Science.gov

Sample records for microvascular transport properties

  1. The role of the microvascular tortuosity in tumor transport phenomena.

    PubMed

    Penta, R; Ambrosi, D

    2015-01-07

    The role of the microvascular network geometry in transport phenomena in solid tumors and its interplay with the leakage and pressure drop across the vessels is qualitatively and quantitatively discussed. Our starting point is a multiscale homogenization, suggested by the sharp length scale separation that exists between the characteristic vessels and the tumor tissue spatial scales, referred to as the microscale and the macroscale, respectively. The coupling between interstitial and capillary compartment is described by a double Darcy model on the macroscale, whereas the geometric information on the microvascular structure is encoded in the effective hydraulic conductivities, which are numerically computed by solving classical differential problems on the microscale representative cell. Then, microscale information is injected into the macroscopic model, which is analytically solved in a prototypical geometry and compared with previous experimentally validated, phenomenological models. In this way, we are able to capture the role of the standard blood flow determinants in the tumor, such as tumor radius, tissue hydraulic conductivity and vessels permeability, as well as influence of the vascular tortuosity on fluid convection. The results quantitatively confirm that transport of blood (and, as a consequence, of any advected anti-cancer drug) can be dramatically impaired by increasing the geometrical complexity of the microvasculature. Hence, our quantitative analysis supports the argument that geometric regularization of the capillary network improves blood transport and drug delivery in the tumor mass.

  2. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    PubMed

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  3. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    PubMed Central

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  4. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.

    PubMed Central

    Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T

    1993-01-01

    Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815

  5. Lung microvascular transport properties measured by multiple indicator dilution methods in patients with adult respiratory distress syndrome. A comparison between patients reversing respiratory failure and those failing to reverse.

    PubMed

    Harris, T R; Bernard, G R; Brigham, K L; Higgins, S B; Rinaldo, J E; Borovetz, H S; Sibbald, W J; Kariman, K; Sprung, C L

    1990-02-01

    We conducted indicator dilution studies on the lungs of patients in the early phases of adult respiratory distress syndrome (ARDS) to test the hypothesis that capillary permeability was increased in patients with respiratory failure. Indicator dilution studies were performed using 51Cr-erythrocytes, 125I-albumin, 14C-urea, and 3H-water as tracers. The injectate was infused as a bolus into a central venous line. Peripheral arterial blood was collected and counted for radioactivity. Mathematical analysis of the indicator curves yielded cardiac output, measures of the product of capillary permeability and surface area for urea (PS and D1/2S), the intravascular lung volume (Vv), and the extravascular lung water volume (Ve). Permeability was separated from surface area by normalizing PS and D1/2S to Vv. Patients could be divided into 16 in whom blood gas determinations and radiologic criteria for ARDS were reversed and 23 in whom they were not. We examined indicator dilution and other measures of lung function in the two groups to determine whether significant differences in microvascular function existed. PS and PS/Vv were significantly higher in the nonreversal patients. Ve was above normal, but not different between groups. Linear regression analysis showed significant correlations for all of the following in the nonreversal group: Ve and all measures of permeability, pulmonary vascular resistance (PVR), and the inverse of permeability-surface area measures and AaDO2 and PVR. Only measures of Ve and PS correlated in the reversal group. These results support the hypothesis that capillary permeability is increased in patients with early ARDS and continuing respiratory failure.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Two problems in multiphase biological flows: Blood flow and particulate transport in microvascular network, and pseudopod-driven motility of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit

    2016-11-01

    In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.

  7. Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells.

    PubMed

    Iwao, Beniko; Yara, Miki; Hara, Naomi; Kawai, Yuiko; Yamanaka, Tsuyoshi; Nishihara, Hiroshi; Inoue, Takeshi; Inazu, Masato

    2016-02-01

    In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation.

  8. Effective Transport Properties

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto

    In this chapter we study a particular case of multiphase systems, namely two-phase materials in which one of the phases is randomly dispersed in the other, so that the composite can be viewed on a macroscale as an effective continuum, with well defined properties. In general, the theoretical determination of the parameter for an effective medium requires, as a rule, the solution of a corresponding transport problem at the microscale, which takes into account the morphology of the system and its evolution. As the mathematical problem is well-posed on a microscale, this can be accomplished using, for example, the multiple scale approach shown in Chap. 11 ; however, the task requires massive computations and is therefore difficult to implement from the practical standpoint. Here, instead, we focus on a deterministic approach to the problem, where the geometry and spatial configuration of the particles comprising the included phase are given and the solution to the microscale problem is therefore sought analytically. As examples, we study the effective thermal conductivity of solid reinforced materials (Sect. 10.1), the effective viscosity of non-colloidal suspensions (Sect. 10.2), the effective permeability of porous materials (10.3) and the effective self- and gradient diffusivities of colloidal suspensions (Sect. 10.4). Then, in Sect. 10.5, an alternative dynamic definition of the transport coefficients is considered, which can also serve as a basis to determine the effective properties of complex systems.

  9. Optical imaging measurements of oxygen transport fluctuations and gradients in tumor microvascular networks

    NASA Astrophysics Data System (ADS)

    Sorg, Brian S.; Hardee, Matthew E.; Moeller, Benjamin J.; Dewhirst, Mark W.

    2006-02-01

    It is well established that hypoxia can influence tumor biology and physiology, gene expression, metastatic potential, treatment efficacy, and patient survival. Most human solid tumors have been shown to have some hypoxic regions, thus there is a strong motivation to understand the various causes of hypoxia. One key to understanding tumor hypoxia involves the study of oxygen transport to tumors, and the connection between hypoxia, tumor microvasculature, and the tumor microenvironment. Recent research has suggested that the causes of tumor hypoxia are much more complex than indicated by the classical paradigms ("chronic" and "acute" hypoxia), and several potential factors have been identified. Two such factors are temporal fluctuations in tissue pO II and longitudinal gradients in oxygen transport. Research has shown the existence of low frequency (<2 cycles per minute) fluctuations in tumor pO II without cessation of blood flow that can lead to transient hypoxia. In addition, longitudinal gradients in tumor pO II along the arteriolar afferent direction have been documented in window chamber tumors. However, the causes of the pO II temporal fluctuations and longitudinal gradients are not exactly known, and the clinical significance of these observations is not well understood. In this preliminary study, we demonstrate the potential of optical imaging measurements of hemoglobin saturation to add new information in these areas. Slow temporal fluctuations of hemoglobin saturation (HbSat) and gradients in the average HbSat were observed in some 4T1 mouse mammary carcinoma microvessels. With additional research, the mechanisms behind these phenomena and insights into their clinical significance may be revealed.

  10. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  11. Transport properties of uranium dioxide

    SciTech Connect

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the transport properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, measurements of thermal diffusivity and emissivity have been made. In addition to incorporating this new data, new equations have been derived to fit the thermal diffusivity and thermal conductivity data. This analysis is consistent with the analysis of enthalpy and heat capacity. A new form of equation for the emissivity is also given. The present report comprises the transport part of the UO/sub 2/ portion of section A of the planned complete revision of Properties for LMFBR Safety Analysis.

  12. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  13. Transport Properties for Combustion Modeling

    SciTech Connect

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  14. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-08-01

    Instrumentation and procedures have been completed for measurement of gas permeability and mass diffusivity of fiber preforms and porous materials. Results are reported for composites reinforced with Nicalon fiber in cloth lay-up and 3-D weave and with Nextel fiber in multi-layer braid. Measured permeability values range from near 100 to less than 0.1 darcies. Mass diffusivity is reported as a structure factor relating the diffusion through the porous material to that in free space. This measure is independent of the diffusing species and depends only on the pore structure of the material. Measurements are compared to predictions of a node-bond model for gas transport. Model parameters adjusted to match measured transport properties relate to physical microstructure features of the different architectures. Combination of this transport model with the CVI process model offers a predictive method to evaluate the densification behavior of various fiber preforms.

  15. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1979-01-01

    Activities reported include: (1) testing of the computer program used to obtain transport properties for the Hulburt-Hirschfelder potential; (2) calculation of transport properties for the C2-C interaction; (3) preliminary calculations for the C2-C2 interaction; (4) calculation of transport properties for the C2H-He interaction; (5) consideration of the effect of inelastic collisions on the transport properties; and (6) the use of the Hulburt-Hirschfelder potential to model ion-atom interactions.

  16. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1978-01-01

    The calculation of transport properties near the surface of a probe entering the atmosphere of Jupiter is discussed for (1) transport properties in the pure Jovian atmosphere, (2) transport properties for collisions between monatomic carbon atoms, including the effect of excited electronic states, (3) transport properties at the boundaries for mixing of the pure Jovian atmosphere and the atmosphere due to the injection of gaseous ablation products, and (4) transport properties for interactions involving some of the molecular ablation products. The transport properties were calculated using the kinetic theory of gases. Transport collision integrals were calculated for only a limited set of empirical and semiempirical interaction potentials. Since the accuracy of the fit of these empirical potentials to the true potential usually determines the accuracy of the calculation of the transport properties, the various interaction potentials used in these calculations are discussed.

  17. Oxygen Transport in a Three-Dimensional Microvascular Network Incorporated with Early Tumour Growth and Preexisting Vessel Cooption: Numerical Simulation Study

    PubMed Central

    Cai, Yan; Zhang, Jie; Wu, Jie; Li, Zhi-yong

    2015-01-01

    We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption within the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study. PMID:25695084

  18. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    PubMed

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-02-20

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.

  19. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.

    1995-08-01

    This project involves experimental and modeling investigation of the transport properties of chemical vapor infiltration (CVI) preforms and densified composites, with particular emphasis on gas permeability and mass diffusivity. The results of this work will be useful both for on-going CVI process development and for evaluation and optimization of composite materials for fossil energy applications. With preforms made with 500 filaments/tow Nicalon at 40 vol% fiber loading, permeability values are similar for square-weave cloth layup and 3-D weave at low density. At greater densification the 3-D weave permeability is lower and approaches zero with significantly more closed porosity than the cloth layup. For filament wound preforms we were unable to make reliable measurements with the available materials. A model for gas transport in these materials utilizes percolation theory concepts. The ultimate achievable density is related to the closing of a continuous gas path through the preform. As the density approaches this limit the gas permeability and diffusivity vanish exponentially. The value of this limit is controlled primarily by the preform fiber architecture. The observed difference between the cloth layup and 3-D weave materials is due to the larger pores at tow crossing points found in the 3-D weave.

  20. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  1. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  2. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  3. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  4. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  5. Electronic transport properties in graphene oxide frameworks

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  6. What Causes Coronary Microvascular Disease?

    MedlinePlus

    ... Living With Clinical Trials Links Related Topics Angina Atherosclerosis Coronary Heart Disease Coronary Heart Disease Risk Factors ... Microvascular Disease? The same risk factors that cause atherosclerosis may cause coronary microvascular disease. Atherosclerosis is a ...

  7. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke

    PubMed Central

    Yu, Qi-jin; Tao, Hong; Wang, Xin; Li, Ming-chang

    2015-01-01

    Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endothelial cells with regards expression of specific ion transporters and receptors, and contain fewer fenestrations and pinocytotic vesicles. Brain microvascular endothelial cells also synthesize several factors that influence blood vessel function. This review describes the morphological characteristics and functions of brain microvascular endothelial cells, and summarizes current knowledge regarding changes in brain microvascular endothelial cells during stroke progression and therapies. Future studies should focus on identifying mechanisms underlying such changes and developing possible neuroprotective therapeutic interventions. PMID:26807131

  8. Transport properties in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Biolsi, L.

    1978-01-01

    Transport properties in a Jupiter-like atmosphere (89 mol % hydrogen and 11 mol % helium) are obtained by using the method of the kinetic theory of gases. The transport collision integrals are calculated by fitting various two-body semiempirical interaction potentials for which the collision integrals are tabulated to ab initio quantum mechanical calculations of the two-body interactions. The collision integrals are used to calculate the binary diffusion coefficients, viscosity, and 'total' thermal conductivity of the pure gases and the gas mixtures at 1-atm pressure from 1000 K to 25,000 K.

  9. Dynamical properties of transportation on complex networks

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Gao, Zi-You

    2008-02-01

    We study the dynamical properties of transportation considering the topology structure of networks and congestion effects, based on a proposed simple model. We analyze the behavior of the model for finding out the relationship between the properties of transportation and the structure of network. Analysis and numerical results demonstrate that the transition from free flow to congested regime can be observed for both single link load and network load, but it is discontinuous for single link and continuous for network. We also find that networks with large average degree have small average link betweenness and are more tolerant to congestion, and networks with homogeneous structure can hold more vehicles in stationary state at the subcritical region. Furthermore, by allotting capacity with different mode to links, a manner of enhancing the performance of networks is introduced, which should be helpful in the design of traffic networks.

  10. Diffusive Transport Properties Across Coupling Regimes

    NASA Astrophysics Data System (ADS)

    Dharuman, G.; Murillo, M. S.; Verboncoeur, J.; Christlieb, A.

    2014-10-01

    Transport properties are poorly known across coupling regimes, therefore understanding them is of importance for theoretical and practical reasons. A useful tool is an ultracold plasma system because of the experimental capability to tune the system to attain Coulomb coupling Γ ranging from 0.1 to 1 to 10 with the screening parameter κ ranging from 0 to 4 to 8, spanning the regions of the phase diagram from weak to moderate to strongly coupled and screened systems. Strong coupling is possible if Disorder Induced Heating is mitigated which requires a correlated initial ion state. Of particular interest is Rydberg blockaded gas of ultracold atoms where the local blockade effect results in correlations. Predictions of higher coupling in ultracold plasma created from a Rydberg blockaded gas have been reported. In this work we examine the diffusive transport properties of ultracold plasma system using molecular dynamics simulations for experimentally realizable values of Γ and κ as discussed above.

  11. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  12. Charge Transport Properties in Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Moog, Mark; Tsui, Frank; Vonwald, Ian; You, Wei

    Electrical transport properties in poly(3-methyl)thiophene (P3MT) brushes have been studied. The P3MT brushes correspond to a new type of surface-tethered, vertically oriented conjugated molecular wires, sandwiched between two metallic electrodes to form the electrode-molecule-electrode (EME) devices. P3MT is a highly conjugated polymer, a ''workhorse'' material for organic electronics and photonics. The P3MT brushes were grown on ITO surfaces with controlled length (between 2 and 100 nm). The top electrodes were transfer-printed Au films with lateral dimensions between 200 nm and 50 μm. I-V and differential conductance measurements were performed using conductive AFM and 4-terminal techniques. Tunneling and field-emission measurements in EME devices with molecular lengths < 5 nm show HOMO mediated direct hole tunneling with energy barriers of 0.3 and 0.5 eV at the respective interfaces with ITO and Au. The transport properties in longer brushes are indicative of the two quasi-Ohmic interfaces with a characteristic offset in the conductance minimum of 0.12 V biased toward the ITO. Temperature dependent parameters have been examined at various molecular lengths. The drift mobility and the interplay between intra- and intermolecular transport have been investigated.

  13. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  14. Microvascular Autonomic Composites

    DTIC Science & Technology

    2012-01-06

    characterization of carbon nanotube yarns, 3-D braids, and their composites. SAMPE Journal 43: 6-19. Bogdanovich A and Mohamed MH. 2009. Three-Dimensional... carbon in red and bromine in yellow. The fracture surfaces were analyzed by SEM to show film was indistinguishable from the matrix, but by using the...nature, the mother of composite materials, applying microvascular technology to create skin, cartilages, tendons, bones and teeth. Cellulose fiber

  15. Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes

    PubMed Central

    Begorre, Marc-Antoine; Dib, Abdallah; Habchi, Khalil; Guihot, Anne-Laure; Bourreau, Jennifer; Vessieres, Emilie; Blondeau, Bertrand; Loufrani, Laurent; Chabbert, Marie; Henrion, Daniel; Fassot, Céline

    2017-01-01

    Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R−/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R−/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R−/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R−/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes. PMID:28361992

  16. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  17. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  18. Monitoring in microvascular surgery.

    PubMed

    Furnas, H; Rosen, J M

    1991-03-01

    The importance of monitoring in microvascular surgery is underscored by the high reported salvage rates of failing free flaps and replants. In this overview, we begin by defining the physiology of ischemic tissue with emphasis given to the no-reflow phenomenon and the secondary critical ischemia times. Based on the physiological changes accompanying ischemia, several variables are defined that can be monitored to reflect the vascular state of a free flap or replant. Multifarious monitoring systems are then reviewed, including clinical observation, temperature, isotope clearance, ultrasonic Doppler, laser Doppler, transcutaneous oxygen tension, reflection plethysmography, dermofluorometry, pH, electromagnetic flowmetry, serial hematocrits, interstitial fluid pressure, and magnetic resonance imaging.

  19. Intracranial microvascular free flaps.

    PubMed

    Levine, Steven; Garfein, Evan S; Weiner, Howard; Yaremchuk, Michael J; Saadeh, Pierre B; Gurtner, Geoffrey; Levine, Jamie P; Warren, Stephen M

    2009-02-01

    Large acquired intracranial defects can result from trauma or surgery. When reoperation is required because of infection or tumor recurrence, management of the intracranial dead space can be challenging. By providing well-vascularized bulky tissue, intracranial microvascular free flaps offer potential solutions to these life-threatening complications. A multi-institutional retrospective chart and radiographic review was performed of all patients who underwent microvascular free-flap surgery for salvage treatment of postoperative intracranial infections between 1998 and 2006. A total of six patients were identified with large intracranial defects and postoperative intracranial infections. Four patients had parenchymal resections for tumor or seizure and two patients had posttraumatic encephalomalacia. All patients underwent operative debridement and intracranial free-flap reconstruction using the latissimus dorsi muscle (N=2), rectus abdominis muscle (N=2), or omentum (N=2). All patients had titanium (N=4) or Medpor (N=2) cranioplasties. We concluded that surgery or trauma can result in significant intracranial dead space. Treatment of postoperative intracranial infection can be challenging. Vascularized free tissue transfer not only fills the void, but also provides a delivery system for immune cells, antibodies, and systemically administered antibiotics. The early use of this technique when intracranial dead space and infection coexist is beneficial.

  20. Transport properties of supercooled confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  1. Is the sheet-flow design a 'frozen core' (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: illustration of the geometry and rationalization of the fractal properties.

    PubMed

    Maina, J N

    2000-08-01

    The sheet-flow design is ubiquitous in the respiratory microvascular systems of the modern gas exchangers. The blood percolates through a maze of narrow microvascular channels spreading out into a thin film, a "sheet". The design has been convergently conceived through remarkably different evolutionary strategies. Endothelial cells, e.g. connect parallel epithelial cells in the fish gills and reptilian lungs; epithelial cells divide the gill filaments in the crustacean gills, the amphibian lungs, and vascular channels on the lung of pneumonate gastropods; connective tissue elements weave between the blood capillaries of the mammalian lungs; and in birds, the blood capillaries attach directly and in some areas connect by short extensions of the epithelial cells. In the gills, skin, and most lungs, the blood in the capillary meshwork geometrically lies parallel to the respiratory surface. In the avian lung, where the blood capillaries anastomose intensely and interdigitate closely with the air capillaries, the blood occasions a 'volume' rather than a 'sheet.' The sheet-flow design and the intrinsic fractal properties of the respiratory microvascular systems have produced a highly tractable low-pressure low-resistance region that facilitates optimal perfusion. In complex animals, the sheet-flow design is a prescriptive evolutionary construction for efficient gas exchange by diffusion. The design facilitates the internal and external respiratory media to be exposed to each other over an extensive surface area across a thin tissue barrier. This comprehensive design is a classic paradigm of evolutionary convergence motivated by common enterprise to develop corresponding functionally efficient structures. With appropriate corrections for any relevant intertaxa differences, use of similar morphofunctional models in determining the diffusing capacities of various gas exchangers is warranted.

  2. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  3. Fabrication, characterization, and modeling of microvascular composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  4. Neoclassical transport properties and their limits in NSTX

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P. I.; Shaing, K. C.

    2001-10-01

    The low aspect ratio and low toroidal field of NSTX enhance its neoclassical transport properties, but also push the limits of standard neoclassical models. Particle and energy transport, plasma rotation, the radial electric field, and bootstrap current are examined for typical NSTX discharges. Regimes of inward and outward impurity transport driven by a combination of the inductive electric field (Ware pinch), inward transport on the deuterium density gradient, and outward transport on the ion temperature gradient are identified. Orbit losses and atomic physics effects near the plasma boundary lead to modifications in the bootstrap current and impurity transport properties in the H-mode pedestal. Potato orbit effects near the axis, included as a viscosity modification, can enhance the ion energy transport, but are reduced by orbit squeezing. The low aspect ratio and high beta of NSTX plasmas provide a critical test of the limits of neoclassical theory.

  5. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  6. Stacking-dependent transport properties in few-layers graphene

    NASA Astrophysics Data System (ADS)

    Lima, Matheus Paes; Padilha, José Eduardo; Pontes, Renato Borges; Fazzio, Adalberto; Silva, Antônio José Roque da

    2017-01-01

    By performing ab initio electronic structure and transport calculations, we investigated the effects of the stacking order (Bernal (AB) and rhombohedral (ABC)) as well as the number of layers, in the electronic structure and charge transport of few-layers graphene (FLG). We observed that for the ABC stack the transport properties are derived from surface states close to the Fermi level connected to dispersive states with an exponential penetration towards the inner layers, whereas for the AB stacking the transport is distributed over all layers. We present a simple model for the resistances as a function of the number of layers which contemplates the different contribution of the surface and inner layers for the transport. However, even if the stackings AB and ABC present completely different electronic and transport properties, both present the same cohesive energies, showing the absence of a thermodynamical preference for a given kind of stacking.

  7. PROPERTIES OF INTERFACES AND TRANSPORT ACROSS THEM

    EPA Science Inventory

    Much of the biological activity in cell cytoplasm occurs in compartments which are thought to form by phase separation, and many of the functions of these compartments occur by the transport or exchange of molecules across interfaces. Thus, a fundamentally based discussion of th...

  8. Therapeutic Effects of PPARα on Neuronal Death and Microvascular Impairment

    PubMed Central

    Moran, Elizabeth P.; Ma, Jian-xing

    2015-01-01

    Peroxisome-proliferator activated receptor-alpha (PPARα) is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE) in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα's effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications. PMID:25705219

  9. Physical transport properties of marine microplastic pollution

    NASA Astrophysics Data System (ADS)

    Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.

    2012-12-01

    Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.

  10. Direct ink writing of microvascular networks

    NASA Astrophysics Data System (ADS)

    Wu, Willie

    Nature is replete with examples of embedded microvascular systems that enable efficient fluid flow and distribution for autonomic healing, cooling, and energy harvesting. The ability to incorporate microvascular networks in functional materials systems is therefore both scientifically and technologically important. In this PhD thesis, the direct-write assembly of planar and 3D biomimetic microvascular networks within polymer and hydrogel matrices is demonstrated. In addition, the influence of network design of fluid transport efficiency is characterized. Planar microvascular networks composed of periodic lattices of uniformal microchannels and hierarchical, branching architectures are constructed by direct-write assembly of a fugitive organic ink. Several advancements are required to facilitate their patterning, including pressure valving, dual ink printing, and dynamic pressure variation to allow tunable control of ink deposition. The hydraulic conductance is measured using a high pressure flow meter as a function of network design. For a constant vascular volume and areal coverage, 2- and 4-generation branched architectures that obey Murray's Law exhibited the highest hydraulic conductivity. These experimental observations are in good agreement with predictions made by analytic models. 3D microvascular networks are fabricated by omnidirectional printing a fugitive organic ink into a photopolymerizable hydrogel matrix that is capped with fluid filler of nearly identical composition. Using this approach, 3D networks of arbitrary design can be patterned. After ink deposition is complete, the matrix and fluid filler are chemically cross-linked via UV irradiation, and the ink is removed by liquefication. Aqueous solutions composed of a triblock copolymer of polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO constitute the materials system of choice due to their thermal- and concentration-dependent phase behavior. Specifically, the fugitive ink consists of a 23 w

  11. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  12. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  13. High temperature transport properties of air

    NASA Technical Reports Server (NTRS)

    Levin, E.; Partridge, Harry; Stallcop, J. R.

    1987-01-01

    A general computer code was developed to allow calculation of atom-atom and ion-atom transport collision integrals from accurate potential energy curves described by a set of discrete data points for a broad range of scattering conditions. This code is based upon semiclassical approximations that properly account for quantum mechanical behavior such as tunneling effects near a barrier maximum, resonance charge exchange, and nuclear symmetry effects. Transport collision integrals were determined for N-N, O-O, N(+)-N, and O(+)-O interactions from complete sets of accurate potential functions derived from combined experimental and ab initio structure calculations. For the O-O case, this includes results for excited states. The calculated values of the N(+)-N and O(+)-O resonance charge exchange cross section Q(ex) agree well with measurements from beam experiment that are available at high energies where the diffusion cross section Q(d) satisfies Q(d) approximately equal to 2Q(ex).

  14. Multiple Functions of Glutamate Uptake via Meningococcal GltT-GltM l-Glutamate ABC Transporter in Neisseria meningitidis Internalization into Human Brain Microvascular Endothelial Cells

    PubMed Central

    Yanagisawa, Tatsuo; Kim, Kwang Sik; Yokoyama, Shigeyuki; Ohnishi, Makoto

    2015-01-01

    We previously reported that Neisseria meningitidis internalization into human brain microvasocular endothelial cells (HBMEC) was triggered by the influx of extracellular l-glutamate via the GltT-GltM l-glutamate ABC transporter, but the underlying mechanism remained unclear. We found that the ΔgltT ΔgltM invasion defect in assay medium (AM) was alleviated in AM without 10% fetal bovine serum (FBS) [AM(−S)]. The alleviation disappeared again in AM(−S) supplemented with 500 μM glutamate. Glutamate uptake by the ΔgltT ΔgltM mutant was less efficient than that by the wild-type strain, but only upon HBMEC infection. We also observed that both GltT-GltM-dependent invasion and accumulation of ezrin, a key membrane-cytoskeleton linker, were more pronounced when N. meningitidis formed larger colonies on HBMEC under physiological glutamate conditions. These results suggested that GltT-GltM-dependent meningococcal internalization into HBMEC might be induced by the reduced environmental glutamate concentration upon infection. Furthermore, we found that the amount of glutathione within the ΔgltT ΔgltM mutant was much lower than that within the wild-type N. meningitidis strain only upon HBMEC infection and was correlated with intracellular survival. Considering that the l-glutamate obtained via GltT-GltM is utilized as a nutrient in host cells, l-glutamate uptake via GltT-GltM plays multiple roles in N. meningitidis internalization into HBMEC. PMID:26099588

  15. Transport properties of porous media from the microstructure

    SciTech Connect

    Torquato, S.

    1995-12-31

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  16. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  17. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  18. Magnetothermoelectric transport properties of multiterminal graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Miao-Miao; Zhang, Ying-Tao; Guo, Ai-Min; Liu, Jian-Jun; Xing, Yanxia; Sun, Qing-Feng

    2016-06-01

    The Peltier effect and the Ettingshausen effect are investigated in graphene nanoribbons, where charge current produces heat current along the longitudinal direction in the former case, and longitudinal charge current generates transverse heat current in the latter case. With the aid of the nonequilibrium Green's function and the Landauer-Büttiker formalism, the Peltier coefficient Πc and the Ettingshausen coefficient Ec are obtained. We found that the Kelvin relation is always valid for the longitudinal thermoelectric transport, i.e., Πc=T Sc , with T the temperature and Sc the Seebeck coefficient. In contrast, for transverse magnetothermoelectric transport, the Kelvin relation breaks down and Ec≠T Nc usually, with Nc the Nernst coefficient. In the region of weak magnetic field, the Ettingshausen effect depends strongly on device parameters. When the Fermi energy EF is close to the Dirac point, the Ettingshausen effect of the semiconducting armchair graphene nanoribbon is much stronger than that of the metallic one. When EF is far away from the Dirac point, the Ettingshausen coefficient Ec oscillates around zero. When under a strong magnetic field, Ec is independent of the device parameters and swells only near the Dirac point. Further, the dependence of Ec on EF can be scaled by EF/kBT , with a peak value of (2 ln2 ) kBT /e for the three-terminal system and (4/3 ln2 ) kBT /e for the four-terminal system. We also study the impact of disorder on the Ettingshausen effect. Regardless of the magnetic field strength, Ec is robust against moderate disorder scattering. In addition, in the strong magnetic field, Ec with additional regular oscillating structure can be caused by disorder.

  19. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  20. Transport properties of high-temperature Jupiter atmosphere components

    SciTech Connect

    Bruno, D.; Colonna, G.; De Pascale, O.; Laricchiuta, A.; Catalfamo, C.; Diomede, P.; Capitelli, M.; Gorse, C.; Longo, S.; Giordano, D.; Pirani, F.

    2010-11-15

    Transport properties of high-temperature helium and hydrogen plasmas as well as Jupiter atmosphere have been calculated for equilibrium and nonequilibrium conditions using higher approximations of the Chapman-Enskog method. A complete database of transport cross sections for relevant interactions has been derived, including minority species, by using both ab initio and phenomenological potentials. Inelastic collision integrals terms, due to resonant charge-exchange channels, have been also considered.

  1. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  2. Transport properties in nontwist area-preserving maps

    DOE PAGES

    Szezech Jr., J. D.; Caldas, I. L.; Lopes, S. R.; ...

    2009-10-23

    Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds.

  3. Measurement of the radiative transport properties of reticulated alumina foams

    SciTech Connect

    Hale, M.J.; Bohn, M.S.

    1992-12-01

    This paper presents a method for determining radiative transport properties of reticulated materials. The method has both experimental and analytical components. A polar nephelometer is used to measure the scattering profile of a sample of the reticulated material. The results of a Monte Carlo simulation of the experiment are then combined with the experimental results to give the scatter albedo and extinction coefficient. This paper presents the results of using this method to determine the radiative transport properties of four different porosities (10, 20, 30, 65 pores per inch) of cylindrical reticulated alumina samples ranging in thickness form 0.5 inches to 2. 5 inches.

  4. Quantum-walk transport properties on graphene structures

    NASA Astrophysics Data System (ADS)

    Bougroura, Hamza; Aissaoui, Habib; Chancellor, Nicholas; Kendon, Viv

    2016-12-01

    We present numerical studies of quantum walks on C60 and related graphene structures to investigate their transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks on graphs provide an abstract setting in which to study such transport properties independent of the other chemical and physical properties of a physical substance. They can thus be used to further the understanding of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is semiconducting.

  5. Microvascular Materials for Mass and Energy Transport

    DTIC Science & Technology

    2012-08-01

    50 μm 250 μm 250 μm • Varying diameters of range 20-500 μm ! 1 mm 500 200 20 Different Micro-Fabrication Methods for Materials: Hamburger to...C. McDonald, X. Jiang, P. LeDuc , M. ‐H Wu, D. E. Ingber, G. M. Whitesides, Adv. Mat. 2001, 13, 570–574 0 -700 \\ §. 600 -s; I "-6 o, -’- 500 :F

  6. Transport Properties of Metallic Ruthenates: A DFT +DMFT Investigation

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel

    2016-06-01

    We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr2RuO4 , Sr3 Ru2 O7 , SrRuO3 , and CaRuO3 , within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr2 RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity.

  7. Technological Support of Critical Parts for Railway Transport Working Properties

    NASA Astrophysics Data System (ADS)

    Gabets, A. V.; Gabets, D. A.; Markov, A. M.; Radchenko, M. V.; Leonov, S. L.

    2017-01-01

    The materials of complex research of operational properties of a new brand cast iron CHMN-35M. Optimal chemical composition was determined. The obtained results allow to conclude about possibility of its use for the manufacture of critical parts of rolling stock of railway transport, in particular of a side bearing cap

  8. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

    National Institute of Standards and Technology Data Gateway

    SRD 23 NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) (PC database for purchase)   NIST 23 contains revised data in a Windows version of the database, including 105 pure fluids and allowing mixtures of up to 20 components. The fluids include the environmentally acceptable HFCs, traditional HFCs and CFCs and 'natural' refrigerants like ammonia

  9. Transport properties in semiconducting NbS{sub 2} nanoflakes

    SciTech Connect

    Huang, Y. H.; Chen, R. S. Ho, C. H.; Peng, C. C.; Huang, Y. S.

    2014-09-01

    The electronic transport properties in individual niobium disulphide (NbS{sub 2}) nanoflakes mechanically exfoliated from the bulk crystal with three rhombohedral (3R) structure grown by chemical vapor transport were investigated. It is found that the conductivity values of the single-crystalline nanoflakes are approximately two orders of magnitude lower than that of their bulk counterparts. Temperature-dependent conductivity measurements show that the 3R-NbS{sub 2} nanoflakes exhibit semiconducting transport behavior, which is also different from the metallic character in the bulk crystals. In addition, the noncontinuous conductivity variations were observed at the temperature below 180 K for both the nanoflakes and the bulks, which is attributed to the probable charge density wave transition. The photoconductivities in the semiconducting nanoflakes were also observed under the excitation at 532 nm wavelength. The probable mechanisms resulting in the different transport behaviors between the NbS{sub 2} nanostructure and bulk were discussed.

  10. Measurement of gas transport properties for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  11. Transport properties of silicate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Gaudio, S. J.; Clark, A. N.; O'Dwyer-Brown, L.

    2012-12-01

    It is well appreciated that the transport properties (e.g., diffusion, viscosity) of silicate melts are intimately linked by melt structure and the time scales of structural relaxation. These linkages have been explored exten-sively at low pressure, but our understanding is more limited for high-pressure conditions relevant to the Earth's deep interior. Transport property models based on free-volume, activation energy and/or configurational entropy have merits, but their validity in extrapolation is uncertain. Moreover, the structural implications at high pressure are conflicting and lack experimental support. We examine these issues and review theoretical efforts to model transport properties at high pressure, as well as, those constraints provided by laboratory experiments and simulations. We emphasis the need to consider the properties of melt not only for high-pressure superheated conditions, but also for supercooled conditions in the vicinity of the glass transition. For example, the time scales for density relaxation traversing the glass transition at high pressure can be monitored using in situ X-ray miroctomography/absorption and ex vivo by the Archimedes' method combined with spectroscopy. These approaches are amenable to both strong and fragile liquids. Taken together with superliquidus data, we can greatly improve the interpolation of melt properties within the melting interval for refractory mantle compositions.

  12. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-07

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  13. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  14. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  15. Transport properties of the Fermi hard-sphere system

    SciTech Connect

    Mecca, Angela; Lovato, Alessandro; Benhar, Omar; Polls, Artur

    2016-03-01

    The transport properties of neutron star matter play an important role in many astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy ν = 2, that can be regarded as a model of pure neutron matter. Our approach is based on the effective interaction obtained from the formalism of correlated basis functions and the cluster expansion technique. The resulting transport coefficients show a strong sensitivity to the quasiparticle effective mass, reflecting the effect of second-order contributions to the self-energy that are not taken into account in nuclear matter studies available in the literature.

  16. Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Gräfe, C.; Slabu, I.; Wiekhorst, F.; Bergemann, C.; von Eggeling, F.; Hochhaus, A.; Trahms, L.; Clement, J. H.

    2016-06-01

    Crossing the blood-brain barrier is an urgent requirement for the treatment of brain disorders. Superparamagnetic iron oxide nanoparticles (SPIONs) are a promising tool as carriers for therapeutics because of their physical properties, biocompatibility, and their biodegradability. In order to investigate the interaction of nanoparticles with endothelial cell layers in detail, in vitro systems are of great importance. Human brain microvascular endothelial cells are a well-suited blood-brain barrier model. Apart from generating optimal conditions for the barrier-forming cell units, the accurate detection and quantification of SPIONs is a major challenge. For that purpose we use magnetic particle spectroscopy to sensitively and directly quantify the SPION-specific iron content. We could show that SPION concentration depends on incubation time, nanoparticle concentration and location. This model system allows for further investigations on particle uptake and transport at cellular barriers with regard to parameters including particles’ shape, material, size, and coating.

  17. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Maffeis, Thierry G; Kryvchenkova, Olga; Cobley, Richard J; Kalna, Karol; Kepaptsoglou, Despoina M; Ramasse, Quentin M; Walton, Alex S; Ward, Michael B; Köble, Jürgen; Wilks, Steve P

    2015-07-08

    The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in relation to the cross-sectional width of the ZnO nanowires. We observe a distinct Schottky to Ohmic transition in transport behavior at an Au to nanowire diameter ratio of 0.6. The current-voltage electrical measurements performed with a multiprobe instrument are explained using 3-D self-consistent electrostatic and transport simulations revealing that tunneling at the contact edge is the dominant carrier transport mechanism for these nanoscale contacts. The results are applicable to other nanowire materials such as Si, GaAs, and InAs when the effects of surface charge and contact size are considered.

  18. Transport properties of anyons in random topological environments

    NASA Astrophysics Data System (ADS)

    Zatloukal, V.; Lehman, L.; Singh, S.; Pachos, J. K.; Brennen, G. K.

    2014-10-01

    The quasi-one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons of the same type. Two distinct behaviors are identified. We analytically demonstrate that all types of Abelian anyons localize purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localize. This is due to their entanglement with the anyonic environment, which effectively induces dephasing. Our study demonstrates that localization properties strongly depend on nonlocal topological interactions, and it provides a clear distinction in the transport properties of Abelian and non-Abelian anyons.

  19. Transport properties of β-FeSi2

    NASA Astrophysics Data System (ADS)

    Arushanov, Ernest; Lisunov, Konstantin G.

    2015-07-01

    The aim of this paper is to summarize considerable experimental efforts undertaken within the last decades in the investigations of transport properties of β-FeSi2. The β-FeSi2 compound is the most investigated among a family of semiconducting silicides. This material has received considerable attention as an attractive material for optoelectronic, photonics, photovoltaics and thermoelectric applications. Previous reviews of the transport properties of β-FeSi2 have been given by Lange and Ivanenko et al. about 15 years ago. The Hall effect, the conductivity, the mobility and the magnetoresistance data are presented. Main attention is paid to the discussion of the impurity (defect) band conductivity, the anomalous Hall effect, the scattering mechanisms of charge carriers, as well as to the hopping conduction and the magnetoresistance.

  20. Volume transport and property distributions of the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    DiMarco, Steven F.; Chapman, Piers; Nowlin, Worth D.; Hacker, Peter; Donohue, Kathleen; Luther, Mark; Johnson, Gregory C.; Toole, John

    We summarize previous estimates of volume transport and property distributions through the Mozambique Channel and offer additional estimates and measurements based on recently acquired hydrographic and float data. Previously published property distributions are consistent with southward spreading through the Channel. Waters of the Mozambique Channel are characterized by shallow and intermediate oxygen minima separated by a relative maximum. Based on hydrographic sections, the intermediate maximum in dissolved oxygen is seen to decrease in value as it spreads southward. The highest values are found in the westward flow of the South Equatorial Current just north of Madagascar and within the western 200 km of the Channel. Similarly, oxygen concentrations at the intermediate oxygen minimum, which derives from the Arabian Sea, increase southwards, while its depth increases from 900 to 1100 m, supporting previous studies and indicating southward spreading and mixing along the Mozambique Channel. Historical transports based on hydrographic data in the Channel vary from 5 Sv northward to 26 Sv southward depending on reference level and time of the year. Balancing transport below 2500 m (the sill depth in the Channel), we estimate the net southward transports above this depth to be 29.1 and 5.9 Sv for the northern and southern sections, respectively—the difference is presumably related to seasonality and eddy variability superimposed on the mean flow. Individual deep float trajectories show the presence of many eddies, but the overall flow in the channel is southward, and broadly consistent with hydrography. Model outputs also show mean southward transport with considerable seasonal variability. Satellite data show high variability in sea surface height anomalies and high eddy kinetic energy associated with eddy activity. Although the geostrophic transport values are consistent with the historical limits, the lowered ADCP measurements suggest a substantial barotropic

  1. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  2. CALIPSO observations of changes in dust properties during transatlantic transport

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Yang, W.; Varnai, T.; Kostinski, A. B.

    2015-12-01

    The vertical distribution of dust shape and size is highly important for understanding and estimating dust radiative forcing. We used CALIPSO nighttime datasets to examine the vertical structure and evolution of Saharan dust during transatlantic transport. The results show that most Saharan dust is lifted to high altitude and descends after traveling thousands of km-s. Initially, the depolarization ratio and color ratio of Saharan dust are uniformly distributed along altitude, suggesting vertically constant particle size and shape distributions. During transport, the depolarization ratio of Saharan dust drops at lower altitudes, suggesting that particle shapes become less irregular; while at relatively high altitudes, the depolarization ratio of dust increases during transport. The changes observed during transport likely come from the effects of gravitational sorting caused by variations in particle shape and size. A simple model with only two shapes qualitatively captures these features and confirms that shape-induced differential settling contribute significantly to the observed vertical stratification of dust properties. In addition, the effect of clouds on dust properties will be also discussed.

  3. Transport properties of polymer solutions. A comparative approach.

    PubMed Central

    Foster, K R; Cheever, E; Leonard, J B; Blum, F D

    1984-01-01

    A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements. PMID:6733244

  4. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  5. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  6. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  7. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  8. Red Cell Properties after Different Modes of Blood Transportation

    PubMed Central

    Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P.; Mañú-Pereira, María del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars

    2016-01-01

    Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca2+ handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na+, K+, Ca2+) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to

  9. Upscaling flow and transport properties in synthetic porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, Lukasz; Dabrowski, Marcin

    2015-04-01

    Flow and transport through the porous media has instances in nature and industry: contaminant migration in geological formations, gas/oil extraction from proppant filled hydraulic fractures and surrounding porous matrix, underground carbon dioxide sequestration and many others. We would like to understand the behavior of propagating solute front in such medium, mainly flow preferential pathways and the solute dispersion due to the porous medium geometry. The motivation of our investigation is to find connection between the effective flow and transport properties and porous media geometry in 2D and 3D for large system sizes. The challenge is to discover a good way of upscaling flow and transport processes to obtain results comparable to these calculated on pore-scale in much faster way. We study synthetic porous media made of densely packed poly-disperse disk-or spherical-shaped grains in 2D and 3D, respectively. We use various protocols such as the random sequential addition (RSA) algorithm to generate densely packed grains. Imposed macroscopic pressure gradient invokes fluid flow through the pore space of generated porous medium samples. As the flow is considered in the low Reynolds number regime, a stationary velocity field is obtained by solving the Stokes equations by means of finite element method. Void space between the grains is accurately discretized by using body-fitting triangular or tetrahedral mesh. Finally, pure advection of a front carried by the velocity field is studied. Periodicity in all directions is applied to microstructure, flow and transport processes. Effective permeability of the media can be calculated by integrating the velocity field on cross sections, whereas effective dispersion coefficient is deduced by application of centered moment methods on the concentration field of transported solute in time. The effective parameters are investigated as a function of geometrical parameters of the media, such as porosity, specific surface area

  10. Predicting radiative transport properties of plasma sprayed porous ceramics

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2016-03-01

    The typical yttria-stabilized zirconia material for making the thermal barrier coatings (TBCs) is intrinsically semitransparent to thermal radiation, and the unique disordered microstructures in TBCs make them surprisingly highly scattering. To quantitatively understand the influence of disordered microstructures, this paper presents a quantitative prediction on the radiative properties, especially the transport scattering coefficient of plasma sprayed TBC based on microstructure analysis and rigorous electromagnetic theory. The impact of the porosity, shape, size, and orientation of different types of voids on transport scattering coefficient is comprehensively investigated under the discrete dipole approximation. An inverse model integrating these factors together is then proposed to quantitatively connect transport scattering coefficient with microstructural information, which is also validated by available experimental data. Afterwards, an optimization procedure is carried out based on this model to obtain the optimal size and orientation distribution of the microscale voids to achieve the maximal radiation insulation performance at different operating temperatures, providing guidelines for practical coating design and fabrication. This work suggests that the current model is effective and also efficient for connecting scattering properties to microstructures and can be implemented as a quantitative tool for further studies like non-destructive infrared imaging as well as micro/nanoscale thermal design of TBCs.

  11. Morphologic and transport properties of natural organic floc

    USGS Publications Warehouse

    Larsen, L.G.; Harvey, J.W.; Crimaldi, J.P.

    2009-01-01

    The morphology, entrainment, and settling of suspended aggregates ("floc") significantly impact fluxes of organic carbon, nutrients, and contaminants in aquatic environments. However, transport properties of highly organic floc remain poorly understood. In this study detrital floc was collected in the Florida Everglades from two sites with different abundances of periphyton for use in a settling column and in racetrack flume entrainment experiments. Although Everglades flocs are similar to other organic aggregates in terms of morphology and settling rates, they tend to be larger and more porous than typical mineral flocs because of biostabilization processes and relatively low prevailing shear stresses typical of wetlands. Flume experiments documented that Everglades floc was entrained at a low bed shear stress of 1.0 ?? 10-2 Pa, which is considerably smaller than the typical entrainment threshold of mineral floc. Because of similarities between Everglades floc and other organic floc populations, floc transport characteristics in the Everglades typify the behavior of floc in other organic-rich shallow-water environments. Highly organic floc is more mobile than less organic floc, but because bed shear stresses in wetlands are commonly near the entrainment threshold, wetland floc dynamics are often transport-limited rather than supply limited. Organic floc transport in these environments is therefore governed by the balance between entrainment and settling fluxes, which has implications for ecosystem metabolism, materials cycling, and even landscape evolution. Copyright 2009 by the American Geophysical Union.

  12. Rhamnolipid surface thermodynamic properties and transport in agricultural soil.

    PubMed

    Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang

    2014-03-01

    Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport.

  13. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  14. Properties of transportation dynamics on scale-free networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jian-Feng; Gao, Zi-You; Zhao, Xiao-Mei

    2007-01-01

    In this work, we study the statistical properties of transportation dynamics considering congestion effects, based on the standard Barabási-Albert scale-free model. In terms of user equilibrium (UE) condition, congestion effects can be described by cost function. Simulation results demonstrate that the cumulative load distribution exhibits a power-law behavior with Pl∼l, where l is the flow loaded on the node and γ≈2.7 which is much bigger than that obtained in many networks without considering congestion effects. That is, there exist fewer heavily loaded nodes in the network when considering congestion effects. Furthermore, by numerically investigating overload phenomenon of the heaviest loaded link removal in transportation networks, a phase-transition phenomenon is uncovered in terms of the key parameter characterizing the node capacity.

  15. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  16. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  17. Scattering and transport properties of tight-binding random networks

    NASA Astrophysics Data System (ADS)

    Martínez-Mendoza, A. J.; Alcazar-López, A.; Méndez-Bermúdez, J. A.

    2013-07-01

    We study numerically scattering and transport statistical properties of tight-binding random networks characterized by the number of nodes N and the average connectivity α. We use a scattering approach to electronic transport and concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from insulating to metallic behavior in the average scattering matrix elements <|Smn|2>, the conductance probability distribution w(T), the average conductance , the shot noise power P, and the elastic enhancement factor F by varying α from small (α→0) to large (α→1) values. We also show that all these quantities are invariant for fixed ξ=αN. Moreover, we proposes a heuristic and universal relation between <|Smn|2>, , and P and the disorder parameter ξ.

  18. Transport properties of zigzag graphene nanoribbon decorated with copper clusters

    SciTech Connect

    Berahman, M.; Sheikhi, M. H.

    2014-09-07

    Using non-equilibrium green function with density functional theory, the present study investigates the transport properties of decorated zigzag graphene nanoribbon with a copper cluster. We have represented the decoration of zigzag graphene nanoribbon with single copper atom and cluster containing two and three copper atoms. In all the cases, copper atoms tend to occupy the edge state. In addition, we have shown that copper can alter the current-voltage characteristic of zigzag graphene nanoribbon and create new fluctuations and negative differential resistance. These alternations are made due to discontinuity in the combination of orbitals along the graphene nanoribbon. Decoration alters these discontinuities and creates more visible fluctuations. However, in low bias voltages, the changes are similar in all the cases. The study demonstrates that in the decorated zigzag graphene nanoribbon, the edge states are the main states for transporting electron from one electrode to another.

  19. Coefficients for calculating thermodynamic and transport properties of individual species

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.

    1993-01-01

    Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.

  20. Polymerizable ionic liquid with state of the art transport properties.

    PubMed

    Jeremias, Sebastian; Kunze, Miriam; Passerini, Stefano; Schönhoff, Monika

    2013-09-12

    The physicochemical properties of diallyldimethylammonium-bis(trifluoromethanesulfonyl)imide (DADMATFSI) and its binary mixture with LiTFSI are presented herein, also showing this novel compound as a polymerizable room temperature ionic liquid with excellent transport properties for Li(+) ions. In particular, results of pulsed field gradient (PFG)-NMR diffusion experiments and impedance measurements show that DADMATFSI exhibits state of the art properties of ionic liquids. Similar ionic diffusion coefficients and a similarly high conductivity as seen in the benchmark compound N-butyl-N-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (PYR14TFSI) are observed. In accordance, the Li transference number in the binary mixture matches the trend seen for PYR14TFSI-LiTFSI mixtures. In addition to these impressive properties as ionic liquid, DADMATFSI was polymerized by UV treatment. The polymerization is demonstrated and the ion conducting properties of the resulting gel polymer electrolyte are investigated, showing that DADMATFSI can be transformed into an ionogel and may have applications where polymerization is desirable.

  1. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  2. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion

    PubMed Central

    Lee, Dae Hyun; Dane, Martijn J. C.; van den Berg, Bernard M.; Boels, Margien G. S.; van Teeffelen, Jurgen W.; de Mutsert, Renée; den Heijer, Martin; Rosendaal, Frits R.; van der Vlag, Johan; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion. PMID:24816787

  3. Study of electronic transport properties of doped 8AGNR

    SciTech Connect

    Sharma, Uma Shankar; Srivastava, Anurag; Verma, U. P.

    2014-04-24

    The electronic and transport properties of 8-armchair graphene nanoribbon (8AGNR) with defect at different sites are investigated by performing first-principles calculations based on density functional theory (DFT). The calculated results show that the 8AGNR are semiconductor. The introduction of 3d transition metals, creates the nondegenerate states in the conduction band, makes 8AGNR metallic. The computed transmission spectrum confirms that AGNR are semiconducting in nature and their band gap remain unchanged and localized states appear when there is vacancy in their structures, and the conductance decreases due to defects compared with the pristine nanoribbon.

  4. Physical and Optical Polarizability and Transport Properties of Bismuthate Glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    Bismuth-based glasses containing ZnO, B2O3 and Li2O are investigated through different physical, polarizability and transport properties. Raman spectroscopy reveals that these glasses are built from [BiO3] and [BiO6] units. Zinc in tetrahedral form is also observed. Density and glass transition temperature increase with the bismuth content. The refractive index, oxide ion polarizability and optical basicity also increase with the Bi2O3 content, whereas the interaction parameter decreases. The DC electrical conductivity increases and the activation energy decreases with the increase in the Li2O content.

  5. Transport properties of ZrN superconducting films

    SciTech Connect

    Cassinese, A.; Iavarone, M.; Vaglio, R.; Grimsditch, M.; Uran, S.

    2000-12-01

    Superconductivity in nitrides presents intriguing aspects related to the role of optical phonons. In the present paper we report on high-quality superconducting zirconium nitride film preparation and characterization (including Raman scattering) as well as on both dc and microwave frequency transport properties. The high-temperature dc resistivity shows no evidence of saturation effects, possibly due to the low electron-phonon coupling. Surface impedance data can be well fitted by the standard BCS expressions. The data provide further evidence of the ''conventional'' nature of superconductivity in these compounds.

  6. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  7. Transport properties of Fibonacci heterostructures: a nonparabolic approach

    NASA Astrophysics Data System (ADS)

    Palomino-Ovando, M.; Cocoletzi, G. H.

    1998-07-01

    A fourth order hamiltonian is used to explore transport properties of semiconductor Fibonacci heterostructures. The tunneling current and time delay are obtained for different Fibonacci sequences constructed withGaAsandAlxGa1 - xAs. Energy minibands are calculated to study the fractal dimension and critical electronic states in quasi-periodic arrays. Results show that nonparabolic corrections produce changes in the tunneling current, time delay and fractal dimension, and a low voltage shift of the current peaks compared with the parabolic theory. The electronic states preserve their critical nature in the presence of nonparabolic effects.

  8. Transport and magnetic properties of CMR manganites with antidot arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  9. Control of photon transport properties in nanocomposite nanowires

    NASA Astrophysics Data System (ADS)

    Moffa, M.; Fasano, V.; Camposeo, A.; Persano, L.; Pisignano, D.

    2016-02-01

    Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.

  10. Simplified curve fits for the transport properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.

    1987-01-01

    New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).

  11. Transport properties of multigrained nanocomposites with imperfect interfaces

    NASA Astrophysics Data System (ADS)

    Palla, Pier Luca; Giordano, Stefano

    2016-11-01

    Multigrained or polycrystalline composite materials have attracted a considerable attention due to their potential applications as advanced materials with outstanding thermal, mechanical, and electromagnetic properties. When the grains' morphology is displayed at the nanoscopic scale, the presence of imperfect interfaces plays a central role in determining the effective transport properties. Therefore, we develop here a self-consistent effective medium theory able to evaluate the influence of real contacts between the different phases of multigrained composite materials. This approach takes into account the classical interface schemes that have been introduced in literature, namely, the low and the high conducting interface models. The theoretical results have been compared with numerical and experimental data concerning the thermal conductivity of ( 1 - x ) Si : x Ge mixtures and the electrical conductivity of ( 1 - x ) Li 2 O : x B 2 O 3 composites.

  12. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    PubMed

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  13. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  14. Nonlinear Transport and Noise Properties of Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil

    We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.

  15. Topological phases and transport properties of screened interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Xu, Hengyi; Xiong, Ye; Wang, Jun

    2016-10-01

    We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.

  16. TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES

    SciTech Connect

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.

    2010-03-29

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP project, THAMES

  17. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.

    PubMed

    Zhu, Motao; Nie, Guangjun; Meng, Huan; Xia, Tian; Nel, Andre; Zhao, Yuliang

    2013-03-19

    Although a growing number of innovations have emerged in the fields of nanobiotechnology and nanomedicine, new engineered nanomaterials (ENMs) with novel physicochemical properties are posing novel challenges to understand the full spectrum of interactions at the nano-bio interface. Because these could include potentially hazardous interactions, researchers need a comprehensive understanding of toxicological properties of nanomaterials and their safer design. In depth research is needed to understand how nanomaterial properties influence bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological responses. Toxicity of ENMs differ with their size and surface properties, and those connections hold true across a spectrum of in vitro to in vivo nano-bio interfaces. In addition, the in vitro results provide a basis for modeling the biokinetics and in vivo behavior of ENMs. Nonetheless, we must use caution in interpreting in vitro toxicity results too literally because of dosimetry differences between in vitro and in vivo systems as well the increased complexity of an in vivo environment. In this Account, we describe the impact of ENM physicochemical properties on cellular bioprocessing based on the research performed in our groups. Organic, inorganic, and hybrid ENMs can be produced in various sizes, shapes and surface modifications and a range of tunable compositions that can be dynamically modified under different biological and environmental conditions. Accordingly, we cover how ENM chemical properties such as hydrophobicity and hydrophilicity, material composition, surface functionalization and charge, dispersal state, and adsorption of proteins on the surface determine ENM cellular uptake, intracellular biotransformation, and bioelimination versus bioaccumulation. We review how physical properties such as size, aspect ratio, and surface area of ENMs influence the interactions of these materials with biological systems, thereby

  18. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  19. The transport properties of axonal microtubules establish their polarity orientation

    PubMed Central

    1993-01-01

    It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine- axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that

  20. Transport properties of copper with excited electron subsystem

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Migdal, K. P.; Knyazev, D. V.; Inogamov, N. A.; Levashov, P. R.

    2016-11-01

    We have investigated transport properties of an electron subsystem of copper heated by a femtosecond laser pulse. These properties change greatly in comparison with the room temperature solid metal. The electron temperature and pressure profiles significantly depend on these properties in bulk laser targets according to the two-temperature (2T) model. These profiles at the 2T stage are responsible for shock and rarefaction waves' formation. We have developed the analytical model of electroconductivity and heat conductivity of copper which takes into account changes of density, electron and ion temperatures. The model is based on the solution of the Boltzmann equation in the relaxation time approximation for consideration of electron collisions. Also we have carried out the first-principles calculations using the Kubo-Greenwood theory, methods of pseudopotential and linear augmented plane waves which are necessary to evaluate electron wavefunctions. We have provided the check of convergence of all parameters of our first-principles calculations. The results of our analytical model for electro- and heat conductivities are in good agreement with the data obtained using the linearized augmented plane wave (LAPW) method.

  1. Magneto-transport properties of PbSe single crystals

    NASA Astrophysics Data System (ADS)

    Anand, Naween; Martin, Catalin; Gu, Genda; Tanner, David

    PbSe is a low-gap semiconductor with excellent infrared photodetection properties. Here we report our high magnetic field and low temperature electrical properties measurement performed on a moderately doped PbSe single crystals with p-type bulk carrier density of around 1×1018 cm-3. Longitudinal resistance (Rxx) and Hall resistance (Rxy) were simultaneously measured between 0 T and 18 T, and at temperatures between 0.8 K and 25 K, show quantum oscillations above 6 T. The quantum oscillation frequency is ~15 T, giving an estimate for the carrier density of each L pocket in the BZ participating in these oscillations. The effective mass of the free carriers is estimated from the temperature dependence of oscillation amplitudes. Measurements as the magnetic fields is rotated reveal the magneto-transport properties of a 3D-like fermi surface. Dingle temperature and free carrier scattering rate has been estimated and compared to optical measurements. Optical measurements also show a low frequency phonon mode around 45 cm-1 and bandgap of around 0.2 eV along with other interband electronic transitions.

  2. Electrical transport and thermoelectric properties of boron carbide nanowires.

    PubMed

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-07

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  3. Optical and transport properties of dense liquid silica

    SciTech Connect

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Hamel, Sebastien; Root, Seth

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  4. Dynamical and transport properties of liquid gallium at high pressures

    NASA Astrophysics Data System (ADS)

    Sheppard, D.; Mazevet, S.; Cherne, F. J.; Albers, R. C.; Kadau, K.; Germann, T. C.; Kress, J. D.; Collins, L. A.

    2015-06-01

    Quantum molecular dynamics (QMD) simulations are used to calculate the equation of state, structure, and transport properties of liquid gallium along the principal shock Hugoniot. The calculated Hugoniot is in very good agreement with experimental data up to a pressure of 150 GPa as well as with our earlier classical molecular dynamics calculations using a modified embedded atom method (MEAM) potential. The self-diffusion and viscosity calculated using QMD agree with experimental measurements better than the MEAM results, which we attribute to capturing the complexity of the electronic structure at elevated temperatures. Calculations of the DC conductivity were performed around the Hugoniot. Above a density of 7.5 g/cm3, the temperature increases rapidly along the Hugoniot, and the optical conductivity decreases, indicating simple liquid metal behavior.

  5. The electrical transport properties of liquid Rb using pseudopotential theory

    SciTech Connect

    Patel, A. B. Bhatt, N. K. Thakore, B. Y. Jani, A. R.; Vyas, P. R.

    2014-04-24

    Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms the applicability of pseudopotential at very high temperature via temperature dependent pair potential.

  6. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  7. Symmetry analysis of transport properties in helical superconductor junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  8. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  9. Symmetry analysis of transport properties in helical superconductor junctions.

    PubMed

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors [Formula: see text] or [Formula: see text] and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  10. Electrical transport and thermoelectric properties of boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  11. Transport properties of ribbon-shaped carbon fibers: Property-structure relationship

    NASA Astrophysics Data System (ADS)

    Gallego, Nidia Constanza

    Mesophase pitch-based carbon fibers are an ideal material for applications in which high rates of heat dissipation and low mass are required. Unfortunately, the high cost of current commercial high thermal conductivity mesophase pitch-based carbon fibers has limited their use in high volume applications. Understanding how the structure develops during the fiber formation process and how this structure relates to the final fiber properties is the way to optimizing the fiber properties while reducing the processing costs. Ribbon-shaped fibers have been developed at Clemson University and are being evaluated as a low-cost high thermal conductivity alternative fiber to traditional round-shaped fibers. However, the characterization of the thermal transport properties of carbon fibers is a difficult and time-consuming process. The objectives of this study were to evaluate the transport (both thermal and electronic) properties of ribbon-shaped fibers produced from an AR mesophase at different processing conditions, to characterize the structure of these fibers, to study their structure-property relationships, and to develop a model capable of estimating the thermal conductivity of carbon fibers based upon their structural parameters. For this purpose, several sets of ribbon fibers were produced from an AR mesophase at different spinning temperatures and shear rates and heat treated at a final temperature of 2400°C. The electrical resistivities, magnetoresistances and thermal conductivities of these fibers were measured and the structural parameters were determined with x-ray techniques. Two approaches (a short-fiber composite, and a periodic composite) were utilized to model the relationship between the structure of the fiber and its thermal conductivity. The results of this study confirmed that ribbon-shaped fibers develop excellent transport properties at lower graphitization temperatures than those used commercially for round-shaped fibers. Additionally, for the first

  12. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  13. Low temperature carrier transport properties in isotopically controlled germanium

    SciTech Connect

    Itoh, Kohei

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  14. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  15. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  16. Magnetocaloric-transport properties correlation in doped manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.

    2016-05-01

    This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.

  17. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  18. Predicting the transport properties of sedimentary rocks from microstructure

    SciTech Connect

    Schlueter, Erika M.

    1995-01-01

    Understanding transport properties of sedimentary rocks, including permeability, relative permeability, and electrical conductivity, is of great importance for petroleum engineering, waste isolation, environmental restoration, and other applications. These transport properties axe controlled to a great extent by the pore structure. How pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media are investigated analytically and experimentally. Hydraulic and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. Cross-sectional areas and perimeters of individual pores are estimated from two-dimensional scanning electron microscope (SEM) photomicrographs of rock sections. Results, using Berea, Boise, Massilon, and Saint-Gilles sandstones show close agreement between the predicted and measured permeabilities. Good to fair agreement is found in the case of electrical conductivity. In particular, good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement is not very good for well-cemented rocks. The possible reasons for this are investigated. The surface conductance contribution of clay minerals to the overall electrical conductivity is assessed. The effect of partial hydrocarbon saturation on overall rock conductivity, and on the Archie saturation exponent, is discussed. The region of validity of the well-known Kozeny-Carman permeability formulae for consolidated porous media and their relationship to the microscopic spatial variations of channel dimensions are established. It is found that the permeabilities predicted by the Kozeny-Carman equations are valid within a factor of three of the observed values methods.

  19. RELATIONSHIP BETWEEN CELL SURFACE PROPERTIES AND TRANSPORT OF BACTERIA THROUGH SOIL

    EPA Science Inventory

    A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. the bacteria differed markedly in their extent of transport; their hydrophobicity, as...

  20. A dynamic opto-physiological model to effectively interpret retinal microvascular circulation

    NASA Astrophysics Data System (ADS)

    Hassan, Harnani; Hu, Sijung; Dwyer, Vincent M.

    2015-03-01

    The demand of non-invasive ocular screening is rapidly growing due to an increase of age related eye diseases worldwide. An indeed in-depth understanding of optical properties is required to elucidate nature of retinal tissue. The research aims to investigate an effective biomedical engineering approach to allow process region of interests (ROIs) in eyes to reveal physiological status. A dynamic opto-physiological model (DOPM) representing retinal microvascular circulation underlying a diffusion approximation to solve radiative transport theorem (RTT) has being developed to interpret patho-physiological phenomena. DOPM is being applied in imaging photoplethysmography (iPPG) to extract PPG signals from a series of 2D matrix images to access blood perfusion and oxygen saturation distributions. A variation of microvascular circulation could be mapped for an effectively diagnostic screening. The work presents mathematical modelling based ten layers of ocular tissue tested with four set of controlled parameters demontrated detection ratio between normal tissue damage or abnormal tissue and significant change of AC signal amplitude in these tissues. The result shows signicant change of AC signal amplitude in abnormal tissue. The preliminary results show extractable PPG signals from eye fundus video; experimented at five ROIs: whole fundus, optical disk, main vein vessel, lesion area and affected area. The outcome shows optical disk region gave a better performance compared to whole fundus region and main vein vessel. The robustness, miniaturization and artefact reduction capability of DOPM to discriminate oxygenation levels in retina could offer a new insight to access retinal patho-physiological status.

  1. Upscaling of Thermal Transport Properties in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Hao, Y.; Chiaramonte, L.

    2010-12-01

    : Engineered Geothermal Systems (EGS) have garnered significant attention as a possible source of geographically disperse, carbon-free energy without the environmental impact of many other renewable energy sources. However, a significant barrier to the adoption of EGS is the uncertainty in whether a specific site is amenable to engineering and how fluid injection rates can affect, either through stimulation of the fracture network or through deleterious channeling of the thermal fluid, the heat extraction rate possible in a specific reservoir. Because of the uncertainties involved in determining the exact fracture network topology extant in any particular reservoir, it is desirable to have a stochastic description (distribution) of the possible heat extraction rates that could be achieved. This work provides both an approach and application of the approach for simulating several synthetic fracture networks. The approach uses a coupled geomechanics and discrete fracture network (DFN) solver coupled uni-directionally with a reservoir scale, hydro-thermal transport code, the Non-isothermal Unsaturated-Saturated Flow and Transport simulation code (NUFT), to capture the coupled hydro-thermo-mechanical behavior of these synthetic networks. Particular attention is paid to the upscaling approach used to determine effective permeability and thermal transfer coefficients that are used in the dual porosity/permeability (DKM) model employed in NUFT. This upscaling is based on a multi-scale treatment of the domain, starting with the upscaling of permeability from explicitly represented fractures in the DFN model, which considers the fracture-scale effects of fluid injection, to a finely resolved, unstructured mesh representation of the subdomain. Effective properties of this subdomain are then determined for a variety of sub-sampled discrete fracture network topologies. The result catalog of spatially correlated thermal and fluid properties are then used to populate the

  2. Transport properties and nanosensors of oxide nanowires and nanobelts

    NASA Astrophysics Data System (ADS)

    Lao, Changshi

    ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO ID nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property. This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO nanobelts, nanorings and nanosprings. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO, the abundant of available Zn ions in the vapor, and the polar surface dominated effects. These factors contribute to the large abundant available ZnO nanostructures. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Research results obtained here provide a basic and thoroughly understanding the control process and fabrication criteria in building a functional

  3. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    PubMed

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts.

  4. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    SciTech Connect

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  5. Theoretical study on transport properties of topological states of matter

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Chuan

    In condensed matter physics, states of matter are usually classified by symmetry. Topological states of matter describe new quantum states of matter that cannot adiabatically connect to conventional states of matter even though they share the same symmetry. Thus, the discovery of topological states of matter has opened a new research era and attracted intensive research interests in recent years. This dissertation is devoted to the theoretical and numerical study of transport properties of topological states of matter, mainly focusing on two topological systems, time reversal invariant topological insulator nano-structures and the quantum anomalous Hall insulators. The first system studied in this dissertation is time reversal invariant topological insulator, which is an insulating material behaving as an insulator in its interior but with conducting channels on its surface. The conducting surface states of a topological insulator are known as "helical states" due to the spin texture in the momentum space and protected by time reversal symmetry. Helical surface states have been observed in surface sensitive experiments, such as angular-resolved photon emission spectroscopy and scanning tunneling microscopy. However, signatures of topological surface states in transport measurements are complicated by the dominating conduction from bulk channels and strong disorder effect. Therefore, in this dissertation, we numerically study transport in disordered topological insulator nano-structures, e.g. nanowires and nanotubes, which possess a larger surfaceto-volume ratio compared to bulk systems. For a topological insulator nanowire, it is found that a gapless mode with linear dispersion, which is refered to as a topological state in the main text, arises when a half-integer magnetic flux quantum is inserted along the nanowire. We find that topological states possess a longer localization length than other non-topological states. Thus, for a long nanowire or nanotube, a

  6. Momentum and spin transport properties of spin polarized Fermi systems

    NASA Astrophysics Data System (ADS)

    Wei, Lijuan

    We carried out experiments on a spin polarized 3He- 4He mixture with 3He concentration x 3 = 6.26 x 10-4, and on pure 3He liquid. Spin polarization affects the transport properties of these Fermi systems. The effect on momentum transport was studied by using a vibrating-wire viscometer to measure viscosity of the 3He-4He mixture over the temperature range 6.09 mK--100 mK in 7.96 T and 1.00 T magnetic fields. A large viscosity increase was observed upon application of the 7.96 T magnetic field for temperature T < TF(TF = 19.5 mK is the Fermi temperature). The observed viscosity is in very good agreement with theoretical calculations for a dilute Fermi gas by Jeon and Mullin [1988, 1989] and Mullin and Jeon [1992]. The polarization effect on spin transport was investigated by measuring the transverse diffusion coefficient D ⊥ in pure 3He liquid at saturated vapor pressure and at 15.85 bar over the temperature range 4.5 mK--159 mK in a 7.96 T magnetic field. We used a pulsed NMR spin echo technique in a field gradient of 16.0 G/cm to do the measurements and fits to the Leggett equations [1970] to obtain D⊥. For T < 20 mK, we found D⊥ is less than measured in earlier experiments at lower magnetic fields. D⊥ does not increase with decreasing temperature as 1/T2, but appears to approach a constant as T → 0 while it is expected that the longitudinal spin diffusion coefficient D∥ ∝ 1/ T2. This is called spin diffusion anisotropy and it was observed for the first time in our 3He liquid experiments. The anisotropy temperature we determined for 3He liquid was Ta = 16.4 +/- 2.2 mK at saturated vapor pressure and in a 7.96 T magnetic field. The transverse spin diffusion in 3 He results agree qualitatively with theories proposed by Meyerovich and Musaeflan [1992, 1994]. They also agree qualitatively with theories proposed by Golosov and Ruckenstein [1995, 1998] by extrapolation of the dilute theory to a strongly interacting system.

  7. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  8. Transport properties of damaged materials. Cementitious barriers partnership

    SciTech Connect

    Langton, C.

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  9. Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati

    Increasing energy demands and decreasing natural energy resources have sparked search for alternative clean and renewable energy sources. For instance, currently there is a tremendous interest in thermoelectric and photovoltaic solar energy production technologies. Half-Heusler (HH) alloys are among the most popular material systems presently under widespread investigations for high temperature thermoelectric energy conversion. Approaches to increase the thermoelectric figure of merit (ZT) of HH range from (1) chemical substitution of atoms with different masses within the same atomic position in the crystal structure to optimize carrier concentration and enhance phonon scattering via mass fluctuation and (2) embedding secondary phonon scattering centers in the matrix (nanostructuring) to further reduce thermal conductivity. This work focuses on three material systems. The first part describes the synthesis and properties (thermal conductivity, electrical conductivity, magnetic) of various oxide nanostructures (NiO, Co3O4) which were subsequently used as inclusion phases in a HH matrix to reduce the thermal conductivity. Detailed reviews of the past efforts along with the current effort to optimize synthetic routes are presented. The effects of the synthesis conditions on the thermoelectric properties of compacted pellets of NiO and Co3O4 are also discussed. The second part of the work discusses the development of synthetic strategies for the fabrication of p-type and n-type bulk nanostructured thermoelectric materials made of a half-Heusler matrix based on (Ti,Hf)CoSb, containing nanostructures with full-Heusler (FH) compositions and structures coherently embedded inside the half-Heusler matrix. The role of the nanostructures in the regulation of phonon and charge carrier transports within the half-heusler matrix is extensively discussed by combining transport data and electron microscopy images. It was found that the FH nanoinclusions form staggered

  10. Polymorphous silicon: Transport properties and solar cell applications

    SciTech Connect

    Longeaud, C.; Kleider, J.P.; Gauthier, M.; Brueggemann, R.; Poissant, Y.; Cabarrocas, P.R.

    1999-07-01

    Transport properties of hydrogenated polymorphous silicon layers (pm-Si:H) deposited at 150 C under various pressures in the range 80--293 Pa in sandwich (Schottky and p-i-n diodes) and coplanar structures have been compared to those of hydrogenated amorphous silicon (a-Si:H) samples deposited at the same temperature in standard conditions. The layers have been studied as-deposited, annealed and after light-soaking. With increasing pressure up to 240 Pa: (1) the density of states above the Fermi level decreases as determined by means of the modulated photocurrent technique, (2) the mobility-lifetime products of electrons and holes measured by means of steady-state photoconductivity and photocarrier grating techniques both increase. The highest values for the diffusion length of minority carriers exceed 200 nm. Capacitance measurements as a function of frequency and temperature show that the density of states at the Fermi level is lower in the pm-Si:H than in the a-Si:H films. After light-soaking the diffusion length of minority carriers in a-Si:H is reduced by a factor of two whereas it is less reduced or not affected in the pm-Si:H layers. Solar cells including this new material present an excellent stability.

  11. Magnetic and transport properties of PrRhSi3.

    PubMed

    Anand, V K; Adroja, D T; Hillier, A D

    2013-05-15

    We have investigated the magnetic and transport properties of a noncentrosymmetric compound PrRhSi3 by dc magnetic susceptibility χ(T), isothermal magnetization M(H), thermoremanent magnetization M(t), specific heat Cp(T), electrical resistivity ρ(T,H) and muon spin relaxation (μSR) measurements. At low fields χ(T) shows two anomalies near 15 and 7 K with an irreversibility between ZFC and FC data below 15 K. In contrast, no anomaly is observed in Cp(T) or ρ(T) data. M(H) data at 2 K exhibit very sharp increase below 0.5 T and a weak hysteresis. M(t) exhibits very slow relaxation, typical for a spin-glass system. Even though the absence of any anomaly in Cp(T) is consistent with the spin-glass type behavior, there is no obvious origin of spin-glass behavior in this structurally well ordered compound. The crystal electric field (CEF) analysis of Cp(T) data indicates a CEF-split singlet ground state lying below a doublet at 81(1) K and a quasi-triplet at 152(2) K. The ρ(T) data indicate a metallic behavior, and ρ(H) exhibits a very high positive magnetoresistance, as high as ~300% in 9 T at 2 K. No long range magnetic order or spin-glass behavior was detected in a μSR experiment down to 1.2 K.

  12. Defects and transport properties of molybdenum doped indium oxide

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Gessert, Timothy; Wood, David; Coutts, Timothy

    2004-03-01

    Mo-doped indium oxide (IMO) films were deposited using an r.f. magnetron sputtering system under various oxygen concentrations. Using the `method of four coefficients', the conductivity, Hall, Nernst, and Seebeck coefficients were measured for IMO. These coefficients can be used with solutions to the Boltzmann transport equation to extract the carrier density-of-states effective mass, the Fermi level relative to the conduction-band minimum, and an energy-dependent scattering parameter related to the scattering mechanism. We find the conduction band is parabolic with a band effective mass of ˜ 0.32 me over a carrier concentration range from 4×10^19 to 5× 10^20 cm-3, indicating that relaxation time controls mobility in IMO. Temperature-dependent Hall measurements show that phonon and ionized-impurity scattering dominate at high mobility and high carrier concentration, respectively. We will also discuss possible defects in the film using XPS and electrical property data.

  13. Transport properties of C and O in UN fuels

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär

    2017-03-01

    Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.

  14. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  15. Computational rock physics: Transport properties in porous media and applications

    NASA Astrophysics Data System (ADS)

    Keehm, Youngseuk

    Earth sciences is undergoing a gradual but massive shift from descriptions of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled, and take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks: a nonlinear, coupled, and time-dependent problem in complex microgeometry. To understand these complex processes, the knowledge of the underlying pore-scale processes is essential. This work focuses on building transport process simulators in realistic pore microstructures. These pore-scale simulators will be modules of a computational rock physics framework with future acoustic, elastic, electrical and NMR property simulators. This computational environment can significantly complement the physical laboratory, with several distinct advantages: rigorous prediction of physical properties, interrelations among the physical properties, and simulation of dynamic problems with multiple physical responses. This dissertation is initiative for the computational rock physics framework---a quantitative model for coupled, nonlinear, transient and complex behavior of earth systems. A rigorous pore-scale simulation requires three important traits: reliability, efficiency, and the ability to handle complex microgeometry. We implemented single-phase and two-phase flow simulators using the Lattice-Boltzmann algorithm, since it handles very complex pore geometries without idealization of the pore space. The single-phase flow simulator successfully replicates fluid flow in a digital representation of real sandstone, and predicts permeability very accurately. Furthermore, two applications using the single-phase flow simulator are proposed: a permeability estimation technique from thin sections, and diagenesis modeling with fluid flow. These two applications show the potential applicability of this robust

  16. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Astrophysics Data System (ADS)

    Gordon, S.; McBride, B.; Zeleznik, F. J.

    1984-10-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  17. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  18. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the

  19. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect

    Porytsky, P.; Krivtsun, I.; Demchenko, V.; Reisgen, U.; Mokrov, O.; Zabirov, A.; Gorchakov, S.; Timofeev, A.; Uhrlandt, D.

    2013-02-15

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  20. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  1. Roles of LOX-1 in microvascular dysfunction.

    PubMed

    Lubrano, Valter; Balzan, Silvana

    2016-05-01

    Studies from human and animal models with metabolic disease and hypertension highlight atrophic remodeling, reduced lumen size and thinner vascular walls of microvessels with profound density reduction. This impaired vascular response limits the perfusion of peripheral tissues inducing organ damage. These conditions are strongly associated with oxidative stress and in particular with the up-regulation of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Several factors such as cytokines, shear stress, and advanced glycation end-products, especially oxLDL, can up-regulate LOX-1. The activation of this receptor induces the production of adhesion molecules, cytokines and the release of reactive oxygen species via NADPH oxidase. LOX-1 is considered a potent mediator of endothelial dysfunction and it is significantly associated with reduced microvascular endothelium NO-dependent vasodilation in hypercholesterolemia and hypertension. Microvascular endothelial cells increased the expression of IL-6 in association with the increased concentration of LDL and its degree of oxidation. Moreover, increased IL-6 levels are associated with up-regulation of LOX-1 in a dose-dependent manner. Another consequence of microvascular inflammation is the generation of small amounts of ROS, similar to those induced by low concentration of oxLDL (<5 μg/mL) which induces capillary tube formation of endothelial cells, through LOX-1 up-regulation. In light of its central role, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases and microvascular disorders.

  2. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport.

    PubMed

    Coates, Nelson E; Yee, Shannon K; McCulloch, Bryan; See, Kevin C; Majumdar, Arun; Segalman, Rachel A; Urban, Jeffrey J

    2013-03-20

    The electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.

  3. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  4. Informational dynamics of vasomotion in microvascular networks: a review.

    PubMed

    Pradhan, R K; Chakravarthy, V S

    2011-02-01

    Vasomotion refers to spontaneous oscillation of small vessels observed in many microvascular beds. It is an intrinsic phenomenon unrelated to cardiac rhythm or neural and hormonal regulation. Vasomotion is found to be particularly prominent under conditions of metabolic stress. In spite of a significant existent literature on vasomotion, its physiological and pathophysiological roles are not clear. It is thought that modulation of vasomotion by vasoactive substances released by metabolizing tissue plays a role in ensuring optimal delivery of nutrients to the tissue. Vasomotion rhythms exhibit a great variety of temporal patterns from regular oscillations to chaos. The nature of vasomotion rhythm is believed to be significant to its function, with chaotic vasomotion offering several physiological advantages over regular, periodic vasomotion. In this article, we emphasize that vasomotion is best understood as a network phenomenon. When there is a local metabolic demand in tissue, an ideal vascular response should extend beyond local microvasculature, with coordinated changes over multiple vascular segments. Mechanisms of information transfer over a vessel network have been discussed in the literature. The microvascular system may be regarded as a network of dynamic elements, interacting, either over the vascular anatomical network via gap junctions, or physiologically by exchange of vasoactive substances. Drawing analogies with spatiotemporal patterns in neuronal networks of central nervous system, we ask if properties like synchronization/desynchronization of vasomotors have special significance to microcirculation. Thus the contemporary literature throws up a novel view of microcirculation as a network that exhibits complex, spatiotemporal and informational dynamics.

  5. Tuning the electronic transport properties of grapheme through functionalisation with fluorine.

    PubMed

    Withers, Freddie; Russo, Saverio; Dubois, Marc; Craciun, Monica F

    2011-09-12

    We demonstrate the possibility to tune the electronic transport properties of graphene mono-layers and multi-layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping (VRH) in two dimensions to Efros-Shklovskii VRH. Multi-layer fluorinated graphene with high concentration of fluorine show two-dimensional Mott VRH transport, whereas CF0.28 multi-layer flakes exhibit thermally activated transport through near neighbour hopping. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.

  6. Quantum chaos and electron transport properties in a quantum waveguide

    NASA Astrophysics Data System (ADS)

    Lee, Hoshik

    We numerically investigate electron transport properties in an electron waveguide which can be constructed in 2DEG of the heterostructure of GaAs and AlGaAs. We apply R-matrix theory to solve a Schrodinger equation and construct a S-matrix, and we then calculate conductance of an electron waveguide. We study single impurity scattering in a waveguide. A delta-function model as a single impurity is very attractive, but it has been known that delta-function potential does not give a convergent result in two or higher space dimensions. However, we find that it can be used as a single impurity in a waveguide with the truncation of the number of modes. We also compute conductance for a finite size impurity by using R-matrix theory. We propose an appropriate criteria for determining the cut-off mode for a delta-function impurity that reproduces the conductance of a waveguide when a finite impurity presents. We find quantum scattering echoes in a ripple waveguide. A ripple waveguide (or cavity) is widely used for quantum chaos studies because it is easy to control a particle's dynamics. Moreover we can obtain an exact expression of Hamiltonian matrix with for the waveguide using a simple coordinate transformation. Having an exact Hamiltonian matrix reduces computation time significantly. It saves a lot of computational needs. We identify three families of resonance which correspond to three different classical phase space structures. Quasi bound states of one of those resonances reside on a hetero-clinic tangle formed by unstable manifolds and stable manifolds in the phase space of a corresponding classical system. Resonances due to these states appear in the conductance in a nearly periodic manner as a function of energy. Period from energy frequency gives a good agreement with a prediction of the classical theory. We also demonstrate wavepacket dynamics in a ripple waveguide. We find quantum echoes in the transmitted probability of a wavepacket. The period of echoes also

  7. Equations of state and transport properties of mixtures in the warm dense regime

    SciTech Connect

    Hou, Yong; Dai, Jiayu; Kang, Dongdong; Ma, Wen; Yuan, Jianmin

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide region of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.

  8. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  9. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  10. 41 CFR 302-7.10 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.10 Is property acquired en route eligible for transportation...

  11. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.11 Is property acquired en route eligible for transportation...

  12. 41 CFR 302-7.10 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.10 Is property acquired en route eligible for transportation...

  13. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.11 Is property acquired en route eligible for transportation...

  14. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  15. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  16. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    PubMed Central

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  17. Treatment of hemimasticatory spasm with microvascular decompression.

    PubMed

    Wang, Yong-Nan; Dou, Ning-Ning; Zhou, Qiu-Meng; Jiao, Wei; Zhu, Jin; Zhong, Jun; Li, Shi-Ting

    2013-01-01

    Hemimasticatory spasm is a rare disorder characterized by paroxysmal involuntary contraction of the jaw-closing muscles. As the ideology and pathogenesis of the disease are still unclear, there has been no treatment that could give rise to a good outcome so far. Herein, we tried to use surgical management to cure the disease. Six patients with the disease were included in this study. These patients underwent microvascular decompression of the motor fibers of the trigeminal root. After the operation, all faces of the patients felt relaxed at varied degrees, except for 1 patient. Our study showed that microvascular decompression of the trigeminal nerve could lead to a better outcome. However, a control study with a large sample is needed before this technique is widely used.

  18. Microvascular Targets for Anti-Fibrotic Therapeutics

    PubMed Central

    Pu, Kai-Ming T.; Sava, Parid; Gonzalez, Anjelica L.

    2013-01-01

    Fibrosis is characterized by excessive extracellular matrix deposition and is the pathological outcome of repetitive tissue injury in many disorders. The accumulation of matrix disrupts the structure and function of the native tissue and can affect multiple organs including the lungs, heart, liver, and skin. Unfortunately, current therapies against the deadliest and most common fibrosis are ineffective. The pathogenesis of fibrosis is the result of aberrant wound healing, therefore, the microvasculature plays an important role, contributing through regulation of leukocyte recruitment, inflammation, and angiogenesis. Further exacerbating the condition, microvascular endothelial cells and pericytes can transdifferentiate into matrix depositing myofibroblasts. The contribution of the microvasculature to fibrotic progression makes its cellular components and acellular products attractive therapeutic targets. In this review, we examine many of the cytokine, matrix, and cellular microvascular components involved in fibrosis and discuss their potential as targets for fibrotic therapies with a particular focus on developing nanotechnologies. PMID:24348218

  19. Sex-Specific Factors in Microvascular Angina

    PubMed Central

    Humphries, Karin H.; Bairey Merz, C. Noel

    2014-01-01

    Among women presenting for evaluation of suspected ischemic symptoms, a diagnosis of normal coronary arteries is five times more common, as compared to men. These women are often labeled as cardiac syndrome X (CSX), a subset of which have microvascular angina (MA) due to microvascular coronary dysfunction (MCD). MCD is not benign and is associated with an annual 2.5% cardiac event rate. Non-invasive testing for MCD remains insensitive although newer imaging modalities such as adenosine cardiac magnetic resonance imaging (CMRI) appear promising. The gold standard for diagnosis of MCD is coronary reactivity testing (CRT), an invasive technique which is not available in many countries. With regard to treatment, large scale trials are lacking. While research is ongoing, the current platform of therapy consists of anti-anginal, anti-platelet and endothelial modifying agents (primarily angiotensin converting enzyme inhibitors and statins). PMID:24582724

  20. Transport properties of dense deuterium-tritium plasmas.

    PubMed

    Wang, Cong; Long, Yao; He, Xian-Tu; Wu, Jun-Feng; Ye, Wen-Hua; Zhang, Ping

    2013-07-01

    Consistent descriptions of the equation of states and information about the transport coefficients of the deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm(3) and a temperature of 10(4) eV). Diffusion coefficients and viscosity are compared to the one-component plasma model in different regimes from the strong coupled to the kinetic one. Electronic and radiative transport coefficients, which are compared to models currently used in hydrodynamic simulations of inertial confinement fusion, are evaluated up to 800 eV. The Lorentz number is discussed from the highly degenerate to the intermediate region. One-dimensional hydrodynamic simulation results indicate that different temperature and density distributions are observed during the target implosion process by using the Spitzer model and ab initio transport coefficients.

  1. Vitamin D and retinal microvascular damage

    PubMed Central

    Mutlu, Unal; Ikram, M Arfan; Hofman, Albert; de Jong, Paulus T V M; Uitterlinden, Andre G; Klaver, Caroline C W; Ikram, M Kamran

    2016-01-01

    Abstract Vitamin D has been linked to various cardiovascular risk factors including indices of large-vessel disease. However, it remains unclear whether vitamin D is also associated with microvascular damage. In a community-dwelling population, we studied associations between vitamin D serum levels and retinal microvascular damage defined as retinopathy signs, narrower arterioles, and wider venules. From the population-based Rotterdam Study, we included 5675 participants (age ≥45 years) with vitamin D data and gradable retinal photographs. Serum levels of vitamin D were measured using an antibody-based assay. Retinal exudates, microaneurysms, cotton wool spots, and dot/blot hemorrhages were graded on fundus photographs by experienced graders in the whole sample; retinal vascular calibers, that is, arteriolar and venular diameters, were semiautomatically measured in a subsample (n = 2973). We examined the cross-sectional association between vitamin D and retinal microvascular damage using logistic and linear regression models, adjusting for age, sex, and cardiovascular risk factors. We found that persons with lower vitamin D levels were more likely to have retinopathy (adjusted odds ratio per standard deviation (SD) decrease of vitamin D = 1.30; 95% confidence interval (CI): = 1.12–1.49). Furthermore, lower vitamin D levels were associated with wider venular calibers (adjusted mean difference per SD decrease in vitamin D = 1.35; 95% CI = 0.64–2.06). This association was strongest among men (P for interaction = 0.023). Lower levels of vitamin D are associated with retinal microvascular damage, suggesting that the link with cardiovascular risk may partly run through changes in the microvasculature. PMID:27930528

  2. Laser Optical Biasing of the Quantum Transport Properties of n-InSb.

    DTIC Science & Technology

    1976-10-01

    of the SdH oscillations. The research being done is directed at obtaining fundamental information concerning the effects of CO and CO2 laser radiation on the quantum transport properties on n-InSb. (Author)

  3. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  4. Tuning the ambipolar charge transport properties of tricyanovinyl-substituted carbazole-based materials.

    PubMed

    Reig, Marta; Bagdziunas, Gintautas; Volyniuk, Dmytro; Grazulevicius, Juozas V; Velasco, Dolores

    2017-03-01

    A series of push-pull carbazole-based compounds has been experimentally and theoretically characterized in combination with the X-ray analysis of the corresponding single crystals. The introduction of the strong electron-withdrawing tricyanovinyl group in the carbazole core affords electron-transporting ability in addition to the characteristic hole-transporting properties exhibited by donor carbazole derivatives.

  5. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  6. Transport Properties of the Dust Components in Weakly Ionized Plasma

    SciTech Connect

    Vaulina, O. S.; Adamovich, X. G.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The experimental study of transport processes are presented for the dusty plasma in radio-frequency (RF-) capacitive discharge. Validity of the Langevin and Green-Kubo equations for the description of dynamics of dusty grains is verified. Experimental examination of the Einstein-Stokes relation between the viscosity and diffusion constants is carried out.

  7. Hydrodynamic and Mass Transport Properties of Microfluidic Geometries

    DTIC Science & Technology

    2013-12-01

    Bioanalytical Chemistry, 391:2453–2467, 2008. 18 [34] D. Mark, S. Haeberle, G. Roth , F. Von Setten, and R. Zengerle. Microfluidic lab-on-a-chip platforms...Biophysical Journal, 75:583–594, 1998. 23 [81] T. Mason , A. Pineda, C. Wofsy, and B. Goldstein. Effec- tive Rate Models for the Analysis of Transport

  8. ELECTRONIC AND TRANSPORT PROPERTIES OF THERMOELECTRIC Ru2Si3

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Parker, David

    2013-08-01

    We report calculations of the doping and temperature dependent thermopower of Ru2Si3 based on Boltzmann transport theory and the first principles electronic structure. We find that the performance reported to date can be significantly improved by optimization of the doping level and that ultimately n-type should have higher ZT than p-type.

  9. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.

    PubMed

    Pan, Qing; Wang, Ruofan; Reglin, Bettina; Cai, Guolong; Yan, Jing; Pries, Axel R; Ning, Gangmin

    2014-01-01

    Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.

  10. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing.

    PubMed

    Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei

    2012-07-16

    Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly.

  11. Geochemical & Physical Aquifer Property Heterogeneity: A Multiscale Sedimentologic Approach to Reactive Solute Transport

    SciTech Connect

    Murray, Chris; Allen-King, Richelle; Weissmann, Gary

    2006-06-01

    This project is testing the hypothesis that sedimentary lithofacies determine the geochemical and physical hydrologic properties that control reactive solute transport (Figure 1). We are testing that hypothesis for one site, a portion of the saturated zone at the Hanford Site (Ringold Formation), and for a model solute, carbon tetrachloride (CT). The representative geochemical and physical aquifer properties selected for quantification in the proposed project are the properties that control CT transport: hydraulic conductivity (K) and reactivity (sorption distribution coefficient, Kd, and anaerobic transformation rate constant, kn). We are combining observations at outcrop analog sites (to measure lithofacies dimensions and statistical relations) with measurements from archived and fresh core samples (for geochemical experiments and to provide additional constraint to the stratigraphic model) from the Ringold Formation to place local-scale lithofacies successions, and their distinct hydrologic property distributions, into the basinal context, thus allowing us to estimate the spatial distributions of properties that control reactive solute transport in the subsurface.

  12. Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.

    PubMed

    He, Chang-Liang; Yi, Peng-Fei; Fan, Qiao-Jia; Shen, Hai-Qing; Jiang, Xiao-Lin; Qin, Qian-Qian; Song, Zhou; Zhang, Cui; Wu, Shuai-Cheng; Wei, Xu-Bin; Li, Ying-Lun; Fu, Ben-Dong

    2013-04-01

    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. Alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs). XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways. These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases.

  13. Opto-electronic transport properties of graphene oxide based devices

    SciTech Connect

    Das, Poulomi; Ibrahim, Sk; Pal, Tanusri; Chakraborty, Koushik; Ghosh, Surajit

    2015-06-24

    Large area, solution-processed, graphene oxide (GO)nanocomposite based photo FET has been successfully fabricated. The device exhibits p-type charge transport characteristics in dark condition. Our measurements indicate that the transport characteristics are gate dependent and extremely sensitive to solar light. Photo current decay mechanism of GO is well explained and is associated with two phenomena: a) fast response process and b) slow response process. Slow response photo decay can be considered as the intrinsic phenomena which are present for both GO and reduced GO (r-GO), whereas the first response photo decay is controlled by the surface defect states. Demonstration of photo FET performance of GO thin film is a significant step forward in integrating these devices in various optoelectronic circuits.

  14. Investigation of Laser Optical Biasing on the Quantum Transport Properties of n-InSb.

    DTIC Science & Technology

    1979-10-01

    Af-01578 NOTH TEXAS STATE UNIV DENTON DEPT OF PHYSICS FIG 20/12 INVESTIGATION OF LASER OPTICAL BIASING ON THE QUANTUM TRANSPORT -ETC(U) OCT 79 0 6...SEILER NOOO-76-C-0319 NCLASSIFIED NL MEEEEEEE4N VEt IC?) ’ ,~CUAL)SUMMARY E’--. C Ii Investigation of Laser Optical Biasing on the Quantum Transport Properties...the investigation of laser optical biasing ef- fects on the quantum transport properties of n-InSb is given for the period October 1, 1978 - September

  15. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    SciTech Connect

    Woo, Sung Oh; Teizer, Winfried

    2013-07-22

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  16. Surf Zone Properties and On/Offshore Sediment Transport.

    DTIC Science & Technology

    1982-06-01

    wave properties. A review of the previous related works was made. The investigators who developed and applied the surf zone parameter included Iribarren ...breaking wave properties characterized by this parameter are summarized. L~.. _ _ _ _ _ _ _ • - Il~i/ l I rT L I - - .- -9- Iribarren and Nogales (1949...where Le is the deep water wave length and rearranging gives 4 a-5_ -10- The derivation given by Iribarren and Nogales sug- gested that the incipient

  17. Thermoelectric transport properties of high mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states

  18. Understanding hopping transport and thermoelectric properties of conducting polymers

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Crispin, X.; Zozoulenko, I. V.

    2015-07-01

    We calculate the conductivity σ and the Seebeck coefficient S for the phonon-assisted hopping transport in conducting polymers poly(3,4-ethylenedioxythiophene) or PEDOT, experimentally studied by Bubnova et al. [J. Am. Chem. Soc. 134, 16456 (2012)], 10.1021/ja305188r. We use the Monte Carlo technique as well as the semianalytical approach based on the transport energy concept. We demonstrate that both approaches show a good qualitative agreement for the concentration dependence of σ and S . At the same time, we find that the semianalytical approach is not in a position to describe the temperature dependence of the conductivity. We find that both Gaussian and exponential density of states (DOS) reproduce rather well the experimental data for the concentration dependence of σ and S giving similar fitting parameters of the theory. The obtained parameters correspond to a hopping model of localized quasiparticles extending over 2-3 monomer units with typical jumps over a distance of 3-4 units. The energetic disorder (broadening of the DOS) is estimated to be 0.1 eV. Using the Monte Carlo calculation we reproduce the activation behavior of the conductivity with the calculated activation energy close to the experimentally observed one. We find that for a low carrier concentration a number of free carriers contributing to the transport deviates strongly from the measured oxidation level. Possible reasons for this behavior are discussed. We also study the effect of the dimensionality on the charge transport by calculating the Seebeck coefficient and the conductivity for the cases of three-, two-, and one-dimensional motion.

  19. Theoretical studies of the transport properties in compound semiconductors

    NASA Technical Reports Server (NTRS)

    Segall, Benjamin

    1994-01-01

    This final report is an overview of the work done on Cooperative Agreement NCC 3-55 with the Solid State Technology Branch of the NASA-Lewis Research Center (LeRC). Over the period of time that the agreement was in effect, the principal investigator and, in the last three years, the co-principal investigator worked on a significant number of projects and interacted with members of the Solid State Technology (SST) branch in a number of different ways. For the purpose of this report, these efforts will be divided into five categories: 1) work directly with experimental electrical transport studies conducted by members of the SST branch; 2) theoretical work on electrical transport in compound semiconductors; 3) electronic structure calculations which are relevant to the electrical transport in polytypes of SiC and SiC-AlN alloys; 4) the electronic structure calculations of polar interfaces; and 5) consultative and supportive activities related to experiments and other studies carried out by SST branch members. Work in these categories is briefly discussed.

  20. Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    NASA Astrophysics Data System (ADS)

    Barreto, Lucas; Perkins, Edward; Johannsen, Jens; Ulstrup, Søren; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Hofmann, Philip

    2013-01-01

    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility to effectively vary the contact spacing over more than one order of magnitude, allowing us to establish that the transport is purely two-dimensional. Combined with the carrier density obtained by angle-resolved photoemission spectroscopy, we find the room temperature mobility of MLG to be (870±120) cm2/V s. The transport in QFBLG is also found to be two-dimensional with a mobility of (1600±160) cm2/V s.

  1. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.

    PubMed

    Wang, Yu-Fu; Barrera, Carlos M; Dauer, Edward A; Gu, Weiyong; Andreopoulos, Fotios; Huang, C-Y Charles

    2017-01-01

    One of the key challenges in porous scaffold design is to create a porous structure with desired mechanical function and mass transport properties which support delivery of biofactors and development of function tissue substitute. In recent years, polyurethane (PU) has become one of the most popular biomaterials in various tissue engineering fields. However, there are no studies fully investigating the relations between porosity and both mass transport and mechanical properties of PU porous scaffolds. In this paper, we fabricated PU scaffolds by combining phase inversion and salt (sodium chloride) leaching methods. The tensile and compressive moduli were examined on PU scaffolds fabricated with different PU concentrations (25%, 20% and 15% w/v) and salt/PU weight ratios (9/1, 6/1, 3/1 and 0/1). The mass transport properties of PU scaffolds including hydraulic permeability and glucose diffusivity were also measured. Furthermore, the relationships between the porosity and mass transport and mechanical properties of porous PU scaffold were systemically investigated. The results demonstrated that porosity is a key parameter which governs both mass transport and mechanical properties of porous PU scaffolds. With similar pore sizes, the mass transport and mechanical properties of porous PU scaffold can be described as single functions of porosity regardless of initial PU concentration. The relationships between scaffold porosity and properties can be utilized to facilitate porous PU scaffold fabrication with specific mass transport and mechanical properties. The systematic approach established in this study can be applied to characterization of other biomaterials for scaffold design and fabrication.

  2. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-02-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  3. Pesticide transport with runoff from creeping bentgrass turf: Relationship of pesticide properties to mass transport.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L

    2010-06-01

    The off-site transport of pesticides with runoff is both an agronomic and environmental concern, resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creeping bentgrass (Agrostis palustris) turf managed as golf course fairway to gain a better understanding of factors that influence chemical availability and mass transport. Less than 1 to 23% of applied chloropyrifos, flutolanil, mecoprop-p (MCPP), dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), or dicamba was measured in edge-of-plot runoff when commercially available pesticide formulations were applied at label rates 23 +/- 9 h prior to simulated precipitation (62 +/- 13 mm). Time differential between hollow tine core cultivation and runoff did not significantly influence runoff volumes or the percentage of applied chemicals transported in the runoff. With the exception of chlorpyrifos, all chemicals of interest were detected in the initial runoff samples and throughout the runoff events. Chemographs of the five pesticides followed trends in agreement with mobility classifications associated with their soil organic carbon partition coefficient (K(OC).) Data collected from the present study provides information on the transport of chemicals with runoff from turf, which can be used in model simulations to predict nonpoint source pollution potentials and estimate ecological risks.

  4. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certificated takeoff weight (as defined in section 4492(b)) of 6,000 pounds or less, unless such aircraft is... property, even though there may be stopovers in the United States (such as, for example, to consolidate... the business of transporting property by air for hire (for example, by a freight forwarder), the...

  5. Transport Properties of the Tomato Fruit Tonoplast : III. Temperature Dependence of Calcium Transport.

    PubMed

    Joyce, D C; Cramer, G R; Reid, M S; Bennett, A B

    1988-12-01

    Calcium transport into tomato (Lycopersicon esculentum Mill, cv Castlemart) fruit tonoplast vesicles was studied. Calcium uptake was stimulated approximately 10-fold by MgATP. Two ATP-dependent Ca(2+) transport activities could be resolved on the basis of sensitivity to nitrate and affinity for Ca(2+). A low affinity Ca(2+) uptake system (K(m) > 200 micromolar) was inhibited by nitrate and ionophores and is thought to represent a tonoplast localized H(+)/Ca(2+) antiport. A high affinity Ca(2+) uptake system (K(m) = 6 micromolar) was not inhibited by nitrate, had reduced sensitivity to ionophores, and appeared to be associated with a population of low density endoplasmic reticulum vesicles that contaminated the tonoplast-enriched membrane fraction. Arrhenius plots of the temperature dependence of Ca(2+) transport in tomato membrane vesicles showed a sharp increase in activation energy at temperatures below 10 to 12 degrees C that was not observed in red beet membrane vesicles. This low temperature effect on tonoplast Ca(2+)/H(+) antiport activity could only by partially ascribed to an effect of low temperature on H(+)-ATPase activity, ATP-dependent H(+) transport, passive H(+) fluxes, or passive Ca(2+) fluxes. These results suggest that low temperature directly affects Ca(2+)/H(+) exchange across the tomato fruit tonoplast, resulting in an apparent change in activation energy for the transport reaction. This could result from a direct effect of temperature on the Ca(2+)/H(+) exchange protein or by an indirect effect of temperature on lipid interactions with the Ca(2+)/H(+) exchange protein.

  6. Transport properties of partially ionized and unmagnetized plasmas

    SciTech Connect

    Magin, Thierry E.; Degrez, Gerard

    2004-10-01

    This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are

  7. Microsphere-chain waveguides: Focusing and transport properties

    SciTech Connect

    Allen, Kenneth W. Astratov, Vasily N.; Darafsheh, Arash; Abolmaali, Farzaneh; Mojaverian, Neda; Limberopoulos, Nicholaos I.; Lupu, Anatole

    2014-07-14

    It is shown that the focusing properties of polystyrene microsphere-chain waveguides (MCWs) formed by sufficiently large spheres (D ≥ 20λ, where D is the sphere diameter and λ is the wavelength of light) scale with the sphere diameter as predicted by geometrical optics. However, this scaling behavior does not hold for mesoscale MCWs with D ≤ 10λ resulting in a periodical focusing with gradually reducing beam waists and in extremely small propagation losses. The observed effects are related to properties of nanojet-induced and periodically focused modes in such structures. The results can be used for developing focusing microprobes, laser scalpels, and polarization filters.

  8. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  9. FORTRAN 4 computer program for calculation of thermodynamic and transport properties of complex chemical systems

    NASA Technical Reports Server (NTRS)

    Svehla, R. A.; Mcbride, B. J.

    1973-01-01

    A FORTRAN IV computer program for the calculation of the thermodynamic and transport properties of complex mixtures is described. The program has the capability of performing calculations such as:(1) chemical equilibrium for assigned thermodynamic states, (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. Condensed species, as well as gaseous species, are considered in the thermodynamic calculation; but only the gaseous species are considered in the transport calculations.

  10. Lateral transport properties of thermally excited magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Zhou, X. J.; Shi, G. Y.; Han, J. H.; Yang, Q. H.; Rao, Y. H.; Zhang, H. W.; Lang, L. L.; Zhou, S. M.; Pan, F.; Song, C.

    2017-02-01

    Spin information carried by magnons is attractive for computing technology, and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical picture for spin transport in conductors. Here, we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport.

  11. Directed assembly of three-dimensional microvascular networks

    NASA Astrophysics Data System (ADS)

    Therriault, Daniel

    Three-dimensional (3-D) microvascular networks with pervasive, interconnected channels less than 300 mum in diameter may find widespread application in microfluidic devices, biotechnology, sensors, and autonomic healing materials. Although microchannel arrays are readily constructed in two-dimensions by photolithographic or soft lithographic techniques, their construction in three-dimensions remains a challenging problem. The development of a microfabrication method to build 3-D microvascular networks based on direct-write assembly is described is this thesis. The method is based on the robotic deposition of a fugitive organic ink to form a free-standing scaffold structure. Secondary infiltration of a structural resin followed by setting of the matrix and removal of the scaffold yields an embedded pervasive network of smooth cylindrical channels (˜10--500 mum) with defined connectivity. Rheological and other material properties studies of fugitive organic ink were performed in order to identify the critical characteristics required for successful deposition of 3-D scaffolds by direct-write assembly. Guided by the results of these studies, several new ink formulations were screened for improved deposition performance. The most successful of these inks (40wt% microcrystalline wax, 60wt% petroleum jelly) showed excellent deposition and had an equilibrium modulus at room temperature (G 'eq ˜ 7.70 kPa 1 Hz) nearly two orders of magnitude higher than the original ink. The optimized ink was used to successfully build thick (i.e., ˜100 layers) scaffold structures at room temperature with negligible time-dependent deformation post-deposition. Secondary infiltration of the resin was accomplished at room temperature while maintaining the scaffold architecture. The optimized ink was also successfully extruded through small micronozzles (1 mum). The construction of 3-D microvascular networks enables microfluidic devices with unparallel geometric complexity. In one example, a

  12. Transport properties of droplet clusters in gravity-free fields

    NASA Technical Reports Server (NTRS)

    Brenner, Howard

    1986-01-01

    Clusters of liquid droplets are suspended in an atmosphere of saturated vapor and are subjected to an external force field. This system can be modeled as a continuum whose macroscopic properties may be determined by applying the generalized theory of Taylor dispersion.

  13. Transport and Optical Properties of N-Cadmium -

    NASA Astrophysics Data System (ADS)

    Levy, Miguel

    Transport measurements were performed on n-type CdSe near the metal-insulator transition above and below 4.2 K. The determination of compensation on the basis of transport data above 50 K is discussed. Use is made of some recent treatments of electron screening. The resistivity of three insulating samples with carrier concentrations between 0.73 and 0.80 of the critical concentration follow a temperature dependence consistent with Mott variable range hopping in the temperature range between 1.25 K and 4.2 K. The Hall coefficient is also consistent with R_{rm H} ~ exp [ T_{oH}/T]^ {1/4} in that range. We compare our results with available theory and with those of other workers and point out some discrepancies. Luminescence and Excitation spectra of metallic n-type CdSe were also obtained. We compare our results with available theory and find some discrepancies, which leads us to introduce some modifications into the theory. In particular, we consider the effect of compensation on band gap renormalization. We also look for and find evidence of acceptor states in the luminescence spectra.

  14. Studies of Transport Properties of Fractures: Final Report

    SciTech Connect

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  15. Electrical Transport Properties of Polymorphic MoS2.

    PubMed

    Kim, Jun Suk; Kim, Jaesu; Zhao, Jiong; Kim, Sungho; Lee, Jin Hee; Jin, Youngjo; Choi, Homin; Moon, Byoung Hee; Bae, Jung Jun; Lee, Young Hee; Lim, Seong Chu

    2016-08-23

    The engineering of polymorphs in two-dimensional layered materials has recently attracted significant interest. Although the semiconducting (2H) and metallic (1T) phases are known to be stable in thin-film MoTe2, semiconducting 2H-MoS2 is locally converted into metallic 1T-MoS2 through chemical lithiation. In this paper, we describe the observation of the 2H, 1T, and 1T' phases coexisting in Li-treated MoS2, which result in unusual transport phenomena. Although multiphase MoS2 shows no transistor-gating response, the channel resistance decreases in proportion to the temperature, similar to the behavior of a typical semiconductor. Transmission electron microscopy images clearly show that the 1T and 1T' phases are randomly distributed and intervened with 2H-MoS2, which is referred to as the 1T and 1T' puddling phenomenon. The resistance curve fits well with 2D-variable range-hopping transport behavior, where electrons hop over 1T domains that are bounded by semiconducting 2H phases. However, near 30 K, electrons hop over charge puddles. The large temperature coefficient of resistance (TCR) of multiphase MoS2, -2.0 × 10(-2) K(-1) at 300 K, allows for efficient IR detection at room temperature by means of the photothermal effect.

  16. Skin microvascular reactivity in trained adolescents.

    PubMed

    Roche, Denise M; Rowland, T W; Garrard, M; Marwood, S; Unnithan, V B

    2010-04-01

    Whilst endothelial dysfunction is associated with a sedentary lifestyle, enhanced endothelial function has been documented in the skin of trained individuals. The purpose of this study was to investigate whether highly trained adolescent males possess enhanced skin microvascular endothelial function compared to their untrained peers. Seventeen highly and predominantly soccer trained boys (V(O)(2)(peak): 55 +/- 6 mL kg(-1) min(-1)) and nine age- and maturation-matched untrained controls (V(O)(2)(peak): 43 +/- 5 mL kg(-1) min(-1)) aged 13-15 years had skin microvascular endothelial function assessed using laser Doppler flowmetry. Baseline and maximal thermally stimulated skin blood flow (SkBF) responses were higher in forearms of trained subjects compared to untrained participants [baseline SkBF: 11 +/- 4 vs. 9 +/- 3 perfusion units (PU), p < 0.05; SkBF(max): 282 +/- 120 vs. 204 +/- 68 PU, p < 0.05]. Similarly, cutaneous vascular conductance (CVC) during local heating was superior in the forearm skin of trained versus untrained individuals (CVC(max): 3 +/- 1 vs. 2 +/- 1 PU mmHg(-1), p < 0.05). Peak hyperaemia following arterial occlusion and area under the reactive hyperaemia curve were also greater in forearm skin of the trained group (peak hyperaemia: 51 +/- 21 vs. 35 +/- 15 PU, p < 0.05; area under curve: 1596 +/- 739 vs. 962 +/- 796 PUs, p < 0.05). These results suggest that chronic exercise training in adolescents is associated with enhanced microvascular endothelial vasodilation in non-glabrous skin.

  17. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    SciTech Connect

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-15

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  18. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-01

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  19. Electrical Transport Properties of Carbon Nanotube Metal-Semiconductor Heterojunction

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-10-01

    Carbon nanotubes (CNTs) have been proved to have promising applicability in various fields of science and technology. Their fascinating mechanical, electrical, thermal, optical properties have caught the attention of today’s world. We have discussed here the great possibility of using CNTs in electronic devices. CNTs can be both metallic and semiconducting depending on their chirality. When two CNTs of different chirality are joined together via topological defects, they may acquire rectifying diode property. We have joined two tubes of different chiralities through circumferential Stone-Wales defects and calculated their density of states by nearest neighbor tight binding approximation. Transmission function is also calculated to analyze whether the junctions can be used as electronic devices. Different heterojunctions are modeled and analyzed in this study. Internal stresses in the heterojunctions are also calculated by molecular dynamics simulation.

  20. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Wang, Shun-Jin; Wang, Yong-Long; Jiang, Hua; Li, Wen

    2013-08-01

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue-Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue-Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  1. Charge transport properties of CdMnTe radiation detectors

    SciTech Connect

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  2. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  3. Collective Transport Properties of Driven Skyrmions with Random Disorder

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-05-01

    We use particle-based simulations to examine the static and driven collective phases of Skyrmions interacting with random quenched disorder. We show that nondissipative effects due to the Magnus term reduce the depinning threshold and strongly affect the Skyrmion motion and the nature of the dynamic phases. The quenched disorder causes the Hall angle to become drive dependent in the moving Skyrmion phase, while different flow regimes produce distinct signatures in the transport curves. For weak disorder, the Skyrmions form a pinned crystal and depin elastically, while for strong disorder the system forms a pinned amorphous state that depins plastically. At high drives the Skyrmions can dynamically reorder into a moving crystal, with the onset of reordering determined by the strength of the Magnus term.

  4. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    DTIC Science & Technology

    2013-08-01

    and boiling temperatures. Additionally, MP2f (Akin-Ojo et al., 2008, “Developing Ab Initio Quality Force Fields From Con- densed Phase Quantum...2,6,17,22] and modify the surface wettability [23]. Since nucleate boiling is such ubiquitous thermal management method, there is a sustained interest...system. The force field parameters are usually optimized to correctly reproduce some experimental properties and/or are developed from ab initio or

  5. The Transport Properties of Dilute Gases in Applied Fields.

    DTIC Science & Technology

    1979-03-01

    experimentally for pa ra ad ,i, a d diiama gnetic molecules, respectively, can aotually be measured "ore accurate!i than the transoort properties themselves... cross section de:pends on The angle 5 between the axis of rotation and the d-rection of motion. In the absence of a magnetic field, the direction of...precesses about the direction of the field. The collision cross section now chanoes periodically during the flight of the molecule, necessitating an

  6. Lithologic melt partitioning and transport properties of partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Zhu, W.; Montesi, L.; Gaetani, G. A.; Le Roux, V.; Xiao, X.

    2015-12-01

    Quantitative constraints on melt transport in upper mantle are critical to understanding various dynamic processes at ocean ridges. In this study, we propose that thermodynamic gradients, resulting from spatial variations in mineralogy, can unevenly partition melt between olivine and orthopyroxene (opx), the two most abundant minerals in the upper mantle. The lithologic melt partitioning leads to higher melt fraction in olivine-rich regions compared to opx-rich regions, which may have important implications for melt transport. Lithologic partitioning has been experimentally confirmed in analogue systems, such as quartz/fluorite-H2O (Watson, 1999), but has never been observed in olivine/opx-melt samples. We synthesized olivine/opx-melt (harzburgite) samples by isostatically pressing oxide-high alumina basalt mixtures at 1350 °C and 1.5 GPa in a piston-cylinder apparatus. Nominal melt fractions of 0.02 to 0.20 and a constant 3 to 2 (olivine to opx) volume ratio were tested. Experimental charges were quenched, cored, and imaged using synchrotron X-ray microtomography. The resulting 3-D images constitute digital rock samples on which local melt fraction distributions, permeabilities, and electrical conductivities were numerically quantified. Our results are strong evidence for melt partitioning between olivine and opx: local melt fractions are 10 to 50% higher around olivine than opx grains. At the same melt fraction, permeabilities of whole harzburgite samples are lower compared to monomineralic olivine-melt samples (Miller et al., 2014). However, the presence of opx negligibly affects the permeability-porosity relation unless the abundance of opx is more than 40 vol. %. In contrast, electrical conductivities of harzburgites are systematically lower than those of olivine-melt samples. Lithological melt partitioning could be another mechanism responsible for forming high-porosity melt pathways in addition to reaction infiltration instability and deformation melt bands.

  7. Bottom-up processing and low temperature transport properties of polycrystalline SnSe

    SciTech Connect

    Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton; Martin, Joshua; Nolas, George S.

    2015-05-15

    A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature. Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.

  8. Isolation of primary murine brain microvascular endothelial cells.

    PubMed

    Ruck, Tobias; Bittner, Stefan; Epping, Lisa; Herrmann, Alexander M; Meuth, Sven G

    2014-11-14

    The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.

  9. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  10. Rapid homogeneous endothelialization of high aspect ratio microvascular networks.

    PubMed

    Naik, Nisarga; Hanjaya-Putra, Donny; Haller, Carolyn A; Allen, Mark G; Chaikof, Elliot L

    2015-08-01

    Microvascularization of an engineered tissue construct is necessary to ensure the nourishment and viability of the hosted cells. Microvascular constructs can be created by seeding the luminal surfaces of microfluidic channel arrays with endothelial cells. However, in a conventional flow-based system, the uniformity of endothelialization of such an engineered microvascular network is constrained by mass transfer of the cells through high length-to-diameter (L/D) aspect ratio microchannels. Moreover, given the inherent limitations of the initial seeding process to generate a uniform cell coating, the large surface-area-to-volume ratio of microfluidic systems demands long culture periods for the formation of confluent cellular microconduits. In this report, we describe the design of polydimethylsiloxane (PDMS) and poly(glycerol sebacate) (PGS) microvascular constructs with reentrant microchannels that facilitates rapid, spatially homogeneous endothelial cell seeding of a high L/D (2 cm/35 μm; > 550:1) aspect ratio microchannels. MEMS technology was employed for the fabrication of a monolithic, elastomeric, reentrant microvascular construct. Isotropic etching and PDMS micromolding yielded a near-cylindrical microvascular channel array. A 'stretch - seed - seal' operation was implemented for uniform incorporation of endothelial cells along the entire microvascular area of the construct yielding endothelialized microvascular networks in less than 24 h. The feasibility of this endothelialization strategy and the uniformity of cellularization were established using confocal microscope imaging.

  11. Correlating substituent parameter values to electron transport properties of molecules

    NASA Astrophysics Data System (ADS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  12. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  13. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Armaković, Stevan; Armaković, Sanja J.

    2016-11-01

    In this work we investigated optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets and the consequences on these properties after modifications with boron atoms. Within the framework of density functional theory (DFT) several important optoelectronic quantities have been calculated for graphene nanoparticles: oxidation and reduction potentials, hole and electron reorganization energies, while thermally activated delayed fluorescence was assessed by calculations of energy separation between the lowest excited singlet (S1) and triplet (T1) state, Δ E (S1 -T1) . Obtained results show that optoelectronic properties of graphene nanoparticles are significantly improved by the modification with boron atoms and that investigated structures can be considered as a promising organic light emitting diode (OLED) materials. Influence of boron atoms to charge and heat transport properties of graphene nanosheets was investigated as well, employing the self-consistent non-equilibrium Green's functions with DFT. On the other side it is shown that charge transport of graphene nanosheets is not influenced by the introduction of boron atoms, while influence to the phonon subsystem is minimal.

  14. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  15. Spin-polarized quantum transport properties through flexible phosphorene

    NASA Astrophysics Data System (ADS)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.

  16. Transport properties of Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Gibson, Quinn; Xiong, Jun; Liu, Minhao; Hirschberger, Maximilian; Cava, Robert; Ong, Nai Phuan

    2014-03-01

    The semimetal Cd3As2 has emerged as an attractive candidate for a Dirac semimetal. A recent LDA calculation reveals that, at the Fermi energy, it has two bulk Dirac nodes which straddle the Γ point along the kz axis. The Dirac nodes were recently observed by ARPES. We have made extensive transport measurements of Cd3As2. Because of possible Cd vacancy disorder in the very large unit cell (160 atoms), the SdH oscillations reveal a quantum lifetime that is moderately damped. Despite the disorder, the observed resistivity ρ in some crystals displays a RRR of 1000. At 4 K, the residual resistivity is anomalously low (30 n Ω cm). We estimate that the mobility exceeds 106 cm2V-1s-1. A magnetic field H strongly increases ρ by factors of 100 to 1000 at 10 Tesla. This giant magnetoresistance (MR) is highly anisotropic. The MR is largest when H is perpendicular to the axis (110) and minimal when H is ∥(110). We will discuss possible origins of this unusual anisotropic giant MR. We also discuss the possibility of detecting an enhanced longitudinal MR associated with charge pumping between Weyl nodes (the chiral anomaly). Supported by Army Research Office (ARO W911NF-11-1-0379) and NSF-MRSEC Grant DMR 0819860.

  17. Transport properties of stripe-ordered high Tc cuprates

    NASA Astrophysics Data System (ADS)

    Jie, Qing; Han, Su Jung; Dimitrov, Ivo; Tranquada, J. M.; Li, Qiang

    2012-11-01

    Transport measurements provide important characterizations of the nature of stripe order in the cuprates. Initial studies of systems such as La1.6-xNd0.4SrxCuO4 demonstrated the strong anisotropy between in-plane and c-axis resistivities, but also suggested that stripe order results in a tendency towards insulating behavior within the planes at low temperature. More recent work on La2-xBaxCuO4 with x = 1/8 has revealed the occurrence of quasi-two-dimensional superconductivity that onsets with spin-stripe order. The suppression of three-dimensional superconductivity indicates a frustration of the interlayer Josephson coupling, motivating a proposal that superconductivity and stripe order are intertwined in a pair-density-wave state. Complementary characterizations of the low-energy states near the Fermi level are provided by measurements of the Hall and Nernst effects, each revealing intriguing signatures of stripe correlations and ordering. We review and discuss this work.

  18. Accurate transport properties for H–CO and H–CO{sub 2}

    SciTech Connect

    Dagdigian, Paul J.

    2015-08-07

    Transport properties for collisions of hydrogen atoms with CO and CO{sub 2} have been computed by means of quantum scattering calculations. The carbon oxides are important species in hydrocarbon combustion. The following potential energy surfaces (PES’s) for the interaction of the molecule fixed in its equilibrium geometry were employed: for H–CO, the PES was taken from the work of Song et al. [J. Phys. Chem. A 117, 7571 (2013)], while the PES for H–CO{sub 2} was computed in this study by a restricted coupled cluster method that included single, double, and (perturbatively) triple excitations. The computed transport properties were found to be significantly different from those computed by the conventional approach that employs isotropic Lennard-Jones (12-6) potentials. The effect of using the presently computed accurate transport properties in 1-dimensional combustion simulations of methane-air flames was investigated.

  19. Skin microvascular reactivity in patients with hypothyroidism.

    PubMed

    Mihor, Ana; Gergar, Maša; Gaberšček, Simona; Lenasi, Helena

    2016-11-04

    Hypothyroidism is associated with impaired vascular function; however, little is known about its impact on microcirculation. We aimed to determine skin microvascular reactivity in hypothyroidism focusing on endothelial function and the sympathetic response. We measured skin laser Doppler (LD) flux (LDF) on the volar forearm and the finger pulp using LD flowmetry in hypothyroid patients (N = 13) and healthy controls (N = 15). Skin microvascular reactivity was assessed by a three-minute occlusion of the brachial artery, inducing postocclusive reactive hyperaemia (PRH), and by a four-minute local cooling of the hand. An electrocardiogram (ECG), digital artery blood pressure and skin temperature at the measuring sites were recorded. Baseline LDF, the digital artery blood pressure and the heart rate were comparable between patients and controls. On the other hand, patients exhibited significantly longer PRH duration, significantly higher blood pressure during cooling (unpaired t-test, p <0.05) and lower, albeit not significant, LDF in the ipsilateral finger pulp during cooling compared to controls. Unexpectedly, the results of the present study point to an increased vasodilator capacity of skin microcirculation and an apparent increase in sympathetic reactivity after local cooling in hypothyroid patients. Hypothyroidism induces subtle changes of some haemodynamic parameters in skin microcirculation implying altered endothelial function and altered sympathetic reactivity.

  20. Myocardial perfusion echocardiography and coronary microvascular dysfunction

    PubMed Central

    Barletta, Giuseppe; Del Bene, Maria Riccarda

    2015-01-01

    Our understanding of coronary syndromes has evolved in the last two decades out of the obstructive atherosclerosis of epicardial coronary arteries paradigm to include anatomo-functional abnormalities of coronary microcirculation. No current diagnostic technique allows direct visualization of coronary microcirculation, but functional assessments of this circulation are possible. This represents a challenge in cardiology. Myocardial contrast echocardiography (MCE) was a breakthrough in echocardiography several years ago that claimed the capability to detect myocardial perfusion abnormalities and quantify coronary blood flow. Research demonstrated that the integration of quantitative MCE and fractional flow reserve improved the definition of ischemic burden and the relative contribution of collaterals in non-critical coronary stenosis. MCE identified no-reflow and low-flow within and around myocardial infarction, respectively, and predicted the potential functional recovery of stunned myocardium using appropriate interventions. MCE exhibited diagnostic performances that were comparable to positron emission tomography in microvascular reserve and microvascular dysfunction in angina patients. Overall, MCE improved echocardiographic evaluations of ischemic heart disease in daily clinical practice, but the approval of regulatory authorities is lacking. PMID:26730291

  1. Heterogeneous ageing of skeletal muscle microvascular function.

    PubMed

    Muller-Delp, Judy M

    2016-04-15

    The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.

  2. Effect of vertical-strain-induced symmetry breaking on transport properties of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zou, Dongqing; Zhao, Wenkai; Fang, Changfeng; Cui, Bin; Liu, Desheng

    2017-02-01

    Using density functional theory combined with nonequilibrium Green's function formalism, we investigate the transport properties of zigzag graphene nanoribbons (ZGNRs) under vertical strain. Our calculations show that localized state induced by vertical strain will inhibit the electronic transport of the systems at zero bias, but at nonzero bias, the localized state can enhance the electronic transport behavior if ZGNRs are symmetry with respect to the mid-plane between two edges. This is because the localized state produces an asymmetry electron density distribution which break the current suppression. These findings may be useful for the application of strain-induced ZGNR based molecular devices.

  3. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  4. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P

    2017-02-08

    Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.

  5. Squeezing a gel to establish network structure-transport property relationships

    NASA Astrophysics Data System (ADS)

    Chan, Edwin; Nadermann, Nichole; McLeod, Kelly; Tew, Greg

    2015-03-01

    Gels are used in many applications, ranging from drug delivery to water purification, where regulating transport of a particular permeant is critical. The structure of the gel determines its transport properties but developing the gel structure-transport property relationships often require multiple measurement techniques. In this work, we demonstrate poroelastic relaxation indentation (PRI) as a single measurement tool to establish the relationships between the polymer network structure and the transport properties of well-defined hydrogel networks synthesized via a thiol-norbornene click reaction of poly(ethylene glycol) (PEG) chains. We use PRI to quantify the mechanical and transport properties of a series of ``click'' hydrogels with different crosslink densities. By applying various thermodynamic network swelling models to the describe the mechanical response of these gels as measured from PRI, we are able to extract thermodynamic parameters of these hydrogels including the Flory chi parameter and the mesh size. We validate our approach by comparing the thermodynamic parameters obtained from PRI with results from neutrons scattering studies of the same series of hydrogels.

  6. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  7. Electrical Transport Properties of Polyaniline Containing HCl, CuCl2 and Multiwall Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Meikap, A. K.

    2011-07-01

    Electrical transport properties of hydrochloric acid (HCl) doped polyaniline (PANI) and composite of PANI with Copper Chloride (CuCl2) and multiwall Carbon Nanotube (MWNT) was measured within a temperature range 77⩽T⩽300 K in presence and in absence of a magnetic field up to 1Tesla. The electrical transport properties can be explained by the variable range hopping (VRH) theory. All the samples have shown negative d.c magnetoconductivity at the room temperature but PANI-HCl sample has shown a transition from positive to negative magnetoconductivity as the temperature is increased.

  8. Influence of surface reconstruction on dopant incorporation and transport properties of GaAs(Bi) alloys

    NASA Astrophysics Data System (ADS)

    Field, R. L.; Occena, J.; Jen, T.; Del Gaudio, D.; Yarlagadda, B.; Kurdak, C.; Goldman, R. S.

    2016-12-01

    We report on the influence of surface reconstruction on silicon dopant incorporation and transport properties during molecular-beam epitaxy of GaAs(Bi) alloys. GaAs(Bi) growth with an (n × 3) reconstruction leads to n-type conductivity, while growth with a (2 × 1) reconstruction leads to p-type conductivity. We hypothesize that the presence or absence of surface arsenic dimers prevents or enables dopant incorporation into arsenic lattice sites. We consider the influence of bismuth anions on arsenic-dimer mediated dopant incorporation and the resulting electronic transport properties, demonstrating the applicability of this mechanism to mixed anion semiconductor alloys.

  9. Magneto-transport properties of a random distribution of few-layer graphene patches

    NASA Astrophysics Data System (ADS)

    Iacovella, Fabrice; Trinsoutrot, Pierre; Mitioglu, Anatolie; Conédéra, Véronique; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Vergnes, Hugues; Caussat, Brigitte; Plochocka, Paulina; Escoffier, Walter

    2014-11-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  10. Density Functional Study of the Transport and Electronic Properties of Waved Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Vasiliev, Igor

    2015-03-01

    First principles ab initio calculations are employed to study the electronic and transport properties of waved graphene nanoribbons. Our calculations are performed using the SIESTA and TRANSIESTA density functional electronic structure codes. We find that the band gaps of graphene nanoribbons with symmetrical edges change very slightly with the increasing compression, whereas the band gaps of nanoribbons with asymmetrical edges change significantly. The computed IV-characteristics of the waved graphene nanoribbons with different compression ratios reveal the effect of compression on the transport properties of graphene nanoribbons. Supported by NMSU GREG Award and by NSF CHE-1112388.

  11. Transport and magnetic properties of RTX and related compounds

    NASA Astrophysics Data System (ADS)

    Goruganti, Venkateshwarlu

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new magnetic materials is always an interesting topic from both a technological and basic research prospective; it is even more interesting when unusual magnetic phases are observed. Ternary intermetallic plumbides are interesting because of their unconventional magnetic ordering and variety of multiple magnetic transitions. Crystalline electric fields (CEF) also strongly effect the magnetic properties of these intermetallics. To understand the phase transitions, CEF effects, and magnetic interactions, a systematic study of the RNiPb, R 2Ni2Pb, R5NiPb3 and RCuGe systems were conducted. Among the results for NdNiPb a single antiferromagnetic transition was found at 3.5K, while the superconductivity found in some ingots of this material was shown not to correspond to a bulk behavior for this phase. Nd2Ni 2Pb was shown to have a canted zero field magnetic structure with a low temperature metamagnetic transition 3 T. In NdCuGe, a 3K AF transition was found along with a corresponding magnon contribution to the specific heat and magnetic and thermodynamic behavior from which the detailed CEF configuration was obtained. In a series of measurements on recently-synthesized R 5NiPb3 (R=Ce, Nd, Gd), for Ce5NiPb 3 a transition at 48 K was found, which was confirmed to be ferromagnetic character from field dependent heat capacity and Curie-Weiss susceptibility. Nd5NiPb3 exhibits two transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. For Gd5NiPb3, a ferro- or ferrimagnetic transition was found at 68 K. For the Ce and Nd materials metamagnetism was also observed at low temperatures. In addition, very large metallic type gamma terms were found in the specific heat, as well as a

  12. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  13. Thermoelectric Transport Properties of Gold-Iron at Millikelvin Temperatures.

    NASA Astrophysics Data System (ADS)

    Chesire, Daniel Patrick

    Measurements of the electrical resistivity, and both static and isoelectric thermopower have been made on a fine Au wire containing 1 ppm Fe over a range of temperatures between 7 K and 24 mK. A shallow minimum at higher temperatures and unitary limit in the resistivity data characteristic of the Kondo effect were observed in the lower temperature ranges. The minimum coincides with that observed by other workers. Both the resistivity and the two thermopowers were measured with a Superconducting Quantum Interference Detector (SQUID) which has extremely high sensitivity and a very good signal-to-noise ratio. The static and isoelectric thermopowers were measured under two different boundary conditions. The static thermopower was measured by keeping the electric current through the sample equal to zero by using a compensating current source. The isoelectric thermopower was measured under the condition that the electric field across the sample was kept equal to zero by using a superconducting short. The static and isoelectric thermopowers both exhibited a broad minimum attributed to the interaction of a dilute concentration of Fe impurities with the Au conduction electrons. The data have been analyzed in terms of linear transport theory, using the Mueller-Hartmann expression for the Kondo contribution. Since the measurements were made at low temperatures, the diffusion and phonon drag thermopowers were small enough that the major contribution to the measured thermopower was from the Kondo effect. The theory was shown to fit the data well down to 0.2 K. Below this temperature, the theoretical expression for the thermopower did not agree well with the measurements in this work. The static thermopower, S, was found to be related to the isoelectric thermopower, (SIGMA)(,E=0), and the resistivity, (rho), by the simple relation S = (rho)(SIGMA)(,E=0). The isoelectric data was found to have a better signal-to-noise ratio than the static thermopower and a large enough signal at

  14. Clay and pillard clay membranes: Synthesis, characterization and transport properties

    NASA Astrophysics Data System (ADS)

    Vercauteren, Sven

    In this work, the preparation and characterization of ceramic multilayer membranes with an Alsb2Osb3-pillared montmorillonite (Al-PILC) and a Laponite separating layer have been studied. Al-PILC is a pillared clay prepared by intercalation of polyoxo cations of aluminium between the montmorillonite clay sheets, followed by a thermal treatment (400sp°C) to obtain rigid oxide pillars. The free spacing between the clay plates is about 0.8 nm. Laponite is a synthetic clay with a pore structure formed by the stacking of very small clay plates. To deposit an Al-PILC top layer on a macro- or mesoporous aluminiumoxide support membrane, two preparation routes were considered. According to the standard preparation route of a pillared clay, the easiest way is to use a suspension of clay mixed with the pillaring solution in which the support membrane is dipped. However, it is not possible to deposit uniform and crack-free top layers in this way because of the formation of unstable suspensions. A second preparation route is based on an indirect pillaring procedure. By dipping a support membrane in a stable clay suspension, a thin clay film is deposited in a first step. Pillaring is achieved via immersion of the supported clay film in the pillaring solution in a second step. After a washing procedure, the membrane is dried and calcined at 400sp°C. Laponite membranes were simply prepared by dipping a support membrane in a suspension of this synthetic clay in water. Afterwards a drying at room temperature and a calcination at 400 ar 500sp°C is performed. Both membrane types were tested for gas separation and pervaporation purposes. Transport of permanent gases (He, N2) occurs by means of Knudsen diffusion. Diffusion is kinetically controlled and for a binary mixture, the maximum separation factor is determined by the difference in molecular weight of both components. From pervaporation experiments with water/alcohol mixtures it was found that Al-PILC membranes can be used for

  15. Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.

  16. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    SciTech Connect

    Liaw, B.Y.; Song, S.Y.

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  17. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  18. Transport properties of hectorite based nanocomposite single ion conductors

    NASA Astrophysics Data System (ADS)

    Singhal, Ruchi Gupta; Capracotta, Michael D.; Martin, James D.; Khan, Saad A.; Fedkiw, Peter S.

    The ionic conductivity and rheological properties of clay filled nanocomposite electrolytes are reported. These electrolytes, which have potential use in lithium-ion batteries, consist of lithium-exchanged hectorite, a 2:1 layered smectite clay, dispersed in ethylene carbonate (EC) or a mixture of EC+polyethylene glycol di-methyl ether (PEG-dm, 250 MW). All samples exhibit elastic, gel-like characteristics and room temperature conductivities of order 0.1 mS/cm. A maximum in conductivity is observed at about 25 wt.% clay concentration. A maximum in hectorite basal layer spacing is also observed in the same concentration range, suggesting a direct correlation between conductivity and layer spacing. The elastic modulus and yield stress increase by two orders of magnitude and the conductivity increases by one order of magnitude with increase in hectorite concentration from 5 to 25%, which indicates the significant influence of hectorite content in determining the characteristics of these single-ion conductors. The solvent composition plays a secondary role in this regard, with addition of PEG-dm to the base EC+hectorite electrolyte producing moderate improvement in conductivity. Similarly, the addition of PEG-dm to EC+hectorite affects an increase by only a factor of three in the elastic modulus and yield stress of the electrolyte.

  19. The Effects of Atmospheric pH on the Transport Properties of Gallium Nitride

    NASA Astrophysics Data System (ADS)

    McElroy, Andrew; Dyck, Jeffrey S.; Kash, Kathleen

    2011-04-01

    It has been theorized that there exists a thin layer of water molecules on the surface of many materials when in air. This layer is predicted to have an effect on the electrochemical properties of the material. GaN is one of these materials. It has been demonstrated that the optical properties of GaN are affected by the pH of the atmosphere around the sample. In this study the effects of pH on transport properties are tested. A system was developed to test the Hall coefficient and resistivity of samples under different ambients to discover the effects of pH on carrier concentration and Hall mobility of GaN. Thus far, the results show that the pH of the ambient water vapor does not have an effect on the transport properties. This project was funded through the National Science Foundation (DMR-1006132) and the Huntington and Codrington Foundations.

  20. Fractal analysis of microvascular networks in malignant brain tumors.

    PubMed

    Di Ieva, Antonio

    2012-01-01

    Brain tumors are characterized by a microvascular network which differs from normal brain vascularity. Different tumors show individual angiogenic patterns. Microvascular heterogeneity can also be observed within a neoplastic histotype. It has been shown that quantification of neoplastic microvascular patterns could be used in combination with the histological grade for tumor characterization and to refine clinical prognoses, even if no objective parameters have yet been validated. To overcome the limits of the Euclidean approach, we employ fractal geometry to analyze the geometric complexity underlying the microangioarchitectural networks in brain tumors. We have developed a computer-aided fractal-based analysis for the quantification of the microvascular patterns in histological specimens and ultra-high-field (7-Tesla) magnetic resonance images. We demonstrate that the fractal parameters are valid estimators of microvascular geometrical complexity. Furthermore, our analysis allows us to demonstrate the high geometrical variability underlying the angioarchitecture of glioblastoma multiforme and to differentiate low-grade from malignant tumors in histological specimens and radiological images. Based on the results of this study, we speculate the existence of a gradient in the geometrical complexity of microvascular networks from those in the normal brain to those in malignant brain tumors. Here, we summarize a new methodology for the application of fractal analysis to the study of the microangioarchitecture of brain tumors; we further suggest this approach as a tool for quantifying and categorizing different neoplastic microvascular patterns and as a potential morphometric biomarker for use in clinical practice.

  1. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  2. Effect of Alignment on Transport Properties of Carbon Nanotube/Metallic Junctions

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min; Smits, Jan; Williams, Phillip; Harvey, Robert

    2003-01-01

    Ballistic and spin coherent transport in single walled carbon nanotubes (SWCNT) are predicted to enable high sensitivity single-nanotube devices for strain and magnetic field sensing. Based upon these phenomena, electron beam lithography procedures have been developed to study the transport properties of purified HiPCO single walled carbon nanotubes for development into sensory materials for nondestructive evaluation. Purified nanotubes are dispersed in solvent suspension and then deposited on the device substrate before metallic contacts are defined and deposited through electron beam lithography. This procedure produces randomly dispersed ropes, typically 2 - 20 nm in diameter, of single walled carbon nanotubes. Transport and scanning probe microscopy studies have shown a good correlation between the junction resistance and tube density, alignment, and contact quality. In order to improve transport properties of the junctions a technique has been developed to align and concentrate nanotubes at specific locations on the substrate surface. Lithographic techniques are used to define local areas where high frequency electric fields are to be concentrated. Application of the fields while the substrate is exposed to nanotube-containing solution results in nanotube arrays aligned with the electric field lines. A second electron beam lithography layer is then used to deposit metallic contacts across the aligned tubes. Experimental measurements are presented showing the increased tube alignment and improvement in the transport properties of the junctions.

  3. Differentiation state determines neural effects on microvascular endothelial cells

    SciTech Connect

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  4. The theory of bio-energy transport in the protein molecules and its properties.

    PubMed

    Pang, Xiao-feng

    2011-10-01

    The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10(-10) s or τ/τ(0)≥700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.

  5. The theory of bio-energy transport in the protein molecules and its properties

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-feng

    2011-10-01

    The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10 -10 s or τ/τ⩾700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.

  6. Seismic properties of volcanic rocks from Montagne Pelée (Martinique, Lesser Antilles) and their relations to transport properties

    NASA Astrophysics Data System (ADS)

    Bernard, M.-L.; Zamora, M.

    2012-04-01

    Numerous laboratory and theoretical studies on the physical properties of rocks and their relationships - lead mainly in the framework of petroleum exploration - show that rock physics is necessary for an accurate quantitative interpretation of geophysical observations. Moreover joint inversion of different geophysical datasets is emerging as an important tool to enhance resolution and decrease inversion artifacts in imaging of structurally complex areas such as volcanoes. In many cases, the coupling between the inverted parameters is based on empirical or theoretical relationships derived from laboratory data. Consequently rock physics can be used to: interpret simultaneously several geophysical datasets on volcanoes when they are available, improve the imaging of volcano structures, and better understand the coupled processes that can occur during volcanic unrest. It's in this context that we lead a laboratory study on the transport properties (permeability, thermal and electrical conductivities) and seismic properties (velocity and attenuation of P and S waves) of volcanic rocks representative of Montagne Pelée (Martinique) deposits. In this presentation we will focus on (1) the seismic properties and (2) the relations between seismic and transport properties. The 43 samples collected are representative of the main lithological units of this volcano: vesicular lava blocks and indurated ashed from indurated block-and-ash flows also called breccias, vesicular lava blocks from "Pelean nuee ardente" flows, scoriae from scoria flows, pumices from ash-and-pumices flows, and dense lava blocks from lava flows and lava domes. Their total porosity varies over a wide range from 4 to 73%. Since the samples present similar chemical and mineralogical compositions (andesites), the main difference between the samples comes from their pore structure and reflects differences in the mechanisms of magma degassing and vesiculation during their formation (Bernard et al., 2007). This

  7. Computer codes for the evaluation of thermodynamic properties, transport properties, and equilibrium constants of an 11-species air model

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1990-01-01

    The computer codes developed provide data to 30000 K for the thermodynamic and transport properties of individual species and reaction rates for the prominent reactions occurring in an 11-species nonequilibrium air model. These properties and the reaction-rate data are computed through the use of curve-fit relations which are functions of temperature (and number density for the equilibrium constant). The curve fits were made using the most accurate data believed available. A detailed review and discussion of the sources and accuracy of the curve-fitted data used herein are given in NASA RP 1232.

  8. Transport properties of paired Majorana bound states in a parallel junction

    NASA Astrophysics Data System (ADS)

    Jiang, Cui; Gong, W. J.; Zheng, Yi-Song

    2013-12-01

    The transport properties of a paired Majorana bound states (MBSs) in a parallel junction are theoretically investigated, by considering the influence of different MBS-lead coupling manners, i.e., left-right asymmetric coupling, upper-down asymmetric coupling, and left-right upper-down asymmetric coupling. The calculation results show that the MBS-lead coupling manners affect the transport properties in a substantial way. For the former two configurations, the shot noise Fano factor in the zero-bias limit is related to the value of the conductance maximum with F0=1+1/2Tmax (conductance G =e/2hT). When both the left-right and upper-down symmetries are broken, such a relation is modified into F0=1-12/T0. These results will be helpful for describing the transport characteristics of the junction with MBSs.

  9. Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals

    NASA Astrophysics Data System (ADS)

    He, Lan-Po; Li, Shi-Yan

    2016-11-01

    The discovery of the three-dimensional Dirac semimetals have expanded the family of topological materials, and attracted massive attentions in recent few years. In this short review, we briefly overview the quantum transport properties of a well-studied three-dimensional Dirac semimetal, Cd3As2. These unusual transport phenomena include the unexpected ultra-high charge mobility, large linear magnetoresistivity, remarkable Shubnikov-de Hass oscillations, and the evolution of the nontrivial Berry’s phase. These quantum transport properties not only reflect the novel electronic structure of Dirac semimetals, but also give the possibilities for their future device applications. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and STCSM of China (Grant No. 15XD1500200).

  10. Surface transport properties of reticulopodia: do intracellular and extracellular motility share a common mechanism?

    PubMed

    Bowser, S S; Israel, H A; McGee-Russell, S M; Rieder, C L

    1984-12-01

    The reticulopodial networks of the foraminiferan protozoans Allogromia sp., strain NF, and A. laticollaris display rapid (up to 11 microns/second) and bidirectional saltatory transport of membrane surface markers (polystyrene microspheres). Electron microscopy shows that microspheres adhere directly to the reticulopodial surface glycocalyx. A videomicroscopic analysis of this phenomenon reveals that microsphere movement is typically independent of pseudopod extension/withdrawal and that particles of different sizes and surface properties display similar motile characteristics. The motile properties of surface-associated microspheres appear identical to those of saltating intracellular organelles. Indeed, in some instances the surface-attached microspheres appear transiently linked in motion to these underlying organelles. Our observations suggest that, in reticulopodia, surface transport of microspheres and intracellular transport of organelles are driven by a common mechanism.

  11. Transport properties of an asymmetric mixture in the dense plasma regime.

    PubMed

    Ticknor, Christopher; Kress, Joel D; Collins, Lee A; Clérouin, Jean; Arnault, Philippe; Decoster, Alain

    2016-06-01

    We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

  12. Transport properties of an asymmetric mixture in the dense plasma regime

    NASA Astrophysics Data System (ADS)

    Ticknor, Christopher; Kress, Joel D.; Collins, Lee A.; Clérouin, Jean; Arnault, Philippe; Decoster, Alain

    2016-06-01

    We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

  13. Oligomers modulate interfibril branching and mass transport properties of collagen matrices.

    PubMed

    Whittington, Catherine F; Brandner, Eric; Teo, Ka Yaw; Han, Bumsoo; Nauman, Eric; Voytik-Harbin, Sherry L

    2013-10-01

    Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis, as well as the design of next-generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property–concentration relationships were noted. Diffusivity was not affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared with monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell–matrix signaling, as well as facilitate model-based prediction and design of matrix-based therapeutic strategies.

  14. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  15. Phase transition of the microvascular network architecture in human pathologies.

    PubMed

    Bianciardi, Giorgio; Traversi, Claudio; Cattaneo, Ruggero; De Felice, Claudia; Monaco, Annalisa; Tosi, Gianmarco; Parrini, Stefano; Latini, Giuseppe

    2012-01-01

    We have investigated the microvascular pattern in acquired or genetic diseases in humans. The lower gingival and vestibular oral mucosa, as well as the optic nerve head, was chosen to characterize the vascular pattern complexity due to the simple accessibility and visibility Local fractal dimensions, fractal dimension of the minimum path and Lempel-Ziv complexity have been used as operational numerical tools to characterize the microvascular networks. In the normal healthy subjects microvascular networks show nonlinear values corresponding to the complexity of a diffusion limited aggregation (DLA) model, while in several acquired or genetic diseases they are approaching the ones of an invasion percolation model.

  16. Microvascular free flaps in skull base reconstruction.

    PubMed

    Herr, Marc W; Lin, Derrick T

    2013-01-01

    The anatomical challenges of skull base surgery are well known. Furthermore, ablative and traumatic defects in this region produce complex reconstructive problems with a high risk of significant postoperative morbidity and mortality. Over the past two decades, microvascular free tissue reconstruction following open resection has been shown to improve outcomes and reduce complication rates when compared to the traditional use of pedicled flaps. The increasing use of free tissue transfer has been further strengthened by improved technical expertise and high flap success rates. Since the size and type of free tissue to be utilized must be individualized to each defect, the accomplished reconstructive surgeon should be extremely versatile and, by extension, facile with a several types of free flaps. Thus, four of the most commonly used flaps--the rectus abdominis, radial forearm, latissimus dorsi and anterolateral thigh flaps--are discussed.

  17. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS, PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT, (PBP&E) AND BAGGAGE ALLOWANCE General Rules § 302-7.11 Is property acquired en route eligible...

  18. State-specific transport properties of partially ionized flows of electronically excited atomic gases

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-03-01

    State-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.

  19. Mandibular reconstruction with composite microvascular tissue transfer

    SciTech Connect

    Coleman, J.J. III; Wooden, W.A. )

    1990-10-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons (lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)). Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure.

  20. Effects of age and zinc supplementation on transport properties in the jejunum of piglets.

    PubMed

    Gefeller, E M; Martens, H; Aschenbach, J R; Klingspor, S; Twardziok, S; Wrede, P; Pieper, R; Lodemann, U

    2015-06-01

    Zinc is effective in the prevention and treatment of post-weaning diarrhoea and in promoting piglet growth. Its effects on the absorption of nutrients and the secretory capacity of the intestinal epithelium are controversial. We investigated the effects of age, dietary pharmacological zinc supplementation and acute zinc exposure in vitro on small-intestinal transport properties of weaned piglets. We further examined whether the effect of zinc on secretory responses depended on the pathway by which chloride secretion is activated. A total of 96 piglets were weaned at 26 days of age and allocated to diets containing three different levels of zinc oxide (50, 150 and 2500 ppm). At the age of 32, 39, 46 and 53 days, piglets were killed, and isolated epithelia from the mid-jejunum were used for intestinal transport studies in conventional Ussing chambers, with 23 μm ZnSO4 being added to the serosal side for testing acute effects. Absorptive transport was stimulated by mucosal addition of d-glucose or l-glutamine. Secretion was activated by serosal addition of prostaglandin E2 , carbachol or by mucosal application of Escherichia coli heat-stable enterotoxin (Stp ). Jejunal transport properties showed significant age-dependent alterations (p < 0.03). Both absorptive and secretory responses were highest in the youngest piglets (32 d). The dietary zinc supplementation had no significant influence on jejunal absorptive and secretory responses. However, the pre-treatment of epithelia with ZnSO4 in vitro led to a small but significant decrease in both absorptive and secretory capacities (p < 0.05), with an exception for carbachol (p = 0.07). The results showed that, in piglets, chronic supplementation with zinc did not sustainably influence the jejunal transport properties in the post-weaning phase. Because transport properties are influenced by the addition of zinc in vitro, we suggest that possible epithelial effects of zinc depend on the acute presence of this ion.

  1. Specific albumin binding to microvascular endothelium in culture

    SciTech Connect

    Schnitzer, J.E.; Carley, W.W.; Palade, G.E. )

    1988-03-01

    The specific binding of rat serum albumin (RSA) to confluent microvascular endothelial cells in culture derived from the vasculature of the rat epididymal fat pad was studied at 4{degree}C by radioassay and immunocytochemistry. Radioiodinated RSA ({sup 125}I-RSA) binding to the cells reached equilibrium at {approximately} 20 min incubation. Albumin binding was a slowly saturating function over concentrations ranging from 0.01 to 50 mg/ml. Specific RSA binding with a moderate apparent affinity constant of 1.0 mg/ml and with a maximum binding concentration of 90 ng/cm{sup 2} was immunolocalized with anti-RSA antibody to the outer (free) side of the enothelium. Scatchard analysis of the binding yielded a nonlinear binding curve with a concave-upward shape. Dissociation rate analysis supports negative cooperativity of albumin binding, but multiple binding sites may also be present. Albumin binding fulfilled many requirements for ligand specificity including saturability, reversibility, competibility, and dependence on both cell type and cell number. The results are discussed in terms of past in situ investigations on the localization of albumin binding to vascular endothelium and its effect on transendothelial molecular transport.

  2. On statistical properties of transport barriers in magnetospheric and laboratory boundary layers

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Budaev, Viacheslav; Zeleniy, Lev; Amata, Ermanno; Kozak, Lyudmila; Buechner, Joerg; Romanov, Stanislav; Blecki, Jan; Balikhin, Michael A.; Lezhen, Liudmila

    Transport barriers at outer magnetospheric boundaries have a dualistic feature: being effec-tive in limitation of the momentum transfer and serving as an effective obstacle, they display the super-diffusive statistical properties and provide partial exchange of plasmas. In tokamaks namely the statistical properties of transport barriers look to control the high and low heating modes, while small size of the barriers prevents their detailed studies. We tend to use magne-tospheric multi-spacecraft data to improve understanding of common physics in the transport barriers. We show examples from Interball-1 and Cluster with quiet solar wind. The inherently turbulent crossings in this equilibrium cases demonstrate ion heating namely in the transport barrier. It agrees with the kinetic energy transformation into the thermal one inside the barrier -the turbulent dissipation of the magnetosheath kinetic energy -as simultaneously with the ion temperature rise, the general velocity component drops from its model prediction. In sense of the momentum transfer the transport turbulent barriers effectively isolate the high-alti-tude cusp from fast-flowing magnetosheath. Contrary to that, several examples from different missions and different plasma parameters demonstrate the super-diffusive transport character. The individual coherent structures inside the barriers, which we call Alfvenic 'collapsons', have similar scale chains to that of high kinetic plasma pressure jets, showing mutual interaction features. We think that the interacting jets and barriers, accompanying by classic and/ or micro-reconnection, have rather general importance for the plasma physics, and for understanding of turbulence and mechanisms of magnetic field generation. These coherent, nonlinear interacting structures, most probably, provide intermittency a long-range correlations inside the transport barriers (c.f. blobs and flow spikes in fusion devices). We recall that very high-amplitude turbulence in

  3. Tribological properties of epoxy composite materials for marine and river transport

    NASA Astrophysics Data System (ADS)

    Buketov, A. V.; Maruschak, P. O.; Brailo, N. V.; Akimov, A. V.; Kobelnik, O. S.; Panin, S. V.

    2016-11-01

    Tribological properties of epoxy composites filled with thermoplastics and dispersed particles under sea water environment were analyzed. It has been revealed that the composition, sliding friction conditions, as well as the marine environment, substantially affect the tribological properties of the materials. The improvement of tribological properties of epoxycomposite thermosetting plastics after their filling with thermoplastic polyamide PA-6 granules under friction in sea water environment has been proved. The recommendations on applying the developed material in friction parts for marine and river transport were formulated.

  4. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    NASA Astrophysics Data System (ADS)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  5. Structure and transport properties of Ge quantum dots in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Slunjski, R.; Dubček, P.; Radić, N.; Bernstorff, S.; Pivac, B.

    2015-06-01

    Germanium (Ge) nanoparticles or quantum dots (QDs) embedded in a transparent dielectric matrix have properties radically different from the bulk semiconductor and present a great potential for application in electronic and optoelectronic devices. Due to quantum confinement properties, the optical bandgap of QD-based materials can be tuned by varying the nanoparticle size. These properties may be exploited for the fabrication of nanoscale electronic devices or advanced solar cells. In this work we explored structural and transport properties of QD based superstructures for advanced solar cells. Magnetron cosputtering was used for deposition and upon suitable thermal treatment a superstructure of QDs was formed. Transport properties were explored by I-V measurement in the dark together with a C-V characterization. The obtained results were modeled with the known transport mechanisms for QDs containing materials. A special emphasis is given to trap controlled space charge limited current and hopping conductivity mechanism. We have shown that in our samples a significant charge is stored in the SiO2 layers with embedded Ge QDs. That charge is predominantly stored into traps at or close to the Ge(QDs)/SiO2 interface.

  6. Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments.

    PubMed

    Antognini, Luca M; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele

    2016-08-28

    Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties.

  7. Transport Properties of Crystallographically Aligned Heterostructures of Graphene and Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Bin; Miao, Tengfei; Martynov, Oleg; Bockrath, Marc

    2014-03-01

    Graphene and hexagonal boron nitride (hBN) heterostructures have been heavily studied due to graphene's high electronic mobility in this system. Hexagonal BN also shows possibilities to alter graphene's electronic properties. Recently several research groups have demonstrated accurate placement of graphene on hBN with crystallographic alignment. Due to the resulting superlattice formed in the graphene/hBN heterostructures, an energy gap, secondary Dirac Points, and Hofstadter quantization in a magnetic field have been observed. However, many aspects of the electronic properties of graphene/hBN heterostructures remain unexplored. Using aligned layer transfer we are able to produce graphene/hBN heterostructures with 1 degree alignment accuracy, and measure the transport properties of the resulting systems. We will discuss our latest transport data, which contribute towards a greater understanding the electron motion in the graphene/hBN interface.

  8. Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Bernard, Marie-Lise; Zamora, Maria; GéRaud, Yves; Boudon, Georges

    2007-05-01

    The hydraulic and electrical properties of pyroclastic rocks have been investigated in laboratory on a representative sampling of Montagne Pelée (Martinique, France) deposits with renewed interest in geophysical applications. This sampling covers all the lithologic units of this volcano: lava dome and lava flows, pumices from ash-and-pumice fall and flow deposits, lava blocks from block-and-ash flow and Peléean "nuées ardentes" deposits, scoriae from scoria flow deposits. The connected porosity varies over a wide range from 3 to 62%. The unconnected porosity is important only on pumices where it can reach 15%. The permeability covers more than 5 orders of magnitude, ranging from 10-16 to 35 × 10-12 m2. The higher values are obtained on lava blocks and the scoriae, even if these rocks are less porous than the pumices. The formation factor ranges from 7 to 1139. The transport properties of these rocks are slightly correlated with porosity. This indicates that these properties are not only controlled by the connected porosity. To connect the transport properties to the textural characteristics of the pore network of pyroclastic rocks, different models, based on geometrical considerations or percolation theory, were tested. The pore access radius distribution and the tortuosity control the transport properties of pyroclastic rocks. Consequently, the models (electric and hydraulic) based on the concept of percolation (e.g., the models of Katz and Thompson), apply better than the equivalent channel model of Kozeny-Carman. In addition, the difference in transport properties observed on lava blocks and pumices confirms that the mechanisms of degassing and vesiculation are different for these two types of rock.

  9. Impact of hetastarch on the intestinal microvascular barrier during ECLS.

    PubMed

    Cox, C S; Brennan, M; Allen, S J

    2000-04-01

    The effects of hetastarch on microvascular fluid flux were determined in anesthetized dogs undergoing extracorporeal life support (ECLS) with a roller pump and membrane oxygenator. ECLS with a lactated Ringer priming solution resulted in a decrease in microvascular protein reflection coefficient and an increase in transvascular protein clearance. Use of a 6% hetastarch priming solution attenuated the decrease in microvascular protein reflection coefficient and blunted the increase in transvascular protein clearance. Ileal tissue water increased in the group treated with the lactated Ringer priming solution compared with the group treated with 6% hetastarch. The effective plasma-to-interstitial colloid osmotic pressure gradient was greater in the group treated with hetastarch than in the group treated with lactated Ringer solution. Hetastarch decreases the edema associated with ECLS. The reduction in edema is due to the maintenance of the plasma-to-interstitial colloid osmotic pressure gradient and the reduction in the microvascular permeability to protein.

  10. Effects of Ordered Stacking Faults on Electrical Transport Properties in Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Collette, Marc; Moutanabbir, Oussama; Champagne, Alexandre

    Lattice defects in silicon nanowires (SiNWs) allow the exploration of the fundamental physics governing transport mechanisms. We study charge transport in SiNW transistors with stacking faults in the 3C sequence, producing local hexagonal ordering. This structure leads to polytype SiNWs with distinct properties for novel applications in thermoelectronics. Since charge carrier and phonon behavior depend on crystal structure, these planar defects affect the transport properties of the nanowire. We grow our SiNWs using a VLS method, with stacking faults induced during growth. Structural characterization of each SiNW is done with Raman spectroscopy to quantify hexagonality. Individual nanowires are located and contacted using different metals to understand the Schottky barrier of the contacts at the SiNWs. We suspend 2 μm-long SiNW devices using a wet oxide etch to uncouple the SiNW from the substrate. We study the electrical properties by I-V measurements across the FET device while modulating the applied back gate voltage. Our initial data show that the presence of stacking faults causes an increase in resistivity by two orders of magnitude, thus greatly hindering charge transport through the SiNW.

  11. Synthesis and quantum transport properties of Bi₂Se₃ topological insulator nanostructures.

    PubMed

    Yan, Yuan; Liao, Zhi-Min; Zhou, Yang-Bo; Wu, Han-Chun; Bie, Ya-Qing; Chen, Jing-Jing; Meng, Jie; Wu, Xiao-Song; Yu, Da-Peng

    2013-01-01

    Bi₂Se₃ nanocrystals with various morphologies, including nanotower, nanoplate, nanoflake, nanobeam and nanowire, have been synthesized. Well-distinguished Shubnikov-de Haas (SdH) oscillations were observed in Bi₂Se₃ nanoplates and nanobeams. Careful analysis of the SdH oscillations suggests the existence of Berry's phase π, which confirms the quantum transport of the surface Dirac fermions in both Bi₂Se₃ nanoplates and nanobeams without intended doping. The observation of the singular quantum transport of the topological surface states implies that the high-quality Bi₂Se₃ nanostructures have superiorities for investigating the novel physical properties and developing the potential applications.

  12. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    SciTech Connect

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin E-mail: chenwy@jlu.edu.cn Li, Hao; Shen, Liang; Chen, Weiyou E-mail: chenwy@jlu.edu.cn; Yan, Dawei E-mail: chenwy@jlu.edu.cn

    2014-08-18

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  13. Vibrational energy transport in molecules and the statistical properties of vibrational modes

    NASA Astrophysics Data System (ADS)

    Pandey, Hari Datt; Leitner, David M.

    2017-01-01

    Statistical properties of the eigenmodes computed for two molecules, dodecane and perfluorododecane, are examined and compared with predictions of random matrix theory. The eigenmode statistics of the heat carrying modes of perfluorododecane correspond to Porter-Thomas statistics, whereas those for dodecane do not. Vibrational energy transport in the two molecules is also computed and found to be diffusive in perfluorododecane but not in dodecane, consistent with recent experiments. The correspondence between eigenmode statistics and vibrational energy transport dynamics in molecules as well as thermalization in molecules are discussed.

  14. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124

  15. Charge transport and memristive properties of graphene quantum dots embedded in poly(3-hexylthiophene) matrix

    SciTech Connect

    Cosmin Obreja, Alexandru; Cristea, Dana; Radoi, Antonio; Gavrila, Raluca; Comanescu, Florin; Kusko, Cristian; Mihalache, Iuliana

    2014-08-25

    We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.

  16. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  17. Relationship between cell surface properties and transport of bacteria through soil

    SciTech Connect

    Gannon, J.T.; Manilal, V.B.; Alexander, M. )

    1991-01-01

    One means of bringing about the remediation of underground sites containing polluting chemicals is to inoculate the sites with bacteria able to metabolize those compounds. However, successful bioremediation of such sites requires the movement of the biodegradative bacteria through soil, aquifer solids, or groundwater. A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. The bacteria differed markedly in their extent of transport; their hydrophobicity, as measured by adherence to n-octane and by hydrophobic-interaction chromatography; and their net surface electrostatic charge, as determined by electrostatic interaction chromatography and by measurements of the zeta potential. Transport of the 19 strains through Kendaia loam or their retention by this soil was not correlated with hydrophobicities or net surface charges of the cells or the presence of capsules. Among 10 strains tested, the presence of flagella was also not correlated with transport. Retention was statistically related to cell size, with bacteria shorter than 1.0 {mu}m usually showing higher percentages of cells being transported through the soil. We suggest that more than one characteristic of bacterial cells determines whether the organisms are transported through soil with moving water.

  18. Development of the REFPROP database and transport properties of refrigerants. Final report

    SciTech Connect

    McLinden, M.O.

    1998-07-01

    This task consisted of developing Version 6.0 of the NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), entailing a complete revision of this database. This program is based on the most accurate pure fluid and mixture models currently available. The database development is further divided into the development of a graphical user interface and the development of Fortran subroutines which implement the property models. Three models are used for the thermodynamic properties of pure components, depending on the availability of data. The first is the modified Benedict-Webb-Rubin (MBWR) equation of state. It is capable of accurately representing the properties of a fluid over wide ranges of temperature, pressure, and density. The MBWR equation is the basis for the current international standard for the properties of R123. The second high-accuracy pure-fluid equation of state is written in terms of reduced molar Helmholtz free energy. This Helmholtz energy model is the basis for the international standard formulation for R134a. The third pure-fluid model is the extended corresponding states (ECS) model of Huber and Ely (1994). It is used for fluids with limited experimental data. The database calculates seventeen thermodynamic and transport properties, including surface tensions of pure fluids and mixtures. Commercialized blends, such as R407C and R410A, are predefined in the interface and are listed in a table.

  19. First principles study of the structural, electronic, and transport properties of triarylamine-based nanowires

    SciTech Connect

    Akande, Akinlolu Bhattacharya, Sandip; Cathcart, Thomas; Sanvito, Stefano

    2014-02-21

    We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate the charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.

  20. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  1. Study of transport properties with relativistic ponderomotive effect in two-electron temperature plasma

    SciTech Connect

    Sen, Sonu Dubey, A.; Varshney, Meenu Asthana; Varshney, Dinesh

    2014-04-24

    In the present paper we make an analytical investigation to study transport properties with relativistic ponderomotive effect in two-electron temperature plasma. Using fluid model the two-electron temperature are introduced through relativistic ponderomotive force for the transportation of two species of electrons. Applying WKB and paraxial ray approximation the nonlinear dielectric constant and self-focusing equation is evaluated and analyzed with experimental relevance. Numerical calculations are made for different concentration of electron density (10{sup 19}−10{sup 21} per cm{sup 3}) at arbitrary values of laser intensity in the range 10{sup 18}−10{sup 21} W/cm{sup 2}. For a minimum radius depending on the initial conditions it is oscillating between a minimum and maximum value. The hot electrons leading to the increase of the on-axis transportation and favorable effect on relativistic self-focusing.

  2. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.

    2015-09-01

    The effects of surface functionalization on the electronic transport properties of the MXene compound Ti3C2 are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Fluorinated, oxidized and hydroxylated surfaces are considered and the obtained results are compared with the ones for the pristine MXene. It is found that the surface termination has a considerable impact on the electronic transport in MXene. For example, the fluorinated sample shows the largest transmission, whereas surface oxidation results in a considerable reduction of the electronic transmission. The current in the former sample can be up to 4 times larger for a given bias voltage as compared to the case of bare MXene. The increased transmission originates from the extended electronic states and smaller variations of the electrostatic potential profile. Our findings can be useful in designing MXene-based anode materials for energy storage applications, where enhanced electronic transport will be an asset.

  3. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties

    NASA Astrophysics Data System (ADS)

    Brenner, Thomas M.; Egger, David A.; Kronik, Leeor; Hodes, Gary; Cahen, David

    2016-01-01

    Solution-processed hybrid organic-inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion lengths, high optical absorption coefficients and impressive photovoltaic device performance. Recent results allow us to compare and contrast HOIP charge-transport characteristics to those of III-V semiconductors — benchmarks of photovoltaic (and light-emitting and laser diode) performance. In this Review, we summarize what is known and unknown about charge transport in HOIPs, with particular emphasis on their advantages as photovoltaic materials. Experimental and theoretical findings are integrated into one narrative, in which we highlight the fundamental questions that need to be addressed regarding the charge-transport properties of these materials and suggest future research directions.

  4. Can C-peptide mediated anti-inflammatory effects retard the development of microvascular complications of type 1 diabetes?

    PubMed

    Luppi, Patrizia; Kallas, Åsa; Wahren, John

    2013-07-01

    Hyperglycemia is considered to be the major cause of microvascular complications of diabetes. Growing evidence highlights the importance of hyperglycemia-mediated inflammation in the initiation and progression of microvascular complications in type 1 diabetes. We hypothesize that lack of proinsulin C-peptide and lack of its anti-inflammatory properties contribute to the development of microvascular complications. Evidence gathered over the past 20 years shows that C-peptide is a biologically active peptide in its own right. It has been shown to reduce formation of reactive oxygen species and nuclear factor-κB activation induced by hyperglycemia, resulting in inhibition of cytokine, chemokine and cell adhesion molecule formation as well as reduced apoptotic activity. In addition, C-peptide stimulates and induces the expression of both Na⁺, K⁺-ATPase and endothelial nitric oxide synthase. Animal studies and small-scale clinical trials in type 1 diabetes patients suggest that C-peptide replacement combined with regular insulin therapy exerts beneficial effects on kidney and nerve dysfunction. Further clinical trials in patients with microvascular complications including measurements of inflammatory markers are warranted to explore the clinical significance of the aforementioned, previously unrecognized, C-peptide effects.

  5. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    SciTech Connect

    Zhang XiaoNing; Xia WeiDong; Li HePing; Murphy, Anthony B.

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  6. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  7. Crystal structure and electrical transport properties of single layered perovskite LaSrCoO4

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Shukla, D. K.; Rahman, F.; Majid, S.; Tarachand; Okram, G. S.; Phase, D. M.

    2016-10-01

    We present here investigations on the influence of structure on electrical transport properties of polycrystalline LaSrCoO4 that is single layered perovskite with K2NiF4 type structure synthesized using solid state reaction route. Using Reitveld refinement of X-ray diffraction (XRD) data, it is found that the sample is in single phase with tetragonal structure (space group I4/mmm). Electrical resistivity performed in the temperature range 140-300K shows semiconducting character of the sample. Considerable contrasts in the Co-O bond length is associated with the intermediate spin (IS) state of Co ion that correlates the structural and transport properties. Detailed analysis indicates that the temperature dependent electrical resistivity follows the three-dimensional variable range hopping (VRH) model in low temperature region below 225K. The high temperature (225-300K) resistivity data has been found to follow the thermally activated behaviour.

  8. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE PAGES

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; ...

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  9. Accurate transport properties for O(3P)-H and O(3P)-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.; Kłos, Jacek; Warehime, Mick; Alexander, Millard H.

    2016-10-01

    Transport properties for collisions of oxygen atoms with hydrogen atoms and hydrogen molecules have been computed by means of time-independent quantum scattering calculations. For the O(3P)-H(2S) interaction, potential energy curves for the four OH electronic states emanating from this asymptote were computed by the internally-contracted multi-reference configuration interaction method, and the R-dependent spin-orbit matrix elements were taken from Parlant and Yarkony [J. Chem. Phys. 110, 363 (1999)]. For the O(3P)-H2 interaction, diabatic potential energy surfaces were derived from internally contracted multi-reference configuration interaction calculations. Transport properties were computed for these two collision pairs and compared with those obtained with the conventional approach that employs isotropic Lennard-Jones (12-6) potentials.

  10. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-11-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  11. Transport properties of Nd1-xFexOF polycrystalline films

    NASA Astrophysics Data System (ADS)

    Corrales-Mendoza, I.; Rangel-Kuoppa, Victor-Tapio; Conde-Gallardo, A.

    2013-12-01

    The transport properties of Nd1-xFexOF films with 0.2transport properties are not governed by a typical band conduction mechanism but by a variable range hopping process.

  12. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    NASA Astrophysics Data System (ADS)

    Natividad, E.; Castro, M.; Burriel, R.; Angurel, L. A.; Díez, J. C.; Navarro, R.

    2002-07-01

    The electric and thermal properties well above and below Tc of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, Jc, with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of Tc, makes the relation difficult between the normal state resistivity and Jc (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states.

  13. Measuring the electronic transport properties of individual nano-objects under high pressures

    NASA Astrophysics Data System (ADS)

    Caillier, C.; Ayari, A.; Le Floch, S.; Féret, H.; Guiraud, G.; San-Miguel, A.

    2011-09-01

    We describe a setup to carry out electronic transport measurements under high pressures on individual nano-objects. It is based on a home-automated three-stage gas compressor working with argon or helium up to 1 GPa. The setup was successfully tested on contacted individual nanotubes, for which we evidence strong evolutions of the transport properties. These evolutions are related to fundamental issues such as the modification of the nano-object contact resistance, the pressure-induced modification of the nano-object geometry or pressure-induced changes in the intrinsic electronic properties of the nanosystem. A cryostat has also been adapted to the pressure cell, allowing combined pressure and temperature experiments down to 12 K.

  14. Crystallization and Transport Properties of Amorphous Cr-Si Thin Film Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Burkov, A. T.; Schumann, J.

    2014-06-01

    We studied the thermoelectric properties, crystallization, and stability of amorphous and nanocrystalline states in Cr-Si composite films. Amorphous films, prepared by magnetron sputtering, were transformed into the nanocrystalline state by annealing with in situ thermopower and electrical resistivity measurements. We have found that the amorphous state is stable in these film composites to about 550 K. Prior to crystallization, the amorphous films undergo a structural relaxation, detected by peculiarities in the temperature dependences of the transport properties, but not visible in x-ray or electron diffraction. The magnitude and temperature dependences of electrical conductivity and thermopower indicate that electron transport in the amorphous films is through extended states. The amorphous films are crystallized at annealing temperatures above 550 K into a nanocrystalline composite with an average grain size of 10-20 nm.

  15. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    SciTech Connect

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  16. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  17. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    SciTech Connect

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-15

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  18. High-density carbon nanotube buckypapers with superior transport and mechanical properties.

    PubMed

    Zhang, Ling; Zhang, Guang; Liu, Changhong; Fan, Shoushan

    2012-09-12

    High-density buckypapers were obtained by using well-aligned carbon nanotube arrays. The density of the buckypapers was as high as 1.39 g cm(-3), which is close to the ultimate density of ideal buckypapers. Then we measured the transport and mechanical properties of the buckypapers. Our results demonstrated that its electrical and thermal conductivities could be almost linearly improved by increasing its density. In particular, its superior thermal conductivity is nearly twice that of common metals, which enables it a lightweight and more efficient heat-transfer materials. The Young's modulus of the buckypapers could reach a magnitude over 2 GPa, which is greatly improved compared with previous reported results. In view of this, our work provided a simple and convenient method to prepare high-density buckypapers with excellent transport and mechanical properties.

  19. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies.

    PubMed

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A

    2015-08-19

    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments.

  20. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  1. Theoretical study of electronic transport properties of a graphene-silicene bilayer

    SciTech Connect

    Berdiyorov, G. R.; Bahlouli, H.; Peeters, F. M.

    2015-06-14

    Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.

  2. The influence of inner hydrophobisation on water transport properties of modified lime plasters

    NASA Astrophysics Data System (ADS)

    Pavlíková, Milena; Pavlík, Zbyšek; Pernicová, Radka; Černý, Robert

    2016-06-01

    The effect of hydrophobic agent admixture on water vapour and liquid water transport properties of newly designed lime plasters is analysed in the paper. The major part of physico - chemical building deterioration is related to the penetration of moisture and soluble salts into the building structure. For that reason, the modified lime plasters were in the broad range of basic material properties tested. From the quantitative point of view, the measured results clearly demonstrate the big differences in the behaviour of studied materials depending on applied modifying admixtures. From the practical point of view, plaster made of lime hydrate, metakaolin, zinc stearate and air-entraining agent can be recommended for renovation purposes. The accessed material parameters will be used as input data for computational modelling of moisture transport in this type of porous building materials and will be stored in material database.

  3. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  4. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas.

    PubMed

    Srivastava, Anurag; Bhat, Chetan; Jain, Sumit Kumar; Mishra, Pankaj Kumar; Brajpuriya, Ranjeet

    2015-03-01

    We report the detection of ammonia gas through electronic and transport properties analysis of boron nitride sheet. The density functional theory (DFT) based ab initio approach has been used to calculate the electronic and transport properties of BN sheet in presence of ammonia gas. Analysis confirms that the band gap of the sheet increases due to presence of ammonia. Out of different positions, the bridge site is the most favorable position for adsorption of ammonia and the mechanism of interaction falls between weak electrostatic interaction and chemisorption. On relaxation, change in the bond angles of the ammonia molecule in various configurations has been reported with the distance between NH3 and the sheet. An increase in the transmission of electrons has been observed on increasing the bias voltage and I-V relationship. This confirms that, the current increases on applying the bias when ammonia is introduced while a very small current flows for pure BN sheet.

  5. The determination of ionic transport properties at high pressures in a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Wang, Qinglin; Liu, Cailong; Han, Yonghao; Gao, Chunxiao; Ma, Yanzhang

    2016-12-01

    A two-electrode configuration was adopted in an in situ impedance measurement system to determine the ionic conductivity at high pressures in a diamond anvil cell. In the experimental measurements, Mo thin-films were specifically coated on tops of the diamond anvils to serve as a pair of capacitance-like electrodes for impedance spectrum measurements. In the spectrum analysis, a Warburg impedance element was introduced into the equivalent circuit to reveal the ionic transport property among other physical properties of a material at high pressures. Using this method, we were able to determine the ionic transport character including the ionic conductivity and the diffusion coefficient of a sodium azide solid to 40 GPa.

  6. Effect of Li2O on the microstructure, magnetic and transport properties of Tl-2223 superconductor

    DOE PAGES

    Shipra, R.; Sefat, Athena Safa

    2015-10-08

    Here, the present study gives an account of the effect of addition of Li2O on the ease of phase formation and superconducting properties of Tl2Ba2Ca2Cu3O10 + δ (Tl-2223) material. Li2O slightly decreases the superconducting transition temperature, while an optimal concentration of 20% Li2O improves the critical current density (Jc) by about two fold. We also found substantial effects on the synthesis temperature, microstructure and normal state transport properties of Tl-2223 with Li2O addition. Short-time annealing under flowing Ar + 4%H2 (1 h) further improves the superconducting volume fractions, as well as Jc.

  7. Glass structure and transport properties of Li 2O containing zinc bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    2008-10-01

    Bismuth based glasses containing ZnO, B 2O 3 and Li 2O are investigated by different physical, spectroscopic and transport techniques. Raman and IR studies reveal that these glasses are built up of [BiO 3] and [BiO 6] units. Zinc in tetrahedral form is also observed. Glass transition temperature varied nonlinearly with the composition. Also the variation in conductivity with composition is very small and non-linear. The nonlinear behaviour in these properties is attributed to mixed former effect. Molar polarizability is also estimated from optical and dielectric properties. The polarizability values show dependence on Bi 2O 3 content and varied nonlinearly.

  8. A study of transport properties in Cu and P doped ZnSb

    SciTech Connect

    Valset, K.; Song, X.; Finstad, T. G.

    2015-01-28

    ZnSb samples have been doped with copper and phosphorus and sintered at 798 K. Electronic transport properties are interpreted as being influenced by an impurity band close to the valence band. At low Cu dopant concentrations, this impurity band degrades the thermoelectric properties as the Seebeck coefficient and effective mass are reduced. At carrier concentrations above 1 × 10{sup 19 }cm{sup −3}, the Seebeck coefficient in Cu doped samples can be described by a single parabolic band.

  9. Influence of phosphate on the transport properties of lead in sand.

    PubMed

    Butkus, Michael A; Johnson, Marie C

    2011-01-15

    Temporal moment analysis was used to examine the transport of lead species in sand columns. The influence of sodium phosphate (PO(4(aq))) and hydroxyapatite (HA) on lead transport was also evaluated. Transport properties of lead microparticles (diameter>0.45 μm) were a function of electrophoretic mobility: those particles with electrophoretic mobility less than -1 × 10(-8)m(2)/Vs exhibited significantly lower dimensionless first temporal moment (θ) and second temporal moment (σ(θ)(2)). The forms of lead investigated in this work had a tendency to move in sand over a wide pH range. Although the PO(4(aq)) amendment substantially reduced lead mass recoveries in the sand column effluent, lead microparticles were formed that had a tendency to move rapidly and with minimal dispersion when compared with controls. Treatments with HA provided limited reduction in lead mass recovery and minimal changes in lead transport properties. A colloid stability model was used to predict attachment of lead particles in sand.

  10. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    NASA Astrophysics Data System (ADS)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  11. A computational study of the quantum transport properties of a Cu-CNT composite.

    PubMed

    Ghorbani-Asl, Mahdi; Bristowe, Paul D; Koziol, Krzysztof

    2015-07-28

    The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.

  12. Electronic conduction properties of indium tin oxide: single-particle and many-body transport.

    PubMed

    Lin, Juhn-Jong; Li, Zhi-Qing

    2014-08-27

    Indium tin oxide (Sn-doped In2O3-δ or ITO) is a very interesting and technologically important transparent conducting oxide. This class of material has been extensively investigated for decades, with research efforts mostly focusing on the application aspects. The fundamental issues of the electronic conduction properties of ITO from room temperature down to liquid-helium temperatures have rarely been addressed thus far. Studies of the electrical-transport properties over a wide range of temperature are essential to unravelling the underlying electronic dynamics and microscopic electronic parameters. In this topical review, we show that one can learn rich physics in ITO material, including the semi-classical Boltzmann transport, the quantum-interference electron transport, as well as the many-body Coulomb electron-electron interaction effects in the presence of disorder and inhomogeneity (granularity). To fully reveal the numerous avenues and unique opportunities that the ITO material has provided for fundamental condensed matter physics research, we demonstrate a variety of charge transport properties in different forms of ITO structures, including homogeneous polycrystalline thin and thick films, homogeneous single-crystalline nanowires and inhomogeneous ultrathin films. In this manner, we not only address new physics phenomena that can arise in ITO but also illustrate the versatility of the stable ITO material forms for potential technological applications. We emphasize that, microscopically, the novel and rich electronic conduction properties of ITO originate from the inherited robust free-electron-like energy bandstructure and low-carrier concentration (as compared with that in typical metals) characteristics of this class of material. Furthermore, a low carrier concentration leads to slow electron-phonon relaxation, which in turn causes the experimentally observed (i) a small residual resistance ratio, (ii) a linear electron diffusion thermoelectric power in

  13. Transport Properties of Aqueous Glycerol and Aqueous Mannitol through the Zirconium Oxide Membrane

    PubMed

    Blokhra; Sharma; Blokhra

    1997-08-15

    The transport properties of aqueous glycerol and aqueous mannitol across a zirconium oxide membrane are, investigated from the point of view of irreversible thermodynamics. The data on hydrodynamic permeability are analyzed in terms of frictional coefficients and entropy of activation. The phenomenological coefficient characterizing the electroosmotic flow and the membrane characteristics are also estimated for the various solutions with the object of determining the efficiencies of electrokinetic energy conversion and zeta potential. Copyright 1997Academic Press

  14. Size distribution and optical properties of African mineral dust after intercontinental transport

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Formenti, Paola; Desboeufs, Karine; Chevaillier, Servanne; Triquet, Sylvain; Maillé, Michel; Cazaunau, Mathieu; Laurent, Benoit; Mayol-Bracero, Olga L.; Vallejo, Pamela; Quiñones, Mariana; Gutierrez-Molina, Ian E.; Cassola, Federico; Prati, Paolo; Andrews, Elisabeth; Ogren, John

    2016-06-01

    The transatlantic transport of mineral dust from Africa is a persistent atmospheric phenomenon, clue for understanding the impacts of dust at the global scale. As part of the DUST Aging and Transport from Africa to the Caribbean (Dust-ATTACk) intensive field campaign, the size distribution and optical properties of mineral dust were measured in June-July 2012 on the east coast of Puerto Rico, more than 5000 km from the west coast of Africa. During the recorded dust events, the PM10 (particulate matter 10 micrometers or less in diameter) concentrations increased from 20 to 70 µg m-3. Remote sensing observations and modeling analysis were used to identify the main source regions, which were found in the Western Sahara, Mauritania, Algeria, Niger, and Mali. The microphysical and optical properties of the dust plumes were almost independent of origin. The size distribution of mineral dust after long-range transport may have modal diameters similar to those on the eastern side of the Atlantic short time after emission, possibly depending on height of transport. Additional submicron particles of anthropogenic absorbing aerosols (likely from regional marine traffic activities) can be mixed within the dust plumes, without affecting in a significant way the PM10 absorption properties of dust observed in Puerto Rico. The Dust-ATTACk experimental data set may be useful for modeling the direct radiative effect of dust. For accurate representation of dust optical properties over the Atlantic remote marine region, we recommend mass extinction efficiency (MEE) and single-scattering albedo values in the range 1.1-1.5 m2 g-1 and 0.97-0.98, respectively, for visible wavelengths.

  15. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  16. Viscoelastic and Transport Properties of Sulfonated PS-PIB-PS Block Copolymers

    DTIC Science & Technology

    2001-05-01

    000 1200 Time (min) Figure 13. IR intensity vs. time for ethanol through three sulfonated P5-PIB- PS membranes. Figure 14 shows a comparison of four ...sulfonated PS -PIB- PS membrane. Table 1 shows a comparison of the equilibrium sorbtion values for the four alcohols in the sulfonated PS -PIB- PS . Table 1...Army Research Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-TR-2482 May2001 Viscoelastic and Transport Properties of Sulfonated PS -PIB- PS

  17. Photoacoustic determination of thermal and electron transport properties of single crystal NiO

    NASA Astrophysics Data System (ADS)

    Nikolic, P. M.; Lukovic, D.; Savic, S.; Vasiljevic Radovic, D.; Radulovic, K.; Vujatovic, S.; Lukic, L.; Nikolic, M. V.; Bojicic, A.; Djuric, S.

    2005-06-01

    Thermal and electron transport properties of single crystal NiO were determined using the photoacoustic technique. NiO single crystals were prepared using the Verneuil method and were easily cleaved parallel to the (100) plane. All samples were of the p type. Atomic force microscopy images of cleaved NiO samples were made enabling a view of steps along the (001) direction and terraces, which were between 20 nm and 100 nm thick.

  18. Scalp reconstruction by microvascular free tissue transfer

    SciTech Connect

    Furnas, H.; Lineaweaver, W.C.; Alpert, B.S. )

    1990-05-01

    We report on a series of patients with scalp defects who have been treated with a variety of free flaps, spanning the era of microvascular free tissue transfer from its incipient stages to the present. Between 1971 and 1987, 18 patients underwent scalp reconstruction with 21 free flaps: 11 latissimus dorsi, 3 scalp transfers between identical twins, 3 groin, one combined latissimus dorsi and serratus anterior, two serratus anterior, and one omentum. These flaps were used to cover scalp defects resulting from burns, trauma, radiation, and tumors in patients ranging from 7 to 79 years of age. Follow-up has ranged from 3 weeks to 7 years. All of our flaps survived and covered complex defects, many of which had failed more conservative attempts at cover. One patient received radiation therapy to his flap without unfavorable sequelae. This experience began with a pioneering omental flap and includes cutaneous and muscle flaps. The latissimus dorsi is our first choice for free flap reconstruction of extensive, complicated scalp wounds because of its large size, predictable blood supply, ease of harvesting, and provision of excellent vascularity to compromised beds.

  19. Retinal microvascular plasticity in a premature neonate.

    PubMed

    Kandasamy, Y; Hartley, L; Smith, R

    2017-01-31

    Dilation and abnormal tortuosity of retinal vessels are the hallmarks of severe retinopathy of prematurity (ROP) in premature infants. The stages of ROP are defined by vessel appearance at the interface between the vascular and avascular retinal areas. Deregulated signaling pathways involving hypoxia-inducible factors such as vascular endothelial growth factor (VEGF) are involved in the pathogenesis of ROP. VEGF-antagonists are increasingly being used as 'off-label medication' to treat this condition, with some success. We present Baby SM (female), who was born prematurely at 24 weeks gestation in a tertiary neonatal intensive care unit, and with a birth weight of 640 g. On screening at 35 weeks postmenstrual age (PMA), she was noted to have ROP, which became severe by 37 weeks PMA. She received one dose of intravitreal VEGF antagonist (Bevacizumab), resulting in a decrease in vessel tortuosity and dilation. However, repeat imaging at 4 weeks showed a re-emergence of vessel tortuosity. We believe the observed changes demonstrate an inherent retinal microvascular plasticity in premature neonates. With improved survival of extremely premature neonates and the availability of retinal imaging technology, we are now able to observe this plasticity.

  20. [Microvascular anastomoses in cervical esophageal reconstruction].

    PubMed

    Takushima, A; Harii, K; Asato, H

    2001-09-01

    Ischemia or hemostasis in the gastric, jejunal, and colonic pedicle after esophagectomy is believed to contribute significantly to postoperative complications. With the advent of microvascular anastomoses, many surgeons have adopted vascular augmentation (supercharge) as a means of avoiding these difficulties. Microsurgical free tissue transfer represented by the free jejunum and forearm flap also plays an important role in esophageal reconstruction. In this paper, the authors introduce the technical points important for successful revascularization including the choice of recipient vessels, setting up of the reconstructive materials, and postoperative monitoring. In cases of gastric pull-up elevated via posterior mediastinum, the left gastroduodenal vessels are anastomosed to the cervical transverse or superior thyroidal vessels. In cases of duodenal or colonic pull-up elevated via the anterosternal route, the vascular pedicles are anastomosed to the internal mammary vessels which are dissected by resecting the costal cartilage. When the free jejunum flap is used, the cervical transverse or superior thyroidal vessels are most frequently used as recipients. Postoperative monitoring of free flaps is performed using Doppler ultrasound or through a small skin incision made above the transferred tissue. Although gastric or colonic pull-up is difficult to monitor, color Doppler sonography permits quantitative analysis of blood flow and may be a useful option.

  1. Calculation of effective transport properties of partially saturated gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-02-01

    A large number of currently available Computational Fluid Dynamics numerical models of Polymer Electrolyte Membrane Fuel Cells (PEMFC) are based on the assumption that porous structures are mainly considered as thin and homogenous layers, hence the mass transport equations in structures such as Gas Diffusion Layers (GDL) are usually modelled according to the Darcy assumptions. Application of homogenous models implies that the effects of porous structures are taken into consideration via the effective transport properties of porosity, tortuosity, permeability (or flow resistance), diffusivity, electric and thermal conductivity. Therefore, reliable values of those effective properties of GDL play a significant role for PEMFC modelling when employing Computational Fluid Dynamics, since these parameters are required as input values for performing the numerical calculations. The objective of the current study is to calculate the effective transport properties of GDL, namely gas permeability, diffusivity and thermal conductivity, as a function of liquid water saturation by using the Lattice-Boltzmann approach. The study proposes a method of uniform water impregnation of the GDL based on the "Fine-Mist" assumption by taking into account the surface tension of water droplets and the actual shape of GDL pores.

  2. Transport properties of the topological Kondo insulator SmB6 under the irradiation of light

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Bao; Yang, Hui-Min

    2016-10-01

    In this paper, we study transport properties of the X point in the Brillouin zone of the topological Kondo insulator SmB6 under the application of a circularly polarized light. The transport properties at high-frequency regime and low-frequency regime as a function of the ratio (κ) of the Dresselhaus-like and Rashba-like spin-orbit parameter are studied based on the Floquet theory and Boltzmann equation respectively. The sign of Hall conductivity at high-frequency regime can be reversed by the ratio κ and the amplitude of the light. The amplitude of the current can be enhanced by the ratio κ. Our findings provide a way to control the transport properties of the Dirac materials at low-frequency regime. Project supported by the National Natural Science Foundation of China (Grant Nos. 11504095 and 11447145), the Foundation of Heze University (Grant Nos. XY14B002 and XYPY01), and the Project funded by the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J15LJ55).

  3. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  4. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids.

    PubMed

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clearance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (eta) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of eta and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.

  5. Relation between inhomogeneous structure and transport properties for superconductor-insulator transitions

    NASA Astrophysics Data System (ADS)

    Komaki, S.; Sawada, Y.; Saya, B.; Ichikawa, F.; Itoh, K.; Makise, K.

    2009-03-01

    In the study of superconductor-insulator transitions of high-Tc cuprates complicated behaviors in transport properties were observed for example quasi-reentrant behaviors. In this study we report that the relation between microscopic structure and transport properties for Bi2Sr2CaCu2O8+y crystal with substitution of Ca by Y. From the energy dispersive X-ray spectroscopy it was estimated that samples contain almost 45% Y when the starting composition was only 10% Y. Also the values of c-axis length were almost constant and shorter than those of Y free samples. However there were various ρ(T) behaviors dependent on sample: localized, quasi-reentrant, broad superconducting transition etc. All sheet resistances defined per CuO2 bilayer in the normal state were much larger than the quantum resistance h/4e2 or 6450 Ω. We were able to observe the inhomogeneous distribution of Y using a combination of electron energy loss spectroscopy and a high-angle annular dark-field technique in a scanning transmission electron microscope. The Y rich region formed the belt with about 20 nm width. This inhomogeneous structure seems to be the origin of various transport properties.

  6. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    DOE PAGES

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; ...

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI)2, acetonitrile Zn(CF3SO3)2, and propylene carbonate Zn(TFSI)2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an importantmore » role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  7. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    SciTech Connect

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; Pan, Baofei; He, Meinan; Ferrandon, Magali S.; Liao, Chen; Persson, Kristin A.; Burrell, Anthony K.

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI)2, acetonitrile Zn(CF3SO3)2, and propylene carbonate Zn(TFSI)2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes

  8. Comparison of transport properties models for numerical simulations of Mars entry vehicles

    NASA Astrophysics Data System (ADS)

    Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2017-01-01

    Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.

  9. [Effects of Cultivation Soil Properties on the Transport of Genetically Engineered Microorganism in Huabei Plain].

    PubMed

    Zhang, Jing; Liu, Ping; Liu, Chun; Chen, Xiao-xuan; Zhang, Lei

    2015-12-01

    The transport of genetically engineered microorganism (GEM) in the soil is considered to be the important factor influencing the enhanced bioremediation of polluted soil. The transport of an atrazine-degrading GEM and its influencing factors were investigated in the saturated cultivation soil of Huabei Plain. The results showed that horizontal infiltration was the main mechanism of GEM transport in the saturated cultivation soil. The transport process could be simulated using the filtration model. Soil properties showed significant effects on pore water flow and GEM transport in saturated soil. When particle size, porosity and sand component of the soil increased, the hydraulic conductivity constant increased and filtration coefficient of GEM decreased in saturated soil, indicating the reduced retention of GEM in the soil. An increase in infiltration flow also increased hydraulic conductivity constant in saturated soil and consequently decreased filtration coefficient of GEM. When hydraulic conductivity constants ranged from 5.02 m · d⁻¹ to 6.70 m · d⁻¹ in the saturated soil, the filtration coefficients of GEM varied from 0.105 to 0.274. There was a significantly negative correlation between them.

  10. Action of Steroidal Diamines on Active Transport and Permeability Properties of Escherichia coli

    PubMed Central

    Silver, Simon; Levine, Elaine

    1968-01-01

    The steroidal diamine irehdiamine A (IDA) is a potent inhibitor of bacteriophage growth and macromolecular synthesis in Escherichia coli. By using radioactive 42K and 14C-thiomethylgalactoside (TMG), rapid effects of IDA and related steroids, both on the influx of potassium and TMG via their respective transport systems and on the efflux (leakage) of radioactivity from the treated cells, have been measured. IDA affects both the influx and efflux of 42K at concentrations of steroid as low as 2 × 10−5m. Because of the increased leakage, it is not possible to tell whether there is a direct effect reducing the rate of active transport of potassium. The primary diamine, IDA, and its bis-secondary, bis-tertiary, and bis-quaternary diamine analogues are decreasingly effective in altering cell permeability properties in the order 1° > 2° > 3° > 4°. The effects of IDA on potassium transport are mirrored by similar effects on the transport of TMG. Therefore, the action of IDA is on the cell membrane and not directly on one or another transport system. The effects of IDA on cell permeability can reasonably explain the inhibitory actions of the drugs on bacteriophage growth and cellular metabolism. PMID:4877122

  11. Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.

    PubMed

    Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong

    2015-09-23

    Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms.

  12. Dispersion stability and electrokinetic properties of intrinsic plutonium colloids: implications for subsurface transport.

    PubMed

    Abdel-Fattah, Amr I; Zhou, Dongxu; Boukhalfa, Hakim; Tarimala, Sowmitri; Ware, S Doug; Keller, Arturo A

    2013-06-04

    Subsurface transport of plutonium (Pu) may be facilitated by the formation of intrinsic Pu colloids. While this colloid-facilitated transport is largely governed by the electrokinetic properties and dispersion stability (resistance to aggregation) of the colloids, reported experimental data is scarce. Here, we quantify the dependence of ζ-potential of intrinsic Pu(IV) colloids on pH and their aggregation rate on ionic strength. Results indicate an isoelectric point of pH 8.6 and a critical coagulation concentration of 0.1 M of 1:1 electrolyte at pH 11.4. The ζ-potential/pH dependence of the Pu(IV) colloids is similar to that of goethite and hematite colloids. Colloid interaction energy calculations using these values reveal an effective Hamaker constant of the intrinsic Pu(IV) colloids in water of 1.85 × 10(-19) J, corresponding to a relative permittivity of 6.21 and refractive index of 2.33, in agreement with first principles calculations. This relatively high Hamaker constant combined with the positive charge of Pu(IV) colloids under typical groundwater aquifer conditions led to two contradicting hypotheses: (a) the Pu(IV) colloids will exhibit significant aggregation and deposition, leading to a negligible subsurface transport or (b) the Pu(IV) colloids will associate with the relatively stable native groundwater colloids, leading to a considerable subsurface transport. Packed column transport experiments supported the second hypothesis.

  13. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2015-08-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1-3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and

  14. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.

  15. The role of the microvascular network structure on diffusion and consumption of anticancer drugs.

    PubMed

    Mascheroni, Pietro; Penta, Raimondo

    2016-12-06

    We investigate the impact of microvascular geometry on the transport of drugs in solid tumors, focusing on the diffusion and consumption phenomena. We embrace recent advances in the asymptotic homogenization literature starting from a double Darcy-double advection-diffusion-reaction system of partial differential equations that is obtained exploiting the sharp length separation between the intercapillary distance and the average tumor size. The geometric information on the microvascular network is encoded into effective hydraulic conductivities and diffusivities, which are numerically computed by solving periodic cell problems on appropriate microscale representative cells. The coefficients are then injected into the macroscale equations, and these are solved for an isolated, vascularized spherical tumor. We consider the effect of vascular tortuosity on the transport of anticancer molecules, focusing on Vinblastine and Doxorubicin dynamics, which are considered as a tracer and as a highly interacting molecule, respectively. The computational model is able to quantify the treatment performance through the analysis of the interstitial drug concentration and the quantity of drug metabolized in the tumor. Our results show that both drug advection and diffusion are dramatically impaired by increasing geometrical complexity of the microvasculature, leading to nonoptimal absorption and delivery of therapeutic agents. However, this effect apparently has a minor role whenever the dynamics are mostly driven by metabolic reactions in the tumor interstitium, eg, for highly interacting molecules. In the latter case, anticancer therapies that aim at regularizing the microvasculature might not play a major role, and different strategies are to be developed.

  16. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  17. Tuning optoelectronic properties and understanding charge transport in nanocrystal thin films of earth abundant semiconducting materials

    NASA Astrophysics Data System (ADS)

    Riha, Shannon C.

    2011-12-01

    With the capability of producing nearly 600 TW annually, solar power is one renewable energy source with the potential to meet a large fraction of the world's burgeoning energy demand. To make solar technology cost-competitive with carbon-based fuels, cheaper devices need to be realized. Solution-processed solar cells from nanocrystal inks of earth abundant materials satisfy this requirement. Nonetheless, a major hurdle in commercializing such devices is poor charge transport through nanocrystal thin films. The efficiency of charge transport through nanocrystal thin films is strongly dependent on the quality of the nanocrystals, as well as their optoelectronic properties. Therefore, the first part of this dissertation is focused on synthesizing high quality nanocrystals of Cu2ZnSnS4, a promising earth abundant photovoltaic absorber material. The optoelectronic properties of the nanocrystals were tuned by altering the copper to zinc ratio, as well as by introducing selenium to create Cu2ZnSn(S1-xSe x)4 solid solutions. Photoelectrochemical characterization was used to test the Cu2ZnSnS4 and Cu2ZnSn(S 1-xSex)4 nanocrystal thin films. The results identify minority carrier diffusion and recombination via the redox shuttle as the major loss mechanisms hindering efficient charge transport through the nanocrystal thin films. One way to solve this issue is to sinter the nanocrystals together, creating large grains for efficient charge transport. Although this may be quick and effective, it can lead to the formation of structural defects, among other issues. To this end, using a different copper-based material, namely Cu2Se, and simple surface chemistry treatments, an alternative route to enhance charge transport through nanocrystals thin films is proposed.

  18. Graphene transport properties upon exposure to PMMA processing and heat treatments

    NASA Astrophysics Data System (ADS)

    Gammelgaard, Lene; Caridad, José M.; Cagliani, Alberto; Mackenzie, David M. A.; Petersen, Dirch H.; Booth, Timothy J.; Bøggild, Peter

    2014-12-01

    The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200 °C.

  19. Radiation Transport Properties of Potential In Situ-Developed Regolith-Epoxy Materials for Martian Habitats

    NASA Technical Reports Server (NTRS)

    Miller, J.; Heilbronn, L.; Singleterry, R. C., Jr.; Thibeault, S. A.; Wilson, J. W.; Zeitlin, C. J.

    2001-01-01

    We will evaluate the radiation transport properties of epoxy-martian regolith composites. Such composites, which would use both in situ materials and chemicals fabricated from elements found in the martian atmosphere, are candidates for use in habitats on Mars. The principal objective is to evaluate the transmission properties of these materials with respect to the protons and heavy charged particles in the galactic cosmic rays which bombard the martian surface. The secondary objective is to evaluate fabrication methods which could lead to technologies for in situ fabrication. The composites will be prepared by NASA Langley Research Center using simulated martian regolith. Initial evaluation of the radiation shielding properties will be made using transport models developed at NASA-LaRC and the results of these calculations will be used to select the composites with the most favorable radiation transmission properties. These candidates will then be empirically evaluated at particle accelerators which produce beams of protons and heavy charged particles comparable in energy to the radiation at the surface of Mars.

  20. Electrical transport properties of Co-based skutterudites filled with Ag and Au

    NASA Astrophysics Data System (ADS)

    Stoica, Maria; Lo, Cynthia S.

    2012-09-01

    This work presents theoretical calculations of the electrical transport properties of the Ag, Au, and La fractionally filled bulk skutterudites: CoSb3, CoAs3, and CoP3. Density functional theory, along with projector augmented wave potentials, was used to calculate bulk band structures and partial density of states. The Seebeck coefficient (S), electrical conductivity (σ), and power factor (S2σ) were calculated as a function of temperature and filling fraction using the momentum matrix method along the entire first Brillouin zone. Calculated trends in the electrical transport properties agree with previously published experimental measurements for p-type unfilled and La-filled CoSb3. The calculated S and σ values for the Ag- and Au-filled compounds indicate that the most promising electronic properties are exhibited by p-type Au0.125(CoSb3)4, Au0.25(CoSb3)4, and Au(CoSb3)4. Au is therefore recommended as a promising filler for improved thermoelectric properties in cobalt antimonides. Ag is also a good filler for cobalt phosphides; the creation of a negative indirect band gap is observed in Ag(CoP3)4, which indicates semimetallic behavior, so this compound may possibly exhibit lower thermal conductivity than metallic CoP3. Finally, we recommend future directions for improving the thermoelectric figure of merit of these materials.

  1. Performance assessment of several equations of state and second virial coefficients in modified Enskog theory: Results for transport properties

    NASA Astrophysics Data System (ADS)

    Kiani, M.; Alavianmehr, M. M.; Otoofat, M.; Mohsenipour, A. A.; Ghatee, A.

    2015-11-01

    In this work, we identify a simple method for predicting transport properties of fluids over wide ranges of temperatures and pressure. In this respect, the capability of several equations of state (EOS) and second virial coefficient correlations to predict transport properties of fluids including carbon dioxide, methane and argon using modified Enskog theory (MET) is investigated. The transport properties in question are viscosity and thermal conductivity. The results indicate that the SRK EOS employed in the modified Enskog theory outperforms other equations of state. The average absolute deviation was found to be 12.2 and 18.5% for, respectively, the calculated thermal conductivity and viscosity using the MET.

  2. Microvascular PO2 during extreme hemodilution with hemoglobin site specifically PEGylated at Cys-93(beta) in hamster window chamber.

    PubMed

    Cabrales, Pedro; Kanika, Nirmala Devi; Manjula, Belur N; Tsai, Amy G; Acharya, Seetharama A; Intaglietta, Marcos

    2004-10-01

    The oxygen transport capacity of nonhypertensive polyethylene glycol (PEG)-conjugated hemoglobin solutions were investigated in the hamster chamber window model. Microvascular measurements were made to determine oxygen delivery in conditions of extreme hemodilution [hematocrit (Hct) 11%]. Two isovolemic hemodilution steps were performed with a 6% Dextran 70 (70-kDa molecular mass) plasma expander until Hct was 35% of control. Isovolemic blood volume exchange was continued using two surface-modified PEGylated hemoglobins (P5K2, P(50) = 8.6, and P10K2, P(50) = 8.3; P(50) is the hemoglobin Po(2) corresponding to its 50% oxygen saturation) until Hct was 11%. P5K2 and P10K2 are PEG-conjugated hemoglobins that maintain most of the hemoglobin allosteric properties and have a cooperativity index of n = 2.2. The effects of these molecular solutions were compared with those obtained in a previous study using MP4, a PEG-modified hemoglobin whose P(50) was 5.4 and cooperativity was 1.2 (Tsai et al., Am J Physiol Heart Circ Physiol 285: H1411-H1419, 2003). Tissue oxygen levels were higher after P5K2 (7.0 +/- 2.5 mmHg) and P10K2 (6.3 +/- 2.3 mmHg) versus MP4 (1.7 +/- 0.5 mmHg) or the nonoxygen carrier Dextran 70 (1.3 +/- 1.2 mmHg). Microvascular oxygen delivery was higher after P5K2 and P10K2 (2.22 and 2.34 ml O(2)/dl blood) compared with MP4 (1.41 ml O(2)/dl blood) or Dextran 70 (0.90 ml O(2)/dl blood); however, all these values were lower than control (7.42 ml O(2)/dl blood). The total hemoglobin in blood was similar in all cases; therefore, the improvement in tissue Po(2) and oxygen delivery appears to be due to the increased cooperativity of the new molecules.

  3. The effects of surface functionalization on rheology, structure and transport properties of nanocomposites

    NASA Astrophysics Data System (ADS)

    Ranka, Moulik A.

    In this thesis, the effects of surface functionalization using hydrophobic silanes on properties of nanocomposites comprising 42 nm silica particles suspended in a melt of polyethylene-glycol (PEG) are studied using rheological, static and dynamic x-ray scattering studies. The nanocomposites are studied in the low molecular weight unentangled (PEG-400) and high molecular weight entangled (PEG-20000) regimes. We find no differences in the properties of the bare and silanized particles in the low volume fraction regime up to where the interparticle separation distance h > 6Rg. In the region of 6Rg > h > 3Rg (5Rg > h > 3Rg, in case of entangled melts), we find substantial differences in the rheological, structure and transport properties when comparing the bare and silanized particles. In the unentangled melts, we observe up to four orders of magnitude drop in the viscosity of the composites at the highest levels of silanization and observe shear thinning behavior that is unlike what is universally seen for hard spheres. For the entangled melts, a yield stress is observed for the silanized particles that is absent in the case of the bare particles and there is a divergence in the elastic modulus in comparison to bare particles. We observe an anomalous speed up in the density relaxations and an associated maxima in structure properties in the case of unentangled melts which has been reported previously for particles experiencing soft repulsive potentials. A clear reentrant behavior in structure and transport properties is observed for bare particles in the entangled melts that have been previously reported for particles interacting with soft repulsive potentials such as square shoulder and ramp potentials. In the silanized systems, the density relaxation times although lower than bare particles, is ii unaffected by increasing volume fraction up to h ~ 3Rg and is decoupled from the structure properties which are non-monotonic similar to bare particles. In the region of

  4. Tuning The Optical, Charge Injection, and Charge Transport Properties of Organic Electronic Devices

    NASA Astrophysics Data System (ADS)

    Zalar, Peter

    Since the early 1900's, synthetic insulating polymers (plastics) have slowly taken over the role that traditional materials like wood or metal have had as basic components for construction, manufactured goods, and parts. Plastics allow for high throughput, low temperature processing, and control of bulk properties through molecular modifications. In the same way, pi-conjugated organic molecules are emerging as a possible substitute for inorganic materials due to their electronic properties. The semiconductive nature of pi-conjugated materials make them an attractive candidate to replace inorganic materials, primarily due to their promise for low cost and large-scale production of basic semiconducting devices such as light-emitting diodes, solar cells, and field-effect transistors. Before organic semiconductors can be realized as a commercial product, several hurdles must be cleared. The purpose of this dissertation is to address three distinct properties that dominate the functionality of devices harnessing these materials: (1) optical properties, (2) charge injection, and (3) charge transport. First, it is shown that the electron injection barrier in the emissive layer of polymer light-emitting diodes can be significantly reduced by processing of novel conjugated oligoelectrolytes or deoxyribonucleic acid atop the emissive layer. Next, the charge transport properties of several polymers could be modified by processing them from solvents containing small amounts of additives or by using regioregular and enantiopure chemical structures. It is then demonstrated that the optical and electronic properties of Lewis basic polymer structures can be readily modified by interactions with strongly electron-withdrawing Lewis acids. Through red-shifted absorption, photoluminescence, and electroluminescence, a single pi-conjugated backbone can be polychromatic. In addition, interaction with Lewis acids can remarkably p-dope the hole transport of the parent polymer, leading to a

  5. Computer programs for thermodynamic and transport properties of hydrogen (tabcode-II)

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1972-01-01

    The thermodynamic and transport properties of para and equilibrium hydrogen have been programmed into a series of computer routines. Input variables are the pair's pressure-temperature and pressure-enthalpy. The programs cover the range from 1 to 5000 psia with temperatures from the triple point to 6000 R or enthalpies from minus 130 BTU/lb to 25,000 BTU/lb. Output variables are enthalpy or temperature, density, entropy, thermal conductivity, viscosity, at constant volume, the heat capacity ratio, and a heat transfer parameter. Property values on the liquid and vapor boundaries are conveniently obtained through two small routines. The programs achieve high speed by using linear interpolation in a grid of precomputed points which define the surface of the property returned.

  6. Cutaneous tactile allodynia associated with microvascular dysfunction in muscle

    PubMed Central

    Laferrière, Andre; Millecamps, Magali; Xanthos, Dimitris N; Xiao, Wen Hua; Siau, Chiang; de Mos, Marissa; Sachot, Christelle; Ragavendran, J Vaigunda; Huygen, Frank JPM; Bennett, Gary J; Coderre, Terence J

    2008-01-01

    Background Cutaneous tactile allodynia, or painful hypersensitivity to mechanical stimulation of the skin, is typically associated with neuropathic pain, although also present in chronic pain patients who do not have evidence of nerve injury. We examine whether deep tissue microvascular dysfunction, a feature common in chronic non-neuropathic pain, contributes to allodynia. Results Persistent cutaneous allodynia is produced in rats following a hind paw ischemia-reperfusion injury that induces microvascular dysfunction, including arterial vasospasms and capillary slow flow/no-reflow, in muscle. Microvascular dysfunction leads to persistent muscle ischemia, a reduction of intraepidermal nerve fibers, and allodynia correlated with muscle ischemia, but not with skin nerve loss. The affected hind paw muscle shows lipid peroxidation, an upregulation of nuclear factor kappa B, and enhanced pro-inflammatory cytokines, while allodynia is relieved by agents that inhibit these alterations. Allodynia is increased, along with hind paw muscle lactate, when these rats exercise, and is reduced by an acid sensing ion channel antagonist. Conclusion Our results demonstrate how microvascular dysfunction and ischemia in muscle can play a critical role in the development of cutaneous allodynia, and encourage the study of how these mechanisms contribute to chronic pain. We anticipate that focus on the pain mechanisms associated with microvascular dysfunction in muscle will provide new effective treatments for chronic pain patients with cutaneous tactile allodynia. PMID:18957097

  7. Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach

    PubMed Central

    Materassi, Donatello; Li, Mingang; Hays, Thomas; Salapaka, Murti

    2016-01-01

    Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins—proteins converting chemical energy into kinetic energy. It is understood that motor proteins work in teams enabling unidirectional and bidirectional transport of intracellular cargo over long distances. Disruptions of the underlying transport mechanisms, often caused by mutations that alter single motor characteristics, are known to cause neurodegenerative diseases. For example, phosphorylation of kinesin motor domain at the serine residue is implicated in Huntington’s disease, with a recent study of phosphorylated and phosphomimetic serine residues indicating lowered single motor stalling forces. In this article we report the effects of mutations of this nature on transport properties of cargo carried by multiple wild-type and mutant motors. Results indicate that mutants with altered stall forces might determine the average velocity and run-length even when they are outnumbered by wild type motors in the ensemble. It is shown that mutants gain a competitive advantage and lead to an increase in the expected run-length when the load on the cargo is in the vicinity of the mutant’s stalling force or a multiple of its stalling force. A separate contribution of this article is the development of a semi-analytic method to analyze transport of cargo by multiple motors of multiple types. The technique determines transition rates between various relative configurations of motors carrying the cargo using the transition rates between various absolute configurations. This enables a computation of biologically relevant quantities like average velocity and run-length without resorting to Monte Carlo simulations. It can also be used to introduce alterations of various single motor parameters to model a mutation and to deduce effects of such alterations on the transport of a common cargo by multiple motors. Our method is easily implementable and we provide a software package

  8. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    PubMed

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  9. Strain-modulated electronic and thermal transport properties of two-dimensional O-silica

    NASA Astrophysics Data System (ADS)

    Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming

    2016-07-01

    Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  10. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    SciTech Connect

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T; Strazisar, Brian; Grant, Bromhal

    2013-08-01

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as φ), in determining the evolution of cement properties. Portlandite-rich cement with large φ values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large φ values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

  11. GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties.

    PubMed

    Han, Ning; Hou, Jared J; Wang, Fengyun; Yip, SenPo; Yen, Yu-Ting; Yang, Zai-Xing; Dong, Guofa; Hung, TakFu; Chueh, Yu-Lun; Ho, Johnny C

    2013-10-22

    Reliable control in the crystal quality of synthesized III-V nanowires (NWs) is particularly important to manipulate their corresponding electronic transport properties for technological applications. In this report, a "two-step" growth process is adopted to achieve single-crystalline GaAs NWs, where an initial high-temperature nucleation process is employed to ensure the formation of high Ga supersaturated Au7Ga3 and Au2Ga alloy seeds, instead of the low Ga supersaturated Au7Ga2 seeds observed in the conventional "single-step" growth. These two-step NWs are long (>60 μm) and thick (>80 nm) with the minimal defect concentrations and uniform growth orientations. Importantly, these NWs exhibit p-type conductivity as compared to the single-step grown n-type NWs for the same diameter range. This NW conductivity difference (p- versus n-channel) is shown to originate from the donor-like crystal defects, such as As precipitates, induced by the low Ga supersaturated multicrystalline Au7Ga2 alloy seeds. Then the well-controlled crystal quality for desired electronic properties is further explored in the application of large-scale p-type GaAs NW parallel array FETs as well as the integration of both p- and n-type GaAs NWs into CMOS inverters. All these illustrate the successful control of NW crystal defects and corresponding electronic transport properties via the manipulation of Ga supersaturation in the catalytic alloy tips with different preparation methods. The understanding of this relationship between NW crystal quality and electronic transport properties is critical and preferential to the future development of nanoelectronic materials, circuit design, and fabrication.

  12. Electrical and thermal transport properties of layered Bi2YO4Cu2Se2

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Pei, Yanling; Chang, Cheng; Zhang, Xiao; Tan, Xing; Ye, Xinxin; Gong, Shengkai; Lin, Yuanhua; He, Jiaqing; Zhao, Li-Dong

    2016-07-01

    Bi2YO4Cu2Se2 possesses a low thermal conductivity and high electrical conductivity at room temperature, which was considered as a potential thermoelectric material. In this work, we have investigated the electrical and thermal transport properties of Bi2YO4Cu2Se2 system in the temperature range from 300 K to 873 K. We found that the total thermal conductivity decreases from 1.8 W m-1 K-1 to 0.9 W m-1 K-1, and the electrical conductivity decreases from 850 S/cm to 163 S/cm in the measured temperature range. To investigate how potential of Bi2YO4Cu2Se2 system, we prepared the heavily Iodine doped samples to counter-dope intrinsically high carrier concentration and improve the electrical transport properties. Interestingly, the Seebeck coefficient could be enhanced to +80 μV/K at 873 K, meanwhile, we found that a low thermal conductivity of 0.7 W m-1 K-1 could be achieved. The intrinsically low thermal conductivity in this system is related to the low elastic properties, such as Young's modulus of 70-72 GPa, and Grüneisen parameters of 1.55-1.71. The low thermal conductivity makes Bi2YO4Cu2Se2 system to be a potential thermoelectric material, the ZT value 0.06 at 873 K was obtained, a higher performance is expected by optimizing electrical transport properties through selecting suitable dopants, modifying band structures or by further reducing thermal conductivity through nanostructuring etc.

  13. Brain microvascular function during cardiopulmonary bypass

    SciTech Connect

    Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

    1987-11-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.

  14. Mixing rules for optical and transport properties of warm, dense matter

    SciTech Connect

    Kress, Joel D; Horner, Daniel A; Collins, Lee A

    2009-01-01

    The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.

  15. Research Update: Structural and transport properties of (Ca,La)FeAs{sub 2} single crystal

    SciTech Connect

    Caglieris, F.; Pallecchi, I.; Lamura, G.; Putti, M.; Sala, A.; Fujioka, M.; Hummel, F.; Johrendt, D.; Takano, Y.; Ishida, S.; Iyo, A.; Eisaki, H.; Ogino, H.; Yakita, H.; Shimoyama, J.

    2016-02-01

    Structural and transport properties in the normal and superconducting states are investigated in a Ca{sub 0.8}La{sub 0.2}FeAs{sub 2} single crystal with T{sub c} = 27 K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J{sub c} for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as J{sub c}(B = 0) ∼ 10{sup 5} A/cm{sup 2}. This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly, this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresistivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.

  16. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  17. Transport properties for a mixture of the ablation products C, C2, and C3

    NASA Technical Reports Server (NTRS)

    Biolsi, L.; Fenton, J.; Owenson, B.

    1981-01-01

    The ablation of carbon-phenolic heat shields upon entry into the atmosphere of one of the outer planets leads to the injection of large amounts of C, C2, and C3 into the shock layer. These species must be included in the calculation of transport properties in the shock layer. The kinetic theory of gases has been used to obtain accurate results for the transport properties of monatomic carbon. The Hulburt-Hirschelder potential, the most accurate general purpose atom-atom potential for states with an attractive minimum, was used to represent such states and repulsive states were represented by fitting quantum mechanical potential energy curves with the exponential repulsive potential. These results were orientation averaged according to the peripheral force model to obtain transport collision integrals for the C-C2 and C2-C2 interaction. Results for C3 were obtained by ignoring the presence of the central carbon atom. The thermal conductivity, viscosity, and diffusion coefficients for pure C, C2, and C3, and for mixtures of these gases, were then calculated from 1000 K - 25,000 K.

  18. Transport properties for an electroneutral Yukawa-type fluid in the MSA

    NASA Astrophysics Data System (ADS)

    Montes-Perez, J.; Herrera, J. N.

    2014-01-01

    In the framework of a linear response theory, in which Onsager’s continuity equations are combined with the Mean Spherical Approximation (MSA) from the theory of correlation functions in equilibrium, and using a Green’s function formalism, we consider the transport properties of electrolytes. The interaction between the ions in the electrolyte is represented by an intermolecular Yukawa potential which satisfies the electroneutrality condition. The model contains an adjustable parameter z which takes into account the effects of the solvent. Transport processes in an ionic solution are determined by two dominant forces: the relaxation and the electrophoretic forces; their contributions to the transport properties are calculated using the Fuoss-Onsager theory. We find the conductivity and the self-diffusion coefficient for a family of electrolytes using the linear response theory. The predictions of our model can be adjusted by means of the parameter z. The electrophoretic effect, due to the hydrodynamic interaction between the ions, is calculated using the Rotne-Prager tensor. Our theoretical results are in good agreement with experimental data for electrolytes 1-1, even for high concentrations. We applied this theory also to two unsymmetrical electrolytes, namely the aqueous solutions of MgCl2 and CaCl2, with results in good accord with experimental data.

  19. Highly Anisotropic intrinsic electronic transport properties of monolayer and bilayer phosphorene from first principles1

    NASA Astrophysics Data System (ADS)

    Jin, Zhenghe; Mullen, Jeffrey; Kim, Ki Wook

    We present an analysis of the electron(hole)-phonon scattering in monolayer and bilayer phosphorene using first principles. Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) are used to calculate the scattering matrix elements and full band Monte Carlo carrier transport simulation is employed to obtain the intrinsic electron/hole mobility. Room temperature mobility and saturation velocity in monolayer and bilayer phosphorene are extracted and significant layer number dependence in the mobility is revealed which results from the carrier-phonon interaction matrix elements. The transport properties are also varied with the crystal orientation with anisotropy mobility mostly attributed to the anisotropic band structure and effective masses. Our calculation reveals monolayer phosphorene has anisotropic hole transport property with the room temperature mobility in the armchair direction (458 cm2/Vs) about five times larger than in the zigzag direction (90 cm2/Vs). For bilayer phosphorene, the mobility on both directions increases to 1610 cm2/Vs and 760 cm2/Vs along armchair and zigzag direction respectively. The increased mobility in bilayer is consistent with the experiments which revealed low field mobility of over one thousand in multiple layer phosphorene structure, which provides optimal material for channel in field-effect transistor and a good opportunity for high-performance p-type device. 1This work was supported, in part, by SRC/NRI SWAN.

  20. Modulation of the electronic transport properties of silicon nanotubes via hydrogenation ratio

    NASA Astrophysics Data System (ADS)

    Yamacli, Serhan

    2016-12-01

    In this work, electronic transport properties of hydrogenated silicon nanotubes (SiNTs) are studied using first-principles methods. Metallic (4, 4) and (7, 7) SiNTs are simulated using density functional theory combined with non-equilibrium Green’s function formalism. The current-voltage characteristics of these nanotubes are obtained for various hydrogenation ratios considering that hydrogenation provides stability to SiNT structures as studied in the literature. The transmission spectra of the investigated SiNT structures are also given and discussed in order to analyse and extend the obtained current-voltage behaviours. It is shown that the electronic transport properties of SiNTs can be modulated by their hydrogenation ratio and the same type of SiNT shows conducting, non-conducting and negative differential resistance characteristic with different hydrogenation ratios. Obtained results show that the electronic transport behaviours of SiNTs can be adjusted flexibly with hydrogenation which opens new possibilities to SiNT circuit design.

  1. Electrical Transport Properties of Mn doped Bi2Se3 Thin Films

    NASA Astrophysics Data System (ADS)

    Babakiray, Sercan; Johnson, Trent; Borisov, Pavel; Lederman, David

    2015-03-01

    Magnetic impurity doping in topological insulators manifest itself with a gap opening in the Dirac cone as a result of breaking the time reversal symmetry. Moreover, the magnetic impurities affect the structural and quantum transport properties of topological insulators by increasing the disorder and by changing the bulk charge carrier type, charge carrier density and Hall mobility. Here, we investigated the effect of Mn doping on the structural and electrical transport properties of Bi2-xMnxSe3 thin films which are 12 quintuple layers thick and grown on Al2O3 (0001) single crystal substrates via molecular beam epitaxy (MBE). Hikami-Larkin-Nagaoka (HLN) formalism was used to study the weak antilocalization (WAL). Increasing Mn doping concentration was found to increase the bulk charge carrier density and to decrease the Hall mobility. A decrease was also observed in the phase coherence length related to WAL as a function of Mn content x. Values of another WAL parameter, the pre-factor alpha, showed that the top and bottom surfaces were coupled through the bulk conducting channels. The temperature dependence of phase coherence length indicated the electrical transport was dominated by 2D electron-electron scattering for the undoped, and by bulk weak localization effects for the Mn doped samples, respectively.

  2. Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization.

    PubMed

    Velleman, Leonora; Shearer, Cameron James; Ellis, Amanda Vera; Losic, Dusan; Voelcker, Nicolas Hans; Shapter, Joseph George

    2010-09-01

    This study presents a simple approach to perform selective mass transport through freestanding porous silicon (pSi) membranes. pSi membranes were fabricated by the electrochemical etching of silicon to produce membranes with controlled structure and pore sizes close to molecular dimensions (approximately 12 nm in diameter). While these membranes are capable of size-exclusion based separations, chemically specific filtration remains a great challenge especially in the biomedical field. Herein, we investigate the transport properties of chemically functionalized pSi membranes. The membranes were functionalized using silanes (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane (PFDS) and N-(triethoxysilylpropyl)-o-polyethylene oxide urethane (PEGS) to give membranes hydrophobic (PFDS) and hydrophilic (PEGS) properties. The transport of probe dyes tris(2,2'-bipyridyl)dichlororuthenium(ii) hexahydrate (Rubpy) and Rose Bengal (RB) through these functionalized membranes was examined to determine the effect surface functionalization has on the selectivity and separation ability of pSi membranes. This study provides the basis for further investigation into more sophisticated surface functionalization and coupled with the biocompatibility of pSi will lead to new advances in membrane based bio-separations.

  3. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

    SciTech Connect

    Lord, David; Luketa, Anay; Wocken, Chad; Schlasner, Steve; Aulich, Ted; Allen, Ray; Rudeen, David Keith

    2015-03-01

    Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank

  4. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    DOE PAGES

    Lindsay, L.; Kuang, Y.

    2017-03-13

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less

  5. Empirical investigation of topological and weighted properties of a bus transport network from China

    NASA Astrophysics Data System (ADS)

    Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci

    2016-03-01

    Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).

  6. Theory of Band Warping and its Effects on Thermoelectronic Transport Properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    2015-03-01

    Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.

  7. Intrinsic non-ohmic electronic transport properties of the transparent In-Zn-O compound nanobelts under ohmic contact and out of the space charge limited transport region

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zhang, Xitian; Gao, Hong

    2016-02-01

    It is generally accepted that the nonlinear I-V characteristics for semiconductor nanostructures are mainly induced by the Schottky contacts or by the space charge limited transport mechanism. We perform I-V measurements on undoped and doped In-Zn-O compound nanobelts and confirm that their intrinsic non-ohmic transport behaviors are not caused by these mechanisms. A model based on the hopping assisted trap state electrons transport process is introduced to explain the nonlinear I-V characteristics and to extract their electrical parameters. An understanding of this trap-state influenced carrier transport can advance the progress of nanomaterials applications and enable us to distinguish their intrinsic transport behaviors from contact effects. The results also indicate that the material has good electrical properties and can be used as a potential substitute for In2O3.

  8. ABCC2/Abcc2 transport property in different species and its modulation by heterogeneous factors.

    PubMed

    Ito, Kousei

    2008-01-01

    ABCC2/Abcc2 is a member of the ABC transporter family expressed mainly in the liver bile canalicular membrane and involved in the excretion of various kinds of organic anions from hepatocytes into bile. During the drug development process, species differences in the pharmaco- and toxicokinetics of candidate drugs are a major problem. It is possible that ABCC2/Abcc2 transport activity as well as inhibitor sensitivity could lead to a number of phenomena (e.g. a difference in the biliary excretion clearance, a delay in the elimination half-life from the circulating blood and toxic side effects on ABCC2 -mediated drug-drug interactions, such as drug-induced hyperbilirubinemia). From this point of view, it is useful to be able to predict during preclinical development if certain compounds of interest are substrates and/or modulators of ABCC2. Although an in vivo animal model or an in vitro model expressing ABCC2 are useful assay systems, these have some limitations as far as predicting the transport profile of compounds in vivo is concerned. I will present an overview of the species differences in the tissue distribution, function, and also characteristic transport properties of ABCC2/Abcc2 mainly in an in vitro experimental model.

  9. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    SciTech Connect

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  10. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 4: Compositions corresponding to Rankine temperature schedules in part 3

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    The equilibrium compositions corresponding to the thermodynamic and transport combustion properties for a wide range of conditions for the reaction of hydrocarbons with air are presented. The compositions presented correspond to Rankine temperature schedules.

  11. Correction: The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes.

    PubMed

    Villanueva-Cab, J; Anta, J A; Oskam, G

    2016-05-28

    Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.

  12. Vascular grafts in microvascular surgery. An experimental study

    SciTech Connect

    Marrangoni, A.G.; Marcelli, G.; Culig, M.; Simone, S.T.

    1988-02-01

    The patency of microvascular grafts depends on the luminal diameter, which is determined by the amount of fibrin and platelets deposited on the intraluminal surface and the anastomotic site, and the extent of pseudointimal formation. An experimental microvascular model in rats has been developed in our laboratory using Indium-111-labeled platelets to measure the amount of deposition on grafts inserted into the infrarenal aorta. This study was designed to assess the patency rates in these grafts and the pathologic maturation as determined by light and electron microscopy. Our study suggests that substantial patency rates can be achieved in aspirin-treated rats, although there was little influence on the pathologic maturation. Indium-111 oxine-labeled platelets can be used to document platelet aggregation, and the technique can be a valuable adjunct in the study of microvascular grafts.

  13. Regional cutaneous microvascular flow responses during gravitational and LBNP stresses

    NASA Technical Reports Server (NTRS)

    Breit, Gregory A.; Watenpaugh, Donald E.; Ballard, Richard E.; Murthy, Gita; Hargens, Alan R.

    1993-01-01

    Due to the regional variability of local hydrostatic pressures, microvascular flow responses to gravitational stress probably vary along the length of the body. Although these differences in local autoregulation have been observed previously during whole-body tilting, they have not been investigated during application of artificial gravitational stresses, such as lower body negative pressure or high gravity centrifugation. Although these stresses can create equivalent G-levels at the feet, they result in distinct distributions of vascular transmural pressure along the length of the body, and should consequently elicit different magnitudes and distributions of microvascular response. In the present study, the effects of whole-body tilting and lower body negative pressure on the level and distribution of microvascular flows within skin along the length of the body were compared.

  14. Electronic and Quantum Transport Properties of Atomically Identified Si Point Defects in Graphene.

    PubMed

    Lopez-Bezanilla, Alejandro; Zhou, Wu; Idrobo, Juan-Carlos

    2014-05-15

    We report high-resolution scanning transmission electron microscopy images displaying a range of inclusions of isolated silicon atoms at the edges and inner zones of graphene layers. Whereas the incorporation of Si atoms to a graphene armchair edge involves no reconstruction of the neighboring carbon atoms, the inclusion of a Si atom to a zigzag graphene edge entails the formation of five-membered carbon rings. In all the observed atomic edge terminations, a Si atom is found bridging two C atoms in a 2-fold coordinated configuration. The atomic-scale observations are underpinned by first-principles calculations of the electronic and quantum transport properties of the structural anomalies. Experimental estimations of Si-doped graphene band gaps realized by means of transport measurements may be affected by a low doping rate of 2-fold coordinated Si atoms at the graphene edges, and 4-fold coordinated at inner zones due to the apparition of mobility gaps.

  15. Photo-transport properties of Pb{sub 2}CrO{sub 5} single crystals

    SciTech Connect

    Mondal, P. S.; Okazaki, R. Taniguchi, H.; Terasaki, I.

    2014-11-21

    We report photo-thermoelectric transport phenomena in Pb{sub 2}CrO{sub 5} single crystals. Without illumination, this material exhibits an insulating behavior characterized by an activation-type temperature variation of the electrical conductivity. The Seebeck coefficient contrastingly shows a crossover from high-temperature insulating to low-temperature metallic behavior, which is attributed to degenerate carriers in a donor level. We have found that under illumination, both the conductivity and the Seebeck coefficient increase in magnitude with increasing photon flux density in the degenerate-conduction regime. This result is difficult to understand within a simple photo-doping effect, which usually leads to a decrease in the Seebeck coefficient under illumination. The observed phenomenon is discussed in terms of a two-carrier contribution to the transport properties.

  16. Low Band Gap Thiophene-Perylene Diimide Systems with Tunable Charge Transport Properties

    SciTech Connect

    Balaji, Ganapathy; Kale, Tejaswini S.; Keerthi, Ashok; Della Pelle, Andrea M.; Thayumanavan, S.; Vallyaveettil, Surech

    2010-11-30

    Perylenediimide-pentathiophene systems with varied architecture of thiophene units were synthesized. The photophysical, electrochemical, and charge transport behavior of the synthesized compounds were studied. Both molecules showed a low band gap of ~1.4 eV. Surprisingly, the molecule with pentathiophene attached via β-position to the PDI unit upon annealing showed a predominant hole mobility of 1 × 10-4 cm2 V-1 s-1 whereas the compound with branched pentathiophene attached via β-position showed an electron mobility of 9.8 × 10-7 cm2 V-1 s-1. This suggests that charge transport properties can be tuned by simply varying the architecture of pentathiophene units.

  17. A theoretical study of charge transport properties of trifluoromethyl (-CF3) substituted naphthalene (TFMNA) molecule

    NASA Astrophysics Data System (ADS)

    Sahoo, S. R.; Parida, S. K.; Sahu, S.

    2016-09-01

    We present a density functional (DFT) study of the charge transport properties of CF3-naphthalene. Nature of charge transport is investigated using parameters such as reorganization energy (X), transfer integral (t), ionization potential (IP), electron affinity (EA), and carrier mobility (μ) computed through electronic structure calculations. We observe a decrease in X and IP from 2,6-DTFMNA to 1,5-DTFMNA, whereas, the EA is found to be enhanced, as a result p-type characteristics, with mild n-type signature, in the organic semiconductor gets increased. In addition, the HOMO-LUMO gap also gets reduced inferring more charge injection through the potential barrier. The maximum hole and electron mobility values for the substituted compound are obtained to be 2.17 cm2/ Vsec & 0.20 cm2/ Vsec, respectively.

  18. Optical and transport properties of single crystal rubrene: A theoretical study

    NASA Astrophysics Data System (ADS)

    Chen, Lipeng; Lu, Jing; Long, Guankui; Zheng, Fulu; Zhang, Jingping; Zhao, Yang

    2016-12-01

    Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn-Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting "band-like" transport behavior.

  19. Impact of finite temperatures on the transport properties of Gd from first principles

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Mankovsky, S.; Minár, J.; Ebert, H.

    2017-03-01

    Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.

  20. Photo-transport properties of Pb2CrO5 single crystals

    NASA Astrophysics Data System (ADS)

    Mondal, P. S.; Okazaki, R.; Taniguchi, H.; Terasaki, I.

    2014-11-01

    We report photo-thermoelectric transport phenomena in Pb2CrO5 single crystals. Without illumination, this material exhibits an insulating behavior characterized by an activation-type temperature variation of the electrical conductivity. The Seebeck coefficient contrastingly shows a crossover from high-temperature insulating to low-temperature metallic behavior, which is attributed to degenerate carriers in a donor level. We have found that under illumination, both the conductivity and the Seebeck coefficient increase in magnitude with increasing photon flux density in the degenerate-conduction regime. This result is difficult to understand within a simple photo-doping effect, which usually leads to a decrease in the Seebeck coefficient under illumination. The observed phenomenon is discussed in terms of a two-carrier contribution to the transport properties.

  1. Thermal transport properties of metal/MoS{sub 2} interfaces from first principles

    SciTech Connect

    Mao, Rui; Kong, Byoung Don; Kim, Ki Wook

    2014-07-21

    Thermal transport properties at the metal/MoS{sub 2} interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS{sub 2} and Ru(0001)/MoS{sub 2}, physisorbed Au(111)/MoS{sub 2}, as well as Pd(111)/MoS{sub 2} with intermediate characteristics. Calculated results illustrate a distinctive dependence of thermal transfer on the details of interfacial microstructures. More specifically, the chemisorbed case with a stronger bonding exhibits a generally smaller interfacial thermal resistance than the physisorbed. Comparison between metal/MoS{sub 2} and metal/graphene systems suggests that metal/MoS{sub 2} is significantly more resistive. Further examination of lattice dynamics identifies the presence of multiple distinct atomic planes and bonding patterns at the interface as the key origins of the observed large thermal resistance.

  2. Low temperature electrical transport properties in p-SnSe single crystals

    NASA Astrophysics Data System (ADS)

    Sumesh, C. K.; Patel, M.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Srivastav, R.

    2011-01-01

    The electronic transport properties of p-type tin selenide (SnSe) grown by direct vapor transport (DVT) technique were investigated via Hall effect in the temperature range 40 < T < 300 K. The temperature dependence of conductivity revealed the existence of impurity energy level in the band gap of the crystal. The temperature dependence of the carrier concentration was analyzed using the single-donor - single-acceptor model. The Hall mobility increases by decreasing temperature up to 120 K and then decreases along with temperature. The observed temperature dependant mobility in the temperature range 120 < T < 300 K and 40 < T < 120 K was found to be limited by homopolar and ionized impurity mode scatterings respectively.

  3. Effects of intervalley scattering on the transport properties in one−dimensional valleytronic devices

    PubMed Central

    Zhou, Jiaojiao; Cheng, Shuguang; You, Wen-Long; Jiang, Hua

    2016-01-01

    Based on a one-dimensional valley junction model, the effects of intervalley scattering on the valley transport properties are studied. We analytically investigate the valley transport phenomena in three typical junctions with both intervalley and intravalley scattering included. For the tunneling between two gapless valley materials, different from conventional Klein tunneling theory, the transmission probability of the carrier is less than 100% while the pure valley polarization feature still holds. If the junction is composed of at least one gapped valley material, the valley polarization of the carrier is generally imperfect during the tunneling process. Interestingly, in such circumstance, we discover a resonance of valley polarization that can be tuned by the junction potential. The extension of our results to realistic valley materials are also discussed. PMID:26980163

  4. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    DOE PAGES

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric powermore » factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.« less

  5. Light-Emitting Organic Materials with Variable Charge Injection and Transport Properties

    SciTech Connect

    Chen, A. C.-A.; Wallace, J. U.; Wei, S. K.-H.; Zeng, L.; Shen, S. H.; Blenton, T. N.

    2006-01-01

    Novel light-emitting organic materials comprising conjugated oligomers chemically attached via a flexible spacer to an electron- or hole-conducting core were designed for tunable charge injection and transport properties. Representative glassy-isentropic and glassy-liquid-crystalline (i.e., noncrystaline solid) materials were synthesized and characterized; they were found to exhibit a glass transition temperature and a clearing point close to 140 and 250 C, respectively; an orientational order parameter of 0.75; a photoluminescence quantum yield up to 51%; and HOMO and LUMO energy levels intermediate between those of blue-emitting oligofluorenes and the ITO and Mg/Ag electrodes commonly used in organic light-emitting diodes, OLEDs. This class of materials will help to balance charge injection and transport and to spread out the charge recombination zone, thereby significantly improving the device efficiency and lifetime of unpolarized and polarized OLEDs.

  6. Differential effects of aging on transport properties of anterior and posterior human sclera.

    PubMed

    Boubriak, O A; Urban, J P G; Bron, A J

    2003-06-01

    The transport properties and composition of 44 pairs of human sclera, 37-91 years were compared. Solute transport, diffusion and partition coefficients of posterior sclera for solutes ranging in mass from 0.023-70kDa were higher than those of anterior sclera; the posterior region was also more hydrated. The differences in partition coefficient between anterior and posterior sclera became more pronounced as solute molecular weight increased. Partition coefficients and hydration of both regions decreased with increasing age. Chondroitinase ABC digestion, which removed the majority of glycosaminoglycans, increased partition coefficients of both regions significantly. These results suggest that for regions of equal scleral thickness, neglecting the influence of vascular factors, drug delivery will be more readily achieved across the posterior sclera than the anterior sclera in the age group studied and that, for both regions, ease of delivery will decrease with decreasing age.

  7. Electrical and thermal transport property studies of high-temperature thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Bates, J. L.

    1984-12-01

    High-temperature materials that exhibit small polaron conduction appear to exhibit the highest figures of merit. A thermoelectric model based on small polaron transport has been developed. The model predicts that broad-band semiconductors with small polarons hopping along inequivalent sites of distorted sublattices can result in increases in both the electrical conductivity and the Seeback coefficient with increasing temperature without significant increases in thermal conductivity. High figures of merit (ZT), greater than 1 at 1000K, that increase with increasing temperatures are predicted. The model is being applied to the divalent metal containing (Y,LA)Cr0(3) systems with an ABO(3) perovskite structure. Transport properties have been determined for various doping elements and for different compositions. These data are being used for the evaluation of this model.

  8. Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor

    SciTech Connect

    Lindsay, Lucas R.; Parker, David S.

    2015-10-01

    We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric power factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.

  9. Transmission and transport properties in Cantor graphene structures: The case of magnetoelectric modulation

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, R.; Rodríguez-Vargas, I.

    2017-04-01

    We discuss theoretically the transmission and transport properties of Dirac electrons in a Cantor graphene system under magnetoelectric effects. The transfer matrix method and the Landauer-Büttiker formalism have been implemented to compute the transmittance and the linear-regime conductance, respectively. The fractal order of Cantor type together with the magnetic and electric field are used to distribute and generate the magnetoelectric barriers. This system give us the possibility of compare the mentioned physical properties for magnetic and magnetoelectric barriers. We found a bifurcation process in the transmission spectra which is observable when the generation increases. Also, an asymmetrical and symmetrical behavior is presented for magnetic and magnetoelectric barriers, respectively. In general, an oscillatory behavior is manifested in the conductance. Moreover, we can describe the peaks (form and location) that give rise to the oscillations through the contour plots of the transmittance in the (E ,ky) space. Likewise, by increasing the generation of the system the conductance is enhanced, the oscillations reduced and less pronounced. In short, the magnetoelectric modulation along with the fractal order can be used to control the transmission and transport properties in graphene-based structures.

  10. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth.

    PubMed

    Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia

    2013-04-23

    Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.

  11. Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; Baeumer, Boris

    2014-01-01

    Time-nonlocal transport models can describe non-Fickian diffusion observed in geological media, but the physical meaning of parameters can be ambiguous, and most applications are limited to curve-fitting. This study explores methods for predicting the parameters of a temporally tempered Lévy motion (TTLM) model for transient sub-diffusion in mobile–immobile like alluvial settings represented by high-resolution hydrofacies models. The TTLM model is a concise multi-rate mass transfer (MRMT) model that describes a linear mass transfer process where the transfer kinetics and late-time transport behavior are controlled by properties of the host medium, especially the immobile domain. The intrinsic connection between the MRMT and TTLM models helps to estimate the main time-nonlocal parameters in the TTLM model (which are the time scale index, the capacity coefficient, and the truncation parameter) either semi-analytically or empirically from the measurable aquifer properties. Further applications show that the TTLM model captures the observed solute snapshots, the breakthrough curves, and the spatial moments of plumes up to the fourth order. Most importantly, the a priori estimation of the time-nonlocal parameters outside of any breakthrough fitting procedure provides a reliable “blind” prediction of the late-time dynamics of subdiffusion observed in a spectrum of alluvial settings. Predictability of the time-nonlocal parameters may be due to the fact that the late-time subdiffusion is not affected by the exact location of each immobile zone, but rather is controlled by the time spent in immobile blocks surrounding the pathway of solute particles. Results also show that the effective dispersion coefficient has to be fitted due to the scale effect of transport, and the mean velocity can differ from local measurements or volume averages. The link between medium heterogeneity and time-nonlocal parameters will help to improve model predictability for non

  12. Prediction of Shale Transport Properties Using the Lattice Boltzmann Method: Permeability and Effective Knudsen Diffusivity

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.

    2014-12-01

    Although short-term production of unconventional gas depends on the area of contact created by hydraulic fracturing and connections with pre-existing natural fracture networks, sustainable recovery is limited by transfer of gas from nanoporous matrix into the fractures, because the permeability of hydraulic fractures is orders of magnitude higher than that of the shale matrix. Therefore, a fundamental understanding of hydrocarbon mobility in shale matrix is urgently needed for improving recovery efficiencies. Shale transport properties (diffusivity, permeability, and electronic conductivity), which are critical for understanding the fundamental transport mechanisms, are still poorly understood. There have been some studies using experimental techniques such as scanning electron microscopy (SEM) to visualize the nanoscale structures of shale. Due to the ultra-low porosity and permeability, it is difficult to experimentally investigate the fundamental transport processes inside the shale or accurately measure the transport properties. Advanced pore-scale numerical methods, e.g., the lattice Boltzman method (LBM) may provide an alternative approach. In the present study, three-dimensional nanoscale porous structures of shale are reconstructed based on SEM images of shale samples. Characterization analysis of the nanoscale reconstructed shale is performed, including determination of porosity, pore size distribution, specific surface area, and pore connectivity. The LBM flow model and diffusion model are adopted to simulate fluid flow and Knudsen diffusion in the reconstructed shale, respectively. Tortuosity, intrinsic permeability, and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than what is commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under

  13. On the nature and statistical properties of transport barriers in magnetospheric and laboratory plasma

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Budaev, Viacheslav; Amata, Ermanno; Kozak, Liudmila; Korepanov, Valery; Buechner, Joerg; Romanov, Stanislav; Blecki, Jan; Balikhin, Mikhael; Lezhen, Liudmila

    2010-05-01

    The transport barriers near magnetospheric cusp have a dualistic feature: being very effective in limitation of the momentum transfer, they display the super-diffusive statistical properties. We show an example from Interball-1 with a rare case of extremely quiet solar wind. The inbound magnetopause crossing, being inherently turbulent in this equilibrium case, is best seen from changes of the magnetic field component signs. The ion heating starts namely in the transport barrier and proceeds deeper inward magnetosphere. It agrees with the kinetic energy transformation into the thermal one inside the barrier - the turbulent dissipation of the magnetosheath kinetic energy - as simultaneously with the ion temperature rise the general velocity component drops from its model prediction. Fitting the log-Poisson model for 1D most- dissipative structures gives qualitatively similar result. In sense of the momentum transfer the Alfvenic turbulent barrier effectively isolates the high- β part of the magnetospheric cusp, from rather fast- flowing (~ 200 km/s) magnetosheath. Contrary to that, several examples from different missions and different plasma parameters demonstrate the super-diffusive transport character. The individual Alfvenic 'collapsons' have similar scale chains to that of high kinetic pressure jets, showing mutual interaction features. We think that the interacting jets and barriers, accompanying by classic and/ or micro- reconnection, have rather general importance for the plasma physics, and for understanding of turbulence and mechanisms of magnetic field generation. These coherent, nonlinear interacting structures will be further explored in details by such missions as ROY and Cross-Scale/ SCOPE. We compare the statistical properties of transport barriers in space and fusion devices.

  14. Quantitative characterization of the microstructure and transport properties of biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Torquato, Salvatore

    2012-06-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Torquato and Yeong (1997 J. Chem. Phys. 106 8814). We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations

  15. Quantitative characterization of the microstructure and transport properties of biopolymer networks.

    PubMed

    Jiao, Yang; Torquato, Salvatore

    2012-06-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient D(e) and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient D(e) for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient D(e) and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient D(e) as well as the mean survival time τ, which is related to nuclear magnetic resonance relaxation times. Our numerical results for D(e) are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of D(e) for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Torquato and Yeong (1997 J. Chem. Phys. 106 8814). We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property

  16. The influence of stoichiometry on electrical properties of silicon carbide grown by physical vapor transport process

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The purposes of this thesis were to investigate the influence of the vapor phase stoichiometry in the ambient on electrical properties of silicon carbide grown by physical vapor transport (PVT) process in order to provide a better understanding of the nature of the compensation mechanisms in semi-insulating SiC crystals. Standard PVT and hydrogen-assisted PVT processes have been used to grow SiC single crystals. Chemical elemental analysis, contactless resistivity mapping (COREMA), temperature dependent Hall measurements (TDH), deep level transient spectroscopy (DLTS), and minority diffusion length measurements were performed to characterize the properties of SiC wafers. The nitrogen contamination, the net carrier concentrations, and the concentrations of the major deep traps in the undoped and nitrogen-doped SiC crystals were found to substantially decrease during the standard PVT growth when moving from seed to tail of the crystal. Addition of hydrogen to the growth ambient changed all the properties in the same direction. As a consequence of the doping and deep traps variations, the electrical properties including resistivity, Fermi energy, and minority carrier lifetime continuously changed during the growth. The results of the hydrogen-assisted PVT growth and the virtual reactor growth modeling indicated that the electrical properties change as a function of stoichiometry in the vapor phase, and the carbon transport efficiency can be enhanced by the reactions of hydrogen with the SiC charge material and the graphite parts of the crucible. Thermodynamic calculation of the vapor phase stoichiometry and the studies of the properties of H2-assisted PVT-grown crystals have shown that hydrogen can be used as a key factor controlling the vapor phase stoichiometry in the PVT process; in this manner the purity, electrical uniformities and the yield of the semi-insulating wafers can be improved to a great extent. The electron mobility values were found unusually low in

  17. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  18. The Effect of Fluid Properties on Field-Scale Anion Transport During Intermittent Unsaturated Flow

    NASA Astrophysics Data System (ADS)

    Ward, A.; Gee, G. W.; Zhang, Z. F.

    2001-12-01

    Laboratory-scale experiments suggest that the properties of hypersaline fluids may influence transport behavior, to extent of finger formation, though an interaction between fluid and hydraulic properties. Yet, the importance of these mechanisms to field-scale transport is largely unknown, thereby limiting the accuracy of contaminant transport predictions. To assess the importance of these interactions in field-scale solute transport, tank leaks were simulated by performing a series of injections, using solute-free and hypersaline waters, in two consecutive years. Starting in May 2000, five 4000-L injections of Columbia River water were made with no-flow periods occurring every 3-5 days. The third injection contained 1000 ppm of Br- and a suite of isotopic tracers. In May 2001, the experiment was repeated with five 4000-L injections of saturated sodium thiosulfate containing 2500 ppm of Cl- with no-flow periods occurring every 3-5 days. Water content distributions were measured by neutron probe in 32 wells (18 m deep) arranged in a concentric pattern extending to 16 m in diameter. Water extracts from soil cores were analyzed for anions including Fl-, Cl-, Br-, NO3{-}, PO42-, SO42-, and S2O32-. Differences in the location of the wetting and solute fronts were apparent with the magnitude dependent on fluid constitution. Resident concentration profiles were generally asymmetric with a large mass occurring at 5-7 m, and a smaller mass at 10-12 m. Fine-textured layers at 6 and 11 m caused a substantial increase in lateral solute convection and confined longitudinal spreading to 12 m, except at one location where solute was detected at 16 m. The locations of multiple peaks were coincident with the finer-textured lenses, emphasizing the need to consider local-scale textural discontinuities in conceptual models of field-scale transport at the Hanford Site. Results show no evidence of fingering due to fluid properties. Pacific Northwest National Laboratory is operated for

  19. Regional analysis techniques for integrating experimental and numerical measurements of transport properties of reservoir rocks

    NASA Astrophysics Data System (ADS)

    Alizadeh, S. M.; Latham, S.; Middleton, J.; Limaye, A.; Senden, T. J.; Arns, C. H.

    2017-02-01

    Assessing the mechanisms of micro-structural change and their effect on transport properties using digital core analysis requires balancing field of view and resolution. This typically leads to the compromise of working with relatively small samples, where boundary effects can be substantial. A direct comparison with experiment, as e.g. desirable to eliminate unknown parameters and integrate numerical and physical experiments, needs to consider these boundary effects. Here we develop a workflow to define measuring windows within a sample where these boundary effects are minimised allowing the integration of physical and numerical experiment. We consider in particular sleeve leakage and use a radial partitioning of the solutions to various transport equations to derive relevant regional measures, which may be used for the development of cross-correlations between physical properties. Samples of Bentheimer and Castlegate sandstone as well as Mt. Gambier limestone and a sucrosic dolomite are considered. The sample plugs are encased in rubber sleeves and micro-CT images acquired at ambient conditions. Using these high-resolution images we calculate transport properties, namely permeability and electrical conductivity, and analyse the resulting field solutions with regard to flux across different regions of interest. The latter are selected on the basis of distance to the sample sleeve inner surface. Clear bypassing at the sleeve-sample interface in terms of elevated fluxes is observed for all samples, although to different extent. We consider different sleeve boundary conditions to define a measuring window minimising these effects, use the procedure to compare flux averages defined over these measuring windows with conventional choices of simulation domains, and compare resulting physical cross-correlations.

  20. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  1. Electron transport property of cobalt-centered porphyrin-armchair graphene nanoribbon (AGNR) junction

    SciTech Connect

    Mondal, Rajkumar; Sarkar, Utpal

    2015-06-24

    We have investigated the electron transport properties of Cobalt-centered (Co-centered) porphyrin molecule using the density functional theory and non-equilibrium greens function method. Here we have reported transmission coefficient as well as current voltage characteristics of Co-centered porphyrine molecule connected between armchair graphene nanoribbons. It has been found that at low bias region i.e., 0 V to 0.3 V it does not contribute any current. Gradual increase of bias voltage results different order of magnitude of current in different bias region.

  2. Topography and transport properties of oligo(phenylene ethynylene) molecular wires studied by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha R.; Fan, Wendy; Koehne, Jessica; Han, Jie; Meyyappan, M.

    2003-01-01

    Conjugated phenylene(ethynylene) molecular wires are of interest as potential candidates for molecular electronic devices. Scanning tunneling microscopic study of the topography and current-voltage (I-V) characteristics of self-assembled monolayers of two types of molecular wires are presented here. The study shows that the topography and I-Vs, for small scan voltages, of the two wires are quite similar and that the electronic and structural changes introduced by the substitution of an electronegative N atom in the central phenyl ring of these wires does not significantly alter the self-assembly or the transport properties.

  3. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  4. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements

    SciTech Connect

    Meyer, Sibylle Althammer, Matthias; Geprägs, Stephan; Opel, Matthias; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2014-06-16

    We study the temperature dependence of the spin Hall magnetoresistance (SMR) in yttrium iron garnet/platinum hybrid structures via magnetization orientation dependent magnetoresistance measurements. Our experiments show a decrease of the SMR magnitude with decreasing temperature. Using the sensitivity of the SMR to the spin transport properties of the normal metal, we interpret our data in terms of a decrease of the spin Hall angle in platinum from 0.11 at room temperature to 0.075 at 10 K, while the spin diffusion length and the spin mixing conductance of the ferrimagnetic insulator/normal metal interface remain almost constant.

  5. Unified description of equation of state and transport properties of nuclear matter

    SciTech Connect

    Benhar, Omar; Farina, Nicola; Valli, Marco; Fiorilla, Salvatore

    2008-10-13

    Correlated basis function perturbation theory and the formalism of cluster expansions have been recently employed to obtain an effective interaction from a state-of-the-art nucleon nucleon potential model. The approach based on the effective interaction allows for a consistent description of the nuclear matter ground state and nucleon-nucleon scattering in the nuclear medium. This paper reports the the results of numerical calculations of different properties of nuclear and neutron matter, including the equation of state and the shear viscosity and thermal conductivity transport coefficients, carried out using the effective interaction.

  6. Atomic transport properties of Ag xSn 1-x liquid binary alloys

    NASA Astrophysics Data System (ADS)

    Bhuiyan, E. H.; Ziauddin Ahmed, A. Z.; Bhuiyan, G. M.; Shahjahan, M.

    2008-05-01

    Atomic transport properties, in particular the shear viscosity and diffusion constants for Ag xSn 1-x less simple liquid binary alloys are theoretically studied from a statistical mechanical theory called the distribution function method. The essential ingredients of this theory are the interionic interaction and the pair distribution function for hard spheres. The interionic interaction are described from a local pseudopotential model and the effective hard sphere diameters are obtained from the thermodynamic perturbative method known as the linearized Weeks-Chandler-Andersen (LWCA). Results of calculations for shear viscosities agree well with the available experimental data.

  7. The magnetic and transport properties of the Co2FeGa Heusler alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Brück, Ekkes; de Boer, Frank R.; Li, Zhuangzhi; Wu, Guangheng

    2004-08-01

    The magnetic and transport properties of the Co2FeGa Heusler alloy have been investigated. The results show that the temperature dependence of the magnetization follows the spin-wave behaviour at low temperature. The electrical resistivity behaves according to a ~T2 power law, which may be mainly attributed to electron-electron scattering, and the contribution of electron-phonon scattering to the resistivity seems to be small. We have not observed remarkable magnetoresistance in our measurements. Point contact Andreev reflection measurements of the spin-polarization yield a polarization of 59%, which is consistent with the theoretical prediction by a first-principles calculation.

  8. Magnetic and transport properties of the ferromagnetic semiconductor heterostructures (In,Mn)As/(Ga,Al)Sb

    NASA Astrophysics Data System (ADS)

    Oiwa, A.; Endo, A.; Katsumoto, S.; Iye, Y.; Ohno, H.; Munekata, H.

    1999-02-01

    We have investigated the magnetic and transport properties of (In,Mn)As thin films grown on a (Ga,Al)Sb layer. Strong perpendicular magnetic anisotropy is observed for the (In,Mn)As layer, the thickness of which is less than the critical value required for relaxation of lattice-mismatch-induced strain. The anomalous Hall coefficient is found to be approximately proportional to the square of resistivity in the low-field region. Large negative magnetoresistance is found to occur over a magnetic field range significantly wider than that for the ferromagnetic hysteresis loop.

  9. Structural and transport properties of orthorhombic GdMnO3

    NASA Astrophysics Data System (ADS)

    Modi, Anchit; Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.; Kaurav, N.; Okram, G. S.

    2013-06-01

    We report structural and transport properties of the polycrystalline orthorhombic GdMnO3 compound synthesized by using conventional solid state reaction method. The XRD pattern reveals the single phase formation of the reported compound in orthorhombic crystal structure with space group Pbnm (JCPDS: 25-0337). The temperature dependent resistivity study indicates the highly resistive nature of the compound especially in the low temperature region. The effect of low temperature magnetic ordering can be clearly understood from the resistivity versus temperature plot. The calculated activation energy by using Arrhenius equation fitting are found slightly lesser than the reported value which indicates the lesser dense nature of the prepared compound.

  10. Electrical transport and magnetic properties of epitaxial LSMO films grown on STO substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Zhao, Yuelei; Su, Tang; Song, Qi; Han, Wei; Shi, Jing

    2015-03-01

    La0.7Sr0.3MnO3 (LSMO) is a very attractive material for spintronics due to its half-metallic ferromagnetic properties. The LSMO films are epitaxially grown on STO (100) substrates using pulsed laser deposition. The effects of substrate temperature, laser power, oxygen pressure, and annealing on the LSMO growth are systematically investigated by the reflection high energy electron diffraction and atomic force microscopy. Under the optimized growth condition, we have achieved atomically flat LSMO thin films with a wide terrace width of more than 5 micro-meters. The electrical transport properties of LSMO thin films of various thicknesses ranging from 8 to 20 monolayers are studied by measuring the resistivity as a function of temperature. We find that the growth condition plays an important role in the critical film thickness for the metal-insulator transition and the Curie temperature. The Ministry of Science and Technology of China.

  11. Transport properties of MOPhC/metal one-way waveguide

    SciTech Connect

    Eyderman, Sergey; Kuzmiak, Vladimir

    2011-10-03

    We have demonstrated numerically that the interface between metal and uniformly magnetized 2D photonic crystal(PC) fabricated from a transparent dielectric magneto-optic(MO) material possesses a one-way frequency range where only a forward propagating surface plasmon polariton mode is allowed to propagate. By using a simple theoretical model we have shown that nonreciprocity is introduced by the MO properties of the PC. Transport properties of the structures within this frequency range have been investigated by FDTD method which enables to calculating propagation of EM waves through media with full tensorial MO permittivity. We found that in the presence of a time-dependent external magnetic field interesting features associated with the redistribution of the EM field appear.

  12. Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers

    SciTech Connect

    Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

    2011-07-01

    There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

  13. Transport and dielectric properties of dense ionized matter from the average-atom RESEOS model

    NASA Astrophysics Data System (ADS)

    Ovechkin, A. A.; Loboda, P. A.; Falkov, A. L.

    2016-09-01

    Electron transport properties of warm and hot dense matter are calculated using two versions of the average-atom approach: Liberman's model and the neutral Wigner-Seitz-sphere model. Electrical conductivity calculations employed the extended Ziman formula, the relaxation-time approximation, the Zubarev method, and the Kubo-Greenwood formula. Thermal conductivities were evaluated in the relaxation-time approximation. The results obtained are in good agreement with experimental data and ab initio calculations. The origin of nonphysical features appearing in the DC electrical and thermal conductivities calculated with the relaxation-time approximation and the Zubarev method is analyzed. AC conductivity and dielectric properties of dense ionized matter are obtained from the radiative opacity data calculated using the RESEOS model.

  14. Electronic, transport, and optical properties of bulk and mono-layer PdSe2

    DOE PAGES

    Sun, Jifeng; Shi, Hongliang; Siegrist, Theo; ...

    2015-10-13

    In this study, the electronic and optical properties of bulk and monolayer PdSe2 are investigated using firstprinciples calculations. Using the modified Becke-Johnson potential, we find semiconductor behavior for both bulk and monolayer PdSe2 with indirect gap values of 0.03 eV for bulk and 1.43 eV for monolayer, respectively. Our sheet optical conductivity results support this observation and show similar anisotropic feature in the 2D plane. We further study the thermoelectric properties of the 2D PdSe2 using Blotzmann transport model and find interestingly high Seebeck coefficients (>200 μV/K) for both p- and n-type up to high doping level (–2 x 1013more » cm2) with an anisotropic character in an electrical conductivity suggesting better thermoelectric performance along y direction in the plane.V« less

  15. Thermodynamic and Transport Properties of H2O + NaCl from Polarizable Force Fields.

    PubMed

    Jiang, Hao; Mester, Zoltan; Moultos, Othonas A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2015-08-11

    Molecular dynamics and Monte Carlo simulations were performed to obtain thermodynamic and transport properties of the binary H2O + NaCl system using the polarizable force fields of Kiss and Baranyai ( J. Chem. Phys. 2013 , 138 , 204507 and 2014 , 141 , 114501 ). In particular, liquid densities, electrolyte and crystal chemical potentials of NaCl, salt solubilities, mean ionic activity coefficients, vapor pressures, vapor-liquid interfacial tensions, and viscosities were obtained as functions of temperature, pressure, and salt concentration. We compared the performance of the polarizable force fields against fixed-point-charge (nonpolarizable) models. Most of the properties of interest are better represented by the polarizable models, which also remain physically realistic at elevated temperatures.

  16. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    SciTech Connect

    Chinthavali, Supriya

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  17. Electrical transport properties of potassium germanide tungstates (K10Ge18WO4): A theoretical study

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Reshak, A. H.

    2014-06-01

    The total and partial density of states, electronic charge density and optical properties of the monoclinic structure K10Ge18WO4 compound have been investigated using a full relativistic version of the full-potential augmented plane-wave method based on the density functional theory, within local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA). Density of states discloses the semiconductor nature of the calculated compound. There exists a strong hybridization between K-p and K-s, W-d and O-p, W-f and K-p. The analysis of the chemical bonding shows that the bonding possesses strong covalent nature. The dielectric optical properties were also calculated and discussed in detail. The electrical transport coefficients of the under observation compound have been investigated using the density functional theory calculation within EVGGA.

  18. Analysis of crack propagation and transport properties in rock samples using micro computer tomography

    NASA Astrophysics Data System (ADS)

    Uribe, David; Steeb, Holger

    2016-04-01

    The use of imaged based methods to determine properties of geological materials is becoming an alternative to laboratory experiments. Furthermore, the combination of laboratory experiments and image based methods using micro computer tomography have advanced the understanding of geophysical and geochemical processes. Within the scope of the "Shynergie" project, two special topics have been studied using such combination: a) the generation and propagation of cracks in rocks (specially wing cracks) and b) the time dependence of transport properties of rocks due to chemical weathering. In this publication, we describe the design considerations of our micro CT scanner to manipulate rock samples that have been subjected to the experiments to determine the above mentioned phenomena. Additionally, we discuss the preliminary experimental results and the initial interpretations we have gathered from the observations of the digitized rock samples.

  19. Magnetic structure and Magnetic transport Properties of Graphene Nanoribbons With Sawtooth Zigzag Edges

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Z.; Zhu, Z.; Liang, B.

    2014-12-01

    The magnetic structure and magnetic transport properties of hydrogen-passivated sawtooth zigzag-edge graphene nanoribbons (STGNRs) are investigated theoretically. It is found that all-sized ground-state STGNRs are ferromagnetic and always feature magnetic semiconductor properties, whose spin splitting energy gap Eg changes periodically with the width of STGNRs. More importantly, for the STGNR based device, the dual spin-filtering effect with the perfect (100%) spin polarization and high-performance dual spin diode effect with a rectification ratio about 1010 can be predicted. Particularly, a highly effective spin-valve device is likely to be realized, which displays a giant magnetoresistace (MR) approaching 1010%, which is three orders magnitude higher than the value predicted based on the zigzag graphene nanoribbons and six orders magnitude higher than previously reported experimental values for the MgO tunnel junction. Our findings suggest that STGNRs might hold a significant promise for developing spintronic devices.

  20. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (<63 microns), which individually can have theoretical atmospheric lifetimes that span hours to days. Depending on the injection height, fine ash may be subsequently transported and dispersed by the atmosphere over 100s - 1000s km and can pose a major threat for aviation operations. Recent volcanic eruptions, such as the 2010 Icelandic Eyjafjallajökull event, illustrated how volcanic ash can severely impact commercial air traffic. In order to manage the threat, it is important to have accurate forecast information on the spatial extent and absolute quantity of airborne volcanic ash. Such forecasts are constrained by empirically-derived estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine

  1. Laboratory Measurements of Fluid Transport Properties on Tight Gas Sandstones and Applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Daniel; Reitenbach, Viktor

    2014-05-01

    Deep gas reservoirs are of great interest for the E&P industry. Large areas of such reservoirs have permeabilities below 1 mD. The reservoir rocks in these areas show a strong stress sensitivity of the fluid transport properties and a considerable productivity decline due to changing stress conditions during the production process. For correct modeling and simulation of Tight Gas reservoirs it is important to know the behavior of the fluid transport properties under the changing stress condition the reservoir experiences. In several measurement series the effects of changing overburden and pore pressure on Rotliegend sandstone samples from north German Tight Gas reservoirs have been quantified and used to set up correlation functions. With the correlation functions from the own measurements and additional data and correlations from literature a Rock Data Catalog has been developed as tool to help reservoir engineers with modeling and simulation of such reservoirs. The Rock Data Catalog consists of the Rock Database and the Correlation Module. The Rock Database contains general and petrophysical rock data. The Correlation Module uses this data to generate secondary data of e.g. in-situ capillary and hydraulic rock properties with appropriate correlation functions. Viability of the economic gas production from Tight Gas Reservoirs strongly depends on reservoir quality. Therefore identification of high quality reservoir parts or so called Sweet Spots for placing production wells and planning hydraulic fracturing stimulation, is one of key issues of the tight gas reservoir characterization and evaluation. The data and correlation functions collected in the Rock Data Catalog could also be used to identify Sweet Spots in Tight Gas reservoirs. Several rock parameters and properties, which affect the fluid flow in a reservoir (like lithology, clay content, water saturation, permeability, pore size distribution) can be identified and used to set up a Sweet Spot Index as a

  2. Radiation Transport Properties of Potential In Situ-Developed Regolith-Epoxy Materials for Martian Habitats

    NASA Technical Reports Server (NTRS)

    Miller, Jack; Heilbronn, Lawrence H.; Zeitlin, Cary J.; Wilson, John W.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann

    2003-01-01

    Mission crews in space outside the Earth s magnetic field will be exposed to high energy heavy charged particles in the galactic cosmic radiation (GCR). These highly ionizing particles will be a source of radiation risk to crews on extended missions to the Moon and Mars, and the biological effects of and countermeasures to the GCR have to be investigated as part of the planning of exploration-class missions. While it is impractical to shield spacecraft and planetary habitats against the entire GCR spectrum, biological and physical studies indicate that relatively modest amounts of shielding are effective at reducing the radiation dose. However, nuclear fragmentation in the shielding materials produces highly penetrating secondary particles, which complicates the problem: in some cases, some shielding is worse than none at all. Therefore the radiation transport properties of potential shielding materials need to be carefully investigated. One intriguing option for a Mars mission is the use of material from the Martian surface, in combination with chemicals carried from Earth and/or fabricated from elements found in the Martian atmosphere, to construct crew habitats. We have measured the transmission properties of epoxy-Martian regolith composites with respect to heavy charged particles characteristic of the GCR ions which bombard the Martian surface. The composites were prepared at NASA Langley Research Center using simulated Martian regolith, in the process also evaluating fabrication methods which could lead to technologies for in situ fabrication on Mars. Initial evaluation of the radiation shielding properties is made using radiation transport models developed at NASA-LaRC, and the results of these calculations are used to select the composites with the most favorable radiation transmission properties. These candidates are then evaluated at particle accelerators which produce beams of heavy charged particles representative in energy and charge of the radiation

  3. From homogeneous to fractal normal and tumorous microvascular networks in the brain.

    PubMed

    Risser, Laurent; Plouraboué, Franck; Steyer, Alexandre; Cloetens, Peter; Le Duc, Géraldine; Fonta, Caroline

    2007-02-01

    We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power-spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale-invariant fractal properties on a small scale from 1.4 mum up to 40 to 65 mum. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange.

  4. Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx

    PubMed Central

    Salmon, Andrew H.J.; Neal, Christopher R.; Sage, Leslie M.; Glass, Catherine A.; Harper, Steven J.; Bates, David O.

    2009-01-01

    Aims In this study, we wished to determine whether angiopoietin-1 (Ang1) modified the permeability coefficients of non-inflamed, intact continuous, and fenestrated microvessels in vivo and to elucidate the underlying cellular mechanisms. Methods and results Permeability coefficients were measured using the Landis–Michel technique (in frog and rat mesenteric microvessels) and an oncopressive permeability technique (in glomeruli). Ang1 decreased water permeability (LP: hydraulic conductivity) in continuous and fenestrated microvessels and increased the retention of albumin (σ: reflection coefficient) in continuous microvessels. Endothelial glycocalyx is common to these anatomically distinct microvascular beds, and contributes to the magnitude of both LP and σ. Ang1 treatment increased the depth of endothelial glycocalyx in intact microvessels and increased the content of glycosaminoglycan of cultured microvascular endothelial cell supernatant. Ang1 also prevented the pronase-induced increase in LP (attributable to selective removal of endothelial glycocalyx by pronase) by restoration of glycocalyx at the endothelial cell surface. The reduction in permeability was inhibited by a cell transport inhibitor, Brefeldin. Conclusion Ang1 modifies basal microvessel permeability coefficients, in keeping with previous reports demonstrating reduced solute flux in inflamed vessels. Anatomical, biochemical, and physiological evidence indicates that modification of endothelial glycocalyx is a novel mechanism of action of Ang1 that contributes to these effects. PMID:19297368

  5. Influence of red blood cell aggregation on perfusion of an artificial microvascular network.

    PubMed

    Reinhart, Walter H; Piety, Nathaniel Z; Shevkoplyas, Sergey S

    2016-09-19

    Red blood cells (RBCs) suspended in plasma form multicellular aggregates under low flow conditions, increasing apparent blood viscosity at low shear rates. It has previously been unclear, however, if RBC aggregation affects microvascular perfusion. Here we analyzed the impact of RBC aggregation on perfusion and 'capillary' hematocrit in an artificial microvascular network (AMVN) at driving pressures ranging from 5 to 60 cmH2 O to determine if aggregation could improve tissue oxygenation. RBCs were suspended at 30% hematocrit in either 46.5 g/L dextran 40 (D40, non-aggregating medium) or 35 g/L dextran 70 (D70, aggregating medium) solutions with equal viscosity. Aggregation was readily observed in the AMVN for RBCs suspended in D70 at driving pressures ≤ 40 cmH2 O. The AMVN perfusion rate was the same for RBCs suspended in aggregating and non-aggregating medium, at both 'venular' and 'capillary' level. Estimated 'capillary' hematocrit was higher for D70 suspensions than for D40 suspensions at intermediate driving pressures (5 - 40 cm H2 O). We conclude that although RBC aggregation did not affect the AMVN perfusion rate independently of the driving pressure, a higher hematocrit in the 'capillaries' of the network for D70 suspensions suggested a better oxygen transport capacity in the presence of RBC aggregation. This article is protected by copyright. All rights reserved.

  6. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-01

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8 × ( W L ¯ ) n = 3 , 4 , 5 / POPE . The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  7. Transport properties of the mesothelium and interstitium measured in rabbit pericardium.

    PubMed

    Tang, Sonja M Moe; Lai-Fook, Stephen J

    2005-11-01

    The contribution of the pleural mesothelium to pleural liquid and protein transport is still vigorously debated. Recent in vitro studies of stripped pleural membrane and free-standing pericardium have demonstrated active ion solute coupled transport of liquid and transcytosis of protein. However, the relative contribution of the passive transport properties of the pleural mesothelium compared to the pleural interstitium has not been extensively studied. In in vitro studies, we measured the albumin diffusion coefficient, reflection coefficient, hydraulic conductivity and electrical resistance of rabbit pericardium. We used two techniques, treatment with 40 muM nocodazole and a 1-min hypotonic cell lysis with distilled water, to eliminate the effect of the two mesothelial layers on diffusional and hydraulic resistances. Each technique increased the albumin diffusion coefficient and hydraulic conductivity 3- to 4-fold. In hydraulic conductivity experiments using tracer 125I-albumin, nocodazole reduced the reflection coefficient to zero, rendering the pericardium completely permeable to albumin. We applied the cell-lysis technique to the pleural and pericardial mesothelium in sequence to evaluate the separate contribution of each mesothelium. Both diffusional and hydraulic resistances, but not electrical resistance, of the mesothelium were overestimated by the cell-lysis technique. The pleural mesothelium contributed at most 30% of diffusional resistance, 10% of hydraulic resistance and 14% of electrical resistance of the total pericardial resistances. We conclude that the pleural mesothelium is not the primary barrier to protein diffusion or bulk flow of liquid from the pericardial microcirculation to the pleural liquid.

  8. Transport properties of NSTX-U L- and H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, Stanley; Guttenfelder, Walter; Bell, Ron; Diallo, Ahmed; Leblanc, Ben; Podesta, Mario

    2016-10-01

    The confinement and transport properties of L- and H-mode plasmas in NSTX-U has been studied using the TRANSP code. A dedicated series of L-mode discharges was obtained to study the dependence of confinement and transport on power level and beam aiming angle. The latter is made possible by having two beamlines with 3 sources each, capable of injecting with tangency radii from Rtan = 50 to 130 cm (Rgeo = 92 cm). L-mode plasmas typically have confinement enhancement factors with H98y,2 =0.6 to 0.65, exhibiting a 25% decrease in confinement time as the beam power is raised from 1 to 3 MW. Associated with this is an increase in the electron thermal diffusivity in the core of the plasma from 3.5 to 10 m2/s. Electron thermal transport is the dominant energy loss channel in these plasmas. H-mode plasmas exhibit improved confinement, with H98y,2 =1 or above, and core electron thermal diffusivity values <1 m2/s. Details of these studies will be presented, along with the results of the beam tangency radius scan in L-mode plasmas. This research was supported by the U.S. Department of Energy contract # DE-AC02-09CH11466.

  9. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-07

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8×(WL¯)n=3,4,5/POPE. The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  10. Hole electrical transporting properties in organic-Si Schottky solar cell

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojuan; Zhu, Yawen; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2013-07-01

    In this work we investigated the hole electrical transporting properties effect on the organic-Si hybrid Schottky solar cells. By changing the post-annealing atmosphere of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) film, the power conversion efficiencies of the Schottky Si/PEDOT:PSS cell boosted from 6.40% in air to 9.33% in nitrogen. Current-voltage, capacitance-voltage, external quantum efficiency, and transient photovoltage measurements illustrated that the enhanced power conversion efficiency of the cell was ascribed to the increase in both conductivity and work function (WP) of PEDOT:PSS film. The increased conductivity reduced the series resistance (RS) within the cell, and the higher WP generated the larger built-in potential (Vbi) which resulted in the improvement of the open-circuit voltage. In addition, the decreased RS and enlarged Vbi were beneficial for the efficient charge transport/collection, contributing to the enhancement of the fill factor. Our results indicated that the conductivity as well as the WP of the hole transporting layer played an important role in the organic-Si Schottky solar cell.

  11. Implication of Structural Disorder in The Charge Transport Properties of Cobalt-phthalocyanine Thin Films

    SciTech Connect

    Debnath, A. K.; Kumar, A.; Samanta, S.; Singh, A.; Aswal, D. K.; Gupta, S. K.; Yakhmi, J. V.

    2011-07-15

    The charge transport properties of 100 nm thick cobalt phthalocyanine (CoPc) films grown on single crystal Al{sub 2}O{sub 3}(0001 oriented) and quartz substrates using molecular beam epitaxy, have been investigated as a function of applied bias ({+-} 50 V) at room temperature. Films grown on Al{sub 2}O{sub 3} are highly ordered and exhibited non-hysteretic current-voltage (J-V) characteristics. On the other hand, films grown on quartz substrates are highly disordered and exhibited hysteretic J-V characteristics due to charge trapping. The analysis of J-V characteristics of films on Al{sub 2}O{sub 3} substrates show that the transport is governed by shallow trap mediated space charge limited conduction (SCLC), while for the films grown on the quartz substrate transport is through the exponentially distributed traps mediated SCLC. X-ray photoelectron spectroscopy data show that charge trapping centers in the films grown on quartz substrates are created by chemisorbed oxygen.

  12. Differential effects of nebivolol vs. metoprolol on microvascular function in hypertensive humans.

    PubMed

    Velasco, Alejandro; Solow, Elizabeth; Price, Angela; Wang, Zhongyun; Arbique, Debbie; Arbique, Gary; Adams-Huet, Beverley; Schwedhelm, Edzard; Lindner, Jonathan R; Vongpatanasin, Wanpen

    2016-07-01

    Use of β-adrenergic receptor (AR) blocker is associated with increased risk of fatigue and exercise intolerance. Nebivolol is a newer generation β-blocker, which is thought to avoid this side effect via its vasodilating property. However, the effects of nebivolol on skeletal muscle perfusion during exercise have not been determined in hypertensive patients. Accordingly, we performed contrast-enhanced ultrasound perfusion imaging of the forearm muscles in 25 untreated stage I hypertensive patients at rest and during handgrip exercise at baseline or after 12 wk of treatment with nebivolol (5-20 mg/day) or metoprolol succinate (100-300 mg/day), with a subsequent double crossover for 12 wk. Metoprolol and nebivolol each induced a reduction in the resting blood pressure and heart rate (130.9 ± 2.6/81.7 ± 1.8 vs. 131.6 ± 2.7/80.8 ± 1.5 mmHg and 63 ± 2 vs. 64 ± 2 beats/min) compared with baseline (142.1 ± 2.0/88.7 ± 1.4 mmHg and 75 ± 2 beats/min, respectively, both P < 0.01). Metoprolol significantly attenuated the increase in microvascular blood volume (MBV) during handgrip at 12 and 20 repetitions/min by 50% compared with baseline (mixed-model P < 0.05), which was not observed with nebivolol. Neither metoprolol nor nebivolol affected microvascular flow velocity (MFV). Similarly, metoprolol and nebivolol had no effect on the increase in the conduit brachial artery flow as determined by duplex Doppler ultrasound. Thus our study demonstrated a first direct evidence for metoprolol-induced impairment in the recruitment of microvascular units during exercise in hypertensive humans, which was avoided by nebivolol. This selective reduction in MBV without alteration in MFV by metoprolol suggested impaired vasodilation at the precapillary arteriolar level.

  13. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    PubMed Central

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  14. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys

    NASA Astrophysics Data System (ADS)

    Calderón, Jorge A.; Mesa, F.; Dussan, A.

    2017-02-01

    We studied the electrical, magnetic, and transport properties of (GaMn)Sb thin films fabricated by the direct current magnetron co-sputtering method. Using X-ray powder diffraction measurements, we identified the presence of ferrimagnetic (Mn2Sb) and ferromagnetic (Mn2Sb2) phases within the films. We also measured the magnetization of the films versus an applied magnetic field as well as their hysteresis curves at room temperature. We determined the electrical and transport properties of the films through temperature-dependent resistivity measurements using the Van Der Pauw method. The main contribution to the transport process was variable range hopping. Hopping parameters were calculated using percolation theory and refined using the diffusional model. In addition, we determined that all samples had p type semiconductor behavior, that there was an increase in the density of localized states near the Fermi level, and that the binary magnetic phases influenced the electrical properties and transport mechanisms.

  15. Theory of band warping and its effects on thermoelectronic transport properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas A.; Resca, Lorenzo; Pegg, Ian L.; Fornari, Marco

    2014-04-01

    Optical and transport properties of materials depend heavily upon features of electronic band structures in proximity of energy extrema in the Brillouin zone (BZ). Such features are generally described in terms of multidimensional quadratic expansions and corresponding definitions of effective masses. Multidimensional quadratic expansions, however, are permissible only under strict conditions that are typically violated when energy bands become degenerate at extrema in the BZ. Even for energy bands that are nondegenerate at critical points in the BZ there are instances in which multidimensional quadratic expansions cannot be correctly performed. Suggestive terms such as "band warping," "fluted energy surfaces," or "corrugated energy surfaces" have been used to refer to such situations and ad hoc methods have been developed to treat them. While numerical calculations may reflect such features, a complete theory of band warping has not hitherto been developed. We define band warping as referring to band structures that do not admit second-order differentiability at critical points in k space and we develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass. Our theory also accounts for effects of band nonparabolicity and anisotropy, which hitherto have not been precisely distinguished from, if not utterly confused with, band warping. Based on our theory, we develop precise procedures to evaluate band warping quantitatively. As a benchmark demonstration, we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with previous semiempirical models. As an application of major significance to thermoelectricity, we use our theory and angular effective masses to generalize derivations of tensorial transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. From that

  16. Computer program for thermal and transport properties of parahydrogen from 20 to 10,000 K

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1993-01-01

    A computer program was recently developed to provide thermal and transport properties for parahydrogen across a wide temperature and pressure range. The program, NBS+/-pH2, matches the most recent parahydrogen property data from the National Bureau of Standards up to 3000 K and property data from the NASA Lewis Research Center's Chemical Equilibrium Computer Program up to 10,000 K. The pressure range of NBS+/-pH2 is from 1 x 10(exp 4) to 1.6 x 10(exp 7) Pa. The program was developed to meet the need for accurate parahydrogen properties from liquid to dissociated conditions as required by propulsion simulation programs being developed under the Space Exploration Initiative. NBS+/-pH2 is a machine-independent, standard Fortran 77 program which provides density, thermal conductivity, viscosity, Prandtl number, entropy, specific heats, and speed of sound given pressure and either temperature or enthalpy. This program is described and a comparison to programs previously available is provided.

  17. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Lee, Kam-Pui; Thompson, Richard A.; Yos, Jerrold M.

    1991-01-01

    A self-consistent set of equilibrium air values were computed for enthalpy, total specific heat at constant pressure, compressibility factor, viscosity, total thermal conductivity, and total Prandtl number from 500 to 30,000 K over a range of 10(exp -4) atm to 10(exp 2) atm. The mixture values are calculated from the transport and thermodynamic properties of the individual species provided in a recent study by the authors. The concentrations of the individual species, required in the mixture relations, are obtained from a free energy minimization calculation procedure. Present calculations are based on an 11-species air model. For pressures less than 10(exp -2) atm and temperatures of about 15,000 K and greater, the concentrations of N(++) and O(++) become important, and consequently, they are included in the calculations determining the various properties. The computed properties are curve fitted as a function of temperature at a constant value of pressure. These curve fits reproduce the computed values within 5 percent for the entire temperature range considered here at specific pressures and provide an efficient means for computing the flowfield properties of equilibrium air, provided the elemental composition remains constant at 0.24 for oxygen and 0.76 for nitrogen by mass.

  18. Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions

    SciTech Connect

    Liu, N.; Gao, G. Y.; Zhu, S. C.; Ni, Y.; Wang, S. L.; Yao, K. L.; Liu, J. B.

    2014-07-14

    By applying nonequilibrium Green's function combined with density functional theory, we investigate the electronic transport properties of carbon-doped p-n nanojunction based on hexagonal boron nitride armchair nanoribbons. The calculated I-V curves show that both the center and edge doping systems present obvious negative differential resistance (NDR) behavior and excellent rectifying effect. At low positive bias, the edge doping systems possess better NDR performance with larger peak-to-valley ratio (∼10{sup 5}), while at negative bias, the obtained peak-to-valley ratio for both of the edge and center doping systems can reach the order of 10{sup 7}. Meanwhile, center doping systems present better rectifying performance than the edge doping ones, and giant rectification ratio up to 10{sup 6} can be obtained in a wide bias range. These outstanding transport properties are explained by the evolution of the transmission spectra and band structures with applied bias, together with molecular projected self-consistent Hamiltonian eigenvalues and eigenstates.

  19. Leaf hydraulics I: scaling transport properties from single cells to tissues.

    PubMed

    Rockwell, Fulton E; Michele Holbrook, N; Stroock, Abraham D

    2014-01-07

    In leaf tissues, water may move through the symplast or apoplast as a liquid, or through the airspace as vapor, but the dominant path remains in dispute. This is due, in part, to a lack of models that describe these three pathways in terms of experimental variables. We show that, in plant water relations theory, the use of a hydraulic capacity in a manner analogous to a thermal capacity, though it ignores mechanical interactions between cells, is consistent with a special case of the more general continuum mechanical theory of linear poroelasticity. The resulting heat equation form affords a great deal of analytical simplicity at a minimal cost: we estimate an expected error of less than 12%, compared to the full set of equations governing linear poroelastic behavior. We next consider the case for local equilibrium between protoplasts, their cell walls, and adjacent air spaces during isothermal hydration transients to determine how accurately simple volume averaging of material properties (a 'composite' model) describes the hydraulic properties of leaf tissue. Based on typical hydraulic parameters for individual cells, we find that a composite description for tissues composed of thin walled cells with air spaces of similar size to the cells, as in photosynthetic tissues, is a reasonable preliminary assumption. We also expect isothermal transport in such cells to be dominated by the aquaporin-mediated cell-to-cell path. In the non-isothermal case, information on the magnitude of the thermal gradients is required to assess the dominant phase of water transport, liquid or vapor.

  20. Gray free-energy multiphase lattice Boltzmann model with effective transport and wetting properties

    NASA Astrophysics Data System (ADS)

    Zalzale, Mohamad; Ramaioli, M.; Scrivener, K. L.; McDonald, P. J.

    2016-11-01

    The paper shows that it is possible to combine the free-energy lattice Boltzmann approach to multiphase modeling of fluids involving both liquid and vapor with the partial bounce back lattice Boltzmann approach to modeling effective media. Effective media models are designed to mimic the properties of porous materials with porosity much finer than the scale of the simulation lattice. In the partial bounce-back approach, an effective media parameter or bounce-back fraction controls fluid transport. In the combined model, a wetting potential is additionally introduced that controls the wetting properties of the fluid with respect to interfaces between free space (white nodes), effective media (gray nodes), and solids (black nodes). The use of the wetting potential combined with the bounce-back parameter gives the model the ability to simulate transport and sorption of a wide range of fluid in material systems. Results for phase separation, permeability, contact angle, and wicking in gray media are shown. Sorption is explored in small sections of model multiscale porous systems to demonstrate two-step desorption, sorption hysteresis, and the ink-bottle effect.

  1. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Gheribi, Aïmen E.; Salanne, Mathieu; Chartrand, Patrice

    2015-03-01

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  2. Molecular Dynamics Simulation of the Transport Properties of Molten Transuranic Salt Mixtures

    NASA Astrophysics Data System (ADS)

    Baty, Austin; McIntyre, Peter; Sattarov, Akhdiyor; Sooby, Elizabeth

    2012-10-01

    The Accelerator Research Laboratory at Texas A&M is proposing a revolutionary design for accelerator-driven subcritical fission in molten salt (ADSMS), a system that destroys the transuranic elements in spent nuclear fuel. The transuranics are the most enduring hazard of nuclear power, since they contain high radiotoxicity and have half-lives of a thousand to a million years. The ADSMS core is fueled by a homogeneous chloride-based molten salt mixture containing the chlorides of the transuranics and NaCl. Knowledge of the density, heat capacity, thermal conductivity, etc. of the salt mixtures is needed to accurately model the complex ADSMS system. There is a lack of experimental data on the density and transport properties of such mixtures. Molecular dynamics simulations using polarizable ion potentials are used to determine the density and heat capacity of these melts as a function of temperature. Green-Kubo methods are employed to calculate the electrical conductivity, thermal conductivity, and viscosity of the salt using the outputs of the model. Results for pure molten salt systems are compared to experimental data when possible to validate the potentials used. Here we discuss potential salt systems, their neutronic behavior, and the calculated transport properties.

  3. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cardia, R.; Malloci, G.; Bosin, A.; Serra, G.; Cappellini, G.

    2016-10-01

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  4. Oxygen transport properties estimation by classical trajectory–direct simulation Monte Carlo

    SciTech Connect

    Bruno, Domenico; Frezzotti, Aldo Ghiroldi, Gian Pietro

    2015-05-15

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300–900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  5. Transport properties in dilute UN (X ) solid solutions (X =Xe ,Kr )

    NASA Astrophysics Data System (ADS)

    Claisse, Antoine; Schuler, Thomas; Lopes, Denise Adorno; Olsson, Pär

    2016-11-01

    Uranium nitride (UN) is a candidate fuel for current GEN III fission reactors, for which it is investigated as an accident-tolerant fuel, as well as for future GEN IV reactors. In this study, we investigate the kinetic properties of gas fission products (Xe and Kr) in UN. Binding and migration energies are obtained using density functional theory, with an added Hubbard correlation to model f electrons, and the occupation matrix control scheme to avoid metastable states. These energies are then used as input for the self-consistent mean field method which enables to determine transport coefficients for vacancy-mediated diffusion of Xe and Kr on the U sublattice. The magnetic ordering of the UN structure is explicitly taken into account, for both energetic and transport properties. Solute diffusivities are compared with experimental measurements and the effect of various parameters on the theoretical model is carefully investigated. We find that kinetic correlations are very strong in this system, and that despite atomic migration anisotropy, macroscopic solute diffusivities show limited anisotropy. Our model indicates that the discrepancy between experimental measurements probably results from different irradiation conditions, and hence different defect concentrations.

  6. The electronic and transport properties of monolayer transition metal dichalcogenides: a complex band structure analysis

    NASA Astrophysics Data System (ADS)

    Szczesniak, Dominik

    Recently, monolayer transition metal dichalcogenides have attracted much attention due to their potential use in both nano- and opto-electronics. In such applications, the electronic and transport properties of group-VIB transition metal dichalcogenides (MX2 , where M=Mo, W; X=S, Se, Te) are particularly important. Herein, new insight into these properties is presented by studying the complex band structures (CBS's) of MX2 monolayers while accounting for spin-orbit coupling effects. By using the symmetry-based tight-binding model a nonlinear generalized eigenvalue problem for CBS's is obtained. An efficient method for solving such class of problems is presented and gives a complete set of physically relevant solutions. Next, these solutions are characterized and classified into propagating and evanescent states, where the latter states present not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gaps, which describe the tunneling currents in the MX2 materials. The importance of CBS's and tunneling currents is demonstrated by the analysis of the quantum transport across MX2 monolayers within phase field matching theory. Present work has been prepared within the Qatar Energy and Environment Research Institute (QEERI) grand challenge ATHLOC project (Project No. QEERI- GC-3008).

  7. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  8. Temperature Dependent Electrical Transport Properties of Ni-Cr and Co-Cr Binary Alloys

    SciTech Connect

    Thakore, B. Y.; Khambholja, S. G.; Bhatt, N. K.; Jani, A. R.; Suthar, P. H.; Gajjar, P. N.

    2011-12-12

    The temperature dependent electrical transport properties viz. electrical resistivity and thermal conductivity of Ni{sub 10}Cr{sub 90} and Co{sub 20}Cr{sub 80} alloys are computed at various temperatures. The electrical resistivity has been calculated according to Faber-Ziman model combined with Ashcroft-Langreth partial structure factors. In the present work, to include the ion-electron interaction, we have used a well tested local model potential. For exchange-correlation effects, five different forms of local field correction functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al (F) and Sarkar et al (S) are used. The present results due to S function are in good agreement with the experimental data as compared to results obtained using other four functions. The S functions satisfy compressibility sum rule in long wave length limit more accurately as compared to T, IU and F functions, which may be responsible for better agreement of results, obtained using S function. Also, present result confirms the validity of present approach in determining the transport properties of alloys like Ni-Cr and Co-Cr.

  9. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics

    SciTech Connect

    Gheribi, Aïmen E. Chartrand, Patrice; Salanne, Mathieu

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  10. Ionic structures and transport properties of hot dense W and U plasmas

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  11. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.

    PubMed

    Liu, Yu-Shen; Chen, Hao; Yang, Xi-Feng

    2007-06-20

    Based on the Keldysh Green's function technique and the equation-of-motion method, we investigate theoretically the electronic transport properties of an Aharonov-Bohm ring with embedded coupled double quantum dots connected to two electrodes in a symmetrical parallel configuration in the presence of strong interdot Coulomb interaction. Special attention is paid to the effects of the interdot Coulomb interaction on the transport properties. It has been shown numerically that the interdot Coulomb interaction gives rise to four electronic states in the ring. The quantum interferences between two strongly coupled electronic states and two weakly coupled ones lead to two Breit-Wigner and two Fano resonances in the linear conductance spectrum with the magnetic flux switched on or the imbalance between the energy levels of two quantum dots. The positions and shapes of the four resonances can be controlled by adjusting the magnetic flux through the device or energy levels of the two quantum dots. When the Fermi energy levels in the leads sweep across the weakly coupled electronic states, the negative differential conductance (NDC) is developed in the current-voltage characteristics for the non-equilibrium case.

  12. Oxygen transport properties estimation by classical trajectory-direct simulation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro

    2015-05-01

    Coupling direct simulation Monte Carlo (DSMC) simulations with classical trajectory calculations is a powerful tool to improve predictive capabilities of computational dilute gas dynamics. The considerable increase in computational effort outlined in early applications of the method can be compensated by running simulations on massively parallel computers. In particular, Graphics Processing Unit acceleration has been found quite effective in reducing computing time of classical trajectory (CT)-DSMC simulations. The aim of the present work is to study dilute molecular oxygen flows by modeling binary collisions, in the rigid rotor approximation, through an accurate Potential Energy Surface (PES), obtained by molecular beams scattering. The PES accuracy is assessed by calculating molecular oxygen transport properties by different equilibrium and non-equilibrium CT-DSMC based simulations that provide close values of the transport properties. Comparisons with available experimental data are presented and discussed in the temperature range 300-900 K, where vibrational degrees of freedom are expected to play a limited (but not always negligible) role.

  13. Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; ...

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1-yPry)1-xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance)more » measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less

  14. Quantum simulation of structure, transport properties, and melting in dense hydrogen

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2016-10-01

    Due to the low mass, hydrogen exhibits significant nuclear quantum effects (NQEs), especially under low temperatures and high pressures. NQEs on structure and transport properties of dense liquid hydrogen under extreme conditions are investigated using the improved centroid path integral molecular dynamics (PIMD) simulations. The results show that with the inclusion of NQEs, the radial distribution functions are obviously broadened. The self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The electrical conductivity is also significantly affected by NQEs. Quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid hydrogen. In addition, the melting temperature of dense hydrogen is also investigated using the two-phase approach based on the PIMD with the Yukawa potential describing the interaction between ions. The results show that the NQEs have a significant impact on the melting of dense hydrogen, which largely lower the melting temperature by 10% at the density range of 10-1000 g/cm3.

  15. Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties.

    PubMed

    Zhang, Xin; Scott, Tom; Socha, Tyler; Nielsen, David; Manno, Michael; Johnson, Melissa; Yan, Yuqi; Losovyj, Yaroslav; Dowben, Peter; Aydil, Eray S; Leighton, Chris

    2015-07-01

    The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.

  16. Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers.

    PubMed

    Li, Wei-Ci; Ni, Chuen-Fa; Tsai, Chia-Hsing; Wei, Yi-Ming

    2016-05-01

    This paper presents numerical investigations on quantifying the hydrodynamic effects of coastal environment factors, including tidal fluctuations, beach slopes, hydraulic conductivity, and hydraulic gradients on sea-derived benzene transport in unconfined coastal aquifers. A hydrologic transport and mixed geochemical kinetic/equilibrium reactions in saturated-unsaturated media model was used to simulate the spatial and temporal behaviors of the density flow and benzene transport for various hydrogeological conditions. Simulation results indicated that the tidal fluctuations lead to upper saline plumes (USPs) near the groundwater and seawater interfaces. Such local circulation zones trapped the seaward benzene plumes and carried them down in aquifers to the depth depending on the tide amplitudes and beach slopes across the coastal lines. Comparisons based on different tidal fluctuations, beach slopes, hydraulic conductivity, and hydraulic gradient were systematically conducted and quantified. The results indicated that areas with USPs increased with the tidal amplitude and decreased with the increasing beach slope. However, the variation of hydraulic conductivity and hydraulic gradient has relatively small influence on the patterns of flow fields in the study. The increase of the USP depths was linearly correlated with the increase of the tidal amplitudes. The benzene reactive transport simulations revealed that the plume migrations are mainly controlled by the local flow dynamics and constrained in the USP circulation zones. The self-cleaning process of a coastal aquifer is time-consuming, typically requiring double the time of the contamination process that the benzene plume reach the bottom of a USP circulation zone. The presented systematic analysis can provide useful information for rapidly evaluating seaward contaminants along a coastal line with available hydrogeological properties.

  17. Transport properties of single-file pores with two conformational states.

    PubMed Central

    Hernández, J A; Fischbarg, J

    1994-01-01

    Complex facilitative membrane transporters of specific ligands may operate via inner channels subject to conformational transitions. To describe some properties of these systems, we introduce here a kinetic model of coupled transport of two species, L and w, through a two-conformational pore. The basic assumptions of the model are: a) single-file of, at most, n molecules inside the channel; b) each pore state is open to one of the compartments only; c) there is at most only one vacancy per pore; d) inside the channel, a molecule of L occupies the same positions as a molecule of w; and e) there is at most only one molecule of L per pore. We develop a general representation of the kinetic diagram of the model that is formally similar to the one used to describe one-vacancy transport through a one-conformational single-file pore. In many cases of biological importance, L could be a hydrophilic (ionic or nonionic) ligand and w could be water. The model also finds application to describe solute (w) transport under saturation conditions. In this latter case, L would be another solute, or a tracer of w. We derive steady-state expressions for the fluxes of L and w, and for the permeability coefficients. The main results obtained from the analysis of the model are the following. 1) Under the condition of equilibrium of w, the expression derived for the flux of L is formally indistinguishable from the one obtainable from a standard four-state model of ligand transport mediated by a two-conformational transporter. 2) When L is a tracer of w, we can derive an expression for the ratio between the main isotope and tracer permeability coefficients (Pw/Pd). We find that the near-equilibrium permeability ratio satisfies (n - 1) < or = (Pw/Pd)eq < or = n, a result previously derived for the one-conformational, single-file pore for the case that n > or = 2. 3) The kinetic model studied here represents a generalization of the carrier concept. In fact, for the case that n = 1

  18. Thermal provocation to evaluate microvascular reactivity in human skin

    PubMed Central

    2010-01-01

    With increased interest in predictive medicine, development of a relatively noninvasive technique that can improve prediction of major clinical outcomes has gained considerable attention. Current tests that are the target of critical evaluation, such as flow-mediated vasodilation of the brachial artery and pulse-wave velocity, are specific to the larger conduit vessels. However, evidence is mounting that functional changes in the microcirculation may be an early sign of globalized microvascular dysfunction. Thus development of a test of microvascular reactivity that could be used to evaluate cardiovascular risk or response to treatment is an exciting area of innovation. This mini-review is focused on tests of microvascular reactivity to thermal stimuli in the cutaneous circulation. The skin may prove to be an ideal site for evaluation of microvascular dysfunction due to its ease of access and growing evidence that changes in skin vascular reactivity may precede overt clinical signs of disease. Evaluation of the skin blood flow response to locally applied heat has already demonstrated prognostic utility, and the response to local cooling holds promise in patients in whom cutaneous disorders are present. Whether either of these tests can be used to predict cardiovascular morbidity or mortality in a clinical setting requires further evaluation. PMID:20507974

  19. Thermal provocation to evaluate microvascular reactivity in human skin.

    PubMed

    Minson, Christopher T

    2010-10-01

    With increased interest in predictive medicine, development of a relatively noninvasive technique that can improve prediction of major clinical outcomes has gained considerable attention. Current tests that are the target of critical evaluation, such as flow-mediated vasodilation of the brachial artery and pulse-wave velocity, are specific to the larger conduit vessels. However, evidence is mounting that functional changes in the microcirculation may be an early sign of globalized microvascular dysfunction. Thus development of a test of microvascular reactivity that could be used to evaluate cardiovascular risk or response to treatment is an exciting area of innovation. This mini-review is focused on tests of microvascular reactivity to thermal stimuli in the cutaneous circulation. The skin may prove to be an ideal site for evaluation of microvascular dysfunction due to its ease of access and growing evidence that changes in skin vascular reactivity may precede overt clinical signs of disease. Evaluation of the skin blood flow response to locally applied heat has already demonstrated prognostic utility, and the response to local cooling holds promise in patients in whom cutaneous disorders are present. Whether either of these tests can be used to predict cardiovascular morbidity or mortality in a clinical setting requires further evaluation.

  20. Methods to investigate coronary microvascular function in clinical practice.

    PubMed

    Lanza, Gaetano A; Camici, Paolo G; Galiuto, Leonarda; Niccoli, Giampaolo; Pizzi, Carmine; Di Monaco, Antonio; Sestito, Alfonso; Novo, Salvatore; Piscione, Federico; Tritto, Isabella; Ambrosio, Giuseppe; Bugiardini, Raffaele; Crea, Filippo; Marzilli, Mario

    2013-01-01

    A growing amount of data is increasingly showing the relevance of coronary microvascular dysfunction (CMVD) in several clinical contexts. This article reviews techniques and clinical investigations of the main noninvasive and invasive methods proposed to study coronary microcirculation and to identify CMVD in the presence of normal coronary arteries, also trying to provide indications for their application in clinical practice.

  1. Microvascular imaging: techniques and opportunities for clinical physiological measurements.

    PubMed

    Allen, John; Howell, Kevin

    2014-07-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research.

  2. Xenobiotic Particle Exposure and Microvascular Endpoints: A Call to Arms

    PubMed Central

    Stapleton, Phoebe A.; Minarchick, Valerie C.; McCawley, Michael; Knuckles, Travis L.; Nurkiewicz, Timothy R.

    2011-01-01

    Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a “niche”. The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures. PMID:21951337

  3. Effects of pre-shipping enrofloxacin administration on fever and blood properties in adult Thoroughbred racehorses transported a long distance

    PubMed Central

    ENDO, Yoshiro; ISHIKAWA, Yuhiro; ARIMA, Daisuke; MAE, Naomi; IWAMOTO, Yohei; KOROSUE, Kenji; TSUZUKI, Nao; HOBO, Seiji

    2017-01-01

    To evaluate the effects of single-dose enrofloxacin (ERFX) on fever and blood properties in 68 Thoroughbred racehorses after long-distance transportation, horses were assigned to receive ERFX (5 mg/kg, IV; ERFX group; n=52) or saline (0.9% NaCl) solution (50 ml, IV; control group; n=16) ≤1 hr before transportation. Horses were transported 1,122 km using commercial vans over the course of approximately 21 hr. Clinical examinations and hematologic analyses were performed before and after transportation. Rectal temperatures, white blood cell counts and serum amyloid A concentration of ERFX group were significantly lower than control group (P<0.01, P<0.01 and P<0.05, respectively). In conclusion, these results show ERFX administration just before transportation is effective at preventing transportation-associated fever in adult Thoroughbred racehorses. PMID:28111418

  4. CALIPSO Measurements of Saharan Dust Properties near Source and Transport Regions

    NASA Astrophysics Data System (ADS)

    Omar, A. H.; Liu, Z.; Tackett, J. L.; Vaughan, M.; Trepte, C. R.; Winker, D. M.

    2014-12-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a collaboration between NASA and Centre National d'Études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. We exploit the large data set generated by CALIPSO between 2006 - 2013 to determine a multi-year climatology of the properties of Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of Saharan dust gridded in accordance with the Level 3 data products protocol. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of Saharan dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source (Lat 0o to 40o Lon -20o to 20o) to the same distributions in the far field or transport region (Lat 0o to 40o Lon -80o to -20o). To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  5. Transport properties of carbon dioxide and methane from molecular dynamics simulations.

    PubMed

    Aimoli, C G; Maginn, E J; Abreu, C R A

    2014-10-07

    Transport properties of carbon dioxide and methane are predicted for temperatures between (273.15 and 573.15) K and pressures up to 800 MPa by molecular dynamics simulations. Viscosities and thermal conductivities were obtained through the Green-Kubo formalism, whereas the Einstein relation was used to provide self-diffusion coefficient estimates. The differences in property predictions due to the force field nature and parametrization were investigated by the comparison of seven different CO2 models (two single-site models, three rigid three-site models, and two fully flexible three-site models) and three different CH4 models (two single-site models and one fully flexible five-site model). The simulation results show good agreement with experimental data, except for thermal conductivities at low densities. The molecular structure and force field parameters play an important role in the accuracy of the simulations, which is within the experimental deviations reported for viscosities and self-diffusion coefficients considering the most accurate CO2 and CH4 models studied. On the other hand, the molecular flexibility does not seem to improve accuracy, since the explicit account of vibrational and bending degrees of freedom in the CO2 flexible models leads to slightly less accurate results. Nonetheless, the use of a correctional term to account for vibrational modes in rigid models generally improves estimations of thermal conductivity values. At extreme densities, the caging effect observed with single-site representations of the molecules restrains mobility and leads to an unphysical overestimation of viscosities and, conversely, to the underestimation of self-diffusion coefficients. This result may help to better understand the limits of applicability of such force fields concerning structural and transport properties of dense systems.

  6. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1

    PubMed Central

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2016-01-01

    Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions. PMID:26340317

  7. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1.

    PubMed

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2016-01-01

    Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions.

  8. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    NASA Astrophysics Data System (ADS)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  9. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    PubMed Central

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument. PMID:26593699

  10. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron–heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  11. Precise Boundary Element Computation of Protein Transport Properties: Diffusion Tensors, Specific Volume, and Hydration

    PubMed Central

    Aragon, Sergio; Hahn, David K.

    2006-01-01

    A precise boundary element method for the computation of hydrodynamic properties has been applied to the study of a large suite of 41 soluble proteins ranging from 6.5 to 377 kDa in molecular mass. A hydrodynamic model consisting of a rigid protein excluded volume, obtained from crystallographic coordinates, surrounded by a uniform hydration thickness has been found to yield properties in excellent agreement with experiment. The hydration thickness was determined to be δ = 1.1 ± 0.1 Å. Using this value, standard deviations from experimental measurements are: 2% for the specific volume; 2% for the translational diffusion coefficient, and 6% for the rotational diffusion coefficient. These deviations are comparable to experimental errors in these properties. The precision of the boundary element method allows the unified description of all of these properties with a single hydration parameter, thus far not achieved with other methods. An approximate method for computing transport properties with a statistical precision of 1% or better (compared to 0.1–0.2% for the full computation) is also presented. We have also estimated the total amount of hydration water with a typical −9% deviation from experiment in the case of monomeric proteins. Both the water of hydration and the more precise translational diffusion data hint that some multimeric proteins may not have the same solution structure as that in the crystal because the deviations are systematic and larger than in the monomeric case. On the other hand, the data for monomeric proteins conclusively show that there is no difference in the protein structure going from the crystal into solution. PMID:16714342

  12. Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes

    SciTech Connect

    Xiao, H.P.; He, Chaoyu; Zhang, C.X.; Sun, L.Z.; Zhou, Pan; Zhong, Jianxin

    2013-04-15

    Using the first-principle calculations, the stability and electronic properties of two novel types of four-segment armchair (10, 10) BN/C hybrid nanotubes ((BN){sub 5}C{sub 5}(BN){sub 5}C{sub 5}NT and (BN){sub 5}C{sub 5}(NB){sub 5}C{sub 5}NT) as well as two-segment armchair (10, 10) BN/C hybrid nanotubes ((BN{sub 20−n}C{sub n}NTs) are systematically investigated. When n increases from 1 to 4, the band gap of (BN){sub 20−n}C{sub n}NTs gradually decreases to a narrow one. When 4≤n≤17, the electronic structure of carbon segment in (BN){sub 20−n}C{sub n}NTs behaves as zigzag graphene nanoribbons whose band gap is modulated by an inherent electric field of the BN segment. ZGNR-like segments in (BN){sub 5}C{sub 5}(BN){sub 5}C{sub 5}NT and (BN){sub 5}C{sub 5}(NB){sub 5}C{sub 5}NT behave as narrow gap semiconductor and metal, respectively, due to their different chemical environment. Moreover, the (BN){sub 5}C{sub 5}(NB){sub 5}C{sub 5}NT can separate electron and hole carriers, indicating its potential application in solar cell materials. Obvious transport enhancement around the Fermi level is found in the four-segment nanotubes, especially a 6G{sub 0} transmission peak in the metallic (BN){sub 5}C{sub 5}(NB){sub 5}C{sub 5}NT. - Graphical abstract: Structural diagram of four-segment (BN){sub 5}C{sub 5}(NB){sub 5}C{sub 5}NT and its typical two-probe system. The band structures and transport spectra of (BN){sub 5}C{sub 5}(NB){sub 5}C{sub 5}NT are shown in upper and lower panels. Highlights: ► Transport properties of two types of four-segment BNC hybrid nanotubes are studied. ► Transport enhancements are realized in the four-segment BNC hybrid nanotubes. ► Electron and hole separation is found in four-segment BNC hybrid nanotubes.

  13. Transport, geometrical, and topological properties of stealthy disordered hyperuniform two-phase systems.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2016-12-28

    Disordered hyperuniform many-particle systems have attracted considerable recent attention, since they behave like crystals in the manner in which they suppress large-scale density fluctuations, and yet also resemble statistically isotropic liquids and glasses with no Bragg peaks. One important class of such systems is the classical ground states of "stealthy potentials." The degree of order of such ground states depends on a tuning parameter χ. Previous studies have shown that these ground-state point configurations can be counterintuitively disordered, infinitely degenerate, and endowed with novel physical properties (e.g., negative thermal expansion behavior). In this paper, we focus on the disordered regime (0 < χ < 1/2) in which there is no long-range order and control the degree of short-range order. We map these stealthy disordered hyperuniform point configurations to two-phase media by circumscribing each point with a possibly overlapping sphere of a common radius a: the "particle" and "void" phases are taken to be the space interior and exterior to the spheres, respectively. The hyperuniformity of such two-phase media depends on the sphere sizes: While it was previously analytically proven that the resulting two-phase media maintain hyperuniformity if spheres do not overlap, here we show numerically that they lose hyperuniformity whenever the spheres overlap. We study certain transport properties of these systems, including the effective diffusion coefficient of point particles diffusing in the void phase as well as static and time-dependent characteristics associated with diffusion-controlled reactions. Besides these effective transport properties, we also investigate several related structural properties, including pore-size functions, quantizer error, an order metric, and percolation thresholds. We show that these transport, geometrical, and topological properties of our two-phase media derived from decorated stealthy ground states are distinctly

  14. Local transport properties investigation by correlating hyperspectral and confocal luminescence images

    NASA Astrophysics Data System (ADS)

    El-Hajje, G.; Ory, D.; Guillemoles, J.-F.; Lombez, L.

    2016-03-01

    In the present study, we develop a contactless optical characterization tool that quantifies and maps the trapping defects density within a thin film photovoltaic device. This is achieved by probing time-resolved photoluminescence and numerically reconstructing the experimental decays under several excitation conditions. The values of defects density in different Cu(In,Ga)Se2 solar cells were extracted and linked to photovoltaic performances such as the open-circuit voltage. In the second part of the work, the authors established a micrometric map of the trapping defects density. This revealed areas within the thin film CIGS solar cell with low photovoltaic performance and high trapping defects density. This proves that the developed tool can be used to qualify and quantify the buffer layer/absorber interface properties. The final part of the work was dedicated to finding the origin of the spatial fluctuations of the thin film transport properties. To do so, we started by establishing a micrometric map of the absolute quasi-Fermi levels splitting within the same CIGS solar cell, using the hyperspectral imager. A correlation is obtained between the map of quasi-Fermi levels splitting of and the map of the trapping defects density. The latter is found to be the origin of the frequently observed spatial fluctuations of thin film materials properties.

  15. Characterization of Regolith Volatile Transport and Storage Properties by The MECA MSP 2001 Lander Payload

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.; Marshall, J.

    1999-01-01

    The diffusive and adsorptive properties of the Martian regolith influence the exchange of volatiles between the atmosphere and subsurface. Our quantitative knowledge of these properties is extremely poor -introducing substantial uncertainties in efforts to model long-term evolution of ground ice and diurnal, seasonal, and climatic cycles of CO2 and H20. This situation should significantly improve upon arrival of the 2001 Mars Surveyor Lander in 2002. In support of the Human Exploration and Development of Space (HEDS) enterprise, the 2001 mission will include a suite of instruments to characterize the nature of the Martian environment and assess whether it contains hazards that may threaten future human exploration. A major element of this effort is the Mars Environmental Compatibility Assessment (MECA) payload, which consists an optical microscopy system incorporating electrostatic, magnetic, and scratch-hardness materials testing palets, an atomic force microscope with imaging capabilities comparable to an SEM, a wet chemistry laboratory with four independent test cells, an electrometer on the robotic arm, material test patches, a camera also mounted on the arm, and a soil scoop for excavating down to about 50 cm into the soil. Although conceived to address the needs of HEDS, MECA payload is a sophisticated soil science laboratory that should provide a wealth of new data relevant to the volatile transport and storage properties of the regolith. Additional information os contained in the original.

  16. Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Ming; Yuan, Jie; Wen, Bo; Liu, Jia; Cao, Wen-Qiang; Cao, Mao-Sheng

    2013-03-01

    We investigate the dielectric properties of multi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz. MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers. Both permittivity ɛ and conductivity σ exhibit jumps around the percolation threshold. Variations of dielectric properties of the composites are in agreement with the percolation theory. All the percolation phenomena are determined by hopping and migrating electrons, which are attributed to the special electronic transport mechanism of the fillers in the composites. However, the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites, while in the graphite/SiO2 composites, there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%. The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism, especially the network effect of MWCNTs in the composites. The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.

  17. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  18. On the hydrogen-bond network and the non-Arrhenius transport properties of water

    NASA Astrophysics Data System (ADS)

    Galamba, N.

    2017-01-01

    We study the structural and dynamic transformations of SPC/E water with temperature, through molecular dynamics (MD), and discuss the non-Arrhenius behavior of the transport properties and orientational dynamics, and the magnitude of the breakdown of the Stokes-Einstein (SE) and the Stokes-Einstein-Debye (SED) relations, in the light of these transformations. Our results show that deviations from Arrhenius behavior of the self-diffusion at low temperatures cannot be exclusively explained by the reduction of water defects (interstitial waters) and the increase of the local tetrahedrality, thus, suggesting the importance of the slowdown of collective rearrangements. Interestingly we find that at high temperatures (T  ⩾  340 K) water defects lead to a slight increase of the tetrahedrality and a decrease of the self-diffusion, opposite to water at low temperatures. The relative magnitude of the breakdown of the SE and the SED relations is found to be in accord with recent experiments (Dehaoui et al 2015 Proc. Natl Acad. Sci. USA 112 12020) resolving the discrepancy with previous MD results. Further, we show that SPC/E hydrogen-bond (HB) lifetimes deviate from Arrhenious behaviour at low temperatures in contrast with some previous MD studies. This deviation is nevertheless much smaller than that observed for the orientational dynamics and the transport properties of water, consistent with the relaxation times measured by several experimental methods. The HB acceptor exchange dynamics defined here by the acceptor switch and reform (librational dynamics) frequencies exhibit similar Arrhenius deviations, thus explaining to some extent the non-Arrhenius behavior of the transport properties and of the orientational dynamics of water. Our results also show that the fraction of HB switches through a bifurcated pathway follow a power law with the temperature decrease. Thus, at low temperatures HB acceptor switches are less frequent but occur on a faster time scale

  19. The properties of the outer membrane localized Lipid A transporter LptD

    NASA Astrophysics Data System (ADS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-11-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  20. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect