, Bradley T.; Geurts, Aron M.

    2015-01-01

    Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2−/− mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein. Expression of mRNA for the NRF2-regulated indicator enzymes heme oxygenase-1, catalase, superoxide dismutase 1, superoxide dismutase 2, and glutathione reductase was significantly lower in livers of Nrf2−/− mutant rats fed high salt (HS; 4% NaCl) for 2 wk compared with wild-type controls. Endothelium-dependent dilation to acetylcholine was similar in isolated middle cerebral arteries (MCA) of Nrf2−/− mutant rats and wild-type littermates fed low-salt (0.4% NaCl) diet, and was eliminated by short-term (3 days) HS diet in both strains. Low-dose ANG II infusion (100 ng/kg sc) reversed salt-induced endothelial dysfunction in MCA and prevented microvessel rarefaction in wild-type rats fed HS diet, but not in Nrf2−/− mutant rats. The results of this study indicate that suppression of NRF2 antioxidant defenses plays an essential role in the development of salt-induced oxidant stress, endothelial dysfunction, and microvessel rarefaction in normotensive rats and emphasize the potential therapeutic benefits of directly upregulating NRF2-mediated antioxidant defenses to ameliorate vascular oxidant stress in humans. PMID:26637559

  14. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  15. Electroporation of Brain Endothelial Cells on Chip toward Permeabilizing the Blood-Brain Barrier

    PubMed Central

    Bonakdar, Mohammad; Wasson, Elisa M.; Lee, Yong W.; Davalos, Rafael V.

    2016-01-01

    The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway. PMID:26789772

  16. Electroporation of Brain Endothelial Cells on Chip toward Permeabilizing the Blood-Brain Barrier.

    PubMed

    Bonakdar, Mohammad; Wasson, Elisa M; Lee, Yong W; Davalos, Rafael V

    2016-01-19

    The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway.

  17. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells.

    PubMed

    Pan, Liangli; Liu, Chenyang; Kong, Yanan; Piao, Zhengguo; Cheng, Biao

    2016-06-16

    It is widely known that the β-adrenergic receptor (AR) blocker (propranolol) inhibits human endothelial cell (EC) angiogenesis in vitro, but how the α-AR antagonist (phentolamine) affects human EC angiogenesis has not yet been studied. Here, we show for the first time that both human dermal microvascular ECs (HDMECs) and human brain microvascular ECs (HBMECs) express α-ARs. Moreover, our results indicate that phentolamine inhibits the proliferation, migration, and tubulogenesis of HDMECs and HBMECs. Finally, VEGFR-2 and Ang1/2 expression of HDMECs was suppressed by phentolamine. Together, these results indicate that phentolamine impairs several critical events of neovascularization, and α-ARs, as well as the VEGF/VEGFR-2 and Ang/Tie-2 signaling pathways, may be involved in these processes. Our results suggest a novel therapeutic strategy for the use of α-blockers in the treatment of human angiogenesis-dependent diseases.

  18. Endothelial cells and the IGF system.

    PubMed

    Bach, Leon A

    2015-02-01

    Endothelial cells line blood vessels and modulate vascular tone, thrombosis, inflammatory responses and new vessel formation. They are implicated in many disease processes including atherosclerosis and cancer. IGFs play a significant role in the physiology of endothelial cells by promoting migration, tube formation and production of the vasodilator nitric oxide. These actions are mediated by the IGF1 and IGF2/mannose 6-phosphate receptors and are modulated by a family of high-affinity IGF binding proteins. IGFs also increase the number and function of endothelial progenitor cells, which may contribute to protection from atherosclerosis. IGFs promote angiogenesis, and dysregulation of the IGF system may contribute to this process in cancer and eye diseases including retinopathy of prematurity and diabetic retinopathy. In some situations, IGF deficiency appears to contribute to endothelial dysfunction, whereas IGF may be deleterious in others. These differences may be due to tissue-specific endothelial cell phenotypes or IGFs having distinct roles in different phases of vascular disease. Further studies are therefore required to delineate the therapeutic potential of IGF system modulation in pathogenic processes.

  19. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration

    PubMed Central

    Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain

    2016-01-01

    Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916

  20. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-06-02

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells.

  1. [Endothelial cell apoptosis in erectile dysfunction].

    PubMed

    Jiang, Rui

    2012-10-01

    Erectile dysfunction (ED) is one of the most common male diseases, which seriously affects the patient's quality of life. The risk factors of ED include aging, diabetes, hypertension, hyperlipidemia, and unhealthy lifestyle, and its exact mechanism remains unclear. The apoptosis of endothelial cells in the corpus cavernosum penis may reduce NOS activity, block NO synthesis, and affect penile erection, and the mechanisms of their apoptosis vary with different causes of ED. This article updates the relationship between the apoptosis of endothelial cells and the development of ED.

  2. The effects of adiponectin and leptin on human endothelial cell proliferation: a live-cell study.

    PubMed

    Alvarez, Granada; Visitación Bartolomé, M; Miana, María; Jurado-López, Raquel; Martín, Ruben; Zuluaga, Pilar; Martinez-Martinez, Ernesto; Nieto, M Luisa; Alvarez-Sala, Luis A; Millán, Jesús; Lahera, Vicente; Cachofeiro, Victoria

    2012-01-01

    The effect of adiponectin and leptin on the proliferation of the human microvascular endothelial cell line (HMEC-1) was studied in the absence or presence of fetal bovine serum (FBS). The participation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt (PI-3K/Akt) pathways in this effect were evaluated. We studied the effect of both adipokines on the motility, mitosis, proliferation and cell death processes of HMEC-1 cells using live-cell imaging techniques. Adiponectin but not leptin further increased the proliferative effect induced by FBS on HMEC-1. This effect seems to be the consequence of an increase in the mitotic index in adiponectin-treated cells when compared to untreated ones. The presence of either the mitogen-activated protein kinase (MAPK) inhibitor (PD98059), or PI-3K inhibitor (LY294002), reduced the effect of adiponectin in a dose-dependent manner. Neither adipokine was able to affect HMEC-1 proliferation in FBS-free conditions. Duration of mitosis, cell motility and the cell death process were similar in all conditions. These data suggest that adiponectin and leptin exert different effects on endothelial cell function. Adiponectin was able to potentiate proliferation of HMEC-1. This effect involves the activation of both PI3-K/Akt and ERK/MAPK pathways. However, it seems to exert minimal effects on HMEC-1 function in the case of leptin.

  3. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes.

  4. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells.

    PubMed

    Ramirez, Servio H; Potula, Raghava; Fan, Shongshan; Eidem, Tess; Papugani, Anil; Reichenbach, Nancy; Dykstra, Holly; Weksler, Babette B; Romero, Ignacio A; Couraud, Pierre O; Persidsky, Yuri

    2009-12-01

    Methamphetamine (METH), a potent stimulant with strong euphoric properties, has a high abuse liability and long-lasting neurotoxic effects. Recent studies in animal models have indicated that METH can induce impairment of the blood-brain barrier (BBB), thus suggesting that some of the neurotoxic effects resulting from METH abuse could be the outcome of barrier disruption. In this study, we provide evidence that METH alters BBB function through direct effects on endothelial cells and explore possible underlying mechanisms leading to endothelial injury. We report that METH increases BBB permeability in vivo, and exposure of primary human brain microvascular endothelial cells (BMVEC) to METH diminishes the tightness of BMVEC monolayers in a dose- and time-dependent manner by decreasing the expression of cell membrane-associated tight junction (TJ) proteins. These changes were accompanied by the enhanced production of reactive oxygen species, increased monocyte migration across METH-treated endothelial monolayers, and activation of myosin light chain kinase (MLCK) in BMVEC. Antioxidant treatment attenuated or completely reversed all tested aspects of METH-induced BBB dysfunction. Our data suggest that BBB injury is caused by METH-mediated oxidative stress, which activates MLCK and negatively affects the TJ complex. These observations provide a basis for antioxidant protection against brain endothelial injury caused by METH exposure.

  5. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes

    PubMed Central

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E.; Sheibani, Nader

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes. PMID:23077100

  6. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling

    PubMed Central

    Skaria, Tom; Burgener, Julia; Bachli, Esther; Schoedon, Gabriele

    2016-01-01

    Microvascular leakage due to endothelial barrier dysfunction is a prominent feature of T helper 2 (Th2) cytokine mediated allergic inflammation. Interleukin-4 (IL-4) is a potent Th2 cytokine, known to impair the barrier function of endothelial cells. However, the effectors mediating IL-4 induced cytoskeleton remodeling and consequent endothelial barrier dysfunction remain poorly defined. Here we have used whole genome transcriptome profiling and gene ontology analyses to identify the genes and processes regulated by IL-4 signaling in human coronary artery endothelial cells (HCAEC). The study revealed Wnt5A as an effector that can mediate actin cytoskeleton remodeling in IL-4 activated HCAEC through the regulation of LIM kinase (LIMK) and Cofilin (CFL). Following IL-4 treatment, LIMK and CFL were phosphorylated, thereby indicating the possibility of actin stress fiber formation. Imaging of actin showed the formation of stress fibers in IL-4 treated live HCAEC. Stress fiber formation was notably decreased in the presence of Wnt inhibitory factor 1 (WIF1). Non-invasive impedance measurements demonstrated that IL-4 increased the permeability and impaired the barrier function of HCAEC monolayers. Silencing Wnt5A significantly reduced permeability and improved the barrier function of HCAEC monolayers upon IL-4 treatment. Our study identifies Wnt5A as a novel marker of IL-4 activated vascular endothelium and demonstrates a critical role for Wnt5A in mediating IL-4 induced endothelial barrier dysfunction. Wnt5A could be a potential therapeutic target for reducing microvascular leakage and edema formation in Th2 driven inflammatory diseases. PMID:27214384

  7. ERG is a novel and reliable marker for endothelial cells in central nervous system tumors.

    PubMed

    Haber, Matthew A; Iranmahboob, Amir; Thomas, Cheddhi; Liu, Mengling; Najjar, Amanda; Zagzag, David

    2015-01-01

    ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization.

  8. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis.

  9. Generation and Characterization of Telomerase-Transfected Human Lymphatic Endothelial Cells with an Extended Life Span

    PubMed Central

    Nisato, Riccardo E.; Harrison, Jillian A.; Buser, Raphaele; Orci, Lelio; Rinsch, Chris; Montesano, Roberto; Dupraz, Philippe; Pepper, Michael S.

    2004-01-01

    The study of lymphatic endothelial cells and lymphangiogenesis has, in the past, been hampered by the lack of lymphatic endothelial-specific markers. The recent discovery of several such markers has permitted the isolation of lymphatic endothelial cells (LECs) from human skin. However, cell numbers are limited and purity is variable with the different isolation procedures. To overcome these problems, we have transfected human dermal microvascular endothelial cells (HDMVECs) with a retrovirus containing the coding region of human telomerase reverse transcriptase (hTERT), and have produced a cell line, hTERT-HDLEC, with an extended lifespan. hTERT-HDLEC exhibit a typical cobblestone morphology when grown in culture, are contact-inhibited, and express endothelial cell-specific markers. hTERT-HDLEC also express the recognized lymphatic markers, Prox-1, LYVE-1 and podoplanin, as well as integrin α9, but do not express CD34. They also form tube-like structures in three-dimensional collagen gels when stimulated with vascular endothelial growth factors -A and -C. Based on these currently recognized criteria, these cells are LEC. Surprisingly, we also found that the widely studied HMEC-1 cell line expresses recognized lymphatic markers; however, these cells are also CD34-positive. In summary, the ectopic expression of hTERT increases the life span of LECs and does not affect their capacity to form tube-like structures in a collagen matrix. The production and characterization of hTERT-HDLEC will facilitate the study of the properties of lymphatic endothelium in vitro. PMID:15215158

  10. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium.

    PubMed

    Steiner, Oliver; Coisne, Caroline; Cecchelli, Roméo; Boscacci, Rémy; Deutsch, Urban; Engelhardt, Britta; Lyck, Ruth

    2010-10-15

    Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.

  11. Induction of Apoptosis in Tumor-Associated Endothelial Cells and Therapy of Orthotopic Human Pancreatic Carcinoma in Nude Mice1

    PubMed Central

    Yokoi, Kenji; Kim, Sun-Jin; Thaker, Premal; Yazici, Sertac; Nam, Do-Hyun; He, Junqin; Sasaki, Takamitsu; Chiao, Paul J; Sclabas, Guido M; Abbruzzese, James L; Hamilton, Stanley R; Fidler, Isaiah J

    2005-01-01

    Abstract Although gemcitabine has been accepted as the first-line chemotherapeutic reagent for advanced pancreatic cancer, improvement of response rate and survival is not sufficient and patients often develop resistance. We hypothesized that the inhibition of phosphorylation of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) on tumor cells and tumor-associated endothelial cells, combined with gemcitabine, would overcome the resistance to gemcitabine in orthotopic pancreatic tumor animal model. L3.6pl, human pancreatic cancer cells growing in the pancreas, and tumor-associated endothelial cells in microorgan environment highly expressed phosphorylated EGFR, VEGFR, and Akt, which regulates antiapoptotic mechanism. Oral administration of AEE788 (dual tyrosine kinase inhibitor against EGFR and VEGFR) inhibited the phosphorylation of EGFR, VEGFR, and Akt on tumor-associated endothelial cells as well as tumor cells. Although intraperitoneal (i.p.) injection of gemcitabine showed limited inhibitory effect on tumor growth, combination with AEE788 and gemcitabine produced nearly 95% inhibition of tumor growth in parallel with a high level of apoptosis on tumor cells and tumor-associated endothelial cells, and decreased microvascular density and proliferation rate. Collectively, these data indicate that dual inhibition of phosphorylation of EGFR and VEGFR, in combination with gemcitabine, produces apoptosis of tumor-associated endothelial cells and significantly suppresses human pancreatic cancer in nude mice. PMID:16026649

  12. Regulation of endothelial cell differentiation and specification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all bl...

  13. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  14. Endothelial cells synthesize and process apolipoprotein B.

    PubMed

    Sivaram, P; Vanni-Reyes, T; Goldberg, I J

    1996-06-21

    We reported previously that a 116-kDa lipoprotein lipase (LPL)-binding protein from endothelial cells has sequence homology to the amino-terminal region of apolipoprotein (apo) B. We now tested whether endothelial cells synthesize apoB mRNA and protein. Primers were designed to the human apoB cDNA sequence and reverse transcription polymerase chain reaction was performed using total RNA isolated from bovine and human endothelial cells. With primers to the 5' region of the apoB mRNA (amino-terminal region of apoB protein) expected size PCR products were generated from both bovine and human endothelial cells as well as from mouse liver RNA, which was used as a control. Primers designed to the 3' region of apoB mRNA generated PCR products from human endothelial cells and HepG2 cells but not from bovine or mouse cells. These data suggest that endothelial cells contain full-length apoB mRNA and that the 5' or the amino-terminal region of apoB is highly conserved from mouse to human. This was confirmed by direct sequencing of the mouse and bovine PCR products. To test whether apoB protein was produced, bovine endothelial cell proteins were metabolically labeled with [35S]methionine/cysteine or [3H]leucine and immunoprecipitated with anti-human apoB antibodies. Using extracts from cells labeled for 1 h, monoclonal antibody 47, directed to the low density lipoprotein receptor binding region of apoB, precipitated a protein of approximate molecular mass 550,000, the size of full-length apoB. Immunoprecipitation of the 550-kDa protein was abolished in the presence of added unlabeled low density lipoprotein. From cells labeled for 16 h, a 116-kDa protein was immunoprecipitated by polyclonal anti-apoB antibodies. This protein was partly released from cells by heparin treatment. Pulse-chase analysis showed that the 116-kDa fragment appeared at the same time as the full-length apoB began disappearing. The immunoprecipitated 116-kDa fragment also bound labeled LPL on ligand blot

  15. Endothelial cell promotion of early liver and pancreas development.

    PubMed

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  16. Engineered microvasculature in PDMS networks using endothelial cells derived from human induced pluripotent stem cells.

    PubMed

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Xiao, Yang; Han, Edward; Aryal, Binod; Zhou, Jing; Fernandez-Hernando, Carlos; Qyang, Yibing; Hirschi, Karen K; Niklason, Laura E

    2017-03-09

    In this study, we used a PDMS-based platform for the generation of intact, perfusioncompetent microvessel networks in vitro. COMSOL Multiphysics, a finite element analysis and simulation software package, was used to obtain simulated velocity, pressure, and shear stress profiles. Transgene-free human iPSCs were differentiated into partially arterialized endothelial cells (hiPSC-ECs) in 5 days under completely chemically defined conditions, using the small molecule GSK3β inhibitor CHIR99021 and thoroughly characterized for functionality and arteriallike marker expression. These cells, along with primary human umbilical vein endothelial cells (HUVECs), were seeded in the PDMS system to generate microvascular networks that were subjected to shear stress. Engineered microvessels had patent lumens and expressed VE-cadherin along their periphery. Shear stress caused by flowing medium increased the secretion of nitric oxide (NO), caused ECs to align and to re-distribute actin filaments parallel to the direction of the laminar flow. Shear stress also caused significant increases in gene expression for arterial markers Notch1 and EphrinB2, as well as anti-thrombotic markers KLF-2/KLF-4. These changes in response to shear stress in the microvascular platform were observed in hiPSC-EC microvessels, but not in microvessels that were derived from HUVECs, which indicated that hiPSC-ECs may be more plastic in modulating their phenotype under flow than are HUVECs. Taken together, we demonstrate the feasibly of generating intact, engineered microvessels in vitro, which replicate some of the key biological features of native microvessels.

  17. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability

    PubMed Central

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V.; Mayeux, Philip R.; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis. PMID:26956613

  18. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability.

    PubMed

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V; Mayeux, Philip R; Kilic, Fusun

    2016-03-09

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis.

  19. Angiogenesis and collagen type IV expression in different endothelial cell culture systems.

    PubMed

    Bahramsoltani, M; Slosarek, I; De Spiegelaere, W; Plendl, J

    2014-04-01

    In vitro angiogenesis assays constitute an important tool for studying the mechanisms of angiogenesis and for identification of pro- and anti-angiogenic substances. Therefore, endothelial cell and media systems used for in vitro angiogenesis assays are required to mimic the angiogenic process in vivo including endothelial capability to express collagen type IV as a component of the basement membrane. In this study, the expression of collagen type IV and its α chains (α1-6) was investigated in different endothelial cell culture systems in vitro qualitatively and quantitatively. These systems included four different batches of microvascular endothelial cells derived from the human skin, heart and lung, from which only two batches were found to be angiogenic and two batches were classified as non-angiogenic. Distribution of the transcripts of the α chains of collagen type IV was similar in all cell and media systems investigated. However, secretion and deposition of a stable extracellular network of collagen type IV could only be observed in the angiogenic cultures. In conclusion, the consecutive steps of the angiogenic cascade in vivo as well as in vitro depend on an increasing secretion and subsequent extracellular deposition of collagen type IV.

  20. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease.

    PubMed

    Camus, Stéphane M; De Moraes, João A; Bonnin, Philippe; Abbyad, Paul; Le Jeune, Sylvain; Lionnet, François; Loufrani, Laurent; Grimaud, Linda; Lambry, Jean-Christophe; Charue, Dominique; Kiger, Laurent; Renard, Jean-Marie; Larroque, Claire; Le Clésiau, Hervé; Tedgui, Alain; Bruneval, Patrick; Barja-Fidalgo, Christina; Alexandrou, Antigoni; Tharaux, Pierre-Louis; Boulanger, Chantal M; Blanc-Brude, Olivier P

    2015-06-11

    Intravascular hemolysis describes the relocalization of heme and hemoglobin (Hb) from erythrocytes to plasma. We investigated the concept that erythrocyte membrane microparticles (MPs) concentrate cell-free heme in human hemolytic diseases, and that heme-laden MPs have a physiopathological impact. Up to one-third of cell-free heme in plasma from 47 patients with sickle cell disease (SCD) was sequestered in circulating MPs. Erythrocyte vesiculation in vitro produced MPs loaded with heme. In silico analysis predicted that externalized phosphatidylserine (PS) in MPs may associate with and help retain heme at the cell surface. Immunohistology identified Hb-laden MPs adherent to capillary endothelium in kidney biopsies from hyperalbuminuric SCD patients. In addition, heme-laden erythrocyte MPs adhered and transferred heme to cultured endothelial cells, inducing oxidative stress and apoptosis. In transgenic SAD mice, infusion of heme-laden MPs triggered rapid vasoocclusions in kidneys and compromised microvascular dilation ex vivo. These vascular effects were largely blocked by heme-scavenging hemopexin and by the PS antagonist annexin-a5, in vitro and in vivo. Adversely remodeled MPs carrying heme may thus be a source of oxidant stress for the endothelium, linking hemolysis to vascular injury. This pathway might provide new targets for the therapeutic preservation of vascular function in SCD.

  1. Dose dependent effects of platelet derived chondroitinsulfate A on the binding of CCL5 to endothelial cells

    PubMed Central

    Weingart, Christian; Nelson, Peter J; Krämer, Bernhard K; Mack, Matthias

    2008-01-01

    Background Chemokines immobilized on endothelial cells play a central role in the induced firm adhesion and transendothelial migration of leukocytes. Activation of platelets at sites of vascular injury is considered to support leukocyte adhesion and extravasation. However, activated platelets also secrete soluble glycosaminoglycans that can interfere with immobilization of chemokines. We therefore analyzed the impact of platelet derived glycosaminoglycans on the immobilization of the chemokine CCL5 (RANTES) on human microvascular endothelial cells and their influence on CCL5-CCR5 interactions. Results We confirm that undiluted serum in contrast to plasma decreases binding of CCL5 to endothelial cells. However, when lower concentrations of serum were used, CCL5-presentation on endothelial cells was markedly enhanced. This enhancement was neutralized if serum was digested with chondroinitase ABC. Using different chondroitinsulfate-subtypes we demonstrate that chondroitinsulfate A mediates the enhanced presentation of CCL5 on endothelial cells, whereas chondroitinsulfate B/C even at low concentrations block CCL5 binding. CCR5 downregulation on CCR5-transfected CHO cells or human monocytes is increased by preincubation of CCL5 with serum or chondroitinsulfate A. Conclusion We show that chondroitinsulfate A released from platelets increases the binding of chemokines to endothelial cells and supports receptor internalization in a dose dependent manner. These data help to understand the proinflammatory effects of activated platelets. PMID:19068144

  2. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  3. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  4. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells

    PubMed Central

    2010-01-01

    Background Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Results Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Conclusions Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined

  5. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  6. The actin cytoskeleton in endothelial cell phenotypes

    PubMed Central

    Prasain, Nutan; Stevens, Troy

    2009-01-01

    Endothelium forms a semi-permeable barrier that separates blood from the underlying tissue. Barrier function is largely determined by cell-cell and cell-matrix adhesions that define the limits of cell borders. Yet, such cell-cell and cell-matrix tethering is critically reliant upon the nature of adherence within the cell itself. Indeed, the actin cytoskeleton fulfills this essential function, to provide a strong, dynamic intracellular scaffold that organizes integral membrane proteins with the cell’s interior, and responds to environmental cues to orchestrate appropriate cell shape. The actin cytoskeleton is comprised of three distinct, but interrelated structures, including actin cross-linking of spectrin within the membrane skeleton, the cortical actin rim, and actomyosin-based stress fibers. This review addresses each of these actin-based structures, and discusses cellular signals that control the disposition of actin in different endothelial cell phenotypes. PMID:19028505

  7. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature.

    PubMed

    Macdonald, Jennifer A; Murugesan, Nivetha; Pachter, Joel S

    2010-05-15

    The blood-brain barrier (BBB) refers to the network of microvessels that selectively restricts the passage of substances between the circulation and the central nervous system (CNS). This microvascular network is comprised of arterioles, capillaries and venules, yet the respective contribution of each of these to the BBB awaits clarification. In this regard, it has been postulated that brain microvascular endothelial cells (BMEC) from these different tributaries might exhibit considerable heterogeneity in form and function, with such diversity underlying unique roles in physiological and pathophysiological processes. Means to begin exploring such endothelial differences in situ, free from caveats associated with cell isolation and culturing procedures, are crucial to comprehending the nature and treatment of CNS diseases with vascular involvement. Here, the recently validated approach of immuno-laser capture microdissection (immuno-LCM) coupled to quantitative real-time PCR (qRT-PCR) was used to analyze gene expression patterns of BMEC retrieved in situ from either capillaries or venules. From profiling 87 genes known to play a role in BBB function and/or be enriched in isolated brain microvessels, results imply that most BBB properties reside in both segments, but that capillaries preferentially express some genes related to solute transport, while venules tend toward higher expression of an assortment of genes involved in inflammatory-related tasks. Fuller appreciation of such heterogeneity will be critical for efficient therapeutic targeting of the endothelium and the management of CNS disease.

  8. Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion

    PubMed Central

    Kataoka, Noriyuki; Iwaki, Kanso; Hashimoto, Ken; Mochizuki, Seiichi; Ogasawara, Yasuo; Sato, Masaaki; Tsujioka, Katsuhiko; Kajiya, Fumihiko

    2002-01-01

    The interaction between monocytes and endothelial cells is considered to play a major role in the early stage of atherosclerosis, and the involved endothelial cell micromechanics may provide us with important aspects of atherogenesis. In the present study, we evaluated (i) the endothelial cell-to-cell and cell-to-substrate gaps with the electric cell-substrate impedance sensing system, which can detect the nanometer order changes of cell-to-cell and cell-to-substrate distances separately, and (ii) the endothelial cell micromechanical properties with an atomic force microscope after application of monocytes to endothelial cells. Application of monocytic THP-1 cells to IL-1β-stimulated human umbilical vein endothelial cells immediately decreased the electrical resistance of the endothelial cell-to-substrate (increase of the cell-to-substrate gap), whereas the endothelial cell-to-cell resistance (cell-to-cell gap) did not change. The elastic modulus of the endothelial cells decreased after 2-h monocyte application, indicating an increase of endothelial cell deformability. In conclusion, the interaction of the monocytes to the endothelial cells reduced the adhesiveness to the substrate and increased the deformability of endothelial cells. These changes in the adhesiveness and the deformability may facilitate migration of monocytes, a key process of atherogenesis in the later stage. PMID:12434019

  9. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells.

    PubMed

    Zhu, Thant S; Costello, Mark A; Talsma, Caroline E; Flack, Callie G; Crowley, Jessica G; Hamm, Lisa L; He, Xiaobing; Hervey-Jumper, Shawn L; Heth, Jason A; Muraszko, Karin M; DiMeco, Francesco; Vescovi, Angelo L; Fan, Xing

    2011-09-15

    One important function of endothelial cells in glioblastoma multiforme (GBM) is to create a niche that helps promote self-renewal of cancer stem-like cells (CSLC). However, the underlying molecular mechanism for this endothelial function is not known. Since activation of NOTCH signaling has been found to be required for propagation of GBM CSLCs, we hypothesized that the GBM endothelium may provide the source of NOTCH ligands. Here, we report a corroboration of this concept with a demonstration that NOTCH ligands are expressed in endothelial cells adjacent to NESTIN and NOTCH receptor-positive cancer cells in primary GBMs. Coculturing human brain microvascular endothelial cells (hBMEC) or NOTCH ligand with GBM neurospheres promoted GBM cell growth and increased CSLC self-renewal. Notably, RNAi-mediated knockdown of NOTCH ligands in hBMECs abrogated their ability to induce CSLC self-renewal and GBM tumor growth, both in vitro and in vivo. Thus, our findings establish that NOTCH activation in GBM CSLCs is driven by juxtacrine signaling between tumor cells and their surrounding endothelial cells in the tumor microenvironment, suggesting that targeting both CSLCs and their niche may provide a novel strategy to deplete CSLCs and improve GBM treatment.

  10. Collective cell motion in endothelial monolayers

    PubMed Central

    Szabó, A.; Ünnep, R.; Méhes, E.; Twal, W. O.; Argraves, S. W.; Cao, Y.; Czirók, A.

    2011-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations, and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups, and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior. PMID:21076204

  11. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  12. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    PubMed

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  13. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism

    PubMed Central

    2014-01-01

    The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells. PMID:25250177

  14. Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay.

    PubMed

    Unger, Ronald E; Peters, Kirsten; Sartoris, Anne; Freese, Christian; Kirkpatrick, C James

    2014-03-01

    Endotoxin, also known as lipopolysaccharide (LPS) produced by bacteria can be present in any liquid or on any biomaterial even if the material is sterile. Endotoxin in mammals can cause fever, inflammation, cell and tissue damage and irreversible septic shock and death. In the body, endothelial cells making up the blood vasculature and endothelial cells in vitro rapidly react to minute amounts of endotoxin resulting in a rapid induction of the cell adhesion molecule E-selectin. In this study we have used immunofluorescent staining to evaluate the expression of E-selectin on human microvascular endothelial cells from the skin (HDMEC) and human umbilical vein endothelial cells (HUVEC) exposed to various concentrations of LPS. In addition, the sensitivity of detection was compared with the most widely used assay for the presence of endotoxin, the Limulus Amebocyte Lysate assay (LAL). The detection of E-selectin on endothelial cells in the presence of LPS for 4 h was found to be at least as sensitive in detecting the same concentration using the LAL assay. A cell adhesion molecule-enzyme immunosorbent assay was also developed and used to quantify LPS using the endothelial cell model. A comparison of LAL and the immunofluorescent staining method was carried out with solutions, nanoparticles, biomaterial extracts and endothelial cells grown directly on biomaterials. Under all conditions, the endothelial/E-selectin model system was positive for the test samples that were positive by LAL. Thus, we propose the use of this highly sensitive, rapid, reproducible assay for the routine testing of endotoxin in all steps in the manufacturing process of materials destined for use in humans. This can give a rapid feedback and localization of bacterial contamination sources with the LAL being reserved for the testing of the final product.

  15. Circulating endothelial cells: a new biomarker of endothelial dysfunction in hematological diseases.

    PubMed

    Gendron, Nicolas; Smadja, David M

    2016-08-01

    The endothelium and its integrity are in the center of numerous cardiovascular, pulmonary and tumoral diseases. Several studies identified different circulating cellular sub-populations, which allow a noninvasive exploration of endothelial dysfunction. Furthermore, angiogenesis plays a major role in the biology of benign and malignant hematologic diseases. Among these biomarkers, circulating endothelial cells could be considered as a marker of endothelial injury and/or endothelial activation as well as vascular remodeling, whereas circulating endothelial progenitor cells would be only involved in the vascular regeneration. In the future, the quantification of circulating endothelial cells in many diseases could be a noninvasive biomarker used in diagnosis, prognostic and therapeutic follow-up of lung vasculopathy and/or residual disease of hematological malignancies.

  16. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation.

    PubMed

    Chaar, Vicky; Laurance, Sandrine; Lapoumeroulie, Claudine; Cochet, Sylvie; De Grandis, Maria; Colin, Yves; Elion, Jacques; Le Van Kim, Caroline; El Nemer, Wassim

    2014-04-18

    Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.

  17. Potentiation and tolerance of toll-like receptor priming in human endothelial cells.

    PubMed

    Koch, Stephen R; Lamb, Fred S; Hellman, Judith; Sherwood, Edward R; Stark, Ryan J

    2017-02-01

    Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells (HUVECs) and neonatal human dermal microvascular endothelial cells (HMVECs). Cells were primed with a combination of Poly I:C (10 μg/ml), Pam3Csk4 (10 μg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to HUVECs. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response.

  18. Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells.

    PubMed

    Martins, Tânia; Burgoyne, Thomas; Kenny, Bridget-Ann; Hudson, Natalie; Futter, Clare E; Ambrósio, António F; Silva, Ana P; Greenwood, John; Turowski, Patric

    2013-02-01

    Methamphetamine's (METH) neurotoxicity is thought to be in part due to its ability to induce blood-brain barrier (BBB) dysfunction. Here, we investigated the effect of METH on barrier properties of cultured rat primary brain microvascular endothelial cells (BMVECs). Transendothelial flux doubled in response to METH, irrespective of the size of tracer used. At the same time, transendothelial electrical resistance was unchanged as was the ultrastructural appearance of inter-endothelial junctions and the distribution of key junction proteins, suggesting that METH promoted vesicular but not junctional transport. Indeed, METH significantly increased uptake of horseradish peroxidase into vesicular structures. METH also enhanced transendothelial migration of lymphocytes indicating that the endothelial barrier against both molecules and cells was compromised. Barrier breakdown was only observed in response to METH at low micromolar concentrations, with enhanced vesicular uptake peaking at 1 μM METH. The BMVEC response to METH also involved rapid activation of endothelial nitric oxide synthase and its inhibition abrogated METH-induced permeability and lymphocyte migration, indicating that nitric oxide was a key mediator of BBB disruption in response to METH. This study underlines the key role of nitric oxide in BBB function and describes a novel mechanism of drug-induced fluid-phase transcytosis at the BBB.

  19. Radiation induced endothelial cell retraction in vitro: correlation with acute pulmonary edema.

    PubMed

    Onoda, J M; Kantak, S S; Diglio, C A

    1999-01-01

    We determined the effects of low dose radiation (<200 cGy) on the cell-cell integrity of confluent monolayers of pulmonary microvascular endothelial cells (PMEC). We observed dose- and time-dependent reversible radiation induced injuries to PMEC monolayers characterized by retraction (loss of cell-cell contact) mediated by cytoskeletal F-actin reorganization. Radiation induced reorganization of F-actin microfilament stress fibers was observed > or =30 minutes post irradiation and correlated positively with loss of cell-cell integrity. Cells of irradiated monolayers recovered to form contact inhibited monolayers > or =24 hours post irradiation; concomitantly, the depolymerized microfilaments organized to their pre-irradiated state as microfilament stress fibers arrayed parallel to the boundaries of adjacent contact-inhibited cells. Previous studies by other investigators have measured slight but significant increases in mouse lung wet weight >1 day post thoracic or whole body radiation (> or =500 cGy). Little or no data is available concerning time intervals <1 day post irradiation, possibly because of the presumption that edema is mediated, at least in part, by endothelial cell death or irreversible loss of barrier permeability functions which may only arise 1 day post irradiation. However, our in vitro data suggest that loss of endothelial barrier function may occur rapidly and at low dose levels (< or =200 cGy). Therefore, we determined radiation effects on lung wet weight and observed significant increases in wet weight (standardized per dry weight or per mouse weight) in < or =5 hours post thoracic exposure to 50 200 cGy x-radiation. We suggest that a single fraction of radiation even at low dose levels used in radiotherapy, may induce pulmonary edema by a reversible loss of endothelial cell-cell integrity and permeability barrier function.

  20. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival.

    PubMed

    Furlow, Paul W; Zhang, Steven; Soong, T David; Halberg, Nils; Goodarzi, Hani; Mangrum, Creed; Wu, Y Gloria; Elemento, Olivier; Tavazoie, Sohail F

    2015-07-01

    During metastatic progression, circulating cancer cells become lodged within the microvasculature of end organs, where most die from mechanical deformation. Although this phenomenon was first described over a half-century ago, the mechanisms enabling certain cells to survive this metastasis-suppressive barrier remain unknown. By applying whole-transcriptome RNA-sequencing technology to isogenic cancer cells of differing metastatic capacities, we identified a mutation encoding a truncated form of the pannexin-1 (PANX1) channel, PANX1(1-89), as recurrently enriched in highly metastatic breast cancer cells. PANX1(1-89) functions to permit metastatic cell survival during traumatic deformation in the microvasculature by augmenting ATP release from mechanosensitive PANX1 channels activated by membrane stretch. PANX1-mediated ATP release acts as an autocrine suppressor of deformation-induced apoptosis through P2Y-purinergic receptors. Finally, small-molecule therapeutic inhibition of PANX1 channels is found to reduce the efficiency of breast cancer metastasis. These data suggest a molecular basis for metastatic cell survival on microvasculature-induced biomechanical trauma.

  1. Selenate Enhances STAT3 Transcriptional Activity in Endothelial Cells: Differential Actions of Selenate and Selenite on LIF Cytokine Signaling and Cell Viability

    PubMed Central

    Alturkmani, Hani J.; Zgheib, Carlos; Zouein, Fouad A.; Alshaaer, Nour Eddin F.; Kurdi, Mazen; Booz, George W.

    2012-01-01

    Sodium selenate may have utility in treating Alzheimer’s disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer’s and diabetes may be offset by a proinflammatory action on endothelial cells. PMID:22366233

  2. Selenate enhances STAT3 transcriptional activity in endothelial cells: differential actions of selenate and selenite on LIF cytokine signaling and cell viability.

    PubMed

    Alturkmani, Hani J; Zgheib, Carlos; Zouein, Fouad A; Alshaaer, Nour Eddin F; Kurdi, Mazen; Booz, George W

    2012-04-01

    Sodium selenate may have utility in treating Alzheimer's disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer's and diabetes may be offset by a proinflammatory action on endothelial cells.

  3. Adipose stromal vascular fraction cell construct sustains coronary microvascular function after acute myocardial infarction

    PubMed Central

    LeBlanc, Amanda J.; Touroo, Jeremy S.; Hoying, James B.

    2012-01-01

    A three-dimensional tissue construct was created using adipose-derived stromal vascular fraction (SVF) cells and evaluated as a microvascular protection treatment in a myocardial infarction (MI) model. This study evaluated coronary blood flow (BF) and global left ventricular function after MI with and without the SVF construct. Fischer-344 rats were separated into four groups: sham operation (sham), MI, MI Vicryl patch (no cells), and MI SVF construct (MI SVF). SVF cells were labeled with green fluorescent protein (GFP). Immediately postinfarct, constructs were implanted onto the epicardium at the site of ischemia. Four weeks postsurgery, the coronary BF reserve was significantly decreased by 67% in the MI group and 75% in the MI Vicryl group compared with the sham group. The coronary BF reserve of the sham and MI SVF groups in the area at risk was not significantly different (sham group: 83 ± 22% and MI SVF group: 57 ± 22%). Griffonia simplicifolia I and GFP-positive SVF immunostaining revealed engrafted SVF cells around microvessels in the infarct region 4 wk postimplant. Overall heart function, specifically ejection fraction, was significantly greater in MI SVF hearts compared with MI and MI Vicryl hearts (MI SVF: 66 ± 4%, MI: 37 ± 8%, and MI Vicryl: 29 ± 6%). In conclusion, adipose-derived SVF cells can be used to construct a novel therapeutic modality for treating microvascular instability and ischemia through implantation on the epicardial surface of the heart. The SVF construct implanted immediately after MI not only maintains heart function but also sustains microvascular perfusion and function in the infarct area by sustaining the coronary BF reserve. PMID:22140045

  4. Characterization of nicardipine hydrochloride-induced cell injury in human vascular endothelial cells.

    PubMed

    Ochi, Masanori; Kawai, Yoshiko; Tanaka, Yoshiyuki; Toyoda, Hiromu

    2015-02-01

    Nicardipine hydrochloride (NIC), a dihydropyridine calcium-channel blocking agent, has been widely used for the treatment of hypertension. Especially, nicardipine hydrochloride injection is used as first-line therapy for emergency treatment of abnormally high blood pressure. Although NIC has an attractive pharmacological profile, one of the dose-limiting factors of NIC is severe peripheral vascular injury after intravenous injection. The goal of this study was to better understand and thereby reduce NIC-mediated vascular injury. Here, we investigated the mechanism of NIC-induced vascular injury using human dermal microvascular endothelial cells (HMVECs). NIC decreased cell viability and increased percent of dead cells in a dose-dependent manner (10-30 μg/mL). Although cell membrane injury was not significant over 9 hr exposure, significant changes of cell morphology and increases in vacuoles in HMVECs were observed within 30 min of NIC exposure (30 μg/mL). Autophagosome labeling with monodansylcadaverine revealed increased autophagosomes in the NIC-treated cells, whereas caspase 3/7 activity was not increased in the NIC-treated cells (30 μg/mL). Additionally, NIC-induced reduction of cell viability was inhibited by 3-methyladenine, an inhibitor of autophagosome formation. These findings suggest that NIC causes severe peripheral venous irritation via induction of autophagic cell death and that inhibition of autophagy could contribute to the reduction of NIC-induced vascular injury.

  5. Endothelial cell permeability to water and antipyrine

    SciTech Connect

    Garrick, R.A.

    1986-03-05

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  6. Ferritin-supported lipid bilayers for triggering the endothelial cell response.

    PubMed

    Satriano, C; Lupo, G; Motta, C; Anfuso, C D; Di Pietro, P; Kasemo, B

    2017-01-01

    Hybrid nanoassemblies of ferritin and silica-supported lipid bilayers (ferritin-SLBs) have been prepared and tested for the adhesion, spreading and proliferation of retinal microvascular endothelial cells (ECs). Lipid membranes with varying surface charge were obtained by mixing cationic 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC) with zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at increasing POPC/POEPC ratios. The supported bilayer formation and their subsequent interaction processes with ferritin were studied at the pH of 7.4 at different protein concentrations, by using the quartz crystal microbalance with dissipation monitoring and by atomic force microscopy. Both kinetics and viscoelastic parameters of the protein-lipid membrane interface were scrutinized, as well as surface coverage. Phase-contrast optical microscopy analyses of the ferritin-SLBs substrates after their interaction with endothelial cells evidenced the highest cell adhesion (2-4h of incubation time) and proliferation (from 24h to 5 days) for the membranes of POPC/POEPC (75:25 ratio). Moreover, ferritin increased both cell adhesion and proliferation in comparison to control glass (respectively 1.5- and 1.75-fold) as well as proliferation in comparison to bare POPC/POEPC (95:5 ratio) (2 fold). Results are very promising in the goal of modulating the endothelial cell response through the interplay of viscoelastic/charge properties of the solid-supported membranes and the SLB-conditioned ferritin activity.

  7. Effects of the PPAR{gamma} agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse

    SciTech Connect

    Kakiuchi-Kiyota, Satoko; Vetro, Joseph A.; Suzuki, Shugo; Varney, Michelle L.; Han, Huai-Yun; Nascimento, Merielen; Pennington, Karen L.; Arnold, Lora L.; Singh, Rakesh K.; Cohen, Samuel M.

    2009-05-15

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists and PPAR{gamma}/{alpha} dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPAR{gamma} agonist, in vivo and in vitro. Troglitazone (400 and 800 mg/kg/day) induced hemangiosarcomas in mice in a 2-year bioassay. We showed that troglitazone increased endothelial cell proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses after 4 weeks of treatment. Troglitazone was cytotoxic both to human dermal microvascular endothelial cells (HMEC1) and mouse mammary fat pad microvascular endothelial cells (MFP MVEC) at high concentrations. However, MFP MVEC were more resistant to the cytotoxic effects of troglitazone based on the much lower LC{sub 50} in HMEC1 (17.4 {mu}M) compared to MFP MVEC (92.2 {mu}M). Troglitazone increased the proliferation and survival of MFP MVEC but not HMEC1 in growth factor reduced conditions. Our data demonstrate that troglitazone may induce hemangiosarcomas in mice, at least in part, through enhancement of survival and proliferation of microvascular endothelial cells. Such an effect does not occur with human cells, suggesting that human may react differently to exposure to PPAR agonists compared with mice.

  8. Glucagon-like peptide-1 preserves coronary microvascular endothelial function after cardiac arrest and resuscitation: potential antioxidant effects.

    PubMed

    Dokken, Betsy B; Piermarini, Charles V; Teachey, Mary K; Gura, Michael T; Dameff, Christian J; Heller, Brian D; Krate, Jonida; Ashgar, Aeen M; Querin, Lauren; Mitchell, Jennifer L; Hilwig, Ronald W; Kern, Karl B

    2013-02-15

    Glucagon-like peptide-1 (GLP-1) has protective effects in the heart. We hypothesized that GLP-1 would mitigate coronary microvascular and left ventricular (LV) dysfunction if administered after cardiac arrest and resuscitation (CAR). Eighteen swine were subjected to ventricular fibrillation followed by resuscitation. Swine surviving to return of spontaneous circulation (ROSC) were randomized to receive an intravenous infusion of either human rGLP-1 (10 pmol·kg(-1)·min(-1); n = 8) or 0.9% saline (n = 8) for 4 h, beginning 1 min after ROSC. CAR caused a decline in coronary flow reserve (CFR) in control animals (pre-arrest, 1.86 ± 0.20; 1 h post-ROSC, 1.3 ± 0.05; 4 h post-ROSC, 1.25 ± 0.06; P < 0.05). GLP-1 preserved CFR for up to 4 h after ROSC (pre-arrest, 1.31 ± 0.17; 1 h post-ROSC, 1.5 ± 0.01; 4 h post-ROSC, 1.55 ± 0.22). Although there was a trend toward improvement in LV relaxation in the GLP-1-treated animals, overall LV function was not consistently different between groups. 8-iso-PGF(2α), a measure of reactive oxygen species load, was decreased in post-ROSC GLP-1-treated animals [placebo, control (NS): 38.1 ± 1.54 pg/ml; GLP-1: 26.59 ± 1.56 pg/ml; P < 0.05]. Infusion of GLP-1 after CAR preserved coronary microvascular and LV diastolic function. These effects may be mediated through a reduction in oxidative stress.

  9. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.

    PubMed

    DiStefano, Peter V; Kuebel, Julia M; Sarelius, Ingrid H; Glading, Angela J

    2014-11-21

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.

  10. Cell trafficking of endothelial progenitor cells in tumor progression.

    PubMed

    de la Puente, Pilar; Muz, Barbara; Azab, Feda; Azab, Abdel Kareem

    2013-07-01

    Blood vessel formation plays an essential role in many physiologic and pathologic processes, including normal tissue growth and healing, as well as tumor progression. Endothelial progenitor cells (EPC) are a subtype of stem cells with high proliferative potential that are capable of differentiating into mature endothelial cells, thus contributing to neovascularization in tumors. In response to tumor-secreted cytokines, EPCs mobilize from the bone marrow to the peripheral blood, home to the tumor site, and differentiate to mature endothelial cells and secrete proangiogenic factors to facilitate vascularization of tumors. In this review, we summarize the expression of surface markers, cytokines, receptors, adhesion molecules, proteases, and cell signaling mechanisms involved in the different steps (mobilization, homing, and differentiation) of EPC trafficking from the bone marrow to the tumor site. Understanding the biologic mechanisms of EPC cell trafficking opens a window for new therapeutic targets in cancer.

  11. Microvesicles Derived from Inflammation-Challenged Endothelial Cells Modulate Vascular Smooth Muscle Cell Functions

    PubMed Central

    Pan, Qunwen; Liu, Hua; Zheng, Chunyan; Zhao, Yuhui; Liao, Xiaorong; Wang, Yan; Chen, Yanfang; Zhao, Bin; Lazartigues, Eric; Yang, Yi; Ma, Xiaotang

    2017-01-01

    Purpose: Microvesicles (MV) can modulate the function of recipient cells by transferring their contents. Our previous study highlighted that MV released from tumor necrosis factor-α (TNF-α) plus serum deprivation (SD)-stimulated endothelial progenitor cells, induce detrimental effects on endothelial cells. In this study, we investigated the potential effects of endothelial MV (EMV) on proliferation, migration, and apoptosis of human brain vascular smooth cells (HBVSMC). Methods: EMV were prepared from human brain microvascular endothelial cells (HBMEC) cultured in a TNF-α plus SD medium. RNase-EMV were made by treating EMV with RNase A for RNA depletion. The proliferation, apoptosis and migration abilities of HBVSMC were determined after co-culture with EMV or RNase-EMV. The Mek1/2 inhibitor, PD0325901, was used for pathway analysis. Western blot was used for analyzing the proteins of Mek1/2, Erk1/2, phosphorylation Erk1/2, activated caspase-3 and Bcl-2. The level of miR-146a-5p was measured by qRT-PCR. Results: (1) EMV significantly promoted the proliferation and migration of HBVSMC. The effects were accompanied by an increase in Mek1/2 and p-Erk1/2, which could be abolished by PD0325901; (2) EMV decreased the apoptotic rate of HBVSMC by approximately 35%, which was accompanied by cleaved caspase-3 down-regulation and Bcl-2 up-regulation; (3) EMV increased miR-146a-5p level in HBVSMC by about 2-folds; (4) RNase-treated EMV were less effective than EMV on HBVSMC activities and miR-146a-5p expression. Conclusion: EMV generated under inflammation challenge can modulate HBVSMC function and fate via their carried RNA. This is associated with activation of theMek1/2/Erk1/2 pathway and caspase-3/Bcl-2 regulation, during which miR-146a-5p may play an important role. The data suggest that EMV derived from inflammation-challenged endothelial cells are detrimental to HBVSMC homeostatic functions, highlighting potential novel therapeutic targets for vascular diseases. PMID

  12. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells

    PubMed Central

    Szabo, Csaba

    2016-01-01

    Diabetic complications are the leading cause of morbidity and mortality in diabetic patients. Elevated blood glucose contributes to the development of endothelial and vascular dysfunction, and, consequently, to diabetic micro- and macrovascular complications, because it increases the mitochondrial proton gradient and mitochondrial oxidant production. Therapeutic approaches designed to counteract glucose-induced mitochondrial reactive oxygen species (ROS) production in the vasculature are expected to show efficacy against all diabetic complications, but direct pharmacological targeting (scavenging) of mitochondrial oxidants remains challenging due to the high reactivity of some of these oxidant species. In a recent study, we have conducted a medium-throughput cell-based screening of a focused library of well-annotated pharmacologically active compounds and identified glucocorticoids as inhibitors of mitochondrial superoxide production in microvascular endothelial cells exposed to elevated extracellular glucose. The goal of the current study was to investigate the mechanism of glucocorticoids' action. Our findings show that glucocorticoids induce the expression of the mitochondrial UCP2 protein and decrease the mitochondrial potential. UCP2 silencing prevents the protective effect of the glucocorticoids on ROS production. UCP2 induction also increases the oxygen consumption and the “proton leak” in microvascular endothelial cells. Furthermore, glutamine supplementation augments the effect of glucocorticoids via further enhancing the expression of UCP2 at the translational level. We conclude that UCP2 induction represents a novel experimental therapeutic intervention in diabetic vascular complications. While direct repurposing of glucocorticoids may not be possible for the therapy of diabetic complications due to their significant side effects that develop during chronic administration, the UCP2 pathway may be therapeutically targetable by other, glucocorticoid

  13. Morphologic Plasticity and Periodicity: Porcine Cerebral Microvascular Cells in Culture

    DTIC Science & Technology

    1990-02-01

    The cells were subcultured no Bandeiraea Simplicifolia (BSA-1), Ulex europaeus ( UEA -1), earlier than 7 d by treatment with trypsin-EDTA. The Triticum...EP013, DdCUMENTATION ,AG,.) I FILE COPY! * lb. RESTRICTIVE MARKINGS 2 AA 967 -- 3. DISTRIBUTIONIAVAILAaITY OFROT _2 967 Approved for public release...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Naval Medical ResearchI (if applicable) I INaval Medical Command 6-. ADDRESS (Cty

  14. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells.

    PubMed

    Gong, Haixia; Liu, Menglin; Klomp, Jeff; Merrill, Bradley J; Rehman, Jalees; Malik, Asrar B

    2017-02-15

    Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion.

  15. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells

    PubMed Central

    Gong, Haixia; Liu, Menglin; Klomp, Jeff; Merrill, Bradley J.; Rehman, Jalees; Malik, Asrar B.

    2017-01-01

    Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion. PMID:28198371

  16. Effects of ultrasound upon endothelial cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    A number of new brain applications for therapeutic ultrasound are emerging including drug delivery through BBB opening, enhancement of angiogenesis, sonothrombolysis and neuromodulation. Safety remains important as alterations in the cytoskeleton and tight junctions of endothelial cells have been described. In this study we characterize the in vitro effects of ultrasound on cell morphology using a new human brain cell line (hCMEC/D3). Changes in ultrastructure were analyzed with antibodies against tubulin, actin and catenin. Transport was analyzed by measuring transferrin uptake. No significant changes were seen after continuous wave ultrasound treatment of hCMEC/D3 cells grown in Opticell{trade mark, serif} chambers. We could not observe disassembled actin stress fibers or variations in the microtubule network. However, severe damage occurred in cells cultured in petri dishes.

  17. Production of soluble Neprilysin by endothelial cells

    SciTech Connect

    Kuruppu, Sanjaya; Rajapakse, Niwanthi W.; Minond, Dmitriy; Smith, A. Ian

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  18. Endothelial Cell Dynamics during Anastomosis in vitro

    PubMed Central

    Diaz-Santana, Anthony; Shan, Mengrou; Stroock, Abraham D.

    2015-01-01

    Vascular anastomosis –the fusion of vessels from two distinct branches of the vascular system – represents a critical step in vascular growth under both healthy and pathological conditions, in vivo, and presents an important target for engineering of vascularized tissues, in vitro. Recent works in animal models have advanced our understanding of the molecular and cellular players in vascular anastomosis, but questions remain related to cellular dynamics and control of this process, in vitro. In this study, we exploited a three-dimensional (3-D) culture platform to examine the dynamics of endothelial cell (EC) during and after vascular anastomosis by allowing angiogenesis and vasculogenesis to proceed in parallel. We show that anastomosis occurs between sprouts formed by angiogenesis from an endothelium and tubes formed by vasculogenesis in the bulk of a 3-D matrix. This fusion leads to highly connected vessels that span from the surface of the matrix into the bulk in a manner that depends on cell density and identity. Further, we observe and analyze intermixing of endothelial cells of distinct origin (surface versus bulk) within the vessels structures that are formed; we provide evidence that the cells migrate along pre-existing vessels segments as part of this intermixing process. We conclude that anastomosis can occur between vessels emerging by angiogenesis and vasculogenesis and that this process may play an important role in contexts such as wound healing. PMID:25790315

  19. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    SciTech Connect

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-04-15

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O{sub 2}{sup {center_dot}}{sup -} generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67{sup phox} siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91{sup phox} knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47{sup phox}, p67{sup phox} and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67{sup phox} siRNA. Exposure of MPMVEC obtained from gp91{sup phox} knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly

  20. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    SciTech Connect

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  1. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  2. Nature's rheologists: Lymphatic endothelial cells control migration in response to shear stress

    NASA Astrophysics Data System (ADS)

    Fuller, Gerald; Dunn, Alex; Surya, Vinay

    2015-03-01

    Endothelial cells (ECs) line the inner surface of blood and lymphatic vessels and are sensitive to fluid flow as part of their physiological function. EC organization, migration and vessel development are profoundly influenced by shear stresses, with important implications in cardiovascular disease and tumor metastasis. How ECs sense fluid flow is a central and unanswered question in cardiovascular biology. We developed a high-throughput live-cell flow chamber that models the gradients in wall shear stress experienced by ECs in vivo. Live-cell imaging allows us to probe cellular responses to flow, most notably EC migration, which has a key role in vessel remodeling. We find that most EC subtypes, including ECs from the venous, arterial, and microvascular systems, migrate in the flow direction. In contrast, human lymphatic microvascular ECs (hLMVECs) migrate against flow and up spatial gradients in wall shear stress. Further experiments reveal that hLMVECs are sensitive to the magnitude, direction, and the local spatial gradients in wall shear stress. Lastly, recent efforts have aimed to link this directional migration to spatial gradients in cell-mediated small molecule emission that may be linked to the gradient in wall shear stress.

  3. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells.

    PubMed

    Thomsen, L B; Linemann, T; Pondman, K M; Lichota, J; Kim, K S; Pieters, R J; Visser, G M; Moos, T

    2013-10-16

    The blood-brain barrier (BBB) formed by brain capillary endothelial cells (BCECs) constitutes a firm physical, chemical, and immunological barrier, making the brain accessible to only a few percent of potential drugs intended for treatment inside the central nervous system. With the purpose of overcoming the restraints of the BBB by allowing the transport of drugs, siRNA, or DNA into the brain, a novel approach is to use superparamagnetic iron oxide nanoparticles (SPIONs) as drug carriers. The aim of this study was to investigate the ability of fluorescent SPIONs to pass through human brain microvascular endothelial cells facilitated by an external magnet. The ability of SPIONs to penetrate the barrier was shown to be significantly stronger in the presence of an external magnetic force in an in vitro BBB model. Hence, particles added to the luminal side of the in vitro BBB model were found in astrocytes cocultured at a remote distance on the abluminal side, indicating that particles were transported through the barrier and taken up by astrocytes. Addition of the SPIONs to the culture medium did not negatively affect the viability of the endothelial cells. The magnetic force-mediated dragging of SPIONs through BCECs may denote a novel mechanism for the delivery of drugs to the brain.

  4. Isolation, bulk cultivation, and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro.

    PubMed

    Nees, Stephan; Weiss, Dominik R; Senftl, Anton; Knott, Maria; Förch, Stefan; Schnurr, Maximilian; Weyrich, Peter; Juchem, Gerd

    2012-01-01

    Densely arranged pericytes engird the endothelial tube of all coronary microvessels. Since the experimental access to these abundant cells in situ is difficult, a prerequisite for broader investigation is the availability of sufficient numbers of fully differentiated pericytes in homogenous culture. To reach this goal, we applied strictly standardized cell isolation techniques, optimized culture methods and specific histological staining. Approximately 1,000-fold enriched pericytes were proteolytically detached from highly purified coronary microvascular networks (density gradient centrifugation) of eight mammalian species including human. Addition of species-autologous fetal or neonatal serum (10-20% vol/vol) was a precondition for longer term survival of homogenous pericyte cultures. This ensured optimal growth (doubling time <14 h) and full expression of pericyte-specific markers. In 3-mo, 10(10) pericytes (15 g) could be cultivated from 1 bovine heart. Pericytes could be stored in liquid N(2), recultured, and passaged repeatedly without loss of typical features. In cocultures with EC or vascular smooth muscle cells, pericytes transferred fluorescent calcein to each other and to EC via their antler-like extensions, organized angiogenetic sprouting of vessels, and rapidly activated coagulation factors X and II via tissue factor and prothrombinase. The interconnected pericytes of the coronary system are functionally closely correlated with the vascular endothelium and may play key roles in the adjustment of local blood flow, the regulation of angiogenic processes, and the induction of procoagulatory processes. Their successful bulk cultivation enables direct experimental access under defined in vitro conditions and the isolation of pericyte specific antigens for the production of specific antibodies.

  5. Post-transcriptional control of Amblyomin-X on secretion of vascular endothelial growth factor and expression of adhesion molecules in endothelial cells.

    PubMed

    Drewes, C C; Dias, R Y; Branco, V G; Cavalcante, M F; Souza, J G; Abdalla, D S P; Chudzinski-Tavassi, A M; Farsky, S H P

    2015-07-01

    Angiogenesis is a pivotal process of homeostasis and tissue repair, but it also favours neovascularisation syndromes and cancer nutrition. The chemical mediation of angiogenesis is complex, involving a balance between serine proteases and their inhibitors. We addressed the mechanisms of action of a Kunitz serine protease inhibitor (KPI) on spontaneous angiogenesis, using Amblyomin-X, a KPI designed from the cDNA library of the Amblyomma cajennense tick. Amblyomin-X treatment (10-1000 ng/10 μL; each 48 h; 3 times) reduced the number of vessels in the subcutaneous dorsal tissue of male Swiss mice, as measured by intravital microscopy, haematoxylin-eosin staining, and PECAM-1 immunofluorescence labeling. Incubation of Amblyomin-X with t-End endothelial cells, a murine endothelial microvascular lineage, did not alter cell proliferation, cell-cycle phases, necrosis and apoptosis, and the production of nitric oxide and prostaglandin E2. Nevertheless, Amblyomin-X treatment reduced t-End migration and adhesion to Matrigel(®), and inhibited the VEGF-A secretion and VCAM-1 and β3 integrin expressions by posttranscriptional pathways. Together, data herein outline novel posttranscriptional mechanisms of KPIs on endothelial cells during angiogenesis and point out the possible application of Amblyomin-X as a local inhibitor to undesired neovascularisation process.

  6. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  7. Sarcomere mechanics in capillary endothelial cells.

    PubMed

    Russell, Robert J; Xia, Shen-Ling; Dickinson, Richard B; Lele, Tanmay P

    2009-09-16

    Tension generation in endothelial cells of the aorta, spleen, and eye occurs in actin stress fibers, and is necessary for normal cell function. Sarcomeres are the tension-generating units of actin stress fibers in endothelial cells. How sarcomeres generate and maintain tension in stress fibers is not well understood. Using femtosecond laser ablation, we severed living stress fibers and measured sarcomere contraction under zero tension. The length of the sarcomere decreased in two phases: an instantaneous initial response, followed by a slower change in length attributed to myosin activity. The latter phase ceased abruptly after a minimum sarcomere length was reached, suggesting a rigid resistance that prevents further contraction. Furthermore, severed, contracted stress fibers did not relax when treated with myosin inhibitors, indicating that contracted stress fibers do not store elastic potential energy. These novel measurements combined with modeling suggest that myosin-generated forces in adjacent sarcomeres are directly in balance, and argue against sarcomere models with springlike elements in parallel with myosin contractile elements. We propose a new model for tension generation in the sarcomere, which provides a mechanistic interpretation for our observations and previous observations of inhomogeneous sarcomere contraction and apparent stress fiber viscoelastic behavior.

  8. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    PubMed Central

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  9. Asiaticoside Inhibits TNF-α-Induced Endothelial Hyperpermeability of Human Aortic Endothelial Cells.

    PubMed

    Fong, Lai Yen; Ng, Chin Theng; Zakaria, Zainul Amiruddin; Baharuldin, Mohamad Taufik Hidayat; Arifah, Abdul Kadir; Hakim, Muhammad Nazrul; Zuraini, Ahmad

    2015-10-01

    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.

  10. Chemokine receptor CXCR7 is a functional receptor for CXCL12 in brain endothelial cells.

    PubMed

    Liu, Yang; Carson-Walter, Eleanor; Walter, Kevin A

    2014-01-01

    The chemokine CXCL12 regulates multiple cell functions through its receptor, CXCR4. However, recent studies have shown that CXCL12 also binds a second receptor, CXCR7, to potentiate signal transduction and cell activity. In contrast to CXCL12/CXCR4, few studies have focused on the role of CXCR7 in vascular biology and its role in human brain microvascular endothelial cells (HBMECs) remains unclear. In this report, we used complementary methods, including immunocytofluorescence, Western blot, and flow cytometry analyses, to demonstrate that CXCR7 was expressed on HBMECs. We then employed short hairpin RNA (shRNA) technology to knockdown CXCR7 in HBMECs. Knockdown of CXCR7 in HBMECs resulted in significantly reduced HBMEC proliferation, tube formation, and migration, as well as adhesion to matrigel and tumor cells. Blocking CXCR7 with a specific antibody or small molecule antagonist similarly disrupted HBMEC binding to matrigel or tumor cells. We found that tumor necrosis factor (TNF)-α induced CXCR7 in a time and dose-response manner and that this increase preceded an increase in vascular cell adhesion molecule-1 (VCAM-1). Knockdown of CXCR7 resulted in suppression of VCAM-1, suggesting that the reduced binding of CXCR7-knockdown HBMECs may result from suppression of VCAM-1. Collectively, CXCR7 acted as a functional receptor for CXCL12 in brain endothelial cells. Targeting CXCR7 in tumor vasculature may provide novel opportunities for improving brain tumor therapy.

  11. Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells

    PubMed Central

    Wang, Qihong; Zhang, Weifeng; He, Guifen; Sha, Huifang; Quan, Zhe

    2016-01-01

    Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies. PMID:27878275

  12. Purification of endothelial cells from rodent brain by immunopanning.

    PubMed

    Zhou, Lu; Sohet, Fabien; Daneman, Richard

    2014-01-01

    This protocol describes the use of immunopanning to purify endothelial cells from the rodent brain. Immunopanning permits the prospective isolation of endothelial cells from nervous tissue by relying on the binding of the endothelial cells to an anti-CD31 antibody adhered to a Petri dish. The cells are viable at the end of this gentle procedure, and they can be analyzed acutely for gene expression or cultured alone or in coculture with other central nervous system (CNS) cell types, including CNS pericytes and CNS astrocytes. This procedure can be used to isolate endothelial cells from either rat or mouse. We have suggested specific antibodies that work for each species. Note that endothelial cells from rats and mice have different morphologies; in general, rat CNS endothelial cells are longer and thinner than mouse CNS endothelial cells. This procedure can also be used to purify endothelial cells from different regions of the CNS, including brain and optic nerve. Dissociation procedures must be optimized for each tissue.

  13. Azelnidipine, Not Amlodipine, Induces Secretion of Vascular Endothelial Growth Factor From Smooth Muscle Cells and Promotes Endothelial Tube Formation

    PubMed Central

    Kawamura, Akira; Miura, Shin-ichiro; Matsuo, Yoshino; Tanigawa, Hiroyuki; Saku, Keijiro

    2014-01-01

    Background We previously reported that the calcium channel blocker (CCB) nifedipine-induced secretion of vascular endothelial growth factor (VEGF) from human coronary smooth muscle cells (HCSMCs) promoted human coronary endothelial cell (HCEC) tube formation. Therefore, we analyzed whether other CCBs, azelnidipine and amlodipine, also induced the secretion of VEGF and promoted HCEC tube formation, and the underlying molecular mechanisms. Methods To evaluate the tube formation, HCECs were grown on Matrigel for 18 hours in the supernatants from HCSMCs that had been treated with different kinds of reagents. Concentrations of VEGF in cultured HCSMCs were determined by specific enzyme immunoassays. Nuclear extracts from HCSMCs were prepared, and nuclear factor-kappa B (NF-κB) activation was measured by EZ-DetectTM Transcription Factor Kits for NF-κB p50 or p65. Results Although azelnidipine dose-dependently stimulated the significant secretion of VEGF from HCSMCs and this stimulation was abolished by a protein kinase C inhibitor, amlodipine-induced secretion of VEGF was significantly lower than that induced by azelnidipine. The medium derived from azelnidipine (at up to 2 μM)-treated HCSMCs led to HCEC tube formation, whereas that obtained with amlodipine did not. Azelnidipine-induced tube formation was blocked by an inhibitor of kinase insert domain-containing receptor/fetal liver kinase-1 tyrosine kinase. Azelnidipine at up to 2 μM induced NF-κB activation. Conclusions Azelnidipine, but not amlodipine, stimulated the secretion of VEGF from HCSMCs and induced HCEC tube formation. This secretion is mediated at least in part via the activation of NF-κB. Azelnidipine may have a novel beneficial effect in improving coronary microvascular blood flow in addition to its main effect of lowering blood pressure.

  14. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  15. Kisspeptin-10 induces endothelial cellular senescence and impaired endothelial cell growth.

    PubMed

    Usui, Sayaka; Iso, Yoshitaka; Sasai, Masahiro; Mizukami, Takuya; Mori, Hiroyoshi; Watanabe, Takuya; Shioda, Seiji; Suzuki, Hiroshi

    2014-07-01

    The KPs (kisspeptins) are a family of multifunctional peptides with established roles in cancer metastasis, puberty and vasoconstriction. The effects of KPs on endothelial cells have yet to be determined. The aim of the present study was to investigate the effects of KP-10 on endothelial cell growth and the mechanisms underlying those effects. The administration of recombinant KP-10 into the hindlimbs of rats with ischaemia significantly impaired blood flow recovery, as shown by laser Doppler, and capillary growth, as shown using histology, compared with the controls. HUVECs (human umbilical vein endothelial cells) express the KP receptor and were treated with KP-10 in culture studies. KP-10 inhibited endothelial cell tube formation and proliferation in a significant and dose-dependent manner. The HUVECs treated with KP exhibited the senescent phenotype, as determined using a senescence-associated β-galactosidase assay, cell morphology analysis, and decreased Sirt1 (sirtuin 1) expression and increased p53 expression shown by Western blot analysis. Intriguingly, a pharmacological Rho kinase inhibitor, Y-27632, was found to increase the proliferation of HUVECs and to reduce the number of senescent phenotype cells affected by KP-10. In conclusion, KP-10 suppressed endothelial cells growth both in vivo and in vitro in the present study. The adverse effect of KP on endothelial cells was attributable, at least in part, to the induction of cellular senescence.

  16. Intracellular cytoskeleton and junction proteins of endothelial cells in the porcine iris microvasculature.

    PubMed

    Yang, Hongfang; Yu, Paula K; Cringle, Stephen J; Sun, Xinghuai; Yu, Dao-Yi

    2015-11-01

    Recently we reported studies of the iris microvasculature and its endothelial cells using intra-luminal micro-perfusion, fixation, and silver staining, suggesting that the iris vascular endothelium may be crucial for maintaining homeostasis in the ocular anterior segment. Here we present information regarding the intracellular structure and cell junctions of the iris endothelium. Thirty-seven porcine eyes were used for this study. The temporal long posterior ciliary artery was cannulated to assess the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining with phalloidin for intracellular cytoskeleton f-actin, and with antibodies against claudin-5 and VE-cadherin for junction proteins. Nuclei were counterstained with Hoechst. The iris was flat-mounted for confocal imaging. The iris microvasculature was studied for its distribution, branch orders and endothelial morphometrics with endothelial cell length measured for each vessel order. Our results showed that morphometrics of the iris microvasculature was comparable with our previous silver staining. Abundant stress fibres and peripheral border staining were seen within the endothelial cells in larger arteries. An obvious decrease in cytoplasmic stress fibres was evident further downstream in the smaller arterioles, and they tended to be absent from capillaries and veins. Endothelial intercellular junctions throughout the iris vasculature were VE-cadherin and claudin-5 immuno-positive, indicating the presence of both adherent junctions and tight junctions between vascular endothelial cells throughout the iris microvasculature. Unevenness of claudin-5 staining was noted along the endothelial cell borders in almost every order of vessels, especially in veins and small arterioles. Our results suggest that significant heterogeneity of intracellular structure and junction proteins is present in different orders of the iris vasculature in addition to vascular diameter

  17. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells

    PubMed Central

    Yang, Guanghua; Kramer, M. Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P.; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-01-01

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties. PMID:26612671

  18. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    PubMed

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  19. The inhibitory effects of endostatin on endothelial cells are modulated by extracellular matrix

    SciTech Connect

    Delaney, Christie E.; Weagant, Brodie T.; Addison, Christina L. . E-mail: caddison@ohri.ca

    2006-08-01

    We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.

  20. Microvascular Targets for Anti-Fibrotic Therapeutics

    PubMed Central

    Pu, Kai-Ming T.; Sava, Parid; Gonzalez, Anjelica L.

    2013-01-01

    Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies. PMID:24348218

  1. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    SciTech Connect

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  2. Influence of red blood cell aggregation on perfusion of an artificial microvascular network.

    PubMed

    Reinhart, Walter H; Piety, Nathaniel Z; Shevkoplyas, Sergey S

    2016-09-19

    Red blood cells (RBCs) suspended in plasma form multicellular aggregates under low flow conditions, increasing apparent blood viscosity at low shear rates. It has previously been unclear, however, if RBC aggregation affects microvascular perfusion. Here we analyzed the impact of RBC aggregation on perfusion and 'capillary' hematocrit in an artificial microvascular network (AMVN) at driving pressures ranging from 5 to 60 cmH2 O to determine if aggregation could improve tissue oxygenation. RBCs were suspended at 30% hematocrit in either 46.5 g/L dextran 40 (D40, non-aggregating medium) or 35 g/L dextran 70 (D70, aggregating medium) solutions with equal viscosity. Aggregation was readily observed in the AMVN for RBCs suspended in D70 at driving pressures ≤ 40 cmH2 O. The AMVN perfusion rate was the same for RBCs suspended in aggregating and non-aggregating medium, at both 'venular' and 'capillary' level. Estimated 'capillary' hematocrit was higher for D70 suspensions than for D40 suspensions at intermediate driving pressures (5 - 40 cm H2 O). We conclude that although RBC aggregation did not affect the AMVN perfusion rate independently of the driving pressure, a higher hematocrit in the 'capillaries' of the network for D70 suspensions suggested a better oxygen transport capacity in the presence of RBC aggregation. This article is protected by copyright. All rights reserved.

  3. Effects of Escherichia coli hemolysin on endothelial cell function.

    PubMed Central

    Suttorp, N; Flöer, B; Schnittler, H; Seeger, W; Bhakdi, S

    1990-01-01

    Escherichia coli hemolysin is considered an important virulence factor in extraintestinal E. coli infections. The present study demonstrates that cultured pulmonary artery endothelial cells are susceptible to attack by low concentrations of E. coli hemolysin (greater than or equal to 0.05 hemolytic units/ml; greater than or equal to 5 ng/ml). Sublytic amounts of hemolysin increased the permeability of endothelial cell monolayers in a time- and dose-dependent manner. The hydraulic conductivity increased approximately 30-fold and the reflection coefficient for large molecules dropped from 0.71 to less than 0.05, indicating a toxin-induced loss of endothelial barrier function. The alterations of endothelial monolayer permeability were accompanied by cell retraction and interendothelial gap formation. In addition, E. coli hemolysin stimulated prostacyclin synthesis in endothelial cells. This effect was strictly dependent on the presence of extracellular Ca2+ but not of Mg2+. An enhanced passive influx of 45Ca2+ and 3H-sucrose but not of tritiated inulin and dextran was noted in toxin-treated cells, indicating that small transmembrane pores comparable to those detected in rabbit erythrocytes had been generated in endothelial cell membranes. These pores may act as nonphysiologic Ca2+ gates, thereby initiating different Ca2+-dependent cellular processes. We conclude that endothelial cells are highly susceptible to E. coli hemolysin and that two major endothelial cell functions are altered by very low concentrations of hemolysin. Images PMID:2121650

  4. Mesenchymal Stem Cell-Based Treatment for Microvascular and Secondary Complications of Diabetes Mellitus

    PubMed Central

    Davey, Grace C.; Patil, Swapnil B.; O’Loughlin, Aonghus; O’Brien, Timothy

    2014-01-01

    The worldwide increase in the prevalence of Diabetes mellitus (DM) has highlighted the need for increased research efforts into treatment options for both the disease itself and its associated complications. In recent years, mesenchymal stromal cells (MSCs) have been highlighted as a new emerging regenerative therapy due to their multipotency but also due to their paracrine secretion of angiogenic factors, cytokines, and immunomodulatory substances. This review focuses on the potential use of MSCs as a regenerative medicine in microvascular and secondary complications of DM and will discuss the challenges and future prospects of MSCs as a regenerative therapy in this field. MSCs are believed to have an important role in tissue repair. Evidence in recent years has demonstrated that MSCs have potent immunomodulatory functions resulting in active suppression of various components of the host immune response. MSCs may also have glucose lowering properties providing another attractive and unique feature of this therapeutic approach. Through a combination of the above characteristics, MSCs have been shown to exert beneficial effects in pre-clinical models of diabetic complications prompting initial clinical studies in diabetic wound healing and nephropathy. Challenges that remain in the clinical translation of MSC therapy include issues of MSC heterogeneity, optimal mode of cell delivery, homing of these cells to tissues of interest with high efficiency, clinically meaningful engraftment, and challenges with cell manufacture. An issue of added importance is whether an autologous or allogeneic approach will be used. In summary, MSC administration has significant potential in the treatment of diabetic microvascular and secondary complications but challenges remain in terms of engraftment, persistence, tissue targeting, and cell manufacture PMID:24936198

  5. PAI-1-Dependent Endothelial Cell Death Determines Severity of Radiation-Induced Intestinal Injury

    PubMed Central

    Abderrahmani, Rym; François, Agnes; Buard, Valerie; Tarlet, Georges; Blirando, Karl; Hneino, Mohammad; Vaurijoux, Aurelie; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2012-01-01

    Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury. PMID:22563394

  6. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress.

    PubMed

    Hou, Jinling; Wang, Shaohui; Shang, Yan Chen; Chong, Zhao Zhong; Maiese, Kenneth

    2011-08-01

    Given the cytoprotective ability of erythropoietin (EPO) in cerebral microvascular endothelial cells (ECs) and the invaluable role of ECs in the central nervous system, it is imperative to elucidate the cellular pathways for EPO to protect ECs against brain injury. Here we illustrate that EPO relies upon the modulation of SIRT1 (silent mating type information regulator 2 homolog 1) in cerebral microvascular ECs to foster cytoprotection during oxygen-glucose deprivation (OGD). SIRT1 activation which results in the inhibition of apoptotic early membrane phosphatidylserine (PS) externalization and subsequent DNA degradation during OGD becomes a necessary component for EPO protection in ECs, since inhibition of SIRT1 activity or diminishing its expression by gene silencing abrogates cell survival supported by EPO during OGD. Furthermore, EPO promotes the subcellular trafficking of SIRT1 to the nucleus which is necessary for EPO to foster vascular protection. EPO through SIRT1 averts apoptosis through activation of protein kinase B (Akt1) and the phosphorylation and cytoplasmic retention of the forkhead transcription factor FoxO3a. SIRT1 through EPO activation also utilizes mitochondrial pathways to prevent mitochondrial depolarization, cytochrome c release, and Bad, caspase 1, and caspase 3 activation. Our work identifies novel pathways for EPO in the vascular system that can govern the activity of SIRT1 to prevent apoptotic injury through Akt1, FoxO3a phosphorylation and trafficking, mitochondrial membrane permeability, Bad activation, and caspase 1 and 3 activities in ECs during oxidant stress.

  7. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Sarmiento, Daniela; Becerra, Alvaro; Nuñez-Villena, Felipe; Figueroa, Xavier F; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Simon, Felipe

    2013-06-01

    Endothelial dysfunction is crucial in endotoxaemia-derived sepsis syndrome pathogenesis. It is well accepted that lipopolysaccharide (LPS) induces endothelial dysfunction through immune system activation. However, LPS can also directly generate actions in endothelial cells (ECs) in the absence of participation by immune cells. Although interactions between LPS and ECs evoke endothelial death, a significant portion of ECs are resistant to LPS challenge. However, the mechanism that confers endothelial resistance to LPS is not known. LPS-resistant ECs exhibit a fibroblast-like morphology, suggesting that these ECs enter a fibrotic programme in response to LPS. Thus, our aim was to investigate whether LPS is able to induce endothelial fibrosis in the absence of immune cells and explore the underlying mechanism. Using primary cultures of ECs and culturing intact blood vessels, we demonstrated that LPS is a crucial factor to induce endothelial fibrosis. We demonstrated that LPS was able and sufficient to promote endothelial fibrosis, in the absence of immune cells through an activin receptor-like kinase 5 (ALK5) activity-dependent mechanism. LPS-challenged ECs showed an up-regulation of both fibroblast-specific protein expression and extracellular matrix proteins secretion, as well as a down-regulation of endothelial markers. These results demonstrate that LPS is a crucial factor in inducing endothelial fibrosis in the absence of immune cells through an ALK5-dependent mechanism. It is noteworthy that LPS-induced endothelial fibrosis perpetuates endothelial dysfunction as a maladaptive process rather than a survival mechanism for protection against LPS. These findings are useful in improving current treatment against endotoxaemia-derived sepsis syndrome and other inflammatory diseases.

  8. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  9. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  10. Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application

    PubMed Central

    Pollinger, Klaus; Hennig, Robert; Ohlmann, Andreas; Fuchshofer, Rudolf; Wenzel, Rebecca; Breunig, Miriam; Tessmar, Joerg; Tamm, Ernst R.; Goepferich, Achim

    2013-01-01

    To date, diseases affecting vascular structures in the posterior eye are mostly treated by laser photocoagulation and multiple intraocular injections, procedures that destroy healthy tissue and can cause vision-threatening complications. To overcome these drawbacks, we investigate the feasibility of receptor-mediated nanoparticle targeting to capillary endothelial cells in the retina after i.v. application. Cell-binding studies using microvascular endothelial cells showed receptor-specific binding and cellular uptake of cyclo(RGDfC)-modified quantum dots via the αvβ3 integrin receptor. Conversely, Mueller cells and astrocytes, representing off-target cells located in the retina, revealed only negligible interaction with nanoparticles. In vivo experiments, using nude mice as the model organism, demonstrated a strong binding of the ligand-modified quantum dots in the choriocapillaris and intraretinal capillaries upon i.v. injection and 1-h circulation time. Nontargeted nanoparticles, in contrast, did not accumulate to a significant amount in the target tissue. The presented strategy of targeting integrin receptors in the retina could be of utmost value for future intervention in pathologies of the posterior eye, which are to date only accessible with difficulty. PMID:23530216

  11. Unidirectional transfer of prostaglandin endoperoxides between platelets and endothelial cells.

    PubMed Central

    Schafer, A I; Crawford, D D; Gimbrone, M A

    1984-01-01

    An important determinant of platelet-vessel wall interactions is the local balance of production of endothelial prostacyclin (PGI2) and platelet thromboxane (TX) A2, labile eicosanoids with opposing effects on hemostasis. Disputed evidence suggests that platelet-derived prostaglandin endoperoxide intermediates may be utilized as substrates for vascular PGI2 synthesis. Using several different approaches, we have found that platelets can transfer endoperoxides to cultured endothelial cells for efficient conversion to PGI2, but a reciprocal transfer of endothelial endoperoxides for utilization by platelet thromboxane synthetase does not occur under the same experimental conditions. However, platelets can utilize arachidonic acid released by endothelial cells for lipoxygenase metabolism. We have directly demonstrated the production of [3H]6-keto-PGF1 alpha (the breakdown product of [3H]PGI2) by aspirin-treated endothelial cells in the presence of platelets stimulated with [3H]arachidonic acid. In coincubation experiments using either arachidonate or ionophore A23187 as a stimulus, radioimmunoassay of the net production of arachidonic acid metabolites showed that 6-keto-PGF1 alpha generation by aspirin-treated endothelial cells in the presence of platelets may actually exceed its generation by uninhibited endothelial cells alone. In functional assays, platelet aggregation was inhibited in the presence of aspirin-treated endothelial cells after stimulation with either arachidonate or ionophore A23187. In contrast, the inverse experiments, using aspirin-treated platelets and uninhibited endothelial cells, failed to demonstrate platelet utilization of endothelial endoperoxides for TXA2 production by any of the above methods. These studies thus provide evidence that efficient unidirectional transfer and utilization of platelet-derived endoperoxides for endothelial PGI2 production can occur. This process may serve to amplify PGI2 generation adjacent to areas of vascular

  12. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility.

    PubMed

    Szulcek, Robert; Bogaard, Harm Jan; van Nieuw Amerongen, Geerten P

    2014-03-28

    Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.

  13. Neuropeptide degradation by large vessel and microvessel-derived endothelial cells in vitro: cell surface catabolism of thyrotropin rel