Science.gov

Sample records for microwave anomalous emission

  1. Observations and Theory of the Anomalous Microwave Emission

    NASA Astrophysics Data System (ADS)

    Stevenson, Matthew; Readhead, A. C.; Pearson, T. J.; Cleary, K.; Tibbs, C.; Villadsen, J.; Hirata, C. M.; Paladini, R.; Muchovej, S.; Grainge, K.; Perrott, Y.; Rumsey, C.; Scaife, A.; C-BASS Collaboration

    2013-01-01

    The recently discovered Anomalous Microwave Emission (AME) presents a potential new probe of interstellar dust. Peaking at around 30GHz, having a width of several tens of GHz, and appearing to be highly dust-correlated, this continuum emission is commonly assumed to be due very small, rapidly spinning dust grains. Directed study of the AME may therefore provide a new handle on these grains and their environments. I will present three projects aimed at advancing our understanding of this emission. The first is a new, analytical derivation of radiation from spinning dust grains, bridging the gap between the precise models and realistic observations. The second is a joint CARMA/AMI survey of Planck Early Cold Clumps, searching for predicted spinning dust emission. The third is a correlation analysis of diffuse microwave emission from the North Celestial Pole, combining a new 5GHz map from the C-Band All-Sky Survey (C-BASS) with existing radio, WMAP, IRAS, and Hα maps. This work was supported in part by the NSF (AST-1212217).

  2. ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49

    SciTech Connect

    Paladini, Roberta; Ingallinera, Adriano; Agliozzo, Claudia; Umana, Grazia; Trigilio, Corrado; Tibbs, Christopher T.; Noriega-Crespo, Alberto; Dickinson, Clive

    2015-11-01

    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persists on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.

  3. The morphology of the Anomalous Microwave Emission in the Planck 2015 data release

    SciTech Connect

    Hausegger, Sebastian von; Liu, Hao E-mail: liuhao@nbi.dk

    2015-08-01

    We calculate weighted mosaic correlations between the recently published Planck 2015 foreground maps— both anomalous microwave emission (AME) maps, free-free emission, synchrotron radiation and thermal dust emission. The weighting coefficients are constructed taking account of the signal-to-error ratio given by the data product. Positive correlation is found for AME compared with thermal dust emission as well as synchrotron radiation. We find AME and free-free emission tending to be anti-correlated, however, when investigating different scales, their relationship appears to be more complex. We argue that dust particles responsible for AME are pushed out of hot zones in the interstellar medium (ISM)

  4. A Case Against Spinning PAHs as the Source of the Anomalous Microwave Emission

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Draine, B. T.; Meisner, Aaron M.

    2016-08-01

    We employ an all-sky map of the anomalous microwave emission (AME) produced by component separation of the microwave sky to study correlations between the AME and Galactic dust properties. We find that while the AME is highly correlated with all tracers of dust emission, the best predictor of the AME strength is the dust radiance. Fluctuations in the AME intensity per dust radiance are uncorrelated with fluctuations in the emission from polycyclic aromatic hydrocarbons (PAHs), casting doubt on the association between AME and PAHs. The PAH abundance is strongly correlated with the dust optical depth and dust radiance, consistent with PAH destruction in low density regions. We find that the AME intensity increases with increasing radiation field strength, at variance with predictions from the spinning dust hypothesis. Finally, the temperature dependence of the AME per dust radiance disfavors the interpretation of the AME as thermal emission. A reconsideration of other AME carriers, such as ultrasmall silicates, and other emission mechanisms, such as magnetic dipole emission, is warranted.

  5. New Radio Observations of Anomalous Microwave Emission in the H II Region RCW175

    NASA Astrophysics Data System (ADS)

    Battistelli, E. S.; Carretti, E.; Cruciani, A.; de Bernardis, P.; Génova-Santos, R.; Masi, S.; Naldi, A.; Paladini, R.; Piacentini, F.; Tibbs, C. T.; Verstraete, L.; Ysard, N.

    2015-03-01

    We have observed the H II region RCW175 with the 64 m Parkes telescope at 8.4 GHz and 13.5 GHz in total intensity, and at 21.5 GHz in both total intensity and polarization. High angular resolution ranging from 1 to 2.4 arcmin, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the H II region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component (T gas = 5800 K) with a relatively large hydrogen number density n H = 26.3/cm3 and a cold component (T gas = 100 K) with a hydrogen number density of n H = 150/cm3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to the spectral coverage and angular resolution of the Parkes observations, we have been able to derive one of the first AME/excess maps, at 13.5 GHz, showing clear evidence that the bulk of the anomalous emission arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5 GHz of 2.2 ± 0.2(rand.) ± 0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission

  6. Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Draine, B. T.

    2017-02-01

    In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).

  7. A search for interstellar anthracene towards the Perseus anomalous microwave emission region

    NASA Astrophysics Data System (ADS)

    Iglesias-Groth, S.; Manchado, A.; Rebolo, R.; González Hernández, J. I.; García-Hernández, D. A.; Lambert, D. L.

    2010-10-01

    We report the discovery of a new broad interstellar (or circumstellar) band at 7088.8 +/- 2.0 Å coincident to within the measurement uncertainties with the strongest band of the anthracene cation (C14H10+) as measured in gas-phase laboratory spectroscopy at low temperatures. The band is detected in the line of sight of star Cernis 52, a likely member of the very young star cluster IC 348, and is probably associated with cold absorbing material in an intervening molecular cloud of the Perseus star-forming region where various experiments have recently detected anomalous microwave emission. From the measured intensity and available oscillator strength we find a column density of implying that ~0.008 per cent of the carbon in the cloud could be in the form of C14H10+. A similar abundance has been recently claimed for the naphthalene cation in this cloud. This is the first location outside the Solar system where specific polycyclic aromatic hydrocarbons (PAHs) are identified. We report observations of interstellar lines of CH and CH+ that support a rather high column density for these species and for molecular hydrogen. The strength ratio of the two prominent diffuse interstellar bands at 5780 and 5797 Å suggests the presence of a `zeta'-type cloud in the line of sight (consistent with steep far-ultraviolet extinction and high molecular content). The presence of PAH cations and other related hydrogenated carbon molecules which are likely to occur in this type of clouds reinforces the suggestion that electric dipole radiation from fast-spinning PAHs is responsible of the anomalous microwave emission detected towards Perseus.

  8. DETECTION OF ANOMALOUS MICROWAVE EMISSION IN THE PLEIADES REFLECTION NEBULA WITH WILKINSON MICROWAVE ANISOTROPY PROBE AND THE COSMOSOMAS EXPERIMENT

    SciTech Connect

    Genova-Santos, R.; Rebolo, R.; Rubino-Martin, J. A.; Lopez-Caraballo, C. H.; Hildebrandt, S. R.

    2011-12-10

    We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe and from the COSMOSOMAS (Cosmological Structures on Medium Angular Scales) experiment. The flux integrated in a 1 Degree-Sign radius around R.A. = 56.{sup 0}24, decl. = 23.{sup 0}78 (J2000) is 2.15 {+-} 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow one to set upper limits of 0.94 and 1.58 Jy (99.7% confidence level), respectively, at 10.9 and 14.7 GHz, which are crucial to pin down the AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected H{alpha} template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz, the residual flux, associated with AME, is 2.12 {+-} 0.12 Jy (17.7{sigma}). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100 {mu}m data, is found to be 4.36 {+-} 0.17 {mu}K (MJy sr{sup -1}){sup -1}, a value considerably lower than in typical AME clouds, which present emissivities of {approx}20 {mu}K (MJy sr{sup -1}){sup -1}, although higher than the 0.2 {mu}K (MJy sr{sup -1}){sup -1} of the translucent cloud LDN 1780, where AME has recently been claimed. The physical properties of the Pleiades nebula, in particular its low extinction A{sub V} {approx} 0.4, indicate that this is indeed a much less opaque object than those where AME has usually been studied. This fact

  9. Detection of Anomalous Microwave Emission in the Pleiades Reflection Nebula with Wilkinson Microwave Anisotropy Probe and the COSMOSOMAS Experiment

    NASA Astrophysics Data System (ADS)

    Génova-Santos, R.; Rebolo, R.; Rubiño-Martín, J. A.; López-Caraballo, C. H.; Hildebrandt, S. R.

    2011-12-01

    We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe and from the COSMOSOMAS (Cosmological Structures on Medium Angular Scales) experiment. The flux integrated in a 1° radius around R.A. = 56fdg24, decl. = 23fdg78 (J2000) is 2.15 ± 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow one to set upper limits of 0.94 and 1.58 Jy (99.7% confidence level), respectively, at 10.9 and 14.7 GHz, which are crucial to pin down the AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected Hα template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz, the residual flux, associated with AME, is 2.12 ± 0.12 Jy (17.7σ). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100 μm data, is found to be 4.36 ± 0.17 μK (MJy sr-1)-1, a value considerably lower than in typical AME clouds, which present emissivities of ~20 μK (MJy sr-1)-1, although higher than the 0.2 μK (MJy sr-1)-1 of the translucent cloud LDN 1780, where AME has recently been claimed. The physical properties of the Pleiades nebula, in particular its low extinction A V ~ 0.4, indicate that this is indeed a much less opaque object than those where AME has usually been studied. This fact, together with the broad knowledge of the stellar content of this region, provides an excellent

  10. Planck early results. XX. New light on anomalous microwave emission from spinning dust grains

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cappellini, B.; Cardoso, J.-F.; Casassus, S.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reich, W.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Varis, J.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and ρ Ophiuchi molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1σ for Perseus and 8.4σ for ρ Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In ρ Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright Hii regions that show evidence for AME, and are well fitted by spinning dust models. Corresponding author: C. Dickinson, Clive.Dickinson@manchester.ac.uk

  11. THE DIFFUSE INTERSTELLAR BANDS AND ANOMALOUS MICROWAVE EMISSION MAY ORIGINATE FROM THE SAME CARRIERS

    SciTech Connect

    Bernstein, L. S.; Cline, J. A.; Clark, F. O.; Lynch, D. K. E-mail: jcline@spectral.com E-mail: dave@thulescientific.com

    2015-11-10

    We argue that the observed spectroscopic and statistical properties of the diffuse interstellar band (DIB) carriers are those that are needed to produce the anomalous microwave emission (AME). We explore this idea using a carrier-impartial model for AME based on the observed DIB statistical properties. We show that an observed distribution of profile widths for narrow DIBs can be mapped into an AME spectrum. The mapping model is applied to width distributions observed for HD 204827 and HD 183143, selected because their spectroscopic and statistical properties bracket those for most other sight lines. The predicted AME spectra for these sight lines agree well with the range of spectral shapes, and peak frequencies, ∼23–31 GHz, typically observed for AME. We use the AME spectral profiles to derive a strong constraint between the average carrier size and its rotational temperature. The constraint is applied to a variety of postulated molecular carrier classes, including polycyclic aromatic hydrocarbons, fulleranes, hydrocarbon chains, and amorphous hydrocarbon clusters. The constraint favors small, cold carriers with average sizes of ∼8–15 carbon atoms, and average rotational temperatures of ∼3–10 K, depending on carrier type. We suggest new observations, analyses, and modeling efforts to help resolve the ambiguities with regard to carrier size and class, and to further clarify the DIB–AME relationship.

  12. Diffuse radio foregrounds: all-sky polarisation and anomalous microwave emission

    NASA Astrophysics Data System (ADS)

    Vidal Navarro, M. A.

    2014-07-01

    In this Thesis, we present work on the diffuse Galactic emission in the 23-43 GHz frequency range. We studied the polarised emission, which is dominated by synchrotron radiation at these frequencies. We also present work on the anomalous microwave emission (AME), both in total intensity and polarisation. These observations are useful to quantify the CMB foreground contribution and give us information about the ISM of our Galaxy. Polarisation observations are affected by a positive bias, particularly important in regions with low signal-to-noise ratio. We present a method to correct the bias in the case where the uncertainties in the Q, U Stokes parameters are not symmetric. We show that this method successfully corrects the polarisation maps, with a residual bias smaller than the random uncertainties on the maps, outperforming the methods that are previously described in the literature. We use the de-biasing method to set upper limits for the polarisation of AME in the ρ Ophiuchi and Perseus molecular clouds. In both clouds the AME polarisation fraction is found to be less than 2% at 23 GHz and33 GHz.We use data from the WMAP satellite at 23, 33 and 41 GHz to study the diffuse polarised emission over the entire sky. This emission is due to synchrotron radiation and it originates mostly from filamentary structures with well-ordered magnetic fields.We identify new filaments and studied their observational properties, such as polarisation spectral indices, polarisation fraction and Faraday rotation. We explore the link between the large scale filaments and the local ISM, using the model of an expanding shell in the vicinity of the Sun. We also quantify the level of contamination added by the diffuse filaments to the CMB E- and B-mode power spectra.The Q/U Imaging ExperimenT (QUIET) observed the polarised sky at 43 and 95 GHz, in order to measure the CMB spectra. We describe the instrument, the observations and data processing, focusing on two regions of the Galactic

  13. Searching for the Culprit of Anomalous Microwave Emission: An AKARI PAHrange Analysis of Probable Electric Dipole Emitting Regions

    NASA Astrophysics Data System (ADS)

    Bell, A. C.; Onaka, T.; Sakon, I.; Ishihara, D.; Kaneda, H.; Lee, H. G.; Itoh, M.; Ohsawa, R.; Hammonds, M.

    In the march forward of interstellar medium inquiry, many new species of interstellar dust have been modelled and discovered. The modes by which these species interact and evolve are beginning to be understood, but in recent years a peculiar new feature has appeared in microwave surveys. Anomalous microwave emission (AME), appearing between 10 and 90Ghz, has been correlated with thermal dust emission, leading to the popular suggestion that this anomaly is electric dipole emission from spinning dust [2]. The observed frequencies suggest that spinning grains should be on the order of 10nm in size, hinting at poly-cyclic aromatic hydrocarbon molecules. We present data from AKARI/Infrared Camera [1], due to the effective PAH/Unidentified Infrared Band (UIR) coverage of its 9um survey to investigate their role within a few regions showing strong AME in the Planck low frequency data. We include the well studied Perseus and ρOphiuchi clouds . We use the IRAS/IRIS 100µm data to account for the overall dust temperature. We present our results as abundance maps for dust emitting around 9µm, and 100µm. Part of the AME in these regions may actually be attributed to thermal dust emission, or the star forming nature of these targets is masking the vibrational modes of PAHs which should be present there, suggesting further investigation for various galactic environments.

  14. Observations of free-free and anomalous microwave emission from LDN 1622 with the 100 m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Harper, S. E.; Dickinson, C.; Cleary, K.

    2015-11-01

    LDN 1622 has previously been identified as a possible strong source of dust-correlated anomalous microwave emission (AME). Previous observations were limited by resolution meaning that the radio emission could not be compared with current generation high-resolution infrared data from Herschel, Spitzer or Wide-field Infrared Sky Explorer. This paper presents arcminute resolution mapping observations of LDN 1622 at 4.85 and 13.7 GHz using the 100 m Robert C. Byrd Green Bank Telescope. The 4.85 GHz map reveals a corona of free-free emission enclosing LDN 1622 that traces the photodissociation region of the cloud. The brightest peaks of the 4.85 GHz map are found to be within ≈10 per cent agreement with the expected free-free predicted by Southern H-Alpha Sky Survey Atlas H α data of LDN 1622. At 13.7 GHz, the AME flux density was found to be 7.0 ± 1.4 mJy and evidence is presented for a rising spectrum between 13.7 and 31 GHz. The spinning dust model of AME is found to naturally account for the flux seen at 13.7 GHz. Correlations between the diffuse 13.7 GHz emission and the diffuse mid-infrared emission are used to further demonstrate that the emission originating from LDN 1622 at 13.7 GHz is described by the spinning dust model.

  15. QUIJOTE scientific results - I. Measurements of the intensity and polarisation of the anomalous microwave emission in the Perseus molecular complex

    NASA Astrophysics Data System (ADS)

    Génova-Santos, R.; Rubiño-Martín, J. A.; Rebolo, R.; Peláez-Santos, A.; López-Caraballo, C. H.; Harper, S.; Watson, R. A.; Ashdown, M.; Barreiro, R. B.; Casaponsa, B.; Dickinson, C.; Diego, J. M.; Fernández-Cobos, R.; Grainge, K. J. B.; Gutiérrez, C. M.; Herranz, D.; Hoyland, R.; Lasenby, A.; López-Caniego, M.; Martínez-González, E.; McCulloch, M.; Melhuish, S.; Piccirillo, L.; Perrott, Y. C.; Poidevin, F.; Razavi-Ghods, N.; Scott, P. F.; Titterington, D.; Tramonte, D.; Vielva, P.; Vignaga, R.

    2015-10-01

    In this paper, we present Q-U-I JOint Tenerife Experiment (QUIJOTE) 10-20 GHz observations (194 h in total over ≈250 deg2) in intensity and polarisation of G159.6-18.5, one of the most widely studied regions harbouring anomalous microwave emission (AME). By combining with other publicly available intensity data, we achieve the most precise spectrum of the AME measured to date in an individual region, with 13 independent data points between 10 and 50 GHz being dominated by this emission. The four QUIJOTE data points provide the first independent confirmation of the downturn of the AME spectrum at low frequencies, initially unveiled by the COSMOlogical Structures On Medium Angular Scales experiment in this region. Our polarisation maps, which have an angular resolution of ≈1° and a sensitivity of ≈ 25 μK beam-1, are consistent with zero polarisation. We obtain upper limits on the polarisation fraction of Π < 6.3 and <2.8 per cent (95 per cent C.L.), respectively, at 12 and 18 GHz (ΠAME < 10.1 and <3.4 per cent with respect to the residual AME intensity), a frequency range where no AME polarisation observations have been reported to date. The combination of these constraints with those from other experiments confirm that all the magnetic dust models based on single-domain grains, and most of those considering randomly oriented magnetic inclusions, predict higher polarisation levels than is observed towards regions with AME. Also, neither of the two considered models of electric dipole emission seems to be compatible with all the observations together. More stringent constraints of the AME polarisation at 10-40 GHz are necessary to disentangle between different models, to which future QUIJOTE data will contribute.

  16. Characterizing the Dust-Correlated Anomalous Emission in LDN 1622

    NASA Astrophysics Data System (ADS)

    Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki

    2008-03-01

    The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.

  17. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  18. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  19. Microwave emission from polar firn

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Choudhury, B. J.

    1978-01-01

    The microwave emission from a half-space medium, characterized by coordinate dependent scattering and absorbing centers, was calculated by numerically solving the radiative transfer equation by the method of invariant imbedding. Rayleigh scattering phase functions and scattering induced polarization of the radiation were included in the calculation. Using the scattering and extinction data of polar firn the brightness temperature was calculated for the 1.55 cm wavelength. This study was the first quantitative comparison of the results of numerical calculation using the actual measured information of crystal size with the observed data.

  20. Emissions from cooking microwave popcorn.

    PubMed

    Rosati, Jacky A; Krebs, Kenneth A; Liu, Xiaoyu

    2007-01-01

    This study characterized chemicals released into a chamber in the process of cooking microwave popcorn. Seventeen types of microwave popcorn from eight different brands were studied. The work proceeded in two phases: phase one investigated chemicals emitted during popping and opening, phase two investigated chemicals emitted at discrete intervals from 0-40 minutes post-pop opening. The research was performed using a microwave oven enclosed in a chamber with ports for air sampling of particulate matter (PM) and volatile organic compounds (VOCs). VOCs in the air samples were identified and quantified using gas chromatography/mass spectrometry (GC/MS). PM was characterized using both an aerodynamic particle sizer (APS) and a scanning mobility particle sizer (SMPS) to cover a full range of emitted sizes. The compounds measured during popping and opening included butter flavoring components such as diacetyl, butyric acid, acetoin, propylene glycol, 2-nonanone, and triacetin and bag components such as p-xylene and perfluorinated alcohol 8:2 telomer. The greatest chemical quantity is emitted when the bag is opened post-popping; more than 80% of the total chemical emissions occur at this time.

  1. Microwave emission of sonoluminescing bubbles.

    PubMed

    Hammer, Dominik; Frommhold, Lothar

    2002-07-01

    Kordomenos et al. have attempted to measure single bubble sonoluminescence (SBSL) emission in the microwave window of water in a band of frequencies ranging from 1.65 GHz to 2.35 GHz [Phys. Rev. E 59, 1781 (1999)]. The sensitivity of the experiment was such that signals greater than 1 nW would have been detected. We show here that this upper bound is compatible with the radiation processes that we think generate significant emission at optical frequencies, electron-neutral and electron-ion bremsstrahlung. In fact, we argue that, almost independently of the specific assumptions concerning the hydrodynamics or the nature of the radiative processes, SBSL intensities exceeding that upper bound can hardly be expected.

  2. Microwave emission from dry and wet snow

    NASA Technical Reports Server (NTRS)

    Chang, T. C.; Gloersen, P.

    1975-01-01

    A microscopic model was developed to study the microwave emission from snow. In this model, the individual snow particles are considered to be the scattering centers. Mie scattering theory for spherical particles is then used to compute the volume scattering and extinction coefficients of the closely packed scattering spheres, which are assumed not to interact coherently. The results of the computations show significant volume scattering effects in the microwave region which result in low observed emissivities from cold, dry snow. In the case of wet snow, the microwave emissivities are increased considerably, in agreement with earlier experimental observations in which the brightness temperatures have increased significantly at the onset of melting.

  3. Spitzer characterization of dust in an anomalous emission region: the Perseus cloud

    NASA Astrophysics Data System (ADS)

    Tibbs, C. T.; Flagey, N.; Paladini, R.; Compiègne, M.; Shenoy, S.; Carey, S.; Noriega-Crespo, A.; Dickinson, C.; Ali-Haïmoud, Y.; Casassus, S.; Cleary, K.; Davies, R. D.; Davis, R. J.; Hirata, C. M.; Watson, R. A.

    2011-12-01

    Anomalous microwave emission is known to exist in the Perseus cloud. One of the most promising candidates to explain this excess of emission is electric dipole radiation from rapidly rotating very small dust grains, commonly referred to as spinning dust. Photometric data obtained with the Spitzer Space Telescope have been reprocessed and used in conjunction with the dust emission model DUSTEM to characterize the properties of the dust within the cloud. This analysis has allowed us to constrain spatial variations in the strength of the interstellar radiation field (χISRF), the mass abundances of the polycyclic aromatic hydrocarbons (PAHs) and the very small grains (VSGs) relative to the big grains (YPAH and YVSG), the column density of hydrogen (NH) and the equilibrium dust temperature (Tdust). The parameter maps of YPAH, YVSG and χISRF are the first of their kind to be produced for the Perseus cloud, and we used these maps to investigate the physical conditions in which anomalous emission is observed. We find that in regions of anomalous emission the strength of the ISRF, and consequently the equilibrium temperature of the dust, is enhanced while there is no significant variation in the abundances of the PAHs and the VSGs or the column density of hydrogen. We interpret these results as an indication that the enhancement in χISRF might be affecting the properties of the small stochastically heated dust grains resulting in an increase in the spinning dust emission observed at 33 GHz. This is the first time that such an investigation has been performed, and we believe that this type of analysis creates a new perspective in the field of anomalous emission studies, and represents a powerful new tool for constraining spinning dust models.

  4. Anomalous non-resonant microwave absorption in SmFeAs(O,F) polycrystalline sample

    NASA Astrophysics Data System (ADS)

    Onyancha, R. B.; Shimoyama, J.; Singh, S. J.; Hayashi, K.; Ogino, H.; Srinivasu, V. V.

    2017-02-01

    Here we present the non-resonant microwave absorption (NRMA) studies on SmFeAsO0.88F0.12 polycrystalline sample measured at 6.06 K with the magnetic field swept from -250 G to +250 G at a frequency of 9.45 GHz. It was observed that the (NRMA) line shape evolves as a function of microwave power. Again, the signal intensity increases from 22.83 μW to 0.710 mW where it reaches a maximum and quite remarkably it changed from 'normal' absorption to 'anomalous' absorption at 2.247 mW, then the intensity decreases with further increase of microwave power. The crossover from 'normal' to 'anomalous' NRMA absorption and its dependence on microwave power is a new phenomenon in iron pnictides superconductors and we have attributed this anomaly to come from non-hysteretic Josephson junction.

  5. OT1_rpaladin_1: PACS and SPIRE observations of Galactic anomalous emission sources.

    NASA Astrophysics Data System (ADS)

    Paladini, R.

    2010-07-01

    Despite the increasing evidence that the anomalous emission is a new physical mechanism acting in the diffuse interstellar medium, the nature and distribution of this component remains elusive. The currently most favored models attribute the observed microwave excess to rotating very small dust grains (PAHs and VSGs). Nonetheless, the infrared properties of the sources which, to date, are known to exhibit this type of emission are very poorly known mostly due to the limited angular resolution and frequency coverage of DIRBE and IRAS data. We propose HERSCHEL PACS and SPIRE mapping of three Galactic anomalous emission sources (LDN 1780, LDN 675 and LDN 1111). This data, when combined with ancillary NIR and mid-IR data of comparable angular resolution (mainly from Spitzer), and coupled with available dust models, will allow to set tight constraints on the radiation field in the emitting sources as well as in their immediate surroundings. Such constraints, in turn, will allow to estimate the abundances of PAHs, VSGs and BGs, hence to shed light on the potential link between these dust populations and the observed microwave excess.

  6. Anomalous radon emission as precursor of medium to strong earthquakes

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    2016-03-01

    Anomalous radon (Rn222) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth's crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.

  7. Quantum Suppression of Alignment in Ultrasmall Grains: Microwave Emission from Spinning Dust will be Negligibly Polarized

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Hensley, Brandon S.

    2016-11-01

    The quantization of energy levels in small, cold, free-flying nanoparticles suppresses dissipative processes that convert grain rotational kinetic energy into heat. For interstellar grains small enough to have ˜GHz rotation rates, the suppression of dissipation can be extreme. As a result, alignment of such grains is suppressed. This applies both to alignment of the grain body with its angular momentum {\\boldsymbol{J}}, and to alignment of {\\boldsymbol{J}} with the local magnetic field {\\boldsymbol{B}} 0. If the anomalous microwave emission is rotational emission from spinning grains, then it will be negligibly polarized at GHz frequencies, with P ≲ 10-6 at ν > 10 GHz.

  8. Search for microwave emission from ultrahigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R., Jr.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, L. C.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2012-09-01

    We present a search for microwave emission from air showers induced by ultrahigh energy cosmic rays with the microwave detection of air showers experiment. No events were found, ruling out a wide range of power flux and coherence of the putative emission, including those suggested by recent laboratory measurements.

  9. Preliminary separation of galactic and cosmic microwave emission for the COBE Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Bennet, C. L.; Smoot, G. F.; Hinshaw, G.; Wright, E. L.; Kogut, A.; De Amici, G.; Meyer, S. S.; Weiss, R.; Wilkinson, D. T.; Gulkis, S.

    1992-01-01

    Preliminary models of microwave emission from the Milky Way Galaxy based on COBE and other data are constructed for the purpose of distinguishing cosmic and Galactic signals. Differential Microwave Radiometer (DMR) maps, with the modeled Galactic emission removed, are fitted for a quadrupole distribution. Autocorrelation functions for individual Galactic components are presented. When Galactic emission is removed from the DMR data, the residual fluctuations are virtually unaffected, and therefore they are not dominated by any known Galactic emission component.

  10. Microwave emission from steady and moving sunspots

    NASA Technical Reports Server (NTRS)

    Alissandrakis, C. E.; Chiuderi Drago, F.; Hagyard, M. J.

    1987-01-01

    Force-free extrapolations of photospheric magnetic field observations from Marshall Space Flight Center have been used to compute the total intensity and circular polarizaton of sunspot associated emission from active region 2502 in the period June 13 to 15, 1980. The computed maps were compared to high resolution observations of the same active region obtained with the Westerbork Synthesis Radio Telescope. The most interesting aspect of the active region was the development of a new spot between the preceding and the following spots on June 14, which subsequently merged with the preceding with the preceding spot. The new spot was associated with enhanced microwave emission with a peak brightness temperature in excess of 4 x 10 to the 6th K. It is shown that unrealistic values of the conductive flux are required for the interpretation of the emission of the new sunspot in terms of thermal processes. It is suggested that this source is due to gyrosynchrotron radiation from mildly relativistic electrons accelerated by resistive instabilities in the evolving magnetic field.

  11. Optical emission spectroscopy of atmospheric pressure microwave plasmas

    SciTech Connect

    Jia Haijun; Fujiwara, Hiroyuki; Kondo, Michio; Kuraseko, Hiroshi

    2008-09-01

    The optical emission behaviors of Ar, He, and Ar+He plasmas generated in air using an atmospheric pressure microwave plasma source have been studied employing optical emission spectroscopy (OES). Emissions from various source gas species and air were observed. The variations in the intensities and intensity ratios of specific emissions as functions of the microwave power and gas flow rate were analyzed to investigate the relationship between the emission behavior and the plasma properties. We find that dependence of the emission behavior on the input microwave power is mainly determined by variations in electron density and electron temperature in the plasmas. On the other hand, under different gas flow rate conditions, changes in the density of the source gas atoms also significantly affect the emissions. Interestingly, when plasma is generated using an Ar+He mixture, emissions from excited He atoms disappear while a strong H{sub {alpha}} signal appears. The physics behind these behaviors is discussed in detail.

  12. Effects of anomalous permittivity on the microwave heating of zinc oxide

    NASA Astrophysics Data System (ADS)

    Martin, L. P.; Dadon, D.; Rosen, M.; Gershon, D.; Rybakov, K. I.; Birman, A.; Calame, J. P.; Levush, B.; Carmel, Y.; Hutcheon, R.

    1998-01-01

    Highly nonuniform heating has been observed in zinc oxide (ZnO) powder compacts exposed to 2.45 GHz microwaves in oxygen deficient atmospheres such as pure nitrogen or argon. This phenomenon manifests as a localized zone of rapid heating which propagates outward from the sample core, and is documented by real-time surface and core temperature measurements performed during the microwave exposure. Measurements of the complex permittivity, ɛ″, during heating of identical ZnO samples in a conventional furnace and in a nitrogen atmosphere, demonstrated that ɛ″ experiences at least one significant maximum between 200 and 500 °C. Mass spectrometry results indicate that the peaks in ɛ″ correlate well with the rate of desorption of chemisorbed water from the surface of the ZnO powder. It was also noted that the nonuniform heating does not manifest when the microwave exposure is performed in air. Similarly, the anomalous peaks in ɛ″ are almost completely suppressed during heating in air. It is well known that oxygen adsorbs strongly to the surface of ZnO in the temperature range from room temperature to 300 °C, and that this adsorption results in a drastic decrease in the electrical conductivity and, thus, in ɛ″. It is proposed, therefore, that the effect of water desorption upon the complex permittivity may be, in effect, counterbalanced by the adsorption oxygen from the atmosphere. The effect of this behavior may be significant during microwave processing, where nonuniform power absorption can result in extremely localized heating.

  13. Objective Characterization of Snow Microstructure for Microwave Emission Modeling

    NASA Technical Reports Server (NTRS)

    Durand, Michael; Kim, Edward J.; Molotch, Noah P.; Margulis, Steven A.; Courville, Zoe; Malzler, Christian

    2012-01-01

    Passive microwave (PM) measurements are sensitive to the presence and quantity of snow, a fact that has long been used to monitor snowcover from space. In order to estimate total snow water equivalent (SWE) within PM footprints (on the order of approx 100 sq km), it is prerequisite to understand snow microwave emission at the point scale and how microwave radiation integrates spatially; the former is the topic of this paper. Snow microstructure is one of the fundamental controls on the propagation of microwave radiation through snow. Our goal in this study is to evaluate the prospects for driving the Microwave Emission Model of Layered Snowpacks with objective measurements of snow specific surface area to reproduce measured brightness temperatures when forced with objective measurements of snow specific surface area (S). This eliminates the need to treat the grain size as a free-fit parameter.

  14. Extracting Microwave Emissivity Characteristics over City using AMSR-E

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zhang, L.; Jiang, L.; Li, Y.

    2010-12-01

    The spectrums of different land types are very important in the application of remote sensing. Different spectrums of different land types can be used in surface classification, change detection, and so on. The microwave emissivity over land is the foundation of land parameters retrieval using passive microwave remote sensing. It depends on land type due to different objects’ structure, moisture and roughness on the earth. It has shown that the land surface microwave emissivity contributed to atmosphere temperature and moisture retrieval. Meanwhile, it depends on land type, vegetation cover, and moisture et al.. There are many researches on microwave emissivity of various land types, such as bare soil, vegetation, snow, but city was less mentioned [1]. However, with the development of society, the process of urbanization accelerated quickly. The area of city expanded fast and the fraction of city area increased in one microwave pixel, especially in The North China Plain (about 30%). The passive microwave pixel containing city has impact on satellite observation and surface parameters retrieval then. So it is essential to study the emissivity of city in order to improve the accuracy of land surface parameters retrieval from passive microwave remote sensing. To study the microwave emissivity of city, some ‘pure’ city pixels were selected according to IGBP classification data, which was defined the fraction cover of city is larger than 85%. The city emissivity was calculated using AMSR-E L2A brightness temperature and GLDAS land surface temperature data at different frequencies and polarizations over 2008 in China. Then the seasonal variation was analyzed along the year. Finally, the characteristic of city emissivity were compared with some meteorological data, seeking the relationship between city emissivity and climatic factors. The results have shown that the emissivity of city was different for different frequencies. It increased with the frequency becoming

  15. Enhancement of LIBS emission using antenna-coupled microwave.

    PubMed

    Khumaeni, Ali; Motonobu, Tampo; Katsuaki, Akaoka; Masabumi, Miyabe; Ikuo, Wakaida

    2013-12-02

    Intensified microwave coupled by a loop antenna (diameter of 3 mm) has been employed to enhance the laser-induced breakdown spectroscopy (LIBS) emission. In this method, a laser plasma was induced on Gd₂O₃ sample at a reduced pressure by focusing a pulsed Nd:YAG laser (532 nm, 10 ns, 5 mJ) at a local point, at which electromagnetic field was produced by introducing microwave radiation using loop antenna. The plasma emission was significantly enhanced by absorbing the microwave radiation, resulting in high-temperature plasma and long-lifetime plasma emission. By using this method, the enhancement of Gd lines was up to 32 times, depending upon the emission lines observed. A linear calibration curve of Ca contained in the Gd₂O₃ sample was made. The detection limit of Ca was approximately 2 mg/kg. This present method is very useful for identification of trace elements in nuclear fuel and radioactive materials.

  16. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  17. Fine and ultrafine particle emissions from microwave popcorn.

    PubMed

    Zhang, Q; Avalos, J; Zhu, Y

    2014-04-01

    This study characterized fine (PM2.5 ) and ultrafine particle (UFP, diameter < 100 nm) emissions from microwave popcorn and analyzed influential factors. Each pre-packed popcorn bag was cooked in a microwave oven enclosed in a stainless steel chamber for 3 min. The number concentration and size distribution of UFPs and PM2.5 mass concentration were measured inside the chamber repeatedly for five different flavors under four increasing power settings using either the foil-lined original package or a brown paper bag. UFPs and PM2.5 generated by microwaving popcorn were 150-560 and 350-800 times higher than the emissions from microwaving water, respectively. About 90% of the total particles emitted were in the ultrafine size range. The emitted PM concentrations varied significantly with flavor. Replacing the foil-lined original package with a brown paper bag significantly reduced the peak concentration by 24-87% for total particle number and 36-70% for PM2.5 . A positive relationship was observed between both UFP number and PM2.5 mass and power setting. The emission rates of microwave popcorn ranged from 1.9 × 10(10) to 8.0 × 10(10) No./min for total particle number and from 134 to 249 μg/min for PM2.5 .

  18. Salinity effects on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Oneill, Peggy E.

    1987-01-01

    Controlled plot experiments were conducted to collect L and C band passive microwave data concurrent with ground observations of salinity and soil moisture. Two dielectric mixing models were used with an emission model to predict the emissivity from a bare smooth uniform profile. The models produce nearly identical results when near zero salinity is involved and reproduce the observed data at L band extremely well. Discrepancies at C band are attributed to sampling depth problems. Comparisons of predicted emissivities at various salinities with observed values indicate that the dynamic range of the emissivities can be explained using either of the dielectric mixing models. Evaluation of the entire data set, which included four salinity levels, indicates that for general application the effects of soil salinity can be ignored in interpreting microwave data for estimating soil moisture under most agricultural conditions.

  19. Effects of salinity on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1986-01-01

    Controlled plot experiments were conducted to collect L and C band passive microwave data concurrent with ground observations of salinity and soil moisture. Two dielectric mixing models were used with an emission model to predict the emissivity from a bare smooth uniform profile. The models produce nearly identical results when near zero salinity is involved and reproduce the observed data at L band extremely well. Discrepancies at C band are attributed to sampling depth problems. Comparisons of predicted emissivities at various salinities with observed values indicate that the dynamic range of the emissivities can be explained using either of the dielectric mixing models. Evaluation of the entire data set, which included four salinity levels, indicates that for general application the effects of soil salinity can be ignored in interpreting microwave data for estimating soil moisture under most agricultural conditions.

  20. Microwave emission characteristics of sea ice

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Poe, G.

    1972-01-01

    A general classification is presented for sea ice brightness temperatures with categories of high and low emission, corresponding to young and weathered sea ice, respectively. A sea ice emission model was developed which allows variations of ice salinity and temperature in directions perpendicular to the ice surface.

  1. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  2. Imaging spectroscopy of solar microwave radiation. 1: Flaring emission

    NASA Technical Reports Server (NTRS)

    Lim, Jeremy; Gary, Dale E.; Hurford, Gordon J.; Lemen, James R.

    1994-01-01

    We present observations of an impulsive microwave burst on the Sun with both high spatial and spectral resolution, made with the Solar Array at the Owens Valley Radio Observatory (OVRO). We used the measured brightness temperature spectrum to infer the emission process responsible for each microwave source, and to derive physical conditions in the source region. We confimed our predictions using soft X-ray measurements from Geostationary Operational Environmental Satellite (GOES), soft X-ray images from Yohkoh, and H-alpha flare images together with sunspots and magnetogram images from the Big Bear Solar Observatory.

  3. Aircraft measurements of microwave emission from Arctic Sea ice

    USGS Publications Warehouse

    Wilheit, T.; Nordberg, W.; Blinn, J.; Campbell, W.; Edgerton, A.

    1971-01-01

    Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at the 0.811-cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice. ?? 1971.

  4. Surface effects on the microwave backscatter and emission of snow

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Stiles, W. H.; Ulaby, F. T.

    1980-01-01

    Measurements were performed with active and passive microwave sensors for both dry and wet snow conditions. A layer of Rayleigh scatterers with irregular surface boundaries is found to be a reasonable model for interpreting passive and active measurements in X- and Ku-bands. It was found that roughness had a significant effect on both backscatter and emission from wet snow; however, only a small effect was noted for dry snow.

  5. Snow property measurements correlative to microwave emission at 35 GHz

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff; Chang, Alfred T. C.

    1987-01-01

    Snow microstructure, measured by plane section analysis, and snow wetness, measured by the dilution method, are used to calculate input parameters for a microwave emission model that uses the radiative transfer method. The scattering and absorbing properties are calculated by Mie theory. The effects of different equivalent sphere conversions, adjustments for near-field interference, and different snow wetness characterizations are compared for various snow conditions. The concentric shell geometry of liquid water in snow yields higher emissivities and better model results than the separate-sphere configuration for liquid water contents greater than 0.05, while at lower liquid water contents the separate-sphere treatment gives better results.

  6. Microwave emission above steady and moving sunspots

    NASA Technical Reports Server (NTRS)

    Drago, F. Chiuderi; Alissandrakis, C.; Hagyard, M.

    1987-01-01

    Two-dimensional maps of radio brightness temperature and polarization, computed assuming thermal emission with free-free and gyroresonance absorption, are compared with observations of active region 2502, performed at Westerbork at lambda = 6.16 cm during a period of 3 days in June 1980. The computation is done assuming a homogeneous model in the whole field of view and a force-free extrapolation of the photospheric magnetic field observed at MSFC with a resolution of 2.34 arcsec. The mean results are the following: (1) a very good agreement is found above the large leading sunspot of the group, assuming a potential extrapolation of the magnetic field and a constant conductive flux in the transition region ranging from .2 x 10 to the 6th to 10 to the 7th erg/sq cm 5; (2) a strong radio source, associated with a new-born moving sunspot, cannot be ascribed to thermal emission. It is suggested that this source may be due to synchrotron radiation by mildly relativistic electrons accelerated by resistive instabilities occurring in the evolving magnetic configuration. An order-of-magnitude computation of the expected number of accelerated particles seems to confirm this hypothesis.

  7. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    SciTech Connect

    Kawate, T.; Nishizuka, N.; Oi, A.; Ohyama, M.; Nakajima, H.

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  8. Microwave emission and scattering from vegetated terrain

    NASA Technical Reports Server (NTRS)

    Sibley, T. G.

    1973-01-01

    Models are developed for the apparent temperature and backscattering coefficient of vegetated terrain to illustrate the effects of vegetation on the sensitivity of these parameters to variations of soil moisture. Three types of terrain are simulated for both the passive and the active case: a uniform canopy over a smooth surface, plant rows on a smooth surface, and plant rows on a rough surface. In each case the canopy is defined by its overall dimensions and by its electric permittivity, which is determined from Weiner model for dielectric mixture. Emission and scattering from both the soil and the canopy are considered, but atmospheric effects are neglected. Calculated data indicate that the sensitivity of the apparent temperature and backscattering coefficient to variations of soil moisture, decreases as the amount of vegetation increases. It is shown that the same effect results from increasing signal frequency or angle of incidence.

  9. Concerning spikes in emission and absorption in the microwave range

    NASA Astrophysics Data System (ADS)

    Chernov, Gennady P.; Sych, Robert A.; Huang, Guang-Li; Ji, Hai-Sheng; Yan, Yi-Hua; Tan, Cheng-Ming

    2013-01-01

    In some events, weak fast solar bursts (near the level of the quiet Sun) were observed in the background of numerous spikes in emission and absorption. In such a case, the background contains the noise signals of the receiver. In events on 2005 September 16 and 2002 April 14, the solar origin of fast bursts was confirmed by simultaneous recording of the bursts at several remote observatories. The noisy background pixels in emission and absorption can be excluded by subtracting a higher level of continuum when constructing the spectra. The wavelet spectrum, noisy profiles in different polarization channels and a spectrum with continuum level greater than zero demonstrates the noisy character of pixels with the lowest levels of emission and absorption. Thus, in each case, in order to judge the solar origin of all spikes, it is necessary to determine the level of continuum against the background of which the solar bursts are observed. Several models of microwave spikes are discussed. The electron cyclotron maser emission mechanism runs into serious problems with the interpretation of microwave millisecond spikes: the main obstacles are too high values of the magnetic field strength in the source (ωPe <= ωBe). The probable mechanism is the interaction of plasma Langmuir waves with ion-sound waves (l + s → t) in a source related to shock fronts in the reconnection region.

  10. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  11. On the Extended Emission of the Anomalous X-ray Pulsar IE 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Olausen, S. A.; Kaspi, V. M.; Ng, C. -Y.; Zhu, W. W.; Gavriil, F. P.; Woods, P. M.

    2012-01-01

    We present an analysis of the extended emission around the anomalous X-ray pulsar IE 1547.0-5408 using four XMM-Newton observations taken with the source in varying states of outburst as well as in quiescence. We find that the extended emission flux is highly variable and strongly correlated with the flux of the magnetar. Based on this result, as well as on spectral and energetic considerations, we conclude that the extended emission is dominated by a dust-scattering halo and not a pulsar wind nebula (P-VVN), as has been previously argued. We obtain an upper limit on the 2-10 keV flux of a possible PWN of 4.7 x 10(exp -14) erg/s/sq cm, three times less than the previously claimed value, implying an efficiency for conversion of spin-down energy into nebular luminosity of <9 x 10(exp -4) .

  12. Subsurface Emission Effects in AMSR-E Measurements: Implications for Land Surface Microwave Emissivity Retrieval

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Moncet, Jean-Luc; Liang, Pan; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    An analysis of land surface microwave emission time series shows that the characteristic diurnal signature associated with subsurface emission in sandy deserts carry over to arid and semi-arid region worldwide. Prior work found that diurnal variation of Special Sensor Microwave/Imager (SSM/I) brightness temperatures in deserts was small relative to International Satellite Cloud Climatology Project land surface temperature (LST) variation and that the difference varied with surface type and was largest in sand sea regions. Here we find more widespread subsurface emission effects in Advanced Microwave Scanning Radiometer-EOS (AMSR-E) measurements. The AMSR-E orbit has equator crossing times near 01:30 and 13 :30 local time, resulting in sampling when near-surface temperature gradients are likely to be large and amplifying the influence of emission depth on effective emitting temperature relative to other factors. AMSR-E measurements are also temporally coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) LST measurements, eliminating time lag as a source of LST uncertainty and reducing LST errors due to undetected clouds. This paper presents monthly global emissivity and emission depth index retrievals for 2003 at 11, 19, 37, and 89 GHz from AMSR-E, MODIS, and SSM/I time series data. Retrieval model fit error, stability, self-consistency, and land surface modeling results provide evidence for the validity of the subsurface emission hypothesis and the retrieval approach. An analysis of emission depth index, emissivity, precipitation, and vegetation index seasonal trends in northern and southern Africa suggests that changes in the emission depth index may be tied to changes in land surface moisture and vegetation conditions

  13. Structured transparent low emissivity coatings with high microwave transmission

    NASA Astrophysics Data System (ADS)

    Bouvard, Olivia; Lanini, Matteo; Burnier, Luc; Witte, Reiner; Cuttat, Bernard; Salvadè, Andrea; Schüler, Andreas

    2017-01-01

    In order to reduce the energy consumption of buildings, modern windows include metal-containing coatings. These coatings strongly attenuate the microwaves used for mobile communications. Here, we present a novel approach to improve radio signal transmission by structuring a low emissivity coating. Laser ablation is used to scribe a line pattern on the coating. The microwave attenuation of the initial coating ranges between -25 and -30 dB between 850 MHz and 3 GHz. The optimized patterning reduces it down to -1.2 ± 0.6 dB. The fraction of the ablated area is relatively low. Our experimental results show that it is possible to reach a level of attenuation close to that of a glass substrate by removing less than 4% of the coating area. The ablated lines are thin enough to not be noticed in most common lighting situations. Therefore, we achieve a dual spectral selectivity: the coated glass is transparent in the visible range, reflective in the infrared and nearly as transparent as its glass substrate to microwaves. Additionally, numerical simulations were performed and show that the attenuation at grazing incidences is dominated by the behaviour of the glass substrate. To the best of our knowledge, it is the first time that experimental evidence for the combination of such properties is reported and that detailed experimental data are compared to numerical simulations. We anticipate that our findings will be of major importance for the building and transportation sectors.

  14. Microwave snow emission modeling uncertainties in boreal and subarctic environments

    NASA Astrophysics Data System (ADS)

    Roy, Alexandre; Royer, Alain; St-Jean-Rondeau, Olivier; Montpetit, Benoit; Picard, Ghislain; Mavrovic, Alex; Marchand, Nicolas; Langlois, Alexandre

    2016-03-01

    This study aims to better understand and quantify the uncertainties in microwave snow emission models using the Dense Media Radiative Theory Multi-Layer model (DMRT-ML) with in situ measurements of snow properties. We use surface-based radiometric measurements at 10.67, 19 and 37 GHz in boreal forest and subarctic environments and a new in situ data set of measurements of snow properties (profiles of density, snow grain size and temperature, soil characterization and ice lens detection) acquired in the James Bay and Umiujaq regions of Northern Québec, Canada. A snow excavation experiment - where snow was removed from the ground to measure the microwave emission of bare frozen ground - shows that small-scale spatial variability (less than 1 km) in the emission of frozen soil is small. Hence, in our case of boreal organic soil, variability in the emission of frozen soil has a small effect on snow-covered brightness temperature (TB). Grain size and density measurement errors can explain the errors at 37 GHz, while the sensitivity of TB at 19 GHz to snow increases during the winter because of the snow grain growth that leads to scattering. Furthermore, the inclusion of observed ice lenses in DMRT-ML leads to significant improvements in the simulations at horizontal polarization (H-pol) for the three frequencies (up to 20 K of root mean square error). However, representation of the spatial variability of TB remains poor at 10.67 and 19 GHz at H-pol given the spatial variability of ice lens characteristics and the difficulty in simulating snowpack stratigraphy related to the snow crust. The results also show that, in our study with the given forest characteristics, forest emission reflected by the snow-covered surface can increase the TB up to 40 K. The forest contribution varies with vegetation characteristics and a relationship between the downwelling contribution of vegetation and the proportion of pixels occupied by vegetation (trees) in fisheye pictures was found

  15. Optics of an individual organic molecular mesowire waveguide: directional light emission and anomalous refractive index

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravi P. N.; Dasgupta, Arindam; Chikkaraddy, Rohit; Pratim Patra, Partha; Vasista, Adarsh B.; Pavan Kumar, G. V.

    2016-06-01

    We report on experimental investigations performed on an isolated organic mesowire waveguide resting on a glass substrate. The waveguide was made of diaminoanthraquinone (DAAQ) molecular aggregates. First, we show directional emission of light from distal ends of the DAAQ waveguide. For a given mesowire geometry, operating in passive or photoluminescence regimes, we quantified the emission angles by combining multi-wavelength Fourier-plane optical microscopy and photoluminescence micro-spectroscopy. We found light emission in the photoluminescence regime to be more directional in nature compared to the passive waveguiding regime, which was supported by three-dimensional finite-difference time-domain (FDTD) simulations. Second, we measured the anomalous behaviour of refractive index as a function of emission wavelength using the spectra of directionally emitted light. Third, by using spatial-filtered collection optics, we observed and quantified single-excitation dual-channel directional, active emission from DAAQ mesowire. The results discussed herein has implication not only in understanding some fundamental aspects of exciton-polariton mediated directional light emission, but also in applications such as organic optical antennas and photonic couplers.

  16. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  17. SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES

    SciTech Connect

    Kim, S.; Shibasaki, K.

    2012-09-10

    Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

  18. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.

    2003-01-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral

  19. Effects of soil tillage on the microwave emission of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Koopman, G. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    In order to understand the interactions of soil properties and microwave emission better, a series of field experiments were conducted in 1984. Small plots were measured with a truck-mounted passive microwave radiometer operating at 1.4 GHz. These data were collected concurrent with ground observations of soil moisture and bulk density. Treatment effects studied included different soil moisture contents and bulk densities. Evaluations of the data have shown that commonly used models of the dielectric properties of wet soils do not explain the observations obtained in these experiments. This conclusion was based on the fact that the roughness parameters determined through optimization were significantly larger than those observed in similar investigations. These discrepancies are most likely due to the soil structure. Commonly used models assume a homogeneous three phase mixture of soil solids, air and water. Under tilled conditions the soil is actually a two phase mixture of aggregates and voids. Appropriate dielectric models for this tilled condition were evaluated and found to explain the observations. These results indicate that previous conclusions concerning the effects of surface roughness in tilled fields may be incorrect, and they may explain some of the inconsistencies encountered in roughness modeling.

  20. Electron density in amplitude modulated microwave atmospheric plasma jet as determined from microwave interferometry and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Faltýnek, J.; Hnilica, J.; Kudrle, V.

    2017-01-01

    Time resolved electron density in an atmospheric pressure amplitude modulated microwave plasma jet is determined using the microwave interferometry method, refined by numerical modelling of the propagation of non-planar electromagnetic waves in the vicinity of a small diameter, dense collisional plasma filament. The results are compared to those from the Stark broadening of the {{\\text{H}}β} emission line. Both techniques show, both qualitatively and quantitatively, a similar temporal evolution of electron density during one modulation period.

  1. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    SciTech Connect

    Echániz, T.

    2014-09-07

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.

  2. Anomalous Series of Bands in the Edge Emission Spectra of CdS(О)

    NASA Astrophysics Data System (ADS)

    Morozova, N. K.; Kanakhin, A. A.; Galstyan, V. G.; Shnitnikov, A. S.

    2015-02-01

    The region of the edge emission spectrum of CdS(O) single crystals with cadmium excess is examined. An anomalous series of equidistant bands with leading line at 514 nm and phonon replicas has been revealed. These bands grow in intensity with increase of the excitation density up to 1026-1027 cm-3ṡs-1 at 80 K, and the leading line of the series is observed even at 300 K. It is shown that luminescence is conditioned by the exciton spectrum in perfect bulk single-crystals of CdO. Some characteristics of this spectrum are presented, in particular, the dependence on temperature, excitation intensity, composition and size of the crystals, and the LO interaction. The results experimentally confirm the theoretically calculated magnitude of the direct band gap of CdO.

  3. Theoretical models of free-free microwave emission from solar magnetic loops

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Holman, Gordon D.

    1986-01-01

    The free-free microwave emission is calculated from a series of model magnetic loops. The loops are surrounded by a cooler external plasma, as required by recent simultaneous X ray and microwave observations, and a narrow transition zone separating the loops from the external plasma. To be consistent with the observational results, upper limits on the density and temperature scale lengths in the transition zone are found to be 360 km and 250 km, respectively. The models which best produce agreement with X ray and microwave observations also yielded emission measure curves which agree well with observational emission measure curves for solar active regions.

  4. Theoretical models of free-free microwave emission from solar magnetic loops

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Holman, Gordon D.

    1988-01-01

    The free-free microwave emission is calculated from a series of model magnetic loops. The loops are surrounded by a cooler external plasma, as required by recent simultaneous X ray and microwave observations, and a narrow transition zone separating the loops from the external plasma. To be consistent with the observational results, upper limits on the density and temperature scale lengths in the transition zone are found to be 360 km and 250 km, respectively. The models which best produce agreement with X-ray and microwave observations also yielded emission measure curves which agree well with observational emission measure curves for solar active regions.

  5. AKARI and Spinning Dust: A look at microwave dust emission via the Infrared

    NASA Astrophysics Data System (ADS)

    Bell, Aaron Christopher; Onaka, Takashi; Wu, Ronin; Doi, Yasuo

    2015-08-01

    Rapidly spinning dust particles having a permanent electric dipole moment have been shown to be a likely carrier of the anomalous microwave emission (AME), a continuous excess of microwave flux in the 10 to 90 GHz range. Small grains, possibly polycyclic aromatic hydrocarbons (PAHs), are a leading suspect. Due to the overlap frequency overlap with the CMB, the AME is requiring cosmologists to consider the ISM with more care. ISM astronomers are also needing to consider the contribution of cosmological radiation to large-scale dust investigations. We present data from AKARI/Infrared Camera (IRC) due to the effective PAH band coverage of its 9 um survey to investigate PAH emission within 98 AME candidate regions identified by Planck Collaboration et al. (2014). We supplement AKARI data with the four Infrared Astronomical Satellite (IRAS) all-sky maps and complement with the Planck High Frequency Instrument (HFI) bands at 857 and 545GHz to constrain the full dust SED. We sample analyse the SEDs of all 98 regions. We utilize all 7 AKARI photometric bands, as well as the 4 IRAS bands and 2 HFI. We carry out a modified blackbody fitting, and estimate the optical depth of thermal dust at 250 um, and compare this to AME parameters. We also show plots of each band's average intensity for all 98 regions vs. AME parameters. We find a positive trend between the optical depth and AME. In the band-by-band comparison the AKARI 9 um intensity shows a weaker trend with AME. In general, the MIR correlates less strongly with AME than the FIR. The optical depth vs. AME trend improves slightly when looking only at significant AME regions. Scaling the IR intensities by the ISRF strength G0 does not improve the correlations. We cannot offer strong support of a spinning dust model. The results highlight the need for full dust SED modelling, and for a better understanding of the role that magnetic dipole emission from dust grains could play in producing the AME.

  6. A large-scale anomaly in Enceladus' microwave emission

    NASA Astrophysics Data System (ADS)

    Ries, Paul A.; Janssen, Michael

    2015-09-01

    The Cassini spacecraft flew by Enceladus on 6 November 2011, configured to acquire synthetic aperture RADAR imaging of most of the surface with the RADAR instrument. The pass also recorded microwave thermal emission from most of the surface. We report on global patterns of thermal emission at 2.17 cm based on this data set in the context of additional unresolved data both from the ground and from Cassini. The observed thermal emission is consistent with dielectric constants of pure water or methane ice, but cannot discriminate between the two. The emissivity is similar to those of other icy satellites (≈ 0.7), consistent with volume scattering. The most intriguing result, however, is an anomaly in the thermal emission of Enceladus' leading hemisphere. Evidence presented here suggests the anomaly is buried at depths on the order of a few meters. This anomaly is located in similar geographic location to anomalies previously detected with the CIRS and ISS instruments on Mimas, Tethys, and Dione (Howett, C.J.A. et al. [2011]. Icarus 216, 221-226; Howett, C.J.A. et al. [2012]. Icarus 221, 1084-1088; Howett, C.J.A. et al. [2014]. Icarus 241, 239-247; Schenk, P. et al. [2011]. Icarus 211, 740-757), but also corresponds with a geological feature on Enceladus' leading terrain (Crow-Willard, E., Pappalardo, R.T. [2011]. Global geological mapping of Enceladus. In: EPSC-DPS Joint Meeting 2011. p. 635). Simple models show that the Crow-Willard and Pappalardo (Crow-Willard, E., Pappalardo, R.T. [2011]. Global geological mapping of Enceladus. In: EPSC-DPS Joint Meeting 2011. p. 635) model is a better fit to the data. Our best-supported hypothesis is that the leading hemisphere smooth terrain is young enough (<75-200 Myr old) that the micrometeorite impact gardening depth is shallower than the electromagnetic skin depth of the observations (≈ 3-5 m), a picture consistent with ground and space radar measurements, which show no variation at 2 cm, but an increase in albedo in the

  7. Observed effects of soil organic matter content on the microwave emissivity of soils

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.

    1990-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  8. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  9. Microwave backscattering and emission model for grass canopies

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Levine, David M.; Lang, Roger H.

    1994-01-01

    Microwave radar and radiometer measurements of grasslands indicate a substantial reduction in sensor sensitivity to soil moisture in the presence of a thatch layer. When this layer is wet it masks changes in the underlying soil, making the canopy appear warm in the case of passive sensors (radiometer) and decreasing backscatter in the active case (scatterometer). A model for a grass canopy with thatch will be presented in this paper to explain this behavior and to compare with observations. The canopy model consists of three layers: grass, thatch, and the underlying soil. The grass blades are modeled by elongated elliptical discs and the thatch is modeled as a collection of disk shaped water droplets (i.e., the dry matter is neglected). The ground is homogeneous and flat. The distorted Born approximation is used to compute the radar cross section of this three layer canopy and the emissivity is computed from the radar cross section using the Peake formulation for the passive problem. Results are computed at L-band (1.4 GHz) and C-band (4.75 GHz) using canopy parameters (i.e., plant geometry, soil moisture, plant moisture, etc.) representative of Konza Prairie grasslands. The results are compared to C-band scatterometer measurements and L-band radiometer measurements at these grasslands.

  10. Electron-cyclotron maser and solar microwave millisecond spike emission

    NASA Technical Reports Server (NTRS)

    Li, Hong-Wei; Li, Chun-Sheng; Fu, Qi-Jun

    1986-01-01

    An intense solar microwave millisecond spike emission (SMMSE) event was observed on May 16, 1981 by Zhao and Jin at Beijing Observatory. The peak flux density of the spikes is high to 5 x 100,000 s.f.u. and the corresponding brightness temperature (BT) reaches approx. 10 to the 15th K. In order to explain the observed properties of SMMSE, it is proposed that a beam of electrons with energy of tens KeV injected from the acceleration region downwards into an emerging magnetic arch forms so-called hollow beam distribution and causes electron-cyclotron maser (ECM) instability. The growth rate of second harmonic X-mode is calculated and its change with time is deduced. It is shown that the saturation time of ECM is t sub s approx. equals 0.42 ms and only at last short stage (delta t less than 0.2 t sub s) the growth rate decreases to zero rather rapidly. So a SMMSE with very high BT will be produced if the ratio of number density of nonthermal electrons to that of background electrons, n sub s/n sub e, is larger than 4 x .00001.

  11. Characterization of Different Land Classes and Disaster Monitoring Using Microwave Land Emissivity for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Saha, Korak; Raju, Suresh; Antony, Tinu; Krishna Moorthy, K.

    Despite the ability of satellite borne microwave radiometers to measure the atmospheric pa-rameters, liquid water and the microphysical properties of clouds, they have serious limitations over the land owing its large and spatially heterogeneous emissivity compared to the relatively low and homogenous oceans. This calls for determination of the spatial maps of land-surface emissivity with accuracies better than ˜2%. In this study, the characterization of microwave emissivity of different land surface classes over the Indian region is carried out with the forth-coming Indo-French microwave satellite program Megha-Tropiques in focus. The land emissivity is retrieved using satellite microwave radiometer data from Special Sensor Microwave/Imager (SSM/I) and TRMM Microwave Imager (TMI) at 10, 19, 22, 37 and 85 GHz. After identify-ing the clear sky daily data, the microwave radiative transfer computation, is applied to the respective daily atmospheric profile for deducing the upwelling and downwelling atmospheric radiations. This, along with the skin temperature data, is used to retrieve land emission from satellites data. The emissivity maps of placecountry-regionIndia for three months representing winter (January) and post-monsoon (September-October) seasons of 2008 at V and H polar-izations of all the channels (except for 22 GHz) are generated. Though the land emissivity values in V-polarization vary between 0.5 and ˜1, some land surface classes such as the desert region, marshy land, fresh snow covered region and evergreen forest region, etc, show distinct emissivity characteristics. On this basis few typical classes having uniform physical properties over sufficient area are identified. Usually the Indian desert region is dry and shows low emis-sivity (˜0.88 in H-polarisation) and high polarization difference, V-H (˜0.1). Densely vegetated zones of tropical rain forests exhibit high emissivity values (˜0.95) and low polarization dif-ference (lt;0.01). The

  12. Microwave thermal emission from the zodiacal dust cloud predicted with contemporary meteoroid models

    NASA Astrophysics Data System (ADS)

    Dikarev, Valery V.; Schwarz, Dominik J.

    2015-12-01

    Predictions of the microwave thermal emission from the zodiacal dust cloud are made using several contemporary meteoroid models to construct the distributions of the cross-section area of dust in space, and by applying the Mie light-scattering theory to estimate the temperatures and emissivities of dust particles in a wide range of sizes and heliocentric distances. In particular, the Kelsall model of the zodiacal light emission based on COBE infrared observations is extrapolated to the microwaves with assistance from fits to selected IRAS and Planck data. Furthermore, the five populations of interplanetary meteoroids by Divine and the Interplanetary Meteoroid Engineering Model (IMEM) based on a variety of remote and in situ observations of dust are used in combination with the optical properties of olivine, carbonaceous, and iron spherical particles. The Kelsall model has been accepted by the cosmic microwave background (CMB) community for subtraction of the zodiacal cloud's foreground emission. We show, however, that the Kelsall model predicts microwave emission from interplanetary dust that is remarkably different from the results obtained by applying the meteoroid engineering models. We make maps and spectra of the microwave emission predicted by all three models assuming different compositions of dust particles. The predictions can be used to look for the emission from interplanetary dust in CMB experiments and to plan new observations.

  13. Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California

    USGS Publications Warehouse

    Sato, M.; Sutton, A.J.; McGee, K.A.

    1985-01-01

    We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1-10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO-H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake. ?? 1985 Birkha??user Verlag.

  14. Constraining Microwave Emission from Extensive Air Showers via the MIDAS Experiment

    NASA Astrophysics Data System (ADS)

    Richardson, Matthew; Privitera, Paolo

    2017-01-01

    Ultra high energy cosmic rays (UHECRs) are accelerated by the most energetic processes in the universe. Upon entering Earth’s atmosphere they produce particle showers known as extensive air showers (EASs). Observatories like the Pierre Auger Observatory sample the particles and light produced by the EASs through large particle detector arrays or nitrogen fluorescence detectors to ascertain the fundamental properties of UHECRs. The large sample of high quality data provided by the Pierre Auger Observatory can be attributed to the hybrid technique which utilizes the two aforementioned techniques simultaneously; however, the limitation of only being able to observe nitrogen fluorescence from EASs on clear moonless nights yields a limited 10% duty cycle for the hybrid technique. One proposal for providing high quality data at increased statistics is the observation of isotropic microwave emission from EASs, as such emission would be observed with a 100% duty cycle. Measurements of microwave emission from laboratory air plasmas conducted by Gorham et al. (2008) produced promising results indicating that the microwave emission should be observable using inexpensive detectors. The Microwave Detection of Air Showers (MIDAS) experiment was built at the University of Chicago to characterize the isotropic microwave emission from EASs and has collected 359 days of observational data at the location of the Pierre Auger experiment. We have performed a time coincidence analysis between this data and data from Pierre Auger and we report a null result. This result places stringent limits on microwave emission from EASs and demonstrates that the laboratory measurements of Gorham et al. (2008) are not applicable to EASs, thus diminishing the feasibility of using isotropic microwave emission to detect EASs.

  15. Simulation of Seasonal Snow Microwave TB Using Coupled Multi-Layered Snow Evolution and Microwave Emission Models

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Royer, Alain; Picard, Ghislain; Langlois, Alex; Fily, Michel

    2014-01-01

    The accurate quantification of SWE has important societal benefits, including improving domestic and agricultural water planning, flood forecasting and electric power generation. However, passive-microwave SWE algorithms suffer from variations in TB due to snow metamorphism, difficult to distinguish from those due to SWE variations. Coupled snow evolution-emission models are able to predict snow metamorphism, allowing us to account for emissivity changes. They can also be used to identify weaknesses in the snow evolution model. Moreover, thoroughly evaluating coupled models is a contribution toward the assimilation of TB, which leads to a significant increase in the accuracy of SWE estimates.

  16. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    PubMed

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants.

  17. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    PubMed Central

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  18. Inter-Sensor Comparison of Microwave Land Surface Emissivity Products to Improve Precipitation Retrievals

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Turk, J.; Prigent, C.; Furuzawa, F.; Tian, Y.

    2013-12-01

    Microwave land surface emissivity acts as the background signal to estimate rain rate, cloud liquid water, and total precipitable water. Therefore, its accuracy can directly affect the uncertainty of such measurements. Over land, unlike over oceans, the microwave emissivity is relatively high and and varies significantly as surface conditions and land cover change. Lack of ground truth measurement of microwave emissivity especially on global scale has made the uncertainty analysis of this parameter very challenging. The present study investigates the consistency among the existing global land emissivity estimates from different microwave sensors. The products are determined from various sensors and frequencies ranging from 7 to 90 GHz. The selected emissivity products in this study are from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) by NOAA - Cooperative remote Sensing and Science and Technology Center (CREST), the Special Sensor Microwave Imager (SSM/I) by The Centre National de la Recherche Scientifique (CNRS) in France, TRMM Microwave Imager (TMI) by Nagoya University, Japan, and WindSat by NASA Jet Propulsion Laboratory (JPL). The emissivity estimates are based on different algorithms and ancillary data sets. This work investigates the difference among these emissivity products from 2003 to 2008 dynamically and spectrally. The similarities and discrepancies of the retrievals are studied at different land cover types. The mean relative difference (MRD) and other statistical parameters are calculated temporally for all five years of the study. Some inherent discrepancies between the selected products can be attributed to the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. The results reveal that in lower frequencies (=<19 GHz) ancillary data especially skin temperature data set is the major source of difference in emissivity retrievals, while in higher frequencies

  19. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    SciTech Connect

    Aman, A.; Majcherek, S.; Hirsch, S.; Schmidt, B.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  20. Microstructure representation of snow in coupled snowpack and microwave emission models

    NASA Astrophysics Data System (ADS)

    Sandells, Melody; Essery, Richard; Rutter, Nick; Wake, Leanne; Leppänen, Leena; Lemmetyinen, Juha

    2017-01-01

    This is the first study to encompass a wide range of coupled snow evolution and microwave emission models in a common modelling framework in order to generalise the link between snowpack microstructure predicted by the snow evolution models and microstructure required to reproduce observations of brightness temperature as simulated by snow emission models. Brightness temperatures at 18.7 and 36.5 GHz were simulated by 1323 ensemble members, formed from 63 Jules Investigation Model snowpack simulations, three microstructure evolution functions, and seven microwave emission model configurations. Two years of meteorological data from the Sodankylä Arctic Research Centre, Finland, were used to drive the model over the 2011-2012 and 2012-2013 winter periods. Comparisons between simulated snow grain diameters and field measurements with an IceCube instrument showed that the evolution functions from SNTHERM simulated snow grain diameters that were too large (mean error 0.12 to 0.16 mm), whereas MOSES and SNICAR microstructure evolution functions simulated grain diameters that were too small (mean error -0.16 to -0.24 mm for MOSES and -0.14 to -0.18 mm for SNICAR). No model (HUT, MEMLS, or DMRT-ML) provided a consistently good fit across all frequencies and polarisations. The smallest absolute values of mean bias in brightness temperature over a season for a particular frequency and polarisation ranged from 0.7 to 6.9 K. Optimal scaling factors for the snow microstructure were presented to compare compatibility between snowpack model microstructure and emission model microstructure. Scale factors ranged between 0.3 for the SNTHERM-empirical MEMLS model combination (2011-2012) and 3.3 for DMRT-ML in conjunction with MOSES microstructure (2012-2013). Differences in scale factors between microstructure models were generally greater than the differences between microwave emission models, suggesting that more accurate simulations in coupled snowpack-microwave model systems

  1. [Study of the microwave emissivity characteristics of vegetation over the Northern Hemisphere].

    PubMed

    Shi, Li-Juan; Qiu, Yu-Bao; Shi, Jian-Cheng

    2013-05-01

    The microwave emissivity is a function of structure, water content, and surface roughness, and all these factors have obvious seasonal variations. In the present study, the half-month averaged emissivities in summer and winter of 2003 over the vegetation of Northern Hemisphere were estimated using Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) combined with IGBP (International Geosphere-Biosphere Project labels) land classification data. Then the emissivities of vegetation land covers at different frequencies, the polarization and their seasonal variations were analyzed respectively. The results show that the emissivities of vegetation increase with the increase in frequencies, and decline with the frequency increasing over snow region. In summer, the vegetation emissivity at V-polarization of 89 GHz is larger than 0.944, and all emissivities are relatively stable and the RMSE of time series emissivity variation is less than 0.007 2. In winter, emissivities decrease over snow covered area, especially for higher frequencies. Furthermore, with the increase in vegetation density, the emissivities increase and emissivity polarization difference decreases.

  2. The AMY experiment: Microwave emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Blanco, M.; Boháčová, M.; Buonomo, B.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Facal San Luis, P.; Foggetta, L.; Gaïor, R.; Garcia-Fernandez, D.; Iarlori, M.; Le Coz, S.; Letessier-Selvon, A.; Louedec, K.; Maris, I. C.; Martello, D.; Mazzitelli, G.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Valente, P.; Vazquez, J. R.; Verzi, V.; Williams, C.

    2016-07-01

    You The Air Microwave Yield (AMY) experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  3. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1991-02-26

    This patent describes an acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level.

  4. Acoustic emission feedback control for control of boiling in a microwave oven

    SciTech Connect

    White, T.L.

    1990-05-02

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuously vary the power applied to the oven to control the boiling at a selected level. 2 figs.

  5. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  6. Characterization of errors in a coupled snow hydrology-microwave emission model

    USGS Publications Warehouse

    Andreadis, K.M.; Liang, D.; Tsang, L.; Lettenmaier, D.P.; Josberger, E.G.

    2008-01-01

    Traditional approaches to the direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover within remotely sensed pixels. An alternative approach is to assimilate satellite microwave emission observations directly, which requires embedding an accurate microwave emissions model into a hydrologic prediction scheme, as well as quantitative information of model and observation errors. In this study a coupled snow hydrology [Variable Infiltration Capacity (VIC)] and microwave emission [Dense Media Radiative Transfer (DMRT)] model are evaluated using multiscale brightness temperature (TB) measurements from the Cold Land Processes Experiment (CLPX). The ability of VIC to reproduce snowpack properties is shown with the use of snow pit measurements, while TB model predictions are evaluated through comparison with Ground-Based Microwave Radiometer (GBMR), air-craft [Polarimetric Scanning Radiometer (PSR)], and satellite [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)] TB measurements. Limitations of the model at the point scale were not as evident when comparing areal estimates. The coupled model was able to reproduce the TB spatial patterns observed by PSR in two of three sites. However, this was mostly due to the presence of relatively dense forest cover. An interesting result occurs when examining the spatial scaling behavior of the higher-resolution errors; the satellite-scale error is well approximated by the mode of the (spatial) histogram of errors at the smaller scale. In addition, TB prediction errors were almost invariant when aggregated to the satellite scale, while forest-cover fractions greater than 30% had a significant effect on TB predictions. ?? 2008 American Meteorological Society.

  7. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  8. Microwave emission power exceeding 10 μW in spin torque vortex oscillator

    NASA Astrophysics Data System (ADS)

    Tsunegi, Sumito; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi

    2016-12-01

    We fabricated vortex-type spin-torque oscillators (STOs) with optimized structures to enhance the microwave emission power. Inserting a thin Co70Fe30 layer between the MgO tunnel barrier and Fe-B free layer of the STOs resulted in the magnetoresistance ratio up to 190% with a resistance area (RA) value of 4.1 Ω μm2, which contributed to a large enhancement of the emission power. The optimized STO exhibited the emission power of 10.1 μW, which is the highest power from a single STO reported to date, with excellent frequency stability (fSTO/Δf = 2000 with the timing jitter of 12 ps). The results suggest that the vortex-STOs are promising candidates for next generation microwave generators.

  9. Microwave emission from the coronae of late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Gary, D. E.

    1983-01-01

    VLA microwave observations of 14 late-type dwarf and subgiant stars and binary systems are examined. In this extensive set of observations, four sources at 6 cm (Chi-1 Ori, UV Cet, YY Gem, and Wolf 630AB) were detected and low upper limits for the remaining stars were found. The microwave luminosities of the nondetected F-K dwarfs are as small as 0.01 those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiraling in magnetic fields of about 300 gauss if the source sizes are as large as R/R(asterisk) = 3-4. This would correspond to magnetic fields that are probably in the range 0.001-0.0001 gauss at the photospheric level. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons with effective temperature.

  10. Significance of agricultural row structure on the microwave emissivity of soils

    NASA Technical Reports Server (NTRS)

    Promes, P. M.; Jackson, T. J.; O'Neill, P. E.

    1987-01-01

    A series of field experiments was carried out to extend the data base available for verifying agricultural row effect models of emissivity. The row effects model was used to simulate a data base from which an algorithm could be developed to account for row effects when the scene dielectric constant and small-scale roughness are unknown. One objective of the study was to quantify the significance of row structure and to develop a practical procedure for removing the effects of periodic row structure on the microwave emissivity of a soil in order to use the emissivity values to estimate the soil moisture. A second objective was to expand the data set available for model verification through field observations using a truck-mounted 1.4-GHz microwave radiometer.

  11. Study on microwave emission mechanisms on the basis of hypervelocity impact experiments on various target plates

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Chiba, S.; Soma, E.; Ishii, K.; Maki, K.; Takano, T.; Hasegawa, S.

    2007-06-01

    It was formerly confirmed by experiment that hypervelocity impacts on aluminum plates cause microwave emission. In this study, we have carried out experiments in order to clarify the mechanism of the emission. The microwave is detected by heterodyne detection scheme at 22 and 2 GHz with an intermediate frequency bandwidth of 500 and 120 MHz, respectively. A nylon projectile is accelerated using a light-gas gun to impact a target. First, aluminum plates with ten different thicknesses ranging from 1 to 40 mm were used as a target, and microwave signals were detected. The experimental results are statistically analyzed assuming a Gaussian distribution of the emitted power. The standard deviation of pulse voltage is calculated to show the existence of two kinds of signals: sharp pulse and thermal noise. It is shown that the emitted energy and the dispersion have a relation with the extent of the target destruction. Next, nylon projectiles are impacted on different metals such as aluminum, iron, and copper. These results suggest that microcracks are essential to microwave emission. Finally, in order to clarify the mechanism of charging and discharging across the microcracks, the experimental results are compared with this model for the following factors: (1) the thermally excited electrons and the emitted power, and (2) the bond dissociation energy of target material and emitted power. The analytical results suggest that electrons are excited thermally and by transition from a crystalline state to an atomic state.

  12. Diacetyl emissions and airborne dust from butter flavorings used in microwave popcorn production.

    PubMed

    Boylstein, Randy; Piacitelli, Chris; Grote, Ardith; Kanwal, Richard; Kullman, Greg; Kreiss, Kathleen

    2006-10-01

    In microwave popcorn workers, exposure to butter flavorings has been associated with fixed obstructive lung disease resembling bronchiolitis obliterans. Inhalation toxicology studies have shown severe respiratory effects in rats exposed to vapors from a paste butter flavoring, and to diacetyl, a diketone found in most butter flavorings. To gain a better understanding of worker exposures, we assessed diacetyl emissions and airborne dust levels from butter flavorings used by several microwave popcorn manufacturing companies. We heated bulk samples of 40 different butter flavorings (liquids, pastes, and powders) to approximately 50 degrees C and used gas chromatography, with a mass selective detector, to measure the relative abundance of volatile organic compounds emitted. Air sampling was conducted for diacetyl and for total and respirable dust during the mixing of powder, liquid, or paste flavorings with heated soybean oil at a microwave popcorn plant. To further examine the potential for respiratory exposures to powders, we measured dust generated during different simulated methods of manual handling of several powder butter flavorings. Powder flavorings were found to give off much lower diacetyl emissions than pastes or liquids. The mean diacetyl emissions from liquids and pastes were 64 and 26 times larger, respectively, than the mean of diacetyl emissions from powders. The median diacetyl emissions from liquids and pastes were 364 and 72 times larger, respectively, than the median of diacetyl emissions from powders. Fourteen of 16 powders had diacetyl emissions that were lower than the diacetyl emissions from any liquid flavoring and from most paste flavorings. However, simulated handling of powder flavorings showed that a substantial amount of the airborne dust generated was of respirable size and could thus pose its own respiratory hazard. Companies that use butter flavorings should consider substituting flavorings with lower diacetyl emissions and the use of

  13. A radiative transfer model for microwave emissions from bare agricultural soils

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Paris, J. F.

    1975-01-01

    A radiative transfer model for microwave emissions from bare, stratified agricultural soils was developed to assist in the analysis of data gathered in the joint soil moisture experiment. The predictions of the model were compared with preliminary X band (2.8 cm) microwave and ground based observations. Measured brightness temperatures at vertical and horizontal polarizations can be used to estimate the moisture content of the top centimeter of soil with + or - 1 percent accuracy. It is also shown that the Stokes parameters can be used to distinguish between moisture and surface roughness effects.

  14. Gigawatt Microwave Emission from a Relativistic Reflex Triode

    DTIC Science & Technology

    1980-08-01

    electric field points into the emission cathode. A sheet is taken to leavi the system whenever it hits the plate or returns to the emission cathode. A sheet...ATTN T. CALDWELL LIVERMORE DIVISION, PIELD CC4MAND, DNA 220 7T1H STREET, NE LAWRENCE LIVERMORE LABORATORY CHARLOTTESVILLE, VA 22901 P .O .BO X 808C O...J. P. REILLY ALEXANDRIA, VA 22304 10 LAKESIDE OFFICE PARK LAWRENCE LIVERMORE LABORATORY WAKFIELD, H 01880 UNIVERSITY OF CALIFORNIA SCIENCE

  15. Modelling of microwave emission and scattering from snow and soil

    NASA Technical Reports Server (NTRS)

    Fung, Adrian K.; Chen, M. F.

    1989-01-01

    In the past a snow layer has been modeled as a homogeneous layer embedded with sparsely populated Rayleigh scatterers above an irregular ground surface. The effect of the ground surface can be ignored if the layer is sufficiently lossy due to wetness in the snow. The top surface of the snow layer may be treated as plane or irregular depending upon its actual shape and its wetness condition. For a dry snow condition where the electromagnetic wave can penetrate easily one can ignore the air-snow interface. As a result a variety of emission and scattering models exist. An improvement to the existing scattering or emission model would consist of an irregular layer with densely populated correlated scatterers. The development of this model and its application to scattering and emission from a snow layer are discussed. Also disucssed is a surface scattering model for a soil surface.

  16. The anomalous 3.43 and 3.53 micron emission features toward HD 97048 and Elias 1 - C-C vibrational modes of polycyclic aromatic hydrocarbons?

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.; Wooden, D. H.; Cohen, M.

    1990-01-01

    The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones of large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable.

  17. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  18. Microwave backscattering and emission model for grass canopies

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.; Levine, David M.

    1991-01-01

    A two-layer model is developed that treats the grass canopy as a collection of randomly oriented elliptical dielectric discs over a layer of thatch with underlying soil surface. The distorted Born approximation in conjunction with the Peake formulation is used to calculate the backscattering coefficient and the emissivity from the canopy. Two particular features of this model which are unique for grass canopies are the variation of the canopy structure and the presence of the thatch layer. The basic parameters in the model such as the size and orientation of grass blades, dielectric constant of soil and vegetation, and thickness and water content of the thatch layer have been obtained from ground truth data. To interpret the available experimental observations of grasslands, numerical results from both passive and active models at L-band (1.4 GHz) are generated and various scattering and emission properties of the grass canopies are discussed.

  19. Impact of Conifer Forest Litter on Microwave Emission at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Cosh, Michael H.; Joseph, Alicia T.; Jackson, Thomas J.

    2011-01-01

    This study reports on the utilization of microwave modeling, together with ground truth, and L-band (1.4-GHz) brightness temperatures to investigate the passive microwave characteristics of a conifer forest floor. The microwave data were acquired over a natural Virginia Pine forest in Maryland by a ground-based microwave active/passive instrument system in 2008/2009. Ground measurements of the tree biophysical parameters and forest floor characteristics were obtained during the field campaign. The test site consisted of medium-sized evergreen conifers with an average height of 12 m and average diameters at breast height of 12.6 cm. The site is a typical pine forest site in that there is a surface layer of loose debris/needles and an organic transition layer above the mineral soil. In an effort to characterize and model the impact of the surface litter layer, an experiment was conducted on a day with wet soil conditions, which involved removal of the surface litter layer from one half of the test site while keeping the other half undisturbed. The observations showed detectable decrease in emissivity for both polarizations after the surface litter layer was removed. A first-order radiative transfer model of the forest stands including the multilayer nature of the forest floor in conjunction with the ground truth data are used to compute forest emission. The model calculations reproduced the major features of the experimental data over the entire duration, which included the effects of surface litter and ground moisture content on overall emission. Both theory and experimental results confirm that the litter layer increases the observed canopy brightness temperature and obscure the soil emission.

  20. Millimeter Microwave Emission by Use of Plasma Produced Electrons Orbiting a Positively-Charged Wire

    DTIC Science & Technology

    1986-03-14

    but the emission is forced into the desired range by the external cavity. We have tried using an etalon of stacked glass plates as one side of a...rectangular cavity to force the radiation into K = 8 mm, with apparent success. Another possibility would be to use a tilted diffraction grating as one...Patents in Force (3) - High Voltage Opening Switch, Microwave Masers 17. Technical Record: At present, I am a full professor of Electrical Engineering at

  1. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    SciTech Connect

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-07-13

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  2. Search for accelerated electron anisotropy signatures based on observed polarization of the flaring loop microwave emission

    NASA Astrophysics Data System (ADS)

    Morgachev, A. S.; Melnikov, V. F.; Kuznetsov, S. A.

    2016-12-01

    The distribution maps of the circular polarization degree and radio brightness have been analyzed for more than 40 flares based on the Nobeyama Radioheliograph data. It has been shown that the observed microwave emission is polarized in the ordinary mode in some flaring loop parts in six events. Based on a joint analysis of the photospheric magnetic field maps obtained from the HMI/SDO and MDI/SOHO magnetograph's and the radio emission dynamics in different source parts, it has been concluded that the ordinary mode predominance in all six selected events can be connected with implementation of the longitudinal pitch-angle anisotropy of emitting electrons.

  3. Microwave subsecond pulses in solar flares - source localization, emission mechanism

    NASA Astrophysics Data System (ADS)

    Altyntsev, A. T.; Kardapolova, N. N.; Kuznetsov, A. A.; Lesovoi, S. V.; Meshalkina, N. S.; Yan, Y.

    The observations of bursts with fine temporal structures is one of few ways to study the primary energy release sites in solar flares. The localization of their sources in a flare region using the Siberian Solar Radio Telescope data (5.7 GHz) provide us with the unique possibility to determine plasma parameters, and to verify emission mechanisms. The simultaneous spectral observations (5.2 - 7.7 GHz) were provided by National Astronomical Observatories/Beijing spectropolarimeters. An analysis is made of the subsecond pulses of different types: short duration wide band pulses, U-type cm-bursts, the bursts with the "zebra" pattern. The suggestion is justified that in many cases the frequency drifts are response to the plasma density dynamics in the local sites in flare loops. It is argued that the conditions of emission escaping from the source strongly influent the apparent source sizes and the polarization degree of the subsecond sources. This research was supported by Grants 02-02-39030 and 03-02-16229 of RFBR, and E02-3.2-489 of Education department of Russia.

  4. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties

    USGS Publications Warehouse

    England, A.W.

    1976-01-01

    The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.

  5. Modelling Surface Emissivity at Microwave Frequencies: Impact of the Surface Assumptions

    NASA Astrophysics Data System (ADS)

    Hermozo, Laura; Eymard, Laurence; Karbou, Fatima

    2015-12-01

    In this study, a new method is proposed to monitor and characterize Arctic sea ice. As inputs, passive microwave observations at window frequencies ranging from 23.8 to 89 GHz from the Advanced Microwave Sounding Units (AMSU) -A and -B are used. Unlike several studies which use a simplified flat surface assumption to retrieve sea ice surface emissivity, the relative roughness of the surface is taken into account to retrieve a rough ‘Lambertian’ (additionally to a flat ‘Specular’) surface emissivity over Arctic. The effect of the two surface assumptions is analyzed at different window frequencies, using a Specular/Lambertian emissivity ratio over a one-year database of near-nadir observations. A monthly ice/no ice delimitation is obtained using emissivity ratio at low frequencies and is found to be in very good agreement with other available sea ice products. The potential of emissivity ratio at 50.3 GHz over sea ice, combined with the signal at other window frequencies, is used towards a sea ice classification over Arctic.

  6. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  7. A parameterization of effective soil temperature for microwave emission

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Schmugge, T. J.; Mo, T. (Principal Investigator)

    1981-01-01

    A parameterization of effective soil temperature is discussed, which when multiplied by the emissivity gives the brightness temperature in terms of surface (T sub o) and deep (T sub infinity) soil temperatures as T = T sub infinity + C (T sub o - T sub infinity). A coherent radiative transfer model and a large data base of observed soil moisture and temperature profiles are used to calculate the best-fit value of the parameter C. For 2.8, 6.0, 11.0, 21.0 and 49.0 cm wavelengths. The C values are respectively 0.802 + or - 0.006, 0.667 + or - 0.008, 0.480 + or - 0.010, 0.246 + or - 0.009, and 0,084 + or - 0.005. The parameterized equation gives results which are generally within one or two percent of the exact values.

  8. QUIJOTE scientific results - II. Polarisation measurements of the microwave emission in the Galactic molecular complexes W43 and W47 and supernova remnant W44

    NASA Astrophysics Data System (ADS)

    Génova-Santos, R.; Rubiño-Martín, J. A.; Peláez-Santos, A.; Poidevin, F.; Rebolo, R.; Vignaga, R.; Artal, E.; Harper, S.; Hoyland, R.; Lasenby, A.; Martínez-González, E.; Piccirillo, L.; Tramonte, D.; Watson, R. A.

    2017-02-01

    We present Q-U-I JOint TEnerife (QUIJOTE) intensity and polarisation maps at 10-20 GHz covering a region along the Galactic plane 24° ≲ l ≲ 45°, |b| ≲ 8°. These maps result from 210 h of data, have a sensitivity in polarisation of ≈40 μK beam-1 and an angular resolution of ≈1°. Our intensity data are crucial to confirm the presence of anomalous microwave emission (AME) towards the two molecular complexes W43 (22σ) and W47 (8σ). We also detect at high significance (6σ) AME associated with W44, the first clear detection of this emission towards a supernova remnant. The new QUIJOTE polarisation data, in combination with Wilkinson Microwave Anisotropy Probe (WMAP), are essential to (i) determine the spectral index of the synchrotron emission in W44, βsync = -0.62 ± 0.03, in good agreement with the value inferred from the intensity spectrum once a free-free component is included in the fit; (ii) trace the change in the polarisation angle associated with Faraday rotation in the direction of W44 with rotation measure -404 ± 49 rad m-2 and (iii) set upper limits on the polarisation of W43 of ΠAME < 0.39 per cent (95 per cent C.L.) from QUIJOTE 17 GHz, and <0.22 per cent from WMAP 41 GHz data, which are the most stringent constraints ever obtained on the polarisation fraction of the AME. For typical physical conditions (grain temperature and magnetic field strengths), and in the case of perfect alignment between the grains and the magnetic field, the models of electric or magnetic dipole emissions predict higher polarisation fractions.

  9. Space Telescope and Optical Reverberation Mapping Project. IV. Anomalous Behavior of the Broad Ultraviolet Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Goad, M. R.; Korista, K. T.; De Rosa, G.; Kriss, G. A.; Edelson, R.; Barth, A. J.; Ferland, G. J.; Kochanek, C. S.; Netzer, H.; Peterson, B. M.; Bentz, M. C.; Bisogni, S.; Crenshaw, D. M.; Denney, K. D.; Ely, J.; Fausnaugh, M. M.; Grier, C. J.; Gupta, A.; Horne, K. D.; Kaastra, J.; Pancoast, A.; Pei, L.; Pogge, R. W.; Skielboe, A.; Starkey, D.; Vestergaard, M.; Zu, Y.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brewer, B. J.; Cackett, E. M.; Carini, M. T.; Croxall, K. V.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Dietrich, M.; Efimova, N. V.; Evans, P. A.; Filippenko, A. V.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gonzalez, L.; Gorjian, V.; Grupe, D.; Hall, P. B.; Hicks, S.; Horenstein, D.; Hutchison, T.; Im, M.; Jensen, J. J.; Joner, M. D.; Jones, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Manne-Nicholas, E. R.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Spencer, M.; Sung, H.-I.; Teems, K. G.; Treu, T.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zheng, W.-K.

    2016-06-01

    During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert 1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far UV continuum and broad emission line variations decorrelated for ˜60-70 days, starting ˜75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterized by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. The largest corresponding emission line flux deficits occurred for the high ionization, collisionally excited lines C iv and Si iv(+O iv]), and also He ii(+O iii]), while the anomaly in Lyα was substantially smaller. This pattern of behavior indicates a depletion in the flux of photons with {E}{{ph}}\\gt 54 {{eV}} relative to those near 13.6 eV. We suggest two plausible mechanisms for the observed behavior: (i) temporary obscuration of the ionizing continuum incident upon broad line region (BLR) clouds by a moving veil of material lying between the inner accretion disk and inner (BLR), perhaps resulting from an episodic ejection of material from the disk, or (ii) a temporary change in the intrinsic ionizing continuum spectral energy distribution resulting in a deficit of ionizing photons with energies >54 eV, possibly due to a transient restructuring of the Comptonizing atmosphere above the disk. Current evidence appears to favor the latter explanation.

  10. MASSIVE STAR FORMATION, OUTFLOWS, AND ANOMALOUS H{sub 2} EMISSION IN Mol 121 (IRAS 20188+3928)

    SciTech Connect

    Wolf-Chase, Grace; Arvidsson, Kim; Smutko, Michael; Sherman, Reid

    2013-01-10

    We have discovered 12 new molecular hydrogen emission-line objects (MHOs) in the vicinity of the candidate massive young stellar object Mol 121, in addition to five that were previously known. H{sub 2} 2.12 {mu}m/H{sub 2} 2.25 {mu}m flux ratios indicate another region dominated by fluorescence from a photodissociation region, and one region that displays an anomalously low H{sub 2} 2.12 {mu}m/H{sub 2} 2.25 {mu}m flux ratio (<1) and coincides with a previously reported deeply embedded source (DES). Continuum observations at 3 mm reveal five dense cores; the brightest core is coincident with the DES. The next brightest cores are both associated with centimeter continuum emission. One of these is coincident with the IRAS source; the other lies at the centroid of a compact outflow defined by bipolar MHOs. The brighter of these bipolar MHOs exhibits [Fe II] emission and both MHOs are associated with CH{sub 3}OH maser emission observed at 95 GHz and 44 GHz. Masses and column densities of all five cores are consistent with theoretical predictions for massive star formation. Although it is impossible to associate all MHOs with driving sources in this region, it is evident that there are several outflows along different position angles, and some unambiguous associations can be made. We discuss implications of observed H{sub 2} 2.12 {mu}m/H{sub 2} 2.25 {mu}m and [Fe II] 1.64 {mu}m/H{sub 2} 2.12 {mu}m flux ratios and compare the estimated total H{sub 2} luminosity with the bolometric luminosity of the region. We conclude that the outflows are driven by massive young stellar objects embedded in cores that are likely to be in different evolutionary stages.

  11. WMAP Microwave Emission Interpreted as Dark Matter Annihilation in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Finkbeiner, D. P.

    2004-12-01

    Synchrotron emission from a population of ultra-relativistic electrons in the inner Galaxy has been observed by the Wilkinson Microwave Anisotropy Probe (WMAP). After careful modeling of the microwave foreground signals from Galactic interstellar medium (free-free, "ordinary" synchrotron, thermal dust, and spinning dust) a residual microwave signal is present within 10-20 degrees of the Galactic center, uncorrelated with any known foreground template. The most likely explanation for this mysterious component is synchrotron emission from an unusually hot electron energy distribution. The source of these electrons is still uncertain, but the spatial distribution, inferred energy spectrum, and total number are consistent with their being positron-electron pairs produced by WIMP annihilation. I will review the evidence for this hot electron component, and show that it could be produced by dark matter particles, assuming masses and cross sections previously considered in the literature. I will also briefly discuss complementary observations that could confirm its interpretation as an indirect detection of WIMP annihilation.

  12. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    NASA Astrophysics Data System (ADS)

    Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.

    2015-03-01

    The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like and cross polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoids fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in MATLAB and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  13. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    NASA Astrophysics Data System (ADS)

    Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.

    2015-08-01

    The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  14. Observations of the microwave emission of Venus from 1.3 to 3.6 cm.

    PubMed

    Steffes, P G; Klein, M J; Jenkins, J M

    1990-03-01

    Laboratory measurements of Steffes (1986) have suggested that the intensity and shape of the microwave spectrum of Venus might be especially sensitive to the subcloud abundance of constituents such as SO2 and gaseous H2SO4. It was likewise suggested that some variations of the shape of the emission spectrum might occur between 1.5 and 3 cm (10 to 20 GHz), a wavelength range which had previously only been sparsely observed. As a result, coordinated observations of Venus emission were conducted at four wavelengths between 1.35 cm (22.2 GHz) and 3.6 cm (8.42 GHz) using the 43-m NRAO antenna at Green Bank, West Virginia, and the 64-m antenna at NASA's Deep Space Communication Complex, Goldstone, California. In this paper, we report the methodology and results of these observations, and compare the results with other observations and with calculated emission spectra. We conclude that the observed emission spectrum is consistent with an average subcloud abundance of gaseous H2SO4 in equatorial and midlatitude regions which is approximately 5 ppm. It is suggested that additional measurements of atmospheric microwave opacity be made with the Pioneer-Venus Orbiter Radio Occultation experiment to search for temporal and spatial variations in gaseous H2SO4 abundance in the Venus atmosphere. An upper limit for the subcloud abundance of SO2 is also determined.

  15. Anomalous Temperature-Dependent Upconversion Luminescence of α-NaYF₄:Yb³⁺/Er³⁺ Nanocrystals Synthesized by a Microwave-Assisted Hydrothermal Method.

    PubMed

    Tong, Lili; Li, Xiangping; Hua, Ruinian; Tianxiang Peng; Wang, Yizhuo; Zhang, Xizhen; Chen, Baojiu

    2016-01-01

    Yb³⁺/Er³⁺co-doped cubic-(α-) phase NaYF₄ nanocrystals were prepared through a microwave- assisted hydrothermal method. Temperature-dependent upconversion luminescence (UCL) and sensing properties were systematically studied. It is interesting that anomalous temperature- dependent UCL behavior is observed. With increasing temperature (303-573 K), the UCL intensity of Er³⁺ does not quench monotonously but reaches a minimum around 483 K and then increases. However, it was found that the UCL spectra change in a different way with decreasing temperature (573-303 K) from the one measured with increasing temperature. The fluorescence intensity ratio of ²H₁₁/₂ --> ⁴I₁₅/₂ to ⁴S₃/₂ --> ⁴I₁₅/₂ at any measured temperature point remains almost constant in all measurement processes, indicating the consistency of temperature in each spectrum measurement at all temperature points regardless of the heating or the cooling process in our experiments. The results demonstrate that NaYF₄:Yb³⁺/Er³⁺ UC nanocrystal has good sensing stability and may have potential application in the nanoscale thermal sensor.

  16. Modeling and measurement of microwave emission and backscattering from bare soil surfaces

    NASA Technical Reports Server (NTRS)

    Saatchi, S.; Wegmuller, U.

    1992-01-01

    A multifrequency ground-based radiometer-scatterometer system working at frequencies between 3.0 GHz and 11.0 GHz has been used to study the effect of soil moisture and roughness on microwave emission and backscattering. The freezing and thawing effect of the soil surface and the changes of the surface roughness due to rain and erosion are reported. To analyze the combined active and passive data, a scattering model based on physical optics approximation for the low frequency and geometrical optics approximation for high frequency has been developed. The model is used to calculate the bistatic scattering coefficients from the surface. By considering the conservation of energy, the result has been integrated over a hemisphere above the surface to calculate the emissivity. The backscattering and emission model has been coupled with the observed data in order to extract soil moisture and surface roughness.

  17. A possible explanation of the anomalous emissive probe behavior in a reactive RF plasma

    NASA Astrophysics Data System (ADS)

    Kar, R.; Barve, S. A.; Chopade, S. S.; Das, A. K.; Patil, D. S.

    2012-10-01

    Emissive probe diagnostics in saturated floating potential mode was carried out in RF plasmas of argon (Ar)-methane (CH4) and Ar-CH4-hexa methyl disiloxane (HMDSO). These plasmas are used for the deposition of diamond-like carbon (DLC) and SiOx-containing DLC films, respectively. While performing the experiments it was found that the probe characteristics had two saturation regions instead of one. The same measurements when repeated in Ar and Ar-N2 plasmas showed a single saturation as expected. The first experiments when repeated again showed the same anomaly. The experimental findings question the validity of emissive probe diagnostics in reactive plasmas. A possible model of dust formation inside the reactive plasma is predicted and the first saturation is linked to dust. The second saturation is credited as the actual plasma potential. The concept of dust was invoked after being sure that no effects of RF and reference electrode contamination are responsible for this behavior. The results indicate that we should remain cautious when using emissive probes in reactive plasmas as they may occasionally lead to erroneous results.

  18. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    SciTech Connect

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A. -V.; Wang, Y.

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  19. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    DOE PAGES

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less

  20. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer.

    PubMed

    Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S

    2008-03-03

    A simulation study to understand the influence of topography on the surfaceemissivity observed by a satellite microwave radiometer is carried out. We analyze theeffects due to changes in observation angle, including the rotation of the polarization plane.A mountainous area in the Alps (Northern Italy) is considered and the information on therelief extracted from a digital elevation model is exploited. The numerical simulation refersto a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E,i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impacton surface emissivity, scattering of the radiation due to the atmosphere or neighboringelevated surfaces is not considered. C and X bands, for which atmospheric effects arenegligible, and Ka band are analyzed. The results indicate that the changes in the localobservation angle tend to lower the apparent emissivity of a radiometric pixel with respectto the corresponding flat surface characteristics. The effect of the rotation of thepolarization plane enlarges (vertical polarization), or attenuates (horizontal polarization)this decrease. By doing some simplifying assumptions for the radiometer antenna, theconclusion is that the microwave emissivity at vertical polarization is underestimated,whilst the opposite occurs for horizontal polarization, except for Ka band, for which bothunder- and overprediction may occur. A quantification of the differences with respect to aflat soil and an approximate evaluation of their impact on soil moisture retrieval areyielded.

  1. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  2. X-ray Excitation Triggers Ytterbium Anomalous Emission in CaF2:Yb but Not in SrF2:Yb.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A; Seijo, Luis; Barandiarán, Zoila

    2017-03-16

    Materials that luminesce after excitation with ionizing radiation are extensively applied in physics, medicine, security, and industry. Lanthanide dopants are known to trigger crystal scintillation through their fast d-f emissions; the same is true for other important applications as lasers or phosphors for lighting. However, this ability can be seriously compromised by unwanted anomalous emissions often found with the most common lanthanide activators. We report high-resolution X-ray-excited optical (IR to UV) luminescence spectra of CaF2:Yb and SrF2:Yb samples excited at 8949 eV and 80 K. Ionizing radiation excites the known anomalous emission of ytterbium in the CaF2 host but not in the SrF2 host. Wave function-based ab initio calculations of host-to-dopant electron transfer and Yb(2+)/Yb(3+) intervalence charge transfer explain the difference. The model also explains the lack of anomalous emission in Yb-doped SrF2 excited by VUV radiation.

  3. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  4. A model describing the microwave emission from a multi-layer snowpack at 37 GHz

    NASA Technical Reports Server (NTRS)

    Abdelrazik, M.; Ulaby, F.; Stiles, H.

    1981-01-01

    A multilayer emission model is described and applied to emission measurements obtained at 37 GHz and H polarization using a microwave radiometer attached to a truck-mounted boom in Steamboat Springs, Colorado in 1977. Estimated absorption and scattering coefficients and their dependence on wetness were obtained using calculated values of the dielectric constant at 37 GHz along with the model. It was found that the scattering coefficient is comparable in value to the absorption coefficient for dry snow however, the absorption coefficient increases linearly with increasing snow wetness while the scattering coefficient decreases linearly with increasing wetness. The emission from each layer of the snowpack was also calculated using the estimated coefficients. It is shown that for dry snow, the ground underneath the snowpack contributes about 45% of all measured emission while the rest is due to emission from all the layers within the snowpack. When the wetness of the top 5 cm layer of snowpack increases to about 2% by volume, this top 5 cm snowlayer contributes more than 90% of all the measured emission.

  5. TEMPORAL AND SPATIAL ANALYSES OF SPECTRAL INDICES OF NONTHERMAL EMISSIONS DERIVED FROM HARD X-RAYS AND MICROWAVES

    SciTech Connect

    Asai, Ayumi; Kiyohara, Junko; Takasaki, Hiroyuki; Narukage, Noriyuki; Yokoyama, Takaaki; Masuda, Satoshi; Shimojo, Masumi; Nakajima, Hiroshi

    2013-02-15

    We studied electron spectral indices of nonthermal emissions seen in hard X-rays (HXRs) and microwaves. We analyzed 12 flares observed by the Hard X-Ray Telescope aboard Yohkoh, Nobeyama Radio Polarimeters, and the Nobeyama Radioheliograph (NoRH), and compared the spectral indices derived from total fluxes of HXRs and microwaves. Except for four events, which have very soft HXR spectra suffering from the thermal component, these flares show a gap {Delta}{delta} between the electron spectral indices derived from HXRs {delta} {sub X} and those from microwaves {delta}{sub {mu}} ({Delta}{delta} = {delta} {sub X} - {delta}{sub {mu}}) of about 1.6. Furthermore, from the start to the peak times of the HXR bursts, the time profiles of the HXR spectral index {delta} {sub X} evolve synchronously with those of the microwave spectral index {delta}{sub {mu}}, keeping the constant gap. We also examined the spatially resolved distribution of the microwave spectral index by using NoRH data. The microwave spectral index {delta}{sub {mu}} tends to be larger, which means a softer spectrum, at HXR footpoint sources with stronger magnetic field than that at the loop tops. These results suggest that the electron spectra are bent at around several hundreds of keV, and become harder at the higher energy range that contributes the microwave gyrosynchrotron emission.

  6. Emission spectra from direct current and microwave powered Hg lamps at very high pressure

    NASA Astrophysics Data System (ADS)

    Hamady, M.; Lister, G. G.; Stafford, L.

    2013-11-01

    Discharge lamps containing mercury at pressures above 100 bar are commercially used in data projectors and television projector systems. Due to their small size, these lamps are difficult to investigate experimentally, but spectral measurements, combined with radiation transport calculations, have provided useful information on the visible spectrum. However, classical spectral line broadening theory is inadequate to describe the UV portion of the spectrum, so self-consistent modelling of these discharges is not possible at present. This paper discusses the differences between discharges containing electrodes and discharges sustained by a microwave (mw) electromagnetic field, on the basis of the experimentally measured temperature profile in an electroded discharge, and a temperature profile computed from a 1D power balance model for a microwave discharge. A model based on the ray-tracing method is employed to simulate the radiation transport in these lamps. The model has been validated by comparing the emission spectrum from dc discharge lamps with those obtained experimentally. The output flux, luminous flux, luminous efficacy, the correlated colour temperature, the chromaticity coordinates and photometric curves of the lamp were then obtained. These results were also compared with those of a theoretically calculated temperature profile for the same lamp, excited by microwave power in the TM010 mode.

  7. Statistical Analysis of the Correlation between Microwave Emission Anomalies and Seismic Activity Based on AMSR-E Satellite Data

    NASA Astrophysics Data System (ADS)

    qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin

    2016-04-01

    Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the

  8. A Program To Search For Transient Microwave Emission From GRBs And Other High-Energy Sources Using Archival WMAP Datasets

    NASA Astrophysics Data System (ADS)

    Stacy, J. Gregory; Case, Gary L.; Hart, Daniel R.; Jackson, Peter D.; Winkler, Christoph

    2007-07-01

    We report on a new program to search the public time-ordered datasets acquired with the Wilkinson Microwave Anisotropy Probe (WMAP) for transient signals associated with gamma-ray bursts (GRBs) and other high-energy sources. This program is an extension of earlier work in which we established the first limits on prompt microwave emission from GRBs using archival datasets from the Differential Microwave Radiometers (DMR) aboard the COBE satellite. The increased sensitivity and angular resolution of the WMAP radiometers compared to the COBE/DMR lead to a factor of ~10,000 improvement in overall point-source sensitivity. Such limits approach the signal levels predicted in the microwave band for the peak prompt emission arising from reverse shocks in GRBs. In the first phase of our program we are verifying our analysis software and assessing sensitivity limits by searching for microwave transients or flaring signals from known blazars and similar sources that are detected in the cumulative WMAP data as ``foreground'' point sources of microwave emission.

  9. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Tedesco, M.

    2005-12-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the 'snapshot' type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  10. Spatial Scaling of Snow Observations and Microwave Emission Modeling During CLPX and Appropriate Satellite Sensor Resolution

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Tedesco, Marco

    2005-01-01

    Accurate estimates of snow water equivalent and other properties play an important role in weather, natural hazard, and hydrological forecasting and climate modeling over a range of scales in space and time. Remote sensing-derived estimates have traditionally been of the "snapshot" type, but techniques involving models with assimilation are also being explored. In both cases, forward emission models are useful to understand the observed passive microwave signatures and developing retrieval algorithms. However, mismatches between passive microwave sensor resolutions and the scales of processes controlling subpixel heterogeneity can affect the accuracy of the estimates. Improving the spatial resolution of new passive microwave satellite sensors is a major desire in order to (literally) resolve such subpixel heterogeneity, but limited spacecraft and mission resources impose severe constraints and tradeoffs. In order to maximize science return while mitigating risk for a satellite concept, it is essential to understand the scaling behavior of snow in terms of what the sensor sees (brightness temperature) as well as in terms of the actual variability of snow. NASA's Cold Land Processes Experiment-1 (CLPX-1: Colorado, 2002 and 2003) was designed to provide data to measure these scaling behaviors for varying snow conditions in areas with forested, alpine, and meadow/pasture land cover. We will use observations from CLPX-1 ground, airborne, and satellite passive microwave sensors to examine and evaluate the scaling behavior of observed and modeled brightness temperatures and observed and retrieved snow parameters across scales from meters to 10's of kilometers. The conclusions will provide direct examples of the appropriate spatial sampling scales of new sensors for snow remote sensing. The analyses will also illustrate the effects and spatial scales of the underlying phenomena (e.g., land cover) that control subpixel heterogeneity.

  11. Influence of emission threshold and current increase rate on microwave starting time in relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Sun, Jun; Song, Zhimin; Teng, Yan

    2017-01-01

    Explosive emission cathodes (EECs) are widely used in high power microwave generators. This paper researches the influence of the emission threshold and the current increase rate of annular EECs on the microwave starting time of a relativistic backward wave oscillator (RBWO) when the current amplitude is not affected. The results show that a moderate delay in explosive emission, as long as it's not too long and the current increase rate keeps fast enough, won't bring about a corresponding delay in the starting time of microwave, but inversely, may suppress the mode competition and thus expedite the starting process slightly. The current increase rate, however, has more prominent influence on the starting time of the RBWO. A slower current increase rate will delay the time when the beam current reaches the starting current and lead to a longer starting time.

  12. Cosmic Microwave Background Small-Scale Structure: II. Model of the Foreground Emission

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.; Schmelz, Joan T.

    2017-01-01

    We have investigated the possibility that a population of galactic electrons may contribute to the small-scale structure in the cosmic microwave background (CMB) found by WMAP and PLANCK. Model calculations of free-free emission from these electrons which include beam dilution produce a nearly flat spectrum. Data at nine frequencies from 22 to 100 GHz were fit with the model, which resulted in excellent values of reduced chi squared. The model involves three unknowns: electron excitation temperature, angular extent of the sources of emission, and emission measure. The resulting temperatures agree with the observed temperatures of related HI features. The derived angular extent of the continuum sources corresponds well with the observed angular extent of HI filamentary structures in the areas under consideration. The derived emission measures can be used to determine the fractional ionization along the path lengths through the emitting volumes of space. Understanding the role that free-free emission plays in the small-scale features observed by PLANCK and WMAP should allow us to create better masks of the galactic foreground. Pursuing such discoveries may yet transform our understanding of the origins of the universe.

  13. Cosmic Microwave Background Small-Scale Structure: I. Observations of the Foreground Emission

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.; Verschuur, Gerrit L.

    2017-01-01

    The derivation of the small-scale structure in the cosmic microwave background (CMB) relies on an accurate subtraction of foreground signals from the Milky Way Galaxy. Known sources include thermal emission from interstellar cirrus, galactic synchrotron emission resulting from interactions between cosmic ray electrons and magnetic fields, and electron-ion free-free emission from interstellar H II regions. Additional sources include spinning and spinning-wobbling dust grains, and emission from rotational transitions of carbon monoxide. Verschuur (2015 and references therein) showed many examples of connections, associations, and overlaps of galactic HI and CMB structure. Clark et al. (2014) showed that the long, thin filamentary features seen in the high sensitivity, high dynamic range Galactic Arecibo L-Band Feed Array (GALFA) HI survey appear to be aligned along magnetic field directions, which are inferred from the optical polarization of star light. Clark et al. (2015) took this important discovery a step further, relating those magnetic field orientations to the polarized PLANCK 353 GHz dust emission. These results imply that the neutral hydrogen in the interstellar medium is tightly coupled to the galactic magnetic field, which requires a population of electrons. Taken together, these HI results suggest a candidate for a previously unidentified foreground component that may need to be understood in order to improve our ability to measure and interpret the CMB small-scale structure. This work is supported by NASA and NSF.

  14. High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps

    NASA Astrophysics Data System (ADS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Gorski, K. M.; Hinshaw, G.; Reach, W. T.

    1996-03-01

    We cross-correlate the COBE6 DMR 2 year sky maps with spatial templates from long-wavelength radio surveys and the far-infrared COBE DIRBE maps. We place an upper limit on the spectral index of synchrotron radiation βsynch < -2.9 between 408 MHz and 31.5 GHz. We obtain a statistically significant cross-correlation with the DIRBE maps, whose dependence on the DMR frequencies indicates a superposition of dust and free-free emission. The high-latitude dust emission (|b| > 30°) is well fitted by a single dust component with temperature T = 18+3-7 K and emissivity ν ∝ (υ/ν0)β with β = 1.9+3.0-0.5. The free-free emission is spatially correlated with the dust on angular scales larger than the 70 DMR beam, with rms variations 5.3±1.8 μK at 53 GHz and angular power spectrum p ∝ l-3. If this correlation persists to smaller angular scales, free-free emission should not be a significant contaminant to measurements of the cosmic microwave anisotropy at degree angular scales for frequencies above 20 GHz.

  15. Preliminary analysis of Skylab RADSCAT results over the ocean. [using radar backscatter and microwave emission

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. D.; Young, J. D.; Pierson, W. J., Jr.; Cardone, V. J.

    1974-01-01

    Preliminary observations at 13.9 GHz of the radar backscatter and microwave emission from the sea were analyzed using data obtained by the radiometer scatterometer on Skylab. Results indicate approximately a square-law relationship between differential scattering coefficient and windspeed at angles of 40 deg to 50 deg, after correction for directional effect, over a range from about 4 up to about 25 meters/sec. The brightness temperature response was also observed, and considerable success was achieved in correcting it for atmospheric attenuation and emission. Measurements were made in June, 1973, over Hurricane Ava off the west coast of Mexico and over relatively calm conditions in the Gulf of Mexico and Caribbean Sea.

  16. Microwave observations of jupiter's synchrotron emission during the galileo flyby of amalthea in 2002.

    NASA Astrophysics Data System (ADS)

    Klein, M. J.; Bolton, S. J.; Bastian, T. S.; Blanc, M.; Levin, S. M.; McLeod, R. J.; MacLaren, D.; Roller, J. P.; Santos-Costa, D.; Sault, R.

    2003-04-01

    In November, 2002, the Galileo spacecraft trajectory provided a close flyby of Amalthea, one of Jupiter's inner most moons (˜2.4 RJ). During this pass, Galileo entered into a region rarely explored by spacecraft, the inner radiation belts of Jupiter. We present preliminary results from a campaign of microwave observations of Jovian synchrotron emission over a six month interval centered around the flyby. The observations were made with NASA's Deep Space Network (DSN) antennas at Goldstone, California, and the NRAO Very Large Array. We report preliminary measurements of the flux density of the synchrotron emission and the rotational beaming curves and a compare them with the long term history of Jupiter's microwave emission which varies significantly on timescales of months to years. The new data are also being examined to search for evidence of short-term variations and to compare single aperture beaming curves with the spatially resolved images obtained with the VLA. These radio astronomy data will be combined with in-situ measurements from Galileo (see companion paper by Bolton et al) to improve models of the synchrotron emission from Jupiter's radiation belts. A large percentage of the Goldstone observations were conducted by middle- and high school students from classrooms across the nation. The students and their teachers are participants in the Goldstone-Apple Valley Radio Telescope (GAVRT) science education project, which is a partnership involving NASA, the Jet Propulsion Laboratory and the Lewis Center for Educational Research (LCER) in Apple Valley, CA. Working with the Lewis Center over the Internet, GAVRT students conduct remotely controlled radio astronomy observations using 34-m antennas at Goldstone. The JPL contribution to this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration 2756 Planetary magnetospheres (5443, 5737, 6030) 6218 Jovian

  17. Comparative study of x ray and microwave emissions during solar flares

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1993-01-01

    The work supported by the grant consisted of two projects. The first project involved making detailed case studies of two flares using SMM data in conjunction with ground based observations. The first flare occurred at 1454 UT on June 20, 1989 and involved the eruption of a prominence near the limb. In the study we used data from many wavelength regimes including the radio, H-alpha, hard X-rays, and soft X-rays. We used a full gyrosynchrotron code to model the apparent presence of a 1.4 GHz source early in the flare that was in the form of a large coronal loop. The model results lead us to conclude that the initial acceleration occurs in small, dense loops which also produced the flare's hard X-ray emission. We also found evidence that a source at 1.4 GHz later in the event was due to second harmonic plasma emission. This source was adjacent to a leg of the prominence and comes from a dense column of material in the magnetic structure supporting the prominence. Finally, we investigated a source of microwaves and soft X-rays, occurring approximately 10 min after the hard X-ray peak, and calculate a lower limit for the density of the source. The second flare that was studied occurred at 2156 UT on June 20, 1989 and was observed with the VLA and the Owens Valley Radio Observatory (OVRO) Frequency Agile Array. We have developed a gyrosynchrotron model of the sources at flare peak using a new gyrosynchrotron approximation which is valid at very low harmonics of the gyrofrequency. We found that the accelerated particle densities of the sources decreased much more with radius from the source center than had been supposed in previous work, while the magnetic field varied less. We also used the available data to analyze a highly polarized source which appeared late in the flare. The second project involved compiling a statistical base for the relative timing of the hard X-ray peak, the turbulent and blue-shift velocities inferred from soft X-ray line emissions observed by

  18. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  19. Iapetus' near surface thermal emission modeled and constrained using Cassini RADAR Radiometer microwave observations

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Leyrat, C.; Janssen, M. A.; Keihm, S.; Wye, L. C.; West, R.; Lorenz, R. D.; Tosi, F.

    2014-10-01

    Since its arrival at Saturn, the Cassini spacecraft has had only a few opportunities to observe Iapetus, Saturn's most distant regular satellite. These observations were all made from long ranges (>100,000 km) except on September 10, 2007, during Cassini orbit 49, when the spacecraft encountered the two-toned moon during its closest flyby so far. In this pass it collected spatially resolved data on the object's leading side, mainly over the equatorial dark terrains of Cassini Regio (CR). In this paper, we examine the radiometry data acquired by the Cassini RADAR during both this close-targeted flyby (referred to as IA49-3) and the distant Iapetus observations. In the RADAR's passive mode, the receiver functions as a radiometer to record the thermal emission from planetary surfaces at a wavelength of 2.2-cm. On the cold icy surfaces of Saturn's moons, the measured brightness temperatures depend both on the microwave emissivity and the physical temperature profile below the surface down to a depth that is likely to be tens of centimeters or even a few meters. Combined with the concurrent active data, passive measurements can shed light on the composition, structure and thermal properties of planetary regoliths and thus on the processes from which they have formed and evolved. The model we propose for Iapetus' microwave thermal emission is fitted to the IA49-3 observations and reveals that the thermal inertias sensed by the Cassini Radiometer over both CR and the bright mid-to-high latitude terrains, namely Ronceveaux Terra (RT) in the North and Saragossa Terra (ST) in the South, significantly exceed those measured by Cassini's CIRS (Composite Infrared Spectrometer), which is sensitive to much smaller depths, generally the first few millimeters of the surface. This implies that the subsurface of Iapetus sensed at 2.2-cm wavelength is more consolidated than the uppermost layers of the surface. In the case of CR, a thermal inertia of at least 50 J m-2 K-1 s-1/2, and

  20. Microwave response and photon emission of a voltage baised Josephson junction

    NASA Astrophysics Data System (ADS)

    Jebari, Salha; Grimm, Alexander; Hazra, Dibyendu; Hofheinz, Max

    The readout of superconducting qubits requires amplifiers combining noise close to the quantum limit, high gain, large bandwidth, and sufficient dynamic range. Josephson parametric amplifiers using Josephson junctions in the 0-voltage state, driven by a large microwave signals, begin to perform sufficiently well in all 4 of these aspects to be of practical use, but remain difficult to optimize and use. Recent experiments with superconducting circuits consisting of a DC voltage-biased Josephson junction in series with a resonator, showed that a tunneling Cooper pair can emit one or several photons with a total energy of 2e times the applied voltage. We present microwave reflection measurements on this device indicating that amplification is possible with a simple DC voltage-biased Josephson junction. We compare these measurements with the noise power emitted by the junction and show that, for low Josephson energy, transmission and noise emission can be explained within the framework of P(E) theory of inelastic Cooper pair tunneling. Combined with a theoretical model, our results indicate that voltage-biased Josephson junctions might be useful for amplification near the quantum limit, offering simpler design and a different trade-off between gain, bandwidth and dynamic range.

  1. A comparison of radiative transfer models for predicting the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Choudhury, B. J.

    1980-01-01

    Two general types of numerical models for predicting microwave emission from soils are compared-coherent and noncoherent. In the former, radiation in the soil is treated coherently, and the boundary conditions on the electric fields across the layer boundaries are used to calculate the radiation intensity. In the latter, the radiation is assumed to be noncoherent, and the intensities of the radiation are considered directly. The results of the two approaches may be different because of the effects of interference, which can cause the transmitted intensity at the surface (i.e., emissivity) to be sometimes higher and sometimes lower for the coherent case than for the noncoherent case, depending on the relative phases of reflected fields from the lower layers. This coupling between soil layers in the coherent models leads to greater soil moisture sampling depths observed with this type of model, and is the major difference that is found between the two types of models. In noncoherent models, the emissivity is determined by the dielectric constraint at the air/soil interface. The subsequent differences in the results are functions of both the frequency of the radiation being considered and the steepness of the moisture gradient near the surface. The calculations were performed at frequencies of 1.4 and 19.4 GHz and for two sets of soil profiles. Little difference was observed between the models at 19.4 GHz; and only at the lower frequency were differences apparent because of the greater soil moisture sampling depth at this frequency.

  2. Snow-cover environmental monitoring and assessment in Northeast China using passive microwave emission models.

    PubMed

    Song, Kaishan; Zhang, Yuanzhi

    2008-05-01

    In this study, we present the application of the passive microwave emission models to snow-cover environment monitoring and assessment in Northeast China. The study employs the radiative transfer function and strong fluctuation theory to develop the models. We used the exponential form of a spherical symmetric correlation function to describe random permittivity fluctuations. From strong fluctuation, we then obtained the phase matrix and extinction coefficients of snow-packs for the spherical symmetric correlation function. We also used the vector radiative transfer formula for the layer of a random medium by solving Gaussian quadrature and eigen analysis. By comparing the brightness temperatures at 5, 10.7, 18, and 37 GHz, the modelling results agreed with experimental data of dry-snow physical parameters as measured in the fieldwork.

  3. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: Implications for emission modeling

    NASA Astrophysics Data System (ADS)

    Rutter, Nick; Sandells, Mel; Derksen, Chris; Toose, Peter; Royer, Alain; Montpetit, Benoit; Langlois, Alex; Lemmetyinen, Juha; Pulliainen, Jouni

    2014-03-01

    Two-dimensional measurements of snowpack properties (stratigraphic layering, density, grain size, and temperature) were used as inputs to the multilayer Helsinki University of Technology (HUT) microwave emission model at a centimeter-scale horizontal resolution, across a 4.5 m transect of ground-based passive microwave radiometer footprints near Churchill, Manitoba, Canada. Snowpack stratigraphy was complex (between six and eight layers) with only three layers extending continuously throughout the length of the transect. Distributions of one-dimensional simulations, accurately representing complex stratigraphic layering, were evaluated using measured brightness temperatures. Large biases (36 to 68 K) between simulated and measured brightness temperatures were minimized (-0.5 to 0.6 K), within measurement accuracy, through application of grain scaling factors (2.6 to 5.3) at different combinations of frequencies, polarizations, and model extinction coefficients. Grain scaling factors compensated for uncertainty relating optical specific surface area to HUT effective grain size inputs and quantified relative differences in scattering and absorption properties of various extinction coefficients. The HUT model required accurate representation of ice lenses, particularly at horizontal polarization, and large grain scaling factors highlighted the need to consider microstructure beyond the size of individual grains. As variability of extinction coefficients was strongly influenced by the proportion of large (hoar) grains in a vertical profile, it is important to consider simulations from distributions of one-dimensional profiles rather than single profiles, especially in sub-Arctic snowpacks where stratigraphic variability can be high. Model sensitivity experiments suggested that the level of error in field measurements and the new methodological framework used to apply them in a snow emission model were satisfactory. Layer amalgamation showed that a three

  4. Microwave accelerated labeling methods in the synthesis of radioligands for positron emission tomography imaging.

    PubMed

    Kallmerten, Amy E; Alexander, Abigail; Wager, Krista M; Jones, Graham B

    2011-10-01

    Nuclear imaging using positron emission tomography [PET] is a powerful technique with clinical applications which include oncology, cardiovascular disease and CNS disorders. Conventional chemical syntheses of the short half-life radionuclides used in the process however imposes numerous limitations on scope of available ligands. By utilizing microwave assisted synthesis methods many of these limitations can be overcome, paving the way for the design of diverse families of agents with defined cellular targets. This review will survey recent developments in the field with emphasis on the period 2006-2011. Positron emission tomography [PET] has become one of the most powerful in vivo imaging modalities, capable of delivering mm3 resolution of radiotracer distribution and metabolism [1]. When combined with anatomic imaging methods (MRI, CT) co-registered multimode images offer the potential to track metabolic and physiologic events in diseased states and guide and accelerate clinical trials of investigational new drugs. Also, this same methodology can be used to evaluate first pass pharmacokinetics/pharmacodynamics in early stage drug discovery. Though powerful as a technique only a limited number of drugs have seen clinical use and to date only one drug 2-fluoro-deoxy-D-glucose (FDG) has received FDA approval [2]. One of the drawbacks of PET imaging is the need for tracers labeled with an appropriate nuclide and the half-lives of these agents places special constraints on the chemical synthesis. Among the most popular are 11C (t½ =20.4 min) and 18F (t ½ =109.8 min) labeled compounds and this has resulted in a resurgence of interest in practical application of their chemistries [3,4]. This review will focus on microwave mediated methods of acceleration of organic reactions used for the production of labeled PET image contrast agents, with emphasis on the five year period 2006 to 2011.

  5. Passive L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Kim, E. J.; Lang, R. H.; Gish, T. J.

    2012-12-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (TB's) measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These TB measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly TB's could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly TB. Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, hr, on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on TB simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent hr parameterization was responsible for the largest error reduction of TB simulations in the early growth cycle. A.T. Joseph, R. Van der Velde, P.E. O'Neill, R.H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, DOI:10.1109/TGRS.2008.917214, Aug. 2008. M.C. Dobson, F.T. Ulaby, M

  6. Comparison among physical process based snow models in estimating SWE and upwelling microwave emission

    NASA Astrophysics Data System (ADS)

    Li, D.; Durand, M. T.; Margulis, S. A.

    2012-12-01

    Snowpack serves as a critical water resource and an important climate indicator. Accurately estimating snow water equivalent (SWE) and melt timing has both civil and scientific merits. Physical process based multi-layer land surface models (LSM) characterize snowpack by tracking the energy balance and mass balance in each layer. However, in terms of the number of layers used to model the snowpack stratigraphy, as well as the complexity of the simulated mass/energy exchanges in each single layer, significant variances exist among different LSMs. Previous work has largely focused on assessing the impact of layering and stratigraphy representation on mass and energy balance, with little attention paid to the implications of these factors on predicted microwave brightness temperature (Tb). In this paper, three LSMs with varying snow layer schemes: SSiB (3-layer), CoLM (5-layer), and SNOWPACK (N-layer), are coupled to the Microwave Emission from Multi-Layer Snowpacks (MEMLS) radiative transfer model (RTM) to simulate the snowpack mass/energy budgets and microwave signature over a full season. The simulations are performed at five in-situ gage locations in the Kern River Basin, Sierra Nevada, CA where it is known that large snow events occur that can be problematic to represent using a small number of snow layers. A particular emphasis is placed on assessment of the impact of layering scheme on the results. Preliminary results show that even for SSiB which has a relative simple empirical layering scheme, the modeled annual SWE could be highly correlated with the in-situ SWE (r¬2=0.91) if the precipitation bias is corrected, also, the comparison between the Tb simulated by SSiB+MEMLS and the downscaled AMSR-E Tb measurements shows a correlation coefficient of 0.94 during the snow accumulation season (Oct to Apr) if the grain growth parameters and the soil snow reflectivity is properly calibrated. Future work includes comparing SWE and Tb from all threemodels and

  7. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Picard, Ghislain; Brucker, Ludovic; Roy, Alexandre; DuPont, FLorent; Champollion, Nicolas; Morin, Samuel

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer).

  8. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  9. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modelling

    NASA Astrophysics Data System (ADS)

    Sandells, M.; Rutter, N.; Derksen, C.; Langlois, A.; Lemmetyinen, J.; Montpetit, B.; Pulliainen, J. T.; Royer, A.; Toose, P.

    2012-12-01

    quantify possible sources of error in the simulations, a number of experiments were carried out to investigate the sensitivity of the brightness temperature to: 1) uncertainties in field observations, 2) representation of ice lenses, 3) model layering structure, and 4) near-infrared derived grain size representing snow grain size at microwave wavelengths. Field measurement error made little difference to the simulated brightness temperature, nor did the representation of ice lenses as crusts of high density snow. As the number of layers in the snow was reduced to 3, 2, or 1, the simulated brightness temperature increased slightly. However, scaling of snow grain size had a dramatic effect on the simulated brightness temperatures, reducing the median bias of the simulations to within measurement error for the statistically different brightness temperature distributions. This indicated that further investigation is required to define what is meant by the microwave grain size, and how this relates to the grain size that is used in the microwave emission model.

  10. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  11. Development of a resonant-type microwave reactor and its application to the synthesis of positron emission tomography radiopharmaceuticals.

    PubMed

    Kimura, Hiroyuki; Yagi, Yusuke; Ohneda, Noriyuki; Odajima, Hiro; Ono, Masahiro; Saji, Hideo

    2014-10-01

    Microwave technology has been successfully applied to enhance the effectiveness of radiolabeling reactions. The use of a microwave as a source of heat energy can allow chemical reactions to proceed over much shorter reaction times and in higher yields than they would do under conventional thermal conditions. A microwave reactor developed by Resonance Instrument Inc. (Model 520/521) and CEM (PETWave) has been used exclusively for the synthesis of radiolabeled agents for positron emission tomography by numerous groups throughout the world. In this study, we have developed a novel resonant-type microwave reactor powered by a solid-state device and confirmed that this system can focus microwave power on a small amount of reaction solution. Furthermore, we have demonstrated the rapid and facile radiosynthesis of 16α-[(18)F]fluoroestradiol, 4-[(18)F]fluoro-N-[2-(1-methoxyphenyl)-1-piperazinyl]ethyl-N-2-pyridinylbenzamide, and N-succinimidyl 4-[(18)F]fluorobenzoate using our newly developed microwave reactor.

  12. Model-estimated microwave emissions from rain systems for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail T.; Meischner, Peter F.

    1996-12-01

    A simple model for estimating the upward and downward microwave emission from rain layer types above ground is presented. The emission properties of the rain layers are estimated from physical quantities such as the optical depth, the single-scattering albedo, the physical temperature, and a given drop size distribution for Mie scattering calculations. The underlying surface is characterized by the emissivity and the physical temperature. The transparency coefficient q and the reflection coefficient r of the rain layer are expressed by these physical quantities. The brightness temperature then is given by the physical temperature T, q, and r. The radiation transfer is estimated by the method of layer addition, described by Sobolev [1956], which avoids the necessity of solving the equation of radiation transfer. The accuracy of this simple model was estimated by comparisons with three-dimensional Monte Carlo calculations. The error is estimated to be less than 3 K for common situations and less than 8 K for unrealistic high optical depths. It is shown that any one of the quantities rain rate, rain layer depth, and physical temperature can be estimated with sufficient accuracy if the others are known. The basic model has been extended for application to inhomogeneous cloud layers and to include differences in brightness temperatures for horizontal and vertical polarizations for oblate raindrops. The main intended application of this model is rain rate estimation from space with low data processing efforts, especially for the Priroda mission. The model was tested for the downwelling emission during the field experiment CLEOPATRA by measurements with a polarimetric weather radar and rain gauges. The results verify the principles, and promising agreement was found at least for stratiform rain. The polarimetric extension of the model too showed promising results under quite different measurement conditions in Russia and southern Germany.

  13. Spatial Variability of Barrow-Area Shore-Fast Sea Ice and Its Relationships to Passive Microwave Emissivity

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Rivas, M. Belmonte; Holmgren, J.; Gasiewski, A. J.; Heinrichs, J. F.; Stroeve, J. C.; Klein, M.; Markus, T.; Perovich, D. K.; Sonntag, J. G.; Tape, K.

    2006-01-01

    Aircraft-acquired passive microwave data, laser radar height observations, RADARSAT synthetic aperture radar imagery, and in situ measurements obtained during the AMSR-Ice03 experiment are used to investigate relationships between microwave emission and ice characteristics over several space scales. The data fusion allows delineation of the shore-fast ice and pack ice in the Barrow area, AK, into several ice classes. Results show good agreement between observed and Polarimetric Scanning Radiometer (PSR)-derived snow depths over relatively smooth ice, with larger differences over ridged and rubbled ice. The PSR results are consistent with the effects on snow depth of the spatial distribution and nature of ice roughness, ridging, and other factors such as ice age. Apparent relationships exist between ice roughness and the degree of depolarization of emission at 10,19, and 37 GHz. This depolarization .would yield overestimates of total ice concentration using polarization-based algorithms, with indications of this seen when the NT-2 algorithm is applied to the PSR data. Other characteristics of the microwave data, such as effects of grounding of sea ice and large contrast between sea ice and adjacent land, are also apparent in the PSR data. Overall, the results further demonstrate the importance of macroscale ice roughness conditions such as ridging and rubbling on snow depth and microwave emissivity.

  14. A Search for Prompt Microwave Emission from Gamma-Ray Bursts Using Archival COBE and WMAP Datasets

    NASA Astrophysics Data System (ADS)

    Mbonye, M.; Stacy, J. G.; Jackson, P. D.; Winkler, C.

    2004-08-01

    We report on an extension of earlier work to search the archival database of the Differential Microwave Radiometers (DMR) aboard the COBE satellite, and the more recent public time-ordered datasets acquired with the Wilkinson Microwave Anisotropy Probe (WMAP), for transient signals associated with cosmic gamma-ray bursts (GRBs). Over the course of its 4-year mission the COBE/DMR serendipitously observed a number of GRBs and we previously established the first limits on prompt microwave emission from GRBs using a 9-month sample of data from the COBE/DMR instrument. We have been remotivated to extend our earlier search following the detection in recent years of a small number of bright optical and radio flares from GRBs. The prompt multiwavelength burst emission, presumed to arise from reverse shocks in the burst ejecta, provides insight into burst physics and the physical environments in which bursts occur. We present here the status of our extended search. We also describe how the increased sensitivity and angular resolution of the WMAP radiometers compared to the COBE/DMR lead to a factor of 10,000 improvement in overall point-source sensitivity. Such limits approach the signal levels predicted in the microwave band for the peak prompt emission arising from reverse shocks in GRBs. We acknowledge partial support for this work through NASA grant NAG5-10253.

  15. Microwave and hard X-ray emissions during the impulsive phase of solar flares: Nonthermal electron spectrum and time delay

    NASA Technical Reports Server (NTRS)

    Gu, Ye-Ming; Li, Chung-Sheng

    1986-01-01

    On the basis of the summing-up and analysis of the observations and theories about the impulsive microwave and hard X-ray bursts, the correlations between these two kinds of emissions were investigated. It is shown that it is only possible to explain the optically-thin microwave spectrum and its relations with the hard X-ray spectrum by means of the nonthermal source model. A simple nonthermal trap model in the mildly-relativistic case can consistently explain the main characteristics of the spectrum and the relative time delays.

  16. Role of Microwave Radio Emission in Estimation of CMEs Geo-Effectiveness in their Formation Stage

    NASA Astrophysics Data System (ADS)

    Durasova, M.; Fridman, V.; Sheyner, O.

    It was shown by authors earlier [1] that formation stage of the majority CMEs (time interval about 2 hours) is accompanied by sporadic events in solar radio emission. The study of evaluation of CMEs geo-effectiveness is carried out according to their manifestation in microwave emission during formation stage. Data value consists of original recordings of solar radio emission during regular observations in the Radio Astronomical Observatory "Zimenki" (Russia) at 6 frequencies in the range of 9100-100 MHz and includes about 185 events during XXI-XXIII cycles of solar activity. The first stage of study consists in establishment of the fact of CMEs geo- effectiveness on the basis of Kp-index behavior during 1-2 days after CMEs registration. Such parameters of CMES as their Central Locations (CL) and Apparent Widths (AW) were used for analysis. It is shown that the mean AW for geo-effective CMEs top the same one for non-geo-effective CMEs at least by 20%. Above-mentioned study gives stable results for 3 independent volumes of data of 1980-1988, 1998, and 1999. This effect is strengthen for all data concerning geo- effective CMEs of Loop -type and keeps in geometric notions where AW and CL contain the Earth location in space. For further study all radio data are separated into 2 volumes: the first one is connected with sporadic events that are observed during the formation of geo- effective CMEs and the second one - the others CMEs. The difference of characteristics of these sporadic events is examined. It is shown that it is possible to evaluate CMEs geo-effectiveness using totality of characteristics of broad band precursors in radio emission. This work is being supported by the Russian Foundation for Fundamental Research (grant N 00-02-17655).References. 1. Durasova M.S., Fridman V.M., Sheiner O.A. The distinctive features of nonstationary solar radio emission corresponding to CME's formation on the base of wide frequency range observations. In: Proc.of Euroconference

  17. Modeling microwave backscatter and thermal emission from linear dune fields: Application to Titan

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Janssen, M. A.; Kirk, R. L.; Lorenz, R. D.

    2014-02-01

    We present an electromagnetic model that relates the microwave backscatter and thermal emission from linear dune fields to their compositional, physical (roughness, subsurface porosity/heterogeneity) and geometrical (slope, orientation) properties. This model shows the value of exploring these highly directional and geometrical features in light of both their backscattering cross-section and emissivity. Compared to Cassini concurrent radar and radiometry data acquired from October 2004 to June 2011 over Titan's dune fields, it provides clues to understand variations among dune regions on the largest Saturn's moon. In particular, it brings a formal support to the idea first advanced in Le Gall et al. (Le Gall, A., Janssen, M.A., Wye, L.C., Hayes, A.G., Radebaugh, J., Savage, C., Zebker, H., Lorenz, R.D., Lunine, J.I., Kirk, R.L., Lopes, R.M.C., Wall, S., Callahan, P., Stofan, E.R., Farr, T. and the Cassini Radar Team [2011]. Icarus 213, 608-624) that the size of the interdune valleys (relative to that of the dunes) varies across Titan as well as the diffuse scattering properties of these interdune areas due to different thickness of sand cover (i.e. bedrock contribution) or degree of compaction/heterogeneity of the sand cover. The Fensal and Belet dune fields, in particular, are quite different in terms of these properties. The comparison between the model and Cassini data also reveals the potential presence of structures, possibly small-superposed dunes, oriented perpendicular to the dune crests in the Aztlan region.

  18. Standard dilution analysis of beverages by microwave-induced plasma optical emission spectrometry.

    PubMed

    Goncalves, Daniel A; McSweeney, Tina; Santos, Mirian C; Jones, Bradley T; Donati, George L

    2016-02-25

    In this work, standard dilution analysis (SDA) is combined with microwave-induced plasma optical emission spectrometry (MIP OES) to determine seven elements in coffee, green tea, energy drink, beer, whiskey and cachaça (Brazilian hard liquor). No sample preparation other than simple dilution in HNO3 1% v v(-1) is required. Due to relatively low plasma temperatures, matrix effects may compromise accuracies in MIP OES analyzes of complex samples. The method of standard additions (SA) offers enhanced accuracies, but is time-consuming and labor intensive. SDA offers a simpler, faster approach, with improved accuracies for complex matrices. In this work, SDA's efficiency is evaluated by spike experiments, and the results are compared to the traditional methods of external calibration (EC), internal standard (IS), and standard additions (SA). SDA is comparable to the traditional calibration methods, and it provides superior accuracies for applications involving ethanol-containing beverage samples. The SDA-MIP OES procedure is effective. Using only two calibration solutions, it may be easily automated for accurate and high sample throughput routine applications.

  19. Effects of varying soil moisture contents and vegetation canopies on microwave emissions

    NASA Technical Reports Server (NTRS)

    Burke, H.-H. K.; Schmugge, T. J.

    1982-01-01

    Results of NASA airborne passive microwave scans of bare and vegetated fields for comparison with ground truth tests are discussed and a model for atmospheric scattering of radiation by vegetation is detailed. On-board radiometers obtained data at 21, 2.8, and 1.67 cm during three passes over each of 46 fields, 28 of which were bare and the others having wheat or alfalfa. Ground-based sampling included moisture in five layers down to 15 cm in addition to soil temperature. The relationships among the brightness temperature and soil moisture, as well as the surface roughness and the vegetation canopy were examined. A model was developed for the dielectric coefficient and volume scattering for a vegetation medium. L- to C-band data were found useful for retrieving soil information directly. A surface moisture content of 5-35% yielded an emissivity of 0.9-0.7. The data agreed well with a combined multilayer radiative transfer model with simple roughness correction.

  20. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-02-01

    Microwave plasma-atomic emission spectrometry (MP-AES) was used to determine calcium, magnesium and potassium in various Turkish cheese samples. Cheese samples were dried at 100 °C for 2 days and then digested in a mixture of nitric acid/hydrogen peroxide (3:1). Good linearities (R(2) > 0.999) were obtained up to 10 μg mL(-1) of Ca, Mg and K at 445.478 nm, 285.213 nm and 766.491 nm, respectively. The analytes in a certified reference milk powder sample were determined within the uncertainty limits. Moreover, the analytes added to the cheese samples were recovered quantitatively (>90%). All determinations were performed using aqueous standards for calibration. The LOD values for Ca, Mg and K were 0.036 μg mL(-1), 0.012 μg mL(-1) and 0.190 μg mL(-1), respectively. Concentrations of Ca, K and Mg in various types of cheese samples produced in different regions of Turkey were found between 1.03-3.70, 0.242-0.784 and 0.081-0.303 g kg(-1), respectively.

  1. MICROWAVE EMISSION FROM THE EDGEWORTH-KUIPER BELT AND THE ASTEROID BELT CONSTRAINED FROM THE WILKINSON MICROWAVE ANISOTROPY PROBE

    SciTech Connect

    Ichikawa, Kazuhide; Fukugita, Masataka

    2011-08-01

    Objects in the Edgeworth-Kuiper Belt and the main asteroid belt should emit microwaves that may give rise to extra anisotropy signals in the multipole of the cosmic microwave background (CMB) experiment. Constraints are derived from the absence of positive detection of such anisotropies for l {approx}< 50, meaning the total mass of Edgeworth-Kuiper Belt objects is smaller than 0.2 M{sub +}. This limit is consistent with the mass extrapolated from the observable population with the size of a {approx}> 15 km, assuming that the small-object population follows the power law in size dN/da {approx} a{sup -q} with the canonical index expected for collisional equilibrium, q {approx_equal} 3.5, with which 23% of the mass is ascribed to objects smaller than are observationally accessible down to grains. A similar argument applied to the main asteroid belt indicates that the grain population should not increase more quickly than q {approx_equal} 3.6 toward smaller radii, if the grain population follows the power law that continues to observed asteroids with larger radii. Both cases are at or only slightly above the limit that can be physically significant, implying the importance of further tightening the CMB anisotropy limit, which may be attained with observation at higher radio frequencies.

  2. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying

  3. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  4. Impact of conifer forest litter on microwave emission at L-band

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports on the utilization of microwave modeling, together with ground truth and L-bank (1.4 GHz) brightness temperatures to investigate the characteristics of conifer forest floor. The microwave data were acquired over natural Virginia pine forest in Maryland by ComRAD, a ground-based mi...

  5. Preliminary results of long term correlation analysis among earthquakes (M>4) occurrence and anomalous transients in Radon emission and Earth's emitted TIR radiation in Northeastern Italy

    NASA Astrophysics Data System (ADS)

    Riggio, Anna; Capobianco, Stefano; Genzano, Nicola; Lisi, Mariano; Tamaro, Alberto; Santulin, Marco; Sileo, Giancanio; Tramutoli, Valerio

    2016-04-01

    Looking toward the assessment of a multi-parametric system for dynamically updating seismic hazard estimates and earthquake short term (from days to weeks) forecast, a preliminary step is to identify those parameters (chemical, physical, biological, etc.) whose anomalous variations can be, to some extent, associated to the complex process of earthquake preparation. Among the other parameters claimed as possible indicators of an impending seismic activity, the anomalous variations of radon emissions and of Earth's thermally emitted infrared radiation (TIR), have been proposed, since long time, as potential earthquake precursors. In this paper the added value of a multi-parametric approach is evaluated by applying a similar statistical analysis (based on the general RST approach) to long-term time series of Radon and TIR data collected in Northern Italy. Preliminary results of the correlation analysis performed with earthquakes (M>4) clearly show a strong reduction of false positive (up to zero) as soon as the number of considered parameter pass from one (just Radon) to two (Radon & TIR anomalies) (contemporary) considered parameters.

  6. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Schmugge, T.; Paris, J. F.

    1979-01-01

    An airborne experiment was conducted under NASA auspices to test the feasibility of detecting soil moisture by microwave remote sensing techniques over agricultural fields near Phoenix, Arizona at midday of April 5, 1974 and at dawn of the following day. Extensive ground data were obtained from 96 bare, sixteen hectare fields. Observations made using a scanning (2.8 cm) and a nonscanning (21 cm) radiometer were compared with the predictions of a radiative transfer emission model. It is shown that (1) the emitted intensity at both wavelengths correlates best with the near surface moisture, (2) surface roughness is found to more strongly affect the degree of polarization than the emitted intensity, (3) the slope of the intensity-moisture curves decreases in going from day to dawn, and (4) increased near surface moisture at dawn is characterized by increased polarization of emissions. The results of the experiment indicate that microwave techniques can be used to observe the history of the near surface moisture. The subsurface history must be inferred from soil physics models which use microwave results as boundary conditions.

  7. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    NASA Technical Reports Server (NTRS)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  8. Intervalence charge transfer luminescence: interplay between anomalous and 5d - 4f emissions in Yb-doped fluorite-type crystals.

    PubMed

    Barandiarán, Zoila; Seijo, Luis

    2014-12-21

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb(2+)-Yb(3+) mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb(2+)-doped CaF2 and SrF2, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb(2+)-Yb(3+) mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f(14)-1A1g→ 4f(13)((2)F7/2)5deg-1T1u absorption in the Yb(2+) part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb(3+) moiety is in the higher 4f(13)((2)F5/2) multiplet. The Yb(2+)-Yb(3+) → Yb(3+)-Yb(2+) IVCT emission consists of an Yb(2+) 5deg → Yb(3+) 4f7/2 charge transfer accompanied by a 4f7/2 → 4f5/2 deexcitation within the Yb(2+) 4f(13) subshell: [(2)F5/25deg,(2)F7/2] → [(2)F7/2,4f(14)]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF2, SrF2, BaF2, and SrCl2: the presence of IVCT luminescence in Yb-doped CaF2 and SrF2; its coexistence with regular 5d-4f emission in SrF2; its absence in BaF2 and SrCl2; the quenching of all emissions in BaF2; and the presence of additional 5d-4f emissions in SrCl2 which are absent in SrF2. They also allow to interpret and reproduce recent experiments on transient photoluminescence enhancement in Yb(2+)-doped CaF2 and SrF2, the

  9. Intervalence charge transfer luminescence: Interplay between anomalous and 5d - 4f emissions in Yb-doped fluorite-type crystals

    NASA Astrophysics Data System (ADS)

    Barandiarán, Zoila; Seijo, Luis

    2014-12-01

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb2+-Yb3+ mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb2+-doped CaF2 and SrF2, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb2+-Yb3+ mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f14-1A1g→ 4f13(2F7/2)5deg-1T1u absorption in the Yb2+ part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb3+ moiety is in the higher 4f13(2F5/2) multiplet. The Yb2+-Yb3+ → Yb3+-Yb2+ IVCT emission consists of an Yb2+ 5deg → Yb3+ 4f7/2 charge transfer accompanied by a 4f7/2 → 4f5/2 deexcitation within the Yb2+ 4f13 subshell: [2F5/25deg,2F7/2] → [2F7/2,4f14]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF2, SrF2, BaF2, and SrCl2: the presence of IVCT luminescence in Yb-doped CaF2 and SrF2; its coexistence with regular 5d-4f emission in SrF2; its absence in BaF2 and SrCl2; the quenching of all emissions in BaF2; and the presence of additional 5d-4f emissions in SrCl2 which are absent in SrF2. They also allow to interpret and reproduce recent experiments on transient photoluminescence enhancement in Yb2+-doped CaF2 and SrF2, the appearance of Yb2+ 4f-5d absorption bands in the excitation

  10. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop.

    PubMed

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio

    2015-12-11

    Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs.

  11. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop

    NASA Astrophysics Data System (ADS)

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio

    2015-12-01

    Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs.

  12. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop

    PubMed Central

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio

    2015-01-01

    Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs. PMID:26658880

  13. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines.

    PubMed

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H(α) (656 nm) and H(β) (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  14. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    NASA Astrophysics Data System (ADS)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  15. Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Derksen, C.; Montpetit, B.; Dupont, F.; GoïTa, K.

    2012-12-01

    Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within individual pixels. In this article, we investigate the coupling of a thermodynamic multilayered snow model with a passive microwave emission model. Results show that the snow model itself provides poor SWE simulations when compared to field measurements from two major field campaigns. Coupling the snow and microwave emission models with successive iterations to correct the influence of snow grain size and density significantly improves SWE simulations. This method was further validated using an additional independent data set, which also showed significant improvement using the two-step iteration method compared to standalone simulations with the snow model.

  16. Emission of diacetyl (2,3 butanedione) from natural butter, microwave popcorn butter flavor powder, paste, and liquid products.

    PubMed

    Rigler, Mark W; Longo, William E

    2010-01-01

    Diacetyl (2,3 butanedione), a butter-flavored diketone, has been linked to a severe lung disease, bronchiolitis obliterans. We tested a total of three natural butters and artificial microwave popcorn butter flavorings (three powders, two pastes, and one liquid) for bulk diacetyl concentration and diacetyl emissions when heated. Pastes and liquid butter flavors contained the highest amount (6% to 10.6%) while natural butter possessed up to 7500 times less diacetyl. All artificial butter flavors studied emitted diacetyl. Dry powders emitted up to 1.62 ppm diacetyl; wetted powders up to 54.7 ppm diacetyl; and pastes emitted up to 34.9 ppm diacetyl. The liquid butter flavor emitted up to 17.2 ppm diacetyl. Microwave popcorn flavoring mixtures emitted up to 11.4 ppm diacetyl. At least 93% of the dry powder particles were inhalable. These studies show that microwave butter flavoring products generate concentrations of diacetyl in the air great enough to endanger those exposed.

  17. An analysis of the anomalous high-current cathode emission in pseudospark and back-of-the-cathode lighted thyratron switches

    NASA Astrophysics Data System (ADS)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1989-06-01

    An analysis of the anomalously large cathode emission recently observed in the superdense glow of pseudospark and back-lighted thyratrons is presented. These switches are low-pressure (27 PaH2) glow-discharge pulsed-power devices. After operating at peak discharge currents of 6 to 8 kA and pulse durations of 0.5 to 1 microsec., the surface surrounding the cathode hole was found to have been homogeneously melted within a radius of approx. 4 mm indicating that the discharge is a superdense glow discharge, not an arc, with a cross-sectional area on the order of 1 sq cm. This conclusion is also supported by streak camera measurements. The current density at the cathode surface under these conditions is 5 to 10 kA/sq cm, several orders of magnitude larger than that of thermionic cathodes in common thyratrons. This high-current density is explained by intense cathode heating from a high-current density ion beam produced in the cathode fall during the initial stage of current buildup. The surface heating resulting from this beam yields a significant field-enhanced thermionic emission of electrons.

  18. An analysis of the anomalous high-current cathode emission in pseudospark and back-of-the-cathode lighted thyratron switches

    NASA Astrophysics Data System (ADS)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1989-06-01

    An analysis of the anomalously large cathode emission recently observed in the superdense glow of pseudospark and back-lighted thyratrons is presented. These switches are low-pressure (27 Pa H2) glow-discharge pulsed-power devices. After operating at peak discharge currents of 6-8 kA and pulse durations of 0.5-1 μs, the surface surrounding the cathode hole was found to have been homogeneously melted within a radius of ≊4 mm indicating that the discharge is a superdense glow discharge, not an arc, with a cross-sectional area on the order of 1 cm2. This conclusion is also supported by streak camera measurements. The current density at the cathode surface under these conditions is 5-10 kA/cm2, several orders of magnitude larger than that of thermionic cathodes in common thyratrons. This high-current density is explained by intense cathode heating from a high-current density ion ``beam'' produced in the cathode fall during the initial stage of current buildup. The surface heating resulting from this ``beam'' yields a significant field-enhanced thermionic emission of electrons.

  19. Diversity of Methane-Oxidizing Bacteria in Soils from “Hot Lands of Medolla” (Italy) Featured by Anomalous High-Temperatures and Biogenic CO2 Emission

    PubMed Central

    Cappelletti, Martina; Ghezzi, Daniele; Zannoni, Davide; Capaccioni, Bruno; Fedi, Stefano

    2016-01-01

    “Terre Calde di Medolla” (TCM) (literally, “Hot Lands of Medolla”) refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO2, which has been linked to CH4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard’s analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of “Terre Calde di Medolla” with the presence of microbial methane-oxidizing bacteria. PMID:27645100

  20. Diversity of Methane-Oxidizing Bacteria in Soils from "Hot Lands of Medolla" (Italy) Featured by Anomalous High-Temperatures and Biogenic CO2 Emission.

    PubMed

    Cappelletti, Martina; Ghezzi, Daniele; Zannoni, Davide; Capaccioni, Bruno; Fedi, Stefano

    2016-12-23

    "Terre Calde di Medolla" (TCM) (literally, "Hot Lands of Medolla") refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO2, which has been linked to CH4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard's analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of "Terre Calde di Medolla" with the presence of microbial methane-oxidizing bacteria.

  1. Microwave remediation of electronic circuitry waste and the resulting gaseous emissions

    NASA Astrophysics Data System (ADS)

    Schulz, Rebecca L.

    The global community has become increasingly dependent on computer and electronic technology. As a result, society is faced with an increasing amount of obsolete equipment and electronic circuitry waste. Electronic waste is generally disposed of in landfills. While convenient, this action causes a substantial loss of finite resources and poses an environmental threat as the circuit board components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury and cadmium may leach from the circuitry and find their way into the groundwater supply. For this dissertation, a microwave waste remediation system was developed. The system was designed to remove the organic components from a wide variety of electronic circuitry. Upon additional heating of the resulting ash material in an industrial microwave, a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. Gaseous organic compounds that were generated as a result of organic removal were treated in a microwave off gas system that effectively reduced the concentration of the products emitted by several orders of magnitude, and in some cases completely destroying the waste gas. Upon further heating in an industrial microwave, a glass and metal product were recovered. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed. The study tested the microwave system at 3 flow rates (10, 30, and 50 ft 3/min) and three temperatures (400, 700 and 1000°C. In order to test the effects of microwave energy, the experiments were repeated using a conventional furnace. While microwave energy is widely used, the mechanisms of interaction with

  2. Electron pitch angle scattering and the impulsive phase microwave and hard X-ray emission from solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Kundu, M. R.; Papadopoulos, K.

    1982-01-01

    Observations and theoretical considerations have led to a model for impulsive phase flare emission involving the heating and acceleration of thermal electrons in the coronal part of a magnetic loop. The bulk of the heated gas is confined between conduction fronts, but particles with velocities a few times greater than the thermal velocity can escape into the lower part of the loop. It is shown that, when the electron gyrofrequency exceeds the plasma frequency, the escaping electrons are unstable to the generation of electrostatic plasma waves which scatter the particles in pitch angle to a nearly isotropic distribution. It is also shown that this scattering can (1) enhance the microwave emission from the upper part of the loop, and (2) due to the Landau damping of both low and high phase velocity waves, can lead to one or two breaks in the impulsive-phase hard X-ray spectrum.

  3. Publicly Available Numerical Codes for Modeling the X-ray and Microwave Emissions from Solar and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Mariska, John T.; McTiernan, James M.; Ofman, Leon; Petrosian, Vahe; Ramaty, Reuven; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have posted numerical codes on the Web for modeling the bremsstrahlung x-ray emission and the a gyrosynchrotron radio emission from solar and stellar activity. In addition to radiation codes, steady-state and time-dependent Fokker-Planck codes are provided for computing the distribution and evolution of accelerated electrons. A 1-D hydrodynamics code computes the response of the stellar atmosphere (chromospheric evaporation). A code for modeling gamma-ray line spectra is also available. On-line documentation is provided for each code. These codes have been developed for modeling results from the High Energy Solar Spectroscopic Imager (HESSI) along related microwave observations of solar flares. Comprehensive codes for modeling images and spectra of solar flares are under development. The posted codes can be obtained on NASA/Goddard's HESSI Web Site at http://hesperia.gsfc.nasa.gov/hessi/modelware.htm. This work is supported in part by the NASA Sun-Earth Connection Program.

  4. Secondary-electron-emission properties of conducting surfaces with application to multistage depressed collectors for microwave amplifiers

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1977-01-01

    To improve the efficiency of high power microwave tubes, low secondary electron yield electrode surface for use in depressed collectors are needed. The secondary emission characteristics of a number of materials were investigated. The materials studied were beryllium, carbon (soot and pyrolytic graphite), copper, titanium carbide, and tantalum. Both total secondary yield delta and relative reflected primary yield were measured. These measurements were made in conjunction with Auger spectroscopy so that the secondary emission characteristics could be determined as a function of surface contamination or purity. The results show that low atomic weight elements, such as beryllium and carbon, have the lowest reflected primary yield and that roughening the surface of an electrode can markedly decrease secondary yield both for delta and reflected primaries. All factors considered, a roughened pyrolytic graphite surface showed the greatest potential for use as an electrode surface in depressed collectors.

  5. Evaluation of the effects of varying moisture contents on microwave thermal emissions from agriculture fields

    NASA Technical Reports Server (NTRS)

    Burke, H. H. K.

    1980-01-01

    Three tasks related to soil moisture sensing at microwave wavelengths were undertaken: (1) analysis of data at L, X and K sub 21 band wavelengths over bare and vegetated fields from the 1975 NASA sponsored flight experiment over Phoenix, Arizona; (2) modeling of vegetation canopy at microwave wavelengths taking into consideration both absorption and volume scattering effects; and (3) investigation of overall atmospheric effects at microwave wavelengths that can affect soil moisture retrieval. Data for both bare and vegetated fields are found to agree well with theoretical estimates. It is observed that the retrieval of surface and near surface soil moisture information is feasible through multi-spectral and multi-temporal analysis. It is also established that at long wavelengths, which are optimal for surface sensing, atmospheric effects are generally minimal. At shorter wavelengths, which are optimal for atmosheric retrieval, the background surface properties are also established.

  6. Attenuation of soil microwave emissivity by corn and soybeans at 1.4 and 5 GHz

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1989-01-01

    Theory and experiments have shown that passive microwave radiometers can be used to measure soil moisture. However, the presence of a vegetative cover alters the measurement that might be obtained under bare conditions. Deterministically accounting for the effect of vegetation and developing algorithms for extracting soil moisture from observations of a vegetable-soil complex present significant obstacles to the practical use of this approach. The presence of a vegetation canopy reduces the sensitivity of passive microwave instruments to soil moisture variations. The reduction in sensitivity, as compared to a bare-soil relationship, increases as microwave frequency increases, implying that the longest wavelength sensors should provide the most information. Sensitivity also decreases as the amount of vegetative wet biomass increases for a given type of vegetation.

  7. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  8. On the Early-Time X-Ray Spectra of Swift Afterglows. I. Evidence for Anomalous Soft X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Butler, N. R.

    2007-02-01

    We have conducted a thorough and blind search for emission lines in >70 Swift X-ray afterglows of total exposure ~107 s. We find that most afterglows are consistent with pure power laws plus extinction. Significant outliers to the population exist at the 5%-10% level and have anomalously soft, possibly thermal spectra. Four bursts are singled out via possible detections of two to five lines: GRB 060218, GRB 060202, GRB 050822, and GRB 050714B. Alternatively, a blackbody model with kT~0.1-0.5 keV can describe the soft emission in each afterglow. The most significant soft-component detections in the full data set of ~2000 spectra correspond to GRB 060218/SN 2006aj, with line significances ranging up to ~20 σ. A thermal plasma model fit to the data indicates that the flux is primarily due to L-shell transitions of Fe at roughly solar abundance. We associate (>4 σ significant) line triggers in the three other events with K-shell transitions in light metals. We favor a model where the possible line emission in these afterglows arises from the mildly relativistic cocoon of matter surrounding the GRB jet as it penetrates and exits the surface of the progenitor star. The emitting material in each burst is at a similar distance ~1012-1013 cm, a similar density ~1017 cm-3, and subject to a similar flux of ionizing radiation. The lines may correlate with the X-ray flaring. For the blackbody interpretation, the soft flux may arise from breakout of the GRB shock or plasma cocoon from the progenitor stellar wind, as recently suggested for GRB 060218 (Campana et al. 2006). Due to the low z of GRB 060218, bursts faint in gamma rays with fluxes dominated by this soft X-ray component could outnumber classical GRBs 100 to 1.

  9. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  10. A large scale microwave emission model for forests. Contribution to the SMOS algorithm

    NASA Astrophysics Data System (ADS)

    Rahmoune, R.; Della Vecchia, A.; Ferrazzoli, P.; Guerriero, L.; Martin-Porqueras, F.

    2009-04-01

    1. INTRODUCTION It is well known that surface soil moisture plays an important role in the water cycle and the global climate. SMOS is a L-Band multi-angle dual-polarization microwave radiometer for global monitoring of this variable. In the areas covered by forests, the opacity is relatively high, and the knowledge of moisture remains problematic. A significant percentage of SMOS pixels at global scale is affected by fractional forest. Whereas the effect of the vegetation can be corrected thanks a simple radiative model, in case of dense forests the wave penetration is limited and the sensitivity to variations of soil moisture is poor. However, most of the pixels are mixed, and a reliable estimate of forest emissivity is important to retrieve the soil moisture of the areas less affected by forest cover. Moreover, there are many sparse woodlands, where the sensitivity to variations of soil moisture is still acceptable. At the scale of spaceborne radiometers, it is difficult to have a detailed knowledge of the variables which affect the overall emissivity. In order to manage effectively these problems, the electromagnetic model developed at Tor Vergata University was combined with information available from forest literature. Using allometric equations and other information, the geometrical and dielectric inputs required by the model were related to global variables available at large scale, such as the Leaf Area Index. This procedure is necessarily approximate. In a first version of the model, forest variables were assumed to be constant in time, and were simply related to the maximum yearly value of Leaf Area Index. Moreover, a unique sparse distribution of trunk diameters was assumed. Finally, the temperature distribution within the crown canopy was assumed to be uniform. The model is being refined, in order to consider seasonal variations of foliage cover, subdivided into arboreous foliage and understory contributions. Different distributions of trunk diameter

  11. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Koinkar, Pankaj M.; Patil, Sandip S.; Kim, Tae-Gyu; Yonekura, Daisuke; More, Mahendra A.; Joag, Dilip S.; Murakami, Ri-ichi

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B 2O 3 concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B 2O 3 concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/μm, respectively. The field emission current stability investigated at the preset value of ˜1 μA is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  12. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    DTIC Science & Technology

    2012-04-27

    conditions (A.1–A.3), we evaluate the entries in Table 3 as small (s), large ( l ), or arbitrary (arb) values and formulate the entries in Table 4 for x, m − 1...G.J.; Cavaleri, L .; Donelan, M .; Hasselmann, K.; Hasselmann, S.; Janseen, P.A.E.M. Dynamics and Modeling of Ocean Waves; Cambridge University Press...p. 133). Region x m -1 x( m − 1) Regime RG (1) arb s s Rayleight-Gans AD (2) l s arb Anomalous Diffraction GO (3) l arb l Geometric optics TR

  13. High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy.

    PubMed

    Zeng, Zhongming; Amiri, Pedram Khalili; Krivorotov, Ilya N; Zhao, Hui; Finocchio, Giovanni; Wang, Jian-Ping; Katine, Jordan A; Huai, Yiming; Langer, Juergen; Galatsis, Kosmas; Wang, Kang L; Jiang, Hongwen

    2012-07-24

    The excitation of the steady-state precessions of magnetization opens a new way for nanoscale microwave oscillators by exploiting the transfer of spin angular momentum from a spin-polarized current to a ferromagnet, referred to as spin-transfer nano-oscillators (STNOs). For STNOs to be practical, however, their relatively low output power and their relatively large line width must be improved. Here we demonstrate that microwave signals with maximum measured power of 0.28 μW and simultaneously narrow line width of 25 MHz can be generated from CoFeB-MgO-based magnetic tunnel junctions having an in-plane magnetized reference layer and a free layer with strong perpendicular anisotropy. Moreover, the generation efficiency is substantially higher than previously reported STNOs. The results will be of importance for the design of nanoscale alternatives to traditional silicon oscillators used in radio frequency integrated circuits.

  14. Microwave radio emissions of negative cloud-to-ground lightning flashes

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Beasley, W.

    2014-01-01

    We report preliminary results of a new observational study of microwave-frequency electromagnetic radiation that is emitted by lightning discharge processes. Radiation was observed with a ceramic patch antenna and a digital radio receiver tuned to a center frequency of 1.63 GHz and a bandwidth of 2 MHz. The recorded radiation waveforms are compared with data collected by the Oklahoma Lightning Mapping Array (OKLMA) lightning mapping system and the co-located Earth Networks Total Lightning Network (ENTLN) broadband electric field antenna. Microwave radiation was observed to occur during preliminary breakdown, negative stepped leader breakdown, negative dart leader breakdown, and return strokes. Characteristic radiation signatures were observed, including trains of individually resolvable impulses during breakdown and brief but intense trains of noise-like bursts during return strokes.

  15. Near-infrared digital photography to estimate snow correlation length for microwave emission modeling.

    PubMed

    Toure, Ally Mounirou; Goïta, Kalifa; Royer, Alain; Mätzler, Christian; Schneebeli, Martin

    2008-12-20

    The study is based on experimental work conducted in alpine snow. We made microwave radiometric and near-infrared reflectance measurements of snow slabs under different experimental conditions. We used an empirical relation to link near-infrared reflectance of snow to the specific surface area (SSA), and converted the SSA into the correlation length. From the measurements of snow radiances at 21 and 35 GHz, we derived the microwave scattering coefficient by inverting two coupled radiative transfer models (the sandwich and six-flux model). The correlation lengths found are in the same range as those determined in the literature using cold laboratory work. The technique shows great potential in the determination of the snow correlation length under field conditions.

  16. The Nanophysics of Electron Emission and Breakdown for High Power Microwave Source

    DTIC Science & Technology

    2009-12-21

    Figure: Development of HPM surface flashover on corrugated polycarbonate window. Time referenced to 50% max luminosity ( measured via...Krile, J., Neuber, A., “Imaging of High Power Microwave Induced Surface Flashover on a Corrugated Dielectric Window ,” IEEE Transactions on Plasma ...Similarities Of Dielectric Surface Flashover at Atmospheric Conditions for Pulsed Unipolar and RF Excitation,” Laser Physics in Special Issue " Plasma

  17. Fast polarization changes in mm microwave emission of weak multistructured solar bursts

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Strauss, F. M.; Costa, J. E. R.; Dennis, B. R.

    1982-01-01

    Circular polarization of weak multistructured solar bursts was measured at mm microwaves with unprecedented sensitivity (0.03 sfu rms) and high time resolution (1ms). It was shown that sudden changes occur in the degree of polarization with time scales of 0.04 to 0.3 s. In most cases the degree of polarization attained maximum values before the maximum flux in both mm microwaves and hard X-rays with time scales of 0.04 to 1.0 s. The timing accuracy in determining the degree of polarization was 40 ms. Physical phenomena are discussed invoking one or a combination of various possible causes for the observed effects. The bursts at mm microwaves were weak compared to the contribution of the preexisting active regions, and therefore the changes in magnetoionic propagation conditions for emerging radiation plays an important role in the observed effects. Composite effects due to more than one polarizing mechanism or more than one polarized spots within the antenna beam are discussed.

  18. Microwave emission as a proxy of CME speed in ICME arrival time predictions

    NASA Astrophysics Data System (ADS)

    Salas Matamoros, Carolina; Klein, Karl-Ludwig; Trottet, Gerard

    2016-04-01

    The propagation of a coronal mass ejection (CME) to the Earth takes between about 13 hours and several days. Observations of early radiative signatures of CMEs therefore provide a possible means to predict the arrival time of the CME near Earth. The fundamental tool to measure CME speeds in the corona is coronography, but the Earth-directed speed of a CME cannot be measured by a coronagraph located on the Sun-Earth line. Various proxies have been devised, based on the coronographic measurement. As an alternative, we explore radiative proxies. In the present contribution we investigate if microwave observations can be employed as a proxy for CME propagation speed. Caroubalos (1964) had shown that the higher the fluence of a solar radio burst near 3 GHz, the shorter is the time lapse between the solar event and the sudden commencement of a geomagnetic storm. We reconsider the relationship between CME speed and microwave fluence for limb CMEs in cycle 23 and early cycle 24. Then we use the microwave fluence as a proxy of CME speed of Earth-directed CMEs, together with the empirical interplanetary acceleration model devised by Gopalswamy et al. (2001), to predict the CME arrival time at Earth. These predictions are compared with observed arrival times and with the predictions based on other proxies, including soft X-rays and coronographic measurements.

  19. Anomalous Pulsars

    NASA Astrophysics Data System (ADS)

    Malov, I. F.

    Many astrophysicists believe that Anomalous X-Ray Pulsars (AXP), Soft Gamma-Ray Repeaters (SGR), Rotational Radio Transients (RRAT), Compact Central Objects (CCO) and X-Ray Dim Isolated Neutron Stars (XDINS) belong to different classes of anomalous objects with neutron stars as the central bodies inducing all their observable peculiarities. We have shown earlier [1] that AXPs and SGRs could be described by the drift model in the framework of the preposition on usual properties of the central neutron star (rotation periods P 0.01 - 1 sec and, surface magnetic fields B ~ 10^11-10^13 G). Here we shall try to show that some differences of the sources under consideration will be explained by their geometry (particularly, by the angle β between their rotation and magnetic axes). If β <~ 100 (the aligned rotator) the drift waves at the outer layers of the neutron star magnetosphere should play a key role in the observable periodicity. For large values of β (the case of the nearly orthogonal rotator) an accretion from the surrounding medium (for example, from the relic disk) can cause some modulation and transient events in received radiation. Recently Kramer et al. [2] and Camilo et al. [3] have shown that AXPs J1810-197 and 1E 1547.0 - 5408 have both small angles β, that is these sources are nearly aligned rotators, and the drift model should be used for their description. On the other hand, Wang et al. [4] detected IR radiation from the cold disk around the isolated young X-ray pulsar 4U 0142+61. This was the first evidence of the disk-like matter around the neutron star. Probably there is the bimodality of anomalous pulsars. AXPs, SGRs and some radio transients belong to the population of aligned rotators with the angle between the rotation axis and the magnetic moment β < 200. These objects are described by the drift model, and their observed periods are connected with a periodicity of drift waves. Other sources have β ~ 900, and switching on's and switching off

  20. Influence of (FeO + TiO2) abundance on the thermal emission from the lunar regolith using Chang'E-2 microwave radiometer data

    NASA Astrophysics Data System (ADS)

    Meng, Zhiguo; Ping, Jinsong; Xu, Yi; Cai, Zhanchuan; Zheng, Yongchun

    Abstract:The microwave radiometer data obtained from Chang’E-2 mission (CELMS data) has provided new opportunity to study the influence of the (FeO+TiO2) abundance on the microwave thermal emission of the lunar regolith. In this paper, the radiative transfer simulation is employed to study the change of the brightness temperature with (FeO+TiO2) abundance at different frequencies and surface temperature. The (FeO+TiO2) abundance are derived from Clementine UV-VIS data and the samples from Apollo, Luna and Surveyor projects. The simulation results along the Equator indicate that the (FeO+TiO2) abundance has strong impact on the microwave thermal emission of the lunar regolith. However, the data along the Longitude 0° shows that the (FeO+TiO2) abundance is not the dominant influential factor of the microwave thermal emission of the lunar regolith. Specifically, the abnormal brightness temperature at 160°W (Unnamed crater), 138°W (Crater Vavilov), 125°W (Crater Hertzsprung), 116°E (Crater Abul Wáfa), 119°E (Crater Heron), 130°E (Crater Catena Gregory) and 140°E (Crater Catena Mendeleev) shows that the (FeO+TiO2) abundance is not the only influential factor for the observed brightness temperature. In addition, the correlations between the four-channel brightness temperature and the (FeO+TiO2) abundance in Apollo landing site and along the Equator both indicate that the (FeO+TiO2) abundance is slightly decreasing with depth. The research is essential for the inversion of the lunar regolith parameters with the microwave radiometer data from Chang’E satellites. Keywords: lunar regolith, microwave thermal emission, CELMS data, (FeO+TiO2) abundance

  1. Angular power spectrum of the FASTICA cosmic microwave background component from Background Emission Anisotropy Scanning Telescope data

    NASA Astrophysics Data System (ADS)

    Donzelli, S.; Maino, D.; Bersanelli, M.; Childers, J.; Figueiredo, N.; Lubin, P. M.; Meinhold, P. R.; O'Dwyer, I. J.; Seiffert, M. D.; Villela, T.; Wandelt, B. D.; Wuensche, C. A.

    2006-06-01

    We present the angular power spectrum of the cosmic microwave background (CMB) component extracted with FASTICA from the Background Emission Anisotropy Scanning Telescope (BEAST) data. BEAST is a 2.2-m off-axis telescope with a focal plane comprising eight elements at Q (38-45 GHz) and Ka (26-36 GHz) bands. It operates from the UC (University of California) White Mountain Research Station at an altitude of 3800 m. The BEAST CMB angular power spectrum has already been calculated by O'Dwyer et al. using only the Q-band data. With two input channels, FASTICA returns two possible independent components. We found that one of these two has an unphysical spectral behaviour, while the other is a reasonable CMB component. After a detailed calibration procedure based on Monte Carlo (MC) simulations, we extracted the angular power spectrum for the identified CMB component and found a very good agreement with the already published BEAST CMB angular power spectrum and with the Wilkinson Microwave Anisotropy Probe (WMAP) data.

  2. Quasi-Periodicities in the Anomalous Emission Events in Pulsars B1859+07 and B0919+06

    NASA Astrophysics Data System (ADS)

    Wahl, Haley; Rankin, Joanna M.

    2017-01-01

    A quasi-periodicity has been identified in the strange emission shifts in pulsar B1859+07 and possibly B0919+06. These events, first investigated by Rankin, Rodriguez & Wright in 2006, originally appeared disordered or random, but further mapping as well as Fourier analysis has revealed that they occur on a fairly regular basis of approximately 150 rotation periods in B1859+07 and perhaps some 700 in B0919+06. The events-which we now refer to as "swooshes"-are not the result of any known type of mode-changing, but rather we find that they are a uniquely different effect, produced by some mechanism other than any known pulse-modulation phenomenon. Given that we have yet to find another explanation for the swooshes, we have appealed to a last resort for periodicities in astrophysics: orbital dynamics in a binary system. Such putative "companions" would then have semi-major axes comparable to the light cylinder radius for both pulsars. However, in order to resist tidal disruption their densities must be at least some 10^5 grams/cm^3-therefore white-dwarf cores or something even denser might be indicated.

  3. Quasi-periodicities in the anomalous emission events in pulsars B1859+07 and B0919+06

    NASA Astrophysics Data System (ADS)

    Wahl, Haley M.; Orfeo, Daniel J.; Rankin, Joanna M.; Weisberg, Joel M.

    2016-10-01

    A quasi-periodicity has been identified in the strange emission shifts in pulsar B1859+07 and possibly B0919+06. These events, first investigated by Rankin, Rodriguez & Wright in 2006, originally appeared disordered or random, but further mapping as well as Fourier analysis has revealed that they occur on a fairly regular basis of approximately 150 rotation periods in B1859+07 and perhaps some 700 in B0919+06. The events - which we now refer to as `swooshes' - are not the result of any known type of mode-changing, but rather we find that they are a uniquely different effect, produced by some mechanism other than any known pulse-modulation phenomenon. Given that we have yet to find another explanation for the swooshes, we have appealed to a last resort for periodicities in astrophysics: orbital dynamics in a binary system. Such putative `companions' would then have semimajor axes comparable to the light cylinder radius for both pulsars. However, in order to resist tidal disruption, their densities must be at least some 105 g cm-3 - therefore, white-dwarf cores or something even denser might be indicated.

  4. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  5. Plasma upflows and microwave emission in hot supra-arcade structure associated with AN M1.6 limb flare

    SciTech Connect

    Kim, S.; Shibasaki, K.; Cho, K.-S.

    2014-04-20

    We have investigated a supra-arcade structure associated with an M1.6 flare, which occurred on the south-east limb on 2010 November 4. It is observed in EUV with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, microwaves at 17 and 34 GHz with the Nobeyama Radioheliograph (NoRH), and soft X-rays of 8-20 keV with RHESSI. Interestingly, we found exceptional properties of the supra-arcade thermal plasma from the AIA 131 Å and the NoRH: (1) plasma upflows along large coronal loops and (2) enhancing microwave emission. RHESSI detected two soft X-ray sources, a broad one in the middle of the supra-arcade structure and a bright one just above the flare-arcade. We estimated the number density and thermal energy for these two source regions during the decay phase of the flare. In the supra-arcade source, we found that there were increases of the thermal energy and the density at the early and last stages, respectively. On the contrary, the density and thermal energy of the source on the top of the flare-arcade decreases throughout. The observed upflows imply that there is continuous energy supply into the supra-arcade structure from below during the decay phase of the flare. It is hard to explain by the standard flare model in which the energy release site is located high in the corona. Thus, we suggest that a potential candidate of the energy source for the hot supra-arcade structure is the flare-arcade, which has exhibited a predominant emission throughout.

  6. Modeling of Microwave Emissions from the Marie-Byrd Antarctic Region: A Stable Calibration Target in the L-band

    NASA Astrophysics Data System (ADS)

    Misra, S.; Brown, S.

    2010-12-01

    With the recent launch of SMOS (Soil Moisture Ocean Salinity) and upcoming missions Aquarius and SMAP (Soil Moisture Active Passive), calibration in L-band has become an important issue. The Aquarius mission, due to be launched in April 2011, is responsible for globally mapping sea-surface salinity. Due to the high sensitivity of brightness temperature to salinity and high precision of the Aquarius radiometers, it is necessary to have temporally stable calibration sources. Previously, Dome-C in the east Antarctic region was suggested as a promising area to monitor radiometer calibrations in the L-band toward the hot end of the brightness temperature spectrum (Macelloni et al., 2006; Macelloni et al., 2007). We present the Marie-Byrd region in west Antarctica as an excellent calibration reference, due to both its temporal stability over years as well as spatial vastness. In order to identify stable calibration regions for L-band we used 6-37GHz AMSR-E data. The spatial and temporal variability of AMSR-E brightness temperatures over the Antarctic region was analyzed, and only regions that were stable in both domains (like Marie-Byrd) were identified as radiometrically stable. Using data obtained from Automatic Weather Stations (AWS) near Marie-Byrd, the correlation between surface temperature and deep-ice temperature, as measured by microwaves was calculated. Results indicate that as the microwave frequency is lowered, the peak-to-peak annual variation of brightness temperature decreases. The bulk of emission for low frequencies occurs deep in the ice which is very stable over time and decorrelated with short term surface temperature fluctuations. As a result, at L-band the ice-regions like Marie-Byrd in Antarctica serve as an excellent source of calibration. A coupled ice heat-transport and radiative-transfer model was developed to predict brightness temperatures observed at low microwave frequencies. The ice model takes into account the surface fluctuations of

  7. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller

  8. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    SciTech Connect

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L.; Côté, C.; Sarkissian, A.

    2014-03-21

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the

  9. The Air Microwave Yield (AMY) experiment to measure the GHz emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Bohacova, M.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Engel, R.; Facal San Luis, P.; Iarlori, M.; Martello, D.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Riegel, M.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Smida, R.; Verzi, V.; Werner, F.; Williams, C.

    2013-06-01

    The AMY experiment aims to measure the Microwave Bremsstrahlung Radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories and the final purpose is to characterize the process to be used in a next generation detectors of ultra-high energy cosmic rays (up to 1020eV). We describe the experimental set-up and the first test measurement performed in November 2011.

  10. Research relative to angular distribution of snow reflectance/snow cover characterization and microwave emission

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Davis, Robert E.

    1987-01-01

    Remote sensing has been applied in recent years to monitoring snow cover properties for applications in hydrologic and energy balance modeling. In addition, snow cover has been recently shown to exert a considerable local influence on weather variables. Of particular importance is the potential of sensors to provide data on the physical properties of snow with high spatial and temporal resolution. Visible and near-infrared measurements of upwelling radiance can be used to infer near-surface properties through the calculation of albedo. Microwave signals usually come from deeper within the snow pack and thus provide depth-integrated information, which can be measured through clouds and does not relay on solar illumination.Fundamental studies examining the influence of snow properties on signals from various parts of the electromagnetic spectrum continue in part because of the promise of new remote sensors with higher spectral and spatial accuracy. Information in the visible and near-infrared parts of the spectrum comprise nearly all available data with high spatial resolution. Current passive microwave sensors have poor spatial resolution and the data are problematic where the scenes consist of mixed landscape features, but they offer timely observations that are independent of cloud cover and solar illumination.

  11. Frequency and Angular Variations of Land Surface Microwave Emissivities: Can we Estimate SSM/T and AMSU Emissivities from SSM/I Emissivities?

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.

    1999-01-01

    To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.

  12. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  13. Asymmetric absorption and emission of energy by a macroscopic mechanical oscillator in a microwave circuit optomechanical system

    NASA Astrophysics Data System (ADS)

    Harlow, Jennifer; Palomaki, Tauno; Kerckhoff, Joseph; Teufel, John; Simmonds, Raymond; Lehnert, Konrad

    2012-02-01

    We measure the asymmetry in rates for emission and absorption of mechanical energy in an electromechanical system composed of a macroscopic suspended membrane coupled to a high-Q, superconducting microwave resonant circuit. This asymmetry is inherently quantum mechanical because it arises from the inability to annihilate the mechanical ground state. As such, it is only appreciable when the average mechanical occupancy approaches one. This measurement is now possible due to the recent achievement of ground state cooling of macroscopic mechanical oscillators [1,2]. Crucially, we measure the thermal cavity photon occupancy and account for it in our analysis. Failure to correctly account for the interference of these thermal photons with the mechanical signal can lead to a misinterpretation of the data and an overestimate of the emission/absorption asymmetry. [4pt] [1] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, ``Sideband Cooling Micromechanical Motion to the Quantum Ground State,'' Nature, 475, 359-363 (2011).[0pt] [2] Jasper Chan, et al, ``Laser cooling of a nanomechanical oscillator into its quantum ground state,'' Nature, 478, 89-92 (2011).

  14. Thermal microwave emission from vegetated fields - A comparison between theory and experiment

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Dombrowski, M.; Chuang, S. L.; Shin, R. T.

    1984-01-01

    The radiometric measurements over bare field and fields covered with grass, soybean, corn, and alfalfa were made with 1.4- and 5-GHz microwave radiometers during August-October 1978. The measured results are compared with radiative transfer theory treating the vegetated fields as a two-layer random medium. It is found that the presence of a vegetation cover generally gives a higher brightness temperature T sub B than that expected from a bare soil. The amount of this T sub B excess increases with increase in the vegetation biomass and in the frequency of the observed radiation. The results of radiative transfer calculations, which include a parameter characterizing ground surface roughness, generally match well with the experimental data.

  15. Observation of a Short Period Quasi-periodic Pulsation in Solar X-Ray, Microwave, and EUV Emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk

    2017-02-01

    This paper presents the multiwavelength analysis of a 13 s quasi-periodic pulsation (QPP) observed in hard X-ray (12–300 keV) and microwave (4.9–34 GHz) emissions during a C-class flare that occurred on 2015 September 21. Atmospheric Image Assembly (AIA) 304 and 171 Å images show an emerging loop/flux tube (L1) moving radially outward, which interacts with the preexisting structures within the active region (AR). The QPP was observed during the expansion of and rising motion of L1. The Nobeyama Radioheliograph microwave images in 17/34 GHz channels reveal a single radio source that was co-spatial with a neighboring loop (L2). In addition, using AIA 304 Å images, we detected intensity oscillations in the legs of L2 with a period of about 26 s. A similar oscillation period was observed in the GOES soft X-ray flux derivative. This oscillation period seems to increase with time. We suggest that the observed QPP is most likely generated by the interaction between L2 and L3 observed in the AIA hot channels (131 and 94 Å). The merging speed of loops L2 and L3 was ∼35 km s‑1. L1 was destroyed possibly by its interaction with preexisting structures in the AR, and produced a cool jet with the speed of ∼106–118 km s‑1 associated with a narrow CME (∼770 km s‑1). Another mechanism of the QPP in terms of a sausage oscillation of the loop (L2) is also possible.

  16. Simulations of Gyrosynchrotron Microwave Emission from an Oscillating 3D Magnetic Loop

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. A.; Van Doorsselaere, T.; Reznikova, V. E.

    2015-04-01

    Radio observations of solar flares often reveal various periodic or quasi-periodic oscillations. Most likely, these oscillations are caused by magnetohydrodynamic (MHD) oscillations of flaring loops which modulate the emission. Interpreting the observations requires comparing them with simulations. We simulated the gyrosynchrotron radio emission from a semicircular (toroidal-shaped) magnetic loop containing sausage-mode MHD oscillations. The aim was to detect the observable signatures specific to the considered MHD mode and to study their dependence on the various source parameters. The MHD waves were simulated using a linear three-dimensional model of a magnetized plasma cylinder; both standing and propagating waves were considered. The curved loop was formed by replicating the MHD solutions along the plasma cylinder and bending the cylinder; this model allowed us to study the effect of varying the viewing angle along the loop. The radio emission was simulated using a three-dimensional model, and its spatial and temporal variations were analyzed. We considered several loop orientations and different parameters of the magnetic field, plasma, and energetic electrons in the loop. In the model with low plasma density, the intensity oscillations at all frequencies are synchronous (with the exception of a narrow spectral region below the spectral peak). In the model with high plasma density, the emission at low frequencies (where the Razin effect is important) oscillates in anti-phase with the emissions at higher frequencies. The oscillations at high and low frequencies are more pronounced in different parts of the loop (depending on the loop orientation). The layers where the line-of-sight component of the magnetic field changes sign can produce additional peculiarities in the oscillation patterns.

  17. Connecting Surface Emissions, Convective Uplifting, and Long-Range Transport of Carbon Monoxide in the Upper Troposphere: New Observations from the Aura Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Livesey, Nathaniel J.; Su, Hui; Neary, Lori; McConnell, John C.; Richards, Nigel A. D.

    2007-01-01

    Two years of observations of upper tropospheric (UT) carbon monoxide (CO) from the Aura Microwave Limb Sounder are analyzed; in combination with the CO surface emission climatology and data from the NCEP analyses. It is shown that spatial distribution, temporal variation and long-range transport of UT CO are closely related to the surface emissions, deep-convection and horizontal winds. Over the Asian monsoon region, surface emission of CO peaks in boreal spring due to high biomass burning in addition to anthropogenic emission. However, the UT CO peaks in summer when convection is strongest and surface emission of CO is dominated by anthropogenic source. The long-range transport of CO from Southeast Asia across the Pacific to North America, which occurs most frequently during boreal summer, is thus a clear imprint of Asian anthropogenic pollution influencing global air quality.

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  20. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  1. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    SciTech Connect

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  2. Emissivity measurements in thin metallized membrane reflectors used for microwave radiometer sensors

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Cravey, Robin L.; Scherner, Michael J.; Hearn, Chase P.; Blume, Hans-Juergen C.

    1995-01-01

    This paper is concerned with electromagnetic losses in metallized films used for inflatable reflectors. An inflatable membrane is made of tough elastic material such as Kapton, and it is not electromagnetically reflective by design. A film of conducting metal is added to the membrane to enhance its reflective properties. Since the impetus for use of inflatables for spacecraft is the light weight and compact packaging, it is important that the metal film be as thin as possible. However, if the material is not conductive or thick enough, the radiation due to the emissivity of the reflector could be a significant part of the radiation gathered by the radiometer. The emissivity would be of little consequence to a radar or solar collector; but for a radiometer whose signal is composed of thermal radiation, this contribution could be severe. Bulk properties of the metal film cannot be used to predict its loss. For this reason, a program of analysis and measurement was undertaken to determine the emissivities of a number of candidate metallized film reflectors. This paper describes the three types of measurements which were performed on the metallized thin films: (1) a network analyzer system with an L-band waveguide; (2) an S-band radiometer; and (3) a network analyzer system with a C-band antenna free-space transmission system.

  3. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.

    2009-06-01

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  4. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  5. Compact sources of suprathermal microwave emission detected in quiescent active regions during lunar occultations

    NASA Astrophysics Data System (ADS)

    Correia, E.; Kaufmann, P.; Strauss, F. M.

    1992-04-01

    Solar quiescent active regions are known to exhibit radio emission from discrete structures. The knowledge of their dimensions and brightness temperatures is essential for understanding the physics of quiescent, confined plasma regions. Solar eclipses of 10 August, 1980 and 26 January, 1990, observed with high sensitivity and high time resolution at 22 GHz, allowed an unprecedented opportunity to identify Fresnel diffraction effects during lunar occultations of active regions. The results indicate the presence of quiescent discrete sources smaller than one arcsec in one dimension. Assuming symmetrical sources, their brightness temperatures were larger than 2 x 10 exp 7 K and 8 x 10 exp 7 K, for the 1980 and 1990 observations, respectively.

  6. Methods for correcting microwave scattering and emission measurements for atmospheric effects

    NASA Technical Reports Server (NTRS)

    Komen, M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Algorithms were developed to permit correction of scattering coefficient and brightness temperature for the Skylab S193 Radscat for the effects of cloud attenuation. These algorithms depend upon a measurement of the vertically polarized excess brightness temperature at 50 deg incidence angle. This excess temperature is converted to an equivalent 50 deg attenuation, which may then be used to estimate the horizontally polarized excess brightness temperature and reduced scattering coefficient at 50 deg. For angles other than 50 deg, the correction also requires use of the variation of emissivity with salinity and water temperature.

  7. Lower hybrid resonance acceleration of electrons and ions in solar flares and the associated microwave emission

    NASA Technical Reports Server (NTRS)

    Mcclements, K. G.; Bingham, R.; Su, J. J.; Dawson, J. M.; Spicer, D. S.

    1993-01-01

    The particle acceleration processes here studied are driven by the relaxation of unstable ion ring distributions; these produce strong wave activity at the lower hybrid resonance frequency which collapses, and forms energetic electron and ion tails. The results obtained are applied to the problem posed by the production of energetic particles by solar flares. The numerical simulation results thus obtained by a 2 1/2-dimensional particle-in-cell code show a simultaneous acceleration of electrons to 10-500 keV energies, and of ions to as much as the 1 MeV range; the energy of the latter is still insufficient to account for gamma-ray emission in the 4-6 MeV range, but furnish a seed population for further acceleration.

  8. The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions

    NASA Astrophysics Data System (ADS)

    Rubiño-Martín, J. A.; Rebolo, R.; Aguiar, M.; Génova-Santos, R.; Gómez-Reñasco, F.; Herreros, J. M.; Hoyland, R. J.; López-Caraballo, C.; Pelaez Santos, A. E.; Sanchez de la Rosa, V.; Vega-Moreno, A.; Viera-Curbelo, T.; Martínez-Gonzalez, E.; Barreiro, R. B.; Casas, F. J.; Diego, J. M.; Fernández-Cobos, R.; Herranz, D.; López-Caniego, M.; Ortiz, D.; Vielva, P.; Artal, E.; Aja, B.; Cagigas, J.; Cano, J. L.; de la Fuente, L.; Mediavilla, A.; Terán, J. V.; Villa, E.; Piccirillo, L.; Battye, R.; Blackhurst, E.; Brown, M.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Harper, S.; Maffei, B.; McCulloch, M.; Melhuish, S.; Pisano, G.; Watson, R. A.; Hobson, M.; Grainge, K.; Lasenby, A.; Saunders, R.; Scott, P.

    2012-09-01

    The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.

  9. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

    NASA Astrophysics Data System (ADS)

    Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc

    1998-06-01

    standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

  10. Composition and bathymetry of Ligeia Mare, Titan, derived from its 2.2-cm wavelength thermal microwave emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A. A.; Janssen, M. A.; Mastrogiuseppe, M., Sr.; Hayes, A. G., Jr.; Lorenz, R. D.; Encrenaz, P.; Malaska, M. J.

    2014-12-01

    In May 2013, the bottom of Ligeia Mare (LM), Titan, was detected in the active altimetry mode of the Cassini RADAR at a maximum depth of 160 m (Mastroguiseppe et al., 2014). This was the first and, so far, only detection of the floor of an extraterrestrial sea. The difference of amplitude of the surface and bottom echoes was also investigated in order to evaluate losses by absorption in the liquid layer. In this paper, we analyze the passive radiometry data that were acquired concurrently with the active data, in order to provide an independent estimate of the liquid loss tangent and to determine the dielectric constant of both the liquid and the seafloor. We then used these results to convert the radiometry mosaic of LM into a low-resolution bathymetry map. For the last 10 years, the passive radiometer incorporated in the Cassini RADAR has been observing the 2.2-cm wavelength thermal microwave emission from Titan. Its calibration has been recently refined to an unprecedented accuracy of <1% (Janssen et al., this meeting). To date, all LM has been mapped in high-spatial resolution. The 2.2-cm emissivity measured over it is directly related to the depth of the seafloor, the most emissive areas being the deepest and vice-versa. Comparing the radiometry data acquired in May 2013 to a two-layer model and using as an input the altimetry-derived depth profile, we find that the loss tangent value that best fits data is very low and only slightly smaller than that found by Mastroguiseppe et al. (2014) (3.0±1.0 10-5). This strongly suggests that the sea is composed of pure hydrocarbons with no or few suspended particles. A dielectric constant of 2.9 is inferred for the sea bottom pointing to water ice as its most likely composition rather than organic sediments. Lastly, the dielectric constant of the liquid is found to be <1.7, which, together with the low loss tangent, supports the idea of a methane-dominated composition (rather than ethane, Mitchell et al., submitted).

  11. A Tale of Three Galaxies: Deciphering the Infrared Emission of the Spectroscopically Anomalous Galaxies IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei; Nikutta, Robert

    2015-08-01

    The Spitzer/Infrared Spectrograph spectra of three spectroscopically anomalous galaxies (IRAS F10398+1455, IRAS F21013-0739, and SDSS J0808+3948) are modeled in terms of a mixture of warm and cold silicate dust, and warm and cold carbon dust. Their unique infrared (IR) emission spectra are characterized by a steep ˜5-8 μm emission continuum, strong emission bands from polycyclic aromatic hydrocarbon (PAH) molecules, and prominent silicate emission. The steep ˜5-8 μm emission continuum and strong PAH emission features suggest the dominance of starbursts, while the silicate emission is indicative of significant heating from active galactic nuclei (AGNs). With warm and cold silicate dust of various compositions (“astronomical silicate,” amorphous olivine, or amorphous pyroxene) combined with warm and cold carbon dust (amorphous carbon, or graphite), we are able to closely reproduce the observed IR emission of these galaxies. We find that the dust temperature is the primary cause in regulating the steep ˜5-8 μm continuum and silicate emission, insensitive to the exact silicate or carbon dust mineralogy and grain size a as long as a≲ 1 μ {{m}}. More specifically, the temperature of the ˜5-8 μm continuum emitter (which is essentially carbon dust) of these galaxies is ˜250-400 K, much lower than that of typical quasars, which is ˜640 K. Moreover, it appears that larger dust grains are preferred in quasars. The lower dust temperature and smaller grain sizes inferred for these three galaxies compared with that of quasars could be due to the fact that they may harbor a young/weak AGNs that is not maturely developed yet.

  12. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission

    NASA Technical Reports Server (NTRS)

    Gold, B.; Bennett, C.L.; Larson, D.; Hill, R.S.; Odegard, N.; Weiland, J.L.; Hinshaw, G.; Kogut, A.; Wollack, E.; Page, L.; Dunkley, J.; Jarosik, N.; Spergel, N.; Halpern, M.; Komatsu, E.; Meyer, S.S.; Nolta, M.R.; Wright, E.L.

    2008-01-01

    We present a new estimate of foreground emission in the WMAP data, using a Markov chain Monte Carlo (MCMC) method. The new technique delivers maps of each foreground component for a variety of foreground models, error estimates of the uncertainty of each foreground component, and provides an overall goodness-of-fit measurement. The resulting foreground maps are in broad agreement with those from previous techniques used both within the collaboration and by other authors. We find that for WMAP data, a simple model with power-law synchrotron, free-free, and thermal dust components fits 90% of the sky with a reduced X(sup 2) (sub v) of 1.14. However, the model does not work well inside the Galactic plane. The addition of either synchrotron steepening or a modified spinning dust model improves the fit. This component may account for up to 14% of the total flux at Ka-band (33 GHz). We find no evidence for foreground contamination of the CMB temperature map in the 85% of the sky used for cosmological analysis.

  13. Long wavelength (>1.55 {mu}m) room temperature emission and anomalous structural properties of InAs/GaAs quantum dots obtained by conversion of In nanocrystals

    SciTech Connect

    Urbanczyk, A.; Keizer, J. G.; Koenraad, P. M.; Noetzel, R.

    2013-02-18

    We demonstrate that molecular beam epitaxy-grown InAs quantum dots (QDs) on (100) GaAs obtained by conversion of In nanocrystals enable long wavelength emission in the InAs/GaAs material system. At room temperature they exhibit a broad photoluminescence band that extends well beyond 1.55 {mu}m. We correlate this finding with cross-sectional scanning tunneling microscopy measurements. They reveal that the QDs are composed of pure InAs which is in agreement with their long-wavelength emission. Additionally, the measurements reveal that the QDs have an anomalously undulated top surface which is very different to that observed for Stranski-Krastanow grown QDs.

  14. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Malaska, M. J.; Lorenz, R. D.; Janssen, M. A.; Tokano, T.; Hayes, A. G.; Mastrogiuseppe, M.; Lunine, J. I.; Veyssière, G.; Encrenaz, P.; Karatekin, O.

    2016-02-01

    For the last decade, the passive radiometer incorporated in the Cassini RADAR has recorded the 2.2 cm wavelength thermal emission from Titan's seas. In this paper, we analyze the radiometry observations collected from February 2007 to January 2015 over one of these seas, Ligeia Mare, with the goal of providing constraints on its composition, bathymetry, and dynamics. In light of the depth profile obtained by Mastrogiuseppe et al. (2014) and of a two-layer model, we find that the dielectric constant of the sea liquid is <1.8, and its loss tangent is <3.6-2.1+4.3×10-5. Both results point to a composition dominated by liquid methane rather than ethane. A high methane concentration suggests that Ligeia Mare is primarily fed by methane-rich precipitation and/or ethane has been removed from it (e.g., by crustal interaction). Our result on the dielectric constant of the seafloor is less constraining (<2.9-0.9+0.9), but we favor a scenario where the floor of Ligeia Mare is covered by a sludge of compacted and possibly nitrile-rich organic material formed by the deposition of photochemical haze or by rain washing of the nearby shores. We use these results to produce a low-resolution bathymetry map of the sea. We also estimate the temperature variation of the bulk sea between February 2007 and July 2013 to be <2 K, which provides a constraint on its net evaporative cooling currently being explored in ocean circulation models. Lastly, we suggest a lag in the summer warming of the northern polar terrains.

  15. Low gas flow inductively coupled plasma optical emission spectrometry for the analysis of food samples after microwave digestion.

    PubMed

    Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang

    2014-11-01

    In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples.

  16. Application of microwave plasma atomic emission spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad city.

    PubMed

    Kamala C T; Balaram V; Dharmendra V; Satyanarayanan M; Subramanyam K S V; Krishnaiah A

    2014-11-01

    Recently introduced microwave plasma-atomic emission spectroscopy (MP-AES) represents yet another and very important addition to the existing array of modern instrumental analytical techniques. In this study, an attempt is made to summarize the performance characteristics of MP-AES and its potential as an analytical tool for environmental studies with some practical examples from Patancheru and Uppal industrial sectors of Hyderabad city. A range of soil, sediment, water reference materials, particulate matter, and real-life samples were chosen to evaluate the performance of this new analytical technique. Analytical wavelengths were selected considering the interference effects of other concomitant elements present in different sample solutions. The detection limits for several elements were found to be in the range from 0.05 to 5 ng/g. The trace metals analyzed in both the sectors followed the topography with more pollution in the low-lying sites. The metal contents were found to be more in ground waters than surface waters. Since a decade, the pollutants are transfered from Patancheru industrial area to Musi River. After polluting Nakkavagu and turning huge tracts of agricultural lands barren besides making people residing along the rivulet impotent and sick, industrialists of Patancheru are shifting the effluents to downstream of Musi River through an 18-km pipeline from Patancheru. Since the effluent undergoes primary treatment at Common Effluent Treatment Plant (CETP) at Patanchru and travels through pipeline and mixes with sewage, the organic effluents will be diluted. But the inorganic pollutants such as heavy and toxic metals tend to accumulate in the environmental segments near and downstreams of Musi River. The data generated by MP-AES of toxic metals like Zn, Cu, and Cr in the ground and surface waters can only be attributed to pollution from Patancheru since no other sources are available to Musi River.

  17. [Determination of nine hazardous elements in textiles by inductively coupled plasma optical emission spectrometer after microwave-assisted dilute nitric acid extraction].

    PubMed

    Chen, Fei; Xu, Dian-dou; Tang, Xiao-ping; Cao, Jing; Liu, Ya-ting; Deng, Jian

    2012-01-01

    Textiles are easily contaminated by heavy metals in the course of processing. In order to monitor the quality of textiles, a new method was developed for simultaneous determination of arsenic, antimony, lead, cadmium, chromium, cobalt, copper, nickel and mercury in textiles by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted dilute nitric acid extraction. After optimizing extraction conditions, we ultimately selected 5% nitric acid as extractant and 5 min as extraction time with the extraction temperature of 120 degrees C and instrument power of 400W in the microwave-assisted extraction procedure. Nine hazardous elements were detected sequentially by ICP-OES. The results showed that the detection limits were 0.3-15 microg x L(-1) and the recoveries 73.6%-105% with the RSDs (n = 3) of 0.1%-3%. The proposed method was successfully used to determine nine elements in cotton, wool, terylene and acrylic.

  18. Anomalous zones (domal)

    SciTech Connect

    Kupfer, D.H. )

    1990-09-01

    Each zone contains several anomalous salt properties (anomalous features). Zones cannot be characterized by any single property Zones are highly variable, lenticular, and discontinuous in detail; however, once established, they commonly have a predictable trend. The individual anomalous features can occur alone (locally in pairs) over areas of various sizes and shapes. These alone occurrences are not anomalous zones. Anomalous zones may be of any origin, and origin is not part of the definition. Typical origins include: primary (sedimentary), external sheath zone, separating two spines of salt, or caused by toroidal flow. The major importance of an anomalous zone is that it consists of various anomalous features distributed discontinuously along the zone. Thus, if three or more anomalous properties are observed together, one should look for others. The anomalous zones observed in the Gulf Coast thus far are vertical, linear, and semicontinuous. Most are reasonably straight, but some bend sharply, end abruptly, or coalesce. Textures in salt involve grain size, color (white to dark gray), grain shape, or grain distribution of the salt. Typical anomalous textures are coarse-grain, poikiloblastic, and friability. A change in color is commonplace and seldom anomalous. Structural anomalous features, broadly defined, account for most of the rest of the anomalous features. Not uncommonly they cause mining problems. Among the structural anomalous features: INCLUSIONS: Sediments, hydrocarbons, brine, gases. Common gases are air (as N{sub 2}), CH-compounds, CO{sub 2}, and H{sub 2}S. STRUCTURES: Sheared salt, undue stabbing or jointing, voids (crystal-lined pockets), permeability, increased porosity COMPOSITION: High anhydrite content, visible anhydrite as grains or boudins, very black salt = disseminated impurities such as clay.

  19. LIRAS mission for lunar exploration by microwave interferometric radiometer: Moon's subsurface characterization, emission model and numerical simulator

    NASA Astrophysics Data System (ADS)

    Pompili, Sara; Silvio Marzano, Frank; Di Carlofelice, Alessandro; Montopoli, Mario; Talone, Marco; Crapolicchio, Raffaele; L'Abbate, Michelangelo; Varchetta, Silvio; Tognolatti, Piero

    2013-04-01

    when it becomes operational providing the extrapolation of lunar brightness temperature maps in both Antenna frame (the cosine domain) and on the Moon surface and allowing an accurate analysis of the instrument performance. The Moon stratigraphy is reproduced in LEPS environment through three scenarios: a macro-layer of regolith; two subsequent macro-layers of regolith and rock; three subsequent macro-layers of regolith, ice and rock, respectively. These scenarios are studied using an incoherent approach, taking into account the interaction between the upwelling and downwelling radiation contributions from each layer to model the resulting brightness temperature at the surface level. It has been considered that the radiative behavior of the Moon varies over time, depending on solar illumination conditions, and it is also function of the material properties, layer thickness and specific position on the lunar crust; moreover it has been examined its variation with frequency, observation angle, and polarization. Using the proposed emission model it has been possible to derive a digital thermal model in the microwave frequency of the Moon, allowing in-depth analysis of the lunar soil consistency; this collected information could be related with a lunar digital elevation model in order to achieve global coverage information on topological aspects. The main results of the study will be presented at the conference.

  20. Determination of nickel in biological materials after microwave dissolution using inductively coupled plasma atomic emission spectrometry with prior extraction into butan-1-ol.

    PubMed

    Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    1992-07-01

    A sensitive procedure has been developed for the determination of ultratrace amounts of nickel in biological materials by inductively coupled plasma atomic emission spectrometry after extraction of the nickel ion into butan-1-ol by using 1,5-bis(di-2-pyridylmethylene)thiocarbonohydrazide as the extracting reagent. Fast, efficient and complete sample digestion is achieved by an HNO3-HCl poly(tetrafluoroethylene) bomb dissolution technique using microwave heating. Results obtained for eleven certified reference materials agreed with the certified values.

  1. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    PubMed

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  2. Investigations on the on-line determination of metals in air flows by capacitively coupled microwave plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Seelig, M.; Broekaert, J. A. C.

    2001-09-01

    Plasma optical emission spectrometry with a capacitively coupled microwave plasma (CMP) operated with air has been investigated with respect to its possibilities for real-time environmental monitoring of combustion processes. The unique feature is the possibility to operate the CMP with air as working gas, as is usually the case in exhaust gases of combustion processes. The CMP also is shown to be stable in the presence of large amounts of water and CO 2, which makes this source ideally suitable for this purpose. The detection limits obtained for the environmentally relevant elements Cd, Co, Cr, Fe, Mg, Ni and Pb show the possibility to monitor directly heavy metals in air in an on-line mode and down to the 2-160-μg m -3 level. These detection limits are generally lower than the threshold limit values of the 'Federal Law for Immission Protection' in Germany in the gaseous effluents of industrial plants. In order to investigate the influence of the water loading (32-222 g m -3) on the detection limits a comparison of results obtained with three different nebulizers (Légère nebulizer, hydraulic high-pressure nebulizer and ultrasonic nebulizer) was made, with which aerosols with different water loading are entered into the plasma. For the hydraulic high-pressure nebulizer and the ultrasonic nebulizer no desolvation unit was found to be necessary. It was shown that especially for elements with lines having high excitation energy (Cd) or for which ion lines are used (Mg II) the increase in water loading deteriorates the detection limits. The rotational temperatures ( Trot) and excitation temperatures ( Texe) in the case of different amounts of water are of the order of 3700-4900 K and 4700-7100 K, respectively. The temperatures show that changes in the geometry and temperature distribution in the case of Trot but also the values of Texe themselves are responsible for this increase in detection limits. Furthermore, different amounts of CO 2 mixed to the working gas (3

  3. Vacuum Ultraviolet Emission Spectrum Measurement of a Microwave-discharge Hydrogen-flow Lamp in Several Configurations: Application to Photodesorption of CO Ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Chuang, K.-J.; Muñoz Caro, G. M.; Nuevo, M.; Chu, C.-C.; Yih, T.-S.; Ip, W.-H.; Wu, C.-Y. R.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H2 versus H2 seeded in He), and the optical properties of the window used (MgF2 versus CaF2). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H2 molecular emission ranges.

  4. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    SciTech Connect

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  5. Microwave backscatter and emission observed from Shuttle Imaging Radar B and an airborne 1.4 GHz radiometer

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schiue, J. C.; Schmugge, T. J.; Engman, E. T.; Mo, T.; Lawrence, R. W.

    1985-01-01

    A soil moisture experiment conducted with the Shuttle Imaging Radar B (SIR-B) is reported. SIR-B operated at 1.28 GHz provided the active microwave measurements, while a 4-beam pushbroom 1.4 GHz radiometer gave the complementary passive microwave measurements. The aircraft measurements were made at an altitude of 330 m, resulting in a ground resolution cell of about 100 m diameter. SIR-B ground resolution from 225 km was about 35 m. More than 150 agricultural fields in the San Joaquin Valley of California were examined in the experiment. The effect of surface roughness height on radar backscatter and radiometric measurements was studied.

  6. Simulation of the Microwave Emission of Multi-layered Snowpacks Using the Dense Media Radiative Transfer Theory: the DMRT-ML Model

    NASA Technical Reports Server (NTRS)

    Picard, G.; Brucker, Ludovic; Roy, A.; Dupont, F.; Fily, M.; Royer, A.; Harlow, C.

    2013-01-01

    DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1-200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow scattering and extinction coefficients and on the Discrete Ordinate Method (DISORT) to numerically solve the radiative transfer equation. The snowpack is modeled as a stack of multiple horizontal snow layers and an optional underlying interface representing the soil or the bottom ice. The model handles both dry and wet snow conditions. Such a general design allows the model to account for a wide range of snow conditions. Hitherto, the model has been used to simulate the thermal emission of the deep firn on ice sheets, shallow snowpacks overlying soil in Arctic and Alpine regions, and overlying ice on the large icesheet margins and glaciers. DMRT-ML has thus been validated in three very different conditions: Antarctica, Barnes Ice Cap (Canada) and Canadian tundra. It has been recently used in conjunction with inverse methods to retrieve snow grain size from remote sensing data. The model is written in Fortran90 and available to the snow remote sensing community as an open-source software. A convenient user interface is provided in Python.

  7. Microwave induced center-doping of silver ions in aqueous CdS nanocrystals with tunable, impurity and visible emission.

    PubMed

    Shen, Qihui; Liu, Yan; Xu, Jun; Meng, Changgong; Liu, Xiaoyang

    2010-08-21

    Under microwave radiation, Ag(+)-doped CdS semiconductor nanocrystals with high photoluminescence quantum yield (approximately 58%) and a surprisingly large optical window (480 to 630 nm) are formed controllably using a center-doping strategy and are optimized through a green approach in pure water solution.

  8. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Oneill, P. E.; Wang, J. R.

    1985-01-01

    The AgRISTARS Soil Moisture Project has made significant progress in the quantification of microwave sensor capabilities for soil moisture remote sensing. The 21-cm wavelength has been verified to be the best single channel for radiometric observations of soil moisture. It has also been found that other remote sensing approaches used in conjunction with L-band passive data are more successful than multiple wavelength microwave radiometry in this application. AgRISTARS studies have also improved current understanding of noise factors affecting the interpretability of microwave emission data. The absorption of soil emission by vegetation has been quantified, although this effect is less important than absorption effects for microwave radiometry.

  9. Optimized microwave-assisted decomposition method for multi-element analysis of glass standard reference material and ancient glass specimens by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Zachariadis, G; Dimitrakoudi, E; Anthemidis, A; Stratis, J

    2006-02-28

    A novel microwave-assisted wet-acid decomposition method for the multi-element analysis of glass samples using inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed and optimized. The SRM 621 standard reference glass material was used for this purpose, because it has similar composition with either archaeological glass specimens or common modern glasses. For the main constituents of SRM 621 (Ca, Na, Al, Fe, Mg, Ba and Ti), quality control data are given for all the examined procedures. The chemical and instrumental parameters of the method were thoroughly optimized. Thirteen acid mixtures of hydrochloric, nitric, and hydrofluoric acids in relation to two different microwave programs were examined in order to establish the most efficient protocol for the determination of metals in glass matrix. For both microwave programs, an intermediate step was employed with addition of H(3)BO(3) in order to compensate the effect of HF, which was used in all protocols. The suitability of the investigated protocols was evaluated for major (Ca, Na, Al), and minor (Fe, Mg, Ba, Ti, Mn, Cu, Sb, Co, Pb) glass constituents. The analytes were determined using multi-element matrix matched standard solutions. The analytical data matrix was processed chemometrically in order to evaluate the examined protocols in terms of their accuracy, precision and sensitivity, and eventually select the most efficient method for ancient glass. ICP-AES parameters such as spectral line, RF power and sample flow rate were optimized using the proposed protocol. Finally, the optimum method was successfully applied to the analysis of a number of ancient glass fragments.

  10. Chlorine and sulfur determination in extra-heavy crude oil by inductively coupled plasma optical emission spectrometry after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Pereira, Juliana S. F.; Mello, Paola A.; Moraes, Diogo P.; Duarte, Fábio A.; Dressler, Valderi L.; Knapp, Guenter; Flores, Érico M. M.

    2009-06-01

    In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l - 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l - 1 H 2O 2, 10 to 100 mmol l - 1 (NH 4) 2CO 3 or 0.1 to 14 mol l - 1 HNO 3) were studied. The influence of sample mass, O 2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l - 1 (NH 4) 2CO 3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g - 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g - 1 . Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.

  11. Determination of silver in nano-plastic food packaging by microwave digestion coupled with inductively coupled plasma atomic emission spectrometry or inductively coupled plasma mass spectrometry.

    PubMed

    Lin, Q-B; Li, B; Song, H; Wu, H-J

    2011-08-01

    The detection of silver in nano-plastic food packaging by microwave digestion coupled with either inductively coupled plasma atomic emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) was investigated. Microwave digestion was optimised by trialling different acid mixtures. Both ICP-AES and ICP-MS showed good reproducibility, repeatability and recovery. For ICP-AES the limit of detection of the method (LODm) was 25.0 µg g(-1), the limit of detection of the instrument (LODi) was 30.0 ng ml(-1), the linear range was 0.10-10.0 µg ml(-1). The average recoveries for blank samples spiked with silver at 100, 250 and 500 µg g(-1) ranged from 82.53% to 87.60%, and the relative standard deviations (RSDs) were from 1.79% to 8.30%. For ICP-MS analysis the LODm was 0.75 µg g(-1), the LODi was 0.04 ng ml(-1), the linear range was 0.20-500.0 ng ml(-1), the RSDs were 2.26-4.79%, and the recoveries were 78.09-92.72% (spiked concentrations of 2.5, 5.0 and 10.0 µg g(-1)). These results indicate that the proposed method could be employed to analyse silver in nano-plastic food packaging.

  12. The theory of an auto-resonant field emission cathode relativistic electron accelerator for high efficiency microwave to direct current power conversion

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1990-01-01

    A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.

  13. Microwave Ovens

    MedlinePlus

    ... Emitting Products Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave ... for Consumers Laws, Regulations & Standards Industry Guidance Other Resources Description Microwave ...

  14. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  15. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  16. Anomalous diffraction approximation limits

    NASA Astrophysics Data System (ADS)

    Videen, Gorden; Chýlek, Petr

    It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.

  17. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-like Phosphorus Following Charge Exchange with Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.

    2010-01-01

    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.

  18. The influence of ions and the induced secondary emission on the nanosecond high-gradient microwave breakdown at metal surface

    SciTech Connect

    Chang, C.; Liu, C. L.; Chen, C. H.; Sun, J.; Liu, Y. S.; Guo, L. T.; Cao, Y. B.; Wang, Y.; Song, Z. M.

    2015-06-15

    The mechanism of ultrafast breakdown at metal/vacuum interface in the high-power microwave waveguides is studied. In order to realize the nanosecond discharge, the required ambient gas pressure above the metal surface is approximately calculated as high as several Torr due to the low ionization-rate for high-energy electrons and short pulse. The local high pressure may come from the evaporated microscopic protrusions due to Joule heating and gas desorption. Besides, ions accelerated by the ambient space charge field could obtain sufficient high energy to collide and sputter the metal atoms to increase the ambient pressure. The positive feedbacks during the rapid discharge are studied by particle-in-cell simulation. The relatively high-energy ions could generate secondary electrons. It is shown that, as the positive feedback, the secondary electrons induce the gas desorption and stronger ionization, resulting in ion and electron density increasing as well as sheath field further increasing. As a result, more higher-energy ions bombard metal surface, leading to higher secondary electron yield and higher density plasma generated to cut off the microwave transmission finally. These nonlinear courses realize the ultrafast discharge in waveguides.

  19. A new model of the microwave polarized sky for CMB experiments

    NASA Astrophysics Data System (ADS)

    Hervías-Caimapo, Carlos; Bonaldi, Anna; Brown, Michael L.

    2016-10-01

    We present a new model of the microwave sky in polarization that can be used to simulate data from cosmic microwave background polarization experiments. We exploit the most recent results from the Planck satellite to provide an accurate description of the diffuse polarized foreground synchrotron and thermal dust emission. Our model can include the two mentioned foregrounds, and also a constructed template of Anomalous Microwave Emission. Several options for the frequency dependence of the foregrounds can be easily selected, to reflect our uncertainties and to test the impact of different assumptions. Small angular scale features can be added to the foreground templates to simulate high-resolution observations. We present tests of the model outputs to show the excellent agreement with Planck and Wilkinson Microwave Anisotropy Probe (WMAP) data. We determine the range within which the foreground spectral indices can be varied to be consistent with the current data. We also show forecasts for a high-sensitivity, high-resolution full-sky experiment such as the Cosmic ORigin Explorer. Our model is released as a PYTHON script that is quick and easy to use, available at http://www.jb.man.ac.uk/chervias.

  20. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; Burgess, J. Michael; Chaplin, Vandiver; Gehrels, Neil; Goldstein, Adam; Granot, Jonathan; Guiriec, Sylvain; Mcenery, Julie; Preece, Robert D.; Tierney, David; van der Klis, Michiel; von Kienlin, Andreas; Zhang, Shuang Nan

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  1. Thermal microwave emissions from vegetated fields: A comparison between theory and experiment. [Agricultural Research Center, Beltsville, MD.

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J.; Chuang, S. L.; Dombrowski, M.

    1980-01-01

    The radiometric measurements over bare field and fields covered with grass, soybean, corn, and alfalfa were made with 1.4 GHz and 5 GHz microwave radiometers during August - October 1978. The measured results are compared with radiative transfer theory treating the vegetated fields as a two layer random medium. It is found that the presence of a vegetation cover generally gives a higher brightness temperature T(B) than that expected from a bare soil. The amount of this T(B) excess increases in the vegetation biomass and in the frequency of the observed radiation. The results of radiative transfer calculations generally match well with the experimental data, however, a detailed analysis also strongly suggests the need of incorporating soil surface roughness effect into the radiative transfer theory in order to better interpret the experimental data.

  2. An automated analysis of DEMETER ionospheric plasma waves observations and its application to the search for anomalous emissions over the Great Sichuan EQ region

    NASA Astrophysics Data System (ADS)

    Onishi, Tatsuo; Berthelier, Jean-Jacques

    2010-05-01

    Electric field observations in the VLF range from the ICE experiment onboard the CNES DEMETER micro-satellite have been analyzed to search for anomalies possibly related to the Great Sichuan Earthquake of May 12, 2008. This work was undertaken using results from a dedicated data processing that has been recently developed at LATMOS to perform an automated recognition and characterization of the various wave emissions that are regularly detected along the orbit of DEMETER. The data processing method and the associated algorithms will be first presented and a few typical results will be shown in order to provide a detailed understanding of the algorithm capabilities. As a first full-scale application of this method, a statistical study was conducted to analyze the plasma waves observed in day-time half orbits over a region of ~1000 kilometres extent centred on the Sichuan EQ epicentre and during a period of 20 days encompassing the day of the EQ. 5 years of observations have been used to derive the statistical distribution of various types of ionospheric plasma waves that can be compared to the signals detected during the seismic active period. The first outcome of our study was the detection of a localized variation in the characteristics of the electrostatic turbulence 6 days before the EQ that appears to be unique in the whole 5 year reference observations data base. We will discuss this result and its possible interpretations.

  3. The high accuracy model of the 19 July 2012 solar flare: kinetic description, calculations of X-Ray and microwave emission

    NASA Astrophysics Data System (ADS)

    Gritsyk, Pavel; Somov, Boris

    2016-04-01

    The limb white-light solar flare M7.7 class was observed at the 19 July 2012 at 05:58UT by RHESSI, GOES and SDO with high spectral, spatial and temporal resolution. These new data make possible to test modern models of solar flares. The flare, which considered here, locates in the picture plane, so we well see two different hard X-ray sources: footpoint and above-the-loop-top. The loop was observed in whit-light and microwave wavelengths. The key part of the presented work is high accuracy kinetic model, which describe behavior of electrons in the target - solar flare loop. We interpret the footpoint source in approximation of the thick target model with reverse current and above-the-loop-top source - in the thin target approximation. The microwave spectrum in the range from 1 to 50 GHz was calculated. Our results fit well the observational data, particularly so important parameter as hard X-Ray spectral index. But intensity of emission of the coronal source was estimated incorrect, it was low than observed. This problem can be solved by taking into account effects of particles acceleration in the collapsing magnetic trap, when fast electrons receive additional energy without changing the index of their energy spectrum. In the result we have flux ~ 5 1010 erg cm-2 s-1 for electrons with energies more then 15 keV, that ~ 5 times larger then in the case classical thick target model. Accordingly , so high flux of electrons to the Chromosphere provides effective heating of the cold plasma in the target, but the reverse current electric field restrict depth of the electron penetration. Received in this work estimates may be used for interpretation of the solar flare optical source formation and evolution.

  4. Translational anisotropy in the cosmic microwave background radiation and far-infrared emission by galactic dust clouds

    NASA Technical Reports Server (NTRS)

    Forman, M. A.

    1977-01-01

    The predicted emission spectrum of galactic dust at about 10 K is compared with the spectrum of 2.8-K universal blackbody radiation and with the spectrum of the anisotropy expected in the 2.8-K radiation due to motion of earth with respect to the coordinate system in which the radiation was last scattered. The extremely anisotropic galactic-dust emission spectrum may contribute a significant background to anisotropy measurements which scan through the galactic plane. The contamination would appear in an 8-mm scan around the celestial equator, for example, as a spurious 200 km/s velocity toward declination 0 deg, right ascension 19 hr, if predictions are correct. The predicted spectrum of dust emission in the galactic plane at longitudes not exceeding about 30 deg falls below the total 2.8-K cosmic background intensity at wavelengths of at least 1 mm.

  5. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  6. Anomalous law of cooling

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  7. Anomalous law of cooling.

    PubMed

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  8. Anomalous law of cooling

    SciTech Connect

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  9. A multi-frequency measurement of thermal microwave emission from soils: The effects of soil texture and surface roughness

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Oneill, P. E.; Jackson, T. J.; Engman, E. T. (Principal Investigator)

    1981-01-01

    An experiment on remote sensing of soil moisture content was conducted over bare fields with microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz during July - September of 1981. Three bare fields with different surface roughnesses and soil textures were prepared for the experiment. Ground truth acquisition of soil temperatures and moisture contents for 5 layers down to the depths of 15 cm was made concurrently with radiometric measurements. The experimental results show that the effect of surface roughness is to increase the soils' brightness temperature and to reduce the slope of regression between brightness temperature and moisture content. The slopes of regression for soils with different textures are found to be comparable, and the effect of soil texture is reflected in the difference of regression line intercepts at brightness temperature axis. The result is consistent with laboratory measurement of soils' dielectric permittivity. Measurements on wet smooth bare fields give lower brightness temperatures at 5 GHz than at 1.4 GHz.

  10. Formation of Electron Distribution Function in ECR Discharge Sustained by Strong Microwave Emission in an Open Trap

    SciTech Connect

    Erukhimov, V.L.; Semenov, V.E.

    2005-03-15

    We consider a formation of Electron Distribution Function (EDF) in the Electron Cyclotron Resonance (ECR) discharge in an open trap. The ECR heating by strong microwaves, ionization, collisions and ambipolar losses are considered. The model is based on a system of two-dimensional Fokker-Plank equation for EDF. The stationary solution for EDF is investigated analytically. It consists of three groups of electrons: hot electrons with highly anisotropic velocity distribution that are heated in the ECR region, cold electrons with isotropic distribution that define the losses from the trap and warm electrons with considerably anisotropic distribution that are concentrated in the center of the trap and do not reach the ECR region. We build a qualitative model for the electron distribution function such that the original differential equation for EDF is transformed into two algebraic equations with two unknown parameters: neutral density and main plasma density. The latter can be solved analytically. The applicability of these results to a self-consistent model for ECR ion source is discussed. We show that the solution contradicts experimental results so that important effect is not taken into account in the model.

  11. Formation of Electron Distribution Function in ECR Discharge Sustained by Strong Microwave Emission in an Open Trap

    NASA Astrophysics Data System (ADS)

    Erukhimov, V. L.; Semenov, V. E.

    2005-03-01

    We consider a formation of Electron Distribution Function (EDF) in the Electron Cyclotron Resonance (ECR) discharge in an open trap. The ECR heating by strong microwaves, ionization, collisions and ambipolar losses are considered. The model is based on a system of two-dimensional Fokker-Plank equation for EDF. The stationary solution for EDF is investigated analytically. It consists of three groups of electrons: hot electrons with highly anisotropic velocity distribution that are heated in the ECR region, cold electrons with isotropic distribution that define the losses from the trap and warm electrons with considerably anisotropic distribution that are concentrated in the center of the trap and do not reach the ECR region. We build a qualitative model for the electron distribution function such that the original differential equation for EDF is transformed into two algebraic equations with two unknown parameters: neutral density and main plasma density. The latter can be solved analytically. The applicability of these results to a self-consistent model for ECR ion source is discussed. We show that the solution contradicts experimental results so that important effect is not taken into account in the model.

  12. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    NASA Astrophysics Data System (ADS)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  13. Thermally anomalous features in the subsurface of Enceladus's south polar terrain

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Leyrat, C.; Janssen, M. A.; Choblet, G.; Tobie, G.; Bourgeois, O.; Lucas, A.; Sotin, C.; Howett, C.; Kirk, R.; Lorenz, R. D.; West, R. D.; Stolzenbach, A.; Massé, M.; Hayes, A. H.; Bonnefoy, L.; Veyssière, G.; Paganelli, F.

    2017-03-01

    Saturn's moon Enceladus is an active world. In 2005, the Cassini spacecraft witnessed for the first time water-rich jets venting from four anomalously warm fractures (called sulci) near its south pole1,2. Since then, several observations have provided evidence that the source of the material ejected from Enceladus is a large underground ocean, the depth of which is still debated3-6. Here, we report on the first and only opportunity that Cassini's RADAR instrument7,8 had to observe Enceladus's south polar terrain closely, targeting an area a few tens of kilometres north of the active sulci. Detailed analysis of the microwave radiometry observations highlights the ongoing activity of the moon. The instrument recorded the microwave thermal emission, revealing a warm subsurface region with prominent thermal anomalies that had not been identified before. These anomalies coincide with large fractures, similar or structurally related to the sulci. The observations imply the presence of a broadly distributed heat production and transport system below the south polar terrain with 'plate-like' features and suggest that a liquid reservoir could exist at a depth of only a few kilometres under the ice shell at the south pole. The detection of a possible dormant sulcus further suggests episodic geological activity.

  14. Characterization of a low-pressure chlorine plasma column sustained by propagating surface waves using phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy

    SciTech Connect

    Mattei, S.; Boudreault, O.; Stafford, L.; Khare, R.; Donnelly, V. M.

    2011-06-01

    Phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy were used to measure the line-integrated electron density, n{sub e}, and electron temperature, T{sub e}, in a high-density chlorine plasma sustained in a quartz discharge tube (inner diameter = 6 mm) by an electromagnetic surface wave at 2.45 GHz. For pressures in the 0.1-1 Torr range, n{sub e} decreased nearly linearly along the tube's z-axis down to the critical density for surface wave propagation, where the plasma decayed abruptly. At lower pressures (< 50 mTorr), however, the plasma extended well beyond this critical point, after which n{sub e} decreased quasiexponentially toward the end of the plasma column. The length of this expansion region increased with decreasing pressure, going from {approx}8 cm at 5 mTorr to {approx}1 cm at 50 mTorr. T{sub e} was nearly independent of the axial position in the main plasma region and strongly decreased in the expansion region at lower pressures. The Cl{sub 2} percent dissociation, {tau}{sub D}, obtained from the calibrated Cl{sub 2} (306 nm)-to-Xe (828 nm) emission ratio, displayed behavior similar to that of n{sub e} and T{sub e}. For example, at 5 mTorr, {tau}{sub D} was close to 100% near the wave launcher and {approx}70% at 0.5 cm from the end of the plasma column.

  15. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  16. Direct determination of trace elements in niobium, tantalum and their oxides by inductively coupled plasma atomic emission spectrometry after microwave dissolution

    NASA Astrophysics Data System (ADS)

    Grebneva, O. N.; Kubrakova, I. V.; Kudinova, T. F.; Kuz'min, N. M.

    1997-07-01

    Analytical schemes for the determination of trace elements in high-purity niobium, tantalum and their oxides are proposed. The schemes are based on microwave dissolution of the metals and oxides followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of impurities in the solutions. The possibilities of interelement and off-peak background corrections in ICP-AES analysis are discussed. The accuracy of the results obtained is confirmed by the determination of trace elements after a matrix sorption separation procedure. For a number of elements, a comparison of the results obtained by ICP-AES without and with the matrix separation procedure and by electrothermal atomic absorption spectrometry (ETAAS) shows good agreement. The limits of detection for direct ICP-AES determination are in the range 0.4*1.0 μg g -1 for Ba, Ca, Fe, Mg, Mn, Y and La; between 2.0 and 10.0 μ g -1 for B, Cd, Co, Cr, Cu, Hf, Mo, Na, Nb, Ni, Pb, Sr, Ti, Zr and Ta; and for K, Sb and W a detection limit of 20 μ g -1 is achieved. The schemes proposed are intended for rapid routine analysis.

  17. Optimization of an open-focused microwave oven digestion procedure for determination of metals in diesel oil by inductively coupled plasma optical emission spectrometry.

    PubMed

    Sant'Ana, Flavio W; Santelli, Ricardo E; Cassella, Alessandra R; Cassella, Ricardo J

    2007-10-01

    This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.

  18. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  19. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study.

    PubMed

    Kane, Peter F; Hall, William L

    2006-01-01

    There is increasing regulatory interest in the non-nutritive metals content of fertilizer materials, but at present there is no consensus analytical method for acid digestion and instrument detection of those elements in fertilizer matrixes. This lack of method standardization has resulted in unacceptable variability of results between fertilizer laboratories performing metals analysis. A method has been developed using microwave digestion with nitric acid at 200 degrees C, followed by inductively coupled plasma-optical emission spectrometry instrument detection, for the elements arsenic, cadmium, cobalt, chromium, molybdenum, nickel, lead, and selenium. The method has been collaboratively studied, and statistical results are here reported. Fourteen collaborators were sent 62 sample materials in a blind duplicate design. Materials represented a broad cross section of fertilizer types, including phosphate ore, manufactured phosphate products, N-P-K blends, organic fertilizers, and micro-nutrient materials. As much as possible within the limit of the number of samples, materials were selected from different regions of the United States and the world. Limit of detection (LOD) was determined using synthetic fertilizers consisting of reagent grade chemicals with near zero levels of the non-nutritive elements, analyzed blindly. Samples with high iron content caused the most variability between laboratories. Most samples reasonably above LOD gave HorRat values within the range 0.5 to 2.0, indicating acceptable method performance according to AOAC guidelines for analyses in the mg/kg range. The method is recommended for AOAC Official First Action status.

  20. Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate.

    PubMed

    Palmieri, H E; Leonel, L V

    2000-03-01

    The detection of methylmercury species (MeHg) in fish tissue was investigated. Samples were digested with KOH-methanol and acidified prior to extraction with methylene chloride. MeHg was back-extracted from the organic phase into water. An aliquot of this aqueous solution (buffered to pH 5) was subjected to derivatization with sodium tetraphenylborate (NaBPh4) and then extracted with toluene. The organic phase containing MePhHg was injected into a gas chromatograph (GC) which is on-line with a microwave-induced plasma atomic emission spectrometer (MIP-AED). The quantification limit was about 0.6 microg/g and 0.1 microg/g of MeHg (as Hg) for 0.08 g of freeze-dried fish powder and 0.5 g of fresh samples, respectively. Two certified reference materials, CRM 464 (tuna fish) from Community Bureau of Reference-BCR and DORM-2 (dogfish muscle) from National Research Council Canada-NRC were selected for checking the accuracy of the method. This methodology was applied to the determination of MeHg in some kinds of fish from the Carmo river with alluvial gold recovery activities ("garimpos") in Mariana, Minas Gerais, Brazil.

  1. Large-amplitude, narrow-linewidth microwave emission in a dual free-layer MgO spin-torque oscillator

    SciTech Connect

    Nagasawa, Tazumi Kudo, Kiwamu; Suto, Hirofumi; Mizushima, Koichi; Sato, Rie

    2014-11-03

    Synchronized magnetization motion among the several magnetic layers composing a spin-torque oscillator (STO) is considered an effective way to improve spectral purity. To utilize this scheme in a MgO-based STO, we have fabricated a dual free-layer STO composed of a CoFeB free layer (FL), a MgO barrier layer, and a CoFe/Ru/CoFeB synthetic ferrimagnet free layer (SyF). Unlike conventional MgO-based STOs, this structure does not have an antiferromagnetic layer that pins the SyF, leading to a large-amplitude oscillation of magnetization in the SyF. The dual free-layer STO exhibits coherent microwave emissions with power spectrum density beyond 800 nW/GHz and narrow spectral linewidth below 5 MHz (Q-factor ≈ 2000). Macrospin simulations confirm that the stable oscillations originate from the synchronized magnetization motion of the FL and the SyF through dynamical dipolar coupling.

  2. POLARIZATION OF MAGNETIC DIPOLE EMISSION AND SPINNING DUST EMISSION FROM MAGNETIC NANOPARTICLES

    SciTech Connect

    Hoang, Thiem; Lazarian, Alex

    2016-04-20

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  3. The Detection of a Striking Increase in the Microwave Emission from Jupiter's Radiation Belts in June and July 2003.

    NASA Astrophysics Data System (ADS)

    Klein, M. J.; Bolton, S. J.; Levin, S. M.; Mac Laren, D.

    2004-12-01

    Synchrotron emission from energetic electrons in Jupiter's radiation belts has been routinely measured by ground-based radio telescopes for three decades. The NASA-JPL Jupiter Patrol, using NASA's Deep Space Network (DSN) antennas at Goldstone, CA., has reported significant (5 %-to-30 %) variations in Jupiter's flux density near 13-cm wavelength with timescales from a few days to several months. In this paper we report observations of an unusually sudden increase in flux density from 3.8 to 4.3 Jy that occurred between 20 June and 15 July 2003. The rate of increase (approximately 0.6 percent per day) is the steepest increase that we have detected with the exception of the increase in 1994 following the impacts of fragments from comet Shoemaker-Levy 9. More than half of the reported observations were conducted by middle- and high school students from classrooms across the nation. The students and their teachers are participants in the Goldstone-Apple Valley Radio Telescope (GAVRT) science education project, which is a partnership involving NASA, the Jet Propulsion Laboratory and the Lewis Center for Educational Research (LCER) in Apple Valley, CA. Working with the Lewis Center over the Internet, GAVRT students conduct remotely controlled radio astronomy observations using 34-m antennas at Goldstone. We also report preliminary results from a special GAVRT observing campaign conducted in the fall of 2003 before, during and after the controlled impact of the Galileo spacecraft into the Jovian atmosphere. Simultaneous observations were made at 3.5 and 13 cm wavelengths three-to-four days per week. These data are being incorporated into synchrotron emission studies of the state of the radiation belts during the last weeks of the Galileo mission. The JPL contribution to this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  4. Nonlocal Anomalous Hall Effect.

    PubMed

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  5. Nonlocal Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  6. The magnetic field in the anomalous arms in NGC 4258

    NASA Astrophysics Data System (ADS)

    Hummel, E.; Krause, M.; Beck, R.

    The linearly polarized emission and total emission of NGC 4258 at 4.9 and 1.5 GHz were observed with the VLA in its D and C arrays respectively. The results strongly suggest that the anomalous arms are in the plane of NGC 4258, hence excluding models that require them to be out of the plane. The observed magnetic field structure is in essence bisymmetric (dynamo mode m = 1) and the magnetic field strength is highest in the ridges of the anomalous arms. The present structure may be the result of compression of a preexisting (not necessarily primordial) bisymmetric field. The KOM expulsion model could give an explanation for this compression.

  7. Microwave off-gas treatment apparatus and process

    DOEpatents

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  8. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  9. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy.

    PubMed

    Kumakli, Hope; Duncan, A'ja V; McDaniel, Kiara; Mehari, Tsdale F; Stephenson, Jamira; Maple, Lareisha; Crawford, Zaria; Macemore, Calvin L; Babyak, Carol M; Fakayode, Sayo O

    2017-05-01

    Human scalp hair samples were collected and used to assess exposure to toxic elements and essential elements in the state of North Carolina, USA using accelerated microwave assisted acid digestion and inductively coupled plasma optical emission spectroscopy (ICP-OES). The figures-of-merit of the ICP-OES were appropriate for elemental analysis in scalp hair with detection limits as low as 0.0001 mg/L for Cd, good linearity (R(2) > 0.9978), and percent recoveries that ranged from 96 to 106% for laboratory-fortified-blanks and 88-112% for sample spike recovery study. The concentrations of essential elements in scalp hair were larger than those of toxic elements, with Ca having the highest average concentration (3080 μg/g, s = 14,500, n = 194). Some of the maximum concentrations observed for As (65 μg/g), Ni (331 μg/g), Cd (2.96 μg/g), and Cr (84.6 μg/g) in individual samples were concerning, however. Samples were statistically analyzed to determine the influence of race, gender, smoking habits, or age on the elemental concentrations in scalp hair. Higher concentrations of essential elements were observed in the scalp hair of Caucasians, females, and non-smokers, and the differences were often significant at a 90% confidence level. Several pairs of essential elements, for example Ca-K, Ca-Mg, and Ca-Zn, were strongly correlated in Caucasian hair but uncorrelated in African-American hair. Similarly, essential elements were strongly correlated in female hair but weakly correlated in male hair. Toxic element pairs (As-Cd, As-Se, Pb-As, and Se-Cd) were strongly correlated in the hair of smokers but uncorrelated in that of non-smokers, suggesting that cigarette smoke is a common source of toxic elements in humans.

  10. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  11. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  12. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  13. Fickian dispersion is anomalous

    SciTech Connect

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  14. Fickian dispersion is anomalous

    NASA Astrophysics Data System (ADS)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  15. Anomalous spin Josephson effect

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng

    2016-10-01

    We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.

  16. Constraint on the Polarization of Electric Dipole Emission from Spinning Dust

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.; Martin, P. G.

    2013-12-01

    Planck results have revealed that the electric dipole emission from polycyclic aromatic hydrocarbons (PAHs) is the most reliable explanation for the anomalous microwave emission that interferes with cosmic microwave background (CMB) radiation experiments. The emerging question is to what extent this emission component contaminates the polarized CMB radiation. We present constraints on polarized dust emission for the model of grain-size distribution and grain alignment that best fits the observed extinction and polarization curves. Two stars with a prominent polarization feature at λ = 2175 Å—HD 197770 and HD 147933-4—are chosen for our study. For HD 197770, we find that the model with aligned silicate grains plus weakly aligned PAHs can successfully reproduce the 2175 Å polarization feature; in contrast, for HD 147933-4, we find that the alignment of only silicate grains can account for that feature. The alignment function of PAHs for the best-fit model to the HD 197770 data is used to constrain polarized spinning dust emission. We find that the degree of polarization of spinning dust emission is about 1.6% at frequency ν ≈ 3 GHz and declines to below 0.9% for ν > 20 GHz. We also predict the degree of polarization of thermal dust emission at 353 GHz to be P em ≈ 11% and 14% for the lines of sight to the HD 197770 and HD 147933-4 stars, respectively.

  17. Fractal model of anomalous diffusion.

    PubMed

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  18. Detection of anomalous events

    DOEpatents

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  19. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    PubMed

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories.

  20. Explosive Emission Cathode Based on a Carbon Fiber for Long-Term Pulsed-Periodic Mode of Operation and its Application in a High-Power Microwave Pulse Generator Without External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kutenkov, O. P.; Pegel, I. V.; Totmeninov, E. M.

    2014-09-01

    Current characteristics and operating lifetime of the explosive emission cathode based on a carbon microfiber are investigated in the pulsed-periodic mode of operation with pulse duration of about 5 ns. Long-term (for up to 3.6 million pulses) tests of the cathode operating lifetime are carried out. Specific ablation of the fiber material equal to 2.4·10-4 g/C is obtained. Change in the morphology of the fiber surface during long-time operation caused by deposition of carbon from the cathode plasma is revealed. The microscopic electric field strength on the fiber surface is estimated taking into account the surface microrelief. The efficiency of microwave generation comparable with that of a velvet cathode in low (200 kV/cm) average electric field in the gap is obtained for the Cherenkov microwave generator with vacuum diode without external magnetic field of decimeter wavelength range based on the SINUS-7 pulsed-periodic high-current electron accelerator with current pulse duration of 50 ns. The operating lifetime no less than 105 pulses is demonstrated for the carbon fiber-based cathode of the microwave generator operating in the mode of pulse batch with duration of several seconds and pulse repetition frequency of 20-50 Hz.

  1. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  2. A New Neural Network Approach Including First-Guess for Retrieval of Atmospheric Water Vapor, Cloud Liquid Water Path, Surface Temperature and Emissivities Over Land From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Aires, F.; Prigent, C.; Rossow, W. B.; Rothstein, M.; Hansen, James E. (Technical Monitor)

    2000-01-01

    The analysis of microwave observations over land to determine atmospheric and surface parameters is still limited due to the complexity of the inverse problem. Neural network techniques have already proved successful as the basis of efficient retrieval methods for non-linear cases, however, first-guess estimates, which are used in variational methods to avoid problems of solution non-uniqueness or other forms of solution irregularity, have up to now not been used with neural network methods. In this study, a neural network approach is developed that uses a first-guess. Conceptual bridges are established between the neural network and variational methods. The new neural method retrieves the surface skin temperature, the integrated water vapor content, the cloud liquid water path and the microwave surface emissivities between 19 and 85 GHz over land from SSM/I observations. The retrieval, in parallel, of all these quantities improves the results for consistency reasons. A data base to train the neural network is calculated with a radiative transfer model and a a global collection of coincident surface and atmospheric parameters extracted from the National Center for Environmental Prediction reanalysis, from the International Satellite Cloud Climatology Project data and from microwave emissivity atlases previously calculated. The results of the neural network inversion are very encouraging. The r.m.s. error of the surface temperature retrieval over the globe is 1.3 K in clear sky conditions and 1.6 K in cloudy scenes. Water vapor is retrieved with a r.m.s. error of 3.8 kg/sq m in clear conditions and 4.9 kg/sq m in cloudy situations. The r.m.s. error in cloud liquid water path is 0.08 kg/sq m . The surface emissivities are retrieved with an accuracy of better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave land surface temperature retrieval presents a very attractive complement to the infrared estimates in cloudy areas: time record of land

  3. A microwave-induced plasma based on microstrip technology and its use for the atomic emission spectrometric determination of mercury with the aid of the cold-vapor technique.

    PubMed

    Engel, U; Bilgiç, A M; Haase, O; Voges, E; Broekaert, J A

    2000-01-01

    A new low-power, small-scale 2.45 GHz microwave plasma source at atmospheric pressure for atomic emission spectrometry based on microstrip technology is described. The MicroStrip Plasma (MSP) source was produced in microstrip technology on a fused-silica wafer and designed as an element-selective detector for miniaturized analytical applications. The electrodeless microwave-induced plasma (MIP) operates at microwave input power of 10-40 W and gas flows of 50-1000 mL.min-1 of Ar. Rotational (OH) and excitation (Fe) temperatures were found to be 650 and 8000 K, respectively. Spatially resolved measurements of the Hg I 253.7-nm atomic emission line with an electronic slitless spectrograph (ESS) showed that a cylindrically symmetric plasma with a diameter of about 1 mm is obtained. With the MSP, Hg could be determined by applying the flow injection cold vapor (FI-CV) technique with a detection limit of 50 pg.ml-1. In terms of the relative standard deviation, a time stability of < 1.4% for 45 replicates within 80 min can be realized at a concentration level of 10 ng.ml-1 of Hg. Hg could be determined in the leachate of a certified standard reference soil (STSD-4) obtained by treatment with aqua regia at the 930 +/- 76 ng.g-1 level. Results obtained by calibration with aqueous solutions of Hg and with standard addition were found to be in good agreement with those of cold-vapor atomic absorption spectrometry.

  4. Microwave generator

    DOEpatents

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  5. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  6. Microwave radio emissions as a proxy for coronal mass ejection speed in arrival predictions of interplanetary coronal mass ejections at 1 AU

    NASA Astrophysics Data System (ADS)

    Matamoros, Carolina Salas; Klein, Karl Ludwig; Trottet, Gerard

    2017-01-01

    The propagation of a coronal mass ejection (CME) to the Earth takes between about 15 h and several days. We explore whether observations of non-thermal microwave bursts, produced by near-relativistic electons via the gyrosynchrotron process, can be used to predict travel times of interplanetary coronal mass ejections (ICMEs) from the Sun to the Earth. In a first step, a relationship is established between the CME speed measured by the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SoHO/LASCO) near the solar limb and the fluence of the microwave burst. This relationship is then employed to estimate speeds in the corona of earthward-propagating CMEs. These speeds are fed into a simple empirical interplanetary acceleration model to predict the speed and arrival time of the ICMEs at Earth. The predictions are compared with observed arrival times and with the predictions based on other proxies, including soft X-rays (SXR) and coronographic measurements. We found that CME speeds estimated from microwaves and SXR predict the ICME arrival at the Earth with absolute errors of 11 ± 7 and 9 ± 7 h, respectively. A trend to underestimate the interplanetary travel times of ICMEs was noted for both techniques. This is consistent with the fact that in most cases of our test sample, ICMEs are detected on their flanks. Although this preliminary validation was carried out on a rather small sample of events (11), we conclude that microwave proxies can provide early estimates of ICME arrivals and ICME speeds in the interplanetary space. This method is limited by the fact that not all CMEs are accompanied by non-thermal microwave bursts. But its usefulness is enhanced by the relatively simple observational setup and the observation from ground, which makes the instrumentation less vulnerable to space weather hazards.

  7. Petrology of Anomalous Eucrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  8. Nonlocal anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, Shulei; Vignale, Giovanni

    Anomalous Hall effect (AHE) is a distinctive transport property of ferromagnetic metals arising from spin orbit coupling (SOC) in concert with spontaneous spin polarization. Nonetheless, recent experiments have shown that the effect also appears in a nonmagnetic metal in contact with a magnetic insulator. The main puzzle lies in the apparent absence of spin polarized electrons in the non-magnetic metal. Here, we theoretically demonstrate that the scattering of electrons from a rough metal-insulator interface is generally spin-dependent, which results in mutual conversion between spin and charge currents flowing in the plane of the layer. It is the current-carrying spin polarized electrons and the spin Hall effect in the bulk of the metal layer that conspire to generate the AH current. This novel AHE differs from the conventional one only in the spatial separation of the SOC and the magnetization, so we name it as nonlocal AHE. In contrast to other previously proposed mechanisms (e.g., spin Hall AHE and magnetic proximity effect (MPE)), the nonlocal AHE appears on the first order of spin Hall angle and does not rely on the induced moments in the metal layer, which make it experimentally detectable by contrasting the AH current directions of two layered structures such as Pt/Cu/YIG and β -Ta/Cu/YIG (with a thin inserted Cu layer to eliminate the MPE). We predict that the directions of the AH currents in these two trilayers would be opposite since the spin Hall angles of Pt and β -Ta are of opposite signs. Work supported by NSF Grants DMR-1406568.

  9. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  10. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  11. Microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Wang, J. R.

    1988-01-01

    Knowledge of soil moisture is important to many disciplines, such as agriculture, hydrology, and meteorology. Soil moisture distribution of vast regions can be measured efficiently only with remote sensing techniques from airborne or satellite platforms. At low microwave frequencies, water has a much larger dielectric constant than dry soil. This difference manifests itself in surface emissivity (or reflectivity) change between dry and wet soils, and can be measured by a microwave radiometer or radar. The Microwave Sensors and Data Communications Branch is developing microwave remote sensing techniques using both radar and radiometry, but primarily with microwave radiometry. The efforts in these areas range from developing algorithms for data interpretation to conducting feasibility studies for space systems, with a primary goal of developing a microwave radiometer for soil moisture measurement from satellites, such as EOS or the Space Station. These efforts are listed.

  12. Anomalous Doppler instability in tokamaks: first principles simulation and observations in MAST

    NASA Astrophysics Data System (ADS)

    Dendy, Richard; Lai, Alan; Chapman, Sandra

    2015-11-01

    The evolution in velocity space of minority suprathermal electron populations undergoing the anomalous Doppler instability (ADI) is investigated using fully nonlinear particle-in-cell simulations (W N Lai et al., Phys. Plasmas 20, 102122 (2013); and submitted (2015)) that self-consistently evolve particles and fields in a magnetized plasma. Electron trajectories during different stages of the ADI are captured, and are analyzed in relation to the excited electric fields and the overall velocity distribution of electrons. The time-evolution of the moments of the perpendicular electron distribution function is studied to test the range of applicability of analytical approximations that involve a quasilinear wave-driven diffusion operator. For some electrons, trapping and mirroring are observed during the saturation phase. Recent measurements of microwave and X-ray emission during edge localized mode (ELM) activity in the MAST tokamak imply acceleration of electrons parallel to the magnetic field combined with rapid acquisition of perpendicular momentum. This suggests (S J Freethy et al., Phys. Rev. Lett. 114, 125004 (2015)) that the ADI is operating on electrons accelerated by inductive electric fields generated by the initial ELM instability. Work supported in part by the RCUK Energy Programme and EPSRC.

  13. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  14. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1986-01-01

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  15. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    SciTech Connect

    Piriaei, D.; Javadi, S.; Ghoranneviss, M.; Mahabadi, T. D.; Saw, S. H.; Lee, S.

    2015-12-15

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  16. Associated TeV Emission from the Double-Synchrotron Model for Large-Scale Quasar Jets

    NASA Astrophysics Data System (ADS)

    Whitley, Kevin Michael; Meyer, Eileen T.; Georganopoulos, Markos

    2017-01-01

    When the Chandra X-ray telescope launched, it discovered that the radio jets sometimes produced by active galactic nuclei (AGN) were anomalously bright in the X-ray band. The dominant model for explaining this X-ray emission is presently that the synchrotron-emitting electrons in the jet are Compton-scattering Cosmic Microwave Background photons (IC/CMB). This model requires highly relativistic bulk jet speeds far from the core of the AGN and a cutoff of the electron energy distribution in the jet below TeV energies. Based on recent results ruling out the IC/CMB model for anomalous X-ray jets, we consider instead that X-rays from a second electron energy distribution reaching up to TeV energies. As a mandatory process, IC/CMB emission at TeV energies will result from these jets, at a level dependent on the magnetic field and Doppler boosting factor. Using publicly available multi-wavelength observations of around three dozen anomalously X-ray bright jets, we predict the TeV gamma ray production of each jet subject to these unknowns. This will allow us to construct a catalog of potential TeV-producing active galaxies to observe with TeV telescopes currently being constructed. Such observations could be used to determine which, if either, of these two models is correct in explaining the X-ray emission of these jets.

  17. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  18. Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric; Nicolas, Marine; Graveleau, Laetitia; Richoz, Janique; Andrey, Daniel; Monard, Florence

    2009-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-atomic emission spectroscopy in order to improve and update AOAC Official Method 984.27. The improvements involved optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed or open vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proved through a successful internal RT using experienced food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD and HorRat values) regarding SLV and RT. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an improved version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  19. Determination of calcium, copper, iron, magnesium, manganese, potassium, phosphorus, sodium, and zinc in fortified food products by microwave digestion and inductively coupled plasma-optical emission spectrometry: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric

    2012-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-optical emission spectrometry in order to modernize AOAC Official Method 984.27. The improvements involved extension of the scope to all food matrixes (including infant formula), optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed- or open-vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proven through a successful RT using experienced independent food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD, and HorRat values) regarding SLVs and RTs. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an extended updated version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  20. Microwave PASER Experiment

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Antipov, S.; Poluektov, O.; Jing, C.

    2009-01-22

    The PASER (Particle Acceleration by Stimulated Emission of Radiation) concept for particle acceleration entails the direct transfer of energy from an active medium to a charged particle beam. The PASER was originally formulated for optical (laser) media; we are planning a PASER demonstration experiment based on an optically pumped X-band paramagnetic medium consisting of porphyrin or fullerene (C{sub 60}) derivatives in a toluene solution or polystyrene matrix. We discuss the background of this project and report on the status of the experiment to measure the acceleration of electrons using the microwave PASER.

  1. Anomalous Earth flybys of spacecraft

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2015-07-01

    A small deviation from the potential is expected for the gravitational interaction of extended bodies. It is explained as a consequence of a recently proposed gravitational impact model (Wilhelm et al. in Astrophys. Space Sci. 343:135-144, 2013) and has been applied to anomalous perihelion advances by Wilhelm and Dwivedi (New Astron. 31:51-55, 2014). The effect—an offset of the effective gravitational centre from the geometric centre of a spherical symmetric body—might also be responsible for the observed anomalous orbital energy gains and speed increases during Earth flybys of several spacecraft. However, close flybys would require detailed considerations of the orbit geometry. In this study, an attempt is made to explain the anomalous Earth flybys of the Galileo, NEAR Shoemaker and Rosetta spacecraft.

  2. Catastrophic extraction of anomalous events

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Ro, Sookwang; Kostrzewski, Andrew

    2012-06-01

    In this paper we discuss extraction of anomalous events based on the theory of catastrophes, a mathematical theory of continuous geometrical manifolds with discrete singularities called catastrophes. Intelligence exploitation systems and technologies include such novel data mining techniques as automatic extraction of discrete anomalous events by software algorithms based on the theory of catastrophes, that can reduce complex problems to a few essential so-called state variables. This paper discusses mostly corank-1 catastrophes with only one state variable, for simplicity. As an example we discuss mostly avionics platforms and catastrophic failures that can be recorded by flight instruments.

  3. Passive microwave soil moisture research

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Oneill, P. E.; Wang, J. R.

    1986-01-01

    During the four years of the AgRISTARS Program, significant progress was made in quantifying the capabilities of microwave sensors for the remote sensing of soil moisture. In this paper, a discussion is provided of the results of numerous field and aircraft experiments, analysis of spacecraft data, and modeling activities which examined the various noise factors such as roughness and vegetation that affect the interpretability of microwave emission measurements. While determining that a 21-cm wavelength radiometer was the best single sensor for soil moisture research, these studies demonstrated that a multisensor approach will provide more accurate soil moisture information for a wider range of naturally occurring conditions.

  4. Anomalous-viscosity current drive

    DOEpatents

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  5. Venus Highland Anomalous Reflectivity

    NASA Astrophysics Data System (ADS)

    Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.

    2009-09-01

    Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.

  6. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  7. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  8. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  9. Modeling of microwave heating of particulate metals

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Upadhyaya, A.; Sethi, G.

    2006-10-01

    Recent studies have shown that metal powder compacts can be heated to high temperatures using microwaves. While microwave heating of ceramics is well understood and modeled, there is still uncertainty about the exact mechanism and mode of microwave heating of particulate metals. The current study describes an approach for modeling the microwave heating of metal powder compacts using an electromagnetic-thermal model. The model predicts the variation in temperature with time during sintering. The effect of powder size, emissivity, and susceptor heating on the heating rate has also been assessed. These predictions have been validated by the experimental observations of the thermal profiles of Sn-, Cu-, and W-alloy compacts, using a 2.45 GHz multimode microwave furnace.

  10. Microwave generated plasma light source apparatus

    SciTech Connect

    Yoshizawa, K.; Ito, H.; Kodama, H.; Komura, H.; Minowa, Y.

    1985-02-05

    A microwave generated plasma light source including a microwave generator, a microwave cavity having a light reflecting member forming at least a portion of the cavity, and a member transparent to light and opaque to microwaves disposed across an opening of the cavity opposite the feeding opening through which the microwave generator is coupled. An electrodeless discharge bulb is disposed at a position in the cavity such that the cavity operates as a resonant cavity at least when the bulb is emitting light. In the bulb is encapsulated at least one discharge light emissive substance. The bulb has a shape and is sufficiently small that the bulb acts substantially as a point light source.

  11. Speciation analysis of triethyl-lead and tributyl-tin compounds in human urine by liquid-liquid extraction and gas chromatography microwave-induced plasma atomic emission detection.

    PubMed

    Zachariadis, George A; Rosenberg, Erwin

    2012-05-01

    This work describes the development of a fast method for speciation analysis of triethyl-lead and tributyl-tin species in urine samples after in situ derivatization by tetraethyl- or tetrapropyl-borate reagents. The alkylation reaction is done in the aqueous and urine medium and the less-polar derivatives are extracted in hexane by liquid-liquid extraction. The species were extracted and the extract was efficiently collected from the aqueous phase after centrifugation. Finally, the organometallic species are separated by gas chromatography and determined from the emission signals of elemental lead and tin. Atomic lead and tin are formed from the organolead and organotin compounds during atomization of the column eluate in a microwave-induced helium plasma source. The simultaneous measurement of lead (Pb) at 405.780 nm and tin (Sn) at 303.419 nm was achieved by an atomic emission detector. Finally, the analytes were determined with satisfactory precision (<5%) and detection limits of 0.05 μg Pb/L and 0.48 μg Sn/L, respectively, when 10 mL of urine is extracted with 1 mL of hexane and 1 μL of extract is injected.

  12. Optical Detection of Anomalous Nitrogen in Comets

    NASA Astrophysics Data System (ADS)

    2003-12-01

    studies will provide crucial information about the detailed composition of a much larger number of comets than hitherto possible and hence, more information about the primordial matter from which the solar system formed. A better understanding of the origins of the cometary material (in particular the HCN and CN molecules [3]) and the connection with heavier organic molecules is highly desirable. This is especially so in view of the probable rôle of comets in bringing to the young Earth materials essential for the subsequent formation of life on our planet . PR Photo 28a/03 : Comet LINEAR (C/2000 WM1) - direct image and UVES slit position. PR Photo 28b/03 : Part of the UVES spectrum of Comet LINEAR (C/2000 WM1) with CN-band. PR Photo 28c/03 : Identification of nitrogen-15 in the spectrum. Cometary material Knowledge of the abundance of the stable isotopes [2] of the light elements in different solar system objects provides critical clues to the origin and early evolution of these objects and of the system as a whole. In order to gain the best possible insight into the origins and formation of the niche in which we live, it is therefore important to determine such isotopic abundance ratios in as many members of the solar family as possible. This is particularly true for comets, believed to be carriers of well-preserved specimens of the pristine material from which the solar system was made, some 4,600 million years ago. However, the detailed study of cometary material is a difficult task. Measurements of isotopic ratios is an especially daunting undertaking, mainly because of the extreme weakness of the spectral signatures (emissions) of the less abundant species like carbon-13, nitrogen-15, etc.. Measurements of microwave emission from those atoms suffer from additional, inherent uncertainties connected to the much stronger emission of the more abundant species. Measurements in the optical spectral region thus take on particular importance in this context. However, it is

  13. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  14. Faraday anomalous dispersion optical tuners

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  15. Anomalous Thermalization in Ergodic Systems

    NASA Astrophysics Data System (ADS)

    Luitz, David J.; Bar Lev, Yevgeny

    2016-10-01

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  16. Anomalous Thermalization in Ergodic Systems.

    PubMed

    Luitz, David J; Bar Lev, Yevgeny

    2016-10-21

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  17. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO

  18. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal

  19. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO

  20. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB

  1. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO

  2. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code

  3. Colligative properties of anomalous water.

    PubMed

    Everett, D H; Haynes, J M; McElroy, P J

    1970-06-13

    Investigations of the phase behaviour on freezing and subsequent melting and of other properties indicate that anomalous water is a solution containing a fixed amount of relatively involatile material in normal water. There seems to be no need to postulate the existence of a new polymer of water in such solutions. If only water and silica are present, the properties are consistent with those of a silicic acid gel.

  4. Faraday anomalous dispersion optical filters

    NASA Technical Reports Server (NTRS)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  5. Determination of trace impurities in high-purity zirconium dioxide by inductively coupled plasma atomic emission spectrometry using microwave-assisted digestion and wavelet transform-based correction procedure.

    PubMed

    Ma, Xiaoguo; Li, Yibing

    2006-10-02

    This paper describes a rapid, accurate and precise method for the determination of trace Fe, Hf, Mn, Na, Si and Ti in high-purity zirconium dioxide (ZrO2) powders by inductively coupled plasma atomic emission spectrometry (ICP-AES). The samples were dissolved by a microwave-assisted digestion system. Four different digestion programs with various reagents were tested. It was found that using a mixture of sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4), the total sample dissolution time was 30 min, much shorter than that required for conventional digestion in an opening system. The determination of almost all of the target analytes suffered from spectral interferences, since Zr shows a line-rich atomic emission spectrometry. The wavelet transform (WT), a recently developed mathematical technique was applied to the correction of spectral interference, and more accurate and precise results were obtained, compared with traditional off-peak background correction procedure. Experimental work revealed that a high Zr concentration would result in a significant decrease in peak height of the analyte lines, which was corrected by standard addition method. The performance of the developed method was evaluated by using synthetic samples. The recoveries were in the range of 87-112% and relative standard deviation was within 1.1-3.4%. The detection limits (3sigma) for Fe, Hf, Mn, Na, Si and Ti were found to be 1.2, 13.3, 1.0, 4.5, 5.8 and 2.0 microg g(-1), respectively. The results showed that with the microwave-assisted digestion and the WT correction, the detection limits have improved by a factor of about 5 for Fe, 4 for Mn and Ti, 3 for Si, and 2 for Hf and Na, respectively, in comparison with conventional open-system digestion and off-peak correction. The proposed technique was applied to the analysis of trace elements above-mentioned in three types of ZrO2 powders.

  6. Causes of anomalous line-splitting in RV Tauri stars

    NASA Astrophysics Data System (ADS)

    Baird, S. R.

    1984-01-01

    Data on the anomalous absorption-line splitting and emission in the RV Tauri stars AC Her, U Mon, and R Sct are examined. It is shown that the Karp line-splitting mechanism for cepheids cannot explain the highly redshifted lines that appear without antecedents in some RV Tauri stars and that the veiling that occurs during rising light appears to affect the bluer absorption components more than the high redshift ones. Evidence is reviewed showing strong shock waves must be present in RV Tauri star atmospheres, and a two-shock picture to explain the anomalous line splitting is presented based on a model for long-period variables by Hill and Willson. Advantages and difficulties of the model are discussed.

  7. Anomalous sounds from the entry of meteor fireballs.

    PubMed

    Keay, C S

    1980-10-03

    A very bright fireball observed over New South Wales in 1978 produced anomalous sounds clearly audible to some of the observers. An investigation of the phenomenon indicates that bright fireballs radiate considerable electromagnetic energy in the very-low-frequency (VLF) region of the spectrum. A mechanism for the production of VLF emissions from the highly energetic wake turbulence of the fireball is proposed. Trials with human subjects revealed a very extended range of thresholds for the perception of electrically excited sounds among a sample population, particularly when the VLF electric field excites surface acoustic waves in surrounding objects. This fact, together with variable propagation effects and local conditions, can account for the sporadic distribution of reports of anomalous sounds from fireballs and auroras.

  8. Determination of metal concentrations in certified plastic reference materials after small-size autoclave and microwave-assisted digestion followed with inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Lehtimäki, Esa; Väisänen, Ari

    2017-01-01

    The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.

  9. Purge-and-trap isothermal multicapillary gas chromatographic sample introduction accessory for speciation of mercury by microwave-induced plasma atomic emission spectrometry.

    PubMed

    Rodriguez Pereiro, I; Wasik, A; Lobiński, R

    1998-10-01

    A compact device based on purge-and-trap multicapillary gas chromatography was developed for sensitive species-selective analysis of methylmercury and Hg2+ by atomic spectrometry. The operating mode includes in situ conversion of the analyte species to MeEtHg and HgEt2 and cryotrapping of the derivatives formed in a 0.53-mm-i.d. capillary, followed by their flash (< 30 s) isothermal low-temperature separation on a minimulticapillary (22 cm) column. The very low detection limits obtained (0.01 pg mL-1 of Hg for methylmercury) are due to the narrow injection band and reduced peak broadening in a bundle of 0.038-mm capillaries at high flow rates (> 60 mL min-1) compatible with an MIP AES detector (no dilution with a makeup gas is required). Developments regarding each of the steps of the analytical procedure and effects of operational variables (sample volume, purge flow, trap temperature, separation conditions) are discussed. The device allows speciation of MeHg+ and Hg2+ down to 5 pg g-1 in urine and, after a rapid microwave-assisted hydrolysis, down to 0.1 ng g-1 in solid biological samples with a throughput of 6 samples/h. The analytical protocols developed were validated by the analysis of DORM-1 (dogfish muscle), TORT-1 (lobster hepatopancreas), and Seronorm urine certified reference materials.

  10. Effect of HF addition on the microwave-assisted acid-digestion for the determination of metals in coal by inductively coupled plasma-atomic emission spectrometry.

    PubMed

    Xu, Yan-Hua; Iwashita, Akira; Nakajima, Tsunenori; Yamashita, Hiroyuki; Takanashi, Hirokazu; Ohki, Akira

    2005-03-31

    The microwave-assisted acid-digestion for the determination of metals in coal by ICP-AES was investigated, especially focusing on the necessity of adding HF. By testing five certified reference materials, BCR-180, BCR-040, NIST-1632b, NIST-1632c, and SARM-20, it was found that the two-stage digestion without HF (HNO(3)+H(2)O(2) was used) was very effective for the pretreatment of ICP-AES measurement. Both major metals (Al, Ca, Fe, and Mg) and minor or trace metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) in coal gave good recoveries for their certified or reference values. The possibility of 'HF-memory effect' was cancelled by the use of a set of vessels which had been never contacted with HF. Twenty-four Japanese standard coals (SS coals) were analyzed by the present method, and the concentrations of major metals measured by the present method provided very high accordance with those from the authentic JIS (Japanese Industrial Standard) method.

  11. Anomalous absorption in a-type asymmetric top molecules in cosmic objects

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    Since the detection of the first molecule OH in cosmic objects in 1963, scientists got interested in identification of molecules in the cosmic objects. By now more than 170 molecules have been identified. In order to know about the physical conditions prevailing in the cool cosmic objects and about the chemical reactions going on there, scientists are interested in identification of as many molecules as possible. In some molecular clouds, the kinetic temperature is very low, 10 - 20 K. For such objects, anomalous absorption, i.e., the absorption against the cosmic microwave background, may play an important role for identification of molecules. The transition 111 - 110 at 4.829 GHz of H_2CO was the first one showing the anomalous absorption in the cosmic objects. The molecule H_2CS also has been identified in the cosmic objects. We have discussed about the anomalous absorption of 111 - 110 transition in a-type asymmetric top molecules. For the investigation, the required parameters are the radiative and collisional transition probabilities. We can calculate radiative transition probabilities between the rotational levels. Calculation of collisional rates is a tedious job. In absence of accurate collisional rates, we can investigated the anomalous absorption in a qualitative manner by using the scaled values for collisional rates. We find that anomalous absorption of 111 - 110 transition is possible, provided collisional rates satisfy the required condition.

  12. Tracking Jupiter at microwave frequencies after the 2009 impact

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; García-Miró, Cristina; Rizzo, Ricardo; Forster, James; Hofstadter, Mark; Dorcey, Ryan; Jauncey, David; de Pater, Imke; Baines, Graham; Sotuela, Ioanna

    2010-05-01

    On 19 July 2009, amateur astronomer Anthony Wesley located near Canberra, Australia, discovered an anomalous dark feature near Jupiter's south pole. It was soon confirmed with additional observations that the new feature was an impact site created by an unknown object. The only other observed collision with Jupiter occurred 15 years earlier with the catastrophic impact of the Shoemaker-Levy 9 Comet (SL9). Unlike the well-predicted SL9 event, the biggest question to answer this time is whether the impact body was a comet or an asteroid. We started a campaign to track Jupiter at microwave frequencies with NASA's Deep Space Network (DSN), in Canberra, Goldstone (California), and Madrid, and the Allen Telescope Array (ATA) in California. A 34m DSN radio telescope at Goldstone was operated by students through GAVRT program. Our primary goal was first to detect molecular radio emissions possibly originating from cometary core components, such as OH, H2O, and NH3, and second to detect radio burst in non-thermal continuum emissions, as observed after the SL-9 impact 15 years ago. We used a 70m radio telescope in Canberra and another 70m in Madrid to search for molecular emissions at 1.6 GHz for OH, 22 GHz for water vapors, 23 GHz for ammonia. Several radio spectroscopy observing sessions have been successfully conducted from 23 July to 1 August. We also started continuum emission monitoring, mainly at 2.3 GHz and 8.4 GHz using 34m and 70m DSN telescopes and the ATA. At early stage of this still on-going monitoring, joint observations were conducted with two 34m telescopes in Canberra and the ATA on 30 July and 9 August in order to have long continuous time coverage and to check flux density scales using a common calibrator source. To highlight this campaign, on 22 November we undertook the Jupiter: Project 24 for the International Year of Astronomy. This campaign was over 24 hours of continuous observation of Jupiter using all three DSN complexes around the world. A couple

  13. Laboratory measurement of the millimeter wave properties of liquid sulfuric acid (H2SO4). [study of microwave emission from Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1991-01-01

    The methodology and the results of laboratory measurements of the millimeter wave properties of liquid sulfuric acid are presented. Measurements conducted at 30-40 and 90-100 GHz are reported, using different concentrations of liquid H2SO4. The measured data are used to compute the expected opacity of H2SO4 condensates and their effects on the millimeter wave emission from Venus. The cloud condensate is found to have an effect on the emission from Venus. The calculated decrease in brightness temperature is well below the observed decrease in brightness temperature found by de Pater et al. (1991). It is suggested that other constituents such as gaseous H2SO4 also affect the observed variation in the brightness temperature.

  14. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    PubMed

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement.

  15. Faraday anomalous dispersion optical filters

    NASA Technical Reports Server (NTRS)

    Shay, T. M.; Yin, B.

    1992-01-01

    The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.

  16. Galilean satellites - Anomalous temperatures disputed

    NASA Technical Reports Server (NTRS)

    Morrison, D.; Lebofsky, L. A.; Veeder, G. J.; Cutts, J. A.

    1977-01-01

    Anomalous averaged infrared brightness temperatures of the Galilean satellites of Jupiter reported by Gross (1975) are rejected as falsely conceived and lacking physical reality. It is argued that the calculations of equilibrium temperatures should be corrected, whereupon predictions would be in satisfactory agreement with observations, in conformity with the radiometric method of determining the diameters of asteroids and satellites. The IR irradiance and the related disk-averaged brightness temperature for the spectral band are recommended as more relevant. Attention is drawn to some interesting discrepancies between calculated and observed temperatures of the Jovian satellites which merit further investigation.

  17. Minimal model for anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Flekkøy, Eirik G.

    2017-01-01

    A random walk model with a local probability of removal is solved exactly and shown to exhibit subdiffusive behavior with a mean square displacement the evolves as ˜t1 /2 at late times. This model is shown to be well described by a diffusion equation with a sink term, which also describes the evolution of a pressure or temperature field in a leaky environment. For this reason a number of physical processes are shown to exhibit anomalous diffusion. The presence of the sink term is shown to change the late time behavior of the field from 1 /t1 /2 to 1 /t3 /2 .

  18. Non-Ionizing Radiation Used in Microwave Ovens

    MedlinePlus

    ... that emit radiation. The standards ensure that radiation emissions do not pose a hazard to public health. These standards can be viewed on FDA's Code of Federal Regulations on Microwave Ovens . FDA establishes performance standards for ...

  19. Geomagnetically trapped anomalous cosmic rays

    SciTech Connect

    Selesnick, R.S.; Cummings, A.C.; Cummings, J.R.

    1995-06-01

    Since its launch in July 1992, the polar-orbiting satellite SAMPEX has been collecting data on geomagnetically trapped heavy ions, predominantly O, N, and Ne, at energies {ge}15 MeV/nucleon and in a narrow L shell range L = 2. Their location, elemental composition, energy spectra, pitch angle distribution, and time variations all support the theory that these particles originated as singly ionized interplanetary anomalous cosmic rays that were stripped of electrons in the Earth`s upper atmosphere and subsequently trapped. The O are observed primarily at pitch angles outside the atmospheric loss cones, consistent with a trapped population, and their distribution there is nearly isotropic. The abundances relative to O of the N, possible Ne, and especially C are lower than the corresponding interplanetary values, which may be indicative of the trapping efficiencies. The distributions of trapped N, O, and Ne in energy and L shell suggest that most of the ions observed at the SAMPEX altitude of {approximately}600 km are not fully stripped when initially trapped. A comparison of the trapped intensity with the much lower interplanetary intensity of anomalous cosmic rays provides model-dependent estimates of the product of the trapping probability and the average trapped particle lifetime against ionization losses in the residual atmosphere for particles that mirror near the SAMPEX altitude. 36 refs., 13 figs., 1 tab.

  20. Microwave processing improvements for methane conversion to ethylene

    SciTech Connect

    Stringfield, R.; Ott, K.; Nelson, E.; Anderson, G.; Chen, Dye-Zone; Dyer, T.; Thomas, J.

    1997-08-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project`s objective was to investigate microwave enhanced catalysis. Published work by others had demonstrated improved selectivity in microwave-driven catalytic conversion of 2-methylpentane to its isomers. We reproduced their experiment, discovering that there is no improvement in selectivity using microwaves. The selectivity at a given conversion was the same for both microwave heated and conventionally heated catalyst beds. Meetings with the authors of the previously published work led to the conjecture that their catalyst was not being prepared properly, leading to anomalously low selectivity for their conventional heating runs. An optical temperature diagnostic suitable for use on a microwave applicator was developed and characterized in this project. This pyrometer can measure the temperature of small scale features on the catalyst bed, and it has a fast response that can follow the rapid heating often encountered in a microwave processing system. The behavior of the microwave applicator system was studied, and theoretical models were developed to yield insight about the stability and control of the system.

  1. Total microwave processing using microwave technologies

    SciTech Connect

    Walter, P.J.; Kingston, H.M.

    1995-12-31

    The implementation of total microwave processing of samples involves all processes after the collection of a sample up to but not including the analysis. These processes are often time consuming and a primary source of critical analytical errors. The use of microwave technology has been shown to improve sample digestion while also reducing contamination. However, microwave technology can also be used in the preparation of representative samples and matrix modifications; essentially total sample preparation. The concept of total microwave processing will be discussed as applied to the routine analysis of samples according to proposed Environmental Protection Agency Method 3052. This method requires microwave digestion and provides for several methods of post-digestion removal of hydrofluoric acid. Microwave technologies will be shown to efficiently dry, digest, and perform matrix modifications.

  2. MICROWAVE SOLID-STATE GENERATORS.

    DTIC Science & Technology

    RADIOFREQUENCY GENERATORS , *SEMICONDUCTOR DIODES, *TRANSISTORS, MICROWAVE EQUIPMENT, X BAND, FREQUENCY MULTIPLIERS, MICROWAVE OSCILLATORS, CIRCUITS, BROADBAND, NARROWBAND, RADIOFREQUENCY POWER, TRANSISTOR AMPLIFIERS.

  3. Microwave Radiometric Signatures of Different Surface Types in Deserts

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Rossow, William B.; Matthews, Elaine; Marticorena, Beatrice

    1999-01-01

    In arid environments, specific microwave signatures have been observed with the Special Sensor Microwave/Imager (SSM/I). For a given diurnal change in surface skin temperature, the corresponding change in the microwave brightness temperature is smaller than expected. With the help of a 1D, time-dependent heat conduction model, this behavior is explained by microwave radiation coming from different depths in the soil, depending on the soil type and on the microwave radiation frequency. Using the eight-times daily estimates of the surface skin temperature by the International Satellite Cloud Climatology Project (ISCCP) and a simple Fresnel model, collocated month-long time series of the SSM/I brightness temperatures and the surface skin temperatures give a consistent estimate of the effective microwave emissivity and penetration depth parameters. Results are presented and analyzed for the Sahara and the Arabian Peninsula, for July and November 1992. The case of the Australian desert is also briefly mentioned. Assuming a reasonable thermal diffusivity for the soil in desert areas, the microwave radiation is estimated to come from soil layers down to depths of at least five wavelengths in some locations. Regions where the microwave radiation comes from deeper soil layers also have large microwave emissivity polarization differences and large visible reflectances, suggesting that these areas correspond to sand dune fields.

  4. Hard x ray/microwave spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.

    1992-01-01

    The joint study of hard x ray and microwave observations of solar flares is extremely important because the two complementary ways of viewing the accelerated electrons yield information that cannot be obtained using hard x rays or microwaves alone. The microwaves can provide spatial information lacking in the hard x rays, and the x ray data can give information on the energy distribution of electrons that remove ambiguities in the radio data. A prerequisite for combining the two data-sets, however, is to first understand which range of microwave frequencies correlate best with the hard x rays. This SMM Guest Investigator grant enabled us to combine multi-frequency OVRO data with calibrated hard x ray data to shed light on the relationship between the two emissions. In particular, the questions of which microwave frequencies correspond to which hard x ray energies, and what is the corresponding energy of the electrons that produce both types of emission are investigated.

  5. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  6. 21 CFR 1030.10 - Microwave ovens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... food through the application of electromagnetic energy at frequencies assigned by the Federal... prevent emission of microwave energy from the passage or opening which provides access to the cavity. (4... energy when access to the cavity is possible. (5) Service adjustments or service procedures means...

  7. Passive microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Kondratyev, K. Y.; Melentyev, V. V.; Rabinovich, Y. I.; Shulgina, E. M.

    1977-01-01

    The theory and calculations of microwave emission from the medium with the depth-dependent physical properties are discussed; the possibility of determining the vertical profiles of temperature and humidity is considered. Laboratory and aircraft measurements of the soil moisture are described; the technique for determining the productive-moisture content in soil, and the results of aircraft measurements are given.

  8. Anomalous extracellular diffusion in rat cerebellum.

    PubMed

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-05-05

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  9. Anomalous Extracellular Diffusion in Rat Cerebellum

    PubMed Central

    Xiao, Fanrong; Hrabe, Jan; Hrabetova, Sabina

    2015-01-01

    Extracellular space (ECS) is a major channel transporting biologically active molecules and drugs in the brain. Diffusion-mediated transport of these substances is hindered by the ECS structure but the microscopic basis of this hindrance is not fully understood. One hypothesis proposes that the hindrance originates in large part from the presence of dead-space (DS) microdomains that can transiently retain diffusing molecules. Because previous theoretical and modeling work reported an initial period of anomalous diffusion in similar environments, we expected that brain regions densely populated by DS microdomains would exhibit anomalous extracellular diffusion. Specifically, we targeted granular layers (GL) of rat and turtle cerebella that are populated with large and geometrically complex glomeruli. The integrative optical imaging (IOI) method was employed to evaluate diffusion of fluorophore-labeled dextran (MW 3000) in GL, and the IOI data analysis was adapted to quantify the anomalous diffusion exponent dw from the IOI records. Diffusion was significantly anomalous in rat GL, where dw reached 4.8. In the geometrically simpler turtle GL, dw was elevated but not robustly anomalous (dw = 2.6). The experimental work was complemented by numerical Monte Carlo simulations of anomalous ECS diffusion in several three-dimensional tissue models containing glomeruli-like structures. It demonstrated that both the duration of transiently anomalous diffusion and the anomalous exponent depend on the size of model glomeruli and the degree of their wrapping. In conclusion, we have found anomalous extracellular diffusion in the GL of rat cerebellum. This finding lends support to the DS microdomain hypothesis. Transiently anomalous diffusion also has a profound effect on the spatiotemporal distribution of molecules released into the ECS, especially at diffusion distances on the order of a few cell diameters, speeding up short-range diffusion-mediated signals in less permeable

  10. Anomalous diffraction in hyperbolic materials

    NASA Astrophysics Data System (ADS)

    Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano

    2016-09-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  11. Persistently anomalous Pacific geomagnetic fields

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Constable, Catherine G.

    A new average geomagnetic field model for the past 3kyr (ALS3K) helps bridge a large temporal sampling gap between historical models and more traditional paleomagnetic studies spanning the last 5 Myr. A quasi-static feature seen historically in the central Pacific has the opposite sign in ALS3K; its structure is similar to, but of larger amplitude than, that in the time-averaged geomagnetic field for the last 5 Myr. Anomalous geomagnetic fields exist beneath the Pacific over timescales ranging from 10²-106 years. It is unlikely that bias over such long time scales arises from electromagnetic screening, but conceivable that the Lorentz force is influenced by long wavelength thermal variations and/or localized regions of increased electrical conductivity (associated with compositional anomalies and possibly partial melt). This is consistent with recent seismic observations of the lower mantle.

  12. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  13. Anomalous Sediment Mixing by Bioturbation

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Xie, M.; Packman, A. I.

    2013-12-01

    Bioturbation, the reworking of sediments by animals and plants, is the dominant mode of sediment mixing in low-energy environments, and plays an important role in sedimentary biogeochemical processes. Mixing resulting from bioturbation has historically been modeled as a diffusive process. However, diffusion models often do not provide a sufficient description of sediment mixing due to bioturbation. Stochastic models, such as the continuous time random walk (CTRW) model, provide more general descriptions of mixing behavior that are applicable even when regular diffusion assumptions are not met. Here we present results from an experimental investigation of anomalous sediment mixing by bioturbation in freshwater sediments. Clean and heavy-metal-contaminated sediments were collected from Lake DePue, a backwater lake of the Illinois River. The burrowing worm species Lumbriculus variegatus was introduced to homogenized Lake DePue sediments in aerated aquaria. We then introduced inert fine fluorescent particles to the sediment-water interface. Using time-lapse photography, we observed the mixing of the fluorescent particles into the sediment bed over a two-week period. We developed image analysis software to characterize the concentration distribution of the fluorescent particles as a function of sediment depth, and applied this to the time-series of images to evaluate sediment mixing. We fit a one-dimensional CTRW model to the depth profiles to evaluate the underlying statistical properties of the mixing behavior. This analysis suggests that the sediment mixing caused by L. variegatus burrowing is subdiffusive in time and superdiffusive in space. We also found that heavy metal contamination significantly reduces L. variegatus burrowing, causing increasingly anomalous sediment mixing. This result implies that there can be important feedbacks between sediment chemistry, organism behavior, and sediment mixing that are not considered in current environmental models.

  14. Microwave Workshop for Windows.

    ERIC Educational Resources Information Center

    White, Colin

    1998-01-01

    "Microwave Workshop for Windows" consists of three programs that act as teaching aid and provide a circuit design utility within the field of microwave engineering. The first program is a computer representation of a graphical design tool; the second is an accurate visual and analytical representation of a microwave test bench; the third…

  15. Predicting molecular scale skin-effect in electrochemical impedance due to anomalous subdiffusion mediated adsorption phenomenon

    NASA Astrophysics Data System (ADS)

    Kushagra, Arindam

    2016-02-01

    Anomalous subdiffusion governs the processes which are not energetically driven, on a molecular scale. This paper proposes a model to predict the response of electrochemical impedance due to such diffusion process. Previous works considered the use of fractional calculus to predict the impedance behaviour in response to the anomalous diffusion. Here, we have developed an expression which predicts the skin-effect, marked by an increase in the impedance with increasing frequency, in this regime. Negative inductances have also been predicted as a consequence of the inertial response of adsorbed species upon application of frequency-mediated perturbations. It might help the researchers in the fields of impedimetric sensors to choose the working frequency and those working in the field of batteries to choose the parameters, likewise. This work would shed some light into the molecular mechanisms governing the impedance when exposed to frequency-based perturbations like electromagnetic waves (microwaves to ionizing radiations) and in charge storage devices like batteries etc.

  16. Anomalous DC and RF behavior of virgin AlGaN/AlN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, H.; García-Pérez, Ó.; Pérez, S.; Altuntas, P.; Hoel, V.; Rennesson, S.; Cordier, Y.; González, T.; Mateos, J.; Íñiguez-de-la-Torre, I.

    2017-03-01

    The performance of gallium nitride transistors is still limited by technological problems often related to defects and traps. In this work, virgin AlGaN/AlN/GaN HEMTs exhibiting an anomalous DC behavior accompanied by frequency dispersion in the microwave range, both in the transconductance and output conductance, are analyzed. This anomalous response, which is mitigated by high-bias conditions, is attributed to the presence of traps and defects both in the volume of the GaN channel and in the source and drain contacts. A simple equivalent circuit model is proposed to replicate the dispersive response of the transistor, achieving an excellent agreement with the measured S–parameters and thus providing relevant information about its characteristic frequency.

  17. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  18. Correspondence between Soft and Rapidity Anomalous Dimensions

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexey A.

    2017-02-01

    We establish a correspondence between ultraviolet singularities of soft factors for multiparticle production and rapidity singularities of soft factors for multiparton scattering. This correspondence is a consequence of the conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way, provides one with a proof of rapidity renormalization procedure for multiparton scattering [including the transverse momentum dependent (TMD) factorization as a special case]. As a by-product, we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop expressions for TMD and a general multiparton scattering rapidity anomalous dimension are derived.

  19. Three loop cusp anomalous dimension in QCD.

    PubMed

    Grozin, Andrey; Henn, Johannes M; Korchemsky, Gregory P; Marquard, Peter

    2015-02-13

    We present the full analytic result for the three loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling defined by the lightlike cusp anomalous dimension. We find evidence that this quantity is universal for any gauge theory and use this observation to predict the nonplanar n(f)-dependent terms of the four loop cusp anomalous dimension.

  20. Experimental phasing using zinc anomalous scattering

    SciTech Connect

    Cha, Sun-Shin; An, Young Jun; Jeong, Chang-Sook; Kim, Min-Kyu; Lee, Sung-Gyu; Lee, Kwang-Hoon; Oh, Byung-Ha

    2012-09-01

    The surface of proteins can be charged with zinc ions and the anomalous signals from these zinc ions can be used for structure determination of proteins. Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions. Zn derivatization of protein surfaces appears to be a largely unnoticed but promising method of protein structure determination.

  1. Anomalous dispersion enhanced Cerenkov phase-matching

    SciTech Connect

    Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  2. Correspondence between Soft and Rapidity Anomalous Dimensions.

    PubMed

    Vladimirov, Alexey A

    2017-02-10

    We establish a correspondence between ultraviolet singularities of soft factors for multiparticle production and rapidity singularities of soft factors for multiparton scattering. This correspondence is a consequence of the conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way, provides one with a proof of rapidity renormalization procedure for multiparton scattering [including the transverse momentum dependent (TMD) factorization as a special case]. As a by-product, we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop expressions for TMD and a general multiparton scattering rapidity anomalous dimension are derived.

  3. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

    PubMed

    Ma, Jianyi

    2016-10-11

    Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

  4. High brightness microwave lamp

    DOEpatents

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  5. Microwave sintering of nanopowder ZnNb2O6: Densification, microstructure and microwave dielectric properties

    NASA Astrophysics Data System (ADS)

    Bafrooei, H. Barzegar; Nassaj, E. Taheri; Hu, C. F.; Huang, Q.; Ebadzadeh, T.

    2014-12-01

    High density ZnNb2O6 ceramics were successfully fabricated by microwave sintering of ZnO-Nb2O5 and ZnNb2O6 nanopowders. Phase formation, microstructure and microwave electrical properties of the microwave sintered (MS) and microwave reaction sintered (MRS) specimens were examined using X-ray diffraction, field emission scanning electron microscopy and microwave dielectric properties measurement. Specimens were sintered in a temperature range from 950 to 1075 °C for 30 min at an interval of 25 °C using a microwave furnace operated at 2.45 GHz frequency, 3 kW power. XRD pattern revealed the formation of pure columbite phase of ZnNb2O6. The SEM micrographs show grain growth and reduction in porosity of specimens with the increase in sintering temperature. Good combination of microwave dielectric properties (εr~23.6, Qf~64,300 GHz and τf~-66 ppm/°C and εr~24, Qf~75,800 GHz and τf~-64 ppm/°C) was obtained for MS- and MRS-prepared samples at 1000 °C and 1050 °C for 30 min, respectively.

  6. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  7. Microwave hemorrhagic stroke detector

    DOEpatents

    Haddad, Waleed S.; Trebes, James E.

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  8. COS FUV Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 19 Proposal 12718.

  9. Receivers for the Microwave Radiometer on Juno

    NASA Technical Reports Server (NTRS)

    Maiwald, F.; Russell, D.; Dawson, D.; Hatch, W.; Brown, S.; Oswald, J.; Janssen, M.

    2009-01-01

    Six receivers for the MicroWave Radiometer (MWR) are currently under development at JPL. These receivers cover a frequency range of 0.6 to 22 GHz in approximately octave steps, with 4 % bandwidth. For calibration and diagnosis three noise diodes and a Dicke switch are integrated into each receiver. Each receiver is connected to its own antenna which is mounted with its bore sights perpendicular to the spin axis of the spacecraft. As the spacecraft spins at 2 RPM, the antenna field of view scans Jupiter's atmosphere from limb to nadir to limb, measuring microwave emission down to 1000-bar.

  10. Microwave remote sensing of snowpacks

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.

    1980-01-01

    The interaction mechanisms responsible for the microwave backscattering and emission behavior of snow were investigated, and models were developed relating the backscattering coefficient (sigma) and apparent temperature (T) to the physical parameters of the snowpack. The microwave responses to snow wetness, snow water equivalent, snow surface roughness, and to diurnal variations were investigated. Snow wetness was shown to have an increasing effect with increasing frequency and angle of incidence for both active and passive cases. Increasing snow wetness was observed to decrease the magnitude sigma and increase T. Snow water equivalent was also observed to exhibit a significant influence sigma and T. Snow surface configuration (roughness) was observed to be significant only for wet snow surface conditions. Diurnal variations were as large as 15 dB for sigma at 35 GHz and 120 K for T at 37 GHz. Simple models for sigma and T of a snowpack scene were developed in terms of the most significant ground-truth parameters. The coefficients for these models were then evaluated; the fits to the sigma and T measurements were generally good. Finally, areas of needed additional observations were outlined and experiments were specified to further the understanding of the microwave-snowpack interaction mechanisms.

  11. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  12. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  13. Detecting anomalous phase synchronization from time series

    SciTech Connect

    Tokuda, Isao T.; Kumar Dana, Syamal; Kurths, Juergen

    2008-06-15

    Modeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown. Two approaches are examined; one is a phase equational modeling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled chaotic oscillators. Application to prototypical models such as two interacting predator-prey systems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous structure from only a few sets of time series. Experimental data from two coupled Chua circuits shows its applicability to real experimental system.

  14. The charmonium dissociation in an ''anomalous wind''

    SciTech Connect

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmonium color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.

  15. The charmonium dissociation in an ''anomalous wind''

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less

  16. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  17. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

    1995-08-22

    A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

  18. Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Salerno, E.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10° radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 ± 0.02 for polarization and 1.51 ± 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6σ). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at ν< 60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 ± 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization

  19. Anomalous cross-B field transport and spokes in HiPIMS plasma

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.

    2016-05-01

    Localized light emission patterns observed during on time of a high power impulse magnetron sputtering (HiPIMS) discharge on a planar magnetron, known as spokes or ionization zones, have been identified as a potential source of anomalous cross-B field diffusion. In this paper experimental evidence is presented that anomalous diffusion is triggered by the appearance of spokes. The Hall parameter {ω\\text{ce}}{τ\\text{c}} , product of the electron cyclotron frequency and the classical collision time, reduces from Bohm diffusion values (∼ 16 and higher) down to the value of 3 as spokes appear, indicating anomalous cross-B field transport. A combination of intensified charge coupled device imaging and electric probe measurements reveals that the ions from the spokes are instantaneously diffusing away from the target. The ion diffusion coefficients calculated from a sideways image of the spoke are six times higher than Bohm diffusion coefficients, which is consistent with the reduction of the Hall parameter.

  20. Thermospheric topside neutral density, ionospheric anomalous electric field and resistivity measurements by active experiment at EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Ogawa, Yasunobu; Rietveld, Michael; Blagoveshchenskaya, Nataly; Yamazaki, Yosuke

    2016-07-01

    We have developed an active ground-based technique to estimate the topside thermospheric neutral density as well as topside ionospheric anomalous electric field and resistivity at EISCAT, combining the EISCAT UHF radar, HF heater and optics. When pumping the ionosphere the F-region electron temperature is significantly raised, increasing the upward plasma pressure gradient in the topside ionosphere, resulting in observed ion up-flow along the magnetic field line. Simultaneously, pump-induced suprathermal electrons produce artificial optical emissions. Using the modified ion-momentum equation, the thermospheric neutral density is estimated. Alternatively, using the MSIS model the field-aligned anomalous electric field is estimated. From the optical data the suprathermal electron flux is estimated, giving an estimate of the anomalous resistivity. Results from recent observations at EISCAT are presented.

  1. COBE DMR results and implications. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  2. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    NASA Astrophysics Data System (ADS)

    Pohl, Pawel; Zapata, Israel Jimenéz; Bings, Nicolas H.; Voges, Edgar; Broekaert, José A. C.

    2007-05-01

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH 4 concentration, the concentration of HCl, HNO 3 and H 2SO 4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 μg ml - 1 . The microstrip plasma tolerated the introduction of 4.2 ml min - 1 of H 2 in the Ar working gas, which corresponded to an H 2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H β line was of the order of 5500 K and 1.50 · 10 14 cm - 3 , respectively. Detection limits (3σ) of 18 ng ml - 1 for As and 31 ng ml - 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml - 1 level in a galvanic bath solution containing 2.5% of NiSO 4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g - 1 and a value of 144 ± 4 μg g - 1 was found.

  3. Generalized dispersive wave emission in nonlinear fiber optics.

    PubMed

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  4. On the mechanism of electromagnetic microwave absorption in superfluid helium

    SciTech Connect

    Pashitskii, E. A. Pentegov, V. I.

    2012-08-15

    In experiments on electromagnetic (EM) wave absorption in the microwave range in superfluid (SF) helium [1-3], a narrow EM field absorption line with a width on the order of (20-200) kHz was observed against the background of a wide absorption band with a width of 30-40 GHz at frequencies f{sub 0} Almost-Equal-To 110-180 GHz corresponding to the roton gap energy {Delta}{sub r}(T) in the temperature range 1.4-2.2 K. Using the so-called flexoelectric mechanism of polarization of helium atoms ({sup 4}He) in the presence of density gradients in SF helium (HeII), we show that nonresonance microwave absorption in the frequency range 170-200 GHz can be due to the existence of time-varying local density gradients produced by roton excitations in the bulk HeII. The absorption bandwidth is determined by the roton-roton scattering time in an equilibrium Boltzmann gas of rotons, which is t{sub r-r} Almost-Equal-To 3.4 Multiplication-Sign 10{sup -11} s at T = 1.4 K and decreases upon heating. We propose that the anomalously narrow microwave resonance absorption line in HeII at the roton frequency f{sub 0}(T) = {Delta}r(T)/2{pi}h appears due to the following two factors: (i) the discrete structure of the spectrum of the surface EM resonator modes in the form of a periodic sequence of narrow peaks and (ii) the presence of a stationary dipole layer in HeII near the resonator surface, which forms due to polarization of {sup 4}He atoms under the action of the density gradient associated with the vanishing of the density of the SF component at the solid wall. For this reason, the relaxation of nonequilibrium rotons generated in such a surface dipole layer is strongly suppressed, and the shape and width of the microwave resonance absorption line are determined by the roton density of states, which has a sharp peak at the edge of the roton gap in the case of weak dissipation. The effective dipole moments of rotons in the dipole layer can be directed either along or across the normal to

  5. Anomalous Centrifugal Distortion in HDO and Spectroscopic Data Bases

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2015-06-01

    The HDO molecule is important from the atmospheric point of view as it can be used to study the water cycle in the earth atmosphere. It is also interesting from the spectroscopic point of view as it displays an anomalous centrifugal distortion similar to that of the normal species H_2O. A model developed to treat the anomalous distortion in HDO should account for the fact that it lacks a two-fold axis of symmetry. A new treatment aimed at the calculation of the rovibrational energy of the HDO molecule and allowing for anomalous centrifugal distortion effects has been developed. It is based on an effective Hamiltonian in which the large amplitude bending ν_2 mode and the overall rotation of the molecule are treated simultaneously. Due to the lack of a two-fold axis of symmetry, this effective Hamiltonian contains terms arising from the non-diagonal component of the inertia tensor and from the Coriolis-coupling between the large amplitude bending ν_2 mode and the overall rotation of the molecule. This new treatment has been used to perform a line position analysis of a large body of infrared, microwave, and hot water vapor data involving the ground and (010) states up to J=22. For these 4413 data, a unitless standard deviation of 1.1 was achieved. A line intensity analysis was also carried out and allowed us to reproduce the strength of 1316 transitions^c with a unitless standard deviation of 1.1. In the talk, the new theoretical approach will be presented. The results of both analyses will be discussed and compared with those of a previous investigation. The new spectroscopic data base built will be compared with HITRAN 2012. Herbin et al., Atmos. Chem. Phys.~9 (2009) 9433; and Schneider and Hase, Atmos. Chem. Phys.~ 11 (2011) 11207. Coudert, Wagner, Birk, Baranov, Lafferty, and Flaud, J. Molec. Spectrosc.~251 (2008) 339. Johns, J. Opt. Soc. Am. B~2 (1985) 1340 Toth, J. Molec. Spectrosc.~162 (1993) 20 Paso and Horneman, J. Opt. Soc. Am. B~12 (1995) 1813 Toth, J

  6. Microwave Processing of Materials

    DTIC Science & Technology

    1994-01-01

    of peak output power of 100 megawatts at 10 GHz. Microwave Fundamentals 11 RESONANT HELIX TWT STO KLYSTRON CTf C 0 Grid oShadow Grid PPM FOCUS SPACE C...Rather, broadband and high-temperature measurement techniques that have been used in conjunction with microwave processing of materials-specifically... Broadband Dielectric Properties Measurement Techniques. Pp. 527-539 in Materials Research Society Symposium Proceedings, Vol. 269, Microwave Processing

  7. Microwave Lightcraft concept

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Looking like an alien space ship or a flying saucer the Microwave Lightcraft is an unconventional launch vehicle approach for delivering payload to orbit using power transmitted via microwaves. Microwaves re beamed from either a ground station or an orbiting solar power satellite to the lightcraft. The energy received breaks air molecules into a plasma and a magnetohydrodynamic fanjet provides the lifting force. Only a small amount of propellant is required for circulation, attitude control and deorbit.

  8. Remote sensing of snowpack with microwave radiometers for hydrologic applications

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Chang, A. T. C.; Boyne, H.; Ellerbruch, D.

    1978-01-01

    A microwave remote sensing of snowpack experiment is described and some preliminary data presented. A mobile field laboratory consisting of a four-frequency (5, 10.7, 18 and 37 GHz), all with dual linear (vertical and horizontal) polarizations, microwave radiometer system attached to a truck-mounted aerial lift was used to study the microwave emission characteristics of snowpacks in the Colorado Rocky Mountains during the winter of 1977-78. The influence of snowpack physical parameters such as water equivalent, grain size, and melt-freeze cycle on its microwave brightness temperature and its implications to the application of microwave radiometric technique to remote sensing of snowpack for runoff prediction are discussed.

  9. Microwave Emission from Relativistic Electron Beams

    DTIC Science & Technology

    1989-03-01

    crucial for the operation of short wavelength free-electron lasers. It mitigates the effects of diffraction and thereby allows the free electron...akin to the guiding properties of an optical fiber. Such "optical guiding" [5]-[10] would mitigate the effects of diffraction, and thereby allow the...beam aperture limits the size of the beam to rb/ 1, f 0.07, the wiggler field is close to that of an ideal wiggler. That is, the effects of the radial

  10. Microwave Emission From Relativistic Electron Beams

    DTIC Science & Technology

    1993-04-12

    9 Effect of electron prebunching on the radiation growth rate in a collective...Appendix 1) we have ob- served profile modifications caused by the free electron laser interaction. The modifications are a combination of two effects ...experiment to continue for a period of 6-12 months. It is complementary to the studies being carried out at Columbia University’ where multimode effects are

  11. Microwave Emission from Relativistic Electron Beams.

    DTIC Science & Technology

    1983-12-23

    serious problems . The rippled-field magnetron is a novel source of coherent radiation devoid " of physical slow-wave structures and capable RrM t r i...initial experiments on a circular FEL which uses a monoenergetic rotating electron ring and thereby circumvents the problem of velocity shear... problem how best to couple out the avail- able radiation. Our horn antenna merely probes the radiation field and re- ceives only a small fraction of

  12. HARMONIC IN-PAINTING OF COSMIC MICROWAVE BACKGROUND SKY BY CONSTRAINED GAUSSIAN REALIZATION

    SciTech Connect

    Kim, Jaiseung; Naselsky, Pavel; Mandolesi, Nazzareno

    2012-05-01

    The presence of astrophysical emissions between the last scattering surface and our vantage point requires us to apply a foreground mask on cosmic microwave background (CMB) sky maps, leading to large cuts around the Galactic equator and numerous holes. Since many CMB analysis, in particular on the largest angular scales, may be performed on a whole-sky map in a more straightforward and reliable manner, it is of utmost importance to develop an efficient method to fill in the masked pixels in a way compliant with the expected statistical properties and the unmasked pixels. In this Letter, we consider the Monte Carlo simulation of a constrained Gaussian field and derive it CMB anisotropy in harmonic space, where a feasible implementation is possible with good approximation. We applied our method to simulated data, which shows that our method produces a plausible whole-sky map, given the unmasked pixels, and a theoretical expectation. Subsequently, we applied our method to the Wilkinson Microwave Anisotropy Probe foreground-reduced maps and investigated the anomalous alignment between quadrupole and octupole components. From our investigation, we find that the alignment in the foreground-reduced maps is even higher than the Internal Linear Combination map. We also find that the V-band map has higher alignment than other bands, despite the expectation that the V-band map has less foreground contamination than other bands. Therefore, we find it hard to attribute the alignment to residual foregrounds. Our method will be complementary to other efforts on in-painting or reconstructing the masked CMB data, and of great use to Planck surveyor and future missions.

  13. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  14. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  15. Digital communications: Microwave applications

    NASA Astrophysics Data System (ADS)

    Feher, K.

    Transmission concepts and techniques of digital systems are presented; and practical state-of-the-art implementation of digital communications systems by line-of-sight microwaves is described. Particular consideration is given to statistical methods in digital transmission systems analysis, digital modulation methods, microwave amplifiers, system gain, m-ary and QAM microwave systems, correlative techniques and applications to digital radio systems, hybrid systems, digital microwave systems design, diversity and protection switching techniques, measurement techniques, and research and development trends and unsolved problems.

  16. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  17. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    DTIC Science & Technology

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  18. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    DTIC Science & Technology

    ELECTRIC FILTERS, MICROWAVE FREQUENCY), (*MICROWAVE EQUIPMENT, ELECTRIC FILTERS), CIRCUITS, CAPACITORS, COILS, RESONATORS, STRIP TRANSMISSION LINES, WAVEGUIDES, TUNING DEVICES, PARAMETRIC AMPLIFIERS, FREQUENCY CONVERTERS .

  19. Joint microwave and infrared studies for soil moisture determination

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Schieldge, J. P.; Kahle, A. B. (Principal Investigator)

    1980-01-01

    The feasibility of using a combined microwave-thermal infrared system to determine soil moisture content is addressed. Of particular concern are bare soils. The theoretical basis for microwave emission from soils and the transport of heat and moisture in soils is presented. Also, a description is given of the results of two field experiments held during vernal months in the San Joaquin Valley of California.

  20. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    SciTech Connect

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  1. Parametric probability distributions for anomalous change detection

    SciTech Connect

    Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  2. Correlation between galactic HI and the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Land, Kate; Slosar, Anže

    2007-10-01

    We revisit the issue of a correlation between the atomic hydrogen gas in our local galaxy and the cosmic microwave background, a detection of which has been claimed in some literature. We cross correlate the 21-cm emission of galactic atomic hydrogen as traced by the Leiden/Argentine/Bonn Galactic Hi survey with the 3-year cosmic microwave background data from the Wilkinson microwave anisotropy probe. We consider a number of angular scales, masks, and Hi velocity slices and find no statistically significant correlation.

  3. Correlation between galactic HI and the cosmic microwave background

    SciTech Connect

    Land, Kate; Slosar, Anze

    2007-10-15

    We revisit the issue of a correlation between the atomic hydrogen gas in our local galaxy and the cosmic microwave background, a detection of which has been claimed in some literature. We cross correlate the 21-cm emission of galactic atomic hydrogen as traced by the Leiden/Argentine/Bonn Galactic Hi survey with the 3-year cosmic microwave background data from the Wilkinson microwave anisotropy probe. We consider a number of angular scales, masks, and Hi velocity slices and find no statistically significant correlation.

  4. COS FUV Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal consists of the steps for turning on and ramping up the COS FUV high voltage in a safe and conservative manner after a HV anomalous shutdown by executing a "reduced set" of visits from Cycle 19 Proposal 12810. The nature of the shutdown, i.e., over-light, HV current transient {"crackle"}, ion feedback {induced by a high energy particle}, or field emission {possibly caused by dust or other particulate on the QE grid or other close-by structure or hardware}, and the value of the commanded HV at the time of the shutdown will determine what visits are executed. Because of gain sag, commanded HV settings updates may be required. First, prior to execution of this proposal or selected visits from this proposal, all preliminary steps should be exercised to gather the necessary diagnostic data, e.g., science data evaluation {if a science exposure was in progress and the science data is available}, memory dumps {DCE, EXEC RAM, and possibly the CS BUFFER}, engineering telemetry, or other information that might provide insight as to the nature of the shutdown and estimated count rate. The complete step-by-step procedure is detailed in the Observing Description, but in summary, the following is done:Day 01 activities, visits 01-07, contain both QE grid off and on HV ramping to HVLow {100/100} with diagnostics {DCE dumps} and darks to exclude QE grid involvement in the shutdown. Subsequent to day 01, all HV ramping will be with the QE grid on with the same diagnostics and exposures. All days end with the setting of COS event flag 3 to prevent any FUV HV commanding.Time is allotted for cognizant detector and COS instrument scientist and engineers to examine data dumps, science exposures, and engineering telemetry. If all is well, the go-ahead will be given to clear flag 3 for the next day's visits.This proposal is modeled after the Cycle 20 Proposal 13129.

  5. Anomalous switching curves in a dc SQUID phase qubit

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokshin; Przybysz, A. J.; Cooper, B. K.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.; Paik, Hanhee; Osborn, K. D.; Palmer, B. S.

    2010-03-01

    We have measured switching curves (s-curves), Rabi oscillations (T'˜160ns) and relaxation (T1˜280ns) in a dc SQUID phase qubit with an LC filter that provides good isolation from the bias leads at the operating frequency (3.5 GHz). The device is built on sapphire and has a 2 μm^2 Al/AlOx/Al qubit junction shunted by a low-loss SiNx capacitor. To measure an s-curve, we apply microwaves to pump to a specific state and then find the probability that the device switches to the voltage state after a short (˜2ns) current pulse is applied. As expected, the switching probability increases with the amplitude of the current pulse, is smallest in the ground state |0> and largest in the excited state |1>. However, the s-curves for superposition states of |0> and |1> are anomalous - they are not the weighted sum of the |0> and |1> s-curves and the probability to switch is not linear in the excited state probability. Instead, the s-curves shift continuously along the current axis as the amplitude to be in |1> increases. We will discuss the likely cause of this behavior and its implication for measurements in phase qubits.

  6. Variable frequency microwave heating apparatus

    DOEpatents

    Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  7. Variable frequency microwave heating apparatus

    SciTech Connect

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  8. Neoclassical Viscosities and Anomalous Flows in Stellarators

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  9. Drag suppression in anomalous chiral media

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of amore » super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.« less

  10. Drag suppression in anomalous chiral media

    SciTech Connect

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of a super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.

  11. Models of anomalous diffusion: the subdiffusive case

    NASA Astrophysics Data System (ADS)

    Piryatinska, A.; Saichev, A. I.; Woyczynski, W. A.

    2005-04-01

    The paper discusses a model for anomalous diffusion processes. Their one-point probability density functions (p.d.f.) are exact solutions of fractional diffusion equations. The model reflects the asymptotic behavior of a jump (anomalous random walk) process with random jump sizes and random inter-jump time intervals with infinite means (and variances) which do not satisfy the Law of Large Numbers. In the case when these intervals have a fractional exponential p.d.f., the fractional Komogorov-Feller equation for the corresponding anomalous diffusion is provided and methods of finding its solutions are discussed. Finally, some statistical properties of solutions of the related Langevin equation are studied. The subdiffusive case is explored in detail. The emphasis is on a rigorous presentation which, however, would be accessible to the physical sciences audience.

  12. Coaxial microwave plasma source

    SciTech Connect

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Kossyi, I. A.; Kotelev, M. S.

    2011-11-15

    Physical principles underlying the operation of a pulsed coaxial microwave plasma source (micro-wave plasmatron) are considered. The design and parameters of the device are described, and results of experimental studies of the characteristics of the generated plasma are presented. The possibility of application of this type of plasmatron in gas-discharge physics is discussed.

  13. Active microwave water equivalence

    NASA Technical Reports Server (NTRS)

    Boyne, H. S.; Ellerbruch, D. A.

    1980-01-01

    Measurements of water equivalence using an active FM-CW microwave system were conducted over the past three years at various sites in Colorado, Wyoming, and California. The measurement method is described. Measurements of water equivalence and stratigraphy are compared with ground truth. A comparison of microwave, federal sampler, and snow pillow measurements at three sites in Colorado is described.

  14. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  15. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  16. Television Microwave--1971.

    ERIC Educational Resources Information Center

    Peterson, Roger E.

    Since it became a reality just before World War II, terrestrial microwave has improved in systems and equipments, but with the improvements have come higher costs. Television microwave costs are so high because users are demanding more capability, land prices have increased, operating costs are higher, and there is frequency congestion along many…

  17. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  18. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  19. First results from the microwave air yield beam experiment (MAYBE): Measurement of GHz radiation for ultra-high energy cosmic ray detection

    SciTech Connect

    Williams, C.; Bohacova, M.; Bonifazi, C.; Cataldi, G.; Chemerisov, S.; De Mello Neto, J. R.T.; Facal San Luis, P.; Fox, B.; Gorham, P. W.; Hojvat, C.; Hollon, N.; Meyhandan, R.; Monasor, M.; D'Orfeuil, B. Rouille; Santos, E. M.; Pochez, J.; Privitera, P.; Spinka, H.; Verzi, V.; Zhou, J.

    2013-01-01

    We present measurements of microwave emission from an electron-beam induced air plasma performed at the 3 MeV electron Van de Graaff facility of the Argonne National Laboratory. Results include the emission spectrum between 1 and 15 GHz, the polarization of the microwave radiation and the scaling of the emitted power with respect to beam intensity. MAYBE measurements provide further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  20. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  1. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  2. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1986-01-01

    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  3. Methodological approaches in estimating anomalous geochemical field structure

    NASA Astrophysics Data System (ADS)

    Gavrilov, R.; Rudmin, M.

    2015-02-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas.

  4. Anomalous two-photon spectral features in warm rubidium vapor

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Milburn, T. J.; Kielpinski, D.; Stace, T. M.; Luiten, A. N.

    2016-09-01

    We report observation of anomalous fluorescence spectral features in the environs of a two-photon transition in a rubidium vapor when excited with two different wavelength lasers that are both counterpropagating through the vapor. These features are characterized by an unusual trade-off between the detunings of the driving fields. Three different hypothetical processes are presented to explain the observed spectra: a simultaneous three-atom and four-photon collision, a four-photon excitation involving a light field produced via amplified spontaneous emission, and population pumping perturbing the expected steady-state spectra. Numerical modeling of each hypothetical process is presented, supporting the population pumping process as the most plausible mechanism.

  5. Modification of bactericidal effects of microwave heating and hyperthermia by hydrogen peroxide.

    PubMed

    Kuchma, T

    1997-01-01

    Two different approaches for studying of bactericidal effects of microwave heating and hyperthermia were introduced. Low concentration of hydrogen peroxide (0.05%) was used to modify the sensitivity of isogenous strains of Escherichia coli K-12 to microwave heating and hyperthermia with the following assessment of their combined action. This was carried out simulataneously and successively under equal conditions of temperature rise at 50 degrees C. A method of anomalous viscosity time dependencies (AVTD) was used for measurement of the changes in genome conformational state simultaneously with bacterial survival determination. Experiments were performed to study isolated effects of hyperthermia and microwave heating over a range of temperatures from 40 to 80 degrees C and hydrogen peroxide concentrations from 0.05 to 0.3% during 10-minute exposures and their combined action. No difference was found between isolated effects of microwave heating and hyperthermia when survival of E. coli AB 1157 cells was determined. It was shown by the AVTD method that microwave heating at a temperature increase of 6 degrees C per second caused greater damage to cell genome than hyperthermia. The synergistic interaction of microwave heating and low concentrations of hydrogen peroxide was found in simulataneous and successive exposures. The essential distinctions observed in recognition of the action of microwave heating and hyperthermia combined with hydrogen peroxide in various sequences on cellular and molecular levels were attributed to the different effects of microwave and conventional heating on the systems of DNA repair.

  6. A Non-Invasive Phase Sensor for Permittivity and Moisture Estimation Based on Anomalous Dispersion

    PubMed Central

    Siddiqui, Omar; Ramzan, Rashad; Amin, Muhammad; Ramahi, Omar M.

    2016-01-01

    The traditional microwave resonance sensors are based on the measurement of the frequency shift and bandwidth of a resonator’s amplitude spectrum. Here we propose a novel sensing scheme in which the material properties are estimated by determining the changes in the phase spectrum of an anomalous-phase resonator. In the proposed phase sensing, we exploit the unique double phase reversal which takes place on the edges of the anomalous dispersion region as a signature to detect the resonance. We show that with the phase sensing, a significant reduction in detection errors compared to the traditional sensing can be obtained because of the noise immunity offered by the phase detection and also due to the strong dispersive phase response that reduces the sensor’s dependence on the external environment. We also show that the bandwidth determination procedure of the resonance which is needed to characterize the sample losses is significantly simplified. The concept of phase sensing is shown by devising an experimental microstrip open stub resonator whose frequency response lies in the anomalous dispersion region. The dielectric characteristics of the samples placed on the stub are extracted from the resonant frequency and the slope of the phase response. We also demonstrate that the changes in moisture levels can also be detected by utilizing the phase sensing method. PMID:27346337

  7. Pulsed millimeter wave Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1986-09-01

    An improved pulsed microwave spectrometer for the detection of rotational transitions in gaseous molecules in the frequency range of 130-150 GHz is described. It incorporates a tunable Fabry-Perot cavity and a low noise superheterodyne receiver for the detection of the molecular emission signals. The molecules are excited by pi/2 pulses provided by a high efficiency frequency doubler which is pulse modulated at an IF frequency of 1.4 GHz.

  8. Anomalous mass dimension in multiflavor QCD

    NASA Astrophysics Data System (ADS)

    Doff, A.; Natale, A. A.

    2016-10-01

    Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.

  9. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  10. Cardiovascular magnetic resonance of anomalous coronary arteries.

    PubMed

    Varghese, Anitha; Keegan, Jennifer; Pennell, Dudley J

    2005-09-01

    Cardiovascular magnetic resonance of anomalous coronary arteries is a class I indication. The term anomalous coronary artery encompasses those with an abnormal origin (from the incorrect sinus, too-high or too-low from the correct sinus, or from the pulmonary artery) and/or number of ostia. Their clinical significance results from the increased risk of myocardial infarction and sudden cardiac death associated with those traversing an interarterial course between the aorta and main pulmonary artery/right ventricular outflow tract. In this article, we review the role and practice of cardiovascular magnetic resonance in this field.

  11. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  12. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  13. Anomalous Cepheids in the Sculptor dwarf galaxy

    SciTech Connect

    Smith, H.A.; Stryker, L.L.

    1986-08-01

    The Sculptor dwarf galaxy contains at least three Cepheids (V25, V26, and V119), each with a period near 1 day and B magnitudes about 1.4 mag brighter than those of the Sculptor RR Lyrae stars. Low-resolution spectra of these so-called anomalous Cepheids were obtained. Metal abundances of the Cepheids have been determined by the Delta-S method and are found to be: Fe/H = -1.9 + or - 0.2, -1.8 + or - 0.2, and -2.2 + or - 0.3 for V25, V26, and V119, respectively. These values are consistent with the metal abundances of Sculptor red giants estimated from the color of the giant branch. Pulsational masses have been estimated for V25 and V26, but there is a need for improved photometry of these stars to obtain accurate results. It cannot be unambiguously established whether the Sculptor anomalous Cepheids are evolved single stars, aged about 3 Gyr, or whether they are created by mass transfer in older binary systems. The occurrence of anomalous Cepheids in other systems is discussed. There is some evidence that most anomalous Cepheids in the Small Magellanic Cloud are evolved single stars. 89 references.

  14. RSRM Nozzle Anomalous Throat Erosion Investigation Overview

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Wendel, Gary M.

    1998-01-01

    In September, 1996, anomalous pocketing erosion was observed in the aft end of the throat ring of the nozzle of one of the reusable solid rocket motors (RSRM 56B) used on NASA's space transportation system (STS) mission 79. The RSRM throat ring is constructed of bias tape-wrapped carbon cloth/ phenolic (CCP) ablative material. A comprehensive investigation revealed necessary and sufficient conditions for occurrence of the pocketing event and provided rationale that the solid rocket motors for the subsequent mission, STS-80, were safe to fly. The nozzles of both of these motors also exhibited anomalous erosion similar to, but less extensive than that observed on STS-79. Subsequent to this flight, the investigation to identify both the specific causes and the corrective actions for elimination of the necessary and sufficient conditions for the pocketing erosion was intensified. A detailed fault tree approach was utilized to examine potential material and process contributors to the anomalous performance. The investigation involved extensive constituent and component material property testing, pedigree assessments, supplier audits, process audits, full scale processing test article fabrication and evaluation, thermal and thermostructural analyses, nondestructive evaluation, and material performance tests conducted using hot fire simulation in laboratory test beds and subscale and full scale solid rocket motor static test firings. This presentation will provide an over-view of the observed anomalous nozzle erosion and the comprehensive, fault-tree based investigation conducted to resolve this issue.

  15. Total least squares for anomalous change detection

    SciTech Connect

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  16. COS NUV Detector Recovery after Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high-voltage ramp-up, 3} ramp-up to full operating voltage, and 4} fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13129. Adjustments were made the the Software Global Monitor {SGM} to account for an increase in the dark counts due to window glow and to align the SGM to previously obtained Fold Analysis event data.

  17. ACS SBC Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.

  18. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 19 proposal 12779.

  19. COS NUV Detector Recovery After Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the NUV-MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage.The recovery procedure consists of four separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high-voltage ramp-up, 3} ramp-up to full operating voltage, and 4} fold analysis test {See COS TIR 2010-01}. Each must be successfully completed before proceeding onto the next. This proposal executes almost the same steps as Cycle 19 proposal 12723. Adjustments were made the the Software Global Monitor {SGM} to account for an increase in the dark counts due to window glow and to align the SGM to previously obtained Fold Analysis event data.

  20. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13150.

  1. Anomalous transports in a time-delayed system subjected to anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Yin; Tong, Lu-Mei; Nie, Lin-Ru; Wang, Chaojie; Pan, Wanli

    2017-02-01

    We investigate anomalous transports of an inertial Brownian particle in a time-delayed periodic potential subjected to an external time-periodic force, a constant bias force, and the Lévy noise. By means of numerical calculations, effect of the time delay and the Lévy noise on its mean velocity are discussed. The results indicate that: (i) The time delay can induce both multiple current reversals (CRs) and absolute negative mobility (ANM) phenomena in the system; (ii) The CRs and ANM phenomena only take place in the region of superdiffusion, while disappear in the regions of normal diffusion; (iii) The time delay can cause state transition of the system from anomalous →normal →anomalous →normal →anomalous →normal transport in the case of superdiffusion.

  2. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  3. Microwave coupler and method

    SciTech Connect

    Holcombe, Cressie E.

    1985-01-01

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  4. Monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  5. Microwave coupler and method

    DOEpatents

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  6. Microwave vision for robots

    NASA Technical Reports Server (NTRS)

    Lewandowski, Leon; Struckman, Keith

    1994-01-01

    Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.

  7. A blended land emissivity product from the Inter-Comparison of different Land Surface Emissivity Estimates

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2012-12-01

    Passive microwave observations are routinely used to estimate rain rate, cloud liquid water, and total precipitable water. In order to have accurate estimations from microwave, the contribution of the surface should be accounted for. Over land, due to the complex interaction between the microwave signal and the soil surface, retrieval of land surface emissivity and other surface and subsurface parameters is not straightforward. Several microwave emissivity products from various microwave sensors have been proposed. However, lack of ground truth measurements makes the validation of these products difficult. This study aims to inter-compare several available emissivity products over land and ultimately proposes a unique blended product that overcomes the flaws of each individual product. The selected products are based on observations from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Sounding unit (AMSU), and the Special Sensor Microwave Imager/Sounder (SSMIS). In retrieval of emissivities from these sensors different methods and ancillary data have been used. Some inherent discrepancies between the selected products can be introduced by as the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. Moreover, ancillary data especially skin temperature and cloud mask cover can cause significant discrepancies between various estimations. The time series and correlation between emissivity maps are explored to assess the consistency of emissivity variations with geophysical variable such as snow, precipitation and drought. Preliminary results reveal that inconsistency between products varies based on land cover type due to penetration depth effect and ancillary data. Six years of estimations are employed in this research study, and a global blended emissivity estimations based on all product with minimal discrepancies

  8. New microwave spectrometer/imager has possible applications for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Tooley, R. D.

    1970-01-01

    Microwave imager forms thermal-emissivity image of solid portion of planet Venus and provides data on the planet's atmosphere, surface, terminator, and temperature changes. These thermally produced multifrequency microwaves for image production of temperature profiles can be applied to water pollution monitoring, agriculture, and forestry survey.

  9. Towards a Better Understanding of the Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Yue, Di; Jin, Xiaofeng

    2017-01-01

    Recent experimental efforts to identify the intrinsic and extrinsic contributions in the anomalous Hall effect are reviewed. Benefited from the experimental control of artificial impurity density in single crystalline magnetic thin films, a comprehensive physical picture of the anomalous Hall effect involving multiple competing scattering processes has been established. Some new insights into the microscopic mechanisms of the anomalous Hall effect are discussed.

  10. The Comprehension of Anomalous Sentences: Evidence from Structural Priming

    ERIC Educational Resources Information Center

    Ivanova, Iva; Pickering, Martin J.; Branigan, Holly P.; McLean, Janet F.; Costa, Albert

    2012-01-01

    We report three experiments investigating how people process anomalous sentences, in particular those in which the anomaly is associated with the verb. We contrast two accounts for the processing of such anomalous sentences: a syntactic account, in which the representations constructed for anomalous sentences are similar in nature to the ones…

  11. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  12. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  13. Microwave Oven Observations.

    ERIC Educational Resources Information Center

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  14. Observed effects of soil organic matter content on the microwave intensity of soils

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Oneill, P. E.

    1988-01-01

    In order to determine the significance of organic matter content on the microwave emissivity of soils when estimating soil moisture, field experiments were conducted in which 1.4 GHz microwave emissivity data were collected over test plots of sandy loam soil with different organic matter levels (1.8, 4.0, and 6.1 percent) for a range of soil moisture values. Analyses of the observed data show only minor variation in microwave emissivity due to a change in organic matter content at a given moisture level for soils with similar texture and structure. Predictions of microwave emissivity made using a dielectric model for aggregated soils exhibit the same trends and type of response as the measured data when appropriate values for the input parameters were utilized.

  15. Application of Monte Carlo algorithms to the Bayesian analysis of the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Jewell, J.; Levin, S.; Anderson, C. H.

    2004-01-01

    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for the extraction of cosmological information from the cosmic microwave background (CMB).

  16. Tunable Microwave Transversal Filters.

    DTIC Science & Technology

    1984-05-01

    GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER AFOSR-TR. 84-0977 S4. TI TLE (and Subtitle) 5. TYP ?FE&T&PEO OEE U!NABLE MICROWAVE TRANSVERSAL FILTERS...this goal through magnetostatic waves MSW propagating at microwave frequency in magnetically biased, liquid phase epitaxial films of yttrium iron...garnet (YIG) grown on gadolinium gallium garnet (GGG). This technology has a number of advantages; low loss (greater than 30db/usec at xband), tunable by

  17. Automatic Microwave Network Analysis.

    DTIC Science & Technology

    A program and procedure are developed for the automatic measurement of microwave networks using a Hewlett-Packard network analyzer and programmable calculator . The program and procedure are used in the measurement of a simple microwave two port network. These measurements are evaluated by comparing with measurements on the same network using other techniques. The programs...in the programmable calculator are listed in Appendix 1. The step by step procedure used is listed in Appendix 2. (Author)

  18. Microwave properties of thermochromic metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Ousbäck, Jan-Olof; Kariis, Hans

    2006-09-01

    Thermochromic metal oxides with a Mott transition, such as vanadium dioxide (VO II) exhibit an extensive alteration in their infrared reflectivity when heated above the transition temperature. For VO II the infrared reflectivity increases as the material becomes more metal-like above the transition temperature at 68°C. Given these dynamic electromagnetic properties in the IR-range, it is interesting to study the reflection of the material also in other wavelength ranges. The microwave properties of VO II as a function of temperature have been investigated here. Measurements were made with an automated network analyzer combined with an electrical heating unit. Reflection properties of VO II in the microwave region were determined. Above the transition temperature, an increase in the reflection of the surface was observed. The VO II became more metal-like in the whole measured microwave frequency range, as in the infrared region. It is concluded that VO II not only can be used to adapt the thermal emissivity of a surface but also to control the microwave reflectivity. Possible applications are switchable radomes, switchable radarabsorbers and heat protection for antenna apertures.

  19. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  20. Microwaves and Alzheimer's disease.

    PubMed

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-10-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review.

  1. Microwave sintering process model.

    PubMed

    Peng, Hu; Tinga, W R; Sundararaj, U; Eadie, R L

    2003-01-01

    In order to simulate and optimize the microwave sintering of a silicon nitride and tungsten carbide/cobalt toolbits process, a microwave sintering process model has been built. A cylindrical sintering furnace was used containing a heat insulating layer, a susceptor layer, and an alumina tube containing the green toolbit parts between parallel, electrically conductive, graphite plates. Dielectric and absorption properties of the silicon nitride green parts, the tungsten carbide/cobalt green parts, and an oxidizable susceptor material were measured using perturbation and waveguide transmission methods. Microwave absorption data were measured over a temperature range from 20 degrees C to 800 degrees C. These data were then used in the microwave process model which assumed plane wave propagation along the radial direction and included the microwave reflection at each interface between the materials and the microwave absorption in the bulk materials. Heat transfer between the components inside the cylindrical sintering furnace was also included in the model. The simulated heating process data for both silicon nitride and tungsten carbide/cobalt samples closely follow the experimental data. By varying the physical parameters of the sintering furnace model, such as the thickness of the susceptor layer, the thickness of the allumina tube wall, the sample load volume and the graphite plate mass, the model data predicts their effects which are helpful in optimizing those parameters in the industrial sintering process.

  2. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  3. Microwave radiation absorption: behavioral effects.

    PubMed

    D'Andrea, J A

    1991-07-01

    The literature contains much evidence that absorption of microwave energy will lead to behavioral changes in man and laboratory animals. The changes include simple perturbations or outright stoppage of ongoing behavior. On one extreme, intense microwave absorption can result in seizures followed by death. On the other extreme, man and animals can hear microwave pulses at very low rates of absorption. Under certain conditions of exposure, animals will avoid microwaves, while under other conditions, they will actively work to obtain warmth produced by microwaves. Some research has shown behavioral effects during chronic exposure to low-level microwaves. The specific absorption rates that produce behavioral effects seem to depend on microwave frequency, but controversy exists over thresholds and mechanism of action. In all cases, however, the behavioral disruptions cease when chronic microwave exposure is terminated. Thermal changes in man and animals during microwave exposure appear to account for all reported behavioral effects.

  4. Magnetocapacitance oscillations and thermoelectric effect in a two-dimensional electron gas irradiated by microwaves

    NASA Astrophysics Data System (ADS)

    Levin, A. D.; Gusev, G. M.; Raichev, O. E.; Momtaz, Z. S.; Bakarov, A. K.

    2016-07-01

    To study the influence of microwave irradiation on two-dimensional electrons, we apply a method based on capacitance measurements in GaAs quantum well samples where the gate covers a central part of the layer. We find that the capacitance oscillations at high magnetic fields, caused by the oscillations of thermodynamic density of states, are not essentially modified by microwaves. However, in the region of fields below 1 T, we observe another set of oscillations, with the period and the phase identical to those of microwave-induced resistance oscillations. The phenomenon of microwave-induced capacitance oscillations is explained in terms of violation of the Einstein relation between conductivity and the diffusion coefficient in the presence of microwaves, which leads to a dependence of the capacitor charging on the anomalous conductivity. We also observe microwave-induced oscillations in the capacitive response to periodic variations of external heating. These oscillations appear due to the thermoelectric effect and are in antiphase with microwave-induced resistance oscillations because of the Corbino-like geometry of our experimental setup.

  5. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  6. Anomalous feedback and negative domain wall resistance

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-11-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.

  7. The resurgence of the cusp anomalous dimension

    NASA Astrophysics Data System (ADS)

    Aniceto, Inês

    2016-02-01

    This work addresses the resurgent properties of the cusp anomalous dimension’s strong coupling expansion, obtained from the integral Beisert-Eden-Staudacher (BES) equation. This expansion is factorially divergent, and its first non-perturbative corrections are related to the mass gap of the O(6)σ -model. The factorial divergence can also be analyzed from a resurgence perspective. Building on the work of Basso and Korchemsky, a transseries ansatz for the cusp anomalous dimension is proposed and the corresponding expected large-order behaviour studied. One finds non-perturbative phenomena in both the positive and negative real coupling directions, which need to be included to address the analyticity conditions coming from the BES equation. After checking the resurgence structure of the proposed transseries, it is shown that it naturally leads to an unambiguous resummation procedure, furthermore allowing for a strong/weak coupling interpolation.

  8. Anomalous Cherenkov spin-orbit sound

    SciTech Connect

    Smirnov, Sergey

    2011-02-15

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  9. Anomalous magnetic viscosity in relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Lin, Fujun; Liu, Sanqiu; Li, Xiaoqing

    2013-07-01

    It has been proved that the self-generated magnetic fields by transverse plasmons in the relativistic regime are modulationally unstable, leading to a self-similar collapse of the magnetic flux tubes and resulting in local magnetic structures; highly spatially intermittent flux is responsible for generating the anomalous viscosity. We derive the anomalous magnetic viscosity coefficient, in accretion disks around compact objects, such as black holes, pulsars and quasars, where the plasmas are relativistic, in order to help clarify the nature of viscosity in the theory of accretion disks. The results indicate that, the magnetic viscosity is modified by the relativistic effects of plasmas, and its' strength would be 1015 stronger than the molecular viscosity, which may be helpful in explaining the observations.

  10. Neoclassical Viscosities and Anomalous Flows in Stellarators

    NASA Astrophysics Data System (ADS)

    Ware, A. S.; Spong, D. A.

    2008-11-01

    We discuss initial work to use neoclassical viscosities calculated with the PENTA code [1,2] in a transport model that includes Reynolds stress generation of flows [3]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. A. Spong, Fusion Sci. Technology 50, 343 (2006). [3] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  11. Anomalous superficial ulnar artery based flap

    PubMed Central

    Ramani, C. V.; Kundagulwar, Girish K.; Prabha, Yadav S.; Dushyanth, Jaiswal

    2014-01-01

    Upper limb shows a large number of arterial variations. This case report describes the presence of additional superficial ulnar artery which was used to raise a pedicle flap to cover an arm defect thus avoided using the main vessel of the forearm - radial or ulnar artery. Vascular anomalies occurring in the arm and forearm tend to increase the likelihood of damaging the superficial anomalous arteries during surgery. Superficial ulnar or radial arteries have been described to originate from the upper third of the brachial artery; here we report the origin of the anomalous superficial ulnar artery originating from the brachial artery at the level of elbow with the concomitant presence of normal deep radial and ulnar arteries. PMID:24987217

  12. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  13. Anomalous gluon content of the proton

    NASA Astrophysics Data System (ADS)

    Hatsuda, T.

    1990-01-01

    The proton matrix element of the flavor singlet axial current is evaluated using the large Nc chiral dynamics satisfying the anomalous Ward-Takahashi identities. We relate the quark and gluon contributions ( Δq and Δg) of the matrix element to the nucleon-meson ( η, η', π0) pseudo-scalar coupling constants. It is shown that the weak η'-nucleon coupling is preferred to reproduce the recent EMC data. The origin of the anomalous value of Δg pointed out by Cheng and Li is clarified in the context of the large isospin violation due to the anomaly. A subtlety related to the matrix element of the gauge-variant topological current Kμ is also discussed.

  14. Spectrophotometric Properties of Thermally Anomalous Terrain on Mimas

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Helfenstein, Paul; Howett, Carly; Annex, Andrew; Schenk, Paul

    2014-11-01

    Cassini’s Composite InfraRed Spectrometer (CIRS) maps of thermal emission from Mimas reveal a V-shaped boundary, centered at 0° N and 180° W, which divides relatively warm daytime temperatures from an anomalously cooler region at low to mid-latitudes on the moon’s leading hemisphere (Howett et al. 2011, Icarus 216, 221-226). This cooler region is also warmer at night, indicating that it has high thermal inertia, and also coincides in shape and location with that of high-energy electron deposition from Saturn’s magnetosphere (Roussos et al. 2007, JGRA 112, A06214; Schenk et al. 2011, Icarus 211, 740-757). Global IR/UV color ratio maps assembled from Cassini Imaging Science Subsystem (ISS) images show a lens-shaped region of relatively blue terrain also centered on Mimas’ leading hemisphere (Schenk et al. 2011), coinciding in shape and location with the region of high thermal inertia. We present results of our analysis of Cassini ISS CL1 UV3 and IR3 filter (centered at 338 and 930 nm, respectively) images using the Hapke (2008, Icarus 195, 918-926) photometric model. We investigate whether the photometric properties of surface particles are consistent with the conclusion by Howett et al. (2011) that their high thermal inertia is produced by sintering processes due to bombardment by high energy electrons. The non-thermally anomalous surface on Mimas' trailing hemisphere exhibits a strong opposition effect, consistent with the presence of a more complex microtexture due to preferential bombardment by E ring particles. This work is supported by the NASA Cassini Data Analysis and Participating Scientists Program.

  15. Anomalous toroidal field penetration in Tormac V

    SciTech Connect

    Feinberg, B.; Vaucher, B. G.; Shaw, R. S.; Vella, M. C.

    1981-07-01

    We investigate magnetic field penetration into a cool, collisional, magnetized plasma in Tormac V. Magnetic probe and laser interferometer studies reveal anomalous penetration of the applied toroidal field into a plasma with an initial parallel bias toroidal field. The applied poloidal field, however, formed a well-defined magnetic front which was effective at sweeping up particles. Lastly, strong shear in the vacuum magnetic field does not inhibit the apparent decoupling of the applied toroidal field from the applied poloidal field.

  16. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  17. Anomalous Water and Other Polymeric Materials

    DTIC Science & Technology

    could be called anomalous in some ways, no material that gives the exact spectrum of ’ polywater ’ could be found. An interesting and previously...unreported form of sodium carbonate is formed when this compound crystallizes from methanol. Yields of the polywater -like material seem to vary greatly from...laboratory to laboratory, even when simple procedures that are seen to work in one are tried in another. Polywater -like material can be formed from

  18. Enhanced window breakdown dynamics in a nanosecond microwave tail pulse

    SciTech Connect

    Chang, Chao; Zhu, Meng; Li, Shuang; Xie, Jialing; Yan, Kai; Luo, Tongding; Zhu, Xiaoxin; Verboncoeur, John

    2014-06-23

    The mechanisms of nanosecond microwave-driven discharges near a dielectric/vacuum interface were studied by measuring the time- and space-dependent optical emissions and pulse waveforms. The experimental observations indicate multipactor and plasma developing in a thin layer of several millimeters above interface. The emission brightness increases significantly after main pulse, but emission region widens little. The mechanisms are studied by analysis and simulation, revealing intense ionization concentrated in a desorbed high-pressure layer, leading to a bright light layer above surface; the lower-voltage tail after main pulse contributes to heat electron energy tails closer to excitation cross section peaks, resulting in brighter emission.

  19. Satellite Remote Sensing: Passive-Microwave Measurements of Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.

  20. Characterizing cosmic inhomogeneity with anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Kraljic, D.

    2015-08-01

    Dark matter (DM) clustering at the present epoch is investigated from a fractal viewpoint in order to determine the scale where the self-similar scaling property of the DM halo distribution transits to homogeneity. Methods based on well-established `counts-in-cells' as well as new methods based on anomalous diffusion and random walks are investigated. Both are applied to DM haloes of the biggest N-body simulation in the `Dark Sky Simulations' (DS) catalogue and an equivalent randomly distributed catalogue. Results based on the smaller `Millennium Run' (MR) simulation are revisited and improved. It is found that the MR simulation volume is too small and prone to bias to reliably identify the onset of homogeneity. Transition to homogeneity is defined when the fractal dimension of the clustered and random distributions cannot be distinguished within the associated uncertainties. The `counts-in-cells' method applied to the DS then yields a homogeneity scale roughly consistent with previous work (˜150 h-1 Mpc). The characteristic length-scale for anomalous diffusion to behave homogeneously is found to be at about 250 h-1 Mpc. The behaviour of the fractal dimensions for a halo catalogue with the same two-point function as the original but with shuffled Fourier phases is investigated. The methods based on anomalous diffusion are shown to be sensitive to the phase information, whereas the `counts-in-cells' methods are not.