Science.gov

Sample records for microvascular transport properties

  1. The role of the microvascular tortuosity in tumor transport phenomena.

    PubMed

    Penta, R; Ambrosi, D

    2015-01-07

    The role of the microvascular network geometry in transport phenomena in solid tumors and its interplay with the leakage and pressure drop across the vessels is qualitatively and quantitatively discussed. Our starting point is a multiscale homogenization, suggested by the sharp length scale separation that exists between the characteristic vessels and the tumor tissue spatial scales, referred to as the microscale and the macroscale, respectively. The coupling between interstitial and capillary compartment is described by a double Darcy model on the macroscale, whereas the geometric information on the microvascular structure is encoded in the effective hydraulic conductivities, which are numerically computed by solving classical differential problems on the microscale representative cell. Then, microscale information is injected into the macroscopic model, which is analytically solved in a prototypical geometry and compared with previous experimentally validated, phenomenological models. In this way, we are able to capture the role of the standard blood flow determinants in the tumor, such as tumor radius, tissue hydraulic conductivity and vessels permeability, as well as influence of the vascular tortuosity on fluid convection. The results quantitatively confirm that transport of blood (and, as a consequence, of any advected anti-cancer drug) can be dramatically impaired by increasing the geometrical complexity of the microvasculature. Hence, our quantitative analysis supports the argument that geometric regularization of the capillary network improves blood transport and drug delivery in the tumor mass.

  2. Transcellular transport of CCL2 across brain microvascular endothelial cells.

    PubMed

    Ge, Shujun; Song, Li; Serwanski, David R; Kuziel, William A; Pachter, Joel S

    2008-03-01

    The means by which the chemokine CCL2 produced in the brain parenchyma can recruit leukocytes lying behind the highly impervious endothelium of the blood-brain barrier (BBB) has remained a paradox. As other chemokines have been evidenced to stimulate their own synthesis and release by peripheral microvascular endothelial cells, and/or undergo transcytosis in the abluminal-to-luminal direction, we determined whether CCL2 experiences similar fates across brain microvascular endothelial cells (BMEC). Using cultured BMEC as a paradigm of the BBB, it was observed that exogenous unlabeled CCL2 actually depressed the release of endogenous CCL2, and further caused diminished CCL2 mRNA levels in these cells. On the other hand, exogenous (125)I-labeled CCL2 exhibited transport across BMEC in a manner that was sensitive to temperature, competition by excess unlabeled CCL2 but not unlabeled CCL3, knockdown of caveolin-1/caveolae, and elimination of the cognate CCL2 receptor CCR2. These results implied a facet of CCL2 transport by a transcellular mechanism partly involving binding of CCL2 to CCR2, and subsequent transfer to caveolae vesicles for transcytosis. This notion was supported by double-label immuno-electronmicroscopy, which revealed co-localization of caveolin-1 with exogenous CCL2, during this chemokine's transit across BMEC. Collectively, these findings provide a rationale by which CCL2, deposited on the abluminal side of the brain microvasculature during inflammatory episodes, can be relayed across the BBB to foster leukocyte recruitment.

  3. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    PubMed Central

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  4. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    PubMed

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  5. Gestational Diabetes Reduces Adenosine Transport in Human Placental Microvascular Endothelium, an Effect Reversed by Insulin

    PubMed Central

    Salomón, Carlos; Westermeier, Francisco; Puebla, Carlos; Arroyo, Pablo; Guzmán-Gutiérrez, Enrique; Pardo, Fabián; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2012-01-01

    Gestational diabetes mellitus (GDM) courses with increased fetal plasma adenosine concentration and reduced adenosine transport in placental macrovascular endothelium. Since insulin modulates human equilibrative nucleoside transporters (hENTs) expression/activity, we hypothesize that GDM will alter hENT2-mediated transport in human placental microvascular endothelium (hPMEC), and that insulin will restore GDM to a normal phenotype involving insulin receptors A (IR-A) and B (IR-B). GDM effect on hENTs expression and transport activity, and IR-A/IR-B expression and associated cell signalling cascades (p42/44 mitogen-activated protein kinases (p42/44mapk) and Akt) role in hPMEC primary cultures was assayed. GDM associates with elevated umbilical whole and vein, but not arteries blood adenosine, and reduced hENTs adenosine transport and expression. IR-A/IR-B mRNA expression and p42/44mapk/Akt ratios (‘metabolic phenotype’) were lower in GDM. Insulin reversed GDM-reduced hENT2 expression/activity, IR-A/IR-B mRNA expression and p42/44mapk/Akt ratios to normal pregnancies (‘mitogenic phenotype’). It is suggested that insulin effects required IR-A and IR-B expression leading to differential modulation of signalling pathways restoring GDM-metabolic to a normal-mitogenic like phenotype. Insulin could be acting as protecting factor for placental microvascular endothelial dysfunction in GDM. PMID:22808198

  6. Transport activities involved in intracellular pH recovery following acid and alkali challenges in rat brain microvascular endothelial cells.

    PubMed

    Nicola, Pieris A; Taylor, Caroline J; Wang, Shanshan; Barrand, Margery A; Hladky, Stephen B

    2008-08-01

    Transport activities involved in intracellular pH (pH(i)) recovery after acid or alkali challenge were investigated in cultured rat brain microvascular endothelial cells by monitoring pH(i) using a pH-sensitive dye. Following relatively small acid loads with pH(i) approximately 6.5, HCO(-)(3) influx accounted for most of the acid extrusion from the cell with both Cl(-)-independent and Cl(-)-dependent, Na(+)-dependent transporters involved. The Cl(-)-independent component has the same properties as the NBC-like transporter previously shown to account for most of the acid extrusion near the resting pH(i). Following large acid loads with pH(i) < 6.5, most of the acid extrusion was mediated by Na(+)/H(+) exchange, the rate of which was steeply dependent on pH(i). Concanamycin A, an inhibitor of V-type ATPase, had no effect on the rates of acid extrusion. Following an alkali challenge, the major component of the acid loading leading to recovery of pH(i) occurred by Cl(-)/HCO(-)(3) exchange. This exchange had the same properties as the AE-like transporter previously identified as a major acid loader near resting pH(i). These acid-loading and acid-extruding transport mechanisms together with the Na(+), K(+), ATPase may be sufficient to account not only for pH(i) regulation in brain endothelial cells but also for the net secretion of HCO(-)(3) across the blood-brain barrier.

  7. Lung microvascular transport properties measured by multiple indicator dilution methods in patients with adult respiratory distress syndrome. A comparison between patients reversing respiratory failure and those failing to reverse.

    PubMed

    Harris, T R; Bernard, G R; Brigham, K L; Higgins, S B; Rinaldo, J E; Borovetz, H S; Sibbald, W J; Kariman, K; Sprung, C L

    1990-02-01

    We conducted indicator dilution studies on the lungs of patients in the early phases of adult respiratory distress syndrome (ARDS) to test the hypothesis that capillary permeability was increased in patients with respiratory failure. Indicator dilution studies were performed using 51Cr-erythrocytes, 125I-albumin, 14C-urea, and 3H-water as tracers. The injectate was infused as a bolus into a central venous line. Peripheral arterial blood was collected and counted for radioactivity. Mathematical analysis of the indicator curves yielded cardiac output, measures of the product of capillary permeability and surface area for urea (PS and D1/2S), the intravascular lung volume (Vv), and the extravascular lung water volume (Ve). Permeability was separated from surface area by normalizing PS and D1/2S to Vv. Patients could be divided into 16 in whom blood gas determinations and radiologic criteria for ARDS were reversed and 23 in whom they were not. We examined indicator dilution and other measures of lung function in the two groups to determine whether significant differences in microvascular function existed. PS and PS/Vv were significantly higher in the nonreversal patients. Ve was above normal, but not different between groups. Linear regression analysis showed significant correlations for all of the following in the nonreversal group: Ve and all measures of permeability, pulmonary vascular resistance (PVR), and the inverse of permeability-surface area measures and AaDO2 and PVR. Only measures of Ve and PS correlated in the reversal group. These results support the hypothesis that capillary permeability is increased in patients with early ARDS and continuing respiratory failure.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.

    PubMed Central

    Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T

    1993-01-01

    Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815

  9. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  10. Transport properties of ions

    NASA Technical Reports Server (NTRS)

    Biolsi, Louis; Biolsi, David

    1987-01-01

    The strong long-range interactions between (among) charged species require the inclusion of higher order contributions to the transport properties (viscosity, thermal conductivity, diffusion) of ionized gases than are required for neutral gases. These higher order contributions have been rewritten so that they are given in terms of universal functions which can be tabulated. Tables which provide for the rapid calculation of some higher order contributions to the transport properties of both ions and electrons are given. Some results which are useful for calculating the higher order contributions to the transport properties of mixtures of ions are also given. These results are applied to the ionic species in air at high temperatures.

  11. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells.

    PubMed

    Iwao, Beniko; Yara, Miki; Hara, Naomi; Kawai, Yuiko; Yamanaka, Tsuyoshi; Nishihara, Hiroshi; Inoue, Takeshi; Inazu, Masato

    2016-02-01

    In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effective Transport Properties

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto

    In this chapter we study a particular case of multiphase systems, namely two-phase materials in which one of the phases is randomly dispersed in the other, so that the composite can be viewed on a macroscale as an effective continuum, with well defined properties. In general, the theoretical determination of the parameter for an effective medium requires, as a rule, the solution of a corresponding transport problem at the microscale, which takes into account the morphology of the system and its evolution. As the mathematical problem is well-posed on a microscale, this can be accomplished using, for example, the multiple scale approach shown in Chap. 11 ; however, the task requires massive computations and is therefore difficult to implement from the practical standpoint. Here, instead, we focus on a deterministic approach to the problem, where the geometry and spatial configuration of the particles comprising the included phase are given and the solution to the microscale problem is therefore sought analytically. As examples, we study the effective thermal conductivity of solid reinforced materials (Sect. 10.1), the effective viscosity of non-colloidal suspensions (Sect. 10.2), the effective permeability of porous materials (10.3) and the effective self- and gradient diffusivities of colloidal suspensions (Sect. 10.4). Then, in Sect. 10.5, an alternative dynamic definition of the transport coefficients is considered, which can also serve as a basis to determine the effective properties of complex systems.

  13. Characterization of cationic amino acid transporters and expression of endothelial nitric oxide synthase in human placental microvascular endothelial cells.

    PubMed

    Dye, J F; Vause, S; Johnston, T; Clark, P; Firth, J A; D'Souza, S W; Sibley, C P; Glazier, J D

    2004-01-01

    We investigated the expression and activity of arginine transporters and endothelial nitric oxide synthase (eNOS) in human placental microvascular endothelial cells (HPMEC). Using RT-PCR amplification products for eNOS, CAT1, CAT2A, CAT2B, CAT4, 4F2hc (CD98), rBAT and the light chains y+LAT1, y+LAT2, and b0+T1 were detected in HPMEC, but not B0+. Immunohistochemistry and Western blotting confirmed the presence of 4F2hc and CAT1 protein in HPMEC. 4F2hc-light chain dimers were indicated by a shift in molecular mass detected under nonreducing conditions. L-Arginine transport into HPMEC was independent of Na+ or Cl- and was inhibited by the neutral amino acid glutamine, but not by cystine. The Ki for glutamine inhibition was greater in the absence of Na+. Kinetic analysis supported a two-transporter model attributed to system y+L and system y+. Expression of eNOS in HPMEC was detectable by immunohistochemistry and ELISA but not by Western blotting. Activity of eNOS in HPMEC, measured over 48 h, either as the basal production of nitric oxide (NO) or as the accumulation of intracellular cGMP was not detectable. We conclude that HPMEC transport cationic amino acids by systems y+ and y+L and that basal eNOS expression and activity in these cells is low.

  14. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting.

    PubMed

    Smith, Mathew; Omidi, Yadollah; Gumbleton, Mark

    2007-05-01

    The blood-brain barrier (BBB) remains a significant obstacle to the delivery of therapeutic agents into the central nervous system (CNS). Primary cell cultures of brain capillary endothelial cells represent the closest possible phenotype to the in vivo BBB cell providing a convenient model for the study of transport systems and events that mediate solute delivery to the CNS. In this investigation we have characterized an in vitro primary BBB model from porcine brain microvascular endothelial capillary (PBMVEC) cells after recovery from cryopreservation of upto 12 months and studied their modulation by astrocytes. Co-cultures of PBMVECs with astrocytes (C6 astroglioma) resulted in trans-endothelial electrical resistance of up to approximately 900Omega cm2 and marked discrimination between the para- and trans- cellular markers sucrose and propranolol. Micrographs of confluent monolayers of PBMVECs showed the presence of tight junction complexes and vesicles with the morphological characteristics of either caveolae or clathrin coated pits. Extensive RT-PCR evaluation highlighted the expression of tight junction transcripts, ABC transporters, leptin receptor and select nutrient transporters. Functional studies examined the kinetics of transport of glucose, large neutral amino acids and p-glycoprotein (P-gp). Our findings indicate primary PBMVECs retain many barrier characteristics and transport pathways of the in vivo BBB. Further, primary cells can be stored as frozen stocks which can be thawed and cultured without phenotypic drift many months after isolation. Frozen PBMVECs therefore serve as a robust and convenient in vitro cell culture tool for research programs involving CNS drug delivery and targeting and in studies addressing blood-brain barrier transport mechanisms.

  15. Overexpression of cationic amino acid transporter-1 increases nitric oxide production in hypoxic human pulmonary microvascular endothelial cells.

    PubMed

    Cui, Hongmei; Chen, Bernadette; Chicoine, Louis G; Nelin, Leif D

    2011-12-01

    1. The endogenous production of and/or the bioavailability of nitric oxide (NO) is decreased in pulmonary hypertensive diseases. L-arginine (L-arg) is the substrate for NO synthase (NOS). L-arg is transported into cells via the cationic amino acid transporters (CAT), of which there are two isoforms in endothelial cells, CAT-1 and CAT-2. 2. To test the hypothesis that hypoxia will decrease CAT expression and L-arg uptake resulting in decreased NO production in human pulmonary microvascular endothelial cells (hPMVEC), cells were incubated in either normoxia (21% O(2), 5% CO(2), balance N(2)) or hypoxia (1% O(2), 5% CO(2), balance N(2)). 3. The hPMVEC incubated in hypoxia had 80% less NO production than cells incubated in normoxia (P < 0.01). The hPMVEC incubated in hypoxia had significantly lower CAT-2 mRNA levels than normoxic hPMVEC (P < 0.005), and the transport of L-arg was 40% lower in hypoxic than in normoxic hPMVEC (P < 0.01). In hypoxic cells, overexpression of CAT-1 resulted in significantly greater L-arg transport and NO production (P < 0.05). 4. These results demonstrate that in hPMVEC, hypoxia decreased CAT-2 expression, L-arg uptake and NO production. Furthermore, the hypoxia-induced decrease in NO production in hPMVEC can be attenuated by overexpressing CAT in these cells. We speculate that the CAT may represent a novel therapeutic target for treating pulmonary hypertensive disorders. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  16. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  17. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  18. Transport properties of uranium dioxide

    SciTech Connect

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the transport properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, measurements of thermal diffusivity and emissivity have been made. In addition to incorporating this new data, new equations have been derived to fit the thermal diffusivity and thermal conductivity data. This analysis is consistent with the analysis of enthalpy and heat capacity. A new form of equation for the emissivity is also given. The present report comprises the transport part of the UO/sub 2/ portion of section A of the planned complete revision of Properties for LMFBR Safety Analysis.

  19. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  20. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1979-01-01

    The computer program used to obtain transport properties for the Hulburt-Hirschfelder potential was tested. Transport properties for the C-C interaction were calculated. Rough estimates for transport properties for the important ablation species were obtained as well as estimates of transport properties for some of the species associated with photochemical smog. The results are discussed.

  1. Optical imaging measurements of oxygen transport fluctuations and gradients in tumor microvascular networks

    NASA Astrophysics Data System (ADS)

    Sorg, Brian S.; Hardee, Matthew E.; Moeller, Benjamin J.; Dewhirst, Mark W.

    2006-02-01

    It is well established that hypoxia can influence tumor biology and physiology, gene expression, metastatic potential, treatment efficacy, and patient survival. Most human solid tumors have been shown to have some hypoxic regions, thus there is a strong motivation to understand the various causes of hypoxia. One key to understanding tumor hypoxia involves the study of oxygen transport to tumors, and the connection between hypoxia, tumor microvasculature, and the tumor microenvironment. Recent research has suggested that the causes of tumor hypoxia are much more complex than indicated by the classical paradigms ("chronic" and "acute" hypoxia), and several potential factors have been identified. Two such factors are temporal fluctuations in tissue pO II and longitudinal gradients in oxygen transport. Research has shown the existence of low frequency (<2 cycles per minute) fluctuations in tumor pO II without cessation of blood flow that can lead to transient hypoxia. In addition, longitudinal gradients in tumor pO II along the arteriolar afferent direction have been documented in window chamber tumors. However, the causes of the pO II temporal fluctuations and longitudinal gradients are not exactly known, and the clinical significance of these observations is not well understood. In this preliminary study, we demonstrate the potential of optical imaging measurements of hemoglobin saturation to add new information in these areas. Slow temporal fluctuations of hemoglobin saturation (HbSat) and gradients in the average HbSat were observed in some 4T1 mouse mammary carcinoma microvessels. With additional research, the mechanisms behind these phenomena and insights into their clinical significance may be revealed.

  2. Transport Properties for Combustion Modeling

    SciTech Connect

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  3. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-08-01

    Instrumentation and procedures have been completed for measurement of gas permeability and mass diffusivity of fiber preforms and porous materials. Results are reported for composites reinforced with Nicalon fiber in cloth lay-up and 3-D weave and with Nextel fiber in multi-layer braid. Measured permeability values range from near 100 to less than 0.1 darcies. Mass diffusivity is reported as a structure factor relating the diffusion through the porous material to that in free space. This measure is independent of the diffusing species and depends only on the pore structure of the material. Measurements are compared to predictions of a node-bond model for gas transport. Model parameters adjusted to match measured transport properties relate to physical microstructure features of the different architectures. Combination of this transport model with the CVI process model offers a predictive method to evaluate the densification behavior of various fiber preforms.

  4. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1979-01-01

    Activities reported include: (1) testing of the computer program used to obtain transport properties for the Hulburt-Hirschfelder potential; (2) calculation of transport properties for the C2-C interaction; (3) preliminary calculations for the C2-C2 interaction; (4) calculation of transport properties for the C2H-He interaction; (5) consideration of the effect of inelastic collisions on the transport properties; and (6) the use of the Hulburt-Hirschfelder potential to model ion-atom interactions.

  5. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1978-01-01

    The calculation of transport properties near the surface of a probe entering the atmosphere of Jupiter is discussed for (1) transport properties in the pure Jovian atmosphere, (2) transport properties for collisions between monatomic carbon atoms, including the effect of excited electronic states, (3) transport properties at the boundaries for mixing of the pure Jovian atmosphere and the atmosphere due to the injection of gaseous ablation products, and (4) transport properties for interactions involving some of the molecular ablation products. The transport properties were calculated using the kinetic theory of gases. Transport collision integrals were calculated for only a limited set of empirical and semiempirical interaction potentials. Since the accuracy of the fit of these empirical potentials to the true potential usually determines the accuracy of the calculation of the transport properties, the various interaction potentials used in these calculations are discussed.

  6. Comparative study on glucose transporters expression and activity between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells.

    PubMed

    Al-Alahmad, Abraham J

    2017-08-09

    Glucose constitutes the major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 is associated with the GLUT1 deficiency syndrome (GLUT1DS), yet none of the current in vitro models of the human BBB maybe suited for modelling such disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across the human BBB using brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMECs monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3 and GLUT4. Diffusion of glucose across the monolayers were mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrate the feasibility of modelling glucose across the BBB using patient-derived stem cells. Copyright © 2017, American Journal of Physiology-Cell Physiology.

  7. Microvascular Cranial Nerve Palsy

    MedlinePlus

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Leer en Español: ¿Qué Es una Parálisis ...

  8. Comparison of Generated Parallel Capillary Arrays to Three-Dimensional Reconstructed Capillary Networks in Modeling Oxygen Transport in Discrete Microvascular Volumes

    PubMed Central

    Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.

    2013-01-01

    Objective We compare Reconstructed Microvascular Networks (RMN) to Parallel Capillary Arrays (PCA) under several simulated physiological conditions to determine how the use of different vascular geometry affects oxygen transport solutions. Methods Three discrete networks were reconstructed from intravital video microscopy of rat skeletal muscle (84×168×342 μm, 70×157×268 μm and 65×240×571 μm) and hemodynamic measurements were made in individual capillaries. PCAs were created based on statistical measurements from RMNs. Blood flow and O2 transport models were applied and the resulting solutions for RMN and PCA models were compared under 4 conditions (rest, exercise, ischemia and hypoxia). Results Predicted tissue PO2 was consistently lower in all RMN simulations compared to the paired PCA. PO2 for 3D reconstructions at rest were 28.2±4.8, 28.1±3.5, and 33.0±4.5 mmHg for networks I, II, and III compared to the PCA mean values of 31.2±4.5, 30.6±3.4, and 33.8±4.6 mmHg. Simulated exercise yielded mean tissue PO2 in the RMN of 10.1±5.4, 12.6±5.7, and 19.7±5.7 mmHg compared to 15.3±7.3, 18.8±5.3, and 21.7±6.0 in PCA. Conclusions These findings suggest that volume matched PCA yield different results compared to reconstructed microvascular geometries when applied to O2 transport modeling; the predominant characteristic of this difference being an over estimate of mean tissue PO2. Despite this limitation, PCA models remain important for theoretical studies as they produce PO2 distributions with similar shape and parameter dependence as RMN. PMID:23841679

  9. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.

    1995-08-01

    This project involves experimental and modeling investigation of the transport properties of chemical vapor infiltration (CVI) preforms and densified composites, with particular emphasis on gas permeability and mass diffusivity. The results of this work will be useful both for on-going CVI process development and for evaluation and optimization of composite materials for fossil energy applications. With preforms made with 500 filaments/tow Nicalon at 40 vol% fiber loading, permeability values are similar for square-weave cloth layup and 3-D weave at low density. At greater densification the 3-D weave permeability is lower and approaches zero with significantly more closed porosity than the cloth layup. For filament wound preforms we were unable to make reliable measurements with the available materials. A model for gas transport in these materials utilizes percolation theory concepts. The ultimate achievable density is related to the closing of a continuous gas path through the preform. As the density approaches this limit the gas permeability and diffusivity vanish exponentially. The value of this limit is controlled primarily by the preform fiber architecture. The observed difference between the cloth layup and 3-D weave materials is due to the larger pores at tow crossing points found in the 3-D weave.

  10. Oxygen Transport in a Three-Dimensional Microvascular Network Incorporated with Early Tumour Growth and Preexisting Vessel Cooption: Numerical Simulation Study

    PubMed Central

    Cai, Yan; Zhang, Jie; Wu, Jie; Li, Zhi-yong

    2015-01-01

    We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption within the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study. PMID:25695084

  11. Effects of the physicochemical properties of titanium dioxide nanoparticles, commonly used as sun protection agents, on microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Strobel, Claudia; Torrano, Adriano A.; Herrmann, Rudolf; Malissek, Marcelina; Bräuchle, Christoph; Reller, Armin; Treuel, Lennart; Hilger, Ingrid

    2014-01-01

    Until now, the potential effects of titanium dioxide (TiO2) nanoparticles on endothelial cells are not well understood, despite their already wide usage. Therefore, the present work characterizes six TiO2 nanoparticle samples in the size range of 19 × 17 to 87 × 13 nm, which are commonly present in sun protection agents with respect to their physicochemical properties (size, shape, ζ-potential, agglomeration, sedimentation, surface coating, and surface area), their interactions with serum proteins and biological impact on human microvascular endothelial cells (relative cellular dehydrogenase activity, adenosine triphosphate content, and monocyte chemoattractant protein-1 release). We observed no association of nanoparticle morphology with the agglomeration and sedimentation behavior and no variations of the ζ-potential (-14 to -19 mV) in dependence on the surface coating. In general, the impact on endothelial cells was low and only detectable at concentrations of 100 μg/ml. Particles containing a rutile core and having rod-like shape had a stronger effect on cell metabolism than those with anatase core and elliptical shape (relative cellular dehydrogenase activity after 72 h: 60 vs. 90 %). Besides the morphology, the nanoparticle shell constitution was found to influence the metabolic activity of the cells. Upon cellular uptake, the nanoparticles were localized perinuclearly. Considering that in the in vivo situation endothelial cells would come in contact with considerably lower nanoparticle amounts than the lowest-observable adverse effects level (100 μg/ml), TiO2 nanoparticles can be considered as rather harmless to humans under the investigated conditions.

  12. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  13. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  14. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  15. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  16. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  17. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    PubMed

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-02-20

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.

  18. Dual Transport Properties of Anion Exchanger 1

    PubMed Central

    Barneaud-Rocca, Damien; Borgese, Franck; Guizouarn, Hélène

    2011-01-01

    Previous results suggested that specific point mutations in human anion exchanger 1 (AE1) convert the electroneutral anion exchanger into a monovalent cation conductance. In the present study, the transport site for anion exchange and for the cation leak has been studied by cysteine scanning mutagenesis and sulfhydryl reagent chemistry. Moreover, the role of some highly conserved amino acids within members of the SLC4 family to which AE1 belongs has been assessed in AE1 transport properties. The results suggest that the same transport site within the AE1 spanning domain is involved in anion exchange or in cation transport. A functioning mechanism for this transport site is proposed according to transport properties of the different studied point mutations of AE1. PMID:21257764

  19. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  20. Calculating Theromodynamic And Transport Properties Of Fluids

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Klem, Mark D.

    1987-01-01

    Computer program incorporates van der Waals equation and correction tables. FLUID program developed to calculate thermodynamic and transport properties of pure fluids in both liquid and gas phases. Properties calculated by use of simple gas model, empirical corrections, and efficient numerical interpolation scheme. Produces results that agree very well with measured values. Much faster than older, more complex programs developed for same purpose.

  1. Transport Properties in Cold Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Braby, Matt; Schaefer, Thomas; Chao, Jingyi; Alford, Mark; Mahmoodifar, Simin

    2010-02-01

    We have calculated several transport properties of the low energy degrees of freedom of the color-flavor locked phase in dense quark matter. The low energy degrees of freedom are the superfluid phonon and the meson octet of which the lightest excitation is the kaon. In some choices of the parameters, the kaon can condense. The basis of the calculation is a matching of kinetic theory and hydrodynamics to extract the transport properties and calculating the appropriate scattering rates for each process. From this, we have calculated the bulk viscosity of condensed and massive kaons, the shear viscosity of condensed kaons, and the thermal conductivity of the superfluid phonons and massive kaons. We present the results and analyze how these transport properties could affect observables in compact stars. )

  2. Electronic transport properties in graphene oxide frameworks

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  3. Thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1980-01-01

    Computer program subroutine FLUID calculates thermodynamic and transport properties of pure fluids in liquid, gas, or two-phase (liquid/gas) conditions. Program determines thermodynamic state from assigned values for temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy.

  4. Properties of interfaces and transport across them.

    PubMed

    Cabezas, H

    2000-01-01

    Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.

  5. Transport properties in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Biolsi, L.

    1978-01-01

    Transport properties in a Jupiter-like atmosphere (89 mol % hydrogen and 11 mol % helium) are obtained by using the method of the kinetic theory of gases. The transport collision integrals are calculated by fitting various two-body semiempirical interaction potentials for which the collision integrals are tabulated to ab initio quantum mechanical calculations of the two-body interactions. The collision integrals are used to calculate the binary diffusion coefficients, viscosity, and 'total' thermal conductivity of the pure gases and the gas mixtures at 1-atm pressure from 1000 K to 25,000 K.

  6. Dynamical properties of transportation on complex networks

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Gao, Zi-You

    2008-02-01

    We study the dynamical properties of transportation considering the topology structure of networks and congestion effects, based on a proposed simple model. We analyze the behavior of the model for finding out the relationship between the properties of transportation and the structure of network. Analysis and numerical results demonstrate that the transition from free flow to congested regime can be observed for both single link load and network load, but it is discontinuous for single link and continuous for network. We also find that networks with large average degree have small average link betweenness and are more tolerant to congestion, and networks with homogeneous structure can hold more vehicles in stationary state at the subcritical region. Furthermore, by allotting capacity with different mode to links, a manner of enhancing the performance of networks is introduced, which should be helpful in the design of traffic networks.

  7. Diffusive Transport Properties Across Coupling Regimes

    NASA Astrophysics Data System (ADS)

    Dharuman, G.; Murillo, M. S.; Verboncoeur, J.; Christlieb, A.

    2014-10-01

    Transport properties are poorly known across coupling regimes, therefore understanding them is of importance for theoretical and practical reasons. A useful tool is an ultracold plasma system because of the experimental capability to tune the system to attain Coulomb coupling Γ ranging from 0.1 to 1 to 10 with the screening parameter κ ranging from 0 to 4 to 8, spanning the regions of the phase diagram from weak to moderate to strongly coupled and screened systems. Strong coupling is possible if Disorder Induced Heating is mitigated which requires a correlated initial ion state. Of particular interest is Rydberg blockaded gas of ultracold atoms where the local blockade effect results in correlations. Predictions of higher coupling in ultracold plasma created from a Rydberg blockaded gas have been reported. In this work we examine the diffusive transport properties of ultracold plasma system using molecular dynamics simulations for experimentally realizable values of Γ and κ as discussed above.

  8. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  9. Measurement of Transport Properties of Aerosolized Nanomaterials.

    PubMed

    Ku, Bon Ki; Kulkarni, Pramod

    2015-12-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 - 400 nm. Principal component analysis of the obtained airborne particle

  10. Charge Transport Properties in Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Moog, Mark; Tsui, Frank; Vonwald, Ian; You, Wei

    Electrical transport properties in poly(3-methyl)thiophene (P3MT) brushes have been studied. The P3MT brushes correspond to a new type of surface-tethered, vertically oriented conjugated molecular wires, sandwiched between two metallic electrodes to form the electrode-molecule-electrode (EME) devices. P3MT is a highly conjugated polymer, a ''workhorse'' material for organic electronics and photonics. The P3MT brushes were grown on ITO surfaces with controlled length (between 2 and 100 nm). The top electrodes were transfer-printed Au films with lateral dimensions between 200 nm and 50 μm. I-V and differential conductance measurements were performed using conductive AFM and 4-terminal techniques. Tunneling and field-emission measurements in EME devices with molecular lengths < 5 nm show HOMO mediated direct hole tunneling with energy barriers of 0.3 and 0.5 eV at the respective interfaces with ITO and Au. The transport properties in longer brushes are indicative of the two quasi-Ohmic interfaces with a characteristic offset in the conductance minimum of 0.12 V biased toward the ITO. Temperature dependent parameters have been examined at various molecular lengths. The drift mobility and the interplay between intra- and intermolecular transport have been investigated.

  11. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  12. Assessing Electrolyte Transport Properties with Molecular Dynamics

    DOE PAGES

    Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...

    2017-04-15

    Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF4 and O2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimation techniques ismore » necessary for a reliable ranking of a large set of electrolytes.« less

  13. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke

    PubMed Central

    Yu, Qi-jin; Tao, Hong; Wang, Xin; Li, Ming-chang

    2015-01-01

    Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endothelial cells with regards expression of specific ion transporters and receptors, and contain fewer fenestrations and pinocytotic vesicles. Brain microvascular endothelial cells also synthesize several factors that influence blood vessel function. This review describes the morphological characteristics and functions of brain microvascular endothelial cells, and summarizes current knowledge regarding changes in brain microvascular endothelial cells during stroke progression and therapies. Future studies should focus on identifying mechanisms underlying such changes and developing possible neuroprotective therapeutic interventions. PMID:26807131

  14. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  15. Magnetic Superatom Assemblies and their Transport Properties

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Ulises Reveles, J.; Mendel, V.; Reber, A.; Khanna, Shiv

    2012-02-01

    We had recently shown that magnetic superatoms can be formed by embedding 3d transition metal atoms in metallic clusters of otherwise non-magnetic elements. The hybridization between the localized exchange split atomic orbitals in 3d elements with superatomic orbitals can help stabilize the magnetic state. Through first principles studies on the electronic structure and magnetic moment of MgnTM (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) clusters, we had identified Mg8Fe to be a stable magnetic superatom. In this work, we will present our investigations on the magnetic properties of the assemblies of such superatoms and the nature of electronic transport through such assemblies with various electrodes. The effects of the contact geometry and gate voltage on the conductance are also studied.

  16. Transport Properties of the CEBAF Cavity

    SciTech Connect

    Li, Zenghai; Bisognano, Joseph; Yunn, Byunn C

    1993-05-17

    The transport properties of the CEBAF 5-cell cavity are studied. The 3-D cavity fields are calculated by use of the 3-D program MAFIA and are incorporated in a modified PARMELA. Numerical simulation results show that the cavity has finite dipole, quadrupole and skew quadrupole field components, which are due to the asymmetric field in the fundamental and the higher-order-mode couplers. The azimuthal focusing of the cavity disappears for high energy particles as 1/gamma^2. The dependence on the initial energy and cavity phase is given. The cavity-steering effects were measured on the CEBAF 45 MeV injector and are in good agreement with the numerical simulation.

  17. Thermoelectric transport properties in magnetically ordered crystals.

    PubMed

    Grimmer, Hans

    2017-07-01

    The forms of the tensors describing thermoelectric transport properties in magnetically ordered crystals are given for frequently used orientations of the 122 space-time point groups up to second order in an applied magnetic field. It is shown which forms are interchanged for the point groups of the hexagonal crystal family by two different conventions for the connection between the Hermann-Mauguin symbol and the orientation of the Cartesian coordinate system. The forms are given in Nye notation, which conspicuously shows how the forms for different point groups are related. It is shown that the measurable effects in magnetically ordered crystals can be decomposed into an effect occurring in all crystals and one coming from the magnetic ordering. Errors in the literature are pointed out.

  18. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  19. Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes

    PubMed Central

    Begorre, Marc-Antoine; Dib, Abdallah; Habchi, Khalil; Guihot, Anne-Laure; Bourreau, Jennifer; Vessieres, Emilie; Blondeau, Bertrand; Loufrani, Laurent; Chabbert, Marie; Henrion, Daniel; Fassot, Céline

    2017-01-01

    Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R−/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R−/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R−/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R−/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes. PMID:28361992

  20. Transport properties of supercooled confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  1. Microvascular Autonomic Composites

    DTIC Science & Technology

    2012-01-06

    characterization of carbon nanotube yarns, 3-D braids, and their composites. SAMPE Journal 43: 6-19. Bogdanovich A and Mohamed MH. 2009. Three-Dimensional... carbon in red and bromine in yellow. The fracture surfaces were analyzed by SEM to show film was indistinguishable from the matrix, but by using the...nature, the mother of composite materials, applying microvascular technology to create skin, cartilages, tendons, bones and teeth. Cellulose fiber

  2. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  3. Transport properties of graphene and its application

    NASA Astrophysics Data System (ADS)

    Lu, Jianming

    This thesis focuses on the transport properties of graphene, a new emerging atomically thin, two-dimensional material, with and without the application of a magnetic field. Because of its high mobility, graphene is a promising candidate for Extraordinary Magnetoresistance (EMR) devices. The magnetoresistance of an EMR device arises mainly from its geometry rather than the intrinsic response of the material itself to an applied magnetic field. As a result, the geometric parameters play an important role in its performance. Experiments employing various combinations of geometric parameters and graphene of different quality levels were conducted to determine the optimal results. We found that the optimized parameters vary for different applied magnetic fields. In a magnetic field of 9 Tesla, magnetoresistance up to 55,000% was observed. In addition, Finite Element Analysis (FEA) simulations are used to complement the experiments and explain the measured magnetoresistance. The excellent agreement between the simulations and experimental results indicates that theoretical simulation can be used as a convenient method to explore EMR devices with alternative geometries or materials. The anomalous quantum Hall effect is one of the most exciting properties of graphene. The observation of the v=0 state above a critical magnetic field is closely related to the quality of the graphene, where a higher quality reduces the critical field needed. With our high quality graphene sample, the critical field is reduced to 6.75 Tesla. Moreover, from 6.75 T to 9T, the resistance at the cross point of the metal-insulator transition (MIT) is very close to h/2e2, which resembles the case of a disordered two-dimensional electron gas (2DEG) and may indicate a similar physical mechanism. In addition to the magnetotransport measurements, the current saturation of graphene in a high electric field is studied both theoretically and experimentally. This thesis focuses primarily on bilayer graphene

  4. Neoclassical Transport Properties of Tokamak Plasmas

    SciTech Connect

    Weyssow, B.

    2004-03-15

    The classical transport theory is strictly valid for a plasma in a homogeneous and stationary magnetic field. In the '60, experiments have shown that this theory does not apply as a local theory of transport in Tokamaks. It was shown that global geometric characteristics of the confining elements have a strong influence on the transport. Three regimes of collisionality are characteristic of the neoclassical transport theory: the banana regime (the electronic diffusion coefficient increases starting from zero), the plateau regime (the diffusion coefficient is almost independent of the collisionality) and the Pfirsch-Schlueter regime (the electronic diffusion coefficient again increases with the collisionality)

  5. Molecular Properties of Bacterial Multidrug Transporters

    PubMed Central

    Putman, Monique; van Veen, Hendrik W.; Konings, Wil N.

    2000-01-01

    One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites. PMID:11104814

  6. Neoclassical transport properties and their limits in NSTX

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P. I.; Shaing, K. C.

    2001-10-01

    The low aspect ratio and low toroidal field of NSTX enhance its neoclassical transport properties, but also push the limits of standard neoclassical models. Particle and energy transport, plasma rotation, the radial electric field, and bootstrap current are examined for typical NSTX discharges. Regimes of inward and outward impurity transport driven by a combination of the inductive electric field (Ware pinch), inward transport on the deuterium density gradient, and outward transport on the ion temperature gradient are identified. Orbit losses and atomic physics effects near the plasma boundary lead to modifications in the bootstrap current and impurity transport properties in the H-mode pedestal. Potato orbit effects near the axis, included as a viscosity modification, can enhance the ion energy transport, but are reduced by orbit squeezing. The low aspect ratio and high beta of NSTX plasmas provide a critical test of the limits of neoclassical theory.

  7. Monitoring in microvascular surgery.

    PubMed

    Furnas, H; Rosen, J M

    1991-03-01

    The importance of monitoring in microvascular surgery is underscored by the high reported salvage rates of failing free flaps and replants. In this overview, we begin by defining the physiology of ischemic tissue with emphasis given to the no-reflow phenomenon and the secondary critical ischemia times. Based on the physiological changes accompanying ischemia, several variables are defined that can be monitored to reflect the vascular state of a free flap or replant. Multifarious monitoring systems are then reviewed, including clinical observation, temperature, isotope clearance, ultrasonic Doppler, laser Doppler, transcutaneous oxygen tension, reflection plethysmography, dermofluorometry, pH, electromagnetic flowmetry, serial hematocrits, interstitial fluid pressure, and magnetic resonance imaging.

  8. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  9. Is the sheet-flow design a 'frozen core' (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: illustration of the geometry and rationalization of the fractal properties.

    PubMed

    Maina, J N

    2000-08-01

    The sheet-flow design is ubiquitous in the respiratory microvascular systems of the modern gas exchangers. The blood percolates through a maze of narrow microvascular channels spreading out into a thin film, a "sheet". The design has been convergently conceived through remarkably different evolutionary strategies. Endothelial cells, e.g. connect parallel epithelial cells in the fish gills and reptilian lungs; epithelial cells divide the gill filaments in the crustacean gills, the amphibian lungs, and vascular channels on the lung of pneumonate gastropods; connective tissue elements weave between the blood capillaries of the mammalian lungs; and in birds, the blood capillaries attach directly and in some areas connect by short extensions of the epithelial cells. In the gills, skin, and most lungs, the blood in the capillary meshwork geometrically lies parallel to the respiratory surface. In the avian lung, where the blood capillaries anastomose intensely and interdigitate closely with the air capillaries, the blood occasions a 'volume' rather than a 'sheet.' The sheet-flow design and the intrinsic fractal properties of the respiratory microvascular systems have produced a highly tractable low-pressure low-resistance region that facilitates optimal perfusion. In complex animals, the sheet-flow design is a prescriptive evolutionary construction for efficient gas exchange by diffusion. The design facilitates the internal and external respiratory media to be exposed to each other over an extensive surface area across a thin tissue barrier. This comprehensive design is a classic paradigm of evolutionary convergence motivated by common enterprise to develop corresponding functionally efficient structures. With appropriate corrections for any relevant intertaxa differences, use of similar morphofunctional models in determining the diffusing capacities of various gas exchangers is warranted.

  10. Intracranial microvascular free flaps.

    PubMed

    Levine, Steven; Garfein, Evan S; Weiner, Howard; Yaremchuk, Michael J; Saadeh, Pierre B; Gurtner, Geoffrey; Levine, Jamie P; Warren, Stephen M

    2009-02-01

    Large acquired intracranial defects can result from trauma or surgery. When reoperation is required because of infection or tumor recurrence, management of the intracranial dead space can be challenging. By providing well-vascularized bulky tissue, intracranial microvascular free flaps offer potential solutions to these life-threatening complications. A multi-institutional retrospective chart and radiographic review was performed of all patients who underwent microvascular free-flap surgery for salvage treatment of postoperative intracranial infections between 1998 and 2006. A total of six patients were identified with large intracranial defects and postoperative intracranial infections. Four patients had parenchymal resections for tumor or seizure and two patients had posttraumatic encephalomalacia. All patients underwent operative debridement and intracranial free-flap reconstruction using the latissimus dorsi muscle (N=2), rectus abdominis muscle (N=2), or omentum (N=2). All patients had titanium (N=4) or Medpor (N=2) cranioplasties. We concluded that surgery or trauma can result in significant intracranial dead space. Treatment of postoperative intracranial infection can be challenging. Vascularized free tissue transfer not only fills the void, but also provides a delivery system for immune cells, antibodies, and systemically administered antibiotics. The early use of this technique when intracranial dead space and infection coexist is beneficial.

  11. Stacking-dependent transport properties in few-layers graphene

    NASA Astrophysics Data System (ADS)

    Lima, Matheus Paes; Padilha, José Eduardo; Pontes, Renato Borges; Fazzio, Adalberto; Silva, Antônio José Roque da

    2017-01-01

    By performing ab initio electronic structure and transport calculations, we investigated the effects of the stacking order (Bernal (AB) and rhombohedral (ABC)) as well as the number of layers, in the electronic structure and charge transport of few-layers graphene (FLG). We observed that for the ABC stack the transport properties are derived from surface states close to the Fermi level connected to dispersive states with an exponential penetration towards the inner layers, whereas for the AB stacking the transport is distributed over all layers. We present a simple model for the resistances as a function of the number of layers which contemplates the different contribution of the surface and inner layers for the transport. However, even if the stackings AB and ABC present completely different electronic and transport properties, both present the same cohesive energies, showing the absence of a thermodynamical preference for a given kind of stacking.

  12. Molecular properties associated with transporter-mediated drug disposition.

    PubMed

    Varma, Manthena V; Lai, Yurong; El-Kattan, Ayman F

    2017-07-01

    Membrane transporters play a key role in the absorption, distribution, clearance, elimination, and transport of drugs. Understanding the drug properties and structure activity relationships (SAR) for affinity to membrane transporters is critical to optimize clearance and pharmacokinetics during drug design. To facilitate the early identification of clearance mechanism, a framework named the extended clearance classification system (ECCS) was recently introduced. Using in vitro and physicochemical properties that are readily available in early drug discovery, ECCS has been successfully applied to identify major clearance mechanism and to implicate the role of membrane transporters in determining pharmacokinetics. While the crystal structures for most of the drug transporters are currently not available, ligand-based modeling approaches that use information obtained from the structure and molecular properties of the ligands have been applied to associate the drug-related properties and transporter-mediated disposition. The approach allows prospective prediction of transporter both substrate and/or inhibitor affinity and build quantitative structure-activity relationship (QSAR) to enable early optimization of pharmacokinetics, tissue distribution and drug-drug interaction risk. Drug design applications can be further improved through uncovering transporter protein crystal structure and generation of quality data to refine and develop viable predictive models. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Computer program for calculating thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  14. Electron transport property of tetrathiafulvalene molecule

    SciTech Connect

    Mondal, Rajkumar; Bhattacharya, Barnali; Deb, Jyotirmoy; Sarkar, Utpal

    2016-05-23

    We have investigated electron transport behavior of tetrathiafulvalene molecule connected with zigzag graphene nanoribbon (zGNR) using density functional theory combined with non-equilibrium Green’s function method. We have reported the transmission coefficient of the scattering region at different bias voltage to explain the nature of the current.

  15. PROPERTIES OF INTERFACES AND TRANSPORT ACROSS THEM

    EPA Science Inventory

    Much of the biological activity in cell cytoplasm occurs in compartments which are thought to form by phase separation, and many of the functions of these compartments occur by the transport or exchange of molecules across interfaces. Thus, a fundamentally based discussion of th...

  16. PROPERTIES OF INTERFACES AND TRANSPORT ACROSS THEM

    EPA Science Inventory

    Much of the biological activity in cell cytoplasm occurs in compartments which are thought to form by phase separation, and many of the functions of these compartments occur by the transport or exchange of molecules across interfaces. Thus, a fundamentally based discussion of th...

  17. Transport properties of pancreatic cancer describe gemcitabine delivery and response

    PubMed Central

    Koay, Eugene J.; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya’an; Bhosale, Priya R.; Tamm, Eric P.; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffery E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Varadhachary, Gauri R.; Ferrari, Mauro; Fleming, Jason B.

    2014-01-01

    Background. The therapeutic resistance of pancreatic ductal adenocarcinoma (PDAC) is partly ascribed to ineffective delivery of chemotherapy to cancer cells. We hypothesized that physical properties at vascular, extracellular, and cellular scales influence delivery of and response to gemcitabine-based therapy. Methods. We developed a method to measure mass transport properties during routine contrast-enhanced CT scans of individual human PDAC tumors. Additionally, we evaluated gemcitabine infusion during PDAC resection in 12 patients, measuring gemcitabine incorporation into tumor DNA and correlating its uptake with human equilibrative nucleoside transporter (hENT1) levels, stromal reaction, and CT-derived mass transport properties. We also studied associations between CT-derived transport properties and clinical outcomes in patients who received preoperative gemcitabine-based chemoradiotherapy for resectable PDAC. Results. Transport modeling of 176 CT scans illustrated striking differences in transport properties between normal pancreas and tumor, with a wide array of enhancement profiles. Reflecting the interpatient differences in contrast enhancement, resected tumors exhibited dramatic differences in gemcitabine DNA incorporation, despite similar intravascular pharmacokinetics. Gemcitabine incorporation into tumor DNA was inversely related to CT-derived transport parameters and PDAC stromal score, after accounting for hENT1 levels. Moreover, stromal score directly correlated with CT-derived parameters. Among 110 patients who received preoperative gemcitabine-based chemoradiotherapy, CT-derived parameters correlated with pathological response and survival. Conclusion. Gemcitabine incorporation into tumor DNA is highly variable and correlates with multiscale transport properties that can be derived from routine CT scans. Furthermore, pretherapy CT-derived properties correlate with clinically relevant endpoints. Trial registration. Clinicaltrials.gov NCT01276613

  18. Magnetic and Transport Properties of Mn-ion implanted Si

    NASA Astrophysics Data System (ADS)

    Preisler, V.; Ogawa, M.; Han, X.; Wang, K. L.

    2010-01-01

    We investigate the magnetic and transport properties of Mn-ion implanted Si. Both temperature dependent and field dependent measurements of the samples using a SQUID magnometer reveal ferromagnetic properties at room temperature. Magnetotransport measurements show a large positive magnetoresistance up to 4.5 T with no signs of saturation.

  19. Fabrication, characterization, and modeling of microvascular composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  20. Transport properties of the diluted Lorentz slab

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Leyvraz, François; Martínez-Mekler, Gustavo; Rechtman, Raúl; Ruffo, Stefano

    2001-10-01

    We study the behavior of a point particle incident on a slab of a randomly diluted triangular array of circular scatterers. Various scattering properties, such as the reflection and transmission probabilities and the scattering time are studied as a function of thickness and dilution. We show that a diffusion model satisfactorily describes the mentioned scattering properties. We also show how some of these quantities can be evaluated exactly and their agreement with numerical experiments. Our results exhibit the dependence of these scattering data on the mean free path. This dependence again shows excellent agreement with the predictions of a Brownian motion model.

  1. Physical transport properties of marine microplastic pollution

    NASA Astrophysics Data System (ADS)

    Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.

    2012-12-01

    Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.

  2. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  3. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  4. High temperature transport properties of air

    NASA Technical Reports Server (NTRS)

    Levin, E.; Partridge, Harry; Stallcop, J. R.

    1987-01-01

    A general computer code was developed to allow calculation of atom-atom and ion-atom transport collision integrals from accurate potential energy curves described by a set of discrete data points for a broad range of scattering conditions. This code is based upon semiclassical approximations that properly account for quantum mechanical behavior such as tunneling effects near a barrier maximum, resonance charge exchange, and nuclear symmetry effects. Transport collision integrals were determined for N-N, O-O, N(+)-N, and O(+)-O interactions from complete sets of accurate potential functions derived from combined experimental and ab initio structure calculations. For the O-O case, this includes results for excited states. The calculated values of the N(+)-N and O(+)-O resonance charge exchange cross section Q(ex) agree well with measurements from beam experiment that are available at high energies where the diffusion cross section Q(d) satisfies Q(d) approximately equal to 2Q(ex).

  5. High temperature transport properties of air

    NASA Technical Reports Server (NTRS)

    Levin, E.; Partridge, Harry; Stallcop, J. R.

    1987-01-01

    A general computer code was developed to allow calculation of atom-atom and ion-atom transport collision integrals from accurate potential energy curves described by a set of discrete data points for a broad range of scattering conditions. This code is based upon semiclassical approximations that properly account for quantum mechanical behavior such as tunneling effects near a barrier maximum, resonance charge exchange, and nuclear symmetry effects. Transport collision integrals were determined for N-N, O-O, N(+)-N, and O(+)-O interactions from complete sets of accurate potential functions derived from combined experimental and ab initio structure calculations. For the O-O case, this includes results for excited states. The calculated values of the N(+)-N and O(+)-O resonance charge exchange cross section Q(ex) agree well with measurements from beam experiment that are available at high energies where the diffusion cross section Q(d) satisfies Q(d) approximately equal to 2Q(ex).

  6. Transport properties of porous media from the microstructure

    SciTech Connect

    Torquato, S.

    1995-12-31

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  7. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  8. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  9. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  10. Magnetothermoelectric transport properties of multiterminal graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Miao-Miao; Zhang, Ying-Tao; Guo, Ai-Min; Liu, Jian-Jun; Xing, Yanxia; Sun, Qing-Feng

    2016-06-01

    The Peltier effect and the Ettingshausen effect are investigated in graphene nanoribbons, where charge current produces heat current along the longitudinal direction in the former case, and longitudinal charge current generates transverse heat current in the latter case. With the aid of the nonequilibrium Green's function and the Landauer-Büttiker formalism, the Peltier coefficient Πc and the Ettingshausen coefficient Ec are obtained. We found that the Kelvin relation is always valid for the longitudinal thermoelectric transport, i.e., Πc=T Sc , with T the temperature and Sc the Seebeck coefficient. In contrast, for transverse magnetothermoelectric transport, the Kelvin relation breaks down and Ec≠T Nc usually, with Nc the Nernst coefficient. In the region of weak magnetic field, the Ettingshausen effect depends strongly on device parameters. When the Fermi energy EF is close to the Dirac point, the Ettingshausen effect of the semiconducting armchair graphene nanoribbon is much stronger than that of the metallic one. When EF is far away from the Dirac point, the Ettingshausen coefficient Ec oscillates around zero. When under a strong magnetic field, Ec is independent of the device parameters and swells only near the Dirac point. Further, the dependence of Ec on EF can be scaled by EF/kBT , with a peak value of (2 ln2 ) kBT /e for the three-terminal system and (4/3 ln2 ) kBT /e for the four-terminal system. We also study the impact of disorder on the Ettingshausen effect. Regardless of the magnetic field strength, Ec is robust against moderate disorder scattering. In addition, in the strong magnetic field, Ec with additional regular oscillating structure can be caused by disorder.

  11. Thermodynamic and transport properties of sodium liquid and vapor

    SciTech Connect

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed.

  12. Conical nanopore membranes. Preparation and transport properties.

    PubMed

    Li, Naichao; Yu, Shufang; Harrell, C Chad; Martin, Charles R

    2004-04-01

    We have been investigating applications of nanopore membranes in analytical chemistry-specifically in membrane-based bioseparations, in electroanalytical chemistry, and in the development of new approaches to biosensor design. Membranes that have conically shaped pores (as opposed to the more conventional cylindrical shape) may offer some advantages for these applications. We describe here a simple plasma-etch method that converts cylindrical nanopores in track-etched polymeric membranes into conically shaped pores. This method allows for control of the shape of the resulting conical nanopores. For example, the plasma-etched pores may be cylindrical through most of the membrane thickness blossoming into cones at one face of the membrane (trumpet-shaped), or they may be nearly perfect cones. The key advantage of the conical pore shape is a dramatic enhancement in the rate of transport through the membrane, relative to an analogous cylindrical pore membrane. We demonstrate this here by measuring the ionic resistances of the plasma-etched conical pore membranes.

  13. Transport properties of high-temperature Jupiter atmosphere components

    SciTech Connect

    Bruno, D.; Colonna, G.; De Pascale, O.; Laricchiuta, A.; Catalfamo, C.; Diomede, P.; Capitelli, M.; Gorse, C.; Longo, S.; Giordano, D.; Pirani, F.

    2010-11-15

    Transport properties of high-temperature helium and hydrogen plasmas as well as Jupiter atmosphere have been calculated for equilibrium and nonequilibrium conditions using higher approximations of the Chapman-Enskog method. A complete database of transport cross sections for relevant interactions has been derived, including minority species, by using both ab initio and phenomenological potentials. Inelastic collision integrals terms, due to resonant charge-exchange channels, have been also considered.

  14. Graphene nanopores: electronic transport properties and design methodology.

    PubMed

    Qiu, Wanzhi; Nguyen, Phuong; Skafidas, Efstratios

    2014-01-28

    Graphene nanopores (GNPs) hold great promise as building blocks for electronic circuitry and sensors for biological and chemical sensing applications. Methods to design graphene nanopores that achieve desirable conduction performance and sensing characteristics have not been previously described. Here we present a study of the quantum transport properties of GNPs created by drilling pores in armchair and zigzag graphene ribbons. For the first time, our study reveals that the quantum transmission spectra of GNPs are highly tunable and GNPs with specific transport properties can be produced by properly designing pore shapes. Our investigation shows that the biological sensing capabilities of GNPs are transmission spectrum dependent, can vary dramatically, and are critically dependent on pore geometry. Our study provides design guidelines for creating graphene nanopores with specific transport properties to meet the needs of diverse applications and for developing sensitive biological/chemical sensors with required performance characteristics.

  15. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  16. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  17. Transport properties in nontwist area-preserving maps

    DOE PAGES

    Szezech Jr., J. D.; Caldas, I. L.; Lopes, S. R.; ...

    2009-10-23

    Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds.

  18. Charge transport properties of nanocrystals studied by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Zonghai

    2005-03-01

    Charge transport in semiconductor and metal nanocrystal multilayers between two electrodes is probed by electrostatic force microscopy. The in-plane charge diffusion coefficients are deduced from the charge distribution imaged in real time. Temperature dependence of the transport properties and effects of photoionization and oxidation are also investigated. Implications of these results on the transport mechanisms will be discussed. This work was supported by the ONR Young Investigator Award N000140410489, the American Chemical Society (ACS) PRF award # 41256-G10, and the startup funds at the University of Pennsylvania. MF acknowledges funding from the NSF IGERT program (Grant #DGE-0221664) and SENS.

  19. Measurement of the radiative transport properties of reticulated alumina foams

    SciTech Connect

    Hale, M.J.; Bohn, M.S.

    1992-12-01

    This paper presents a method for determining radiative transport properties of reticulated materials. The method has both experimental and analytical components. A polar nephelometer is used to measure the scattering profile of a sample of the reticulated material. The results of a Monte Carlo simulation of the experiment are then combined with the experimental results to give the scatter albedo and extinction coefficient. This paper presents the results of using this method to determine the radiative transport properties of four different porosities (10, 20, 30, 65 pores per inch) of cylindrical reticulated alumina samples ranging in thickness form 0.5 inches to 2. 5 inches.

  20. Quantum-walk transport properties on graphene structures

    NASA Astrophysics Data System (ADS)

    Bougroura, Hamza; Aissaoui, Habib; Chancellor, Nicholas; Kendon, Viv

    2016-12-01

    We present numerical studies of quantum walks on C60 and related graphene structures to investigate their transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks on graphs provide an abstract setting in which to study such transport properties independent of the other chemical and physical properties of a physical substance. They can thus be used to further the understanding of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is semiconducting.

  1. Transport properties on a random comb

    NASA Astrophysics Data System (ADS)

    Balakrishnan, V.; Van den Broeck, C.

    1995-02-01

    We study the random walk of a particle in a random comb structure, both in the presence of a biasing field and an the field-free case. We show that the mean-field treatment of the quenched disorder can be exactly mapped on to a continuous time random walk (CTRW) on the backbone of the comb, with a definite waiting time density. We find an exact expression for this central quantity. The Green function for the CTRW is then obtained. Its first and second moments determine the drift and diffusion at all times. We show that the drift velocity v vanishes asymptotically for power-law and stretched-exponential distributions of branch lengths on the comb, whatever be the biasing field strength. For an exponential branch-length distribution, v is a nonmonotonic function of the bias, increasing initially to a maximum and then decreasing to zero at a critical value. In the field-free case, anomalous diffusion occurs for a range of power-law distributions of the branch length. The corresponding exponent for the mean square displacement is obtained, as is the asymptotic form of the positional probability distribution for the random walk. We show that normal diffusion occurs whenever the mean branch length is finite, and present a simple formula for the effective diffusion constant; these results are extended to regular (nonrandom) combs as well. The physical reason for anomalous drift or diffusion is traced to the properties of the distribution of a first passage time (on a finite chain) that controls the effective waiting time density of the CTRW.

  2. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

    National Institute of Standards and Technology Data Gateway

    SRD 23 NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) (PC database for purchase)   NIST 23 contains revised data in a Windows version of the database, including 105 pure fluids and allowing mixtures of up to 20 components. The fluids include the environmentally acceptable HFCs, traditional HFCs and CFCs and 'natural' refrigerants like ammonia

  3. Thermal transport properties of complex oxides from first principles

    NASA Astrophysics Data System (ADS)

    Bhatti, Aqyan; Jain, Ankit; McGaughey, Alan; Benedek, Nicole

    2015-03-01

    Thermal transport properties of materials are key parameters in the design of many engineering devices. For this reason, it is highly desirable to be able to control or tailor the thermal properties of materials for specific applications. Complex oxides are attractive in this regard, due to their low and potentially highly tunable thermal conductivity. However, the theoretical description of the thermal transport properties of oxides presents a number of challenges compared to conventional semiconductors. For example, oxides tend to have complex crystal structures and the atoms interact through long-range electrostatic forces. In this talk, we use the example of PbTiO3 to discuss some of the challenges and opportunities associated with thermal transport predictions in complex oxides. For example, many oxides contain very low-lying optical branches, which may provide important acoustic-optical scattering channels. In addition, it is often possible to tune the frequencies of such optical modes with epitaxial strain. We also link the observed negative thermal expansion behavior of PbTiO3 to two zone-boundary modes with large, negative Grüneisen parameters and comment on the consequences of this finding for the thermal transport properties of this material.

  4. Technological Support of Critical Parts for Railway Transport Working Properties

    NASA Astrophysics Data System (ADS)

    Gabets, A. V.; Gabets, D. A.; Markov, A. M.; Radchenko, M. V.; Leonov, S. L.

    2017-01-01

    The materials of complex research of operational properties of a new brand cast iron CHMN-35M. Optimal chemical composition was determined. The obtained results allow to conclude about possibility of its use for the manufacture of critical parts of rolling stock of railway transport, in particular of a side bearing cap

  5. Oxygen transport properties estimation by DSMC-CT simulations

    SciTech Connect

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2014-12-09

    Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.

  6. Nanoporous Cyanate Ester Resins: Structure-Gas Transport Property Relationships

    NASA Astrophysics Data System (ADS)

    Gusakova, Kristina; Fainleib, Alexander; Espuche, Eliane; Grigoryeva, Olga; Starostenko, Olga; Gouanve, Fabrice; Boiteux, Gisèle; Saiter, Jean-Marc; Grande, Daniel

    2017-04-01

    This contribution addresses the relationships between the structure and gas transport properties of nanoporous thermostable cyanate ester resins (CERs) derived from polycyclotrimerization of 1,1'-bis(4-cyanatophenyl)ethane in the presence of 30 or 50 wt% of inert high-boiling temperature porogens (i.e., dimethyl- or dibutyl phthalates), followed by their quantitative removal. The nanopores in the films obtained were generated via a chemically induced phase separation route with further porogen extraction from the densely crosslinked CERs. To ensure a total desorption of the porogen moieties from the networks, an additional short-term thermal annealing at 250 °C was performed. The structure and morphology of such nanoporous CER-based films were investigated by FTIR and SEM techniques, respectively. Further, the gas transport properties of CER films were analyzed after the different processing steps, and relationships between the material structure and the main gas transport parameters were established.

  7. Transport Properties of Metallic Ruthenates: A DFT +DMFT Investigation

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel

    2016-06-01

    We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr2RuO4 , Sr3 Ru2 O7 , SrRuO3 , and CaRuO3 , within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr2 RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity.

  8. Effects of nanosized constriction on thermal transport properties of graphene

    PubMed Central

    2014-01-01

    Thermal transport properties of graphene with nanosized constrictions are investigated using nonequilibrium molecular dynamics simulations. The results show that the nanosized constrictions have a significant influence on the thermal transport properties of graphene. The thermal resistance of the nanosized constrictions is on the order of 107 to 109 K/W at 150 K, which reduces the thermal conductivity by 7.7% to 90.4%. It is also found that the constriction resistance is inversely proportional to the width of the constriction and independent of the heat current. Moreover, we developed an analytical model for the ballistic thermal resistance of the nanosized constrictions in two-dimensional nanosystems. The theoretical prediction agrees well with the simulation results in this paper, which suggests that the thermal transport across the nanosized constrictions in two-dimensional nanosystems is ballistic in nature. PACS 65.80.CK; 61.48.Gh; 63.20.kp; 31.15.xv PMID:25232292

  9. Measurement of gas transport properties for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  10. Transport properties in semiconducting NbS{sub 2} nanoflakes

    SciTech Connect

    Huang, Y. H.; Chen, R. S. Ho, C. H.; Peng, C. C.; Huang, Y. S.

    2014-09-01

    The electronic transport properties in individual niobium disulphide (NbS{sub 2}) nanoflakes mechanically exfoliated from the bulk crystal with three rhombohedral (3R) structure grown by chemical vapor transport were investigated. It is found that the conductivity values of the single-crystalline nanoflakes are approximately two orders of magnitude lower than that of their bulk counterparts. Temperature-dependent conductivity measurements show that the 3R-NbS{sub 2} nanoflakes exhibit semiconducting transport behavior, which is also different from the metallic character in the bulk crystals. In addition, the noncontinuous conductivity variations were observed at the temperature below 180 K for both the nanoflakes and the bulks, which is attributed to the probable charge density wave transition. The photoconductivities in the semiconducting nanoflakes were also observed under the excitation at 532 nm wavelength. The probable mechanisms resulting in the different transport behaviors between the NbS{sub 2} nanostructure and bulk were discussed.

  11. Microvascular pressure distribution in the hamster testis.

    PubMed

    Sweeney, T E; Rozum, J S; Desjardins, C; Gore, R W

    1991-05-01

    Convective transport is a critical element in the regulation of steroidogenesis and spermatogenesis in the testis. Steroid hormones are distributed to their target cells within seminiferous tubules via interstitial fluid. The movement of interstitial fluid and lymph, which transports protein hormones and many of the substrates required for spermatogenesis and steroidogenesis, is driven by capillary filtration. Despite the importance of convective transport in testicular function, however, the mechanisms regulating transvascular exchange in the testis are unknown. As a first step in understanding this process, we measured directly the microvascular hydrostatic pressure distribution in the hamster testis (pentobarbital sodium, 70 mg/kg ip). Using a servo-null transducer, intravascular pressure was measured in all vessel types accessible beneath the surface of the testis of 19 animals. Systemic arterial pressure averaged 89 +/- 2 (SE) mmHg. The most significant observations were that mean capillary pressure was extremely low (10.1 +/- 0.8 mmHg) and remarkably constant (range 8.2-13.3 mmHg), despite a 45 mmHg range in systemic mean arterial pressure among the animals observed. The maintenance of a low hydrostatic pressure in testicular capillaries may serve to sustain fluid filtration at a rate that prevents washout of essential solutes while preserving convective transport. Unfortunately, the anatomical and functional characteristics that determine this unique microvascular environment may also expose the testis to significant pathological risks. For example, the large pre- to postcapillary resistance ratio observed suggests that testicular capillaries must be highly susceptible to increases in venous pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  13. Surface excess properties from energy transport measurements during water evaporation.

    PubMed

    Duan, Fei; Ward, C A

    2005-11-01

    When water evaporates at high rates, recent studies indicate thermal conduction to the interface does not provide enough energy to evaporate water at the observed rate and that it is perhaps thermocapillary convection that transports the remaining energy. This possibility is examined by applying the Gibbs dividing-surface approximation to develop an expression for the energy transported along the interface. When this energy transport rate is compared with that required to evaporate the liquid at the observed rate, it is found that a Gibbs excess property, the "surface-thermal capacity," can be evaluated. A series of 19 evaporation experiments has been conducted under conditions for which there was no buoyancy-driven convection and for which the evaporation rate was progressively increased. For Marangoni numbers, (Ma) less than approximately 100, the interface was quiescent and thermal conduction (the Stefan condition) correctly predicted the energy transport rate to the surface. For experiments with 100transport. However, if the surface-thermal capacity is assigned a value of 30.6+/-0.8 kJ/(m2K), then energy transport by thermocapillary convection and conduction provides the energy transport required to evaporate the liquid at the observed rate. For experiments with Ma>22,000, the interfacial flow was turbulent and viscous dissipation became important.

  14. Therapeutic Effects of PPARα on Neuronal Death and Microvascular Impairment

    PubMed Central

    Moran, Elizabeth P.; Ma, Jian-xing

    2015-01-01

    Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα's effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications. PMID:25705219

  15. Transport properties of silicate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Gaudio, S. J.; Clark, A. N.; O'Dwyer-Brown, L.

    2012-12-01

    It is well appreciated that the transport properties (e.g., diffusion, viscosity) of silicate melts are intimately linked by melt structure and the time scales of structural relaxation. These linkages have been explored exten-sively at low pressure, but our understanding is more limited for high-pressure conditions relevant to the Earth's deep interior. Transport property models based on free-volume, activation energy and/or configurational entropy have merits, but their validity in extrapolation is uncertain. Moreover, the structural implications at high pressure are conflicting and lack experimental support. We examine these issues and review theoretical efforts to model transport properties at high pressure, as well as, those constraints provided by laboratory experiments and simulations. We emphasis the need to consider the properties of melt not only for high-pressure superheated conditions, but also for supercooled conditions in the vicinity of the glass transition. For example, the time scales for density relaxation traversing the glass transition at high pressure can be monitored using in situ X-ray miroctomography/absorption and ex vivo by the Archimedes' method combined with spectroscopy. These approaches are amenable to both strong and fragile liquids. Taken together with superliquidus data, we can greatly improve the interpolation of melt properties within the melting interval for refractory mantle compositions.

  16. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-07

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  17. Transport, noise, and conservation properties in gyrokinetic plasmas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas

    2005-10-01

    The relationship between various transport properties (such as particle and heat flux, entropy production, heating, and collisional dissipation) [1] is examined in electrostatic gyrokinetic simulations of ITG modes in simple geometry. The effect of the parallel velocity nonlinearity on the achievement of steady-state solutions and the transport properties of these solutions is examined; the effects of nonadiabatic electrons are also considered. We also examine the effectiveness of the electromagnetic split-weight scheme [2] in reducing the noise and improving the conservation properties (energy, momentum, particle number, etc.) of gyrokinetic plasmas. [1] W. W. Lee and W. M. Tang, Phys. Fluids 31, 612 (1988). [2] W. W. Lee, J. L. V. Lewandowski, T. S. Hahm, and Z.Lin, Phys. Plasmas 8, 4435 (2001).

  18. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  19. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Tax on transportation of property by air. 49....4271-1 Tax on transportation of property by air. (a) Purpose of this section. In general, section 4271... transportation of property by air which begins after June 30, 1970, if such transportation begins and ends in the...

  20. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Tax on transportation of property by air. 49....4271-1 Tax on transportation of property by air. (a) Purpose of this section. In general, section 4271... transportation of property by air which begins after June 30, 1970, if such transportation begins and ends in the...

  1. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Tax on transportation of property by air. 49....4271-1 Tax on transportation of property by air. (a) Purpose of this section. In general, section 4271... transportation of property by air which begins after June 30, 1970, if such transportation begins and ends in the...

  2. Establishment of a new conditionally immortalized human skeletal muscle microvascular endothelial cell line.

    PubMed

    Sano, Hironori; Sano, Yasuteru; Ishiguchi, Eri; Shimizu, Fumitaka; Omoto, Masatoshi; Maeda, Toshihiko; Nishihara, Hideaki; Takeshita, Yukio; Takahashi, Shiori; Oishi, Mariko; Kanda, Takashi

    2017-12-01

    In skeletal muscle, the capillaries have tight junctions (TJs) that are structurally similar to those in the blood-brain barrier (BBB) and blood-nerve barrier (BNB). Although many findings have been clarified in the territory of BBB and BNB, few have so far examined the TJs of capillaries in the skeletal muscle. In addition, no in vitro human skeletal muscle microvasculature models have been reported thus far. We newly established a new human skeletal muscle microvascular endothelial cell (HSMMEC) line. HSMMECs were isolated from human skeletal muscle and were infected with retroviruses harboring temperature-sensitive SV40 T antigen and telomerase genes. This cell line, termed TSM15, showed a spindle fiber-shaped morphology, an immunoreactivity to anti-factor VIII and anti-VE-cadherin antibodies, and a temperature-sensitive growth. TSM15 cells grew stably for more than 40 passages when they were cultured at 33°C, thereby retaining their spindle fiber-shaped morphology and contact inhibition at confluence. The cells expressed tight junctional molecules such as claudin-5, occludin, and zonula occludens-1, as well as transporters such as a glucose transporter 1. The transendothelial electrical resistance of TSM15 was as high as those of the human brain microvascular endothelial cell line. This novel cell line might facilitate the analyses of the pathophysiology of inflammatory myopathy, such as dermatomyositis, and can improve our understanding of the physiological and biochemical properties of the microvasculature in human skeletal muscle. © 2017 Wiley Periodicals, Inc.

  3. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  4. Direct ink writing of microvascular networks

    NASA Astrophysics Data System (ADS)

    Wu, Willie

    Nature is replete with examples of embedded microvascular systems that enable efficient fluid flow and distribution for autonomic healing, cooling, and energy harvesting. The ability to incorporate microvascular networks in functional materials systems is therefore both scientifically and technologically important. In this PhD thesis, the direct-write assembly of planar and 3D biomimetic microvascular networks within polymer and hydrogel matrices is demonstrated. In addition, the influence of network design of fluid transport efficiency is characterized. Planar microvascular networks composed of periodic lattices of uniformal microchannels and hierarchical, branching architectures are constructed by direct-write assembly of a fugitive organic ink. Several advancements are required to facilitate their patterning, including pressure valving, dual ink printing, and dynamic pressure variation to allow tunable control of ink deposition. The hydraulic conductance is measured using a high pressure flow meter as a function of network design. For a constant vascular volume and areal coverage, 2- and 4-generation branched architectures that obey Murray's Law exhibited the highest hydraulic conductivity. These experimental observations are in good agreement with predictions made by analytic models. 3D microvascular networks are fabricated by omnidirectional printing a fugitive organic ink into a photopolymerizable hydrogel matrix that is capped with fluid filler of nearly identical composition. Using this approach, 3D networks of arbitrary design can be patterned. After ink deposition is complete, the matrix and fluid filler are chemically cross-linked via UV irradiation, and the ink is removed by liquefication. Aqueous solutions composed of a triblock copolymer of polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO constitute the materials system of choice due to their thermal- and concentration-dependent phase behavior. Specifically, the fugitive ink consists of a 23 w

  5. Charge carrier transport properties in layer structured hexagonal boron nitride

    SciTech Connect

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-15

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (~ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T{sub 0}){sup −α} with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm{sup -1}), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  6. Transport properties of the Fermi hard-sphere system

    SciTech Connect

    Mecca, Angela; Lovato, Alessandro; Benhar, Omar; Polls, Artur

    2016-03-01

    The transport properties of neutron star matter play an important role in many astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy ν = 2, that can be regarded as a model of pure neutron matter. Our approach is based on the effective interaction obtained from the formalism of correlated basis functions and the cluster expansion technique. The resulting transport coefficients show a strong sensitivity to the quasiparticle effective mass, reflecting the effect of second-order contributions to the self-energy that are not taken into account in nuclear matter studies available in the literature.

  7. Electronic properties and quantum transport in Graphene-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dubois, S. M.-M.; Zanolli, Z.; Declerck, X.; Charlier, J.-C.

    2009-11-01

    Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) represent a novel class of low-dimensional materials. All these graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties of graphene and are thus promising candidates for a wide range of nanoscience and nanotechnology applications. In this paper, the electronic and quantum transport properties of these carbon nanomaterials are reviewed. Although these systems share the similar graphene electronic structure, confinement effects are playing a crucial role. Indeed, the lateral confinement of charge carriers could create an energy gap near the charge neutrality point, depending on the width of the ribbon, the nanotube diameter, the stacking of the carbon layers regarding the different crystallographic orientations involved. After reviewing the transport properties of defect-free systems, doping and topological defects (including edge disorder) are also proposed as tools to taylor the quantum conductance in these materials. Their unusual electronic and transport properties promote these carbon nanomaterials as promising candidates for new building blocks in a future carbon-based nanoelectronics, thus opening alternatives to present silicon-based electronics devices.

  8. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Maffeis, Thierry G; Kryvchenkova, Olga; Cobley, Richard J; Kalna, Karol; Kepaptsoglou, Despoina M; Ramasse, Quentin M; Walton, Alex S; Ward, Michael B; Köble, Jürgen; Wilks, Steve P

    2015-07-08

    The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in relation to the cross-sectional width of the ZnO nanowires. We observe a distinct Schottky to Ohmic transition in transport behavior at an Au to nanowire diameter ratio of 0.6. The current-voltage electrical measurements performed with a multiprobe instrument are explained using 3-D self-consistent electrostatic and transport simulations revealing that tunneling at the contact edge is the dominant carrier transport mechanism for these nanoscale contacts. The results are applicable to other nanowire materials such as Si, GaAs, and InAs when the effects of surface charge and contact size are considered.

  9. Modeling transport properties of inhomogeneous superconductor-metal composites

    SciTech Connect

    Borroto, A.; Altshuler, E.; Del Río, L.; Arronte, M.; Johansen, T. H.

    2014-11-17

    We propose a model for a superconductor-metal composite that allows to derive intrinsic transport properties of the superconducting phase based on 2D images of its cross section, and a minimal set of parameters. The method is tested experimentally by using, as model composite, a “transversal bridge” made on a Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} (BSCCO)-Ag multi-filamentary tape. It is shown that the approach allows to predict the measured I−〈E〉 curves of the filaments. In addition, one can determine the critical current anisotropy between the longitudinal and transverse directions of the Ag-BSCCO tape, and also of its superconducting filaments separately, which emphasizes the role of the morphology of the composite in the transport properties.

  10. Transport properties of β-FeSi2

    NASA Astrophysics Data System (ADS)

    Arushanov, Ernest; Lisunov, Konstantin G.

    2015-07-01

    The aim of this paper is to summarize considerable experimental efforts undertaken within the last decades in the investigations of transport properties of β-FeSi2. The β-FeSi2 compound is the most investigated among a family of semiconducting silicides. This material has received considerable attention as an attractive material for optoelectronic, photonics, photovoltaics and thermoelectric applications. Previous reviews of the transport properties of β-FeSi2 have been given by Lange and Ivanenko et al. about 15 years ago. The Hall effect, the conductivity, the mobility and the magnetoresistance data are presented. Main attention is paid to the discussion of the impurity (defect) band conductivity, the anomalous Hall effect, the scattering mechanisms of charge carriers, as well as to the hopping conduction and the magnetoresistance.

  11. Transport properties of two finite armchair graphene nanoribbons

    PubMed Central

    2013-01-01

    In this work, we present a theoretical study of the transport properties of two finite and parallel armchair graphene nanoribbons connected to two semi-infinite leads of the same material. Using a single Π-band tight binding Hamiltonian and based on Green’s function formalisms within a real space renormalization techniques, we have calculated the density of states and the conductance of these systems considering the effects of the geometric confinement and the presence of a uniform magnetic field applied perpendicularly to the heterostructure. Our results exhibit a resonant tunneling behaviour and periodic modulations of the transport properties as a function of the geometry of the considered conductors and as a function of the magnetic flux that crosses the heterostructure. We have observed Aharonov-Bohm type of interference representing by periodic metal-semiconductor transitions in the DOS and conductance curves of the nanostructures. PMID:23279756

  12. Transport properties of anyons in random topological environments

    NASA Astrophysics Data System (ADS)

    Zatloukal, V.; Lehman, L.; Singh, S.; Pachos, J. K.; Brennen, G. K.

    2014-10-01

    The quasi-one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons of the same type. Two distinct behaviors are identified. We analytically demonstrate that all types of Abelian anyons localize purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localize. This is due to their entanglement with the anyonic environment, which effectively induces dephasing. Our study demonstrates that localization properties strongly depend on nonlocal topological interactions, and it provides a clear distinction in the transport properties of Abelian and non-Abelian anyons.

  13. Volume transport and property distributions of the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    DiMarco, Steven F.; Chapman, Piers; Nowlin, Worth D.; Hacker, Peter; Donohue, Kathleen; Luther, Mark; Johnson, Gregory C.; Toole, John

    We summarize previous estimates of volume transport and property distributions through the Mozambique Channel and offer additional estimates and measurements based on recently acquired hydrographic and float data. Previously published property distributions are consistent with southward spreading through the Channel. Waters of the Mozambique Channel are characterized by shallow and intermediate oxygen minima separated by a relative maximum. Based on hydrographic sections, the intermediate maximum in dissolved oxygen is seen to decrease in value as it spreads southward. The highest values are found in the westward flow of the South Equatorial Current just north of Madagascar and within the western 200 km of the Channel. Similarly, oxygen concentrations at the intermediate oxygen minimum, which derives from the Arabian Sea, increase southwards, while its depth increases from 900 to 1100 m, supporting previous studies and indicating southward spreading and mixing along the Mozambique Channel. Historical transports based on hydrographic data in the Channel vary from 5 Sv northward to 26 Sv southward depending on reference level and time of the year. Balancing transport below 2500 m (the sill depth in the Channel), we estimate the net southward transports above this depth to be 29.1 and 5.9 Sv for the northern and southern sections, respectively—the difference is presumably related to seasonality and eddy variability superimposed on the mean flow. Individual deep float trajectories show the presence of many eddies, but the overall flow in the channel is southward, and broadly consistent with hydrography. Model outputs also show mean southward transport with considerable seasonal variability. Satellite data show high variability in sea surface height anomalies and high eddy kinetic energy associated with eddy activity. Although the geostrophic transport values are consistent with the historical limits, the lowered ADCP measurements suggest a substantial barotropic

  14. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  15. CALIPSO observations of changes in dust properties during transatlantic transport

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Yang, W.; Varnai, T.; Kostinski, A. B.

    2015-12-01

    The vertical distribution of dust shape and size is highly important for understanding and estimating dust radiative forcing. We used CALIPSO nighttime datasets to examine the vertical structure and evolution of Saharan dust during transatlantic transport. The results show that most Saharan dust is lifted to high altitude and descends after traveling thousands of km-s. Initially, the depolarization ratio and color ratio of Saharan dust are uniformly distributed along altitude, suggesting vertically constant particle size and shape distributions. During transport, the depolarization ratio of Saharan dust drops at lower altitudes, suggesting that particle shapes become less irregular; while at relatively high altitudes, the depolarization ratio of dust increases during transport. The changes observed during transport likely come from the effects of gravitational sorting caused by variations in particle shape and size. A simple model with only two shapes qualitatively captures these features and confirms that shape-induced differential settling contribute significantly to the observed vertical stratification of dust properties. In addition, the effect of clouds on dust properties will be also discussed.

  16. The charge and spin transport properties in hexagonal silicene nanorings

    NASA Astrophysics Data System (ADS)

    Xu, N.; Zhang, H. Y.; Wu, X. Q.; Chen, Q.; Ding, J. W.

    2017-09-01

    Based on the tight-binding model, charge and spin transport properties of hexagonal silicene rings are investigated within the nonequilibrium Green’s function technique. The effects of external electric, magnetic and exchange fields are taken into account. The calculated results reveal that the hexagonal silicene nanorings act as a controllable spin filter. The near-perfect spin polarization can be achieved by adjusting the electric, magnetic and exchange fields. The calculated results offer new possibilities for silicene ring based spin nanodevices.

  17. New technique to quantitate regional pulmonary microvascular transit times from dynamic x-ray CT images

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1998-07-01

    Microvascular red blood cell mean transit time is a crucial parameter underlying basic pulmonary physiology. Dynamic x-ray CT imaging during bolus radiopaque tracer injection offers the ability to make functional measurements throughout the lungs, but is not able to resolve individual microvascular beds. We have implemented a model-free Fast Fourier Transform deconvolution algorithm to extract the microvascular transport characteristics from the acquired time-intensity data. The deconvolved feeding arterial bolus input curves and corresponding regional pulmonary parenchymal 'response' functions provide measures of regional pulmonary tracer residence times, allowing calculation of microvascular transit times for different spatial regions of the pulmonary system. The acquired feeding (main) pulmonary artery and regional pulmonary parenchyma time-intensity curves were fit to gamma variate functions which were then sampled with a temporal resolution of 0.1 seconds. Deconvolution of the feeding arterial and regional parenchymal curves consistently results in bimodal regional residue functions. The two modes consist of a relatively large, sharp, narrow peak approximating a delta function followed by a smaller more dispersed curve. The sharp, narrow peak appears to be due to small artery inclusion in the sampled parenchymal region (partial volume effects). The magnitude of the dominant arterial peak decreases as sampling locations are moved from the less expanded dependent to the more expanded non-dependent lung regions of supine dogs. Mathematical separation of the two modes allowed isolation of the arterial and microvascular components. The shape and transit times of the putative microvascular components agree well with results from similar measurements via microfocal angiography and in vivo microscopy. Reconvolving the microvascular component with the input curve results in a corrected parenchymal curve representing the regional microvascular transport characteristics

  18. Transport properties of polymer solutions. A comparative approach.

    PubMed Central

    Foster, K R; Cheever, E; Leonard, J B; Blum, F D

    1984-01-01

    A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements. PMID:6733244

  19. Studies of thermal transport properties using molecular dynamics simulation techniques

    NASA Astrophysics Data System (ADS)

    Ratanapisit, Juraivan

    The purpose of this research has been to investigate the transport properties of fluids using novel techniques in molecular dynamics simulations: symplectic integration algorithms for equations of motion, Baranyai's thermostatted fluid wall algorithm, and Rapaport's algorithm for hard chain fluids. In the symplectic integration study, an extensive series of equilibrium molecular dynamic simulations have been performed to investigate the accuracy, stability and efficiency of second order explicit symplectic integrators: position Verlet, velocity Verlet, and the McLauchlan-Atela algorithms. To our knowledge, previous studies of the symplectic integrators have only looked at the thermodynamic energy using a simple model fluid. Our work presents realistic but perhaps the simplest simulations possible to test the effect of the integrators on the three main transport properties. Our results suggest that if an algorithm fails to adequately conserve energy, it will also show significant uncertainties in transport property calculations. A large portion of the simulation study focused on a new algorithm for thermal conductivity based on Baranyai's fluid wall method. This algorithm is stable enough to perform simulations even using large time steps and provides reasonable values and uncertainties for the thermal conductivity. The investigation was conducted using two different thermostat algorithms: the Gaussian and Nosé-Hoover thermostats. The final part of this research focused on the viscosity of hard chain fluids. This study was initiated with an investigation of the equilibrium molecular dynamic simulations of pure hard-sphere molecules. The natural extension of that work was to hard chain fluids. (Abstract shortened by UMI.)

  20. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  1. Cardiovascular sex differences influencing microvascular exchange

    PubMed Central

    Huxley, Virginia H.; Wang, Jianjie

    2010-01-01

    The vital role of the cardiovascular (CV) system is maintenance of body functions via the matching of exchange to tissue metabolic demand. Sex-specific differences in the regulatory mechanisms of CV function and the metabolic requirements of men and women, respectively, have been identified and appreciated. This review focuses on sex differences of parameters influencing exchange at the point of union between blood and tissue, the microvasculature. Microvascular architecture, blood pressure (hydrostatic and oncotic), and vascular permeability, therefore, are discussed in the specific context of sex in health and disorders. It is notable that when sex differences exist, they are generally subtle but significant. In the aggregate, though, they can give rise to profoundly different phenotypes. The postulated mechanisms responsible for sex differences are attributed to genomics, epigenetics, and sex hormones. Depending on specific circumstances, the effect of the combined factors can range from insignificant to lethal. Identifying and understanding key signalling mechanisms bridging genomics/sex hormones and microvascular exchange properties within the scope of this review holds significant promise for sex-specific prevention and treatment of vascular barrier dysfunction. PMID:20495187

  2. Microvascular Materials for Mass and Energy Transport

    DTIC Science & Technology

    2012-08-01

    2D vs. 3D : Visualizing Reacivity! 2D 3D Nguyen, Leho, Esser-Kahn Lab Chip 2012 2.96 ± .35 mol/m2 hr 1.66 ± .17 mol/m2 hr Mass...Celery! Lithography Big Mac Assembly Celery Assembly 3D Techniques HRL AMS Fibers Can be Woven Into Composite Materials! Channel extends over...Structures Mammal Fish 3D Gas Exchange Unit Just how efficient are natural structures?! Merck – Lung Guide! Breathing Capacity of Lung 3 million

  3. Optical contactless measurement of semiconductor thermoelectric transport properties (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gibelli, Francois; Lombez, Laurent; Guillemoles, Jean-François

    2017-04-01

    In view of the combinatorial approach to discovery of new thermoelectric materials, it is highly desirable to have fast measurement techniques, if possible with capabilities to access local fluctuations or gradients in material properties. Using the generalized Planck& #39;s law of radiation [1] for fitting the photoluminescence spectra is the most appropriate technique to access the quasi Fermi level splitting and the temperature of the carriers in a semiconductor. These two parameters enable to determine Seebeck coefficients for the material as a new photo-Seebeck effect [2]. The absolutely calibrated photoluminescence intensity profile[3] with the spatial coordinates combined with Callen coupled transport equations and with the kinetic expression of the transport parameters under the relaxation time approximation enable us to determine: the Seebeck coefficient, the electrical conductivity, the thermal electron and hole conductivity, the mobilities, the diffusion coefficients and the heat transferred from the carriers to the lattice. All these parameters can be obtained either for electrons or for holes[4], even simultaneously, for intrinsic semiconductor in ambipolar regime. The method has been applied to a multi-quantum well structure of InGaAsP. Since the luminescence comes from the wells, this method enables to access the transport properties in the plane of the wells inside the whole structure. Since photoluminescence does not require p-n junction nor high electrical conductivities for the measurement, this optical contactless measurement technique of thermoelectrinc transport parameters involving quasi-equilibrium carriers enables to access properties inside a given layer of the whole structure or in materials with very low conductivities. We will also show the perspectives offered for the research of new thermoelectric materials. [1] Würfel, J. Phys. C : Solid State Phys., 1982 [2] Gibelli et al., Phys. Rev. Appl., 5 (2) 2016 Tauc, Czech J Phys, 1955 [3

  4. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  5. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  6. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  7. Red Cell Properties after Different Modes of Blood Transportation

    PubMed Central

    Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P.; Mañú-Pereira, María del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars

    2016-01-01

    Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca2+ handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na+, K+, Ca2+) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to

  8. Symmetry properties of macroscopic transport coefficients in porous media

    NASA Astrophysics Data System (ADS)

    Lasseux, D.; Valdés-Parada, F. J.

    2017-04-01

    We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the

  9. Influence of biofilms on transport properties in porous media

    NASA Astrophysics Data System (ADS)

    Davit, Y.

    2015-12-01

    Microbial activity and biofilm growth in porous media can drastically modify transport properties such as permeability, longitudinal and transverse dispersion or effective reaction rates. Understanding these effects has proven to be a considerable challenge. Advances in this field have been hindered by the difficulty of modeling and visualizing these multi-phase non-linear effects across a broad range of spatial and temporal scales. To address these issues, we are developing a strategy that combines imaging techniques based on x-ray micro-tomography with homogenization of pore-scale transport equations. Here, we review recent progress in x-ray imaging of biofilms in porous media, with a particular focus on the contrast agents that are used to differentiate between the fluid and biofilm phases. We further show how the 3D distribution of the different phases can be used to extract specific information about the biofilm and how effective properties can be calculated via the resolution of closure problems. These closure problems are obtained using the method of volume averaging and must be adapted to the problem of interest. In hydrological systems, we show that a generic formulation for reactive solute transport is based on a domain decomposition approach at the micro-scale yielding macro-scale models reminiscent of multi-rate mass transfer approaches.

  10. Predicting radiative transport properties of plasma sprayed porous ceramics

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2016-03-01

    The typical yttria-stabilized zirconia material for making the thermal barrier coatings (TBCs) is intrinsically semitransparent to thermal radiation, and the unique disordered microstructures in TBCs make them surprisingly highly scattering. To quantitatively understand the influence of disordered microstructures, this paper presents a quantitative prediction on the radiative properties, especially the transport scattering coefficient of plasma sprayed TBC based on microstructure analysis and rigorous electromagnetic theory. The impact of the porosity, shape, size, and orientation of different types of voids on transport scattering coefficient is comprehensively investigated under the discrete dipole approximation. An inverse model integrating these factors together is then proposed to quantitatively connect transport scattering coefficient with microstructural information, which is also validated by available experimental data. Afterwards, an optimization procedure is carried out based on this model to obtain the optimal size and orientation distribution of the microscale voids to achieve the maximal radiation insulation performance at different operating temperatures, providing guidelines for practical coating design and fabrication. This work suggests that the current model is effective and also efficient for connecting scattering properties to microstructures and can be implemented as a quantitative tool for further studies like non-destructive infrared imaging as well as micro/nanoscale thermal design of TBCs.

  11. Upscaling flow and transport properties in synthetic porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, Lukasz; Dabrowski, Marcin

    2015-04-01

    Flow and transport through the porous media has instances in nature and industry: contaminant migration in geological formations, gas/oil extraction from proppant filled hydraulic fractures and surrounding porous matrix, underground carbon dioxide sequestration and many others. We would like to understand the behavior of propagating solute front in such medium, mainly flow preferential pathways and the solute dispersion due to the porous medium geometry. The motivation of our investigation is to find connection between the effective flow and transport properties and porous media geometry in 2D and 3D for large system sizes. The challenge is to discover a good way of upscaling flow and transport processes to obtain results comparable to these calculated on pore-scale in much faster way. We study synthetic porous media made of densely packed poly-disperse disk-or spherical-shaped grains in 2D and 3D, respectively. We use various protocols such as the random sequential addition (RSA) algorithm to generate densely packed grains. Imposed macroscopic pressure gradient invokes fluid flow through the pore space of generated porous medium samples. As the flow is considered in the low Reynolds number regime, a stationary velocity field is obtained by solving the Stokes equations by means of finite element method. Void space between the grains is accurately discretized by using body-fitting triangular or tetrahedral mesh. Finally, pure advection of a front carried by the velocity field is studied. Periodicity in all directions is applied to microstructure, flow and transport processes. Effective permeability of the media can be calculated by integrating the velocity field on cross sections, whereas effective dispersion coefficient is deduced by application of centered moment methods on the concentration field of transported solute in time. The effective parameters are investigated as a function of geometrical parameters of the media, such as porosity, specific surface area

  12. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  13. Morphologic and transport properties of natural organic floc

    USGS Publications Warehouse

    Larsen, L.G.; Harvey, J.W.; Crimaldi, J.P.

    2009-01-01

    The morphology, entrainment, and settling of suspended aggregates ("floc") significantly impact fluxes of organic carbon, nutrients, and contaminants in aquatic environments. However, transport properties of highly organic floc remain poorly understood. In this study detrital floc was collected in the Florida Everglades from two sites with different abundances of periphyton for use in a settling column and in racetrack flume entrainment experiments. Although Everglades flocs are similar to other organic aggregates in terms of morphology and settling rates, they tend to be larger and more porous than typical mineral flocs because of biostabilization processes and relatively low prevailing shear stresses typical of wetlands. Flume experiments documented that Everglades floc was entrained at a low bed shear stress of 1.0 ?? 10-2 Pa, which is considerably smaller than the typical entrainment threshold of mineral floc. Because of similarities between Everglades floc and other organic floc populations, floc transport characteristics in the Everglades typify the behavior of floc in other organic-rich shallow-water environments. Highly organic floc is more mobile than less organic floc, but because bed shear stresses in wetlands are commonly near the entrainment threshold, wetland floc dynamics are often transport-limited rather than supply limited. Organic floc transport in these environments is therefore governed by the balance between entrainment and settling fluxes, which has implications for ecosystem metabolism, materials cycling, and even landscape evolution. Copyright 2009 by the American Geophysical Union.

  14. Rhamnolipid surface thermodynamic properties and transport in agricultural soil.

    PubMed

    Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang

    2014-03-01

    Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport.

  15. Transport properties of zigzag graphene nanoribbon decorated with copper clusters

    SciTech Connect

    Berahman, M.; Sheikhi, M. H.

    2014-09-07

    Using non-equilibrium green function with density functional theory, the present study investigates the transport properties of decorated zigzag graphene nanoribbon with a copper cluster. We have represented the decoration of zigzag graphene nanoribbon with single copper atom and cluster containing two and three copper atoms. In all the cases, copper atoms tend to occupy the edge state. In addition, we have shown that copper can alter the current-voltage characteristic of zigzag graphene nanoribbon and create new fluctuations and negative differential resistance. These alternations are made due to discontinuity in the combination of orbitals along the graphene nanoribbon. Decoration alters these discontinuities and creates more visible fluctuations. However, in low bias voltages, the changes are similar in all the cases. The study demonstrates that in the decorated zigzag graphene nanoribbon, the edge states are the main states for transporting electron from one electrode to another.

  16. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  17. Scattering and transport properties of tight-binding random networks

    NASA Astrophysics Data System (ADS)

    Martínez-Mendoza, A. J.; Alcazar-López, A.; Méndez-Bermúdez, J. A.

    2013-07-01

    We study numerically scattering and transport statistical properties of tight-binding random networks characterized by the number of nodes N and the average connectivity α. We use a scattering approach to electronic transport and concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from insulating to metallic behavior in the average scattering matrix elements <|Smn|2>, the conductance probability distribution w(T), the average conductance , the shot noise power P, and the elastic enhancement factor F by varying α from small (α→0) to large (α→1) values. We also show that all these quantities are invariant for fixed ξ=αN. Moreover, we proposes a heuristic and universal relation between <|Smn|2>, , and P and the disorder parameter ξ.

  18. Transport properties of copper phthalocyanine based organic electronic devices

    NASA Astrophysics Data System (ADS)

    Schuster, C.; Kraus, M.; Opitz, A.; Brütting, W.; Eckern, U.

    2009-12-01

    Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc attached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Green’s function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobility and the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.

  19. Properties of transportation dynamics on scale-free networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jian-Feng; Gao, Zi-You; Zhao, Xiao-Mei

    2007-01-01

    In this work, we study the statistical properties of transportation dynamics considering congestion effects, based on the standard Barabási-Albert scale-free model. In terms of user equilibrium (UE) condition, congestion effects can be described by cost function. Simulation results demonstrate that the cumulative load distribution exhibits a power-law behavior with Pl∼l, where l is the flow loaded on the node and γ≈2.7 which is much bigger than that obtained in many networks without considering congestion effects. That is, there exist fewer heavily loaded nodes in the network when considering congestion effects. Furthermore, by numerically investigating overload phenomenon of the heaviest loaded link removal in transportation networks, a phase-transition phenomenon is uncovered in terms of the key parameter characterizing the node capacity.

  20. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  1. Coefficients for calculating thermodynamic and transport properties of individual species

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.

    1993-01-01

    Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.

  2. Thermodynamic and transport properties of dense hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Redmer, Ronald; Nagel, Stefan

    1995-11-01

    Thermodynamic and transport properties of dense plasmas are expressed by Green's functions within a consistent quantum statistical approach. The equation of state for hydrogen plasma is evaluated within a generalized Beth-Uhlenbeck approach utilizing a quasiparticle picture for the one- and two-particle states. Taking into account also further clusters such as dimers and molecular ions, the stability behavior of the thermodynamic functions is studied with respect to the hypothetical plasma phase transition. The electrical and thermal conductivity, as well as the thermopower, are then calculated within the linear response theory as given by Zubarev. Especially, the effects of arbitrary degeneracy, ion-ion structure factor, screening, and of partial ionization are studied. The interactions between the various species are treated on the T matrix level. The numerical results interpolate between the Spitzer theory for fully ionized, nondegenerate plasmas and the Ziman theory for metallic densities. The plasma phase transition is accompanied by a metal-nonmetal transition, which is characterized by drastic changes of the electronic properties, as can be deduced from the behavior of the transport properties.

  3. Polymerizable ionic liquid with state of the art transport properties.

    PubMed

    Jeremias, Sebastian; Kunze, Miriam; Passerini, Stefano; Schönhoff, Monika

    2013-09-12

    The physicochemical properties of diallyldimethylammonium-bis(trifluoromethanesulfonyl)imide (DADMATFSI) and its binary mixture with LiTFSI are presented herein, also showing this novel compound as a polymerizable room temperature ionic liquid with excellent transport properties for Li(+) ions. In particular, results of pulsed field gradient (PFG)-NMR diffusion experiments and impedance measurements show that DADMATFSI exhibits state of the art properties of ionic liquids. Similar ionic diffusion coefficients and a similarly high conductivity as seen in the benchmark compound N-butyl-N-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (PYR14TFSI) are observed. In accordance, the Li transference number in the binary mixture matches the trend seen for PYR14TFSI-LiTFSI mixtures. In addition to these impressive properties as ionic liquid, DADMATFSI was polymerized by UV treatment. The polymerization is demonstrated and the ion conducting properties of the resulting gel polymer electrolyte are investigated, showing that DADMATFSI can be transformed into an ionogel and may have applications where polymerization is desirable.

  4. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  5. Transport properties of Fibonacci heterostructures: a nonparabolic approach

    NASA Astrophysics Data System (ADS)

    Palomino-Ovando, M.; Cocoletzi, G. H.

    1998-07-01

    A fourth order hamiltonian is used to explore transport properties of semiconductor Fibonacci heterostructures. The tunneling current and time delay are obtained for different Fibonacci sequences constructed withGaAsandAlxGa1 - xAs. Energy minibands are calculated to study the fractal dimension and critical electronic states in quasi-periodic arrays. Results show that nonparabolic corrections produce changes in the tunneling current, time delay and fractal dimension, and a low voltage shift of the current peaks compared with the parabolic theory. The electronic states preserve their critical nature in the presence of nonparabolic effects.

  6. Transport properties of ZrN superconducting films

    SciTech Connect

    Cassinese, A.; Iavarone, M.; Vaglio, R.; Grimsditch, M.; Uran, S.

    2000-12-01

    Superconductivity in nitrides presents intriguing aspects related to the role of optical phonons. In the present paper we report on high-quality superconducting zirconium nitride film preparation and characterization (including Raman scattering) as well as on both dc and microwave frequency transport properties. The high-temperature dc resistivity shows no evidence of saturation effects, possibly due to the low electron-phonon coupling. Surface impedance data can be well fitted by the standard BCS expressions. The data provide further evidence of the ''conventional'' nature of superconductivity in these compounds.

  7. Physical and Optical Polarizability and Transport Properties of Bismuthate Glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    Bismuth-based glasses containing ZnO, B2O3 and Li2O are investigated through different physical, polarizability and transport properties. Raman spectroscopy reveals that these glasses are built from [BiO3] and [BiO6] units. Zinc in tetrahedral form is also observed. Density and glass transition temperature increase with the bismuth content. The refractive index, oxide ion polarizability and optical basicity also increase with the Bi2O3 content, whereas the interaction parameter decreases. The DC electrical conductivity increases and the activation energy decreases with the increase in the Li2O content.

  8. Thermodynamic and transport properties of cryogenic propellants and related fluids

    NASA Technical Reports Server (NTRS)

    Johnson, V. J.

    1973-01-01

    Significant advances have been made in recent years in the quality and range of thermophysical data for the cryogenic propellants, pressurants, and inertants. A review of recently completed and current data compilation projects for helium, hydrogen, argon, nitrogen, oxygen, fluorine, and methane is given together with recommended references for thermodynamic and transport property data tables for these fluids. Modern techniques in the plotting of thermodynamic charts from tabular data (or from functions such as the equation of state) have greatly improved their precision and value. A list of such charts is included.

  9. Electronic structures and transport properties of fluorinated boron nitride nanoribbons.

    PubMed

    Zeng, Jing; Chen, Ke-Qiu; Sun, Chang Q

    2012-06-14

    By applying the nonequilibrium Green's functions and the density-functional theory, we investigate the electronic structures and transport properties of fluorinated zigzag-edged boron nitride nanoribbons. The results show that the transition between half-metal and semiconductor in zigzag-edged boron nitride nanoribbons can be realized by fluorination at different sites or by the change of the fluorination level. Moreover, the negative differential resistance and varistor-type behaviors can also be observed in such fluorinated zigzag-edged boron nitride nanoribbon devices. Therefore, the fluorination of zigzag-edged boron nitride nanoribbons will provide the possibilities for a multifunctional molecular device design.

  10. Study of electronic transport properties of doped 8AGNR

    SciTech Connect

    Sharma, Uma Shankar; Srivastava, Anurag; Verma, U. P.

    2014-04-24

    The electronic and transport properties of 8-armchair graphene nanoribbon (8AGNR) with defect at different sites are investigated by performing first-principles calculations based on density functional theory (DFT). The calculated results show that the 8AGNR are semiconductor. The introduction of 3d transition metals, creates the nondegenerate states in the conduction band, makes 8AGNR metallic. The computed transmission spectrum confirms that AGNR are semiconducting in nature and their band gap remain unchanged and localized states appear when there is vacancy in their structures, and the conductance decreases due to defects compared with the pristine nanoribbon.

  11. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  12. Transport and magnetic properties of CMR manganites with antidot arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  13. Predicting the transport properties of sedimentary rocks from microgeometry

    SciTech Connect

    Schlueter, E.M.

    1993-01-01

    We investigate through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. Our approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that we develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

  14. Predicting the transport properties of sedimentary rocks from microgeometry

    SciTech Connect

    Schlueter, E.M.

    1995-02-01

    The author investigates through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. The approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that the authors develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

  15. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  16. Control of photon transport properties in nanocomposite nanowires

    NASA Astrophysics Data System (ADS)

    Moffa, M.; Fasano, V.; Camposeo, A.; Persano, L.; Pisignano, D.

    2016-02-01

    Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.

  17. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    PubMed

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  18. Ab initio study of the electronic transport properties of silicates.

    NASA Astrophysics Data System (ADS)

    Soubiran, F.; Militzer, B.

    2016-12-01

    The Kepler spacecraft led to the discovery of numerous Super-Earths planets. Little is known about them, as there is no equivalent in the Solar System. It is uncertain whether they have a convective mantle like the Earth. It is also unclear if their mantle is insulating or conducting. In the latter case, for instance, the mantle could generate a magnetic field via dynamo processes. In order to better understand the properties of the silicates under pressure-temperature conditions relevant for the interiors of Super-Earth, we performed ab initio simulations based on density functional theory. We specifically explored the electronic transport properties, conductivity and reflectivity, to characterize their behavior in their different phases. We find that liquid and solid silicates behave differently and discuss consequences for the planetary interiors.

  19. Simplified curve fits for the transport properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.

    1987-01-01

    New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).

  20. Generalized thermodynamic and transport properties. II. Molecular liquids.

    PubMed

    Bertolini, D; Tani, A

    2011-03-01

    In the present paper, we extend the method described in paper I [D. Bertolini and A. Tani, preceding paper, Phys. Rev. E 83, 031201 (2011)] to molecular liquids, which allows us to solve the exact kinetic equation proposed by de Schepper et al. [Phys. Rev. A 38, 271 (1988)] without approximations. In particular, generalized thermodynamic properties (enthalpy, specific heat, and thermal expansion coefficient) and transport properties (longitudinal viscosity, thermal conductivity) have been calculated for three liquids of increasing complexity, namely dimethyl sulfoxide, hydrogen fluoride, and SPC/E water. All results have been obtained by the molecular formalism as well as the atomic one, corrected for intramolecular correlations that are due to the models adopted. As done for simple liquids, the coupling between the viscous stress tensor and the energy flux vector has been calculated exactly. We also show that the Markov assumption for the dynamics related to thermal conductivity can only be adopted with caution.

  1. Transport properties of multigrained nanocomposites with imperfect interfaces

    NASA Astrophysics Data System (ADS)

    Palla, Pier Luca; Giordano, Stefano

    2016-11-01

    Multigrained or polycrystalline composite materials have attracted a considerable attention due to their potential applications as advanced materials with outstanding thermal, mechanical, and electromagnetic properties. When the grains' morphology is displayed at the nanoscopic scale, the presence of imperfect interfaces plays a central role in determining the effective transport properties. Therefore, we develop here a self-consistent effective medium theory able to evaluate the influence of real contacts between the different phases of multigrained composite materials. This approach takes into account the classical interface schemes that have been introduced in literature, namely, the low and the high conducting interface models. The theoretical results have been compared with numerical and experimental data concerning the thermal conductivity of ( 1 - x ) Si : x Ge mixtures and the electrical conductivity of ( 1 - x ) Li 2 O : x B 2 O 3 composites.

  2. FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1994-01-01

    The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.

  3. FLUID- THERMODYNAMIC AND TRANSPORT PROPERTIES OF FLUIDS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1994-01-01

    The accurate computation of the thermodynamic and transport properties of fluids is a necessity for many engineering calculations. The FLUID program was developed to calculate the thermodynamic and transport properties of pure fluids in both the liquid and gas phases. Fluid properties are calculated using a simple gas model, empirical corrections, and an efficient numerical interpolation scheme. FLUID produces results that are in very good agreement with measured values, while being much faster than older more complex programs developed for the same purpose. A Van der Waals equation of state model is used to obtain approximate state values. These values are corrected for real-gas effects by model correction factors obtained from tables based on experimental data. These tables also accurately compensate for the special circumstances which arise whenever phase conditions occur. Viscosity and thermal conductivity values are computed directly from tables. Interpolation within tables is based on Lagrange's three point formula. A set of tables must be generated for each fluid implemented. FLUID currently contains tables for nine fluids including dry air and steam. The user can add tables for any fluid for which adequate thermal property data is available. The FLUID routine is structured so that it may easily be incorporated into engineering programs. The IBM 360 version of FLUID was developed in 1977. It is written in FORTRAN IV and has been implemented on an IBM 360 with a central memory requirement of approximately 222K of 8 bit bytes. The IBM PC version of FLUID is written in Microsoft FORTRAN 77 and has been implemented on an IBM PC with a memory requirement of 128K of 8 bit bytes. The IBM PC version of FLUID was developed in 1986.

  4. Nonlinear Transport and Noise Properties of Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil

    We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.

  5. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Gräfe, C.; Slabu, I.; Wiekhorst, F.; Bergemann, C.; von Eggeling, F.; Hochhaus, A.; Trahms, L.; Clement, J. H.

    2016-06-01

    Crossing the blood-brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood-brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles’ shape, material, size, and coating.

  6. Topological phases and transport properties of screened interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Xu, Hengyi; Xiong, Ye; Wang, Jun

    2016-10-01

    We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.

  7. Continuous-time random walks that alter environmental transport properties.

    PubMed

    Angstmann, C; Henry, B I

    2011-12-01

    We consider continuous-time random walks (CTRWs) in which the walkers have a finite probability to alter the waiting-time and/or step-length transport properties of their environment, resulting in possibly transient anomalous diffusion. We refer to these CTRWs as transmogrifying continuous-time random walks (TCTRWs) to emphasize that they change the form of the transport properties of their environment, and in a possibly strange way. The particular case in which the CTRW waiting-time density has a finite probability to be permanently altered at a given site, following a visitation by a walker, is considered in detail. Master equations for the probability density function of transmogrifying random walkers are derived, and results are compared with Monte Carlo simulations. An interesting finding is that TCTRWs can generate transient subdiffusion or transient superdiffusion without invoking truncated or tempered power law densities for either the waiting times or the step lengths. The transient subdiffusion or transient superdiffusion arises in TCTRWs with Gaussian step-length densities and exponential waiting-time densities when the altered average waiting time is greater than or less than, respectively, the original average waiting time.

  8. TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES

    SciTech Connect

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.

    2010-03-29

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP project, THAMES

  9. Free Grafts and Microvascular Anastomoses.

    PubMed

    Scharf, Valery F

    2017-08-09

    Skin grafts and free skin flaps are useful options for closure of wounds in which primary closure or use of traditional skin flaps is not feasible. Grafts are classified by their morphology and host-donor relationship. Free skin flaps with microvascular anastomoses are developed from previously described axial pattern flaps and have the added advantage of reestablishing robust vascular supply to the flap, but require specialized equipment and a high degree of technical expertise. Despite intensive perioperative care and the risk of graft or flap failure, skin grafts and free skin flaps can serve as rewarding methods of closing difficult wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.

    PubMed

    Zhu, Motao; Nie, Guangjun; Meng, Huan; Xia, Tian; Nel, Andre; Zhao, Yuliang

    2013-03-19

    Although a growing number of innovations have emerged in the fields of nanobiotechnology and nanomedicine, new engineered nanomaterials (ENMs) with novel physicochemical properties are posing novel challenges to understand the full spectrum of interactions at the nano-bio interface. Because these could include potentially hazardous interactions, researchers need a comprehensive understanding of toxicological properties of nanomaterials and their safer design. In depth research is needed to understand how nanomaterial properties influence bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological responses. Toxicity of ENMs differ with their size and surface properties, and those connections hold true across a spectrum of in vitro to in vivo nano-bio interfaces. In addition, the in vitro results provide a basis for modeling the biokinetics and in vivo behavior of ENMs. Nonetheless, we must use caution in interpreting in vitro toxicity results too literally because of dosimetry differences between in vitro and in vivo systems as well the increased complexity of an in vivo environment. In this Account, we describe the impact of ENM physicochemical properties on cellular bioprocessing based on the research performed in our groups. Organic, inorganic, and hybrid ENMs can be produced in various sizes, shapes and surface modifications and a range of tunable compositions that can be dynamically modified under different biological and environmental conditions. Accordingly, we cover how ENM chemical properties such as hydrophobicity and hydrophilicity, material composition, surface functionalization and charge, dispersal state, and adsorption of proteins on the surface determine ENM cellular uptake, intracellular biotransformation, and bioelimination versus bioaccumulation. We review how physical properties such as size, aspect ratio, and surface area of ENMs influence the interactions of these materials with biological systems, thereby

  11. The transport properties of axonal microtubules establish their polarity orientation

    PubMed Central

    1993-01-01

    It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine- axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that

  12. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  13. Transport properties of copper with excited electron subsystem

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Migdal, K. P.; Knyazev, D. V.; Inogamov, N. A.; Levashov, P. R.

    2016-11-01

    We have investigated transport properties of an electron subsystem of copper heated by a femtosecond laser pulse. These properties change greatly in comparison with the room temperature solid metal. The electron temperature and pressure profiles significantly depend on these properties in bulk laser targets according to the two-temperature (2T) model. These profiles at the 2T stage are responsible for shock and rarefaction waves' formation. We have developed the analytical model of electroconductivity and heat conductivity of copper which takes into account changes of density, electron and ion temperatures. The model is based on the solution of the Boltzmann equation in the relaxation time approximation for consideration of electron collisions. Also we have carried out the first-principles calculations using the Kubo-Greenwood theory, methods of pseudopotential and linear augmented plane waves which are necessary to evaluate electron wavefunctions. We have provided the check of convergence of all parameters of our first-principles calculations. The results of our analytical model for electro- and heat conductivities are in good agreement with the data obtained using the linearized augmented plane wave (LAPW) method.

  14. Magneto-transport properties of PbSe single crystals

    NASA Astrophysics Data System (ADS)

    Anand, Naween; Martin, Catalin; Gu, Genda; Tanner, David

    PbSe is a low-gap semiconductor with excellent infrared photodetection properties. Here we report our high magnetic field and low temperature electrical properties measurement performed on a moderately doped PbSe single crystals with p-type bulk carrier density of around 1×1018 cm-3. Longitudinal resistance (Rxx) and Hall resistance (Rxy) were simultaneously measured between 0 T and 18 T, and at temperatures between 0.8 K and 25 K, show quantum oscillations above 6 T. The quantum oscillation frequency is ~15 T, giving an estimate for the carrier density of each L pocket in the BZ participating in these oscillations. The effective mass of the free carriers is estimated from the temperature dependence of oscillation amplitudes. Measurements as the magnetic fields is rotated reveal the magneto-transport properties of a 3D-like fermi surface. Dingle temperature and free carrier scattering rate has been estimated and compared to optical measurements. Optical measurements also show a low frequency phonon mode around 45 cm-1 and bandgap of around 0.2 eV along with other interband electronic transitions.

  15. Transport properties of ribbon-shaped carbon fibers: Property-structure relationship

    NASA Astrophysics Data System (ADS)

    Gallego, Nidia Constanza

    Mesophase pitch-based carbon fibers are an ideal material for applications in which high rates of heat dissipation and low mass are required. Unfortunately, the high cost of current commercial high thermal conductivity mesophase pitch-based carbon fibers has limited their use in high volume applications. Understanding how the structure develops during the fiber formation process and how this structure relates to the final fiber properties is the way to optimizing the fiber properties while reducing the processing costs. Ribbon-shaped fibers have been developed at Clemson University and are being evaluated as a low-cost high thermal conductivity alternative fiber to traditional round-shaped fibers. However, the characterization of the thermal transport properties of carbon fibers is a difficult and time-consuming process. The objectives of this study were to evaluate the transport (both thermal and electronic) properties of ribbon-shaped fibers produced from an AR mesophase at different processing conditions, to characterize the structure of these fibers, to study their structure-property relationships, and to develop a model capable of estimating the thermal conductivity of carbon fibers based upon their structural parameters. For this purpose, several sets of ribbon fibers were produced from an AR mesophase at different spinning temperatures and shear rates and heat treated at a final temperature of 2400°C. The electrical resistivities, magnetoresistances and thermal conductivities of these fibers were measured and the structural parameters were determined with x-ray techniques. Two approaches (a short-fiber composite, and a periodic composite) were utilized to model the relationship between the structure of the fiber and its thermal conductivity. The results of this study confirmed that ribbon-shaped fibers develop excellent transport properties at lower graphitization temperatures than those used commercially for round-shaped fibers. Additionally, for the first

  16. Electrical transport and thermoelectric properties of boron carbide nanowires.

    PubMed

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-07

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  17. Transport properties of highly asymmetric hard-sphere mixtures.

    PubMed

    Bannerman, Marcus N; Lue, Leo

    2009-04-28

    The static and dynamic properties of binary mixtures of hard spheres with a diameter ratio of sigma(B)/sigma(A)=0.1 and a mass ratio of m(B)/m(A)=0.001 are investigated using event driven molecular dynamics. The contact values of the pair correlation functions are found to compare favorably with recently proposed theoretical expressions. The transport coefficients of the mixture, determined from simulation, are compared to the predictions of the revised Enskog theory using both a third-order Sonine expansion and direct simulation Monte Carlo. Overall, the Enskog theory provides a fairly good description of the simulation data, with the exception of systems at the smallest mole fraction of larger spheres (x(A)=0.01) examined. A "fines effect" was observed at higher packing fractions, where adding smaller spheres to a system of large spheres decreases the viscosity of the mixture; this effect is not captured by the Enskog theory.

  18. Symmetry analysis of transport properties in helical superconductor junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  19. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  20. Optical and transport properties of dense liquid silica

    SciTech Connect

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Hamel, Sebastien; Root, Seth

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  1. Dynamical and transport properties of liquid gallium at high pressures

    NASA Astrophysics Data System (ADS)

    Sheppard, D.; Mazevet, S.; Cherne, F. J.; Albers, R. C.; Kadau, K.; Germann, T. C.; Kress, J. D.; Collins, L. A.

    2015-06-01

    Quantum molecular dynamics (QMD) simulations are used to calculate the equation of state, structure, and transport properties of liquid gallium along the principal shock Hugoniot. The calculated Hugoniot is in very good agreement with experimental data up to a pressure of 150 GPa as well as with our earlier classical molecular dynamics calculations using a modified embedded atom method (MEAM) potential. The self-diffusion and viscosity calculated using QMD agree with experimental measurements better than the MEAM results, which we attribute to capturing the complexity of the electronic structure at elevated temperatures. Calculations of the DC conductivity were performed around the Hugoniot. Above a density of 7.5 g/cm3, the temperature increases rapidly along the Hugoniot, and the optical conductivity decreases, indicating simple liquid metal behavior.

  2. The electrical transport properties of liquid Rb using pseudopotential theory

    SciTech Connect

    Patel, A. B. Bhatt, N. K. Thakore, B. Y. Jani, A. R.; Vyas, P. R.

    2014-04-24

    Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms the applicability of pseudopotential at very high temperature via temperature dependent pair potential.

  3. Electrical transport properties of ultrathin superconducting Pb films.

    NASA Astrophysics Data System (ADS)

    Panguluri, R. P.; Ozer, M. M.; Thompson, J. R.; Weitering, H. H.; Nadgorny, B. E.

    2007-03-01

    We present electrical transport properties of metallic ultra thin epitaxially grown Pb (111) films on Si (111) substrate. We observed a reduced superconducting transition temperature from bulk Pb using electrical resistivity measurements and deduced the temperature dependence of out-of-plane critical magnetic fields from the sheet resistance R as a function of the applied magnetic field. These results are consistent with M. M. Ozer et al.,^1 obtained by magnetic techniques. We identified the mean field critical temperature and current densities from I-V curves in zero magnetic field. We explored the possible presence of Kosterlitz-Thouless transition (TKT) in this system. We discuss these results based on the Ginzburg-Landau Coloumb-Gas (GLCG) model for 2D vortex fluctuations. 1. M. M. Ozer, J. R. Thompson, and H. H. Weitering, Nature Physics, 2, 173 (2006).

  4. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  5. Electrical transport and thermoelectric properties of boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  6. Symmetry analysis of transport properties in helical superconductor junctions.

    PubMed

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors [Formula: see text] or [Formula: see text] and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  7. Low energy bands and transport properties of chromium arsenide

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Cuono, Giuseppe; Forte, Filomena; Noce, Canio

    2017-06-01

    We apply a method that combines the tight-binding approximation and the Löwdin down-folding procedure to evaluate the electronic band structure of the newly discovered pressure-induced superconductor CrAs. By integrating out all low-lying arsenic degrees of freedom, we derive an effective Hamiltonian model describing the Cr d bands near the Fermi level. We calculate and make predictions for the energy spectra, the Fermi surface, the density of states and transport and magnetic properties of this compound. Our results are consistent with local-density approximation calculations and they also show good agreement with available experimental data for resistivity and the Cr magnetic moment.

  8. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  9. Transport properties of polyaniline-cellulose-acetate blends

    NASA Astrophysics Data System (ADS)

    Planès, Jérôme; Wolter, Andreas; Cheguettine, Yasmina; Proń, Adam; Genoud, Françoise; Nechtschein, Maxime

    1998-09-01

    Transport properties of polyaniline (PANI)-cellulose acetate (CA) conducting blends have been investigated at various length scales and temperatures. We report on the results of dc and ac conductivity measurements, magnetoresistance and electron-spin resonance (ESR) performed on composite films with PANI weight fraction p ranging from the percolation threshold-pc~=0.1%-to a few percent. Three different PANI doping agents have been tested, namely, camphor sulfonic acid (CSA), di(i-octyl phosphate) (DiOP) and phenyl phosphonic acid (PPA). The percolative behavior of σdc resembles that of published results on PANI/PMMA blends. The onset frequency ωξ of the dispersion in σac appears to follow the scaling law: ωξ~σzdc with z~=1. The temperature dependence is of the form of lnσ(T)~-(T0/T)γ the exponent decreasing from 0.75 to 0.5 with increasing p. The microscopic metallic character of transport is found in ESR and microwave measurements. Spin-dependent conductivity is inferred from the (B/T)2 universal behavior of magnetoresistance. Those results are discussed in conjunction with the ongoing debate on the nature of disorder in conducting polymers-homogeneous versus heterogeneous.

  10. Magnetocaloric-transport properties correlation in doped manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.

    2016-05-01

    This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.

  11. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  12. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  13. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  14. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  15. Transport properties of tomato fruit tonoplast membrane vesicles

    SciTech Connect

    Oleski, N.; Joyce, D.; Osteryoung, K.; Bennett, A.B.

    1986-04-01

    To study the role of the tonoplast in tomato fruit development, methods were developed to isolate sealed tonoplast membrane vesicles. Low density (approx. 1.23 g/cc) membrane vesicles they found to possess a NO/sub 3//sup -/-sensitive H/sup +/-translocating ATPase. The properties of this H/sup +/-ATPase are similar to those described for other tonoplast H/sup +/-ATPases. ATP-dependent Ca/sup + +/ transport into the vesicles proceeded by two mechanisms, one operative at low Ca/sup + +/ concentrations (1 ..mu..M) and inhibited by vanadate, and the other operative at high Ca/sup + +/ concentrations (10 ..mu..M) and inhibited by NO/sub 3//sup -/. Their present results indicate that the high affinity (vanadate-sensitive) Ca/sup + +/ transporter resides in E.R. membrane that contaminates the tonoplast preparation. Citrate uptake in tonoplast vesicles is stimulated by ATP and inhibited by NO/sub 3//sup -/ suggesting that citrate uptake is driven indirectly by the H/sup +/-ATPase. The substrate for sugar uptake is UDP-glucose resulting in the appearance of sucrose inside the tonoplast vesicle. No evidence for ATP stimulation of glucose, fructose, or sucrose uptake was observed.

  16. Low temperature carrier transport properties in isotopically controlled germanium

    SciTech Connect

    Itoh, Kohei

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  17. Linking elastic, mechanical and transport properties in anisotropically cracked rocks

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Benson, P.; Nasseri, F.; Gueguen, Y.; Meredith, P.; Young, R.

    2007-12-01

    Damage and crack porosity can result in a decrease of the mechanical strength of the rock, the development of elastic and mechanical anisotropy and the enhancement of transport properties. Using Non-Interactive Crack Effective Medium (NIC) theory as a fundamental tool, it is possible to calculate dry and wet elastic properties of cracked rocks in terms of a crack density tensor, average crack aspect ratio and mean crack fabric orientation using the solid grains and fluid elastic properties. Using the same tool, we show that the anisotropy, the shear wave splitting and the dispersion of elastic waves can be derived for anisotropic crack fabrics. Mechanically, the existence of embedded microcrack fabrics in rocks also significantly influences the fracture toughness (KIC) of rocks. We show that KIC can show large amounts of anisotropy as well, the degree and orientation of which being largely constrained once again by the microcrack fabric. NIC can predict relatively well KIC at high crack density, by simply using dimensionless crack densities inverted from velocities. A decrease of 50% for crack densities larger than 1, 80% for crack densities larger than 5 is predicted, in close agreement with our observed experimental variation of KIC. At the microscale, this can be interpreted by the fact that the main fracture is strongly interacting with the pre-existing microcrack fabric. Finally, and above the percolation threshold, macroscopic fluid flow also depends on the porosity, crack density and aspect ratio. Using the permeability model of Guéguen and Dienes (1989) and the crack density and aspect ratio recovered from the elastic wave velocity inversion, we successfully predict the evolution of permeability with pressure for direct comparison with the laboratory measurements. These combined experimental and modelling results illustrate the importance of understanding the details of how rock microstructures change in response to an external stimulus in predicting the

  18. Predicting the transport properties of sedimentary rocks from microstructure

    SciTech Connect

    Schlueter, Erika M.

    1995-01-01

    Understanding transport properties of sedimentary rocks, including permeability, relative permeability, and electrical conductivity, is of great importance for petroleum engineering, waste isolation, environmental restoration, and other applications. These transport properties axe controlled to a great extent by the pore structure. How pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media are investigated analytically and experimentally. Hydraulic and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. Cross-sectional areas and perimeters of individual pores are estimated from two-dimensional scanning electron microscope (SEM) photomicrographs of rock sections. Results, using Berea, Boise, Massilon, and Saint-Gilles sandstones show close agreement between the predicted and measured permeabilities. Good to fair agreement is found in the case of electrical conductivity. In particular, good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement is not very good for well-cemented rocks. The possible reasons for this are investigated. The surface conductance contribution of clay minerals to the overall electrical conductivity is assessed. The effect of partial hydrocarbon saturation on overall rock conductivity, and on the Archie saturation exponent, is discussed. The region of validity of the well-known Kozeny-Carman permeability formulae for consolidated porous media and their relationship to the microscopic spatial variations of channel dimensions are established. It is found that the permeabilities predicted by the Kozeny-Carman equations are valid within a factor of three of the observed values methods.

  19. RELATIONSHIP BETWEEN CELL SURFACE PROPERTIES AND TRANSPORT OF BACTERIA THROUGH SOIL

    EPA Science Inventory

    A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. the bacteria differed markedly in their extent of transport; their hydrophobicity, as...

  20. RELATIONSHIP BETWEEN CELL SURFACE PROPERTIES AND TRANSPORT OF BACTERIA THROUGH SOIL

    EPA Science Inventory

    A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. the bacteria differed markedly in their extent of transport; their hydrophobicity, as...

  1. Anomalous Transport Properties of Dense QCD in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    de la Incera, Vivian

    2017-06-01

    Despite recent advancements in the study and understanding of the phase diagram of strongly interacting matter, the region of high baryonic densities and low temperatures has remained difficult to reach in the lab. Things are expected to change with the planned HIC experiments at FAIR in Germany and NICA in Russia, which will open a window to the high-density-low-temperature segment of the QCD phase map, providing a unique opportunity to test the validity of model calculations that have predicted the formation of spatially inhomogeneous phases with broken chiral symmetry at intermediate-to-high densities. Such a density region is also especially relevant for the physics of neutron stars, as they have cores that can have several times the nuclear saturation density. On the other hand, strong magnetic fields, whose presence is fairly common in HIC and in neutron stars, can affect the properties of these exotic phases and lead to signatures potentially observable in these two settings. In this paper, I examine the anomalous transport properties produced by the spectral asymmetry of the lowest Landau level (LLL) in a QCD-inspired NJL model with a background magnetic field that exhibits chiral symmetry breaking at high density via the formation of a Dual Chiral Density Wave (DCDW) condensate. It turns out that in this model the electromagnetic interactions are described by the axion electrodynamics equations and there is a dissipationless Hall current.

  2. Upscaling of Thermal Transport Properties in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Hao, Y.; Chiaramonte, L.

    2010-12-01

    : Engineered Geothermal Systems (EGS) have garnered significant attention as a possible source of geographically disperse, carbon-free energy without the environmental impact of many other renewable energy sources. However, a significant barrier to the adoption of EGS is the uncertainty in whether a specific site is amenable to engineering and how fluid injection rates can affect, either through stimulation of the fracture network or through deleterious channeling of the thermal fluid, the heat extraction rate possible in a specific reservoir. Because of the uncertainties involved in determining the exact fracture network topology extant in any particular reservoir, it is desirable to have a stochastic description (distribution) of the possible heat extraction rates that could be achieved. This work provides both an approach and application of the approach for simulating several synthetic fracture networks. The approach uses a coupled geomechanics and discrete fracture network (DFN) solver coupled uni-directionally with a reservoir scale, hydro-thermal transport code, the Non-isothermal Unsaturated-Saturated Flow and Transport simulation code (NUFT), to capture the coupled hydro-thermo-mechanical behavior of these synthetic networks. Particular attention is paid to the upscaling approach used to determine effective permeability and thermal transfer coefficients that are used in the dual porosity/permeability (DKM) model employed in NUFT. This upscaling is based on a multi-scale treatment of the domain, starting with the upscaling of permeability from explicitly represented fractures in the DFN model, which considers the fracture-scale effects of fluid injection, to a finely resolved, unstructured mesh representation of the subdomain. Effective properties of this subdomain are then determined for a variety of sub-sampled discrete fracture network topologies. The result catalog of spatially correlated thermal and fluid properties are then used to populate the

  3. Optical and Transport Properties of Organic Molecules: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Strubbe, David Alan

    Organic molecules are versatile and tunable building blocks for technology, in nanoscale and bulk devices. In this dissertation, I will consider some important applications for organic molecules involving optical and transport properties, and develop methods and software appropriate for theoretical calculations of these properties. Specifically, we will consider second-harmonic generation, a nonlinear optical process; photoisomerization, in which absorption of light leads to mechanical motion; charge transport in junctions formed of single molecules; and optical excitations in pentacene, an organic semiconductor with applications in photovoltaics, optoelectronics, and flexible electronics. In the Introduction (Chapter 1), I will give an overview of some phenomenology about organic molecules and these application areas, and discuss the basics of the theoretical methodology I will use: density-functional theory (DFT), time-dependent density-functional theory (TDDFT), and many-body perturbation theory based on the GW approximation. In the subsequent chapters, I will further discuss, develop, and apply this methodology. 2. I will give a pedagogical derivation of the methods for calculating response properties in TDDFT, with particular focus on the Sternheimer equation, as will be used in subsequent chapters. I will review the many different response properties that can be calculated (dynamic and static) and the appropriate perturbations used to calculate them. 3. Standard techniques for calculating response use either integer occupations (as appropriate for a system with an energy gap) or fractional occupations due to a smearing function, used to improve convergence for metallic systems. I will present a generalization which can be used to compute response for a system with arbitrary fractional occupations. 4. Chloroform (CHCl3) is a small molecule commonly used as a solvent in measurements of nonlinear optics. I computed its hyperpolarizability for second

  4. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    SciTech Connect

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  5. Numerical modelling of mass transport in an arterial wall with anisotropic transport properties.

    PubMed

    Denny, William J; Walsh, Michael T

    2014-01-03

    Coronary artery disease results in blockages or narrowing of the artery lumen. Drug eluting stents (DES) were developed to replace bare metal stents in an effort to combat re-blocking of the diseased artery following treatment. The numerical models developed within this study focus on representing the changing trends of drug delivery from an idealised DES in an arterial wall with an anisotropic ultra-structure. To reduce the computational burden of solving coupled physics problems, a model reduction strategy was adopted. Particular focus has been placed upon adequately modelling the influence of strut compression as there is a paucity of numerical studies that account for changes in transport properties in compressed regions of the arterial wall due to stent deployment. This study developed an idealised numerical modelling framework to account for the changes in the directionally dependent porosity and tortuosities of the arterial wall as a result of radial strut compression. The results show that depending on the degree of strut compression, trends in therapeutic drug delivery within the arterial wall can be either increased or decreased. The study highlights the importance of incorporating compression into numerical models to better represent transport within the arterial wall and suggests an appropriate numerical modelling framework that could be utilised in more realistic patient specific arterial geometries. © 2013 Published by Elsevier Ltd.

  6. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion

    PubMed Central

    Lee, Dae Hyun; Dane, Martijn J. C.; van den Berg, Bernard M.; Boels, Margien G. S.; van Teeffelen, Jurgen W.; de Mutsert, Renée; den Heijer, Martin; Rosendaal, Frits R.; van der Vlag, Johan; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion. PMID:24816787

  7. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  8. Coronary microvascular dysfunction: an update

    PubMed Central

    Crea, Filippo; Camici, Paolo G.; Bairey Merz, Cathleen Noel

    2014-01-01

    Many patients undergoing coronary angiography because of chest pain syndromes, believed to be indicative of obstructive atherosclerosis of the epicardial coronary arteries, are found to have normal angiograms. In the past two decades, a number of studies have reported that abnormalities in the function and structure of the coronary microcirculation may occur in patients without obstructive atherosclerosis, but with risk factors or with myocardial diseases as well as in patients with obstructive atherosclerosis; furthermore, coronary microvascular dysfunction (CMD) can be iatrogenic. In some instances, CMD represents an epiphenomenon, whereas in others it is an important marker of risk or may even contribute to the pathogenesis of cardiovascular and myocardial diseases, thus becoming a therapeutic target. This review article provides an update on the clinical relevance of CMD in different clinical settings and also the implications for therapy. PMID:24366916

  9. Theoretical study on transport properties of topological states of matter

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Chuan

    In condensed matter physics, states of matter are usually classified by symmetry. Topological states of matter describe new quantum states of matter that cannot adiabatically connect to conventional states of matter even though they share the same symmetry. Thus, the discovery of topological states of matter has opened a new research era and attracted intensive research interests in recent years. This dissertation is devoted to the theoretical and numerical study of transport properties of topological states of matter, mainly focusing on two topological systems, time reversal invariant topological insulator nano-structures and the quantum anomalous Hall insulators. The first system studied in this dissertation is time reversal invariant topological insulator, which is an insulating material behaving as an insulator in its interior but with conducting channels on its surface. The conducting surface states of a topological insulator are known as "helical states" due to the spin texture in the momentum space and protected by time reversal symmetry. Helical surface states have been observed in surface sensitive experiments, such as angular-resolved photon emission spectroscopy and scanning tunneling microscopy. However, signatures of topological surface states in transport measurements are complicated by the dominating conduction from bulk channels and strong disorder effect. Therefore, in this dissertation, we numerically study transport in disordered topological insulator nano-structures, e.g. nanowires and nanotubes, which possess a larger surfaceto-volume ratio compared to bulk systems. For a topological insulator nanowire, it is found that a gapless mode with linear dispersion, which is refered to as a topological state in the main text, arises when a half-integer magnetic flux quantum is inserted along the nanowire. We find that topological states possess a longer localization length than other non-topological states. Thus, for a long nanowire or nanotube, a

  10. Momentum and spin transport properties of spin polarized Fermi systems

    NASA Astrophysics Data System (ADS)

    Wei, Lijuan

    We carried out experiments on a spin polarized 3He- 4He mixture with 3He concentration x 3 = 6.26 x 10-4, and on pure 3He liquid. Spin polarization affects the transport properties of these Fermi systems. The effect on momentum transport was studied by using a vibrating-wire viscometer to measure viscosity of the 3He-4He mixture over the temperature range 6.09 mK--100 mK in 7.96 T and 1.00 T magnetic fields. A large viscosity increase was observed upon application of the 7.96 T magnetic field for temperature T < TF(TF = 19.5 mK is the Fermi temperature). The observed viscosity is in very good agreement with theoretical calculations for a dilute Fermi gas by Jeon and Mullin [1988, 1989] and Mullin and Jeon [1992]. The polarization effect on spin transport was investigated by measuring the transverse diffusion coefficient D ⊥ in pure 3He liquid at saturated vapor pressure and at 15.85 bar over the temperature range 4.5 mK--159 mK in a 7.96 T magnetic field. We used a pulsed NMR spin echo technique in a field gradient of 16.0 G/cm to do the measurements and fits to the Leggett equations [1970] to obtain D⊥. For T < 20 mK, we found D⊥ is less than measured in earlier experiments at lower magnetic fields. D⊥ does not increase with decreasing temperature as 1/T2, but appears to approach a constant as T → 0 while it is expected that the longitudinal spin diffusion coefficient D∥ ∝ 1/ T2. This is called spin diffusion anisotropy and it was observed for the first time in our 3He liquid experiments. The anisotropy temperature we determined for 3He liquid was Ta = 16.4 +/- 2.2 mK at saturated vapor pressure and in a 7.96 T magnetic field. The transverse spin diffusion in 3 He results agree qualitatively with theories proposed by Meyerovich and Musaeflan [1992, 1994]. They also agree qualitatively with theories proposed by Golosov and Ruckenstein [1995, 1998] by extrapolation of the dilute theory to a strongly interacting system.

  11. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  12. Transport properties of damaged materials. Cementitious barriers partnership

    SciTech Connect

    Langton, C.

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  13. Magnetic and electronic transport properties of Mn-doped silicon

    NASA Astrophysics Data System (ADS)

    Ma, S. B.; Sun, Y. P.; Zhao, B. C.; Tong, P.; Zhu, X. B.; Song, W. H.

    2006-10-01

    Polycrystalline Si 1- xMn x ( x=0.005, 0.01, and 0.015) samples were prepared by the arc-melting method. Powder x-ray diffraction analysis demonstrates that the light Mn doping does not change the crystalline structure of silicon. Magnetic studies reveal that the ferromagnetism can be developed in all Mn-doped samples and the Curie temperature (TC) increases with increasing Mn doping content x. The effective magnetic moments are 4.15, 4.05μB/Mn for the samples with x=0.01 and 0.015, respectively. The undoped sample shows semiconducting behavior in the whole studied temperature range, whereas a metal-insulator transition can be observed near TC for all doped samples. The thermally activated conducting mechanism dominates the low temperature transport properties of the doped samples. The activation energy obtained from the fitting decreases monotonously with increasing x. In addition, the anomalous Hall effect below TC was observed from the magnetic field dependence of the Hall resistivity curves.

  14. Polymorphous silicon: Transport properties and solar cell applications

    SciTech Connect

    Longeaud, C.; Kleider, J.P.; Gauthier, M.; Brueggemann, R.; Poissant, Y.; Cabarrocas, P.R.

    1999-07-01

    Transport properties of hydrogenated polymorphous silicon layers (pm-Si:H) deposited at 150 C under various pressures in the range 80--293 Pa in sandwich (Schottky and p-i-n diodes) and coplanar structures have been compared to those of hydrogenated amorphous silicon (a-Si:H) samples deposited at the same temperature in standard conditions. The layers have been studied as-deposited, annealed and after light-soaking. With increasing pressure up to 240 Pa: (1) the density of states above the Fermi level decreases as determined by means of the modulated photocurrent technique, (2) the mobility-lifetime products of electrons and holes measured by means of steady-state photoconductivity and photocarrier grating techniques both increase. The highest values for the diffusion length of minority carriers exceed 200 nm. Capacitance measurements as a function of frequency and temperature show that the density of states at the Fermi level is lower in the pm-Si:H than in the a-Si:H films. After light-soaking the diffusion length of minority carriers in a-Si:H is reduced by a factor of two whereas it is less reduced or not affected in the pm-Si:H layers. Solar cells including this new material present an excellent stability.

  15. Magnetic and transport properties of PrRhSi3.

    PubMed

    Anand, V K; Adroja, D T; Hillier, A D

    2013-05-15

    We have investigated the magnetic and transport properties of a noncentrosymmetric compound PrRhSi3 by dc magnetic susceptibility χ(T), isothermal magnetization M(H), thermoremanent magnetization M(t), specific heat Cp(T), electrical resistivity ρ(T,H) and muon spin relaxation (μSR) measurements. At low fields χ(T) shows two anomalies near 15 and 7 K with an irreversibility between ZFC and FC data below 15 K. In contrast, no anomaly is observed in Cp(T) or ρ(T) data. M(H) data at 2 K exhibit very sharp increase below 0.5 T and a weak hysteresis. M(t) exhibits very slow relaxation, typical for a spin-glass system. Even though the absence of any anomaly in Cp(T) is consistent with the spin-glass type behavior, there is no obvious origin of spin-glass behavior in this structurally well ordered compound. The crystal electric field (CEF) analysis of Cp(T) data indicates a CEF-split singlet ground state lying below a doublet at 81(1) K and a quasi-triplet at 152(2) K. The ρ(T) data indicate a metallic behavior, and ρ(H) exhibits a very high positive magnetoresistance, as high as ~300% in 9 T at 2 K. No long range magnetic order or spin-glass behavior was detected in a μSR experiment down to 1.2 K.

  16. Effects of gemfibrozil on the oxygen transport properties of erythrocytes.

    PubMed Central

    Scatena, R; Nocca, G; Messana, I; De Sole, P; Baroni, S; Zuppi, C; Castagnola, M; Giardina, B

    1995-01-01

    1. In the present study we have investigated the effects of the relatively low plasma concentrations of gemfibrozil (GFZ) found in clinical practice on the oxygen dissociation curve (ODC) of erythrocytes. 2. ODCs were measured at 30 degrees C and 37 degrees C and at pH 7.4: a) both on HbA solution and erythrocytes incubated in vitro with gemfibrozil and clofibric acid; b) on erythrocytes from healthy volunteers treated with a single oral dose of gemfibrozil. 3. These experiments showed a significant drug-induced shift of the ODC towards lower O2 affinity values without any significant modification of metabolic parameters of erythrocytes such as intracellular pH and intraerythrocytic levels of ATP and DPG. 4. In our experimental conditions gemfibrozil appears to lower both in vitro and in vivo, the partial pressure of oxygen required to give 50% of the haemes saturated with oxygen (P50) of erythrocytes from the control value of 24 +/- 0.5 mm Hg to 29 +/- 0.5 mm Hg (mean +/- s.d.; P < 0.02 by ANOVA). 5. These data clearly indicate that therapeutic doses of gemfibrozil may influence the oxygen transport properties of red cells. This effect could have relevant pharmacological and toxicological implications. PMID:7756095

  17. Defects and transport properties of molybdenum doped indium oxide

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Gessert, Timothy; Wood, David; Coutts, Timothy

    2004-03-01

    Mo-doped indium oxide (IMO) films were deposited using an r.f. magnetron sputtering system under various oxygen concentrations. Using the `method of four coefficients', the conductivity, Hall, Nernst, and Seebeck coefficients were measured for IMO. These coefficients can be used with solutions to the Boltzmann transport equation to extract the carrier density-of-states effective mass, the Fermi level relative to the conduction-band minimum, and an energy-dependent scattering parameter related to the scattering mechanism. We find the conduction band is parabolic with a band effective mass of ˜ 0.32 me over a carrier concentration range from 4×10^19 to 5× 10^20 cm-3, indicating that relaxation time controls mobility in IMO. Temperature-dependent Hall measurements show that phonon and ionized-impurity scattering dominate at high mobility and high carrier concentration, respectively. We will also discuss possible defects in the film using XPS and electrical property data.

  18. Transport properties of C and O in UN fuels

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär

    2017-03-01

    Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.

  19. Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati

    Increasing energy demands and decreasing natural energy resources have sparked search for alternative clean and renewable energy sources. For instance, currently there is a tremendous interest in thermoelectric and photovoltaic solar energy production technologies. Half-Heusler (HH) alloys are among the most popular material systems presently under widespread investigations for high temperature thermoelectric energy conversion. Approaches to increase the thermoelectric figure of merit (ZT) of HH range from (1) chemical substitution of atoms with different masses within the same atomic position in the crystal structure to optimize carrier concentration and enhance phonon scattering via mass fluctuation and (2) embedding secondary phonon scattering centers in the matrix (nanostructuring) to further reduce thermal conductivity. This work focuses on three material systems. The first part describes the synthesis and properties (thermal conductivity, electrical conductivity, magnetic) of various oxide nanostructures (NiO, Co3O4) which were subsequently used as inclusion phases in a HH matrix to reduce the thermal conductivity. Detailed reviews of the past efforts along with the current effort to optimize synthetic routes are presented. The effects of the synthesis conditions on the thermoelectric properties of compacted pellets of NiO and Co3O4 are also discussed. The second part of the work discusses the development of synthetic strategies for the fabrication of p-type and n-type bulk nanostructured thermoelectric materials made of a half-Heusler matrix based on (Ti,Hf)CoSb, containing nanostructures with full-Heusler (FH) compositions and structures coherently embedded inside the half-Heusler matrix. The role of the nanostructures in the regulation of phonon and charge carrier transports within the half-heusler matrix is extensively discussed by combining transport data and electron microscopy images. It was found that the FH nanoinclusions form staggered

  20. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  1. Computational rock physics: Transport properties in porous media and applications

    NASA Astrophysics Data System (ADS)

    Keehm, Youngseuk

    Earth sciences is undergoing a gradual but massive shift from descriptions of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled, and take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks: a nonlinear, coupled, and time-dependent problem in complex microgeometry. To understand these complex processes, the knowledge of the underlying pore-scale processes is essential. This work focuses on building transport process simulators in realistic pore microstructures. These pore-scale simulators will be modules of a computational rock physics framework with future acoustic, elastic, electrical and NMR property simulators. This computational environment can significantly complement the physical laboratory, with several distinct advantages: rigorous prediction of physical properties, interrelations among the physical properties, and simulation of dynamic problems with multiple physical responses. This dissertation is initiative for the computational rock physics framework---a quantitative model for coupled, nonlinear, transient and complex behavior of earth systems. A rigorous pore-scale simulation requires three important traits: reliability, efficiency, and the ability to handle complex microgeometry. We implemented single-phase and two-phase flow simulators using the Lattice-Boltzmann algorithm, since it handles very complex pore geometries without idealization of the pore space. The single-phase flow simulator successfully replicates fluid flow in a digital representation of real sandstone, and predicts permeability very accurately. Furthermore, two applications using the single-phase flow simulator are proposed: a permeability estimation technique from thin sections, and diagenesis modeling with fluid flow. These two applications show the potential applicability of this robust

  2. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  3. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Astrophysics Data System (ADS)

    Gordon, S.; McBride, B.; Zeleznik, F. J.

    1984-10-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  4. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the

  5. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the

  6. Possible Evidence for Stripes in the Transport Properties of PLCCO

    NASA Astrophysics Data System (ADS)

    Ando, Yoichi

    2004-03-01

    It is now recognized that the charged stripes exist surely in La_1.6-xNd_0.4Sr_xCuO_4, probably in La_2-xSr_xCuO4 (LSCO), and possibly in YBa_2Cu_3O_y. It is also recognized that an intrinsic electronic inhomogeneity exists in Bi_2Sr_2CaCu_2O_8. These observations naturally lead to a notion that some form of electron self-organization might be fundamentally related to the high-Tc superconductivity. In this context, of particular interest is whether stripes (or some electron self-organizations) exist in electron-doped cuprates as well. To investigate this issue, we took notice of two peculiar features in lightly hole-doped LSCO: (1) It was demonstrated that the anisotropic phonon heat transport is a good probe of the stripe formation in lightly-doped LSCO; namely, the spin stripes in this system are well-ordered in the CuO2 planes but are disordered along the c axis, which causes the c-axis phonons alone to be anomalously scattered [X. F. Sun et al., PRB 67, 104503 (2003)]. (2) It was also demonstrated that the in-plane resistivity ρ_ab of lightly-doped LSCO crystals shows metallic behavior (dρ_ab/dT > 0) even in the long-range-ordered Néel state, where the hole mobility is surprisingly similar to that in optimally-doped samples; such an unusual metallic behavior can naturally be understood if doped holes form self-organized ``rivers" whose distance changes with doping [Y. Ando et al., PRL 87, 017001 (2001)]. Taking these features as signatures of stripes, we examined the transport properties of lightly electron-doped Pr_1.3-xLa_0.7Ce_xCuO4 (PLCCO). It was found that both of the above unusual features are observed also in lightly-doped PLCCO, which gives possible evidence for stripes in electron-doped cuprates.

  7. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect

    Porytsky, P.; Krivtsun, I.; Demchenko, V.; Reisgen, U.; Mokrov, O.; Zabirov, A.; Gorchakov, S.; Timofeev, A.; Uhrlandt, D.

    2013-02-15

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  8. Evaluation of Baltic Sea transport properties using particle tracking

    NASA Astrophysics Data System (ADS)

    Dargahi, Bijan; Cvetkovic, Vladimir

    2014-05-01

    Particle tracking model (PTM) is an effective tool for quantifying transport properties of large water bodies such as the Baltic Sea. We have applied PTM to our fully calibrated and validated Baltic Sea 3D hydrodynamic model for a 10-years period (2000-9). One hundred particles were released at a constant rate during an initial 10-days period from all the Baltic Sea sub-basins, the major rivers, and the open boundary in the Arkona Basin. In each basin, the particles were released at two different depths corresponding to the deep water and middle water layers. The objectives of the PTM simulations were to analyse the intra-exchange processes between the Baltic Sea basins and to estimate the arrival times and the paths of particles released from the rivers. The novel contribution of this study is determining the paths and arrival times of deeper water masses rather than the surface masses. Advective and diffusive transport processes in the Bornholm and Arkona basins are both driven by the interacting flows of the northern basins of the Baltic Sea and the North Sea. Particles released from Arkona basin flows northwards along the Stople Channel. The Gotland basins are the major contributors to the exchange process in the Baltic Sea. We find high values of the advection ratio, indicative of a forced advective transport process. The Bay of Gdansk is probably the most vulnerable region in the Baltic Sea. This is despite the fact that the main exchanging basins are the Bornholm Sea and the Easter Gotland Basin. The main reason is the intensive supply of the particles from the northern basins that normally take about 3000 days to reach the Bay of Gdansk. The process maintains a high level of particle concentration (90%) along its coastlines even after the 10-years period. Comparing the particle paths in the Western and Eastern Gotland basins two interesting features were found. Particles travelled in all four directions in the former basin and the middle layer particles

  9. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  10. Single and Few Layer Silicene: Structural, Electronic and Transport Properties

    NASA Astrophysics Data System (ADS)

    Carey, J. David; Roome, Nathanael

    Single layer silicene has weaker π bonding that graphene resulting in buckling of the Si atoms in different sub-lattices. Despite the loss of planarity, a linear bandstructure emerges where we find a Fermi velocity of about 5.3 x 105 m/s. Determination of the phonon dispersion characteristics reveals a Γ point optical phonon with an energy of 69 meV and a K point optical phonon with an energy of 62 meV. In graphene these phonons play important role in scattering electrons, and in Raman spectroscopy, but have larger energies of 194 and 166 meV, respectively. The lower phonon energies in silicene, arising from the higher atomic masses, would be expected to scatter carriers efficiently and limit carrier mobility. We have calculated, however, that the electron-optical phonon coupling matrix elements are about a factor of 25 times smaller than in graphene and this important result will help with the further development of silicene based devices due to reduced phonon scattering. The two stable stacking configurations of bilayer silicene, AA and AB, now have to account of the position of the atomic buckling in the two layers, leading to four possible atomic configurations with the buckling between the layers being in- or out-of-phase with each other. We find that in contrast to graphene, the two stable configurations are based on AA type stacking being about 70 meV per atom more stable than AB stacking. The potential for elemental layered materials beyond graphene for device applications will also be discussed. Single and Few Layer Silicene: Structural, Electronic and Transport Properties.

  11. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  12. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport.

    PubMed

    Coates, Nelson E; Yee, Shannon K; McCulloch, Bryan; See, Kevin C; Majumdar, Arun; Segalman, Rachel A; Urban, Jeffrey J

    2013-03-20

    The electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.

  13. A dynamic opto-physiological model to effectively interpret retinal microvascular circulation

    NASA Astrophysics Data System (ADS)

    Hassan, Harnani; Hu, Sijung; Dwyer, Vincent M.

    2015-03-01

    The demand of non-invasive ocular screening is rapidly growing due to an increase of age related eye diseases worldwide. An indeed in-depth understanding of optical properties is required to elucidate nature of retinal tissue. The research aims to investigate an effective biomedical engineering approach to allow process region of interests (ROIs) in eyes to reveal physiological status. A dynamic opto-physiological model (DOPM) representing retinal microvascular circulation underlying a diffusion approximation to solve radiative transport theorem (RTT) has being developed to interpret patho-physiological phenomena. DOPM is being applied in imaging photoplethysmography (iPPG) to extract PPG signals from a series of 2D matrix images to access blood perfusion and oxygen saturation distributions. A variation of microvascular circulation could be mapped for an effectively diagnostic screening. The work presents mathematical modelling based ten layers of ocular tissue tested with four set of controlled parameters demontrated detection ratio between normal tissue damage or abnormal tissue and significant change of AC signal amplitude in these tissues. The result shows signicant change of AC signal amplitude in abnormal tissue. The preliminary results show extractable PPG signals from eye fundus video; experimented at five ROIs: whole fundus, optical disk, main vein vessel, lesion area and affected area. The outcome shows optical disk region gave a better performance compared to whole fundus region and main vein vessel. The robustness, miniaturization and artefact reduction capability of DOPM to discriminate oxygenation levels in retina could offer a new insight to access retinal patho-physiological status.

  14. Coronary microvascular dysfunction, microvascular angina, and treatment strategies.

    PubMed

    Marinescu, Mark A; Löffler, Adrián I; Ouellette, Michelle; Smith, Lavone; Kramer, Christopher M; Bourque, Jamieson M

    2015-02-01

    Angina without coronary artery disease (CAD) has substantial morbidity and is present in 10% to 30% of patients undergoing angiography. Coronary microvascular dysfunction (CMD) is present in 50% to 65% of these patients. The optimal treatment of this cohort is undefined. We performed a systematic review to evaluate treatment strategies for objectively-defined CMD in the absence of CAD. We included studies assessing therapy in human subjects with angina and coronary flow reserve or myocardial perfusion reserve <2.5 by positron emission tomography, cardiac magnetic resonance imaging, dilution methods, or intracoronary Doppler in the absence of coronary artery stenosis ≥50% or structural heart disease. Only 8 papers met the strict inclusion criteria. The papers were heterogeneous, using different treatments, endpoints, and definitions of CMD. The small sample sizes severely limit the power of these studies, with an average of 11 patients per analysis. Studies evaluating sildenafil, quinapril, estrogen, and transcutaneous electrical nerve stimulation application demonstrated benefits in their respective endpoints. No benefit was found with L-arginine, doxazosin, pravastatin, and diltiazem. Our systematic review highlights that there is little data to support therapies for CMD. We assess the data meeting rigorous inclusion criteria and review the related but excluded published data. We additionally describe the next steps needed to address this research gap, including a standardized definition of CMD, routine assessment of CMD in studies of chest pain without obstructive CAD, and specific therapy assessment in the population with confirmed CMD. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Tuning the electronic transport properties of grapheme through functionalisation with fluorine.

    PubMed

    Withers, Freddie; Russo, Saverio; Dubois, Marc; Craciun, Monica F

    2011-09-12

    We demonstrate the possibility to tune the electronic transport properties of graphene mono-layers and multi-layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping (VRH) in two dimensions to Efros-Shklovskii VRH. Multi-layer fluorinated graphene with high concentration of fluorine show two-dimensional Mott VRH transport, whereas CF0.28 multi-layer flakes exhibit thermally activated transport through near neighbour hopping. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.

  16. Quantum chaos and electron transport properties in a quantum waveguide

    NASA Astrophysics Data System (ADS)

    Lee, Hoshik

    We numerically investigate electron transport properties in an electron waveguide which can be constructed in 2DEG of the heterostructure of GaAs and AlGaAs. We apply R-matrix theory to solve a Schrodinger equation and construct a S-matrix, and we then calculate conductance of an electron waveguide. We study single impurity scattering in a waveguide. A delta-function model as a single impurity is very attractive, but it has been known that delta-function potential does not give a convergent result in two or higher space dimensions. However, we find that it can be used as a single impurity in a waveguide with the truncation of the number of modes. We also compute conductance for a finite size impurity by using R-matrix theory. We propose an appropriate criteria for determining the cut-off mode for a delta-function impurity that reproduces the conductance of a waveguide when a finite impurity presents. We find quantum scattering echoes in a ripple waveguide. A ripple waveguide (or cavity) is widely used for quantum chaos studies because it is easy to control a particle's dynamics. Moreover we can obtain an exact expression of Hamiltonian matrix with for the waveguide using a simple coordinate transformation. Having an exact Hamiltonian matrix reduces computation time significantly. It saves a lot of computational needs. We identify three families of resonance which correspond to three different classical phase space structures. Quasi bound states of one of those resonances reside on a hetero-clinic tangle formed by unstable manifolds and stable manifolds in the phase space of a corresponding classical system. Resonances due to these states appear in the conductance in a nearly periodic manner as a function of energy. Period from energy frequency gives a good agreement with a prediction of the classical theory. We also demonstrate wavepacket dynamics in a ripple waveguide. We find quantum echoes in the transmitted probability of a wavepacket. The period of echoes also

  17. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    PubMed

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts.

  18. Equations of state and transport properties of mixtures in the warm dense regime

    SciTech Connect

    Hou, Yong; Dai, Jiayu; Kang, Dongdong; Ma, Wen; Yuan, Jianmin

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide region of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.

  19. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  20. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  1. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  2. Computer program for calculation of thermodynamic and transport properties of complex chemical systems

    NASA Technical Reports Server (NTRS)

    Svehla, R. A.; Mcbride, B. J.

    1973-01-01

    Program performs calculations such as chemical equilibrium for assigned thermodynamic states, theoretical rocket performance for both equilibrium and frozen compositions during expansion, incident and reflected shock properties, and Chapman-Jouget detonation properties. Features include simplicity of input and storage of all thermodynamic and transport property data on master tape.

  3. 41 CFR 302-7.10 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.10 Is property acquired en route eligible for transportation...

  4. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.11 Is property acquired en route eligible for transportation...

  5. 41 CFR 302-7.10 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.10 Is property acquired en route eligible for transportation...

  6. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.11 Is property acquired en route eligible for transportation...

  7. Microvascular disorders in obese Zucker rats are restored by a rice bran diet.

    PubMed

    Justo, M L; Claro, C; Vila, E; Herrera, M D; Rodriguez-Rodriguez, R

    2014-05-01

    Nutritional-based approaches aimed to prevent microvascular dysfunction associated to obesity present potential advantages over pharmacological strategies. Our aim was to test whether a rice bran enzymatic extract (RBEE)-supplemented diet could attenuate microvascular alterations in obese rats. Lean and obese Zucker rats were fed standard diet supplemented or not with 1% and 5% RBEE for 20 weeks. Functional studies were performed in small mesenteric arteries in isometric myograph. Immunoblotting and fluorescence studies were made in arterial homogenates and arterial sections, respectively. RBEE-supplementation restored microvascular function in obese rats through a marked increase in NO and endothelial-derived hyperpolarizing factor contribution by up-regulation of eNOS and calcium-activated potassium channels expression, respectively, in association to a substantial reduction of microvascular inflammation and superoxide anion formation. These data agrees with the beneficial actions of RBEE on dyslipidemia, hyperinsulinemia and hypertension in obesity. The multi-factorial properties of RBEE-diet, especially for restoring the function of small resistance arteries shows this dietary-based approach to be a promising candidate for prevention of microvascular alterations in obesity, which are crucial in cardiovascular events in obese subjects. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  9. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  10. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  11. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    PubMed Central

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  12. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design.

    PubMed

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-05-16

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes' bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics.

  13. Transport properties of dense deuterium-tritium plasmas.

    PubMed

    Wang, Cong; Long, Yao; He, Xian-Tu; Wu, Jun-Feng; Ye, Wen-Hua; Zhang, Ping

    2013-07-01

    Consistent descriptions of the equation of states and information about the transport coefficients of the deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm(3) and a temperature of 10(4) eV). Diffusion coefficients and viscosity are compared to the one-component plasma model in different regimes from the strong coupled to the kinetic one. Electronic and radiative transport coefficients, which are compared to models currently used in hydrodynamic simulations of inertial confinement fusion, are evaluated up to 800 eV. The Lorentz number is discussed from the highly degenerate to the intermediate region. One-dimensional hydrodynamic simulation results indicate that different temperature and density distributions are observed during the target implosion process by using the Spitzer model and ab initio transport coefficients.

  14. Laser Optical Biasing of the Quantum Transport Properties of n-InSb.

    DTIC Science & Technology

    1976-10-01

    of the SdH oscillations. The research being done is directed at obtaining fundamental information concerning the effects of CO and CO2 laser radiation on the quantum transport properties on n-InSb. (Author)

  15. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  16. The electron transport properties of zigzag graphene nanoribbons with upright standing linear carbon chains

    NASA Astrophysics Data System (ADS)

    He, Jing-Jing; Yan, Xiao-Hong; Guo, Yan-Dong; Liu, Chun-Sheng; Xiao, Yang; Meng, Lan

    2016-02-01

    The electron transport properties of zigzag graphene nanoribbons (ZGNRs) with upright standing carbon chains are investigated by using first-principles calculations. The calculated results show a significant odd-even dependence. The currents of even-numbered chain configurations are small because a suppression emerges around the Fermi energy in the transmission spectra under a finite bias. However the I - V curves of odd-numbered chain structures display metallic properties with a big transmission peak in the transmission spectra, indicating the high conductance. These properties offer an interesting method by modifying the odd-even parity of the carbon chains to tune the electron transport properties of ZGNRS.

  17. Tuning the ambipolar charge transport properties of tricyanovinyl-substituted carbazole-based materials.

    PubMed

    Reig, Marta; Bagdziunas, Gintautas; Volyniuk, Dmytro; Grazulevicius, Juozas V; Velasco, Dolores

    2017-03-01

    A series of push-pull carbazole-based compounds has been experimentally and theoretically characterized in combination with the X-ray analysis of the corresponding single crystals. The introduction of the strong electron-withdrawing tricyanovinyl group in the carbazole core affords electron-transporting ability in addition to the characteristic hole-transporting properties exhibited by donor carbazole derivatives.

  18. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  19. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  20. ELECTRONIC AND TRANSPORT PROPERTIES OF THERMOELECTRIC Ru2Si3

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Parker, David

    2013-08-01

    We report calculations of the doping and temperature dependent thermopower of Ru2Si3 based on Boltzmann transport theory and the first principles electronic structure. We find that the performance reported to date can be significantly improved by optimization of the doping level and that ultimately n-type should have higher ZT than p-type.

  1. Transport Properties of the Dust Components in Weakly Ionized Plasma

    SciTech Connect

    Vaulina, O. S.; Adamovich, X. G.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The experimental study of transport processes are presented for the dusty plasma in radio-frequency (RF-) capacitive discharge. Validity of the Langevin and Green-Kubo equations for the description of dynamics of dusty grains is verified. Experimental examination of the Einstein-Stokes relation between the viscosity and diffusion constants is carried out.

  2. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing.

    PubMed

    Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei

    2012-07-16

    Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Geochemical & Physical Aquifer Property Heterogeneity: A Multiscale Sedimentologic Approach to Reactive Solute Transport

    SciTech Connect

    Murray, Chris; Allen-King, Richelle; Weissmann, Gary

    2006-06-01

    This project is testing the hypothesis that sedimentary lithofacies determine the geochemical and physical hydrologic properties that control reactive solute transport (Figure 1). We are testing that hypothesis for one site, a portion of the saturated zone at the Hanford Site (Ringold Formation), and for a model solute, carbon tetrachloride (CT). The representative geochemical and physical aquifer properties selected for quantification in the proposed project are the properties that control CT transport: hydraulic conductivity (K) and reactivity (sorption distribution coefficient, Kd, and anaerobic transformation rate constant, kn). We are combining observations at outcrop analog sites (to measure lithofacies dimensions and statistical relations) with measurements from archived and fresh core samples (for geochemical experiments and to provide additional constraint to the stratigraphic model) from the Ringold Formation to place local-scale lithofacies successions, and their distinct hydrologic property distributions, into the basinal context, thus allowing us to estimate the spatial distributions of properties that control reactive solute transport in the subsurface.

  4. Ab initio study of the electronic and transport properties of waved graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Vasiliev, Igor

    2017-05-01

    We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.

  5. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    SciTech Connect

    Woo, Sung Oh; Teizer, Winfried

    2013-07-22

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  6. Investigation of Laser Optical Biasing on the Quantum Transport Properties of n-InSb.

    DTIC Science & Technology

    1979-10-01

    Af-01578 NOTH TEXAS STATE UNIV DENTON DEPT OF PHYSICS FIG 20/12 INVESTIGATION OF LASER OPTICAL BIASING ON THE QUANTUM TRANSPORT -ETC(U) OCT 79 0 6...SEILER NOOO-76-C-0319 NCLASSIFIED NL MEEEEEEE4N VEt IC?) ’ ,~CUAL)SUMMARY E’--. C Ii Investigation of Laser Optical Biasing on the Quantum Transport Properties...the investigation of laser optical biasing ef- fects on the quantum transport properties of n-InSb is given for the period October 1, 1978 - September

  7. Dynamics and transport properties of three surface quasigeostrophic point vortices

    NASA Astrophysics Data System (ADS)

    Taylor, C. K.; Llewellyn Smith, Stefan G.

    2016-11-01

    The surface quasi-geostrophic (SQG) equations are a model for low-Rossby number geophysical flows in which the dynamics are governed by potential temperature dynamics on the boundary. We examine point vortex solutions to this model as well as the chaotic flows induced by three point vortices. The chaotic transport induced by these flows is investigated using techniques of Poincaré maps and the Finite Time Braiding Exponent (FTBE). This chaotic transport is representative of the mixing in the flow, and these terms are used interchangeably in this work. Compared with point vortices in two-dimensional flow, the SQG vortices are found to produce flows with higher FTBE, indicating more mixing. Select results are presented for analyzing mixing for arbitrary vortex strengths.

  8. Dynamics and transport properties of three surface quasigeostrophic point vortices.

    PubMed

    Taylor, C K; Llewellyn Smith, Stefan G

    2016-11-01

    The surface quasi-geostrophic (SQG) equations are a model for low-Rossby number geophysical flows in which the dynamics are governed by potential temperature dynamics on the boundary. We examine point vortex solutions to this model as well as the chaotic flows induced by three point vortices. The chaotic transport induced by these flows is investigated using techniques of Poincaré maps and the Finite Time Braiding Exponent (FTBE). This chaotic transport is representative of the mixing in the flow, and these terms are used interchangeably in this work. Compared with point vortices in two-dimensional flow, the SQG vortices are found to produce flows with higher FTBE, indicating more mixing. Select results are presented for analyzing mixing for arbitrary vortex strengths.

  9. Opto-electronic transport properties of graphene oxide based devices

    SciTech Connect

    Das, Poulomi; Ibrahim, Sk; Pal, Tanusri; Chakraborty, Koushik; Ghosh, Surajit

    2015-06-24

    Large area, solution-processed, graphene oxide (GO)nanocomposite based photo FET has been successfully fabricated. The device exhibits p-type charge transport characteristics in dark condition. Our measurements indicate that the transport characteristics are gate dependent and extremely sensitive to solar light. Photo current decay mechanism of GO is well explained and is associated with two phenomena: a) fast response process and b) slow response process. Slow response photo decay can be considered as the intrinsic phenomena which are present for both GO and reduced GO (r-GO), whereas the first response photo decay is controlled by the surface defect states. Demonstration of photo FET performance of GO thin film is a significant step forward in integrating these devices in various optoelectronic circuits.

  10. Thermoelectric transport properties of high mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states

  11. Understanding hopping transport and thermoelectric properties of conducting polymers

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Crispin, X.; Zozoulenko, I. V.

    2015-07-01

    We calculate the conductivity σ and the Seebeck coefficient S for the phonon-assisted hopping transport in conducting polymers poly(3,4-ethylenedioxythiophene) or PEDOT, experimentally studied by Bubnova et al. [J. Am. Chem. Soc. 134, 16456 (2012)], 10.1021/ja305188r. We use the Monte Carlo technique as well as the semianalytical approach based on the transport energy concept. We demonstrate that both approaches show a good qualitative agreement for the concentration dependence of σ and S . At the same time, we find that the semianalytical approach is not in a position to describe the temperature dependence of the conductivity. We find that both Gaussian and exponential density of states (DOS) reproduce rather well the experimental data for the concentration dependence of σ and S giving similar fitting parameters of the theory. The obtained parameters correspond to a hopping model of localized quasiparticles extending over 2-3 monomer units with typical jumps over a distance of 3-4 units. The energetic disorder (broadening of the DOS) is estimated to be 0.1 eV. Using the Monte Carlo calculation we reproduce the activation behavior of the conductivity with the calculated activation energy close to the experimentally observed one. We find that for a low carrier concentration a number of free carriers contributing to the transport deviates strongly from the measured oxidation level. Possible reasons for this behavior are discussed. We also study the effect of the dimensionality on the charge transport by calculating the Seebeck coefficient and the conductivity for the cases of three-, two-, and one-dimensional motion.

  12. Theoretical studies of the transport properties in compound semiconductors

    NASA Technical Reports Server (NTRS)

    Segall, Benjamin

    1994-01-01

    This final report is an overview of the work done on Cooperative Agreement NCC 3-55 with the Solid State Technology Branch of the NASA-Lewis Research Center (LeRC). Over the period of time that the agreement was in effect, the principal investigator and, in the last three years, the co-principal investigator worked on a significant number of projects and interacted with members of the Solid State Technology (SST) branch in a number of different ways. For the purpose of this report, these efforts will be divided into five categories: 1) work directly with experimental electrical transport studies conducted by members of the SST branch; 2) theoretical work on electrical transport in compound semiconductors; 3) electronic structure calculations which are relevant to the electrical transport in polytypes of SiC and SiC-AlN alloys; 4) the electronic structure calculations of polar interfaces; and 5) consultative and supportive activities related to experiments and other studies carried out by SST branch members. Work in these categories is briefly discussed.

  13. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.

    PubMed

    Wang, Yu-Fu; Barrera, Carlos M; Dauer, Edward A; Gu, Weiyong; Andreopoulos, Fotios; Huang, C-Y Charles

    2017-01-01

    One of the key challenges in porous scaffold design is to create a porous structure with desired mechanical function and mass transport properties which support delivery of biofactors and development of function tissue substitute. In recent years, polyurethane (PU) has become one of the most popular biomaterials in various tissue engineering fields. However, there are no studies fully investigating the relations between porosity and both mass transport and mechanical properties of PU porous scaffolds. In this paper, we fabricated PU scaffolds by combining phase inversion and salt (sodium chloride) leaching methods. The tensile and compressive moduli were examined on PU scaffolds fabricated with different PU concentrations (25%, 20% and 15% w/v) and salt/PU weight ratios (9/1, 6/1, 3/1 and 0/1). The mass transport properties of PU scaffolds including hydraulic permeability and glucose diffusivity were also measured. Furthermore, the relationships between the porosity and mass transport and mechanical properties of porous PU scaffold were systemically investigated. The results demonstrated that porosity is a key parameter which governs both mass transport and mechanical properties of porous PU scaffolds. With similar pore sizes, the mass transport and mechanical properties of porous PU scaffold can be described as single functions of porosity regardless of initial PU concentration. The relationships between scaffold porosity and properties can be utilized to facilitate porous PU scaffold fabrication with specific mass transport and mechanical properties. The systematic approach established in this study can be applied to characterization of other biomaterials for scaffold design and fabrication.

  14. Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    NASA Astrophysics Data System (ADS)

    Barreto, Lucas; Perkins, Edward; Johannsen, Jens; Ulstrup, Søren; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Hofmann, Philip

    2013-01-01

    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility to effectively vary the contact spacing over more than one order of magnitude, allowing us to establish that the transport is purely two-dimensional. Combined with the carrier density obtained by angle-resolved photoemission spectroscopy, we find the room temperature mobility of MLG to be (870±120) cm2/V s. The transport in QFBLG is also found to be two-dimensional with a mobility of (1600±160) cm2/V s.

  15. Mass transport growth and optical emission properties of hydride vapor phase epitaxy GaN

    NASA Astrophysics Data System (ADS)

    Paskova, T.; Goldys, E. M.; Paskov, P. P.; Wahab, Q.; Wilzen, L.; de Jong, M. P.; Monemar, B.

    2001-06-01

    The optical emission properties of mass-transport regions of GaN grown by hydride vapor phase epitaxy are studied by cathodoluminescence imaging and spectroscopy. A strong donor-acceptor pair emission is observed from the mass-transport regions. Spatially resolved cathodoluminescence reveals a strong intensity contrast between the exciton and donor-acceptor bands from mass-transport and nontransport regions. Focused Auger electron and x-ray photoelectron spectroscopies were employed to investigate the impurity incorporation in the different regions. A preferential moderate increase of residual impurity incorporation or redistribution in mass-transport regions is suggested to be responsible for the observed change of the dominant radiative mechanism.

  16. Roles of LOX-1 in microvascular dysfunction.

    PubMed

    Lubrano, Valter; Balzan, Silvana

    2016-05-01

    Studies from human and animal models with metabolic disease and hypertension highlight atrophic remodeling, reduced lumen size and thinner vascular walls of microvessels with profound density reduction. This impaired vascular response limits the perfusion of peripheral tissues inducing organ damage. These conditions are strongly associated with oxidative stress and in particular with the up-regulation of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Several factors such as cytokines, shear stress, and advanced glycation end-products, especially oxLDL, can up-regulate LOX-1. The activation of this receptor induces the production of adhesion molecules, cytokines and the release of reactive oxygen species via NADPH oxidase. LOX-1 is considered a potent mediator of endothelial dysfunction and it is significantly associated with reduced microvascular endothelium NO-dependent vasodilation in hypercholesterolemia and hypertension. Microvascular endothelial cells increased the expression of IL-6 in association with the increased concentration of LDL and its degree of oxidation. Moreover, increased IL-6 levels are associated with up-regulation of LOX-1 in a dose-dependent manner. Another consequence of microvascular inflammation is the generation of small amounts of ROS, similar to those induced by low concentration of oxLDL (<5 μg/mL) which induces capillary tube formation of endothelial cells, through LOX-1 up-regulation. In light of its central role, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases and microvascular disorders.

  17. How to assess microvascular structure in humans.

    PubMed

    Rizzoni, Damiano; Aalkjaer, Christian; De Ciuceis, Carolina; Porteri, Enzo; Rossini, Claudia; Rosei, Claudia Agabiti; Sarkar, Annamaria; Rosei, Enrico Agabiti

    2011-12-01

    Structural alterations of subcutaneous small resistance arteries, as indicated by an increased media to lumen ratio, are frequently present in hypertensive and/or diabetic patients. However, the evaluation of microvascular structure is not an easy task. Among the methods that may be applied to humans, plethysmographic evaluation of small arteries and wire or pressure micromyography were extensively used in the last decades. Media to lumen ratio of small arteries evaluated by micromyography was demonstrated to possess a strong prognostic significance; however, its extensive evaluation is limited by the invasiveness of the assessment, since a biopsy of subcutaneous fat is needed. Non-invasive approaches were then proposed, including capillaroscopy, which provides information about microvascular rarefaction. Recently, the interest of investigators has focused on the retinal microvascular bed. In particular, a non-invasive measurement of wall thickness to internal lumen ratio of retinal arterioles using scanning laser Doppler flowmetry has been recently introduced. Preliminary data suggest a fairly good agreement between this approach and micromyographic measurements, generally considered the gold standard approach. Therefore, the evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the immediate future, an evaluation to be performed in all hypertensive patients, in order to obtain a better stratification of cardiovascular risk. © 2011 Adis Data Information BV. All rights reserved.

  18. Thermodynamical and microscopic properties of turbulent transport in the edge plasma

    NASA Astrophysics Data System (ADS)

    Ghendrih, Ph; Norscini, C.; Hasenbeck, F.; Dif-Pradalier, G.; Abiteboul, J.; Cartier-Michaud, T.; Garbet, X.; Grandgirard, V.; Marandet, Y.; Sarazin, Y.; Tamain, P.; Zarzoso, D.

    2012-12-01

    Edge plasma turbulence modelled with 2D interchange is shown to exhibit convective transport at the microscale level. This transport property is related to avalanche like transport in such a flux-driven system. Correlation functions and source modulation are used to analyse the transport properties but do not allow one to recover the Fick law that must characterise the system at large scales. Coarse graining is then introduced to average out the small scales in order to recover the Fick law. One finds that the required space averaging is comparable to the system size while the time averaging is comparable to the confinement time. The system is then reduced to a single reservoir such that transport is characterised by a single scalar, either the diffusion coefficient of the Fick law or a characteristic evolution time constant.

  19. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-02-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  20. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Some considerations on the ion transport properties of the rod disc membrane.

    PubMed

    Korenbrot, J I

    1977-06-29

    The ion transport properties of the disc membranes in rod outer segments are discussed on the basis of available data. The properties of an air-water interface film of spectroscopically intact and chemically regenerable rhodopsin are presented, and results of studies of ion binding to these films are reported.

  2. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certificated takeoff weight (as defined in section 4492(b)) of 6,000 pounds or less, unless such aircraft is... property, even though there may be stopovers in the United States (such as, for example, to consolidate... the business of transporting property by air for hire (for example, by a freight forwarder), the...

  3. Pesticide Transport with Runoff from Creeping Bentgrass Turf: Relationship of Pesticide Properties to Mass Transport

    USDA-ARS?s Scientific Manuscript database

    The off-site transport of pesticides with runoff is both an agronomic and environmental concern resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creepi...

  4. Pesticide transport with runoff from creeping bentgrass turf: Relationship of pesticide properties to mass transport.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L

    2010-06-01

    The off-site transport of pesticides with runoff is both an agronomic and environmental concern, resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creeping bentgrass (Agrostis palustris) turf managed as golf course fairway to gain a better understanding of factors that influence chemical availability and mass transport. Less than 1 to 23% of applied chloropyrifos, flutolanil, mecoprop-p (MCPP), dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), or dicamba was measured in edge-of-plot runoff when commercially available pesticide formulations were applied at label rates 23 +/- 9 h prior to simulated precipitation (62 +/- 13 mm). Time differential between hollow tine core cultivation and runoff did not significantly influence runoff volumes or the percentage of applied chemicals transported in the runoff. With the exception of chlorpyrifos, all chemicals of interest were detected in the initial runoff samples and throughout the runoff events. Chemographs of the five pesticides followed trends in agreement with mobility classifications associated with their soil organic carbon partition coefficient (K(OC).) Data collected from the present study provides information on the transport of chemicals with runoff from turf, which can be used in model simulations to predict nonpoint source pollution potentials and estimate ecological risks.

  5. Microsphere-chain waveguides: Focusing and transport properties

    SciTech Connect

    Allen, Kenneth W. Astratov, Vasily N.; Darafsheh, Arash; Abolmaali, Farzaneh; Mojaverian, Neda; Limberopoulos, Nicholaos I.; Lupu, Anatole

    2014-07-14

    It is shown that the focusing properties of polystyrene microsphere-chain waveguides (MCWs) formed by sufficiently large spheres (D ≥ 20λ, where D is the sphere diameter and λ is the wavelength of light) scale with the sphere diameter as predicted by geometrical optics. However, this scaling behavior does not hold for mesoscale MCWs with D ≤ 10λ resulting in a periodical focusing with gradually reducing beam waists and in extremely small propagation losses. The observed effects are related to properties of nanojet-induced and periodically focused modes in such structures. The results can be used for developing focusing microprobes, laser scalpels, and polarization filters.

  6. Transport Properties of the Tomato Fruit Tonoplast : III. Temperature Dependence of Calcium Transport.

    PubMed

    Joyce, D C; Cramer, G R; Reid, M S; Bennett, A B

    1988-12-01

    Calcium transport into tomato (Lycopersicon esculentum Mill, cv Castlemart) fruit tonoplast vesicles was studied. Calcium uptake was stimulated approximately 10-fold by MgATP. Two ATP-dependent Ca(2+) transport activities could be resolved on the basis of sensitivity to nitrate and affinity for Ca(2+). A low affinity Ca(2+) uptake system (K(m) > 200 micromolar) was inhibited by nitrate and ionophores and is thought to represent a tonoplast localized H(+)/Ca(2+) antiport. A high affinity Ca(2+) uptake system (K(m) = 6 micromolar) was not inhibited by nitrate, had reduced sensitivity to ionophores, and appeared to be associated with a population of low density endoplasmic reticulum vesicles that contaminated the tonoplast-enriched membrane fraction. Arrhenius plots of the temperature dependence of Ca(2+) transport in tomato membrane vesicles showed a sharp increase in activation energy at temperatures below 10 to 12 degrees C that was not observed in red beet membrane vesicles. This low temperature effect on tonoplast Ca(2+)/H(+) antiport activity could only by partially ascribed to an effect of low temperature on H(+)-ATPase activity, ATP-dependent H(+) transport, passive H(+) fluxes, or passive Ca(2+) fluxes. These results suggest that low temperature directly affects Ca(2+)/H(+) exchange across the tomato fruit tonoplast, resulting in an apparent change in activation energy for the transport reaction. This could result from a direct effect of temperature on the Ca(2+)/H(+) exchange protein or by an indirect effect of temperature on lipid interactions with the Ca(2+)/H(+) exchange protein.

  7. FORTRAN 4 computer program for calculation of thermodynamic and transport properties of complex chemical systems

    NASA Technical Reports Server (NTRS)

    Svehla, R. A.; Mcbride, B. J.

    1973-01-01

    A FORTRAN IV computer program for the calculation of the thermodynamic and transport properties of complex mixtures is described. The program has the capability of performing calculations such as:(1) chemical equilibrium for assigned thermodynamic states, (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. Condensed species, as well as gaseous species, are considered in the thermodynamic calculation; but only the gaseous species are considered in the transport calculations.

  8. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  9. Electronic transport properties in [n]cycloparaphenylenes molecular devices

    NASA Astrophysics Data System (ADS)

    Hu, Lizhi; Guo, Yandong; Yan, Xiaohong; Zeng, Hongli; Zhou, Jie

    2017-07-01

    The electronic transport of [n]cycloparaphenylenes ([n]CPPs) is investigated based on nonequilibrium Green's function formalism in combination with the density-functional theory. Negative differential resistance (NDR) phenomenon is observed. Further analysis shows that the reduction of the transmission peak induced by the bias changing near Fermi energy results in the NDR effect. Replacing the electrode (from carbon chain to Au electrode), doping with N atom and changing the size of the nanohoop (n = 5, 6, 8, 10) have also been studied and the NDR still exists, suggesting the NDR behavior is the intrinsic feature of such [n]CPPs systems, which would be quite useful in future nanoelectronic devices.

  10. Surf Zone Properties and On/Offshore Sediment Transport.

    DTIC Science & Technology

    1982-06-01

    stress $Shear velocity Void ratio Beach slope nth wave phase angle nth velocity phase angle n th sediment concentration phase angle CHAPTER 1 INTRODUCTION...called bed load transport. Eagleson et. al. (1963) proposed a "null point" ii -a3- Normn Prfile StO-M Prdofle wok and Noa (R 6) . Sa vale (f’f5...explained by the asymmetric bottom shear stress due to the asymmetric fluid velocity field. The net on/offshore thrust would result in a net

  11. Transport properties evolution of cement model system under degradation - Incorporation of a pore-scale approach into reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Seigneur, N.; L'Hôpital, E.; Dauzères, A.; Sammaljärvi, J.; Voutilainen, M.; Labeau, P. E.; Dubus, A.; Detilleux, V.

    2017-06-01

    This paper describes a multi-scale approach for the modelling of the degradation of model cement pastes using reactive transport. It specifically aims at incorporating chemistry-transport feedback results from a pore-scale approach into a continuum description. Starting from a numerical representative elementary volume of the model cement paste, which was built according to extensive experimental dedicated chacarterizations, this paper provides three separate descriptions of two different degradations: leaching and carbonation. First, 2D pore-scale simulations are performed and predict degradation depths in very good agreement with experiments. Second, 3D pore scale descriptions of how the microstructre evolves provides accurate description of the evolution of transport properties through degradation. Finally, those latter results are incorporated as a feedback law between porosity and effective diffusion coefficient into a 1D continuum approach of reactive transport. This paper provides pore-scale explanations of why reactive transport modelling has encountered mitigated success when applied to cementitious materials, especially during carbonation or degradations consisting of precipitation reactions. In addition to that, different degradation modellings are in very good agreement with experimental observations.

  12. The mechanisms of gastric mucosal injury: focus on microvascular endothelium as a key target.

    PubMed

    Tarnawski, A S; Ahluwalia, A; Jones, M K

    2012-01-01

    This paper reviews and updates current views on gastric mucosal injury with a focus on the microvascular endothelium as the key target and the role of the anti-apoptosis protein survivin. Under normal conditions, mucosal integrity is maintained by well structured and mutually amplifying defense mechanisms, which include pre-epithelial "barrier"--the first line of defense; and, an epithelial "barrier". Other important defense mechanisms of gastric mucosa include: continuous epithelial cell renewal, blood flow through mucosal microvessels (providing oxygen and nutrients), an endothelial microvascular "barrier," sensory innervation, and generation of PGs, nitric oxide and hydrogen sulfide. The microvascular endothelium lining gastric mucosal blood microvessels severs not only as a barrier but is a biologically active tissue involved in many synthetic and metabolic functions. It allows transport of oxygen and nutrients, and produces prostaglandins and leukotriens, procoagulant factors, nitric oxide, endothelin, ghrelin, HSP, growth factors such VEGF, bFGF, angiopoietin 2 and others, specific types of collagen, plasminogen activator, and can also actively contract. Accumulating evidence indicates that the gastric microvascular endothelium is a critical target for injury by ethanol, NSAIDs, free radicals, ischemia-reperfusion and other damaging factors. The injury--microvessel rupture, plasma and erythrocyte extravasation, platelet aggregation and fibrin deposition caused by these damaging factors--occurs early (1-5 min), precedes glandular epithelial cell injury and results in cessation of blood flow, ischemia, hypoxia and impaired oxygen and nutrient transport. As a consequence, mucosal necrosis develops. One of the main reasons for the increased susceptibility of gastric microvascular endothelial (vs. epithelial) cells to injury is reduced expression levels of survivin, an anti-apoptosis protein, which is a regulator of both proliferation and cell survival.

  13. Lateral transport properties of thermally excited magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Zhou, X. J.; Shi, G. Y.; Han, J. H.; Yang, Q. H.; Rao, Y. H.; Zhang, H. W.; Lang, L. L.; Zhou, S. M.; Pan, F.; Song, C.

    2017-02-01

    Spin information carried by magnons is attractive for computing technology, and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical picture for spin transport in conductors. Here, we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport.

  14. Crystal growth and electrical transport properties of niobium and tantalum monopnictide and dipnictide semimetals

    NASA Astrophysics Data System (ADS)

    Lu, Hong; Jia, Shuang

    2017-06-01

    The discovery of the first Weyl semimetal tantalum monoarsenide has greatly promoted physical research on the niobium and tantalum pnictide compounds. Crystallizing into the NbAs- and OsGe2-type structures, these mono- and di-pnictide semimetals manifest exotic electrical transport properties in magnetic field, which only occur in their single-crystalline forms. All the unusual electrical properties correspond to their poor carriers, which are indeed vulnerable to various crystal defects. In this review article, we present a comprehensive comparison of the crystal growth and electrical transport properties of the two semimetal families. We then discuss in detail the possible characteristic transport features, such as the chiral anomaly of Weyl quasiparticles. We emphasize the importance of crystal growth and sample manipulation for exploring the unique topological properties of Weyl semimetals in the future.

  15. Insulin-induced changes in skeletal muscle microvascular perfusion are dependent upon perivascular adipose tissue in women.

    PubMed

    Meijer, Rick I; Serné, Erik H; Korkmaz, H Ibrahim; van der Peet, Donald L; de Boer, Michiel P; Niessen, Hans W M; van Hinsbergh, Victor W M; Yudkin, John S; Smulders, Yvo M; Eringa, Etto C

    2015-08-01

    Obesity increases the risk of cardiovascular disease and type 2 diabetes, partly through reduced insulin-induced microvascular vasodilation, which causes impairment of glucose delivery and uptake. We studied whether perivascular adipose tissue (PVAT) controls insulin-induced vasodilation in human muscle, and whether altered properties of PVAT relate to reduced insulin-induced vasodilation in obesity. Insulin-induced microvascular recruitment was measured using contrast enhanced ultrasound (CEU), before and during a hyperinsulinaemic-euglycaemic clamp in 15 lean and 18 obese healthy women (18-55 years). Surgical skeletal muscle biopsies were taken on a separate day to study perivascular adipocyte size in histological slices, as well as to study ex vivo insulin-induced vasoreactivity in microvessels in the absence and presence of PVAT in the pressure myograph. Statistical mediation of the relation between BMI and microvascular recruitment by PVAT was studied in a mediation model. Obese women showed impaired insulin-induced microvascular recruitment and lower metabolic insulin sensitivity compared with lean women. Microvascular recruitment was a mediator in the association between obesity and insulin sensitivity. Perivascular adipocyte size, determined in skeletal muscle biopsies, was larger in obese than in lean women, and statistically explained the difference in microvascular recruitment between obese and lean women. PVAT from lean women enhanced insulin-induced vasodilation in isolated skeletal muscle resistance arteries, while PVAT from obese women revealed insulin-induced vasoconstriction. PVAT from lean women enhances insulin-induced vasodilation and microvascular recruitment whereas PVAT from obese women does not. PVAT adipocyte size partly explains the difference in insulin-induced microvascular recruitment between lean and obese women.

  16. Transport properties of droplet clusters in gravity-free fields

    NASA Technical Reports Server (NTRS)

    Brenner, Howard

    1986-01-01

    Clusters of liquid droplets are suspended in an atmosphere of saturated vapor and are subjected to an external force field. This system can be modeled as a continuum whose macroscopic properties may be determined by applying the generalized theory of Taylor dispersion.

  17. Studies of Transport Properties of Fractures: Final Report

    SciTech Connect

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  18. Transport and Optical Properties of N-Cadmium -

    NASA Astrophysics Data System (ADS)

    Levy, Miguel

    Transport measurements were performed on n-type CdSe near the metal-insulator transition above and below 4.2 K. The determination of compensation on the basis of transport data above 50 K is discussed. Use is made of some recent treatments of electron screening. The resistivity of three insulating samples with carrier concentrations between 0.73 and 0.80 of the critical concentration follow a temperature dependence consistent with Mott variable range hopping in the temperature range between 1.25 K and 4.2 K. The Hall coefficient is also consistent with R_{rm H} ~ exp [ T_{oH}/T]^ {1/4} in that range. We compare our results with available theory and with those of other workers and point out some discrepancies. Luminescence and Excitation spectra of metallic n-type CdSe were also obtained. We compare our results with available theory and find some discrepancies, which leads us to introduce some modifications into the theory. In particular, we consider the effect of compensation on band gap renormalization. We also look for and find evidence of acceptor states in the luminescence spectra.

  19. Electrical Transport Properties of Polymorphic MoS2.

    PubMed

    Kim, Jun Suk; Kim, Jaesu; Zhao, Jiong; Kim, Sungho; Lee, Jin Hee; Jin, Youngjo; Choi, Homin; Moon, Byoung Hee; Bae, Jung Jun; Lee, Young Hee; Lim, Seong Chu

    2016-08-23

    The engineering of polymorphs in two-dimensional layered materials has recently attracted significant interest. Although the semiconducting (2H) and metallic (1T) phases are known to be stable in thin-film MoTe2, semiconducting 2H-MoS2 is locally converted into metallic 1T-MoS2 through chemical lithiation. In this paper, we describe the observation of the 2H, 1T, and 1T' phases coexisting in Li-treated MoS2, which result in unusual transport phenomena. Although multiphase MoS2 shows no transistor-gating response, the channel resistance decreases in proportion to the temperature, similar to the behavior of a typical semiconductor. Transmission electron microscopy images clearly show that the 1T and 1T' phases are randomly distributed and intervened with 2H-MoS2, which is referred to as the 1T and 1T' puddling phenomenon. The resistance curve fits well with 2D-variable range-hopping transport behavior, where electrons hop over 1T domains that are bounded by semiconducting 2H phases. However, near 30 K, electrons hop over charge puddles. The large temperature coefficient of resistance (TCR) of multiphase MoS2, -2.0 × 10(-2) K(-1) at 300 K, allows for efficient IR detection at room temperature by means of the photothermal effect.

  20. Informational dynamics of vasomotion in microvascular networks: a review.

    PubMed

    Pradhan, R K; Chakravarthy, V S

    2011-02-01

    Vasomotion refers to spontaneous oscillation of small vessels observed in many microvascular beds. It is an intrinsic phenomenon unrelated to cardiac rhythm or neural and hormonal regulation. Vasomotion is found to be particularly prominent under conditions of metabolic stress. In spite of a significant existent literature on vasomotion, its physiological and pathophysiological roles are not clear. It is thought that modulation of vasomotion by vasoactive substances released by metabolizing tissue plays a role in ensuring optimal delivery of nutrients to the tissue. Vasomotion rhythms exhibit a great variety of temporal patterns from regular oscillations to chaos. The nature of vasomotion rhythm is believed to be significant to its function, with chaotic vasomotion offering several physiological advantages over regular, periodic vasomotion. In this article, we emphasize that vasomotion is best understood as a network phenomenon. When there is a local metabolic demand in tissue, an ideal vascular response should extend beyond local microvasculature, with coordinated changes over multiple vascular segments. Mechanisms of information transfer over a vessel network have been discussed in the literature. The microvascular system may be regarded as a network of dynamic elements, interacting, either over the vascular anatomical network via gap junctions, or physiologically by exchange of vasoactive substances. Drawing analogies with spatiotemporal patterns in neuronal networks of central nervous system, we ask if properties like synchronization/desynchronization of vasomotors have special significance to microcirculation. Thus the contemporary literature throws up a novel view of microcirculation as a network that exhibits complex, spatiotemporal and informational dynamics.

  1. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    SciTech Connect

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-15

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  2. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    NASA Astrophysics Data System (ADS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.-M.

    2013-07-01

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  3. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-01

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  4. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Wang, Shun-Jin; Wang, Yong-Long; Jiang, Hua; Li, Wen

    2013-08-01

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue-Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue-Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  5. Electrical Transport Properties of Carbon Nanotube Metal-Semiconductor Heterojunction

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-10-01

    Carbon nanotubes (CNTs) have been proved to have promising applicability in various fields of science and technology. Their fascinating mechanical, electrical, thermal, optical properties have caught the attention of today’s world. We have discussed here the great possibility of using CNTs in electronic devices. CNTs can be both metallic and semiconducting depending on their chirality. When two CNTs of different chirality are joined together via topological defects, they may acquire rectifying diode property. We have joined two tubes of different chiralities through circumferential Stone-Wales defects and calculated their density of states by nearest neighbor tight binding approximation. Transmission function is also calculated to analyze whether the junctions can be used as electronic devices. Different heterojunctions are modeled and analyzed in this study. Internal stresses in the heterojunctions are also calculated by molecular dynamics simulation.

  6. Transport properties of alkali-doped multi walled carbon nanotubes.

    PubMed

    Barone, P; Barberio, M; Pingitore, V; Bonanno, A

    2012-12-01

    In this work we propose a study on electrical properties of multiwalled carbon nanotubes (MWCNT) doped with the most commonly used alkali metals. We report resistivity measurements of MWCNT exposed to doping with Li, Na, K and Cs. Our results show that, increasing the alkali exposure, the resistance of the doped sample decreases denoting a progressive sample metallization. The changes in resistivity, contrary to that observed for single walled carbon nanotubes (SWCNT) in our previous work, are independent upon the alkali properties but appear related to alkali intercalation effects in the MWCNT random network. The doping effects have been also controlled by X-ray photo electron spectroscopy (XPS). The spectra confirm the absence of chemical bonds between carbon nanotubes and alkali, validating the hypothesis of intercalation of alkali in the interstitial channels between the tubes. Our results are also confirmed by comparison between SEM images of single walled and multiwalled carbon nanotubes.

  7. Electronic transport properties of graphene doped by gallium.

    PubMed

    Mach, J; Procházka, P; Bartošík, M; Nezval, D; Piastek, J; Hulva, J; Švarc, V; Konečný, M; Kormoš, L; Šikola, T

    2017-10-13

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10(-7) Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  8. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  9. Low temperature transport properties of pyrolytic graphite sheet

    NASA Astrophysics Data System (ADS)

    Nakamura, Sachiko; Miyafuji, Daisuke; Fujii, Takenori; Matsui, Tomohiro; Fukuyama, Hiroshi

    2017-09-01

    We have made thermal and electrical transport measurements of uncompressed pyrolytic graphite sheet (uPGS), a mass-produced thin graphite sheet with various thicknesses between 10 and 100 μ m, at temperatures between 2 and 300 K. Compared to exfoliated graphite sheets like Grafoil, uPGS has much higher conductivities by an order of magnitude because of its high crystallinity confirmed by X-ray diffraction and Raman spectroscopy. This material is advantageous as a thermal link of light weight in a wide temperature range particularly above 60 K where the thermal conductivity is much higher than common thermal conductors such as copper and aluminum alloys. We also found a general relationship between thermal and electrical conductivities in graphite-based materials which have highly anisotropic conductivities. This would be useful to estimate thermal conductance of a cryogenic part made of these materials from its electrical conductance more easily measurable at low temperature.

  10. Electronic transport properties of graphene doped by gallium

    NASA Astrophysics Data System (ADS)

    Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.

    2017-10-01

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10‑7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  11. Charge transport properties of CdMnTe radiation detectors

    SciTech Connect

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  12. Collective Transport Properties of Driven Skyrmions with Random Disorder

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-05-01

    We use particle-based simulations to examine the static and driven collective phases of Skyrmions interacting with random quenched disorder. We show that nondissipative effects due to the Magnus term reduce the depinning threshold and strongly affect the Skyrmion motion and the nature of the dynamic phases. The quenched disorder causes the Hall angle to become drive dependent in the moving Skyrmion phase, while different flow regimes produce distinct signatures in the transport curves. For weak disorder, the Skyrmions form a pinned crystal and depin elastically, while for strong disorder the system forms a pinned amorphous state that depins plastically. At high drives the Skyrmions can dynamically reorder into a moving crystal, with the onset of reordering determined by the strength of the Magnus term.

  13. Thickness dependent magneto transport properties of WTe2 thin films

    NASA Astrophysics Data System (ADS)

    Yi, Ya; Wu, Changming; Wang, Huanwen; Liu, Hongchao; Li, Hui; Zhang, Huachen; He, Hongtao; Wang, Jiannong

    2017-07-01

    We report the systemic magneto transport studies on a-few-layers exfoliated WTe2 thin film devices. The non-saturating and large magnetoresistance (MR), proportional to B2, are observed in all devices. Hall effect modeling using the classical two-band model indicate the nearly identical electron and hole densities in thicker devices while unequal densities of electrons and holes in thinner devices at low temperatures. As a result, we attribute the large non-saturating MR at low temperatures in thicker devices to balanced electron and hole density while in thinner devices to low mobility caused by surface contamination and degradation. Our results suggest both carrier densities and mobility play significant roles in determining the magnitude and the non-saturating behavior of MR.

  14. Lithologic melt partitioning and transport properties of partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Zhu, W.; Montesi, L.; Gaetani, G. A.; Le Roux, V.; Xiao, X.

    2015-12-01

    Quantitative constraints on melt transport in upper mantle are critical to understanding various dynamic processes at ocean ridges. In this study, we propose that thermodynamic gradients, resulting from spatial variations in mineralogy, can unevenly partition melt between olivine and orthopyroxene (opx), the two most abundant minerals in the upper mantle. The lithologic melt partitioning leads to higher melt fraction in olivine-rich regions compared to opx-rich regions, which may have important implications for melt transport. Lithologic partitioning has been experimentally confirmed in analogue systems, such as quartz/fluorite-H2O (Watson, 1999), but has never been observed in olivine/opx-melt samples. We synthesized olivine/opx-melt (harzburgite) samples by isostatically pressing oxide-high alumina basalt mixtures at 1350 °C and 1.5 GPa in a piston-cylinder apparatus. Nominal melt fractions of 0.02 to 0.20 and a constant 3 to 2 (olivine to opx) volume ratio were tested. Experimental charges were quenched, cored, and imaged using synchrotron X-ray microtomography. The resulting 3-D images constitute digital rock samples on which local melt fraction distributions, permeabilities, and electrical conductivities were numerically quantified. Our results are strong evidence for melt partitioning between olivine and opx: local melt fractions are 10 to 50% higher around olivine than opx grains. At the same melt fraction, permeabilities of whole harzburgite samples are lower compared to monomineralic olivine-melt samples (Miller et al., 2014). However, the presence of opx negligibly affects the permeability-porosity relation unless the abundance of opx is more than 40 vol. %. In contrast, electrical conductivities of harzburgites are systematically lower than those of olivine-melt samples. Lithological melt partitioning could be another mechanism responsible for forming high-porosity melt pathways in addition to reaction infiltration instability and deformation melt bands.

  15. Bottom-up processing and low temperature transport properties of polycrystalline SnSe

    SciTech Connect

    Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton; Martin, Joshua; Nolas, George S.

    2015-05-15

    A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature. Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.

  16. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Armaković, Stevan; Armaković, Sanja J.

    2016-11-01

    In this work we investigated optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets and the consequences on these properties after modifications with boron atoms. Within the framework of density functional theory (DFT) several important optoelectronic quantities have been calculated for graphene nanoparticles: oxidation and reduction potentials, hole and electron reorganization energies, while thermally activated delayed fluorescence was assessed by calculations of energy separation between the lowest excited singlet (S1) and triplet (T1) state, Δ E (S1 -T1) . Obtained results show that optoelectronic properties of graphene nanoparticles are significantly improved by the modification with boron atoms and that investigated structures can be considered as a promising organic light emitting diode (OLED) materials. Influence of boron atoms to charge and heat transport properties of graphene nanosheets was investigated as well, employing the self-consistent non-equilibrium Green's functions with DFT. On the other side it is shown that charge transport of graphene nanosheets is not influenced by the introduction of boron atoms, while influence to the phonon subsystem is minimal.

  17. Correlating substituent parameter values to electron transport properties of molecules

    NASA Astrophysics Data System (ADS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  18. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  19. Thin film separators with ion transport properties for energy applications

    NASA Astrophysics Data System (ADS)

    Li, Zhongyuan

    2017-09-01

    Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.

  20. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  1. Localization, Regulation, and Substrate Transport Properties of Bpt1p, a Saccharomyces cerevisiae MRP-Type ABC Transporter

    PubMed Central

    Sharma, Kailash Gulshan; Mason, Deborah L.; Liu, Guosheng; Rea, Philip A.; Bachhawat, Anand K.; Michaelis, Susan

    2002-01-01

    Saccharomyces cerevisiae Bpt1p is an ATP-binding cassette (ABC) protein that belongs to the MRP subfamily and is a close homologue of the glutathione conjugate (GS conjugate) transporter Ycf1p. The function of Bpt1p has previously been evaluated only in vitro, by using nonphysiological substrates. In the present study we examined the localization, regulation, and transport properties of Bpt1p in vivo, as well as its capacity to transport a set of prototypical MRP substrates in vitro. Our results show that Bpt1p, like Ycf1p, localizes to the yeast vacuolar membrane, plays a role in cadmium detoxification and ade2 pigmentation in vivo, and can participate in the transport of GS conjugates and glucuronate conjugates, as well as free glutathione, in vitro. However, in all of these cases the contribution of Bpt1p is substantially less than that of Ycf1p. In addition, the expression patterns of YCF1 and BPT1 differ significantly. Whereas YCF1 expression is markedly increased by cadmium, adenine limitation in an ade2 strain, or overexpression of the stress-responsive transcription factor Yap1p, BPT1 expression is only modestly affected under these conditions. Thus, although the functional capabilities of Bpt1p and Ycf1p overlap, their differences in regulation and substrate preference imply that they contribute to cellular detoxification processes in different ways. PMID:12455987

  2. Transport Properties of Nanoscale High Temperature Superconducting Wires

    NASA Astrophysics Data System (ADS)

    Ananth, V.

    2004-03-01

    The importance of studying nanoscale high temperature superconductors stems from the realization that the characteristic lengths in cuprate materials are in the nanometer scale: the coherence length and lattice spacing are of the order of few angstroms , the penetration depth are of the order of few nanometers . In addition a number of important length scales in various proposed mechanism such as the stripes and their seperation length lie in the nanometer range. Experimental investigation of nanowires of cuprates will therefore enable a better understanding of fundamental mechanisms of high temperature superconductivity. We present a successful nanofabrication technique of epitaxial nanoscale cuprates. Combining advanced electron-beam lithography and nanomachining techniques, we have fabricated a number of first-generation two-probe and four-probe nanowires. We discuss our initial transport measurements of I-V characteristics and magnetoresistance. The research at Boston University is supported by NSF and Sloan Foundation. The work at University of Toronto is supported by NSERC, CFI, OIT, ORDCF, MMO, CIAR and the Connaught Fund.

  3. Transport properties of Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Gibson, Quinn; Xiong, Jun; Liu, Minhao; Hirschberger, Maximilian; Cava, Robert; Ong, Nai Phuan

    2014-03-01

    The semimetal Cd3As2 has emerged as an attractive candidate for a Dirac semimetal. A recent LDA calculation reveals that, at the Fermi energy, it has two bulk Dirac nodes which straddle the Γ point along the kz axis. The Dirac nodes were recently observed by ARPES. We have made extensive transport measurements of Cd3As2. Because of possible Cd vacancy disorder in the very large unit cell (160 atoms), the SdH oscillations reveal a quantum lifetime that is moderately damped. Despite the disorder, the observed resistivity ρ in some crystals displays a RRR of 1000. At 4 K, the residual resistivity is anomalously low (30 n Ω cm). We estimate that the mobility exceeds 106 cm2V-1s-1. A magnetic field H strongly increases ρ by factors of 100 to 1000 at 10 Tesla. This giant magnetoresistance (MR) is highly anisotropic. The MR is largest when H is perpendicular to the axis (110) and minimal when H is ∥(110). We will discuss possible origins of this unusual anisotropic giant MR. We also discuss the possibility of detecting an enhanced longitudinal MR associated with charge pumping between Weyl nodes (the chiral anomaly). Supported by Army Research Office (ARO W911NF-11-1-0379) and NSF-MRSEC Grant DMR 0819860.

  4. Spin-polarized quantum transport properties through flexible phosphorene

    NASA Astrophysics Data System (ADS)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.

  5. Transport properties of stripe-ordered high Tc cuprates

    NASA Astrophysics Data System (ADS)

    Jie, Qing; Han, Su Jung; Dimitrov, Ivo; Tranquada, J. M.; Li, Qiang

    2012-11-01

    Transport measurements provide important characterizations of the nature of stripe order in the cuprates. Initial studies of systems such as La1.6-xNd0.4SrxCuO4 demonstrated the strong anisotropy between in-plane and c-axis resistivities, but also suggested that stripe order results in a tendency towards insulating behavior within the planes at low temperature. More recent work on La2-xBaxCuO4 with x = 1/8 has revealed the occurrence of quasi-two-dimensional superconductivity that onsets with spin-stripe order. The suppression of three-dimensional superconductivity indicates a frustration of the interlayer Josephson coupling, motivating a proposal that superconductivity and stripe order are intertwined in a pair-density-wave state. Complementary characterizations of the low-energy states near the Fermi level are provided by measurements of the Hall and Nernst effects, each revealing intriguing signatures of stripe correlations and ordering. We review and discuss this work.

  6. Transport properties of asymmetric zigzag graphene nano-ribbon built by carbon vacancy in edge

    NASA Astrophysics Data System (ADS)

    Jafari, H.; Dianat, B.; Afshar, M.

    2017-07-01

    Using nonequilibrium Green’s functions in combination with density functional theory, we investigated the electronic transport behaviors of single layer zigzag graphene Nano-ribbon (ZGNR) with a Carbon vacancy in edge. The results show that electronic transport properties of the asymmetry ZGNR can be modulated by vacancy in edges, and prominent negative differential resistance (NDR) can be observed. These results may be useful for designing practical devices based on graphene Nano-ribbons.

  7. Accurate transport properties for H–CO and H–CO{sub 2}

    SciTech Connect

    Dagdigian, Paul J.

    2015-08-07

    Transport properties for collisions of hydrogen atoms with CO and CO{sub 2} have been computed by means of quantum scattering calculations. The carbon oxides are important species in hydrocarbon combustion. The following potential energy surfaces (PES’s) for the interaction of the molecule fixed in its equilibrium geometry were employed: for H–CO, the PES was taken from the work of Song et al. [J. Phys. Chem. A 117, 7571 (2013)], while the PES for H–CO{sub 2} was computed in this study by a restricted coupled cluster method that included single, double, and (perturbatively) triple excitations. The computed transport properties were found to be significantly different from those computed by the conventional approach that employs isotropic Lennard-Jones (12-6) potentials. The effect of using the presently computed accurate transport properties in 1-dimensional combustion simulations of methane-air flames was investigated.

  8. Impact of oceanic heat transport on global thermodynamical properties in the climate system

    NASA Astrophysics Data System (ADS)

    Schroeder, Alexander; Lunkeit, Frank; Lucarini, Valerio

    2014-05-01

    We investigate how properties of macroscale thermodynamics of the climate system respond to changes in the intensity of the oceanic heat transport by utilising PlaSim, an Earth-like general circulation model of intermediate complexity, in an aqua-planet configuration. By increasing the magnitude of the meridional heat transport in the ocean, characterised by an export out of the tropics and a poleward convergence, we observe a surface warming of about 10K and a decrease in the equator-to-pole temperature difference, while the total poleward heat transport remains unchanged. The Carnot efficiency, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increasing oceanic heat transport. These results suggest that the climate system becomes less efficient and turns into a state of reduced entropy production, as the oceanic transport of heat out of the tropics is reinforced.

  9. Exceptional transport property in a rolled-up germanium tube

    NASA Astrophysics Data System (ADS)

    Guo, Qinglei; Wang, Gang; Chen, Da; Li, Gongjin; Huang, Gaoshan; Zhang, Miao; Wang, Xi; Mei, Yongfeng; Di, Zengfeng

    2017-03-01

    Tubular germanium (Ge) resistors are demonstrated by rolling-up thin Ge nanomembranes (NMs, 50 nm in thickness) with electrical contacts. The strain distribution of rolled-up Ge microtubes along the radial direction is investigated and predicted by utilizing micro-Raman scattering spectroscopy with two different excitation lasers. Electrical properties are characterized for both unreleased GeNMs and released/rolled-up Ge microtubes. The conductivities of GeNMs significantly decrease after rolling-up into tubular structures, which can be attributed to surface charging states on the conductance, band bending, and piezo-resistance effect. When illuminated with a light source, facilitated by the suppressed dark current of rolled-up Ge tubes, the corresponding signal-to-noise ratio can be dramatically enhanced compared with that of planar GeNMs.

  10. Microvascular Targets for Anti-Fibrotic Therapeutics

    PubMed Central

    Pu, Kai-Ming T.; Sava, Parid; Gonzalez, Anjelica L.

    2013-01-01

    Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies. PMID:24348218

  11. Treatment of hemimasticatory spasm with microvascular decompression.

    PubMed

    Wang, Yong-Nan; Dou, Ning-Ning; Zhou, Qiu-Meng; Jiao, Wei; Zhu, Jin; Zhong, Jun; Li, Shi-Ting

    2013-01-01

    Hemimasticatory spasm is a rare disorder characterized by paroxysmal involuntary contraction of the jaw-closing muscles. As the ideology and pathogenesis of the disease are still unclear, there has been no treatment that could give rise to a good outcome so far. Herein, we tried to use surgical management to cure the disease. Six patients with the disease were included in this study. These patients underwent microvascular decompression of the motor fibers of the trigeminal root. After the operation, all faces of the patients felt relaxed at varied degrees, except for 1 patient. Our study showed that microvascular decompression of the trigeminal nerve could lead to a better outcome. However, a control study with a large sample is needed before this technique is widely used.

  12. Sex-Specific Factors in Microvascular Angina

    PubMed Central

    Humphries, Karin H.; Bairey Merz, C. Noel

    2014-01-01

    Among women presenting for evaluation of suspected ischemic symptoms, a diagnosis of normal coronary arteries is five times more common, as compared to men. These women are often labeled as cardiac syndrome X (CSX), a subset of which have microvascular angina (MA) due to microvascular coronary dysfunction (MCD). MCD is not benign and is associated with an annual 2.5% cardiac event rate. Non-invasive testing for MCD remains insensitive although newer imaging modalities such as adenosine cardiac magnetic resonance imaging (CMRI) appear promising. The gold standard for diagnosis of MCD is coronary reactivity testing (CRT), an invasive technique which is not available in many countries. With regard to treatment, large scale trials are lacking. While research is ongoing, the current platform of therapy consists of anti-anginal, anti-platelet and endothelial modifying agents (primarily angiotensin converting enzyme inhibitors and statins). PMID:24582724

  13. Effect of vertical-strain-induced symmetry breaking on transport properties of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zou, Dongqing; Zhao, Wenkai; Fang, Changfeng; Cui, Bin; Liu, Desheng

    2017-02-01

    Using density functional theory combined with nonequilibrium Green's function formalism, we investigate the transport properties of zigzag graphene nanoribbons (ZGNRs) under vertical strain. Our calculations show that localized state induced by vertical strain will inhibit the electronic transport of the systems at zero bias, but at nonzero bias, the localized state can enhance the electronic transport behavior if ZGNRs are symmetry with respect to the mid-plane between two edges. This is because the localized state produces an asymmetry electron density distribution which break the current suppression. These findings may be useful for the application of strain-induced ZGNR based molecular devices.

  14. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P

    2017-02-08

    Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.

  15. Squeezing a gel to establish network structure-transport property relationships

    NASA Astrophysics Data System (ADS)

    Chan, Edwin; Nadermann, Nichole; McLeod, Kelly; Tew, Greg

    2015-03-01

    Gels are used in many applications, ranging from drug delivery to water purification, where regulating transport of a particular permeant is critical. The structure of the gel determines its transport properties but developing the gel structure-transport property relationships often require multiple measurement techniques. In this work, we demonstrate poroelastic relaxation indentation (PRI) as a single measurement tool to establish the relationships between the polymer network structure and the transport properties of well-defined hydrogel networks synthesized via a thiol-norbornene click reaction of poly(ethylene glycol) (PEG) chains. We use PRI to quantify the mechanical and transport properties of a series of ``click'' hydrogels with different crosslink densities. By applying various thermodynamic network swelling models to the describe the mechanical response of these gels as measured from PRI, we are able to extract thermodynamic parameters of these hydrogels including the Flory chi parameter and the mesh size. We validate our approach by comparing the thermodynamic parameters obtained from PRI with results from neutrons scattering studies of the same series of hydrogels.

  16. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  17. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  18. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    PubMed

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases.

  19. Vitamin D and retinal microvascular damage

    PubMed Central

    Mutlu, Unal; Ikram, M Arfan; Hofman, Albert; de Jong, Paulus T V M; Uitterlinden, Andre G; Klaver, Caroline C W; Ikram, M Kamran

    2016-01-01

    Abstract Vitamin D has been linked to various cardiovascular risk factors including indices of large-vessel disease. However, it remains unclear whether vitamin D is also associated with microvascular damage. In a community-dwelling population, we studied associations between vitamin D serum levels and retinal microvascular damage defined as retinopathy signs, narrower arterioles, and wider venules. From the population-based Rotterdam Study, we included 5675 participants (age ≥45 years) with vitamin D data and gradable retinal photographs. Serum levels of vitamin D were measured using an antibody-based assay. Retinal exudates, microaneurysms, cotton wool spots, and dot/blot hemorrhages were graded on fundus photographs by experienced graders in the whole sample; retinal vascular calibers, that is, arteriolar and venular diameters, were semiautomatically measured in a subsample (n = 2973). We examined the cross-sectional association between vitamin D and retinal microvascular damage using logistic and linear regression models, adjusting for age, sex, and cardiovascular risk factors. We found that persons with lower vitamin D levels were more likely to have retinopathy (adjusted odds ratio per standard deviation (SD) decrease of vitamin D = 1.30; 95% confidence interval (CI): = 1.12–1.49). Furthermore, lower vitamin D levels were associated with wider venular calibers (adjusted mean difference per SD decrease in vitamin D = 1.35; 95% CI = 0.64–2.06). This association was strongest among men (P for interaction = 0.023). Lower levels of vitamin D are associated with retinal microvascular damage, suggesting that the link with cardiovascular risk may partly run through changes in the microvasculature. PMID:27930528

  20. Density Functional Study of the Transport and Electronic Properties of Waved Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Vasiliev, Igor

    2015-03-01

    First principles ab initio calculations are employed to study the electronic and transport properties of waved graphene nanoribbons. Our calculations are performed using the SIESTA and TRANSIESTA density functional electronic structure codes. We find that the band gaps of graphene nanoribbons with symmetrical edges change very slightly with the increasing compression, whereas the band gaps of nanoribbons with asymmetrical edges change significantly. The computed IV-characteristics of the waved graphene nanoribbons with different compression ratios reveal the effect of compression on the transport properties of graphene nanoribbons. Supported by NMSU GREG Award and by NSF CHE-1112388.

  1. Pore-scale heterogeneity, energy dissipation and the transport properties of rocks

    SciTech Connect

    Bernabe, Y.; Revil, A.

    1995-06-15

    The authors construct model systems to study pore scale conductivity, by making the models from an array of spheres, tubes, and cracks with different dimensions. They vary the conductivity of this system by changing the sizes and distributions of the different pore elements. To determine the transport properties of this model system, they equated the sum of the energy lost at each pore junction, to the total energy lost in the array, for either fluid or electrical conduction through the array. The authors argue that this model conduction system should be applicable to study conductivity through rock, and allow one to learn more about transport properties of rock.

  2. Electrical Transport Properties of Polyaniline Containing HCl, CuCl2 and Multiwall Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Meikap, A. K.

    2011-07-01

    Electrical transport properties of hydrochloric acid (HCl) doped polyaniline (PANI) and composite of PANI with Copper Chloride (CuCl2) and multiwall Carbon Nanotube (MWNT) was measured within a temperature range 77⩽T⩽300 K in presence and in absence of a magnetic field up to 1Tesla. The electrical transport properties can be explained by the variable range hopping (VRH) theory. All the samples have shown negative d.c magnetoconductivity at the room temperature but PANI-HCl sample has shown a transition from positive to negative magnetoconductivity as the temperature is increased.

  3. Magneto-transport properties of a random distribution of few-layer graphene patches

    SciTech Connect

    Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Plochocka, Paulina; Escoffier, Walter; Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte

    2014-11-21

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  4. Magneto-transport properties of a random distribution of few-layer graphene patches

    NASA Astrophysics Data System (ADS)

    Iacovella, Fabrice; Trinsoutrot, Pierre; Mitioglu, Anatolie; Conédéra, Véronique; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Vergnes, Hugues; Caussat, Brigitte; Plochocka, Paulina; Escoffier, Walter

    2014-11-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  5. Influence of surface reconstruction on dopant incorporation and transport properties of GaAs(Bi) alloys

    NASA Astrophysics Data System (ADS)

    Field, R. L.; Occena, J.; Jen, T.; Del Gaudio, D.; Yarlagadda, B.; Kurdak, C.; Goldman, R. S.

    2016-12-01

    We report on the influence of surface reconstruction on silicon dopant incorporation and transport properties during molecular-beam epitaxy of GaAs(Bi) alloys. GaAs(Bi) growth with an (n × 3) reconstruction leads to n-type conductivity, while growth with a (2 × 1) reconstruction leads to p-type conductivity. We hypothesize that the presence or absence of surface arsenic dimers prevents or enables dopant incorporation into arsenic lattice sites. We consider the influence of bismuth anions on arsenic-dimer mediated dopant incorporation and the resulting electronic transport properties, demonstrating the applicability of this mechanism to mixed anion semiconductor alloys.

  6. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  7. Microvascular architecture of anthropoid primate intestine.

    PubMed

    Swan, K G; Spees, E K; Reynolds, D G; Kerr, J C; Zinner, M J

    1978-01-01

    Microvascular architecture of the small intestine of New World monkey, ape, and man was examined with the silicone rubber injection technique and the results compared to previous observations in dogs and Old World monkeys. In man, chimpanzee, and New World monkey the small intestine villus contains a single centrally located vein draining a subepithelial capillary plexus converging at the apex of the villus. These villi also contain a single eccentrically located artery rising to the midlevel of the villus, where it branches into subepithelial capillaries over the rest of its length. This vascular architecture most closely resembles that observed in the gut of Old World monkeys in which the villus artery is absent altogether. This observation contrasts the microvascular architecture of canine intestinal villi in which marginal arteries surround a centrally located vein. These patterns of microvascular anatomy are analyzed in terms of the role of the gut in the pathogenesis of experimental shock. The differences observed may account for the known species variations in canine and primate experimental shock.

  8. Microvascular structure as a prognostically relevant endpoint.

    PubMed

    Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2017-05-01

    Remodelling of subcutaneous small resistance arteries, as indicated by an increased media-to-lumen ratio, is frequently present in hypertensive, obese, or diabetic patients. The increased media-to-lumen ratio may impair organ flow reserve. This may be important in the maintenance and, probably, also in the progressive worsening of hypertensive disease. The presence of structural alterations represents a prognostically relevant factor, in terms of development of target organ damage or cardiovascular events, thus allowing us a prediction of complications in hypertension. In fact, media-to-lumen ratio of small arteries at baseline, and possibly their changes during treatment may have a strong prognostic significance. However, new, non-invasive techniques are needed before suggesting extensive application of the evaluation of remodelling of small arteries for the cardiovascular risk stratification in hypertensive patients. Some new techniques for the evaluation of microvascular morphology in the retina, currently under clinical investigation, seem to represent a promising and interesting future perspective. The evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the near future, an evaluation to be performed in all hypertensive patients, to obtain a better stratification of cardiovascular risk, and, possibly, it might be considered as an intermediate endpoint in the evaluation of the effects of antihypertensive therapy, provided that a demonstration of a prognostic value of non-invasive measures of microvascular structure is made available.

  9. Transport and magnetic properties of RTX and related compounds

    NASA Astrophysics Data System (ADS)

    Goruganti, Venkateshwarlu

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new magnetic materials is always an interesting topic from both a technological and basic research prospective; it is even more interesting when unusual magnetic phases are observed. Ternary intermetallic plumbides are interesting because of their unconventional magnetic ordering and variety of multiple magnetic transitions. Crystalline electric fields (CEF) also strongly effect the magnetic properties of these intermetallics. To understand the phase transitions, CEF effects, and magnetic interactions, a systematic study of the RNiPb, R 2Ni2Pb, R5NiPb3 and RCuGe systems were conducted. Among the results for NdNiPb a single antiferromagnetic transition was found at 3.5K, while the superconductivity found in some ingots of this material was shown not to correspond to a bulk behavior for this phase. Nd2Ni 2Pb was shown to have a canted zero field magnetic structure with a low temperature metamagnetic transition 3 T. In NdCuGe, a 3K AF transition was found along with a corresponding magnon contribution to the specific heat and magnetic and thermodynamic behavior from which the detailed CEF configuration was obtained. In a series of measurements on recently-synthesized R 5NiPb3 (R=Ce, Nd, Gd), for Ce5NiPb 3 a transition at 48 K was found, which was confirmed to be ferromagnetic character from field dependent heat capacity and Curie-Weiss susceptibility. Nd5NiPb3 exhibits two transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. For Gd5NiPb3, a ferro- or ferrimagnetic transition was found at 68 K. For the Ce and Nd materials metamagnetism was also observed at low temperatures. In addition, very large metallic type gamma terms were found in the specific heat, as well as a

  10. Clay and pillard clay membranes: Synthesis, characterization and transport properties

    NASA Astrophysics Data System (ADS)

    Vercauteren, Sven

    In this work, the preparation and characterization of ceramic multilayer membranes with an Alsb2Osb3-pillared montmorillonite (Al-PILC) and a Laponite separating layer have been studied. Al-PILC is a pillared clay prepared by intercalation of polyoxo cations of aluminium between the montmorillonite clay sheets, followed by a thermal treatment (400sp°C) to obtain rigid oxide pillars. The free spacing between the clay plates is about 0.8 nm. Laponite is a synthetic clay with a pore structure formed by the stacking of very small clay plates. To deposit an Al-PILC top layer on a macro- or mesoporous aluminiumoxide support membrane, two preparation routes were considered. According to the standard preparation route of a pillared clay, the easiest way is to use a suspension of clay mixed with the pillaring solution in which the support membrane is dipped. However, it is not possible to deposit uniform and crack-free top layers in this way because of the formation of unstable suspensions. A second preparation route is based on an indirect pillaring procedure. By dipping a support membrane in a stable clay suspension, a thin clay film is deposited in a first step. Pillaring is achieved via immersion of the supported clay film in the pillaring solution in a second step. After a washing procedure, the membrane is dried and calcined at 400sp°C. Laponite membranes were simply prepared by dipping a support membrane in a suspension of this synthetic clay in water. Afterwards a drying at room temperature and a calcination at 400 ar 500sp°C is performed. Both membrane types were tested for gas separation and pervaporation purposes. Transport of permanent gases (He, N2) occurs by means of Knudsen diffusion. Diffusion is kinetically controlled and for a binary mixture, the maximum separation factor is determined by the difference in molecular weight of both components. From pervaporation experiments with water/alcohol mixtures it was found that Al-PILC membranes can be used for

  11. Thermoelectric Transport Properties of Gold-Iron at Millikelvin Temperatures.

    NASA Astrophysics Data System (ADS)

    Chesire, Daniel Patrick

    Measurements of the electrical resistivity, and both static and isoelectric thermopower have been made on a fine Au wire containing 1 ppm Fe over a range of temperatures between 7 K and 24 mK. A shallow minimum at higher temperatures and unitary limit in the resistivity data characteristic of the Kondo effect were observed in the lower temperature ranges. The minimum coincides with that observed by other workers. Both the resistivity and the two thermopowers were measured with a Superconducting Quantum Interference Detector (SQUID) which has extremely high sensitivity and a very good signal-to-noise ratio. The static and isoelectric thermopowers were measured under two different boundary conditions. The static thermopower was measured by keeping the electric current through the sample equal to zero by using a compensating current source. The isoelectric thermopower was measured under the condition that the electric field across the sample was kept equal to zero by using a superconducting short. The static and isoelectric thermopowers both exhibited a broad minimum attributed to the interaction of a dilute concentration of Fe impurities with the Au conduction electrons. The data have been analyzed in terms of linear transport theory, using the Mueller-Hartmann expression for the Kondo contribution. Since the measurements were made at low temperatures, the diffusion and phonon drag thermopowers were small enough that the major contribution to the measured thermopower was from the Kondo effect. The theory was shown to fit the data well down to 0.2 K. Below this temperature, the theoretical expression for the thermopower did not agree well with the measurements in this work. The static thermopower, S, was found to be related to the isoelectric thermopower, (SIGMA)(,E=0), and the resistivity, (rho), by the simple relation S = (rho)(SIGMA)(,E=0). The isoelectric data was found to have a better signal-to-noise ratio than the static thermopower and a large enough signal at

  12. Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.

  13. Oligomers Modulate Interfibril Branching and Mass Transport Properties of Collagen Matrices

    PubMed Central

    Whittington, Catherine F.; Brandner, Eric; Teo, Ka Yaw; Han, Bumsoo; Nauman, Eric; Voytik-Harbin, Sherry L.

    2013-01-01

    Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis as well as the design of next generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property-concentration relationships were noted. Diffusivity wasn’t affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared to monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell-matrix signaling as well as facilitate model-based prediction and design of matrix-based therapeutic strategies. PMID:23842082

  14. Two-temperature thermodynamic and transport properties of SF6-Cu plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Yi; Chen, Zhexin; yang, Fei; Cressault, Yann; Murphy, Anthony B.; Guo, Anxiang; Liu, Zirui; Rong, Mingzhe; Sun, Hao

    2015-10-01

    SF6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF6-Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF6-Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg-Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300-40 000 K), ratios of electron to heavy-species temperature (1-10), pressures (0.1-10 atm) and copper molar proportions (0-50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF6-Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur.

  15. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.

    PubMed

    Pan, Qing; Wang, Ruofan; Reglin, Bettina; Cai, Guolong; Yan, Jing; Pries, Axel R; Ning, Gangmin

    2014-01-01

    Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.

  16. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    SciTech Connect

    Liaw, B.Y.; Song, S.Y.

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  17. Transport properties of hectorite based nanocomposite single ion conductors

    NASA Astrophysics Data System (ADS)

    Singhal, Ruchi Gupta; Capracotta, Michael D.; Martin, James D.; Khan, Saad A.; Fedkiw, Peter S.

    The ionic conductivity and rheological properties of clay filled nanocomposite electrolytes are reported. These electrolytes, which have potential use in lithium-ion batteries, consist of lithium-exchanged hectorite, a 2:1 layered smectite clay, dispersed in ethylene carbonate (EC) or a mixture of EC+polyethylene glycol di-methyl ether (PEG-dm, 250 MW). All samples exhibit elastic, gel-like characteristics and room temperature conductivities of order 0.1 mS/cm. A maximum in conductivity is observed at about 25 wt.% clay concentration. A maximum in hectorite basal layer spacing is also observed in the same concentration range, suggesting a direct correlation between conductivity and layer spacing. The elastic modulus and yield stress increase by two orders of magnitude and the conductivity increases by one order of magnitude with increase in hectorite concentration from 5 to 25%, which indicates the significant influence of hectorite content in determining the characteristics of these single-ion conductors. The solvent composition plays a secondary role in this regard, with addition of PEG-dm to the base EC+hectorite electrolyte producing moderate improvement in conductivity. Similarly, the addition of PEG-dm to EC+hectorite affects an increase by only a factor of three in the elastic modulus and yield stress of the electrolyte.

  18. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  19. Magneto-optical transport properties of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Tahir, M.; Vasilopoulos, P.

    2016-07-01

    The recent experimental realization of a high quality WSe2 leads to the possibility of magneto-optical measurements and the manipulation of the spin and valley degrees of freedom. We study the influence of the very strong spin-orbit coupling and of the anisotropic lifting of the valley pseudospin degeneracy on its magnetotransport properties. The energy spectrum of WSe2 is derived and discussed in the presence of a perpendicular magnetic field B . Correspondingly we evaluate the magneto-optical Hall conductivity and the optical longitudinal conductivity as functions of the frequency, magnetic field, and Fermi energy. They are strongly influenced by the field B and the strong spin splitting. The former exhibits valley polarization and the latter beatings of oscillations. The magneto-optical responses can be tuned in two different regimes: the microwave-to-terahertz regime and the visible-frequency one. The absorption peaks involving the n =0 LL appear in between these two regimes and show a magnetic control of the spin and valley splittings. We also evaluate the power absorption spectrum.

  20. The Effects of Atmospheric pH on the Transport Properties of Gallium Nitride

    NASA Astrophysics Data System (ADS)

    McElroy, Andrew; Dyck, Jeffrey S.; Kash, Kathleen

    2011-04-01

    It has been theorized that there exists a thin layer of water molecules on the surface of many materials when in air. This layer is predicted to have an effect on the electrochemical properties of the material. GaN is one of these materials. It has been demonstrated that the optical properties of GaN are affected by the pH of the atmosphere around the sample. In this study the effects of pH on transport properties are tested. A system was developed to test the Hall coefficient and resistivity of samples under different ambients to discover the effects of pH on carrier concentration and Hall mobility of GaN. Thus far, the results show that the pH of the ambient water vapor does not have an effect on the transport properties. This project was funded through the National Science Foundation (DMR-1006132) and the Huntington and Codrington Foundations.

  1. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    SciTech Connect

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-03-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.

  2. Structural properties of phenylethylamine derivatives which inhibit transport-P in peptidergic neurones

    PubMed Central

    Al-Damluji, S; Kopin, I J

    1998-01-01

    Transport-P is an antidepressant-sensitive, proton-dependent, V-ATPase-linked uptake process for amines in peptidergic neurones of the hypothalamus. It is unusual in its anatomical location in postsynaptic neurones and in that it is activated by its substrate (prazosin). This study examined the structural properties of phenylethylamine derivatives which are substrates for transport-P, as judged by competitive inhibition of the uptake of prazosin 10−6 M in immortalized hypothalamic peptidergic neurones.A basic amine was essential for activity; absence of the amine or neutralization with a carboxyl group abolished activity. Primary, secondary and tertiary amines were active but quaternary and guanyl amines were inactive.A phenyl group was essential for activity at transport-P. Potency at transport-P was reduced by phenolic hydroxyl groups and enhanced by phenolic halogens. Thus, for maximal potency, the phenyl group should be hydrophobic. Phenolic methoxyl groups had no effect on potency at transport-P.A side chain was necessary for activity at transport-P. Potency at transport-P was reduced by β-hydroxyl and enhanced by α-methyl groups.These findings further distinguish transport-P from other amine uptake processes in the brain. PMID:9690861

  3. Diversity in Expression Patterns and Functional Properties in the Rice HKT Transporter Family1[W

    PubMed Central

    Jabnoune, Mehdi; Espeout, Sandra; Mieulet, Delphine; Fizames, Cécile; Verdeil, Jean-Luc; Conéjéro, Geneviève; Rodríguez-Navarro, Alonso; Sentenac, Hervé; Guiderdoni, Emmanuel; Abdelly, Chedly; Véry, Anne-Aliénor

    2009-01-01

    Plant growth under low K+ availability or salt stress requires tight control of K+ and Na+ uptake, long-distance transport, and accumulation. The family of membrane transporters named HKT (for High-Affinity K+ Transporters), permeable either to K+ and Na+ or to Na+ only, is thought to play major roles in these functions. Whereas Arabidopsis (Arabidopsis thaliana) possesses a single HKT transporter, involved in Na+ transport in vascular tissues, a larger number of HKT transporters are present in rice (Oryza sativa) as well as in other monocots. Here, we report on the expression patterns and functional properties of three rice HKT transporters, OsHKT1;1, OsHKT1;3, and OsHKT2;1. In situ hybridization experiments revealed overlapping but distinctive and complex expression patterns, wider than expected for such a transporter type, including vascular tissues and root periphery but also new locations, such as osmocontractile leaf bulliform cells (involved in leaf folding). Functional analyses in Xenopus laevis oocytes revealed striking diversity. OsHKT1;1 and OsHKT1;3, shown to be permeable to Na+ only, are strongly different in terms of affinity for this cation and direction of transport (inward only or reversible). OsHKT2;1 displays diverse permeation modes, Na+-K+ symport, Na+ uniport, or inhibited states, depending on external Na+ and K+ concentrations within the physiological concentration range. The whole set of data indicates that HKT transporters fulfill distinctive roles at the whole plant level in rice, each system playing diverse roles in different cell types. Such a large diversity within the HKT transporter family might be central to the regulation of K+ and Na+ accumulation in monocots. PMID:19482918

  4. Osmotic behavior and transport properties of human islets in a dimethyl sulfoxide solution.

    PubMed

    de Freitas, R C; Diller, K R; Lakey, J R; Rajotte, R V

    1997-11-01

    The osmotic responses of isolated human islets were evaluated using a perfusion cryomicroscope device. Individual islet volumes were measured following equilibration with a series of solutions of graded solute concentration. The osmotically inactive volume for human islets was determined to be 25% from a Boyle-van't Hoff plot of these data. A network thermodynamic model was developed via the bond graph method to describe the transport of water and cryoprotective agent in pancreatic islets. The model was curve fit to transient volumetric data for the response of islets to a stepwise exposure to 1 Me2SO at temperatures of 24.0, 3.0, or -3.5 degrees C. Standard membrane transport parameters (Lp, omega, sigma) and interstitial diffusion transport properties (kappa w, kappa p) were calculated from the fitting procedure. The temperature coefficients for membrane transport properties were expressed in terms of activation energies for water (ELp) and Me2SO (E omega). Osmotic challenge experiments conducted with fresh and cryopreserved human islets indicate that frozen/thawed islets exhibit a a slight increase in transport properties. Copyright 1997 Academic Press.

  5. Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert

    2003-01-01

    Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.

  6. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  7. Structure and transport properties of ethylcellulose membranes with different types and granulation of magnetic powder

    NASA Astrophysics Data System (ADS)

    Krasowska, Monika; Strzelewicz, Anna; Rybak, Aleksandra; Dudek, Gabriela; Cieśla, Michał

    2016-06-01

    Structure and transport properties of ethylcellulose membranes with dispersed magnetic powder were investigated. The study mainly focused on diffusion, which is one of the transport mechanisms. The transport properties depend on many parameters like: polymeric matrix used, type of powder, its amount and granulation. The structure of the pattern formed by magnetic particles in the membrane matrix was studied. Description of the system was based on the phenomenological and molecular (random walk on a fractal lattice) approaches. Two parameters were calculated: the fractal dimension of random walk dw, and the fractal dimension of membrane structure df. The knowledge of both parameters made it possible to use the generalized equation of diffusion on the fractal structure obtained by Metzler et al. The research was carried out to determine the influence of magnetic powder granulation on the transport properties. The results showed that the random walk within the membranes of the smallest magnetic powder granulation was of the most subdiffusive character. Detailed investigation and quantitative description of gas transport through the membranes enables designing the membranes to be used in air oxygen enrichment.

  8. Coupled Continuous Time Random Walks for Anomalous Transport in Media Characterized by Heterogeneous Mass Transfer Properties

    NASA Astrophysics Data System (ADS)

    Comolli, A.; Dentz, M.

    2015-12-01

    Solute transport in geological media is in general non-Fickian as it cannot be explained in terms of equivalent homogeneous media. This anomalous character can be traced back to the existence of multiscale heterogeneity and strong correlations within the medium. Here we investigate the impact of fast heterogeneous mass transfer properties as represented by a spatially varying retardation coefficient (mass exchange between mobile and immobile regions, linear sorption-desorption reactions, variable porosity). In order to estimate the effects of spatial correlation, and disorder distribution on the average transport, we consider 2D media characterized by complex multiscale geometries and point distributions of retardation of increasing heterogeneity. Within a Lagrangian framework, we coarse-grain the Langevin equation for the transport of solute particles due to advection and diffusion in the heterogeneous medium. The large-scale transport properties are derived within a stochastic modeling approach by ensemble averaging of the coarse-grained Langevin equation . This approach shows that the effective particle motion can be described by a coupled CTRW that is fully parametrized by the distribution of the retardation coefficient and the spatial medium organization. This allows for the explicit relation of the heterogeneous medium properties to observed anomalous transport in terms of solute dispersion, breakthrough curves and spatial concentration profiles.

  9. Spontaneous oscillations of capillary blood flow in artificial microvascular networks.

    PubMed

    Forouzan, Omid; Yang, Xiaoxi; Sosa, Jose M; Burns, Jennie M; Shevkoplyas, Sergey S

    2012-09-01

    Previous computational studies have suggested that the capillary blood flow oscillations frequently observed in vivo can originate spontaneously from the non-linear rheological properties of blood, without any regulatory input. Testing this hypothesis definitively in experiments involving real microvasculature has been difficult because in vivo the blood flow in capillaries is always actively controlled by the host. The objective of this study was to test the hypothesis experimentally and to investigate the relative contribution of different blood cells to the capillary blood flow dynamics under static boundary conditions and in complete isolation from the active regulatory mechanisms mediated by the blood vessels in vivo. To accomplish this objective, we passed whole blood and re-constituted blood samples (purified red blood cells suspended in buffer or in autologous plasma) through an artificial microvascular network (AMVN) comprising completely inert, microfabricated vessels with the architecture inspired by the real microvasculature. We found that the flow of blood in capillaries of the AMVN indeed oscillates with characteristic frequencies in the range of 0-0.6 Hz, which is in a very good agreement with previous computational studies and in vivo observations. We also found that the traffic of leukocytes through the network (typically neglected in computational modeling) plays an important role in generating the oscillations. This study represents the key piece of experimental evidence in support of the hypothesis that spontaneous, self-sustained oscillations of capillary blood flow can be generated solely by the non-linear rheological properties of blood flowing through microvascular networks, and provides an insight into the mechanism of this fundamentally important microcirculatory phenomenon. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The theory of bio-energy transport in the protein molecules and its properties

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-feng

    2011-10-01

    The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10 -10 s or τ/τ⩾700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.

  11. The theory of bio-energy transport in the protein molecules and its properties.

    PubMed

    Pang, Xiao-feng

    2011-10-01

    The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10(-10) s or τ/τ(0)≥700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.

  12. Seismic properties of volcanic rocks from Montagne Pelée (Martinique, Lesser Antilles) and their relations to transport properties

    NASA Astrophysics Data System (ADS)

    Bernard, M.-L.; Zamora, M.

    2012-04-01

    Numerous laboratory and theoretical studies on the physical properties of rocks and their relationships - lead mainly in the framework of petroleum exploration - show that rock physics is necessary for an accurate quantitative interpretation of geophysical observations. Moreover joint inversion of different geophysical datasets is emerging as an important tool to enhance resolution and decrease inversion artifacts in imaging of structurally complex areas such as volcanoes. In many cases, the coupling between the inverted parameters is based on empirical or theoretical relationships derived from laboratory data. Consequently rock physics can be used to: interpret simultaneously several geophysical datasets on volcanoes when they are available, improve the imaging of volcano structures, and better understand the coupled processes that can occur during volcanic unrest. It's in this context that we lead a laboratory study on the transport properties (permeability, thermal and electrical conductivities) and seismic properties (velocity and attenuation of P and S waves) of volcanic rocks representative of Montagne Pelée (Martinique) deposits. In this presentation we will focus on (1) the seismic properties and (2) the relations between seismic and transport properties. The 43 samples collected are representative of the main lithological units of this volcano: vesicular lava blocks and indurated ashed from indurated block-and-ash flows also called breccias, vesicular lava blocks from "Pelean nuee ardente" flows, scoriae from scoria flows, pumices from ash-and-pumices flows, and dense lava blocks from lava flows and lava domes. Their total porosity varies over a wide range from 4 to 73%. Since the samples present similar chemical and mineralogical compositions (andesites), the main difference between the samples comes from their pore structure and reflects differences in the mechanisms of magma degassing and vesiculation during their formation (Bernard et al., 2007). This

  13. Computer codes for the evaluation of thermodynamic properties, transport properties, and equilibrium constants of an 11-species air model

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1990-01-01

    The computer codes developed provide data to 30000 K for the thermodynamic and transport properties of individual species and reaction rates for the prominent reactions occurring in an 11-species nonequilibrium air model. These properties and the reaction-rate data are computed through the use of curve-fit relations which are functions of temperature (and number density for the equilibrium constant). The curve fits were made using the most accurate data believed available. A detailed review and discussion of the sources and accuracy of the curve-fitted data used herein are given in NASA RP 1232.

  14. A law of mixtures for transport properties in binary particulate composites

    SciTech Connect

    Duncan, K.L.; Lodenquai, J.F.; Wagh, A.S.; Goretta, K.C.

    1998-09-01

    A connected-grain model was developed earlier to explain mechanical and thermal properties of porous ceramics and sedimentary rocks. We have now generalized this model for binary particulate composites, based on simulation of a connected-grain structure of individual components of the composites by randomly selecting individual grains and shrinking them. Repetition of this procedure results in a structure of a binary particulate composite that contains channels of individual components, through which transport occurs. We developed a generalized law of mixtures in which transport properties are expressed as scaling relationships that depend on the shrinking parameter expressed as an exponent. This parameter provides the skewness of the distribution of the grains. The model is compared with various transport properties of binary composites reported in the literature. In addition, the model is tested on YBa{sub 2}Cu{sub 3}O{sub x} superconductors and Ag composites that were fabricated in our laboratory and tested for electrical conductivity and elastic modulus. This test demonstrates how the model predicts two entirely different transport properties through their common microstructure and grain-size distribution. {copyright} {ital 1998 American Institute of Physics.}

  15. Oligomers modulate interfibril branching and mass transport properties of collagen matrices.

    PubMed

    Whittington, Catherine F; Brandner, Eric; Teo, Ka Yaw; Han, Bumsoo; Nauman, Eric; Voytik-Harbin, Sherry L

    2013-10-01

    Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis, as well as the design of next-generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property–concentration relationships were noted. Diffusivity was not affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared with monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell–matrix signaling, as well as facilitate model-based prediction and design of matrix-based therapeutic strategies.

  16. Moisture storage and transport properties of preservative treated and untreated southern pine wood

    Treesearch

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman; Dominique. Derome

    2016-01-01

    Moisture storage and transport properties of southern pine (Pinus spp.) wood were measured for implementation into hygrothermal models. Specimens were untreated or pressure-treated with alkaline copper quaternary (ACQ) preservative. Moisture storage was characterized with sorption isotherms in the hygroscopic region (high capillary pressures) and...

  17. Influence of polymorphism on charge transport properties in isomers of fluorenone-based liquid crystalline semiconductors.

    PubMed

    Lincker, Frédéric; Attias, André-Jean; Mathevet, Fabrice; Heinrich, Benoît; Donnio, Bertrand; Fave, Jean-Louis; Rannou, Patrice; Demadrille, Renaud

    2012-03-28

    We measured the charge carrier mobilities for two isomers of fluorenone-based liquid crystalline organic semiconductors from their isotropic down to crystalline states through one or two mesophases. Improved charge transport properties of melt-processed crystalline films were obtained for the isomer exhibiting a highly ordered mesophase below its disordered smectic phase. This journal is © The Royal Society of Chemistry 2012

  18. Theoretical Study on Charge Transport Properties of Intra- and Extra-Ring Substituted Pentacene Derivatives.

    PubMed

    Fan, Jian-Xun; Chen, Xian-Kai; Zhang, Shou-Feng; Ren, Ai-Min

    2016-04-21

    A series of pentacene derivatives, halogen-substituted and thiophene- and pyridine-substituted, have been studied with a focus on the electronic properties and charge transport properties using density functional theory and classical Marcus charge-transfer theory. The transport properties of holes and electrons have been studied to get insight into the effect of halogenation and heteroatom substitution on transport and injection of charge carriers. The calculation results revealed that fluorination and chlorination can effectively lower the lowest unoccupied molecular orbital (LUMO) level, modulate the hole and electron reorganization energy, improve the stacking mode of the crystal structure, and enhance the ambipolar characteristic. Chlorination gives a better ambipolar characteristic. On the basis of halogen substitution, the substitution of terminal benzene ring of triisopropyl-silylethynyl-pentacene (TIPS-PEN) by a thiophene or pyridine will greatly lower the LUMO level and improve the stacking mode, leading to more suitable ambipolar materials. Hence, both intra- and extra-ring substitution are favorable to enhance the ambipolar transport property of TIPS-PEN.

  19. High pressure apparatus for transport properties study in high magnetic field

    SciTech Connect

    Alsmadi, A. M.; Nakotte, H.; Honda, F.; Sechovsky, V.; Mikulina, O.; Kamarad, J.; Lacerda, A. H.

    2002-01-01

    We have designed a high pressure apparatus for measuring electrical-transport properties at low temperatures, high magnetic field and hydrostatic pressure up to 10 kbar. Details of the high-pressure cell and an exemplary study on UNiAI are described and discussed briefly.

  20. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  1. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2002-11-20

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  2. Effect of stabilizer on dynamic thermal transport property of ZnO nanofluid

    PubMed Central

    2013-01-01

    In this paper, we investigate the effect of adding a stabilizer on the dynamic thermal properties of ZnO nanofluid (containing 5 to 10 nm diameter of ZnO nanocrystals) measured using a 3ω method. Addition of the stabilizer leads to the stabilization of the nanofluid and also substantial reduction of the enhancement of thermal transport compared to that seen in the bare ZnO nanofluid. This also alters the frequency dependence of the thermal transport and the characteristic time scale associated with it. It is suggested that the addition of the stabilizer inhibits the thermodiffusion-assisted local aggregation thus leading to substantial reduction of the enhancement of thermal transport properties of the bare nanofluid as proposed in some recent models, and this also alters the characteristic time scales by altering the scale of aggregation. PMID:23497347

  3. Effect of stabilizer on dynamic thermal transport property of ZnO nanofluid.

    PubMed

    Neogy, Rajesh Kumar; Raychaudhuri, Arup Kumar

    2013-03-14

    In this paper, we investigate the effect of adding a stabilizer on the dynamic thermal properties of ZnO nanofluid (containing 5 to 10 nm diameter of ZnO nanocrystals) measured using a 3ω method. Addition of the stabilizer leads to the stabilization of the nanofluid and also substantial reduction of the enhancement of thermal transport compared to that seen in the bare ZnO nanofluid. This also alters the frequency dependence of the thermal transport and the characteristic time scale associated with it. It is suggested that the addition of the stabilizer inhibits the thermodiffusion-assisted local aggregation thus leading to substantial reduction of the enhancement of thermal transport properties of the bare nanofluid as proposed in some recent models, and this also alters the characteristic time scales by altering the scale of aggregation.

  4. Transport properties of an asymmetric mixture in the dense plasma regime.

    PubMed

    Ticknor, Christopher; Kress, Joel D; Collins, Lee A; Clérouin, Jean; Arnault, Philippe; Decoster, Alain

    2016-06-01

    We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

  5. Transport properties of an asymmetric mixture in the dense plasma regime

    NASA Astrophysics Data System (ADS)

    Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.; Clérouin, Jean; Arnault, Philippe; Decoster, Alain

    2016-06-01

    We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

  6. Theoretical study on charge injection and transport properties of six emitters with push-pull structure

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Liu, Xiaojun; Lou, Zhidong; Hou, Yanbing; Teng, Feng

    2014-08-01

    The charge injection and transport properties of six organic light-emitting molecules with push-pull structures were studied by theoretical calculations. The ground-state geometries for the neutral, cationic and anionic states were optimized using density functional theory. Subsequently, the ionization potentials and electron affinities were calculated. We computed the reorganization energies and the transfer integrals based on the Marcus electron transfer theory. It was found that in addition to being emitters the six compounds are multifunctional materials being capable of transport for both holes and electrons. Moreover, the double-branched compound DCDPC2 was found to have higher charge injection ability and better balanced charge transport properties than single-branched compounds.

  7. The effects of lattice strain, dislocations, and microstructure on the transport properties of YSZ films.

    PubMed

    Harrington, George F; Cavallaro, Andrea; McComb, David W; Skinner, Stephen J; Kilner, John A

    2017-06-07

    Enhanced conductivity in YSZ films has been of substantial interest over the last decade. In this paper we examine the effects of substrate lattice mismatch and film thickness on the strain in YSZ films and the resultant effect on the conductivity. 8 mol% YSZ films have been grown on MgO, Al2O3, LAO and NGO substrates, thereby controlling the lattice mismatch at the film/substrate interface. The thickness of the films was varied to probe the interfacial contribution to the transport properties, as measured by impedance spectroscopy and tracer diffusion. No enhancement in the transport properties of any of the films was found over single crystal values, and instead the effects of lattice strain were found to be minimal. The interfaces of all films were more resistive due to a heterogeneous distribution of grain boundaries, and no evidence for enhanced transport down dislocations was found.

  8. Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals

    NASA Astrophysics Data System (ADS)

    He, Lan-Po; Li, Shi-Yan

    2016-11-01

    The discovery of the three-dimensional Dirac semimetals have expanded the family of topological materials, and attracted massive attentions in recent few years. In this short review, we briefly overview the quantum transport properties of a well-studied three-dimensional Dirac semimetal, Cd3As2. These unusual transport phenomena include the unexpected ultra-high charge mobility, large linear magnetoresistivity, remarkable Shubnikov-de Hass oscillations, and the evolution of the nontrivial Berry’s phase. These quantum transport properties not only reflect the novel electronic structure of Dirac semimetals, but also give the possibilities for their future device applications. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and STCSM of China (Grant No. 15XD1500200).

  9. Transport properties of paired Majorana bound states in a parallel junction

    NASA Astrophysics Data System (ADS)

    Jiang, Cui; Gong, W. J.; Zheng, Yi-Song

    2013-12-01

    The transport properties of a paired Majorana bound states (MBSs) in a parallel junction are theoretically investigated, by considering the influence of different MBS-lead coupling manners, i.e., left-right asymmetric coupling, upper-down asymmetric coupling, and left-right upper-down asymmetric coupling. The calculation results show that the MBS-lead coupling manners affect the transport properties in a substantial way. For the former two configurations, the shot noise Fano factor in the zero-bias limit is related to the value of the conductance maximum with F0=1+1/2Tmax (conductance G =e/2hT). When both the left-right and upper-down symmetries are broken, such a relation is modified into F0=1-12/T0. These results will be helpful for describing the transport characteristics of the junction with MBSs.

  10. Transport Properties of DNA Bases Placed in Graphene Nano-gap

    NASA Astrophysics Data System (ADS)

    Wolowiec, Christian; Kioussis, Nick; Novikov, Dmitri

    2009-03-01

    There has been significant demand and research activity for the development of new DNA sequencing technologies employing transverse transport techniques. We present systematic first principles studies based on Density Functional Theory of the transport properties and current-voltage characteristics of nucleotide molecules of the DNA bases, placed in 1.2 nm gap formed between the zigzag edges of graphene nano-electrodes. The linear dispersion of the graphene electrons and the local spin-polarization associated with the zigzag edges allow the exploration of both the charge- and spin-current signatures of the DNA bases to sequence DNA. We will present results in the tunneling regime of the charge- and spin-transport properties as the geometrical conformation of the bases is varied. Such signatures may be used experimentally for developing an efficient means of sequencing larger strands of DNA.

  11. Surface transport properties of reticulopodia: do intracellular and extracellular motility share a common mechanism?

    PubMed

    Bowser, S S; Israel, H A; McGee-Russell, S M; Rieder, C L

    1984-12-01

    The reticulopodial networks of the foraminiferan protozoans Allogromia sp., strain NF, and A. laticollaris display rapid (up to 11 microns/second) and bidirectional saltatory transport of membrane surface markers (polystyrene microspheres). Electron microscopy shows that microspheres adhere directly to the reticulopodial surface glycocalyx. A videomicroscopic analysis of this phenomenon reveals that microsphere movement is typically independent of pseudopod extension/withdrawal and that particles of different sizes and surface properties display similar motile characteristics. The motile properties of surface-associated microspheres appear identical to those of saltating intracellular organelles. Indeed, in some instances the surface-attached microspheres appear transiently linked in motion to these underlying organelles. Our observations suggest that, in reticulopodia, surface transport of microspheres and intracellular transport of organelles are driven by a common mechanism.

  12. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS, PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT, (PBP&E) AND BAGGAGE ALLOWANCE General Rules § 302-7.11 Is property acquired en route eligible...

  13. Flow and transport in unsaturated fractured rock: effects of multiscale heterogeneity of hydrogeologic properties.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S; Oldenburg, Curtis M

    2003-01-01

    The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross-section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross-section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20% tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain.

  14. State-specific transport properties of partially ionized flows of electronically excited atomic gases

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-03-01

    State-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.

  15. Effects of age and zinc supplementation on transport properties in the jejunum of piglets.

    PubMed

    Gefeller, E M; Martens, H; Aschenbach, J R; Klingspor, S; Twardziok, S; Wrede, P; Pieper, R; Lodemann, U

    2015-06-01

    Zinc is effective in the prevention and treatment of post-weaning diarrhoea and in promoting piglet growth. Its effects on the absorption of nutrients and the secretory capacity of the intestinal epithelium are controversial. We investigated the effects of age, dietary pharmacological zinc supplementation and acute zinc exposure in vitro on small-intestinal transport properties of weaned piglets. We further examined whether the effect of zinc on secretory responses depended on the pathway by which chloride secretion is activated. A total of 96 piglets were weaned at 26 days of age and allocated to diets containing three different levels of zinc oxide (50, 150 and 2500 ppm). At the age of 32, 39, 46 and 53 days, piglets were killed, and isolated epithelia from the mid-jejunum were used for intestinal transport studies in conventional Ussing chambers, with 23 μm ZnSO4 being added to the serosal side for testing acute effects. Absorptive transport was stimulated by mucosal addition of d-glucose or l-glutamine. Secretion was activated by serosal addition of prostaglandin E2 , carbachol or by mucosal application of Escherichia coli heat-stable enterotoxin (Stp ). Jejunal transport properties showed significant age-dependent alterations (p < 0.03). Both absorptive and secretory responses were highest in the youngest piglets (32 d). The dietary zinc supplementation had no significant influence on jejunal absorptive and secretory responses. However, the pre-treatment of epithelia with ZnSO4 in vitro led to a small but significant decrease in both absorptive and secretory capacities (p < 0.05), with an exception for carbachol (p = 0.07). The results showed that, in piglets, chronic supplementation with zinc did not sustainably influence the jejunal transport properties in the post-weaning phase. Because transport properties are influenced by the addition of zinc in vitro, we suggest that possible epithelial effects of zinc depend on the acute presence of this ion.

  16. The importance of transport property studies for battery electrolytes: revisiting the transport properties of lithium-N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide mixtures.

    PubMed

    Rüther, Thomas; Kanakubo, Mitsuhiro; Best, Adam S; Harris, Kenneth R

    2017-04-19

    Transport properties are examined in some detail for samples of the low temperature molten salt N-propyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [Pyr13][FSI] from two different commercial suppliers. A similar set of data is presented for two different concentrations of binary lithium-[Pyr13][FSI] salt mixtures from one supplier. A new and significantly different production process is used for the synthesis of Li[FSI] as well as the [Pyr13](+) salt used in the mixtures. Results for the viscosity, conductivity, and self-diffusion coefficients, together with the density and expansivity and apparent molar volume, are reported over the temperature range of (0 to 80) °C. The data for neat [Pyr13][FSI] are discussed in the context of velocity cross correlation (VCC or fij) and Laity resistance (rij) coefficients. Unusually, f+- ∼ f++ < f--. The three resistance coefficients are of similar magnitude indicating all three ion-ion interactions contribute to the transport properties, not just the cation-anion interaction. The composition dependence of the transport properties is compared to previously reported data for the same and related compounds: in contrast to high-temperature molten salt mixtures, this is an exponential dependence. The Nernst-Einstein parameter Δ, which contains information on the correlations of the ionic velocities and is determined by differences in the VCC for the various ion-ion combinations, was calculated for both the neat ionic liquid and its binary mixture. It increases with increasing lithium concentration. The new data set also allows some conclusions with regards to the lithium-[FSI](-) coordination environment.

  17. On statistical properties of transport barriers in magnetospheric and laboratory boundary layers

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Budaev, Viacheslav; Zeleniy, Lev; Amata, Ermanno; Kozak, Lyudmila; Buechner, Joerg; Romanov, Stanislav; Blecki, Jan; Balikhin, Michael A.; Lezhen, Liudmila

    Transport barriers at outer magnetospheric boundaries have a dualistic feature: being effec-tive in limitation of the momentum transfer and serving as an effective obstacle, they display the super-diffusive statistical properties and provide partial exchange of plasmas. In tokamaks namely the statistical properties of transport barriers look to control the high and low heating modes, while small size of the barriers prevents their detailed studies. We tend to use magne-tospheric multi-spacecraft data to improve understanding of common physics in the transport barriers. We show examples from Interball-1 and Cluster with quiet solar wind. The inherently turbulent crossings in this equilibrium cases demonstrate ion heating namely in the transport barrier. It agrees with the kinetic energy transformation into the thermal one inside the barrier -the turbulent dissipation of the magnetosheath kinetic energy -as simultaneously with the ion temperature rise, the general velocity component drops from its model prediction. In sense of the momentum transfer the transport turbulent barriers effectively isolate the high-alti-tude cusp from fast-flowing magnetosheath. Contrary to that, several examples from different missions and different plasma parameters demonstrate the super-diffusive transport character. The individual coherent structures inside the barriers, which we call Alfvenic 'collapsons', have similar scale chains to that of high kinetic plasma pressure jets, showing mutual interaction features. We think that the interacting jets and barriers, accompanying by classic and/ or micro-reconnection, have rather general importance for the plasma physics, and for understanding of turbulence and mechanisms of magnetic field generation. These coherent, nonlinear interacting structures, most probably, provide intermittency a long-range correlations inside the transport barriers (c.f. blobs and flow spikes in fusion devices). We recall that very high-amplitude turbulence in

  18. Tribological properties of epoxy composite materials for marine and river transport

    NASA Astrophysics Data System (ADS)

    Buketov, A. V.; Maruschak, P. O.; Brailo, N. V.; Akimov, A. V.; Kobelnik, O. S.; Panin, S. V.

    2016-11-01

    Tribological properties of epoxy composites filled with thermoplastics and dispersed particles under sea water environment were analyzed. It has been revealed that the composition, sliding friction conditions, as well as the marine environment, substantially affect the tribological properties of the materials. The improvement of tribological properties of epoxycomposite thermosetting plastics after their filling with thermoplastic polyamide PA-6 granules under friction in sea water environment has been proved. The recommendations on applying the developed material in friction parts for marine and river transport were formulated.

  19. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    NASA Astrophysics Data System (ADS)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  20. Structure and transport properties of Ge quantum dots in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Slunjski, R.; Dubček, P.; Radić, N.; Bernstorff, S.; Pivac, B.

    2015-06-01

    Germanium (Ge) nanoparticles or quantum dots (QDs) embedded in a transparent dielectric matrix have properties radically different from the bulk semiconductor and present a great potential for application in electronic and optoelectronic devices. Due to quantum confinement properties, the optical bandgap of QD-based materials can be tuned by varying the nanoparticle size. These properties may be exploited for the fabrication of nanoscale electronic devices or advanced solar cells. In this work we explored structural and transport properties of QD based superstructures for advanced solar cells. Magnetron cosputtering was used for deposition and upon suitable thermal treatment a superstructure of QDs was formed. Transport properties were explored by I-V measurement in the dark together with a C-V characterization. The obtained results were modeled with the known transport mechanisms for QDs containing materials. A special emphasis is given to trap controlled space charge limited current and hopping conductivity mechanism. We have shown that in our samples a significant charge is stored in the SiO2 layers with embedded Ge QDs. That charge is predominantly stored into traps at or close to the Ge(QDs)/SiO2 interface.

  1. Calculation of thermodynamic properties and transport coefficients of CO2-O2-Cu mixtures

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Li, Xingwen; Murphy, Anthony B.; Zhao, Hu

    2017-08-01

    The thermodynamic properties and transport coefficients of CO2-O2-Cu gas mixtures in the temperature range from 300 K to 30 000 K and the pressure range from 0.1 to 0.8 MPa are calculated. Special attention is paid to the influence of different oxygen and copper proportions and different gas pressures on the CO2-O2-Cu mixture properties. It can be concluded that the addition of oxygen has a strong influence on both thermodynamic properties and transport coefficients. A small proportion of Cu does not lead to a significant change to the properties, apart from the electrical conductivity at low temperatures. However, Cu mole fractions above 10% start to affect all properties. Increasing gas pressure can cause an increase in the transport coefficients, especially in the high-temperature range. The calculation results provide the necessary data for the further study of the behaviour of plasmas using magnetohydrodynamics arc models. The results can be also used to optimize the ratio of the component gases for different applications; some examples are presented.

  2. Directed assembly of three-dimensional microvascular networks

    NASA Astrophysics Data System (ADS)

    Therriault, Daniel

    Three-dimensional (3-D) microvascular networks with pervasive, interconnected channels less than 300 mum in diameter may find widespread application in microfluidic devices, biotechnology, sensors, and autonomic healing materials. Although microchannel arrays are readily constructed in two-dimensions by photolithographic or soft lithographic techniques, their construction in three-dimensions remains a challenging problem. The development of a microfabrication method to build 3-D microvascular networks based on direct-write assembly is described is this thesis. The method is based on the robotic deposition of a fugitive organic ink to form a free-standing scaffold structure. Secondary infiltration of a structural resin followed by setting of the matrix and removal of the scaffold yields an embedded pervasive network of smooth cylindrical channels (˜10--500 mum) with defined connectivity. Rheological and other material properties studies of fugitive organic ink were performed in order to identify the critical characteristics required for successful deposition of 3-D scaffolds by direct-write assembly. Guided by the results of these studies, several new ink formulations were screened for improved deposition performance. The most successful of these inks (40wt% microcrystalline wax, 60wt% petroleum jelly) showed excellent deposition and had an equilibrium modulus at room temperature (G 'eq ˜ 7.70 kPa 1 Hz) nearly two orders of magnitude higher than the original ink. The optimized ink was used to successfully build thick (i.e., ˜100 layers) scaffold structures at room temperature with negligible time-dependent deformation post-deposition. Secondary infiltration of the resin was accomplished at room temperature while maintaining the scaffold architecture. The optimized ink was also successfully extruded through small micronozzles (1 mum). The construction of 3-D microvascular networks enables microfluidic devices with unparallel geometric complexity. In one example, a

  3. Modulation of the electron transport properties in graphene nanoribbons doped with BN chains

    SciTech Connect

    Liu, Wu; Zhang, Kaiwang Zhong, JianXin; Wang, Ru-Zhi; Liu, Li-Min

    2014-06-15

    Using density-functional theory and the non-equilibrium Green's function method, the electron transport properties of zigzag graphene nanoribbons (ZGNRs) doped with BN chains are studied by systematically calculating the energy band structure, density of states and the transmission spectra for the systems. The BN chains destroyed the electronic transport properties of the ZGNRs, and an energy gap appeared for the ZGNRs, and displayed variations from a metal to a wide-gap semiconductor. With an increase in the number of BN chains, the band gap increased gradually in the band structure and the transmission coefficient decreased near the Fermi surface. Additionally, the doping position had a significant effect on the electronic properties of the ZGNRs.

  4. Transport Properties of Crystallographically Aligned Heterostructures of Graphene and Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Bin; Miao, Tengfei; Martynov, Oleg; Bockrath, Marc

    2014-03-01

    Graphene and hexagonal boron nitride (hBN) heterostructures have been heavily studied due to graphene's high electronic mobility in this system. Hexagonal BN also shows possibilities to alter graphene's electronic properties. Recently several research groups have demonstrated accurate placement of graphene on hBN with crystallographic alignment. Due to the resulting superlattice formed in the graphene/hBN heterostructures, an energy gap, secondary Dirac Points, and Hofstadter quantization in a magnetic field have been observed. However, many aspects of the electronic properties of graphene/hBN heterostructures remain unexplored. Using aligned layer transfer we are able to produce graphene/hBN heterostructures with 1 degree alignment accuracy, and measure the transport properties of the resulting systems. We will discuss our latest transport data, which contribute towards a greater understanding the electron motion in the graphene/hBN interface.

  5. Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments.

    PubMed

    Antognini, Luca M; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele

    2016-08-28

    Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties.

  6. Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Bernard, Marie-Lise; Zamora, Maria; GéRaud, Yves; Boudon, Georges

    2007-05-01

    The hydraulic and electrical properties of pyroclastic rocks have been investigated in laboratory on a representative sampling of Montagne Pelée (Martinique, France) deposits with renewed interest in geophysical applications. This sampling covers all the lithologic units of this volcano: lava dome and lava flows, pumices from ash-and-pumice fall and flow deposits, lava blocks from block-and-ash flow and Peléean "nuées ardentes" deposits, scoriae from scoria flow deposits. The connected porosity varies over a wide range from 3 to 62%. The unconnected porosity is important only on pumices where it can reach 15%. The permeability covers more than 5 orders of magnitude, ranging from 10-16 to 35 × 10-12 m2. The higher values are obtained on lava blocks and the scoriae, even if these rocks are less porous than the pumices. The formation factor ranges from 7 to 1139. The transport properties of these rocks are slightly correlated with porosity. This indicates that these properties are not only controlled by the connected porosity. To connect the transport properties to the textural characteristics of the pore network of pyroclastic rocks, different models, based on geometrical considerations or percolation theory, were tested. The pore access radius distribution and the tortuosity control the transport properties of pyroclastic rocks. Consequently, the models (electric and hydraulic) based on the concept of percolation (e.g., the models of Katz and Thompson), apply better than the equivalent channel model of Kozeny-Carman. In addition, the difference in transport properties observed on lava blocks and pumices confirms that the mechanisms of degassing and vesiculation are different for these two types of rock.

  7. Skin microvascular reactivity in trained adolescents.

    PubMed

    Roche, Denise M; Rowland, T W; Garrard, M; Marwood, S; Unnithan, V B

    2010-04-01

    Whilst endothelial dysfunction is associated with a sedentary lifestyle, enhanced endothelial function has been documented in the skin of trained individuals. The purpose of this study was to investigate whether highly trained adolescent males possess enhanced skin microvascular endothelial function compared to their untrained peers. Seventeen highly and predominantly soccer trained boys (V(O)(2)(peak): 55 +/- 6 mL kg(-1) min(-1)) and nine age- and maturation-matched untrained controls (V(O)(2)(peak): 43 +/- 5 mL kg(-1) min(-1)) aged 13-15 years had skin microvascular endothelial function assessed using laser Doppler flowmetry. Baseline and maximal thermally stimulated skin blood flow (SkBF) responses were higher in forearms of trained subjects compared to untrained participants [baseline SkBF: 11 +/- 4 vs. 9 +/- 3 perfusion units (PU), p < 0.05; SkBF(max): 282 +/- 120 vs. 204 +/- 68 PU, p < 0.05]. Similarly, cutaneous vascular conductance (CVC) during local heating was superior in the forearm skin of trained versus untrained individuals (CVC(max): 3 +/- 1 vs. 2 +/- 1 PU mmHg(-1), p < 0.05). Peak hyperaemia following arterial occlusion and area under the reactive hyperaemia curve were also greater in forearm skin of the trained group (peak hyperaemia: 51 +/- 21 vs. 35 +/- 15 PU, p < 0.05; area under curve: 1596 +/- 739 vs. 962 +/- 796 PUs, p < 0.05). These results suggest that chronic exercise training in adolescents is associated with enhanced microvascular endothelial vasodilation in non-glabrous skin.

  8. Treatment of Angina and Microvascular Coronary Dysfunction

    PubMed Central

    Samim, Arang; Nugent, Lynn; Mehta, Puja K.; Shufelt, Chrisandra; Merz, C. Noel Bairey

    2014-01-01

    Opinion statement Microvascular coronary dysfunction (MCD) is an increasingly recognized cause of cardiac ischemia and angina, more commonly diagnosed in women. Patients with MCD present with the triad of persistent chest pain, ischemic changes on stress testing, and no obstructive coronary artery disease (CAD) on cardiac catheterization. Data from National Heart, Lung and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study has shown that the diagnosis of MCD is not benign, with a 2.5% annual risk of adverse cardiac events including myocardial infarction, stroke, congestive heart failure, or death. The gold standard diagnostic test for MCD is an invasive coronary reactivity test (CRT), which uses acetylcholine, adenosine, and nitroglycerin to test the endothelial dependent and independent, microvascular and macrovascular coronary function. The CRT allows for diagnostic and treatment options as well as further risk stratifying patients for future cardiovascular events. Treatment of angina and MCD should be aimed at ischemia disease management to reduce risk of adverse cardiac events, ameliorating symptoms to improve quality of life, and to decrease the morbidity from unnecessary and repeated cardiac catheterization in patients with open coronary arteries. A comprehensive treatment approach aimed at risk factor managment, including lifestyle counseling regarding smoking cessation, nutrition and physical activity should be initiated. Current pharmacotherapy for MCD can include the treatment of microvascular endothelial dysfunction (statins, angiotensin-converting enzyme inhibitor, low dose aspirin), as well as treatment for angina and myocardial ischemia (beta blockers, calcium channel blockers, nitrates, ranolazine). Additional symptom management techniques can include tri-cyclic medication, enhanced external counterpulsation, autogenic training, and spinal cord stimulation. While our current therapies are effective in the treatment

  9. Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO.

    PubMed

    Gondoni, P; Ghidelli, M; Di Fonzo, F; Carminati, M; Russo, V; Li Bassi, A; Casari, C S

    2012-09-14

    The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycrystalline films to mesoporous, hierarchically organized cluster assemblies, are grown by pulsed laser deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens up opportunities for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.

  10. Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes

    NASA Astrophysics Data System (ADS)

    Lan, Tran Nguyen

    2014-01-01

    We have used the non-equilibrium Green's function in combination with the density functional theory to investigate the quantum transport properties of the molecular junctions including a terminated benzene ring directly coupled to surface of metal electrodes (physisorption). The other side of molecule was connected to electrode via thiolate bond (chemisorption). Two different electrodes have been studied, namely Cu and Al. Rectification and negative differential resistance behavior have been observed. We found that the electron transport mechanism is affected by the nature of benzene-electrode coupling. In other words, the transport mechanism depends on the nature of metallic electrode. Changing from sp- to sd-metallic electrode, the molecular junction changes from the Schottky to p-n junction-like diode. The transmission spectra, projected density of state, molecular projected self-consistent Hamiltonian, transmission eigenchannel, and Muliken population have been analyzed for explanation of electronic transport properties. Understanding the transport mechanism in junction having direct coupling of π-conjugate to electrode will be useful to design the future molecular devices.

  11. Relationship between different subpopulations of circulating CD4+ T lymphocytes and microvascular or systemic oxidative stress in humans.

    PubMed

    De Ciuceis, Carolina; Agabiti-Rosei, Claudia; Rossini, Claudia; Airò, Paolo; Scarsi, Mirko; Tincani, Angela; Tiberio, Guido Alberto Massimo; Piantoni, Silvia; Porteri, Enzo; Solaini, Leonardo; Duse, Sarah; Semeraro, Francesco; Petroboni, Beatrice; Mori, Luigi; Castellano, Maurizio; Gavazzi, Alice; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2017-08-01

    Different components of the immune system, including innate and adaptive immunity (T effector lymphocytes and T regulatory lymphocytes - TREGs) may be involved in the development of hypertension, vascular injury and inflammation. However, no data are presently available in humans about possible relationships between T-lymphocyte subtypes and microvascular oxidative stress. Our objective was to investigate possible relationships between T-lymphocyte subtypes and systemic and microvascular oxidative stress in a population of normotensive subjects and hypertensive patients. In the present study we enrolled 24 normotensive subjects and 12 hypertensive patients undergoing an elective surgical intervention. No sign of local or systemic inflammation was present. All patients underwent a biopsy of subcutaneous fat during surgery. A peripheral blood sample was obtained before surgery for assessment of T lymphocyte subpopulations by flow cytometry and circulating indices of oxidative stress. A significant direct correlation was observed between Th1 lymphocytes and reactive oxygen species (ROS) production (mainly in microvessels). Additionally, significant inverse correlations were observed between ROS and total TREGs, or TREGs subtypes. Significant correlations were detected between circulating indices of oxidative stress/inflammation and indices of microvascular morphology/Th1 and Th17 lymphocytes. In addition, a significant inverse correlation was detected between TREGs in subcutaneous small vessels and C reactive protein. Our data suggest that TREG lymphocytes may be protective against microvascular damage, probably because of their anti-oxidant properties, while Th1-Th17 lymphocytes seem to exert an opposite effect, confirming an involvement of adaptive immune system in microvascular damage.

  12. Effects of Ordered Stacking Faults on Electrical Transport Properties in Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Collette, Marc; Moutanabbir, Oussama; Champagne, Alexandre

    Lattice defects in silicon nanowires (SiNWs) allow the exploration of the fundamental physics governing transport mechanisms. We study charge transport in SiNW transistors with stacking faults in the 3C sequence, producing local hexagonal ordering. This structure leads to polytype SiNWs with distinct properties for novel applications in thermoelectronics. Since charge carrier and phonon behavior depend on crystal structure, these planar defects affect the transport properties of the nanowire. We grow our SiNWs using a VLS method, with stacking faults induced during growth. Structural characterization of each SiNW is done with Raman spectroscopy to quantify hexagonality. Individual nanowires are located and contacted using different metals to understand the Schottky barrier of the contacts at the SiNWs. We suspend 2 μm-long SiNW devices using a wet oxide etch to uncouple the SiNW from the substrate. We study the electrical properties by I-V measurements across the FET device while modulating the applied back gate voltage. Our initial data show that the presence of stacking faults causes an increase in resistivity by two orders of magnitude, thus greatly hindering charge transport through the SiNW.

  13. Electronic Transport Properties of Transition Metal (Cu, Fe) Phthalocyanines Connecting to V-Shaped Zigzag Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Cui, Liling; Yang, Bingchu; Li, Xinmei; He, Jun; Long, Mengqiu

    2014-11-01

    Using nonequlilibrium Green's functions in combination with the density-functional theory, we investigate the spin transport properties of molecular junction based on metal (Cu, Fe) phthalocyanines between V-shaped zigzag-edged graphene nanorribons. The results show that the electronic transport properties mainly depend on the center transition metal. The negative differential resistance behaviors and spin splitting phenomenon can be observed.

  14. Isolation of primary murine brain microvascular endothelial cells.

    PubMed

    Ruck, Tobias; Bittner, Stefan; Epping, Lisa; Herrmann, Alexander M; Meuth, Sven G

    2014-11-14

    The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.

  15. A newly designed training tool for microvascular anastomosis techniques: Microvascular Practice Card.

    PubMed

    Matsumura, Nobuhisa; Hayashi, Nakamasa; Hamada, Hideo; Shibata, Takashi; Horie, Yukio; Endo, Shunrou

    2009-05-01

    We report a newly designed training card (Microvascular Practice Card) that is a non-animal practice tool for surgical training and practicing the skills for microvascular anastomosis techniques. The Microvascular Practice Card is a pocketbook-sized card that has silicone tubes affixed to it. On the card, 6 small-diameter, 4-cm-long tubes side by side are arranged in 4 directions with both ends secured. The tubes are available in diameters of 2.0, 1.0, 0.5, and 0.3 mm. The thickness of the tube wall is 0.05 or 0.1 mm. The card includes a record area that allows records to be written. Four directional tubes are arranged on one card, making it possible to practice various directional suturing and anastomosing. Beginners begin to practice suturing with larger diameter tubes (2.0 mm) and refine their skills using 1.0 mm diameter tubes as they get used to the practice. For vascular anastomosis, the card provides for end-to-end anastomosis, end-to-side anastomosis, and side-to-side anastomosis. Furthermore, superfine diameter tubes (0.5 and 0.3 mm) help microsurgeons to gain experience at higher magnifications. Training on this card is performed through a plastic box with a small hole using long microinstruments. Microvascular Practice Card is a new training tool for repeatedly practicing microvascular anastomosis in various situations. This non-animal practice tool would help trainees practice under safe and hygienic conditions and reduce the number of laboratory animals used during technical training.

  16. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124

  17. Electron transport properties of irradiated polyimide thin films in single track regime

    SciTech Connect

    Murugaraj, Pandiyan; Mainwaring, David; Siegele, Rainer

    2009-03-23

    We have prepared a suite of polyimide thin films containing spatially separated one-dimensional conductive-nanowires by ion-beam irradiation exhibiting temperature dependent electrical resistance consistent with thermally activated electron hopping with activation energies about 1 eV arising from localized states spatially distributed along the ion tracks. Dielectric measurements showed the formation of high dielectric constant interphase regions surrounding each ion track generated during the irradiation process, responsible for space-charge accumulation which influences electron transport within the ion tracks. This behavior suggests a role for space-charge effects and dielectric properties in this interphase region in the control of electron transport within single track nanowires.

  18. Synthesis and quantum transport properties of Bi₂Se₃ topological insulator nanostructures.

    PubMed

    Yan, Yuan; Liao, Zhi-Min; Zhou, Yang-Bo; Wu, Han-Chun; Bie, Ya-Qing; Chen, Jing-Jing; Meng, Jie; Wu, Xiao-Song; Yu, Da-Peng

    2013-01-01

    Bi₂Se₃ nanocrystals with various morphologies, including nanotower, nanoplate, nanoflake, nanobeam and nanowire, have been synthesized. Well-distinguished Shubnikov-de Haas (SdH) oscillations were observed in Bi₂Se₃ nanoplates and nanobeams. Careful analysis of the SdH oscillations suggests the existence of Berry's phase π, which confirms the quantum transport of the surface Dirac fermions in both Bi₂Se₃ nanoplates and nanobeams without intended doping. The observation of the singular quantum transport of the topological surface states implies that the high-quality Bi₂Se₃ nanostructures have superiorities for investigating the novel physical properties and developing the potential applications.

  19. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    SciTech Connect

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin E-mail: chenwy@jlu.edu.cn Li, Hao; Shen, Liang; Chen, Weiyou E-mail: chenwy@jlu.edu.cn; Yan, Dawei E-mail: chenwy@jlu.edu.cn

    2014-08-18

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  20. Accessing the transport properties of graphene and its multilayers at high carrier density

    PubMed Central

    Ye, Jianting; Craciun, Monica F.; Koshino, Mikito; Russo, Saverio; Inoue, Seiji; Yuan, Hongtao; Shimotani, Hidekazu; Morpurgo, Alberto F.; Iwasa, Yoshihiro

    2011-01-01

    We present a comparative study of high carrier density transport in mono-, bi-, and trilayer graphene using electric double-layer transistors to continuously tune the carrier density up to values exceeding 1014 cm-2. Whereas in monolayer the conductivity saturates, in bi- and trilayer filling of the higher-energy bands is observed to cause a nonmonotonic behavior of the conductivity and a large increase in the quantum capacitance. These systematic trends not only show how the intrinsic high-density transport properties of graphene can be accessed by field effect, but also demonstrate the robustness of ion-gated graphene, which is crucial for possible future applications. PMID:21828007

  1. Charge transport and memristive properties of graphene quantum dots embedded in poly(3-hexylthiophene) matrix

    SciTech Connect

    Cosmin Obreja, Alexandru; Cristea, Dana; Radoi, Antonio; Gavrila, Raluca; Comanescu, Florin; Kusko, Cristian; Mihalache, Iuliana

    2014-08-25

    We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.

  2. DRFM: A new package for the evaluation of gas-phase transport properties

    SciTech Connect

    Paul, P.H.

    1997-11-01

    This report describes a complete and modernized procedure to evaluate pure species, binary and mixture transport properties of gases in the low density limit. This includes a description of the relationships used to calculate these quantities and the means used to obtain the necessary input data. The purpose of this work is to rectify certain limitations of previous transport packages, specifically: to employ collision integrals suitable for high temperatures, to modernize the mixture formula, and to modernize the input data base. This report includes a set of input parameters for: the species involved in H{sub 2}-, CO - air combustion, the noble gases, methane and the oxides of nitrogen.

  3. Vibrational energy transport in molecules and the statistical properties of vibrational modes

    NASA Astrophysics Data System (ADS)

    Pandey, Hari Datt; Leitner, David M.

    2017-01-01

    Statistical properties of the eigenmodes computed for two molecules, dodecane and perfluorododecane, are examined and compared with predictions of random matrix theory. The eigenmode statistics of the heat carrying modes of perfluorododecane correspond to Porter-Thomas statistics, whereas those for dodecane do not. Vibrational energy transport in the two molecules is also computed and found to be diffusive in perfluorododecane but not in dodecane, consistent with recent experiments. The correspondence between eigenmode statistics and vibrational energy transport dynamics in molecules as well as thermalization in molecules are discussed.

  4. Listeriolysin O mediates cytotoxicity against human brain microvascular

    USDA-ARS?s Scientific Manuscript database

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  5. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  6. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    PubMed

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  7. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  8. Development of the REFPROP database and transport properties of refrigerants. Final report

    SciTech Connect

    McLinden, M.O.

    1998-07-01

    This task consisted of developing Version 6.0 of the NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), entailing a complete revision of this database. This program is based on the most accurate pure fluid and mixture models currently available. The database development is further divided into the development of a graphical user interface and the development of Fortran subroutines which implement the property models. Three models are used for the thermodynamic properties of pure components, depending on the availability of data. The first is the modified Benedict-Webb-Rubin (MBWR) equation of state. It is capable of accurately representing the properties of a fluid over wide ranges of temperature, pressure, and density. The MBWR equation is the basis for the current international standard for the properties of R123. The second high-accuracy pure-fluid equation of state is written in terms of reduced molar Helmholtz free energy. This Helmholtz energy model is the basis for the international standard formulation for R134a. The third pure-fluid model is the extended corresponding states (ECS) model of Huber and Ely (1994). It is used for fluids with limited experimental data. The database calculates seventeen thermodynamic and transport properties, including surface tensions of pure fluids and mixtures. Commercialized blends, such as R407C and R410A, are predefined in the interface and are listed in a table.

  9. Relationship between cell surface properties and transport of bacteria through soil

    SciTech Connect

    Gannon, J.T.; Manilal, V.B.; Alexander, M. )

    1991-01-01

    One means of bringing about the remediation of underground sites containing polluting chemicals is to inoculate the sites with bacteria able to metabolize those compounds. However, successful bioremediation of such sites requires the movement of the biodegradative bacteria through soil, aquifer solids, or groundwater. A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. The bacteria differed markedly in their extent of transport; their hydrophobicity, as measured by adherence to n-octane and by hydrophobic-interaction chromatography; and their net surface electrostatic charge, as determined by electrostatic interaction chromatography and by measurements of the zeta potential. Transport of the 19 strains through Kendaia loam or their retention by this soil was not correlated with hydrophobicities or net surface charges of the cells or the presence of capsules. Among 10 strains tested, the presence of flagella was also not correlated with transport. Retention was statistically related to cell size, with bacteria shorter than 1.0 {mu}m usually showing higher percentages of cells being transported through the soil. We suggest that more than one characteristic of bacterial cells determines whether the organisms are transported through soil with moving water.

  10. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions.

    PubMed

    Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas

    2012-10-05

    In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role.

  11. Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory.

    PubMed

    Qin, Yunke; Cheng, Changli; Geng, Hua; Wang, Chao; Hu, Wenping; Xu, Wei; Shuai, Zhigang; Zhu, Daoben

    2016-05-18

    Comprehensive investigations of crystal structures, electrical transport properties and theoretical simulations have been performed over a series of sulfur-bridged annulene-based donor-acceptor complexes with an alternate stacking motif. A remarkably high mobility, up to 1.57 cm(2) V(-1) s(-1) for holes and 0.47 cm(2) V(-1) s(-1) for electrons, was obtained using organic single crystal field-effect transistor devices, demonstrating the efficient ambipolar transport properties. These ambipolar properties arise from the fact that the electronic couplings for both holes and electrons have the same super-exchange nature along the alternate stacking direction. The magnitude of super-exchange coupling depends not only on the intermolecular stacking distance and pattern, but also the energy level alignments between the adjacent donor-acceptor moieties. The concluded transport mechanism and structure-property relationship from this research will provide an important guideline for the future design of organic semiconductors based on donor-acceptor complexes.

  12. First principles study of the structural, electronic, and transport properties of triarylamine-based nanowires

    SciTech Connect

    Akande, Akinlolu Bhattacharya, Sandip; Cathcart, Thomas; Sanvito, Stefano

    2014-02-21

    We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate the charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.

  13. Quantum Size Effects in Transport Properties of Bi2Te3 Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Rogacheva, E. I.; Budnik, A. V.; Nashchekina, O. N.; Meriuts, A. V.; Dresselhaus, M. S.

    2017-07-01

    Bi2Te3 compound and Bi2Te3-based solid solutions have attracted much attention as promising thermoelectric materials for refrigerating devices. The possibility of enhancing the thermoelectric efficiency in low-dimensional structures has stimulated studies of Bi2Te3 thin films. Now, interest in studying the transport properties of Bi2Te3 has grown sharply due to the observation of special properties characteristic of three-dimensional (3D) topological insulators in Bi2Te3. One of the possible manifestations of quantum size effects in two-dimensional structures is an oscillatory behavior of the dependences of transport properties on film thickness, d. The goal of this work is to summarize our earlier experimental results on the d-dependences of transport properties of Bi2Te3 thin films obtained by thermal evaporation in a vacuum on glass substrates, and to present our new results of theoretical calculations of the oscillations periods within the framework of the model of an infinitely deep potential well, which takes into account the dependence of the Fermi energy on d and the contribution of all energy subbands below the Fermi level to the conductivity. On the basis of the data obtained, some general regularities and specificity of the quantum size effects manifestation in 3D topological insulators are established.

  14. Structural and Transport Properties of Tertiary Ammonium Triflate Ionic Liquids: A Molecular Dynamics Study.

    PubMed

    Nasrabadi, Amir Taghavi; Gelb, Lev D

    2017-03-02

    Ammonium-based protic ionic liquids (PILs) have shown promising physicochemical properties as proton conductors in polymer membrane fuel cells. In this work, molecular dynamics simulations are used to study the structural, dynamic, and transport properties of a series of tertiary ammonium triflate PILs. Nonpolarizable all-atom force fields were used, including two different models for the triflate anion. Previous simulation studies of these PILs have yielded poor results for transport properties due to unrealistically slow dynamics. To improve performance, polarization and charge-transfer effects were approximately accounted for by scaling all atomic partial charges by a uniform factor, γ. The optimum scaling factor γ = 0.69 was determined by comparing simulation results with available experimental data and found to be transferable between different ammonium cations and insensitive to both the temperature and choice of experimental data used for comparison. Simulations performed using optimized charge scaling showed that the transport properties significantly improved over previous studies. Both the self-diffusion coefficients and viscosity were in good agreement with experiment over the whole range of systems and temperatures studied. Simulated PIL densities were also in good agreement with experiment, although the thermal expansivity was underestimated. Structural analysis revealed a strong directionality in interionic interactions. Triflate anions preferentially approach the ammonium cation so as to form strong hydrogen bonds between sulfonate oxygen atoms and the acidic ammonium hydrogen. The ionic conductivity was somewhat underestimated, especially at lower temperatures. Analysis of conductivity data suggests that there is significant correlated motion of oppositely charged ions in these PILs, especially at short times. These results overall indicate that the transport properties of this class of PILs are accurately modeled by these force fields if charge

  15. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  16. Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet.

    PubMed

    van Haare, Judith; Kooi, M Eline; Vink, Hans; Post, Mark J; van Teeffelen, Jurgen W G E; Slenter, Jos; Munts, Chantal; Cobelens, Hanneke; Strijkers, Gustav J; Koehn, Dennis; van Bilsen, Marc

    2015-11-17

    It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic conditions. Accordingly, early effects of diet-induced obesity on myocardial perfusion and function were studied in rats under baseline and hyperaemic conditions. Rats were fed a high fat diet (HFD) for 6 weeks and myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle. HFD-fed rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. Early diet-induced obesity did not lead to hypertension or cardiac hypertrophic remodeling. In chow-fed, control rats a robust increase in cardiac microvascular perfusion was observed upon adenosine infusion (+40%; p < 0.05). In contrast, the adenosine response was abrogated in rats on a HFD (+8%; N.S.). HFD neither resulted in rarefaction or loss of glycocalyx integrity in skeletal muscle, nor reduced staining intensity of the glycocalyx of cardiac capillaries. Alterations in coronary microcirculatory function as assessed by first-pass perfusion MRI represent one of the earliest obesity-related cardiac adaptations that can be assessed non-invasively. In this early stage of insulin resistance, disturbances in glycocalyx barrier properties appeared not to contribute to the observed changes in coronary microvascular function.

  17. Myocardial perfusion echocardiography and coronary microvascular dysfunction

    PubMed Central

    Barletta, Giuseppe; Del Bene, Maria Riccarda

    2015-01-01

    Our understanding of coronary syndromes has evolved in the last two decades out of the obstructive atherosclerosis of epicardial coronary arteries paradigm to include anatomo-functional abnormalities of coronary microcirculation. No current diagnostic technique allows direct visualization of coronary microcirculation, but functional assessments of this circulation are possible. This represents a challenge in cardiology. Myocardial contrast echocardiography (MCE) was a breakthrough in echocardiography several years ago that claimed the capability to detect myocardial perfusion abnormalities and quantify coronary blood flow. Research demonstrated that the integration of quantitative MCE and fractional flow reserve improved the definition of ischemic burden and the relative contribution of collaterals in non-critical coronary stenosis. MCE identified no-reflow and low-flow within and around myocardial infarction, respectively, and predicted the potential functional recovery of stunned myocardium using appropriate interventions. MCE exhibited diagnostic performances that were comparable to positron emission tomography in microvascular reserve and microvascular dysfunction in angina patients. Overall, MCE improved echocardiographic evaluations of ischemic heart disease in daily clinical practice, but the approval of regulatory authorities is lacking. PMID:26730291

  18. Skin microvascular reactivity in patients with hypothyroidism.

    PubMed

    Mihor, Ana; Gergar, Maša; Gaberšček, Simona; Lenasi, Helena

    2016-11-04

    Hypothyroidism is associated with impaired vascular function; however, little is known about its impact on microcirculation. We aimed to determine skin microvascular reactivity in hypothyroidism focusing on endothelial function and the sympathetic response. We measured skin laser Doppler (LD) flux (LDF) on the volar forearm and the finger pulp using LD flowmetry in hypothyroid patients (N = 13) and healthy controls (N = 15). Skin microvascular reactivity was assessed by a three-minute occlusion of the brachial artery, inducing postocclusive reactive hyperaemia (PRH), and by a four-minute local cooling of the hand. An electrocardiogram (ECG), digital artery blood pressure and skin temperature at the measuring sites were recorded. Baseline LDF, the digital artery blood pressure and the heart rate were comparable between patients and controls. On the other hand, patients exhibited significantly longer PRH duration, significantly higher blood pressure during cooling (unpaired t-test, p <0.05) and lower, albeit not significant, LDF in the ipsilateral finger pulp during cooling compared to controls. Unexpectedly, the results of the present study point to an increased vasodilator capacity of skin microcirculation and an apparent increase in sympathetic reactivity after local cooling in hypothyroid patients. Hypothyroidism induces subtle changes of some haemodynamic parameters in skin microcirculation implying altered endothelial function and altered sympathetic reactivity.

  19. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.

  20. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.

    2015-09-01

    The effects of surface functionalization on the electronic transport properties of the MXene compound Ti3C2 are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Fluorinated, oxidized and hydroxylated surfaces are considered and the obtained results are compared with the ones for the pristine MXene. It is found that the surface termination has a considerable impact on the electronic transport in MXene. For example, the fluorinated sample shows the largest transmission, whereas surface oxidation results in a considerable reduction of the electronic transmission. The current in the former sample can be up to 4 times larger for a given bias voltage as compared to the case of bare MXene. The increased transmission originates from the extended electronic states and smaller variations of the electrostatic potential profile. Our findings can be useful in designing MXene-based anode materials for energy storage applications, where enhanced electronic transport will be an asset.

  1. Study of transport properties with relativistic ponderomotive effect in two-electron temperature plasma

    SciTech Connect

    Sen, Sonu Dubey, A.; Varshney, Meenu Asthana; Varshney, Dinesh

    2014-04-24

    In the present paper we make an analytical investigation to study transport properties with relativistic ponderomotive effect in two-electron temperature plasma. Using fluid model the two-electron temperature are introduced through relativistic ponderomotive force for the transportation of two species of electrons. Applying WKB and paraxial ray approximation the nonlinear dielectric constant and self-focusing equation is evaluated and analyzed with experimental relevance. Numerical calculations are made for different concentration of electron density (10{sup 19}−10{sup 21} per cm{sup 3}) at arbitrary values of laser intensity in the range 10{sup 18}−10{sup 21} W/cm{sup 2}. For a minimum radius depending on the initial conditions it is oscillating between a minimum and maximum value. The hot electrons leading to the increase of the on-axis transportation and favorable effect on relativistic self-focusing.

  2. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties

    NASA Astrophysics Data System (ADS)

    Brenner, Thomas M.; Egger, David A.; Kronik, Leeor; Hodes, Gary; Cahen, David

    2016-01-01

    Solution-processed hybrid organic-inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion lengths, high optical absorption coefficients and impressive photovoltaic device performance. Recent results allow us to compare and contrast HOIP charge-transport characteristics to those of III-V semiconductors — benchmarks of photovoltaic (and light-emitting and laser diode) performance. In this Review, we summarize what is known and unknown about charge transport in HOIPs, with particular emphasis on their advantages as photovoltaic materials. Experimental and theoretical findings are integrated into one narrative, in which we highlight the fundamental questions that need to be addressed regarding the charge-transport properties of these materials and suggest future research directions.

  3. Molecular-dynamics simulations of the transport properties of a single polymer chain in two dimensions

    NASA Astrophysics Data System (ADS)

    Desai, Tapan G.; Keblinski, Pawel; Kumar, Sanat K.; Granick, Steve

    2006-02-01

    Molecular-dynamics simulations are conducted to elucidate the critical factors affecting the transport properties of isolated polymer chains in strictly two dimensions. The relevance of surface inhomogeneity is critically examined. We unequivocally find that surface inhomogeneity is critical in obtaining transport behavior consistent with the recent measurements of surface diffusion for polymers adsorbed at the solid-liquid interface. For a systematic investigation of this point, heterogeneity was introduced by decorating the surface with impenetrable elements and we find that chain diffusivity crossed over from Rouse-type behavior to reptationlike with increasing surface coverage of obstacles. This transition in behavior occurred when the mean distance between obstacles is approximately equal to the end-to-end distance, Re, of the two-dimensional chain. Our results underscore the importance of surface disorder (not only literal obstacles but by reasonable extension also to other types of disorder) in determining the transport behavior of chains adsorbed to solids.

  4. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    SciTech Connect

    Zhang XiaoNing; Xia WeiDong; Li HePing; Murphy, Anthony B.

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  5. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  6. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  7. In situ characterization of transport properties of superconducting (Cu, C)-system thin films

    NASA Astrophysics Data System (ADS)

    Kikunaga, K.; Yamamoto, T.; Tanaka, Y.; Kikuchi, N.; Tokiwa, K.; Watanabe, T.; Terada, N.

    2010-09-01

    Transport properties of (Cu, C)Ba2CuOx [(Cu, C)-1201] thin films have been characterized by in situ temperature dependence of resistivity, without breaking vacuum from the deposition to the measurement. In in situ transport properties measurements, the obtained results reveal that (Cu, C)Ba2CuOx films exhibit Tc > 20 K on the cased of conductivity at 290 K (σ[290 K]) > 4 × 102 S/cm and temperature coefficient of resistivity (TCR) > 1.5 × 10-3 K-1, and doping level of them should be in between under-doped and optimally-doped states. Their results suggest that there would be possible to further increases of Tc, and XPS data suggest that (Cu, C)-system should have the excellent dopability in their charge reservoir and the possibility of low anisotropy.

  8. Theoretical study of electronic transport properties of a graphene-silicene bilayer

    SciTech Connect

    Berdiyorov, G. R.; Bahlouli, H.; Peeters, F. M.

    2015-06-14

    Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.

  9. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies.

    PubMed

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A

    2015-08-19

    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments.

  10. High-density carbon nanotube buckypapers with superior transport and mechanical properties.

    PubMed

    Zhang, Ling; Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2012-09-12

    High-density buckypapers were obtained by using well-aligned carbon nanotube arrays. The density of the buckypapers was as high as 1.39 g cm(-3), which is close to the ultimate density of ideal buckypapers. Then we measured the transport and mechanical properties of the buckypapers. Our results demonstrated that its electrical and thermal conductivities could be almost linearly improved by increasing its density. In particular, its superior thermal conductivity is nearly twice that of common metals, which enables it a lightweight and more efficient heat-transfer materials. The Young's modulus of the buckypapers could reach a magnitude over 2 GPa, which is greatly improved compared with previous reported results. In view of this, our work provided a simple and convenient method to prepare high-density buckypapers with excellent transport and mechanical properties.

  11. Electronic and transport properties of a molecular junction with asymmetric contacts

    NASA Astrophysics Data System (ADS)

    Tsai, M.-H.; Lu, T.-H.

    2010-02-01

    Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.

  12. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    NASA Astrophysics Data System (ADS)

    Natividad, E.; Castro, M.; Burriel, R.; Angurel, L. A.; Díez, J. C.; Navarro, R.

    2002-07-01

    The electric and thermal properties well above and below Tc of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, Jc, with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of Tc, makes the relation difficult between the normal state resistivity and Jc (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states.

  13. Thermal transport properties of thermally sprayed coatings: An integrated study of materials, processing and microstructural effects

    NASA Astrophysics Data System (ADS)

    Chi, Weiguang

    The complex microstructures of thermally sprayed coatings are very sensitive to processing conditions and have a significant influence on the properties. The thermal transport property is a very important design parameter for thermally sprayed coatings. Despite considerable progress in this area, there is continued need to clarify the interrelationships among processing, microstructure and thermal transport properties. This has been enabled through continued advancements in processing science and control, enhancements in microstructural characterization and new methods of property characterization. The purpose of this research is to seek a successive pathway to prior efforts in understanding the effect of microstructural defects on the thermal transport property of thermally sprayed coatings. Relationship between microstructure and thermal conductivity is investigated for three sets of plasma sprayed yttria stabilized zirconia (YSZ) coating systems made using different morphology powders, different particle size distribution and controlled modification of particle states via plasma torch parameters. By integrating the results, maps of the thermal conductivity-porosity relationship have been established. Such maps highlight the role of splat thickness and interfaces in thermal conductivity. Furthermore, a new microstructural parameter termed "effective porosity" is proposed which considers the dominating role of interlamellar pores on through thickness thermal transport in thermally sprayed coatings. This effective porosity is rationalized based on the heat transport mechanism and enables better understanding of microstructure-thermal transport property correlation. An inverse linear model and a percolation model are established which can serve as predictive tools for understanding microstructure-thermal conductivity relationships. In addition, a systematic assessment of thermal conductivity anisotropy has been carried out for YSZ, Al2O 3 and several metallic

  14. Transport properties of Nd1-xFexOF polycrystalline films

    NASA Astrophysics Data System (ADS)

    Corrales-Mendoza, I.; Rangel-Kuoppa, Victor-Tapio; Conde-Gallardo, A.

    2013-12-01

    The transport properties of Nd1-xFexOF films with 0.2transport properties are not governed by a typical band conduction mechanism but by a variable range hopping process.

  15. Crystal structure and electrical transport properties of single layered perovskite LaSrCoO4

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Shukla, D. K.; Rahman, F.; Majid, S.; Tarachand; Okram, G. S.; Phase, D. M.

    2016-10-01

    We present here investigations on the influence of structure on electrical transport properties of polycrystalline LaSrCoO4 that is single layered perovskite with K2NiF4 type structure synthesized using solid state reaction route. Using Reitveld refinement of X-ray diffraction (XRD) data, it is found that the sample is in single phase with tetragonal structure (space group I4/mmm). Electrical resistivity performed in the temperature range 140-300K shows semiconducting character of the sample. Considerable contrasts in the Co-O bond length is associated with the intermediate spin (IS) state of Co ion that correlates the structural and transport properties. Detailed analysis indicates that the temperature dependent electrical resistivity follows the three-dimensional variable range hopping (VRH) model in low temperature region below 225K. The high temperature (225-300K) resistivity data has been found to follow the thermally activated behaviour.

  16. Measuring the electronic transport properties of individual nano-objects under high pressures

    NASA Astrophysics Data System (ADS)

    Caillier, C.; Ayari, A.; Le Floch, S.; Féret, H.; Guiraud, G.; San-Miguel, A.

    2011-09-01

    We describe a setup to carry out electronic transport measurements under high pressures on individual nano-objects. It is based on a home-automated three-stage gas compressor working with argon or helium up to 1 GPa. The setup was successfully tested on contacted individual nanotubes, for which we evidence strong evolutions of the transport properties. These evolutions are related to fundamental issues such as the modification of the nano-object contact resistance, the pressure-induced modification of the nano-object geometry or pressure-induced changes in the intrinsic electronic properties of the nanosystem. A cryostat has also been adapted to the pressure cell, allowing combined pressure and temperature experiments down to 12 K.

  17. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  18. Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions

    NASA Astrophysics Data System (ADS)

    Liu, N.; Gao, G. Y.; Zhu, S. C.; Ni, Y.; Wang, S. L.; Liu, J. B.; Yao, K. L.

    2014-07-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigate the electronic transport properties of carbon-doped p-n nanojunction based on hexagonal boron nitride armchair nanoribbons. The calculated I-V curves show that both the center and edge doping systems present obvious negative differential resistance (NDR) behavior and excellent rectifying effect. At low positive bias, the edge doping systems possess better NDR performance with larger peak-to-valley ratio (˜105), while at negative bias, the obtained peak-to-valley ratio for both of the edge and center doping systems can reach the order of 107. Meanwhile, center doping systems present better rectifying performance than the edge doping ones, and giant rectification ratio up to 106 can be obtained in a wide bias range. These outstanding transport properties are explained by the evolution of the transmission spectra and band structures with applied bias, together with molecular projected self-consistent Hamiltonian eigenvalues and eigenstates.

  19. Accurate transport properties for O(3P)-H and O(3P)-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.; Kłos, Jacek; Warehime, Mick; Alexander, Millard H.

    2016-10-01

    Transport properties for collisions of oxygen atoms with hydrogen atoms and hydrogen molecules have been computed by means of time-independent quantum scattering calculations. For the O(3P)-H(2S) interaction, potential energy curves for the four OH electronic states emanating from this asymptote were computed by the internally-contracted multi-reference configuration interaction method, and the R-dependent spin-orbit matrix elements were taken from Parlant and Yarkony [J. Chem. Phys. 110, 363 (1999)]. For the O(3P)-H2 interaction, diabatic potential energy surfaces were derived from internally contracted multi-reference configuration interaction calculations. Transport properties were computed for these two collision pairs and compared with those obtained with the conventional approach that employs isotropic Lennard-Jones (12-6) potentials.

  20. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    SciTech Connect

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-15

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  1. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-11-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  2. Electronic and transport properties of a molecular junction with asymmetric contacts.

    PubMed

    Tsai, M-H; Lu, T-H

    2010-02-10

    Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.

  3. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    PubMed Central

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-01

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039

  4. Crystallization and Transport Properties of Amorphous Cr-Si Thin Film Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Burkov, A. T.; Schumann, J.

    2014-06-01

    We studied the thermoelectric properties, crystallization, and stability of amorphous and nanocrystalline states in Cr-Si composite films. Amorphous films, prepared by magnetron sputtering, were transformed into the nanocrystalline state by annealing with in situ thermopower and electrical resistivity measurements. We have found that the amorphous state is stable in these film composites to about 550 K. Prior to crystallization, the amorphous films undergo a structural relaxation, detected by peculiarities in the temperature dependences of the transport properties, but not visible in x-ray or electron diffraction. The magnitude and temperature dependences of electrical conductivity and thermopower indicate that electron transport in the amorphous films is through extended states. The amorphous films are crystallized at annealing temperatures above 550 K into a nanocrystalline composite with an average grain size of 10-20 nm.

  5. Second Virial Coefficients and Transport Properties of Hexafluoride Gases from an Improved Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, Ilioara; Demco, D. E.

    1997-10-01

    Second virial coefficients and a large number of Chapman-Cowling collision integrals were calculated for gases obeying an improved intermolecular potential proposed by Aziz et al. [J. Chem. Phys. 94, 1034 (1991)]. The results are tabulated for a large reduced temperature range, kT/ɛ from 0.1 to 100. The treatment was entirely classical, and no corrections for quantum effects were made. The higher approximations to the transport coefficients were also calculated and tabulated for the same temperature range. These results should be applicable to characterize the bulk properties of various spherical molecules, especially to predict gaseous transport properties. Evaluation of the potential parameters for uranium hexafluoride, together with fitting to second virial coefficient, viscosity, thermal conductivity and self-diffusion data are also presented. This potential appears to have the best overall predictive ability for gaseous hexafluoride data.

  6. Effect of Localized UV Irradiation on Transport Property in Zno Nanotetrapod Devices

    NASA Astrophysics Data System (ADS)

    Wang, Wenhua; Qi, Junjie; Wang, Qinyu; Qin, Zi; Wang, Zengze; Sun, Xu; Yi, Fang

    2012-08-01

    Semiconductor optoelectronic devices based on a single ZnO nanotetrapod were constructed with Ohmic contact characteristics and the effect of localized UV irradiation on transport property in ZnO nanotetrapod device has been investigated. The measurements for the I-V characteristics and time-resolved measurements of current were conducted. The results indicate that the irradiation under UV light irradiation at the third leg of the tetrapod can readily tune the electrical transport property of the tetrapod along with favorable repeatability and reversibility. The current becomes larger as the UV light power density increases. A probable mechanism has been proposed and discussed. The ZnO nanotetrapod could be potentially used as detectors in irradiation environments.

  7. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    PubMed

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  8. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  9. The influence of inner hydrophobisation on water transport properties of modified lime plasters

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Pavlík, Zbyšek; Pernicová, Radka; Černý, Robert

    2016-06-01

    The effect of hydrophobic agent admixture on water vapour and liquid water transport properties of newly designed lime plasters is analysed in the paper. The major part of physico - chemical building deterioration is related to the penetration of moisture and soluble salts into the building structure. For that reason, the modified lime plasters were in the broad range of basic material properties tested. From the quantitative point of view, the measured results clearly demonstrate the big differences in the behaviour of studied materials depending on applied modifying admixtures. From the practical point of view, plaster made of lime hydrate, metakaolin, zinc stearate and air-entraining agent can be recommended for renovation purposes. The accessed material parameters will be used as input data for computational modelling of moisture transport in this type of porous building materials and will be stored in material database.

  10. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas.

    PubMed

    Srivastava, Anurag; Bhat, Chetan; Jain, Sumit Kumar; Mishra, Pankaj Kumar; Brajpuriya, Ranjeet

    2015-03-01

    We report the detection of ammonia gas through electronic and transport properties analysis of boron nitride sheet. The density functional theory (DFT) based ab initio approach has been used to calculate the electronic and transport properties of BN sheet in presence of ammonia gas. Analysis confirms that the band gap of the sheet increases due to presence of ammonia. Out of different positions, the bridge site is the most favorable position for adsorption of ammonia and the mechanism of interaction falls between weak electrostatic interaction and chemisorption. On relaxation, change in the bond angles of the ammonia molecule in various configurations has been reported with the distance between NH3 and the sheet. An increase in the transmission of electrons has been observed on increasing the bias voltage and I-V relationship. This confirms that, the current increases on applying the bias when ammonia is introduced while a very small current flows for pure BN sheet.

  11. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    SciTech Connect

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  12. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGES

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  13. The determination of ionic transport properties at high pressures in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Wang, Qinglin; Liu, Cailong; Han, Yonghao; Gao, Chunxiao; Ma, Yanzhang

    2016-12-01

    A two-electrode configuration was adopted in an in situ impedance measurement system to determine the ionic conductivity at high pressures in a diamond anvil cell. In the experimental measurements, Mo thin-films were specifically coated on tops of the diamond anvils to serve as a pair of capacitance-like electrodes for impedance spectrum measurements. In the spectrum analysis, a Warburg impedance element was introduced into the equivalent circuit to reveal the ionic transport property among other physical properties of a material at high pressures. Using this method, we were able to determine the ionic transport character including the ionic conductivity and the diffusion coefficient of a sodium azide solid to 40 GPa.

  14. A study of transport properties in Cu and P doped ZnSb

    SciTech Connect

    Valset, K.; Song, X.; Finstad, T. G.

    2015-01-28

    ZnSb samples have been doped with copper and phosphorus and sintered at 798 K. Electronic transport properties are interpreted as being influenced by an impurity band close to the valence band. At low Cu dopant concentrations, this impurity band degrades the thermoelectric properties as the Seebeck coefficient and effective mass are reduced. At carrier concentrations above 1 × 10{sup 19 }cm{sup −3}, the Seebeck coefficient in Cu doped samples can be described by a single parabolic band.

  15. Electrical transport properties of microcrystalline silicon grown by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pinto, Nicola; Ficcadenti, Marco; Morresi, Lorenzo; Murri, Roberto; Ambrosone, Giuseppina; Coscia, Ubaldo

    2004-12-01

    The dark conductivity and Hall mobility of hydrogenated silicon films deposited varying the silane concentration f =SiH4/(SiH4+H2) in a conventional plasma enhanced chemical vapor deposition system have been investigated as a function of temperature, taking into account their structural properties. The electrical properties have been studied in terms of a structural two-phase model. A clear transition from the electrical transport governed by a crystalline phase, in the range 1%⩽f⩽3%, to that controlled by an amorphous phase, for f >3%, has been evidenced. Some metastable effects of the dark conductivity have been noticed.

  16. Effect of Li2O on the microstructure, magnetic and transport properties of Tl-2223 superconductor

    DOE PAGES

    Shipra, R.; Sefat, Athena Safa

    2015-10-08

    Here, the present study gives an account of the effect of addition of Li2O on the ease of phase formation and superconducting properties of Tl2Ba2Ca2Cu3O10 + δ (Tl-2223) material. Li2O slightly decreases the superconducting transition temperature, while an optimal concentration of 20% Li2O improves the critical current density (Jc) by about two fold. We also found substantial effects on the synthesis temperature, microstructure and normal state transport properties of Tl-2223 with Li2O addition. Short-time annealing under flowing Ar + 4%H2 (1 h) further improves the superconducting volume fractions, as well as Jc.

  17. Glass structure and transport properties of Li 2O containing zinc bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    2008-10-01

    Bismuth based glasses containing ZnO, B 2O 3 and Li 2O are investigated by different physical, spectroscopic and transport techniques. Raman and IR studies reveal that these glasses are built up of [BiO 3] and [BiO 6] units. Zinc in tetrahedral form is also observed. Glass transition temperature varied nonlinearly with the composition. Also the variation in conductivity with composition is very small and non-linear. The nonlinear behaviour in these properties is attributed to mixed former effect. Molar polarizability is also estimated from optical and dielectric properties. The polarizability values show dependence on Bi 2O 3 content and varied nonlinearly.

  18. Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei

    2017-10-01

    Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.

  19. Charge transport properties of CN-substituted furan based organic semiconductor: A density functional study

    SciTech Connect

    Sahoo, Smruti Ranjan Sahu, Sridhar; Sharma, Sagar

    2016-05-06

    We report a density functional study for charge transport properties of substituted furan molecule. Reorganization energy(λ), charge transfer integral(t) and mobility(μ) have been studied along with their structural properties within the framework of dimmer model. We found the electron withdrawing -CN groups decrease the reorganization energy and band gap of the conjugated molecules, resulting in more electron injection across the barrier and hence assigning n-type characteristics to the system. Furthermore, substitution of -CN group is also found to enhance the electron mobility of oligomer as compared to monomer unit and the bare furan molecule.

  20. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    NASA Astrophysics Data System (ADS)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.