Sample records for microwave assisted derivatization

  1. Microwave-assisted Derivatization of Fatty Acids for Its Measurement in Milk Using High-Performance Liquid Chromatography.

    PubMed

    Shrestha, Rojeet; Miura, Yusuke; Hirano, Ken-Ichi; Chen, Zhen; Okabe, Hiroaki; Chiba, Hitoshi; Hui, Shu-Ping

    2018-01-01

    Fatty acid (FA) profiling of milk has important applications in human health and nutrition. Conventional methods for the saponification and derivatization of FA are time-consuming and laborious. We aimed to develop a simple, rapid, and economical method for the determination of FA in milk. We applied a beneficial approach of microwave-assisted saponification (MAS) of milk fats and microwave-assisted derivatization (MAD) of FA to its hydrazides, integrated with HPLC-based analysis. The optimal conditions for MAS and MAD were determined. Microwave irradiation significantly reduced the sample preparation time from 80 min in the conventional method to less than 3 min. We used three internal standards for the measurement of short-, medium- and long-chain FA. The proposed method showed satisfactory analytical sensitivity, recovery and reproducibility. There was a significant correlation in the milk FA concentrations between the proposed and conventional methods. Being quick, economic, and convenient, the proposed method for the milk FA measurement can be substitute for the convention method.

  2. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma.

    PubMed

    Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming

    2011-11-30

    The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Dispersive liquid-liquid microextraction combined with microwave-assisted derivatization for determining lipoic acid and its metabolites in human urine.

    PubMed

    Tsai, Chia-Ju; Chen, Yen-Ling; Feng, Chia-Hsien

    2013-10-04

    This study explored dispersive liquid-liquid microextraction for extraction and concentration of lipoic acid in human urine. To improve the detection of lipoic acid by both capillary liquid chromatography (CapLC) with UV detection and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), microwave-assisted derivatization with 4-bromomethyl-6,7-dimethoxycoumarin was performed to render lipoic acid chromophores for UV detection and also high ionization efficiency in MALDI. All parameters that affected lipoic acid extraction and derivatization from urine were investigated and optimized. In the analyses of human urine samples, the two methods had a linear range of 0.1-20 μM with a correlation coefficient of 0.999. The detection limits of CapLC-UV and MALDI-TOF MS were 0.03 and 0.02 μM (S/N ≧ 3), respectively. The major metabolites of lipoic acid, including 6,8-bismethylthio-octanoic acid, 4,6-bismethylthio-hexanoic acid, and 2,4-bismethylthio-butanoic acid were also extracted by dispersive liquid-liquid microextraction and detected by MALDI-TOF MS. The minor metabolites (undetectable by MALDI-TOF MS), bisnorlipoic acid and tetranorlipoic acid were also extracted by dispersive liquid-liquid microextraction and identified with an LTQ Orbitrap mass spectrometer. After dispersive liquid-liquid microextraction and microwave-assisted derivatization, all lipoic acid derivatizations and metabolites were structurally confirmed by LTQ Orbitrap. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae.

    PubMed

    Khoomrung, Sakda; Chumnanpuen, Pramote; Jansa-ard, Suwanee; Nookaew, Intawat; Nielsen, Jens

    2012-06-01

    We present a fast and accurate method for preparation of fatty acid methyl esters (FAMEs) using microwave-assisted derivatization of fatty acids present in yeast samples. The esterification of free/bound fatty acids to FAMEs was completed within 5 min, which is 24 times faster than with conventional heating methods. The developed method was validated in two ways: (1) through comparison with a conventional method (hot plate) and (2) through validation with the standard reference material (SRM) 3275-2 omega-3 and omega-6 fatty acids in fish oil (from the Nation Institute of Standards and Technology, USA). There were no significant differences (P>0.05) in yields of FAMEs with both validations. By performing a simple modification of closed-vessel microwave heating, it was possible to carry out the esterification in Pyrex glass tubes kept inside the closed vessel. Hereby, we are able to increase the number of sample preparations to several hundred samples per day as the time for preparation of reused vessels was eliminated. Pretreated cell disruption steps are not required, since the direct FAME preparation provides equally quantitative results. The new microwave-assisted derivatization method facilitates the preparation of FAMEs directly from yeast cells, but the method is likely to also be applicable for other biological samples.

  5. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  6. Microwave-assisted decomplexation and in-situ headspace in-syringe dynamic derivatization of dimethylamine borane with high performance liquid chromatography-fluorescence detection.

    PubMed

    Muniraj, Sarangapani; Lee, Hua-Kwang; Hsiech, Chunming; Jen, Jen-Fon

    2018-02-16

    A rapid, sensitive, selective, and simple method for monitoring dimethylamine borane (DMAB) in aqueous sample is proposed by combining microwave-assisted de-complexation, headspace liquid phase in-situ derivatization extraction, and high-performance liquid chromatography-fluorescence detection for the determination of DMAB in samples. The present procedure involves de-complexation of DMAB using microwave irradiation, evolution of dimethylamine (DMA) to the headspace from an alkalized sample solution, and dynamic headspace liquid-phase derivatization extraction (Dy-HS-LPDE) of DMA with 9-fluorenylmethyl chloroformate in a syringe barrel. In addition to the optimal Dy-HS-LPDE and chromatographic parameters described in our previous study, the de-complexation of DMAB by thermal and microwave-assisted procedures and evolution of DMA into the headspace from an alkalized solution and modification of the Dy-HS-LPDE method are thoroughly investigated. The results indicate that complete de-complexation was obtained at 70 °C for 5 min, 30 °C for 10 min, or using microwave irradiation for 30 s at any applied power. It indicates that the DMAB complex easily undergoes de-complexation under microwave irradiation. The linearity range was 0.01-0.5 mg L -1 for DMAB and 0.0077-0.38 mg L -1 for DMA, with a coefficient of determination of 0.9995, and limit of detection of 3 μg L -1 (limit of quantitation of 10 μg L -1 ) for DMAB. The recoveries of DMAB are 95.3% (3.0% RSD) for waste water when spiked 0.05 mg L -1 and 93.5% (5.4% RSD) for the samples spiked with copper and nickel salts (5 mM each in the spiked waste sample). The whole analytical procedure can be completed within 25 min. The results confirm that the present method is a rapid, sensitive, selective, automated, low-cost and eco-friendly procedure to identify DMAB in samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Microwave-assisted extraction coupled online with derivatization, restricted access material cleanup, and high-performance liquid chromatography for determination of formaldehyde in aquatic products.

    PubMed

    Chen, Ligang; Jin, Haiyan; Xu, Haoyan; Sun, Lei; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-05-27

    A rapid technique based on microwave-assisted extraction (MAE) coupled online with derivatization, restricted access material cleanup, and high-performance liquid chromatography (HPLC) was developed for the determination of formaldehyde in aquatic products. Formaldehyde was first extracted with water under the action of microwaves and then directly introduced into a derivatization reservoir containing 2,4-dinitrophenylhydrazine (DNPH). The formaldehyde-DNPH derivative (100 μL) was loaded into a restricted access material (RAM) precolumn for online cleanup. Subsequently, the analyte was transferred from the precolumn to an analytical column and determined by UV absorption spectrum at 352 nm. The limit of detection (LOD) was 0.27 mg kg(-1). The intraday and interday precisions expressed as RSDs were 3.5% and 5.0%, respectively. This method was applied to determine the presence of formaldehyde in various aquatic products. The results were in agreement with those obtained by the state standard method (steam-distillation and offline HPLC analysis) used in China and higher than those obtained by the online ultrasound-assisted extraction (UAE) method. The recoveries obtained by analyzing 11 spiked aquatic products were in the range of 70.0%-105.0%. The online technique was demonstrated to be rapid with little consumption of samples and reagents.

  8. Extraction and derivatization of polar herbicides for GC-MS analyses.

    PubMed

    Ranz, Andreas; Maier, Eveline; Motter, Herbert; Lankmayr, Ernst

    2008-09-01

    A sample preparation procedure including a simultaneous microwave-assisted (MA) extraction and derivatization for the determination of chlorophenoxy acids in soil samples is presented. For a selective and sensitive measurement, an analytical technique such as GC coupled with MS needs to be adopted. For GC analyses, chlorophenoxy acids have to be converted into more volatile and thermally stable derivatives. Derivatization by means of microwave radiation offers new alternatives in terms of shorter derivatization time and reduces susceptibility for the formation of artefacts. Extraction and derivatization into methyl esters (ME) were performed with sulphuric acid and methanol. Due to the novelty of the simultaneous extraction and derivatization assisted by means of microwave radiation, a careful investigation and optimization of influential reaction parameters was necessary. It could be shown that the combination of sulphuric acid and methanol provides a fast sample preparation including an efficient clean up procedure. The data obtained by the described method are in good agreement with those published for the reference material. Finally, compared to conventional heating and also to the standard procedure of the EPA, the sample preparation time could be considerably shortened.

  9. Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying

    2016-03-11

    This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Accurate Analysis and Evaluation of Acidic Plant Growth Regulators in Transgenic and Nontransgenic Edible Oils with Facile Microwave-Assisted Extraction-Derivatization.

    PubMed

    Liu, Mengge; Chen, Guang; Guo, Hailong; Fan, Baolei; Liu, Jianjun; Fu, Qiang; Li, Xiu; Lu, Xiaomin; Zhao, Xianen; Li, Guoliang; Sun, Zhiwei; Xia, Lian; Zhu, Shuyun; Yang, Daoshan; Cao, Ziping; Wang, Hua; Suo, Yourui; You, Jinmao

    2015-09-16

    Determination of plant growth regulators (PGRs) in a signal transduction system (STS) is significant for transgenic food safety, but may be challenged by poor accuracy and analyte instability. In this work, a microwave-assisted extraction-derivatization (MAED) method is developed for six acidic PGRs in oil samples, allowing an efficient (<1.5 h) and facile (one step) pretreatment. Accuracies are greatly improved, particularly for gibberellin A3 (-2.72 to -0.65%) as compared with those reported (-22 to -2%). Excellent selectivity and quite low detection limits (0.37-1.36 ng mL(-1)) are enabled by fluorescence detection-mass spectrum monitoring. Results show the significant differences in acidic PGRs between transgenic and nontransgenic oils, particularly 1-naphthaleneacetic acid (1-NAA), implying the PGRs induced variations of components and genes. This study provides, for the first time, an accurate and efficient determination for labile PGRs involved in STS and a promising concept for objectively evaluating the safety of transgenic foods.

  11. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization.

    PubMed

    Poojary, Mahesha M; Passamonti, Paolo

    2016-12-09

    This paper reports on improved conventional thermal silylation (CTS) and microwave-assisted silylation (MAS) methods for simultaneous determination of tocopherols and sterols by gas chromatography. Reaction parameters in each of the methods developed were systematically optimized using a full factorial design followed by a central composite design. Initially, experimental conditions for CTS were optimized using a block heater. Further, a rapid MAS was developed and optimized. To understand microwave heating mechanisms, MAS was optimized by two distinct modes of microwave heating: temperature-controlled MAS and power-controlled MAS, using dedicated instruments where reaction temperature and microwave power level were controlled and monitored online. Developed methods: were compared with routine overnight derivatization. On a comprehensive level, while both CTS and MAS were found to be efficient derivatization techniques, MAS significantly reduced the reaction time. The optimal derivatization temperature and time for CTS found to be 55°C and 54min, while it was 87°C and 1.2min for temperature-controlled MAS. Further, a microwave power of 300W and a derivatization time 0.5min found to be optimal for power-controlled MAS. The use of an appropriate derivatization solvent, such as pyridine, was found to be critical for the successful determination. Catalysts, like potassium acetate and 4-dimethylaminopyridine, enhanced the efficiency slightly. The developed methods showed excellent analytical performance in terms of linearity, accuracy and precision. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Simultaneous Determination of Oleanolic Acid and Ursolic Acid by in Vivo Microdialysis via UHPLC-MS/MS Using Magnetic Dispersive Solid Phase Extraction Coupling with Microwave-Assisted Derivatization and Its Application to a Pharmacokinetic Study of Arctiumlappa L. Root Extract in Rats.

    PubMed

    Zheng, Zhenjia; Zhao, Xian-En; Zhu, Shuyun; Dang, Jun; Qiao, Xuguang; Qiu, Zhichang; Tao, Yanduo

    2018-04-18

    Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe 3 O 4 /graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe 3 O 4 /graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.

  13. Microwave-assisted Chemical Transformations

    EPA Science Inventory

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  14. Microwave Assisted Synthesis of Py-Im Polyamides

    PubMed Central

    2012-01-01

    Microwave synthesis was utilized to rapidly build Py-Im polyamides in high yields and purity using Boc-protection chemistry on Kaiser oxime resin. A representative polyamide targeting the 5′-WGWWCW-3′ (W = A or T) subset of the consensus Androgen and Glucocorticoid Response Elements was synthesized in 56% yield after 20 linear steps and HPLC purification. It was confirmed by Mosher amide derivatization of the polyamide that a chiral α-amino acid does not racemize after several additional coupling steps. PMID:22578091

  15. Tandem derivatization combined with salting-out assisted liquid-liquid microextraction for determination of biothiols in urine by gas chromatography-mass spectrometry.

    PubMed

    Tsai, Chia-Ju; Liao, Fang-Yi; Weng, Jing-Ru; Feng, Chia-Hsien

    2017-11-17

    Detection of polar organic compounds (POCs) using gas chromatography (GC) is not straightforward due to high polarity, hydrophilicity, and low volatility of POCs. In this study, we report a tandem microwave-assisted derivatization method combined with salting-out assisted liquid-liquid microextraction (SALLME) to modify successively the polar groups of POCs in protic and aprotic solvents. Biothiols (cysteine and homocysteine) served as a proof of concept for this method because they possess three polar groups (thiol, amine, and carboxyl); the derivatizing reagent was 3,4,5-trifluorobenzyl bromide (Br-TFB) for alkylation. The solubility of the POCs in the protic or aprotic reaction medium affected the number of TFB molecules attached. Using the tandem derivatization with Br-TFB, the thiol and amine groups of biothiols were alkylated in the protic system, and the carboxylic groups of biothiols were alkylated in the aprotic system. The developed method was then successfully applied to measure biothiols in human urine. Because of the complex urine matrix and the lack of urine samples without endogenous biothiols, the standard addition method was utilized to avoid the matrix effect, check the recovery, and calculate the initial biothiol content in the urine. Regarding the linearity of the standard addition curves, the coefficient of determination was >0.996, and the linear regression showed satisfactory reproducibility with a relative standard deviation <3.9% for the slope and <8.8% for the intercept. The levels of cysteine and homocysteine in healthy human urine ranged from 28.8 to 111μmolL -1 and from 1.28 to 3.73μmolL -1 , respectively. The proposed method effectively increased the sensitivity of GC-MS assays of water-soluble compounds in human urine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sensitive determination of cholesterol and its metabolic steroid hormones by UHPLC-MS/MS via derivatization coupled with dual ultrasonic-assisted dispersive liquid-liquid microextraction.

    PubMed

    Zhao, Xian-En; Yan, Ping; Wang, Renjun; Zhu, Shuyun; You, Jinmao; Bai, Yu; Liu, Huwei

    2016-08-01

    Quantitative analysis of cholesterol and its metabolic steroid hormones plays a vital role in diagnosing endocrine disorders and understanding disease progression, as well as in clinical medicine studies. Because of their extremely low abundance in body fluids, it remains a challenging task to develop a sensitive detection method. A hyphenated technique of dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) was proposed for cleansing, enrichment and sensitivity enhancement. 4'-Carboxy-substituted rosamine (CSR) was synthesized and used as derivatization reagent. An ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for determination of cholesterol and its metabolic steroid hormones in the multiple reaction monitoring mode. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS were all optimized. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.08-0.15 pg mL(-1) ) were achieved. Through the combination of dual-UADLLME and MAD, a determination method for cholesterol and its metabolic steroid hormones in human plasma, serum and urine samples was developed and validated with high sensitivity, selectivity, accuracy and perfect matrix effect results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Microwave Assisted Grafting of Gums and Extraction of Natural Materials.

    PubMed

    Singh, Inderbir; Rani, Priya; Kumar, Pradeep

    2017-01-01

    Microwave assisted modification of polymers has become an established technique for modifying the functionality of polymers. Microwave irradiation reduces reaction time as well as the use of toxic solvents with enhanced sensitivity and yields of quality products. In this review article instrumentation and basic principles of microwave activation have been discussed. Microwave assisted grafting of natural gums, characterization of grafted polymers and their toxicological parameters have also been listed. Pharmaceutical applications viz. drug release retardant, mucoahesion and tablet superdisintegrant potential of microwave assisted gums has also been discussed. An overview of microwave assisted extraction of plant based natural materials has also been presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Matrix effect in matrix-assisted laser desorption/ionization mass spectra of derivatized oligomeric polyols.

    PubMed

    Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Zaikin, Vladimir G

    2013-01-30

    Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices. Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization. Initial oligomers and derivatized products were analyzed by MALDI-ToF-mass spectrometry (MS) on an Autoflex II instrument, equipped with a nitrogen laser (λ 337 nm), in positive ion reflectron mode. Only [M + Na](+) ions were observed for underivatized polymers and for completely derivatized polymers in the presence of DHB and dithranol, respectively. In the case of IAA the mass spectra revealed sets of peaks for underivatized, and for partially and completely derivatized oligomers. No similar 'matrix effect' was observed in the case of acylated glycerol alkoxylates (acyl = formyl, acetyl): only peaks for completely derivatized oligomers were obtained in all matrices: DHB, IAA and dithranol. Using 1,9-nonandiol, we showed that the 'matrix effect' was due to trans-silylation of carboxyl-containing matrices (DHB and IAA) during co-crystallization of silylated oligomers and matrices. The obtained results show that matrix molecules can participate as reactive species in MALDI-ToF-MS experiments. The matrix should be carefully chosen when a derivatization approach is applied because the analysis of spectra of the completely derivatized products is particularly desirable in the quantitative determination of functional end-groups. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Plasma-assisted microwave processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin (Inventor); Jackson, Henry (Inventor); Ylin, Tzu-yuan (Inventor)

    1998-01-01

    A microwave plasma assisted method and system for heating and joining materials. The invention uses a microwave induced plasma to controllably preheat workpiece materials that are poorly microwave absorbing. The plasma preheats the workpiece to a temperature that improves the materials' ability to absorb microwave energy. The plasma is extinguished and microwave energy is able to volumetrically heat the workpiece. Localized heating of good microwave absorbing materials is done by shielding certain parts of the workpiece and igniting the plasma in the areas not shielded. Microwave induced plasma is also used to induce self-propagating high temperature synthesis (SHS) process for the joining of materials. Preferably, a microwave induced plasma preheats the material and then microwave energy ignites the center of the material, thereby causing a high temperature spherical wave front from the center outward.

  20. Microwave-Assisted Synthesis of Phenothiazine and Quinoline Derivatives

    PubMed Central

    Găină, Luiza; Cristea, Castelia; Moldovan, Claudia; Porumb, Dan; Surducan, Emanoil; Deleanu, Călin; Mahamoud, Abdalah; Barbe, Jacques; Silberg, Ioan A.

    2007-01-01

    Application of a dynamic microwave power system in the chemical synthesis of some phenothiazine and quinoline derivatives is described. Heterocyclic ring formation, aromatic nucleophilic substitution and heterocyclic aldehydes/ketones condensation reactions were performed on solid support, or under solvent free reaction conditions. The microwave-assisted Duff formylation of phenothiazine was achieved. Comparison of microwave-assisted synthesis with the conventional synthetic methods demonstrates advantages related to shorter reaction times and in some cases better reaction yields.

  1. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.

    PubMed

    Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger

    2017-04-01

    Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted

  3. Microwave-Assisted Synthesis of "N"-Phenylsuccinimide

    ERIC Educational Resources Information Center

    Shell, Thomas A.; Shell, Jennifer R.; Poole, Kathleen A.; Guetzloff, Thomas F.

    2011-01-01

    A microwave-assisted synthesis of "N"-phenylsuccinimide has been developed for the second-semester organic teaching laboratory. Utilizing this procedure, "N"-phenylsuccinimide can be synthesized in moderate yields (40-60%) by heating a mixture of aniline and succinic anhydride in a domestic microwave oven for four minutes. This technique reduces…

  4. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  5. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES

    EPA Science Inventory

    Microwave-assisted (MW) spontaneous reduction of noble metal salts, silver (Ag), gold (Au), platinum (Pt) and palladium (Pd) is reported using sugar solutions such as -D glucose, sucrose and maltose, etc. to generate nanomaterials. These MW-assisted reactions, conducted in aqueo...

  7. Microwave-assisted synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave-assisted chemistry techniques and greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted chemical proces...

  8. Microwave-assisted extraction of pectin from cocoa peel

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.

    2018-02-01

    Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.

  9. Process characteristics for microwave assisted hydrothermal carbonization of cellulose.

    PubMed

    Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming

    2018-07-01

    The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Phase Transformation of VO2 Nanoparticles Assisted by Microwave Heating

    PubMed Central

    Sikong, Lek.

    2014-01-01

    The microwave assisted synthesis nowadays attracts a great deal of attention. Monoclinic phase VO2 (M) was prepared from NH4VO3 and H2C2O4 · 2H2O by a rapid microwave assisted technique. The synthesis parameters, microwave irradiation time, microwave power, and calcinations temperature were systematically varied and their influences on the structure and morphology were evaluated. The microwave power level has been carried out in range 180–600 W. TEM analysis demonstrated nanosized samples. The structural and morphological properties were measured using XRD, TEM, and thermal analyses. The variations of vanadium phase led to thermochromic properties. PMID:24688438

  11. Bio-based products via microwave-assisted maleation of tung oil

    USDA-ARS?s Scientific Manuscript database

    A simple “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. The mechanism of this microwave-assisted maleation was investigated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). T...

  12. Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process.

    PubMed

    Zou, Zhaoyong; Lin, Kaili; Chen, Lei; Chang, Jiang

    2012-11-01

    Herein, carbonated hydroxyapatite (CHAp) nanopowders were synthesized via sonochemistry-assisted microwave process. The influences of microwave and ultrasonic irradiation on the crystallinity, morphology, yield, Ca/P molar ratio, specific surface area and dispersibility were investigated and compared with the conventional precipitation method. The results showed that sonochemistry-assisted microwave process significantly increased the synthetic efficiency. The well-crystallized nanopowders could be obtained at high yield of 98.8% in ultra-short-period of 5min. In addition, the crystallization process was promoted with the increase of ultrasonic and microwave power and the reaction time during the sonochemistry-assisted microwave process. The sonochemistry assistance also remarkably increased the specific surface area and dispersibility of the as-obtained products. These results suggest that the sonochemistry-assisted microwave process is an effective approach to synthesize CHAp with high efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.

    PubMed

    Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2016-07-02

    Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.

  14. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    DTIC Science & Technology

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  15. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.

    PubMed

    Wang, Tseng-Hsing; Lu, Shin

    2013-06-01

    The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Electrical detection of microwave assisted magnetization reversal by spin pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Siddharth; Subhra Mukherjee, Sankha; Elyasi, Mehrdad

    2014-03-24

    Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.

  17. Microwave-assisted synthesis of medicinally relevant indoles.

    PubMed

    Patil, S A; Patil, R; Miller, D D

    2011-01-01

    Indoles represent an important structural class in medicinal chemistry with broad spectrum of biological activities. The synthesis of indoles, therefore, has attracted enormous attention from synthetic chemists. Microwave methods for the preparation of indole analogs have been developed to speed up the synthesis, therefore, microwave assisted organic synthesis (MAOS) in controlled conditions is an invaluable technique for medicinal chemistry. In this review, indole forming classical reactions such as Fischer, Madelung, Bischler-Mohlau, Batcho-Leimgruber, Hemetsberger-Knittel, Graebe-Ullmann, Diels-Alder and Wittig type reactions using microwave radiation has been summarized. In addition, metal mediated cyclizations along with solid phase synthesis of indoles have been discussed. © 2011 Bentham Science Publishers Ltd.

  18. Microwave-assisted synthesis of cyclodextrin polyurethanes

    USDA-ARS?s Scientific Manuscript database

    Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of alpha-, ß-, and gamma-CD and thr...

  19. Optimization of microwave-assisted extraction of flavonoids from young barley leaves

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng

    2017-01-01

    A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

  20. [Determination of benzo(alpha)pyrene in food with microwave-assisted extraction].

    PubMed

    Zhou, Na; Luo, He-Dong; Li, Na; Li, Yao-Qun

    2014-03-01

    Coupling derivative technique and constant-energy synchronous fluorescence scanning technique, a method of determining benzo[alpha] pyrene in foods by second derivative constant-energy synchronous spectrofluorimetry after microwave-assisted treatment of samples was established using domestic microwave oven. The main factors of influencing the efficiency of microwave extraction were discussed, including the extraction solvent types and amounts, the microwave extraction time, microwave radiation power and cooling time. And the comparison with ultrasonic extraction was made. Low-fat food samples, which were just microwave-extracted with mixed-solvents, could be analyzed immediately by the spectrofluorimetric technique. For high-fat food samples, microwave-assisted saponification and extraction were made at the same time, thus simplifying operation steps and reducing sample analysis time. So the whole sample analysis process could be completed within one hour. This method was simple, rapid and inexpensive. In consequence, it was applied to determine benzo(a)pyrene in food with good reproducibility and the recoveries of benzo(alpha) pyrene ranged from 90.0% to 105.0% for the low fat samples and 83.3% to 94.6% for high-fat samples.

  1. Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media

    EPA Science Inventory

    The nonclassical heating technique using microwaves, termed as 'Bunsen burner of the 21st century, is rapidly becoming popular and is dramatically reducing the reaction times. The significant outcomes of microwave (MW)-assisted green chemistry endeavors are summarized that have r...

  2. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior.

    PubMed

    Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao

    2018-03-01

    This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microwave-assisted extraction of cyclotides from Viola ignobilis.

    PubMed

    Farhadpour, Mohsen; Hashempour, Hossein; Talebpour, Zahra; A-Bagheri, Nazanin; Shushtarian, Mozhgan Sadat; Gruber, Christian W; Ghassempour, Alireza

    2016-03-15

    Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Microwave-Assisted Green Synthesis of Silver Nanostructures

    EPA Science Inventory

    This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...

  5. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    ERIC Educational Resources Information Center

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  6. Microwave-assisted efficient conjugation of nanodiamond and paclitaxel.

    PubMed

    Hsieh, Yi-Han; Liu, Kuang-Kai; Sulake, Rohidas S; Chao, Jui-I; Chen, Chinpiao

    2015-01-01

    Nanodiamond has recently received considerable attention due to the various possible applications in medical field such as drug delivery and bio-labeling. For this purpose suitable and effective surface functionalization of the diamond material are required. A versatile and reproducible surface modification method of nanoscale diamond is essential for functionalization. We introduce the input of microwave energy to assist the functionalization of nanodiamond surface. The feasibility of such a process is illustrated by comparing the biological assay of ND-paclitaxel synthesized by conventional and microwave irradiating. Using a microwave we manage to have approximately doubled grafted molecules per nanoparticle of nanodiamond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Central composite rotatable design for investigation of microwave-assisted extraction of ginger (Zingiber officinale)

    NASA Astrophysics Data System (ADS)

    Fadzilah, R. Hanum; Sobhana, B. Arianto; Mahfud, M.

    2015-12-01

    Microwave-assisted extraction technique was employed to extract essential oil from ginger. The optimal condition for microwave assisted extraction of ginger were determined by resposnse surface methodology. A central composite rotatable design was applied to evaluate the effects of three independent variables. The variables is were microwave power 400 - 800W as X1, feed solvent ratio of 0.33 -0.467 as X2 and feed size 1 cm, 0.25 cm and less than 0.2 cm as X3. The correlation analysis of mathematical modelling indicated that quadratic polynomial could be employed to optimize microwave assisted extraction of ginger. The optimal conditions to obtain highest yield of essential oil were : microwave power 597,163 W : feed solvent ratio and size of feed less than 0.2 cm.

  8. Ultrasound-assisted emulsification microextraction combined with injection-port derivatization for the determination of some chlorophenoxyacetic acids in water samples.

    PubMed

    Yamini, Yadollah; Saleh, Abolfazl

    2013-07-01

    An efficient method based on ultrasound-assisted emulsification microextraction followed by injection-port derivatization GC analysis was developed to determine 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in natural water samples. In this procedure, 12.5 μL of 1-undecanol was injected slowly into a 12 mL home-designed centrifuge glass vial containing an aqueous sample of the analytes located inside an ultrasonic water bath. The resulting emulsion was centrifuged, and 1 μL of the separated organic solvent together with 1 μL of the derivatization reagent were injected into a GC equipped with a flame ionization detector. Several factors that influence the derivatization and extraction were optimized. Under the optimal conditions, the LODs were 0.33 and 1.7 μg/L for MCPA and 2,4-D, respectively. Preconcentration factors of 670 and 836 were obtained for MCPA and 2,4-D, respectively. The precision of the proposed method was evaluated in terms of repeatability, which was <5.7% (n = 5). The applicability of the proposed method was evaluated by extraction and determination of chlorophenoxyacetic acids from some natural waters, which indicated that the matrices of natural waters have no significant effect on the extraction and derivatization efficiency of this method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microwave-assisted one-step patterning of aqueous colloidal silver.

    PubMed

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  10. Microwave-assisted generation of standard gas mixtures.

    PubMed

    Xiong, Guohua; Pawliszyn, Janusz

    2002-05-15

    Microwave heating was employed for preparation of the standard gas of volatile organic compounds (VOCs) and semivolatile organic compounds (semi-VOCs) by using a 1000 W commercial domestic microwave oven and 1 L gas-sampling bulbs. The VOCs investigated were benzene, chloroform, 1,3-dichlorobenzene, tetrachloroethylene, toluene, and 1,1,2-trichloroethane, and the semi-VOCs used were the polychlorinated biphenyls (PCBs) PCB 1016 and PCB 1248. Since these weakly or nonpolar molecules are very poor absorbers of microwave energy, an appropriate amount of water was introduced to accept microwave radiation and act as the thermal source to accelerate their evaporation. The glass bulb may also contribute thermal energy to the VOCs/semi-VOCs by accepting microwave energy to a small degree. For 0.5 microL of liquid VOCs on 10 mg of glass wool, it was shown that 15 microL of H2O and 60 s of microwave heating yielded a very efficient evaporation [97.2-106.4%, compared with a classic method (Muller, L; Gorecki, T.; Pawliszyn, J. Fresenius' J. Anal. Chem. 1999, 364, 610-616)]. For 1 microL of PCB solution (1000 microg/mL in hexane), 15 microL of H2O and 90 s of microwave heating also provided a complete evaporation. The addition of water was particularly significant for microwave-assisted evaporation of PCBs because semi-VOCs are much more difficult to evaporate than VOCs. This developed microwave technique proved to be quite simple, powerful, rapid, accurate, and safe for the preparation of VOC/semi-VOC standard gas. Solid- phase microextraction combined with gas chromatography was used for the gas analysis.

  11. Microwave-assisted synthesis of N-pyrazole ureas and the p38alpha inhibitor BIRB 796 for study into accelerated cell ageing.

    PubMed

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Widdowson, Caroline S; Kipling, David

    2006-11-21

    Microwave irradiation of substituted hydrazines and beta-ketoesters gives 5-aminopyrazoles in excellent yield, which can be transformed to the corresponding N-carbonyl derivatives by treatment with an isocyanate or chloroformate. Derivatization of 4-nitronaphth-1-ol using predominantly microwave heating methods and reaction with an N-pyrazole carbamate provides a rapid route to the N-pyrazole urea BIRB 796 in high purity, as a potent and selective inhibitor of p38alpha mitogen-activated protein kinase for the study of accelerated ageing in Werner syndrome cells.

  12. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels.

    PubMed

    Liew, Shan Qin; Ngoh, Gek Cheng; Yusoff, Rozita; Teoh, Wen Hui

    2016-12-01

    This study aims to optimize sequential ultrasound-microwave assisted extraction (UMAE) on pomelo peel using citric acid. The effects of pH, sonication time, microwave power and irradiation time on the yield and the degree of esterification (DE) of pectin were investigated. Under optimized conditions of pH 1.80, 27.52min sonication followed by 6.40min microwave irradiation at 643.44W, the yield and the DE value of pectin obtained was respectively at 38.00% and 56.88%. Based upon optimized UMAE condition, the pectin from microwave-ultrasound assisted extraction (MUAE), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were studied. The yield of pectin adopting the UMAE was higher than all other techniques in the order of UMAE>MUAE>MAE>UAE. The pectin's galacturonic acid content obtained from combined extraction technique is higher than that obtained from sole extraction technique and the pectin gel produced from various techniques exhibited a pseudoplastic behaviour. The morphological structures of pectin extracted from MUAE and MAE closely resemble each other. The extracted pectin from UMAE with smaller and more regular surface differs greatly from that of UAE. This has substantiated the highest pectin yield of 36.33% from UMAE and further signified their compatibility and potentiality in pectin extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Microwave-assisted 'greener' synthesis of organics and nanomaterials

    EPA Science Inventory

    Microwave selective heating techniques in conjunction with greener reaction media are dramatically reducing chemical waste and reaction times in several organic transformations and material synthesis. This presentation summarizes author’s own experience in developing MW-assisted ...

  14. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES USING BIODEGRADABLE POLYMER CARBOXYMETHYL CELLULOSE

    EPA Science Inventory

    Microwave-assisted synthesis of noble nanostructures (Au, Pt, and Pd) using biodegradable polymer carboxymethyl cellulose (CMC) under microwave irradiation (MW) at 100 0C is reported. The reaction occurs within a few minutes, whereas at room temperature the reaction does not pro...

  15. Microwave-assisted hydrolysis and extraction of tricyclic antidepressants from human hair.

    PubMed

    Wietecha-Posłuszny, Renata; Garbacik, Aneta; Woźniakiewicz, Michał; Kościelniak, Paweł

    2011-03-01

    The objective of this research was to develop, optimize, and validate a modern, rapid method of preparation of human hair samples, using microwave irradiation, for analysis of eight tricyclic antidepressants (TCADs): nordoxepin, nortriptyline, imipramine, amitriptyline, doxepin, desipramine, clomipramine, and norclomipramine. It was based on simultaneous alkaline hair microwave-assisted hydrolysis and microwave-assisted extraction (MAH-MAE). Extracts were analyzed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). A mixture of n-hexane and isoamyl alcohol (99:1, v/v) was used as extraction solvent and the process was performed at 60°C. Application of 1.0 mol L(-1) NaOH and microwave irradiation for 40 min were found to be optimum for hair samples. Limits of detection ranged from 0.3 to 1.2 μg g(-1) and LOQ from 0.9 to 4.0 μg g(-1) for the different drugs. This enabled us to quantify them in hair samples within average therapeutic concentration ranges.

  16. Modeling and prediction of extraction profile for microwave-assisted extraction based on absorbed microwave energy.

    PubMed

    Chan, Chung-Hung; Yusoff, Rozita; Ngoh, Gek-Cheng

    2013-09-01

    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation

    NASA Astrophysics Data System (ADS)

    Xia, Jing; Huang, Yangqi; Zhang, Xichao; Kang, Wang; Zheng, Chentian; Liu, Xiaoxi; Zhao, Weisheng; Zhou, Yan

    2017-10-01

    Magnetic skyrmion is a topologically protected domain-wall structure at nanoscale, which could serve as a basic building block for advanced spintronic devices. Here, we propose a microwave field-driven skyrmionic device with the transistor-like function, where the motion of a skyrmion in a voltage-gated ferromagnetic nanotrack is studied by micromagnetic simulations. It is demonstrated that the microwave field can drive the motion of a skyrmion by exciting the propagating spin waves, and the skyrmion motion can be governed by a gate voltage. We also investigate the microwave current-assisted creation of a skyrmion to facilitate the operation of the transistor-like skyrmionic device on the source terminal. It is found that the microwave current with an appropriate frequency can reduce the threshold current density required for the creation of a skyrmion from the ferromagnetic background. The proposed transistor-like skyrmionic device operated with the microwave field and current could be useful for building future skyrmion-based circuits.

  18. Free amino acids, biogenic amines, and ammonium profiling in tobacco from different geographical origins using microwave-assisted extraction followed by ultra high performance liquid chromatography.

    PubMed

    Cai, Kai; Xiang, Zhangmin; Li, Hongqin; Zhao, Huina; Lin, Yechun; Pan, Wenjie; Lei, Bo

    2017-12-01

    This work describes a rapid, stable, and accurate method for determining the free amino acids, biogenic amines, and ammonium in tobacco. The target analytes were extracted with microwave-assisted extraction and then derivatized with diethyl ethoxymethylenemalonate, followed by ultra high performance liquid chromatography analysis. The experimental design used to optimize the microwave-assisted extraction conditions showed that the optimal extraction time was 10 min with a temperature of 60°C. The stability of aminoenone derivatives was improved by keeping the pH near 9.0, and there was no obvious degradation during the 80°C heating and room temperature storage. Under optimal conditions, this method showed good linearity (R 2 > 0.999) and sensitivity (limits of detection 0.010-0.081 μg/mL). The extraction recoveries were between 88.4 and 106.5%, while the repeatability and reproducibility ranged from 0.48 to 5.12% and from 1.56 to 6.52%, respectively. The newly developed method was employed to analyze the tobacco from different geographical origins. Principal component analysis showed that four geographical origins of tobacco could be clearly distinguished and that each had their characteristic components. The proposed method also showed great potential for further investigations on nitrogen metabolism in plants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A facile microwave-assisted Diels-Alder reaction of vinylboronates.

    PubMed

    Sarotti, Ariel M; Pisano, Pablo L; Pellegrinet, Silvina C

    2010-11-21

    The Diels-Alder reaction of vinylboronates can be easily performed using microwave irradiation giving excellent yields of the cycloadducts. Pinacol vinylboronate was the reagent of choice due to its stability towards hydrolysis, operational simplicity and yields of Diels-Alder products. To the best of our knowledge, this is the first example of microwave-assisted Diels-Alder reaction of boron-substituted dienophiles. Subsequent in situ oxidation of the cycloadducts with alkaline hydrogen peroxide afforded the alcohols efficiently.

  20. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    NASA Astrophysics Data System (ADS)

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-04-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.

  1. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull

    PubMed Central

    Agu, Obiora S.; Tabil, Lope G.; Dumonceaux, Tim

    2017-01-01

    The effects of microwave-assisted alkali pre-treatment on pellets’ characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield. PMID:28952504

  2. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull.

    PubMed

    Agu, Obiora S; Tabil, Lope G; Dumonceaux, Tim

    2017-03-26

    The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.

  3. Microwave-Assisted Tissue Preparation for Rapid Fixation, Decalcification, Antigen Retrieval, Cryosectioning, and Immunostaining

    PubMed Central

    2016-01-01

    Microwave irradiation of tissue during fixation and subsequent histochemical staining procedures significantly reduces the time required for incubation in fixation and staining solutions. Minimizing the incubation time in fixative reduces disruption of tissue morphology, and reducing the incubation time in staining solution or antibody solution decreases nonspecific labeling. Reduction of incubation time in staining solution also decreases the level of background noise. Microwave-assisted tissue preparation is applicable for tissue fixation, decalcification of bone tissues, treatment of adipose tissues, antigen retrieval, and other special staining of tissues. Microwave-assisted tissue fixation and staining are useful tools for histological analyses. This review describes the protocols using microwave irradiation for several essential procedures in histochemical studies, and these techniques are applicable to other protocols for tissue fixation and immunostaining in the field of cell biology. PMID:27840640

  4. Using x-ray mammograms to assist in microwave breast image interpretation.

    PubMed

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  5. MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.

    PubMed

    Quoc, Le Pham Tan; Muoi, Nguyen Van

    2016-01-01

    The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.

  6. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity.

    PubMed

    Wang, Huizhu; Li, Yan; Ren, Zhihui; Cong, Zhongcheng; Chen, Mengjie; Shi, Lin; Han, Xu; Pei, Jin

    2018-06-01

    An extraction assay applying microwave-assisted enzymatic treatment for polysaccharides in Rosa roxburghii was developed using response surface methodology. The process parameters were optimized using Plackett-Burman (PB) design and central composite design to enhance the Rosa roxburghii polysaccharide extraction yield. Specific conditions (microwave power, 575W; microwave time, 18min; liquid-to-material ratio, 13.5:1mL/g; and enzyme dose, 6.5g/mL) generated an experimental yield of 36.21±0.62%, which closely agreed with the predicted value of 35.75%. Purification with a DEAE-52 cellulose column generated two fractions, PR-1 (from 6.2×10 3 to 7.4KDa) and PR-2 (from 559.8 to 106.6KDa). Subsequently, the antioxidant activity and α-d-glucosidase inhibitory activity of the two polysaccharide fractions were assessed; PR-1 exhibited stronger antioxidant activity and α-d-glucosidase inhibitory activity than PR-2. Finally, the monosaccharide composition of PR-1 was determined by HPLC using a 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization method. The result showed that PR-1 contained mannose, ribose, rhamnose, glucosamine hydrochloride, glucuronic acid, galacturonic acid, glucose, galactose, arabinose and fucose with molar percentages of 2.1%, 0.54%, 2.1%, 0.26%, 1.5%, 22.7%, 24.0%, 26.4%, 19.6% and 0.89%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Methane Synthesis from Automotive Paint Sludge via Microwave Assisted Pyrolysis

    NASA Astrophysics Data System (ADS)

    Rosli, N. L.; Rahman, N. Abd; Kadri, A.

    2018-05-01

    Methane gas, which has one atom of carbon and four atoms of hydrogen, is a valuable energy resource, which can be used in the energy sector. The purpose of this research work is to identify methane synthesis from Automotive Paint Sludge (APS) using microwave assisted pyrolysis. APS is known as a hazardous waste since it contains various chemicals that categorized as heavy metals and toxic substances. A modified conventional kitchen microwave was used to pyrolise the APS. The microwave was set with the power level of 600 W and 50 minutes radiation time. Through the experiment, pyrogas was collected into tedlar bag and was analysed using Gas Chromatography with Flame Ionization Detector (GC-FID). Results from the GC-FID were shown that the retention time of 3.3583, 3.2733, and 3.2267 min are proved to be methane gas. The results obtained are resembled with the results from the literature. This indicates methane gas was presented in the pyrogas of pyrolysis of APS and there is a possibility of producing methane gas. The research study suggests that it is possible to synthesize methane gas from the APS via microwave assisted pyrolysis, and in the meantime reduce the volume of APS in the landfill.

  8. Microwave-Assisted Synthesis – Catalytic Applications in Aqueous Media

    EPA Science Inventory

    The development of sustainable methods directed towards the synthesis of molecules is due to the heightened awareness and recognition of alternative eco-friendly and economical protocols that have minimum impact on environment. Among others, microwave (MW)-assisted methodology ha...

  9. Piperazines for peptide carboxyl group derivatization: effect of derivatization reagents and properties of peptides on signal enhancement in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Qiao, Xiaoqiang; Sun, Liangliang; Chen, Lingfan; Zhou, Yuan; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-03-15

    Piperazine-based derivatives, including 1-(2-pyridyl)piperazine (2-PP), 1-(2-pyrimidyl)piperazine (2-PMP), 1-(4-pyridyl)piperazine (4-PP), and 1-(1-methyl-4-piperidinyl)piperazine (M-PP), were used for the derivatization of carboxyl groups on peptides with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 1-hydroxy-7-azabenzotriazole (HOAt) as coupling reagents, and trifluoroacetic acid (TFA) as activator. Taking synthetic peptides RVYVHPI (RI-7) and APGDRIYVHPF (AF-11) as samples, the yields of derivatized peptides by 2-PP, 2-PMP and 4-PP were higher than 94%. The effect of piperazine derivatives on the signals of tryptic digests of α-transferrin and bovine serum albumin (BSA) was investigated, and it was found that peptides derivatized by 2-PP and 2-PMP exhibited obviously improved ionization efficiency. Furthermore, comparison of identified peptides before and after derivatization showed that peptides with low molecular weight (MW) and high pI value were preferably detected after derivatization. In addition, after derivatization with 2-PP and 2-PMP, protein myelin basic protein S, 20 kDa protein, and histone H were confidently identified from the tryptic digests of two fractions of rat brain protein separated by reversed-phase high-performance liquid chromatography (HPLC), indicating the potential application of 2-PP and 2-PMP for the highly sensitive determination of peptides in comprehensive proteome analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Microwave-assisted extraction of oxymatrine from Sophora flavescens.

    PubMed

    Xia, En-Qin; Cui, Bo; Xu, Xiang-Rong; Song, Yang; Ai, Xu-Xia; Li, Hua-Bin

    2011-08-30

    In this paper, microwave-assisted extraction (MAE) of oxymatrine from Sophora flavescens were studied by HPLC-photodiode array detection. Effects of several experimental parameters, such as concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature, and extraction time on the extraction efficiencies of oxymatrine were evaluated. The optimal extraction conditions were 60% ethanol, a 20:1 (v/v) ratio of liquid to material and extraction for 10 min at 50 °C under 500 W microwave irradiation. Under the optimum conditions, the yield of oxymatrine was 14.37 mg/g. The crude extract obtained could be used as either a component of some complex traditional medicines or for further isolation and purification of bioactive compounds. The results, which indicated that MAE is a very useful tool for the extraction of important phytochemicals from plant materials, should prove helpful for the full utilization of Sophora flavescens.

  11. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil

    NASA Astrophysics Data System (ADS)

    Kusuma, Heri Septya; Mahfud, Mahfud

    2015-12-01

    Microwave-assisted extraction (MAE) technique was employed to extract the essential oil from patchouli (Pogostemon cablin). The optimal conditions for microwave-assisted extraction of patchouli oil were determined by response surface methodology. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (microwave power (A: 400-800 W), plant material to solvent ratio (B: 0.10-0.20 g mL-1) and extraction time (C: 20-60 min)) on the extraction yield of patchouli oil. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of patchouli oil. The optimal extraction conditions of patchouli oil was microwave power 634.024 W, plant material to solvent ratio 0.147648 g ml-1 and extraction time 51.6174 min. The maximum patchouli oil yield was 2.80516% under these optimal conditions. Under the extraction condition, the experimental values agreed with the predicted results by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing and reflect the expected extraction condition.

  12. Silicon carbide passive heating elements in microwave-assisted organic synthesis.

    PubMed

    Kremsner, Jennifer M; Kappe, C Oliver

    2006-06-09

    Microwave-assisted organic synthesis in nonpolar solvents is investigated utilizing cylinders of sintered silicon carbide (SiC)--a chemically inert and strongly microwave absorbing material--as passive heating elements (PHEs). These heating inserts absorb microwave energy and subsequently transfer the generated thermal energy via conduction phenomena to the reaction mixture. The use of passive heating elements allows otherwise microwave transparent or poorly absorbing solvents such as hexane, carbon tetrachloride, tetrahydrofuran, dioxane, or toluene to be effectively heated to temperatures far above their boiling points (200-250 degrees C) under sealed vessel microwave conditions. This opens up the possibility to perform microwave synthesis in unpolar solvent environments as demonstrated successfully for several organic transformations, such as Claisen rearrangements, Diels-Alder reactions, Michael additions, N-alkylations, and Dimroth rearrangements. This noninvasive technique is a particularly valuable tool in cases where other options to increase the microwave absorbance of the reaction medium, such as the addition of ionic liquids as heating aids, are not feasible due to an incompatibility of the ionic liquid with a particular substrate. The SiC heating elements are thermally and chemically resistant to 1500 degrees C and compatible with any solvent or reagent.

  13. Microwave-Assisted Drying for the Conservation of Honeybee Pollen.

    PubMed

    Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano

    2016-05-12

    Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

  14. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  15. Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao-Lin, E-mail: liu_x_l@sina.cn; Zhu, Ying-Jie; Zhang, Qian

    2012-12-15

    Graphical abstract: Cadmium sulfide polycrystalline nanotubes have been successfully synthesized by microwave-assisted transformation method using Cd–cysteine precursor nanowires as the source material and template in ethylene glycol at 160 °C or ethanol at 60 °C. Display Omitted Highlights: ► Cd–cysteine precursor nanowires were successfully synthesized in alkaline solution. ► CdS nanotubes were prepared by templated microwave-assisted transformation method. ► CdS nanotubes can well duplicate the size and morphology of precursor nanowires. ► This method has the advantages of the simplicity and low cost. -- Abstract: We report the Cd–cysteine precursor nanowire templated microwave-assisted transformation route to CdS nanotubes. In thismore » method, the Cd–cysteine precursor nanowires are synthesized using CdCl{sub 2}·2.5H{sub 2}O, L-cysteine and ethanolamine in water at room temperature. The Cd–cysteine precursor nanowires are used as the source material and template for the subsequent preparation of CdS nanotubes by a microwave-assisted transformation method using ethylene glycol or ethanol as the solvent. This method has the advantages of the simplicity and low cost, and may be extended to the synthesis of nanotubes of other compounds. The products are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).« less

  16. Microwave-assisted liquefaction of rape straw for the production of bio-oils

    Treesearch

    Xing-Yan Huang; Feng Li; Jiu-Long Xie; Cornelis F. De Hoop; Chung-Yun Hse; Jin-Qiu Qi; Hui Xiao

    2017-01-01

    The acid-catalyzed liquefaction of rape straw in methanol using microwave energy was examined. Conversion yield and energy consumption were evaluated to profile the microwave-assisted liquefaction process. Chemical components of the bio-oils from various liquefaction conditions were identified. A higher reaction temperature was found to be beneficial to obtain higher...

  17. Highly luminescent carbon nanodots by microwave-assisted pyrolysis.

    PubMed

    Zhai, Xinyun; Zhang, Peng; Liu, Changjun; Bai, Tao; Li, Wenchen; Dai, Liming; Liu, Wenguang

    2012-08-18

    Carbon nanodots (CDs) with a low cytotoxicity have been synthesized by one-step microwave-assisted pyrolysis of citric acid in the presence of various amine molecules. The primary amine molecules have been confirmed to serve dual roles as N-doping precursors and surface passivation agents, both of which considerably enhanced the fluorescence of the CDs.

  18. The Microwave-Assisted Green Synthesis of TiC Powders.

    PubMed

    Wang, Hui; Zhu, Wencheng; Liu, Yanchun; Zeng, Lingke; Sun, Luyi

    2016-11-08

    Titanium carbide (TiC) is an important engineering material and has found widespread applications. Currently, TiC is typically synthesized through carbothermal reduction, requiring a high temperature (ca. 1700-2300 °C) and long reaction time (ca. 10-20 h), which is not eco-friendly. During a conventional reaction path, anatase TiO₂ (A-TiO₂) was first converted to rutile TiO₂ (R-TiO₂), which was subsequently reduced to TiC. Herein, we explored the synthesis of TiC powders with the assistance of microwave heating. In particular, we achieved the conversion of A-TiO₂, which was more reactive than R-TiO₂ for the carbothermal reduction, to TiC, which was directly due to quick microwave heating. As such, the carbothermal reduction started at a much lower temperature of ca. 1200 °C and finished within 30 min when reacting at 1400 °C, leading to significant energy saving. This study shows that microwave-assisted synthesis can be an effective and green process for preparing TiC powders, which is promising for future large-scale production. The influence of the reaction temperature, the reaction duration, and the carbon content on the synthesis of TiC powders was investigated.

  19. "In silico" mechanistic studies as predictive tools in microwave-assisted organic synthesis.

    PubMed

    Rodriguez, A M; Prieto, P; de la Hoz, A; Díaz-Ortiz, A

    2011-04-07

    Computational calculations can be used as a predictive tool in Microwave-Assisted Organic Synthesis (MAOS). A DFT study on Intramolecular Diels-Alder reactions (IMDA) indicated that the activation energy of the reaction and the polarity of the stationary points are two fundamental parameters to determine "a priori" if a reaction can be improved by using microwave irradiation.

  20. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.

    PubMed

    Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang

    2014-09-01

    In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fast Microwave-assisted Pretreatment for Bioconversion of Sawdust Lignocellulose to Glucose

    NASA Astrophysics Data System (ADS)

    Nyoman Sudiana, I.; Mitsudo, Seitaro; Endang Susilowati, Prima; Ketut Sutiari, Desak; Widana Arsana, Made; Zamrun Firihu, Muhammad; Ode Ngkoimani, La; Aba, La; Sahaluddin Hasan, Erzam; Cahyono, Edi; Sabchevski, Svilen; Aripin, Haji; Gde Suastika, Komang

    2017-05-01

    A preliminary study of application microwave energy for bioconversion of cellulosic sawdust to glucose was performed. The effects of the microwave were compared to those of the conventional method for each solvent. It was expected that a broader mechanism responsible for the microwave effects on the chemical processes, especially the pretreatment on the hydrolysis of cellulose can be explained. Reagents used were an acid (HCl), an alkali (NaOH), and distilled water (H2O). The experimental results showed that the microwave-assisted pretreatment on the lignocellulosic sawdust faster than by using conventional heating (hotplate). Moreover by using microwave a higher glucose content compared to the conventional method was found. With microwave during hydrolisis, high temperatures and high reagent concentrations were not required. Pretreatment with a microwave at 800 Watt and solvent NaOH 22,50 mg/mL at a temperature of 120°c appeared to be most efficient found in this experiment. These results indicate that microwave effective for bioconversion of cellulosic sawdust to glucose. The microstructure evaluation by using SEM and XRD should be performed to understand more detail the effect especially on their cellulosic structural evolution.

  2. Constant pressure-assisted head-column field-amplified sample injection in combination with in-capillary derivatization for enhancing the sensitivity of capillary electrophoresis.

    PubMed

    Yan, Na; Zhou, Lei; Zhu, Zaifang; Zhang, Huige; Zhou, Ximin; Chen, Xingguo

    2009-05-15

    In this work, a novel method combining constant pressure-assisted head-column field-amplified sample injection (PA-HC-FASI) with in-capillary derivatization was developed for enhancing the sensitivity of capillary electrophoresis. PA-HC-FASI uses an appropriate positive pressure to counterbalance the electroosmotic flow in the capillary column during electrokinetic injection, while taking advantage of the field amplification in the sample matrix and the water of the "head column". Accordingly, the analytes were stacked at the stationary boundary between water and background electrolyte. After 600s PA-HC-FASI, 4-fluoro-7-nitro-2,1,3-benzoxadiazole as derivatization reagent was injected, followed by an electrokinetic step (5kV, 45s) to enhance the mixing efficiency of analytes and reagent plugs. Standing a specified time of 10min for derivatization reaction under 35 degrees C, then the capillary temperature was cooled to 25 degrees C and the derivatives were immediately separated and determined under 25 degrees C. By investigating the variables of the presented approach in detail, on-line preconcentration, derivatization and separation could be automatically operated in one run and required no modification of current CE commercial instrument. Moreover, the sensitivity enhancement factor of 520 and 800 together with the detection limits of 16.32 and 6.34pg/mL was achieved for model compounds: glufosinate and aminomethylphosphonic acid, demonstrating the high detection sensitivity of the presented method.

  3. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity.

    PubMed

    Yin, Chaomin; Fan, Xiuzhi; Fan, Zhe; Shi, Defang; Gao, Hong

    2018-05-01

    Enzymes-microwave-ultrasound assisted extraction (EMUE) method had been used to extract Lentinus edodes polysaccharides (LEPs). The enzymatic temperature, enzymatic pH, microwave power and microwave time were optimized by response surface methodology. The yields, properties and antioxidant activities of LEPs from EMUE and other extraction methods including hot-water extraction, enzymes-assisted extraction, microwave-assisted extraction and ultrasound-assisted extraction were evaluated. The results showed that the highest LEPs yield of 9.38% was achieved with enzymatic temperature of 48°C, enzymatic pH of 5.0, microwave power of 440W and microwave time of 10min, which correlated well with the predicted value of 9.79%. Additionally, LEPs from different extraction methods possessed typical absorption peak of polysaccharides, which meant different extraction methods had no significant effects on type of glycosidic bonds and sugar ring of LEPs. However, SEM images of LEPs from different extraction methods were significantly different. Moreover, the different LEPs all showed antioxidant activities, but LEPs from EMUE showed the highest reducing power when compared to other LEPs. The results indicated LEPs from EMUE can be used as natural antioxidant component in the pharmaceutical and functional food industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Simultaneous in situ derivatization and ultrasound-assisted dispersive magnetic solid phase extraction for thiamine determination by spectrofluorimetry.

    PubMed

    Tarigh, Ghazale Daneshvar; Shemirani, Farzaneh

    2014-06-01

    A simple and rapid method for the simultaneous in situ derivatizaion, preconcentration and extraction of thiamine (vitamin B1) as a model analyte was developed by a novel quantitative method, namely ultrasound-assisted dispersive magnetic solid phase extraction spectrofluorimetry (USA-DMSPE-FL) from different real samples. This method consists of sample preparation, in situ derivatization, exhaustive extraction and clean up by a single process. High extraction efficiency and in situ derivatization in a short period of time is the main advantages of this procedure. For this purpose, the reusable magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was used as an adsorbent for preconcentration and determination of thiamine. Thiamine was, simultaneously, in situ derivatized as thiochrome by potassium hexacyanoferrate (III) and adsorbed on MMWCNT in an ultrasonic water bath. The MMWCNTs were then collected using an external magnetic field. Subsequently, the extracted thiochrome was washed from the surface of the adsorbent and determined by spectrofluorimetry. The developed method, which has been analytically characterized under its optimal operating conditions, allows the detection of the analyte in the samples with method detection limits of 0.37 µg L(-1). The repeatability of the method, expressed as the relative standard deviation (RSD, n=6), varies between 2.0% and 4.8% in different real samples, while the enhancement factor is 197. The proposed procedure has been applied for the determination of thiamine in biological (serum and urine), pharmaceutical (multivitamin tablet and B complex syrup) and foodstuff samples (cereal, wheat flour, banana and honey) with the good recoveries in the range from 90% to 105%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. An efficient microwave-assisted synthesis method for the production of water soluble amine-terminated Si nanoparticles.

    PubMed

    Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M

    2012-07-27

    Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.

  6. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  7. Determination of alternative preservatives in cosmetic products by chromophoric derivatization followed by vortex-assisted liquid-liquid semimicroextraction and liquid chromatography.

    PubMed

    Miralles, Pablo; Vrouvaki, Ilianna; Chisvert, Alberto; Salvador, Amparo

    2016-07-01

    An analytical method for the simultaneous determination of phenethyl alcohol, methylpropanediol, phenylpropanol, caprylyl glycol, and ethylhexylglycerin, which are used as alternative preservatives in cosmetic products, has been developed. The method is based on liquid chromatography with UV spectrophotometric detection after chromophoric derivatization with benzoyl chloride and vortex-assisted liquid-liquid semimicroextraction. Different chromatographic parameters, derivatization conditions, and sample preparation variables were studied. Under optimized conditions, the limits of detection values for the analytes ranged from 0.02 to 0.06µgmL(-1). The method was validated with good recovery values (84-118%) and precision values (3.9-9.5%). It was successfully applied to 10 commercially available cosmetic samples. The good analytical features of the proposed method besides of its environmentally-friendly characteristics, make it useful to carry out the quality control of cosmetic products containing the target compounds as preservative agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Microwave-assisted green synthesis of silver nanostructures.

    PubMed

    Nadagouda, Mallikarjuna N; Speth, Thomas F; Varma, Rajender S

    2011-07-19

    Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample. This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold-palladium (Au-Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers

  9. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles.

    PubMed

    Shah, Rohan M; Eldridge, Daniel S; Palombo, Enzo A; Harding, Ian H

    2017-08-01

    The microwave-assisted production of solid lipid nanoparticles (SLNs) is a novel technique reported recently by our group. The small particle size, solid nature and use of physiologically well-tolerated lipid materials make SLNs an interesting and potentially efficacious drug carrier. The main purpose of this research work was to investigate the suitability of microwave-assisted microemulsion technique to encapsulate selected ionic drug substances such as miconazole nitrate and econazole nitrate. The microwave-produced SLNs had a small size (250-300nm), low polydispersity (<0.20), high encapsulation efficiency (72-87%) and loading capacity (3.6-4.3%). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies suggested reduced crystallinity of stearic acid in SLNs. The release studies demonstrated a slow, sustained but incomplete release of drugs (<60% after 24h) from microwave-produced SLNs. Data fitting of drug release data revealed that the release of both drugs from microwave-produced SLNs was governed by non-Fickian diffusion indicating that drug release was both diffusion- and dissolution- controlled. Anti-fungal efficacy of drug-loaded SLNs was evaluated on C. albicans. The cell viability studies showed that cytotoxicity of SLNs was concentration-dependent. These encouraging results suggest that the microwave-assisted procedure is suitable for encapsulation of ionic drugs and that microwave-produced SLNs can act as potential carriers of antifungal drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang

    2012-03-01

    The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Microwave-assisted solid phase conversion study of Meldrum's acid to ethylenetetracarboxylic dianhydride (C 6O 6)

    NASA Astrophysics Data System (ADS)

    Taherpour, Avat (Arman)

    2010-01-01

    Utilization of microwave irradiation provides an effective method for fast synthesizing of some important compounds. Microwave-assisted solid phase is an especial class in chemical synthesis. By the use of MW-irradiation on chemicals, sometimes interesting results can be seen. The synthesis of the interesting molecule ethylenetetracarboxylic dianhydride (C 6O 6) was attempted with a few different methods. In this study, the microwave-assisted solid phase conversion of Meldrum's acid to ethylenetetracarboxylic dianhydride was reported. This conversion was characterized by FT-IR, GC/MS and NMR spectroscopy results.

  12. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  13. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  14. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  15. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging.

    PubMed

    Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi

    2017-11-01

    Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DEXTROSE-TEMPLATED MICROWAVE-ASSISTED COMBUSTION SYNTHESIS OF SPONGY METAL OXIDES

    EPA Science Inventory

    Microwave-assisted combustion synthesis of porous nanocrystalline titania and carbon coated titania is reported using dextrose as template and the product was compared with the one obtained using conventional heating furnace. Out of three compositions viz., 1:1, 1:3, and 1:5 (met...

  17. Microwave-assisted maleation of tung oil for bio-based products

    USDA-ARS?s Scientific Manuscript database

    In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...

  18. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production

    PubMed Central

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-01-01

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5–30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam. PMID:28787959

  19. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.

    PubMed

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-02-10

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5-30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight ( M W ) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.

  20. Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum lucidum Ait

    PubMed Central

    Xia, En-Qin; Wang, Bo-Wei; Xu, Xiang-Rong; Zhu, Li; Song, Yang; Li, Hua-Bin

    2011-01-01

    Oleanolic acid and ursolic acid are the main active components in fruit of Ligustrum lucidum Ait, and possess anticancer, antimutagenic, anti-inflammatory, antioxidative and antiprotozoal activities. In this study, microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum was investigated with HPLC-photodiode array detection. Effects of several experimental parameters, such as type and concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature and microwave time, on the extraction efficiencies of oleanolic acid and ursolic acid from Ligustrum lucidum were evaluated. The influence of experimental parameters on the extraction efficiency of ursolic acid was more significant than that of oleanolic acid (p < 0.05). The optimal extraction conditions were 80% ethanol aqueous solution, the ratio of material to liquid was 1:15, and extraction for 30 min at 70 °C under microwave irradiation of 500 W. Under optimal conditions, the yields of oleanolic acid and ursolic acid were 4.4 ± 0.20 mg/g and 5.8 ± 0.15 mg/g, respectively. The results obtained are helpful for the full utilization of Ligustrum lucidum, which also indicated that microwave-assisted extraction is a very useful method for extraction of oleanolic acid and ursolic acid from plant materials. PMID:21954361

  1. Microwave-assisted synthesis of triple-helical, collagen-mimetic lipopeptides

    PubMed Central

    Banerjee, Jayati; Hanson, Andrea J; Muhonen, Wallace W; Shabb, John B; Mallik, Sanku

    2018-01-01

    Collagen-mimetic peptides and lipopeptides are widely used as substrates for matrix degrading enzymes, as new biomaterials for tissue engineering, as drug delivery systems and so on. However, the preparation and subsequent purification of these peptides and their fatty-acid conjugates are really challenging. Herein, we report a rapid microwave-assisted, solid-phase synthetic protocol to prepare the fatty-acid conjugated, triple-helical peptides containing the cleavage site for the enzyme matrix metalloproteinase-9 (MMP-9). We employed a PEG-based resin as the solid support and the amino acids were protected with Fmoc- and tert-butyl groups. The amino acids were coupled at 50 °C (25 W of microwave power) for 5 min. The deprotection reactions were carried out at 75 °C (35 W of microwave power) for 3 min. Using this protocol, a peptide containing 23 amino acids was synthesized and then conjugated to stearic acid in 14 h. PMID:20057380

  2. Preliminary study: kinetics of oil extraction from sandalwood by microwave-assisted hydrodistillation

    NASA Astrophysics Data System (ADS)

    Kusuma, H. S.; Mahfud, M.

    2016-04-01

    Sandalwood and its oil, is one of the oldest known perfume materials and has a long history (more than 4000 years) of use as mentioned in Sanskrit manuscripts. Sandalwood oil plays an important role as an export commodity in many countries and its widely used in the food, perfumery and pharmaceuticals industries. The aim of this study is to know and verify the kinetics and mechanism of microwave-assisted hydrodistillation of sandalwood based on a second-order model. In this study, microwave-assisted hydrodistillation is used to extract essential oils from sandalwood. The extraction was carried out in ten extraction cycles of 15 min to 2.5 hours. The initial extraction rate, the extraction capacity and the second-order extraction rate constant were calculated using the model. Kinetics of oil extraction from sandalwood by microwave-assisted hydrodistillation proved that the extraction process was based on the second-order extraction model as the experimentally done in three different steps. The initial extraction rate, h, was 0.0232 g L-1 min-1, the extraction capacity, C S, was 0.6015 g L-1, the second-order extraction rate constant, k, was 0.0642 L g-1 min-1 and coefficient of determination, R 2, was 0.9597.

  3. Microwave-Assisted Organic Synthesis in the Organic Teaching Lab: A Simple, Greener Wittig Reaction

    ERIC Educational Resources Information Center

    Martin, Eric; Kellen-Yuen, Cynthia

    2007-01-01

    A greener, microwave-assisted Wittig reaction has been developed for the second-semester organic teaching laboratory. Utilizing this microwave technique, a variety of styrene derivatives have been successfully synthesized from aromatic aldehydes in good yields (41-68%). The reaction not only occurs under neat reaction conditions, but also employs…

  4. MALDI MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction.

    PubMed

    Chen, Wei-Yu; Chen, Yu-Chie

    2007-11-01

    The presence of alkali cation adductions of oligonucleotides commonly deteriorates matrix-assisted laser desorption/ionization (MALDI) mass spectra. Thus, desalting is required for oligonucleotide samples prior to MALDI MS analysis in order to prevent the mass spectra from developing poor quality. In this paper, we demonstrate a new approach to extract traces of oligonucleotides from aqueous solutions containing high concentrations of salts using microwave-assisted extraction. The C18-presenting magnetite beads, capable of absorbing microwave irradiation, are used as affinity probes for oligonucleotides with the addition of triethylammonium acetate as the counterions. This new microwave-assisted extraction approach using magnetite beads as the trapping agents and as microwave-absorbers has been demonstrated to be very effective in the selective binding of oligonucleotides from aqueous solutions. The extraction of oligonucleotides from solutions onto the C18-presenting magnetite beads takes only 30 s to enrich oligonucleotides in sufficient quantities for MALDI MS analysis. After using this desalting approach, alkali cation adductions of oligonucleotides are dramatically reduced in the MALDI mass spectra. The presence of saturated NaCl (approximately 6 M) in the oligonucleotide sample is tolerated without degrading the mass spectra. The detection limit for d(A)6 is approximately 2.8 fmol.

  5. Influence of solvent type on microwave-assisted liquefaction of bamboo

    Treesearch

    Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu

    2016-01-01

    Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...

  6. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  7. Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation.

    PubMed

    Li, Ming-Fei; Sun, Shao-Ni; Xu, Feng; Sun, Run-Cang

    2012-10-01

    Microwave-assisted extraction in organic acid aqueous solution (formic acid/acetic acid/water, 3/5/2, v/v/v) was applied to isolate lignin from bamboo. Additionally, the structural features of the extracted lignins were thoroughly investigated in terms of C₉ formula, molecular weight distribution, FT-IR, (1)H NMR and HSQC spectroscopy. It was found that with an increase in the severity of microwave-assisted extraction, there was an increase of phenolic hydroxyl content in the lignin. In addition, an increase of the severity resulted in a decrease of the bound carbohydrate content as well as molecular weight of the lignin. Antioxidant activity investigation indicated that the radical scavenging index of the extracted lignins (0.35-1.15) was higher than that of BHT (0.29) but lower than that of BHA (3.85). The results suggested that microwave-assisted organic acid extraction provides a promising way to prepare lignin from bamboo with good antioxidant activity for potential application in the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Optimisation of microwave-assisted processing in production of pineapple jam

    NASA Astrophysics Data System (ADS)

    Ismail, Nur Aisyah Mohd; Abdullah, Norazlin; Muhammad, Norhayati

    2017-10-01

    Pineapples are available all year round since they are unseasonal fruits. Due to the continuous harvesting of the fruit, the retailers and farmers had to find a solution such as the processing of pineapple into jam, to treat the unsuccessfully sold pineapples. The direct heating of pineapple puree during the production of pineapple jam can cause over degradation of quality of the fresh pineapple. Thus, this study aims to optimise the microwave-assisted processing conditions for producing pineapple jam which could reduce water activity and meets minimum requirement for pH and total soluble solids contents of fruit jam. The power and time of the microwave processing were chosen as the factors, while the water activity, pH and total soluble solids (TSS) content of the pineapple jam were determined as responses to be optimised. The microwave treatment on the pineapple jam was able to give significant effect on the water activity and TSS content of the pineapple jam. The optimum power and time for the microwave processing of pineapple jam is 800 Watt and 8 minutes, respectively. The use of domestic microwave oven for the pineapple jam production results in acceptable pineapple jam same as conventional fruit jam sold in the marketplace.

  9. Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.

    PubMed

    Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-01-11

    Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.

  10. Comparison of microwave-assisted and conventional extraction of mangiferin from mango (Mangifera indica L.) leaves.

    PubMed

    Zou, Tangbin; Wu, Hongfu; Li, Huawen; Jia, Qing; Song, Gang

    2013-10-01

    Mangiferin is the main bioactive component in mango leaves, which possesses anti-inflammatory, antioxidative, antidiabetic, immunomodulatory, and antitumor activities. In the present study, a microwave-assisted extraction method was developed for the extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, microwave power, and extraction time were optimized by single-factor experiments and response surface methodology. The optimal extraction conditions were 45% ethanol, liquid-to-solid ratio of 30:1 (mL/g), and extraction time of 123 s under microwave irradiation of 474 W. Under optimal conditions, the yield of mangiferin was 36.10 ± 0.72 mg/g, significantly higher than that of conventional extraction. The results obtained are beneficial for the full utilization of mango leaves and also indicate that microwave-assisted extraction is a very useful method for extracting mangiferin from plant materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery

    PubMed Central

    Pandhal, Jagroop

    2018-01-01

    The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach. PMID:29462888

  12. Optimization of microwave assisted extraction of essential oils from Iranian Rosmarinus officinalis L. using RSM.

    PubMed

    Akhbari, Maryam; Masoum, Saeed; Aghababaei, Fahimeh; Hamedi, Sepideh

    2018-06-01

    In this study, the efficiencies of conventional hydro-distillation and novel microwave hydro-distillation methods in extraction of essential oil from Rosemary officinalis leaves have been compared. In order to attain the best yield and also highest quality of the essential oil in the microwave assisted method, the optimal values of operating parameters such as extraction time, microwave irradiation power and water volume to plant mass ratio were investigated using central composite design under response surface methodology. Optimal conditions for obtaining the maximum extraction yield in the microwave assisted method were predicted as follows: extraction time of 85 min, microwave power of 888 W, and water volume to plant mass ratio of 0.5 ml/g. The extraction yield at these predicted conditions was computed as 0.7756%. The qualities of the obtained essential oils under designed experiments were optimized based on total contents of four major compounds (α-pinene, 1,8-cineole, camphor and verbenone) which determined by gas chromatography equipped with mass spectroscopy (GC-MS). The highest essential oil quality (55.87%) was obtained at extraction time of 68 min; microwave irradiation power of 700 W; and water volume to plant mass ratio of zero.

  13. Central composite rotatable design for investigation of microwave-assisted extraction of okra pod hydrocolloid.

    PubMed

    Samavati, Vahid

    2013-10-01

    Microwave-assisted extraction (MAE) technique was employed to extract the hydrocolloid from okra pods (OPH). The optimal conditions for microwave-assisted extraction of OPH were determined by response surface methodology. A central composite rotatable design (CCRD) was applied to evaluate the effects of three independent variables (microwave power (X1: 100-500 W), extraction time (X2: 30-90 min), and extraction temperature (X3: 40-90 °C)) on the extraction yield of OPH. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of OPH. The optimal conditions to obtain the highest recovery of OPH (14.911±0.27%) were as follows: microwave power, 395.56 W; extraction time, 67.11 min and extraction temperature, 73.33 °C. Under these optimal conditions, the experimental values agreed with the predicted ones by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing OPH extraction. After method development, the DPPH radical scavenging activity of the OPH was evaluated. MAE showed obvious advantages in terms of high extraction efficiency and radical scavenging activity of extract within the shorter extraction time. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Determination of parabens and endocrine-disrupting alkylphenols in soil by gas chromatography-mass spectrometry following matrix solid-phase dispersion or in-column microwave-assisted extraction: a comparative study.

    PubMed

    Pérez, R A; Albero, B; Miguel, E; Sánchez-Brunete, C

    2012-03-01

    Two rapid methods were evaluated for the simultaneous extraction of seven parabens and two alkylphenols from soil based on matrix solid-phase dispersion (MSPD) and microwave-assisted extraction (MAE). Soil extracts were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide and analyzed by gas chromatography with mass spectrometry. Extraction and clean-up of samples were carried out by both methods in a single step. A glass sample holder, inside the microwave cell, was used in MAE to allow the simultaneous extraction and clean-up of samples and shorten the MAE procedure. The detection limits achieved by MSPD were lower than those obtained by MAE because the presence of matrix interferences increased with this extraction method. The extraction yields obtained by MSPD and MAE for three different types of soils were compared. Both procedures showed good recoveries and sensitivity for the determination of parabens and alkylphenols in two of the soils assayed, however, only MSPD yielded good recoveries with the other soil. Finally, MSPD was applied to the analysis of soils collected in different sites of Spain. In most of the samples analyzed, methylparaben and butylparaben were detected at levels ranging from 1.21 to 8.04 ng g(-1) dry weight and 0.48 to 1.02 ng g(-1) dry weight, respectively.

  15. Preparation of κ-carra-oligosaccharides with microwave assisted acid hydrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Guangsheng; Zhao, Xia; Lv, Youjing; Li, Miaomiao; Yu, Guangli

    2015-04-01

    A rapid method of microwave assisted acid hydrolysis was established to prepare κ-carra-oligosaccharides. The optimal hydrolysis condition was determined by an orthogonal test. The degree of polymerization (DP) of oligosaccharides was detected by high performance thin layer chromatography (HPTLC) and polyacrylamide gel electrophoresis (PAGE). Considering the results of HPTLC and PAGE, the optimum condition of microwave assisted acid hydrolysis was determined. The concentration of κ-carrageenan was 5 mg mL-1; the reaction solution was adjusted to pH 3 with diluted hydrochloric acid; the solution was hydrolyzed under microwave irradiation at 100 for 15 °C min. Oligosaccharides were separated by a Superdex 30 column (2.6 cm × 90 cm) using AKTA Purifier UPC100 and detected with an online refractive index detector. Each fraction was characterized by electrospray ionization mass spectrometry (ESI-MS). The data showed that odd-numbered κ-carra-oligosaccharides with DP ranging from 3 to 21 could be obtained with this method, and the structures of the oligosaccharides were consistent with those obtained by traditional mild acid hydrolysis. The new method was more convenient, efficient and environment-friendly than traditional mild acid hydrolysis. Our results provided a useful reference for the preparation of oligosaccharides from other polysaccharides.

  16. Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment

    NASA Astrophysics Data System (ADS)

    Aivazoglou, E.; Metaxa, E.; Hristoforou, E.

    2018-04-01

    The development of magnetite and maghemite particles in uniform nanometer size has triggered the interest of the research community due to their many interesting properties leading to a wide range of applications, such as catalysis, nanomedicine-nanobiology and other engineering applications. In this study, a simple, time-saving and low energy-consuming, microwave-assisted synthesis of iron oxide nanoparticles, is presented. The nanoparticles were prepared by microwave-assisted synthesis using polyethylene glycol (PEG) or PEG and β-cyclodextrin (β-CD)/water solutions of chloride salts of iron in the presence of ammonia solution. The prepared nano-powders were characterized using X-Ray Diffraction (XRD), Transition Electron Microscopy (TEM), Fourier-transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Vibrating Sample Magnetometer (VSM), X-Ray Photoelectron Spectroscopy (XPS) and Thermal analysis (TG/DSC). The produced nanoparticles are crystallized mostly in the magnetite and maghemite lattice exhibiting very similar shape and size, with indications of partial PEG coating. Heating time, microwave power and presence of PEG, are the key factors shaping the size properties of nanoparticles. The average size of particles ranges from 10.3 to 19.2 nm. The nanoparticles exhibit a faceted morphology, with zero contamination levels. The magnetic measurements indicate that the powders are soft magnetic materials with negligible coercivity and remanence, illustrating super-paramagnetic behavior.

  17. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES USING BIODEGRADABLE POLYMER CARBOXYMETHYL CELLULOSE

    EPA Science Inventory

    Microwave-assisted (MW) synthesis of noble metals such as Au, Pt and Pd is reported using biodegradable polymer carboxymethyl cellulose (CMC) at 100°C within few seconds. The possible reduction entails the coupling of polar hydroxyl units in beta-glucopyranose units with micr...

  18. Microwave discharge electrodeless lamps (MDEL). V. Microwave-assisted photolytic disinfection of Bacillus subtilis in simulated electroplating wash wastewaters.

    PubMed

    Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick

    2010-01-01

    This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.

  19. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC.

    PubMed

    Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z

    2016-06-25

    A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. Copyright

  20. Microwave-assisted micellar extraction of organic and inorganic iodines using zwitterionic surfactants.

    PubMed

    Wang, Shu-Ling; Yi, Ling; Ye, Li-Hong; Cao, Jun; Du, Li-Jing; Peng, Li-Qing; Xu, Jing-Jing; Zhang, Qi-Dong

    2017-08-04

    Zwitterionic surfactant, used as extractant in microwave-assisted extraction (MAE) was investigated for the first time to extract organic and inorganic iodines from kelp samples. Optimized conditions for the MAE were 200W of microwave irradiation power, 100°C of extraction temperature, 10min of microwave irradiation time, 1g of sample, and 20mL of solvent volume. Ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used for the quantitative and qualitative analyses of the iodines. Under the optimum experimental conditions, KI, MIT and DIT were identified in kelp samples, the limits of detection of these analytes were ranged between 3.39 and 6.31ng/mL. The recoveries for spiked samples obtained from different areas were all higher than 92.48%. Compared with the ultrasound-assisted extraction, the proposed method is faster and more effective. Thus, the combination of zwitterionic surfactant-MAE and UHPLC-Q-TOF/MS made up a simple, rapid and effective approach for extraction and determination of iodine compounds in complex seaweed materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Organo- and nano-catalyst in greener reaction medium: Microwave-assisted expedient synthesis of fine chemicals

    EPA Science Inventory

    The use of emerging microwave (MW) -assisted chemistry techniques is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. A brief account of our experiences in developing MW-assisted organic transformations, which invo...

  2. Mathematical Modeling of Microwave-Assisted Convective Heating and Drying of Grapes

    USDA-ARS?s Scientific Manuscript database

    This research studied the processing performance and product quality of Thompson seedless grapes dried using microwave-assisted convective hot air drying as well as the effect of blanching and dipping pretreatments. Two pretreatment methods were compared, dipping into 2% ethyl oleate (V/V) and 5% p...

  3. Accessing Stereochemically Rich Sultams via Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS) Scale-out

    PubMed Central

    Organ, Michael G.; Hanson, Paul R.; Rolfe, Alan; Samarakoon, Thiwanka B.; Ullah, Farman

    2011-01-01

    The generation of stereochemically-rich benzothiaoxazepine-1,1′-dioxides for enrichment of high-throughput screening collections is reported. Utilizing a microwave-assisted, continuous flow organic synthesis platform (MACOS), scale-out of core benzothiaoxazepine-1,1′-dioxide scaffolds has been achieved on multi-gram scale using an epoxide opening/SNAr cyclization protocol. Diversification of these sultam scaffolds was attained via a microwave-assisted intermolecular SNAr reaction with a variety of amines. Overall, a facile, 2-step protocol generated a collection of benzothiaoxazepine-1,1′-dioxides possessing stereochemical complexity in rapid fashion, where all 8 stereoisomers were accessed from commercially available starting materials. PMID:22116791

  4. Microwave-assisted Bi2Se3 nanoparticles using various organic solvents

    NASA Astrophysics Data System (ADS)

    Vijila, J. Joy Jeba; Mohanraj, K.; Henry, J.; Sivakumar, G.

    2016-01-01

    Microwave assisted Bi2Se3 nanoparticles were synthesized from five different solvents DMF, EG, EG + H2O, EDA + dil.HNO3 and N2H4 + H2O + Ethanol. The influence of solvents on purity of the compound was analysed by using X-ray diffraction patterns. The result indicates pure rhombohedral Bi2Se3 nanoparticles formed for N2H4 + H2O + Ethanol. The presence of vibrational bands in the range of 400-800 cm- 1 is confirmed the formation of Bi2Se3. The maximum optical absorption observed around 450 nm and the band gap values are found in the range of 1.5 eV-2.17 eV for all the solvents. The nanostructure of the Bi2Se3 particles change with solvents. From the experimental results, the solvent N2H4 + H2O + Ethanol produces pure nanosize Bi2Se3 particles under the microwave assisted method.

  5. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator.

    PubMed

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  6. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  7. Spin torque oscillator for microwave assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Kubota, Hitoshi

    2018-05-01

    A theoretical study is given for the self-oscillation excited in a spin torque oscillator (STO) consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the presence of a perpendicular magnetic field. This type of STO is a potential candidate for a microwave source of microwave assisted magnetization reversal (MAMR). It is, however, found that the self-oscillation applicable to MAMR disappears when the perpendicular field is larger than a critical value, which is much smaller than a demagnetization field. This result provides a condition that the reversal field of a magnetic recording bit by MAMR in nanopillar structure should be smaller than the critical value. The analytical formulas of currents determining the critical field are obtained, which indicate that a material with a small damping is not preferable to acheive a wide range of the self-oscillation applicable to MAMR, although such a material is preferable from the viewpoint of the reduction of the power consumption.

  8. Preparation of cashew gum-based flocculants by microwave- and ultrasound-assisted methods.

    PubMed

    Klein, Jalma Maria; de Lima, Vanessa Silva; da Feira, José Manoel Couto; Camassola, Marli; Brandalise, Rosmary Nichele; Forte, Maria Madalena de Camargo

    2018-02-01

    In this work, copolymers based on cashew gum (CG) grafted with polyacrylamide (PAM) were synthesized by microwave- and ultrasound-assisted methods, using potassium persulfate as an initiator in aqueous medium. The graft copolymers were characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analysis. The efficiency of the graft copolymers (CG-g-PAM) in flocculation of a kaolin suspension was studied. Results indicated that the graft copolymers synthesized by ultrasound energy had better flocculation properties than the ones synthesized by the microwave-assisted method. The biodegradability of the graft copolymers was tested by inoculation with the basidiomycete Trametes villosa in liquid medium. The higher formation of biomass than that observed with the commercial flocculant Flonex-9045 indicated that the graft copolymer was accessible to enzymatic attack. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MICROWAVE-ASSISTED EXTRACTION OF ORGANIC COMPOUNDS FROM STANDARD REFERENCE SOILS AND SEDIMENTS

    EPA Science Inventory

    As part of an ongoing evaluation of new sample preparation techniques by the U.S. Environmental Protection Agency (EPA), especially those that minimize waste solvents, microwave-assisted extraction (MAE) of organic compounds from solid materials (or "matrices") was evaluated. Six...

  10. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    EPA Science Inventory

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  12. Microwave-assisted ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, J.K.; Booty, M.R.; Kriegsmann, G.A.

    1996-12-31

    In recent years, microwave heating has been proposed as an alternative to ignite materials during the process of self-propagating high-temperature synthesis. The microwave heating and ignition of a combustible material is modeled and analyzed in the small Biot number and large activation energy regimes. Both the temporal and spatial evolution of the temperature within the material are described. The ignition characteristics are determined by a localized equation for the perturbation to the inert temperature, which is shown to exhibit thermal runaway behavior. Analysis of this local equation provides explicit ignition conditions in terms of the physical parameters in the problem.

  13. Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase.

    PubMed

    Liu, Ning; Wang, Lei; Wang, Zhi; Jiang, Liyan; Wu, Zhuofu; Yue, Hong; Xie, Xiaona

    2015-05-29

    The combination of the ionic liquid co-lyophilized lipase and microwave irradiation was used to improve enzyme performance in enantioselective esterification of α-lipoic acid. Effects of various reaction conditions on enzyme activity and enantioselectivity were investigated. Under optimal condition, the highest enantioselectivity (E = 41.2) was observed with a high enzyme activity (178.1 μmol/h/mg) when using the ionic liquid co-lyophilized lipase with microwave assistance. Furthermore, the ionic liquid co-lyophilized lipase exhibited excellent reusability under low power microwave.

  14. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass.

  15. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  16. Simultaneous Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    He, Yongrui; Zhao, Xian-En; Wang, Renjun; Wei, Na; Sun, Jing; Dang, Jun; Chen, Guang; Liu, Zhiqiang; Zhu, Shuyun; You, Jinmao

    2016-11-02

    A simple, rapid, sensitive, selective, and environmentally friendly method, based on in situ derivatization ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using multiple reaction monitoring (MRM) mode has been developed for the simultaneous determination of food-related biogenic amines and amino acids. A new mass-spectrometry-sensitive derivatization reagent 4'-carbonyl chloride rosamine (CCR) was designed, synthesized, and first reported. Parameters and conditions of in situ DUADLLME and UHPLC-MS/MS were optimized in detail. Under the optimized conditions, the in situ DUADLLME was completed speedily (within 1 min) with high derivatization efficiencies (≥98.5%). With the cleanup and concentration of microextraction step, good analytical performance was obtained for the analytes. The results showed that this method was accurate and practical for quantification of biogenic amines and amino acids in common food samples (red wine, beer, wine, cheese, sausage, and fish).

  17. Microwave assisted total synthesis of a benzothiophene-based new chemical entity (NCE)

    EPA Science Inventory

    Pharmaceutical scientists are required to generate diverse arrays of complex targets in short span of time, which can now be achieved by microwave-assisted organic synthesis. New chemical entities (NCE) can be built in a fraction of the time using this technique. However, there a...

  18. 1-(3-aminopropyl)-3-butylimidazolium bromide for carboxyl group derivatization: potential applications in high sensitivity peptide identification by mass spectrometry.

    PubMed

    Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui

    2013-03-01

    The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.

  19. Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shan; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164; Wang, Fei

    2016-02-15

    Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporationmore » and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.« less

  20. Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples.

    PubMed

    Xiao, Xiaohua; Song, Wei; Wang, Jiayue; Li, Gongke

    2012-01-27

    In this study, low temperature vacuum microwave-assisted extraction, which simultaneous performed microwave-assisted extraction (MAE) in low temperature and in vacuo environment, was proposed. The influencing parameters including solid/liquid ratio, extraction temperature, extraction time, degree of vacuum and microwave power were discussed. The predominance of low temperature vacuum microwave-assisted extraction was investigated by comparing the extraction yields of vitamin C, β-carotene, aloin A and astaxanthin in different foods with that in MAE and solvent extraction, and 5.2-243% increments were obtained. On the other hand, the chemical kinetics of vitamin C and aloin A, which composed two different steps including the extraction step of analyte transferred from matrix into solvent and the decomposition step of analyte degraded in the extraction solvent, were proposed. All of the decomposition rates (K(2)) for the selected analyte in low temperature, in vacuo and in nitrogen atmosphere decreased significantly comparing with that in conventional MAE, which are in agreement with that obtained from experiments. Consequently, the present method was successfully applied to extract labile compound from different food samples. These results showed that low temperature and/or in vacuo environment in microwave-assisted extraction system was especially important to prevent the degradation of labile components and have good potential on the extraction of labile compound in foods, pharmaceutical and natural products. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Lixin; Wang Haibo; Wang Jian

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at amore » power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the {approx}1593 cm{sup -1} band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.« less

  2. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less

  3. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation

    PubMed Central

    Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid

    Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263

  4. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation.

    PubMed

    Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid

    2018-01-01

    Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.

  5. Co-pyrolysis of microwave-assisted acid pretreated bamboo sawdust and soapstock.

    PubMed

    Wang, Yunpu; Wu, Qiuhao; Duan, Dengle; Zhang, Yayun; Ruan, Roger; Liu, Yuhuan; Fu, Guiming; Zhang, Shumei; Zhao, Yunfeng; Dai, Leilei; Fan, Liangliang

    2018-05-30

    Fast microwave-assisted co-pyrolysis of pretreated bamboo sawdust and soapstock was conducted. The pretreatment process was carried out under microwave irradiation. The effects of microwave irradiation temperature, irradiation time, and concentration of hydrochloric acid on product distribution from co-pyrolysis and the relative contents of the major components in bio-oil were investigated. A maximum bio-oil yield of 40.00 wt.% was obtained at 200 °C for 60 min with 0.5 M hydrochloric acid. As pretreatment temperature, reaction time and acid concentration increased, respectively, the relative contents of phenols, diesel fraction (C12 + aliphatics), and other oxygenates decreased. The gasoline fraction (including C5-C12 aliphatics and aromatics) ranged from 55.77% to 73.30% under various pretreatment conditions. Therefore, excessive reaction time and concentration of acid are not beneficial to upgrading bio-oil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L [Knoxville, TN; Paulauskas, Felix L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  7. Selenium Derivatization of Nucleic Acids for Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang,J.; Sheng, J.; Carrasco, N.

    2007-01-01

    The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native andmore » Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.« less

  8. Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.

    PubMed

    Parker, Alison; Marszewski, Michal; Jaroniec, Mietek

    2013-03-01

    Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.

  9. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  10. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb.

    PubMed

    Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku

    2009-01-01

    Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.

  11. Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butala, Megan M.; Perez, Minue A.; Arnon, Shiri

    Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of themore » targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.« less

  12. [Analysis of triterpenoids in Ganoderma lucidum by microwave-assisted continuous extraction].

    PubMed

    Lu, Yan-fang; An, Jing; Jiang, Ye

    2015-04-01

    For further improving the extraction efficiency of microwave extraction, a microwave-assisted contijuous extraction (MACE) device has been designed and utilized. By contrasting with the traditional methods, the characteristics and extraction efficiency of MACE has also been studied. The method was validated by the analysis of the triterpenoids in Ganoderma lucidum. The extraction conditions of MACE were: using 95% ethanol as solvent, microwave power 200 W and radiation time 14.5 min (5 cycles). The extraction results were subsequently compared with traditional heat reflux extraction ( HRE) , soxhlet extraction (SE), ultrasonic extraction ( UE) as well as the conventional microwave extraction (ME). For triterpenoids, the two methods based on the microwaves (ME and MACE) were in general capable of finishing the extraction in 10, 14.5 min, respectively, while other methods should consume 60 min and even more than 100 min. Additionally, ME can produce comparable extraction results as the classical HRE and higher extraction yield than both SE and UE, however, notably lower extraction yield than MASE. More importantly, the purity of the crud extract by MACE is far better than the other methods. MACE can effectively combine the advantages of microwave extraction and soxhlet extraction, thus enabling a more complete extraction of the analytes of TCMs in comparison with ME. And therefore makes the analytic result more accurate. It provides a novel, high efficient, rapid and reliable pretreatment technique for the analysis of TCMs, and it could potentially be extended to ingredient preparation or extracting techniques of TCMs.

  13. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  14. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGES

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; ...

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ , microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  15. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  16. Comparison of Conventional and Microwave-assisted Synthesis of Benzimidazole Derivative from Citronellal in Kaffir lime oil (Citrus hystrix DC.)

    NASA Astrophysics Data System (ADS)

    Warsito, W.; Noorhamdani, A. S.; Suratmo; Dwi Sapri, R.; Alkaroma, D.; Azhar, A. Z.

    2018-04-01

    Simple method has been used for the synthesis of benzimidazole derivative from citronellal in kaffir lime oil under microwave irradiation. These compounds were synthesized also by conventional heating for comparison. In addtion, microwave-assited synthesis was also compared between using to dichloromethane and methanol solvents with variation of reaction time for 30 to 70 minutes and 4 to 12 h for conventional heating. The 2-citronellyl benzimidazole compound synthesized were characterised by FT-IR, GC-MS, 1H and 13C NMR spectroscopy. Comparison between conventional and microwave-assisted synthesis was done by comparing between correlation of reaction time and percentage yield. The time optimum of microwave-assisted and conventional synthesis using dichloromethane solvent respectively at 60 minutes (yield 19.23%) and 8 hours (yield 11.54%). In addition, microwave-assited synthesis increasing 157.81 times compared by conventional heating. While using methanol solvent tends to increase linearly however the percentage of yield only 0.77 times of synthesis using dichloromethane solvent.

  17. Optimized microwave-assisted extraction of 6-gingerol from Zingiber officinale Roscoeand evaluation of antioxidant activity in vitro.

    PubMed

    Liu, Wei; Zhou, Chun-Li; Zhao, Jing; Chen, Dong; Li, Quan-Hong

    2014-01-01

    6-Gingerol is one of the most pharmacologically active and abundant components in ginger, which has a wide array of biochemical and pharmacologic activities. In recent years, the application of microwave-assisted extraction (MAE) for obtaining bioactive compounds from plant materials has shown tremendous research interest and potential. In this study, an efficient microwave-assisted extraction (MAE) technique was developed to extract 6-gingerol from ginger. The extraction efficiency of MAE was also compared with conventional extraction techniques. Fresh gingers (Zingiber officinale Rose.) were harvested at commercial maturity (originally from Shandong, laiwu, China). In single-factor experiments for the recovery of 6-gingerol, proper ranges of ratio of liquid to solid, ethanol proportion, microwave power, extraction time were determined. Based on the values obtained in single-factor experiments, a Box-Behnken design (BBD) was applied to determine the best combination of extraction variables on the yield of 6-gingerol. The optimum extraction conditions were as follows: microwave power 528 W, ratio of liquid to solid 26 mL·g(-1), extraction time 31 s and ethanol proportion 78%. Furthermore, more 6-gingerol and total polyphenols contents were extracted by MAE than conventional methods including Maceration (MAC), Stirring Extraction (SE), Heat reflux extraction (HRE), Ultrasound-assisted extraction (UAE), as well as the antioxidant capacity. Microwave-assisted extraction showed obvious advantages in terms of high extraction efficiency and antioxidant activity of extract within shortest extraction time. Scanning electron microscopy (SEM) images of ginger powder materials after different extractions were obtained to provide visual evidence of the disruption effect. To our best knowledge, this is the first report about usage of MAE of 6-gingerol extraction from ginger, which could be referenced for the extraction of other active compounds from herbal plants.

  18. Microwave-assisted synthesis of cyclodextrin polyurethanes.

    PubMed

    Biswas, Atanu; Appell, Michael; Liu, Zengshe; Cheng, H N

    2015-11-20

    Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of α-, β-, and γ-CD and three common diisocyanates. As compared to conventional heating, this new synthetic method saves energy, significantly reduces reaction time, and gets similar or improved yield. The reaction products have been fully characterized with (13)C, (1)H, and two-dimensional NMR spectroscopy. With suitable stoichiometry of starting CD and diisocyanate, the resulting CD polyurethane is organic-soluble and water-insoluble and is shown to remove Nile red dye and phenol from water. Possible applications include the removal of undesirable materials from process streams, toxic compounds from the environment, and encapsulation of color or fragrance molecules. Published by Elsevier Ltd.

  19. Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC.

    PubMed

    Tsukui, A; Santos Júnior, H M; Oigman, S S; de Souza, R O M A; Bizzo, H R; Rezende, C M

    2014-12-01

    The microwave-assisted extraction (MAE) of 13 different green coffee beans (Coffea arabica L.) was compared to Soxhlet extraction for oil obtention. The full factorial design applied to the microwave-assisted extraction (MAE), related to time and temperature parameters, allowed to develop a powerful fast and smooth methodology (10 min at 45°C) compared to a 4h Soxhlet extraction. The quantification of cafestol and kahweol diterpenes present in the coffee oil was monitored by HPLC/UV and showed satisfactory linearity (R(2)=0.9979), precision (CV 3.7%), recovery (<93%), limit of detection (0.0130 mg/mL), and limit of quantification (0.0406 mg/mL). The space-time yield calculated on the diterpenes content for sample AT1 (Arabica green coffee) showed a six times higher value compared to the traditional Soxhlet method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Magnetisation switching of ECC grains in microwave-assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Greaves, Simon John; Muraoka, Hiroaki; Kanai, Yasushi

    2018-05-01

    Microwave-assisted magnetic recording was investigated using a planar write head and exchange-coupled composite (ECC) media. When recording on ECC media using a planar head field distribution and the high frequency field generated by a spin torque oscillator it was possible to switch the media magnetisation into the opposite direction to the head field, i.e. the media effectively had a negative coercive field. The conditions for this effect to occur are discussed.

  1. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Microwave assisted centrifuge and related methods

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  3. Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction.

    PubMed

    Li, Jing; Liu, Xiaomei; Zhou, Bin; Zhao, Jing; Li, Shaoping

    2013-06-19

    The root of burdock ( Arctium lappa L.) is a commonly used vegetable in Asia. Fructooligosaccharides (FOS) are usually considered as its main bioactive components. Thus, quantitative analysis of these components is very important for the quality control of burdock. In this study, an HPLC-ELSD and microwave-assisted extraction method was developed for the simultaneous determination of seven FOS with degrees of polymerization (DP) between 3 and 9, as well as fructose, glucose, and sucrose in burdock from different regions. The separation was performed on a Waters XBridge Amide column (4.6 × 250 mm i.d., 3.5 μm) with gradient elution. All calibration curves for investigated analytes showed good linear regression (r > 0.9990). Their LODs and LOQs were lower than 3.63 and 24.82 μg/mL, respectively. The recoveries ranged from 99.2 to 102.6%. The developed method was successfully applied to determination of ten sugars in burdock from different locations of Asia. The results showed that the contents of FOS in different samples of burdock collected at appropriate times were similar, and the developed HPLC-ELSD with microwave-assisted extraction method is helpful to control the quality of burdock.

  4. Microwave-assisted maleation of tung oil for bio-based products with versatile applications

    USDA-ARS?s Scientific Manuscript database

    In this work, a simple, “green” and convenient chemical modification of tung oil for maleinized tung oil (TOMA) was developed via microwave-assisted one-step maleation. This modifying process did not involve any solvent, catalyst, or initiator, but demonstrated the most efficiency of functionalizing...

  5. MICROWAVE-ASSISTED SHAPE-CONTROLLED BULK SYNTHESIS OF NOBLE NANOCRYSTALS AND THEIR CATALYTIC PROPERTIES

    EPA Science Inventory

    Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...

  6. Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix peucedani.

    PubMed

    Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-12-01

    A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  8. Microwave-assisted extraction of polycyclic aromatic compounds from coal.

    PubMed

    Kerst, M; Andersson, J T

    2001-08-01

    Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.

  9. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk.

    PubMed

    Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra

    2017-11-01

    Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.

  10. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  11. Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials - A biorefinery approach.

    PubMed

    Mihiretu, Gezahegn T; Brodin, Malin; Chimphango, Annie F; Øyaas, Karin; Hoff, Bård H; Görgens, Johann F

    2017-10-01

    The viability of single-step microwave-induced pressurized hot water conditions for co-production of xylan-based biopolymers and bioethanol from aspenwood sawdust and sugarcane trash was investigated. Extraction of hemicelluloses was conducted using microwave-assisted pressurized hot water system. The effects of temperature and time on extraction yield and enzymatic digestibility of resulting solids were determined. Temperatures between 170-200°C for aspenwood and 165-195°C for sugarcane trash; retention times between 8-22min for both feedstocks, were selected for optimization purpose. Maximum xylan extraction yields of 66 and 50%, and highest cellulose digestibilities of 78 and 74%, were attained for aspenwood and sugarcane trash respectively. Monomeric xylose yields for both feedstocks were below 7%, showing that the xylan extracts were predominantly in non-monomeric form. Thus, single-step microwave-assisted hot water method is viable biorefinery approach to extract xylan from lignocelluloses while rendering the solid residues sufficiently digestible for ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  13. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found

  14. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    PubMed

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.

    PubMed

    Gawande, Manoj B; Shelke, Sharad N; Zboril, Radek; Varma, Rajender S

    2014-04-15

    The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development. Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance of the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called "nonthermal" or "specific microwave" effects. In recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. This enables one to evaluate the influence of the electromagnetic field on the specific chemical reactions, under truly identical conventional heating

  16. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification.

    PubMed

    Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan

    2016-04-22

    In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield.

  17. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification

    PubMed Central

    Gülyurt, Mustafa Ömer; Özçimen, Didem; İnan, Benan

    2016-01-01

    In this study, biodiesel production from microalgal oil by microwave-assisted transesterification was carried out to investigate its efficiency. Transesterification reactions were performed by using Chlorella protothecoides oil as feedstock, methanol, and potassium hydroxide as the catalyst. Methanol:oil ratio, reaction time and catalyst:oil ratio were investigated as process parameters affected methyl ester yield. 9:1 methanol/oil molar ratio, 1.5% KOH catalyst/oil ratio and 10 min were optimum values for the highest fatty acid methyl ester yield. PMID:27110772

  18. Low-density solvent based ultrasound-assisted emulsification microextraction and on-column derivatization combined with gas chromatography-mass spectrometry for the determination of carbamate pesticides in environmental water samples.

    PubMed

    Guo, Liang; Lee, Hian Kee

    2012-04-27

    A fast and efficient method for the determination of trace level of carbamate pesticides using a lower-density-than-water solvent for ultrasound-assisted emulsification microextraction coupled to on-column derivatization and analysis by GC-MS has been developed and studied. In this approach, a soft plastic Pasteur pipette was employed as a convenient extraction device. Fifty microliters of extraction solvent, of lower density than water, was injected into the sample solution held in the pipette. The latter was immediately immersed in an ultrasound water bath to form an emulsion. After 2 min extraction, the emulsion was fractionated into two layers by centrifugation. The upper layer (organic extract) could be collected conveniently by squeezing the bulb of the pipette, now held upside down, to move it into the narrow stem of the device, facilitating its retrieval for analysis. The extract was then combined with trimethylphenylammonium hydroxide and directly injected into a gas chromatography-mass spectrometry (GC-MS) system for on-column derivatization and analysis. The on-column derivatization provided an added convenience (since a separate step was not necessary). Parameters affecting the derivatization and extraction were investigated. Under the most favorable conditions, the method demonstrated high extraction efficiency with low limits of detection of between 0.01 and 0.1 μg/L, good linearity in the range of 0.05-50 μg/L, to 0.5-100 μg/L, and good repeatability (RSD below 9.2%, n=5). The proposed method was evaluated by determining carbamate pesticides in river water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications.

  20. A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation.

    PubMed

    Guo, Yufei; Li, Jing; Yuan, Yupeng; Li, Lu; Zhang, Mingyi; Zhou, Chenyan; Lin, Zhiqun

    2016-11-14

    Highly crystalline graphitic carbon nitride (g-C 3 N 4 ) with decreased structural imperfections benefits from the suppression of electron-hole recombination, which enhances its hydrogen generation activity. However, producing such g-C 3 N 4 materials by conventional heating in an electric furnace has proven challenging. Herein, we report on the synthesis of high-quality g-C 3 N 4 with reduced structural defects by judiciously combining the implementation of melamine-cyanuric acid (MCA) supramolecular aggregates and microwave-assisted thermolysis. The g-C 3 N 4 material produced after optimizing the microwave reaction time can effectively generate H 2 under visible-light irradiation. The highest H 2 evolution rate achieved was 40.5 μmol h -1 , which is two times higher than that of a g-C 3 N 4 sample prepared by thermal polycondensation of the same supramolecular aggregates in an electric furnace. The microwave-assisted thermolysis strategy is simple, rapid, and robust, thereby providing a promising route for the synthesis of high-efficiency g-C 3 N 4 photocatalysts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels.

    PubMed

    Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani

    2015-11-15

    Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill.

    PubMed

    Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang

    2015-05-01

    A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides.

    PubMed

    Kong, Na; Shimpi, Manishkumar R; Ramström, Olof; Yan, Mingdi

    2015-03-20

    Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    NASA Astrophysics Data System (ADS)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  5. Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.

    PubMed

    Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin

    2016-03-01

    Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.

  6. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells

    PubMed Central

    Bagley, Mark C.; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E.; Kipling, David; Davis, Terence

    2015-01-01

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells. PMID:26046488

  7. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells.

    PubMed

    Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence

    2015-06-03

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.

  8. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    NASA Astrophysics Data System (ADS)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  9. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun

    2012-02-01

    Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.

  10. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    PubMed

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.

  11. Saffron Samples of Different Origin: An NMR Study of Microwave-Assisted Extracts

    PubMed Central

    Sobolev, Anatoly P.; Carradori, Simone; Capitani, Donatella; Vista, Silvia; Trella, Agata; Marini, Federico; Mannina, Luisa

    2014-01-01

    An NMR analytical protocol is proposed to characterize saffron samples of different geographical origin (Greece, Spain, Hungary, Turkey and Italy). A microwave-assisted extraction procedure was developed to obtain a comparable recovery of metabolites with respect to the ISO specifications, reducing the solvent volume and the extraction time needed. Metabolite profiles of geographically different saffron extracts were compared showing significant differences in the content of some metabolites. PMID:28234327

  12. Effect of anatomical characteristics and chemical components on microwave-assisted liquefaction of bamboo wastes

    Treesearch

    JiuLong Xie; XingYan Huang; JinQiu Qi; Chung Hse; Todd Shupe

    2014-01-01

    The epidermis layer waste (ELW) and the inner layer waste (ILW) were removed from Phyllostachys pubescens bamboo, and the anatomical characteristics and chemical components of these wastes were comparatively investigated. Both the ELW and the ILW were subjected to a microwave-assisted liquefaction process to evaluate the relationship between bamboo...

  13. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.

    PubMed

    Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir

    2015-01-01

    Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Analysis of malondialdehyde in human plasma samples through derivatization with 2,4-dinitrophenylhydrazine by ultrasound-assisted dispersive liquid-liquid microextraction-GC-FID approach.

    PubMed

    Malaei, Reyhane; Ramezani, Amir M; Absalan, Ghodratollah

    2018-05-04

    A sensitive and reliable ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) procedure was developed and validated for extraction and analysis of malondialdehyde (MDA) as an important lipids-peroxidation biomarker in human plasma. In this methodology, to achieve an applicable extraction procedure, the whole optimization processes were performed in human plasma. To convert MDA into readily extractable species, it was derivatized to hydrazone structure-base by 2,4-dinitrophenylhydrazine (DNPH) at 40 °C within 60 min. Influences of experimental variables on the extraction process including type and volume of extraction and disperser solvents, amount of derivatization agent, temperature, pH, ionic strength, sonication and centrifugation times were evaluated. Under the optimal experimental conditions, the enhancement factor and extraction recovery were 79.8 and 95.8%, respectively. The analytical signal linearly (R 2  = 0.9988) responded over a concentration range of 5.00-4000 ng mL -1 with a limit of detection of 0.75 ng mL -1 (S/N = 3) in the plasma sample. To validate the developed procedure, the recommend guidelines of Food and Drug Administration for bioanalytical analysis have been employed. Copyright © 2018. Published by Elsevier B.V.

  15. Effects of microwave power and irradiation time on pectin extraction from watermelon rinds (Citrullus lanatus) with acetic acid using microwave assisted extraction method

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Ishartani, D.; Dewanty, P. S.

    2018-01-01

    The aims of this research are to study the effect of microwave power (119.7 W, 199.5 W and 279.3 W) and irradiation time (6, 9 and 12 min) on pectin extraction by using Microwave Assisted Extraction (MAE) with acetic acid and to do a preliminary characterization of pectin from watermelon rinds. A randomized factorial design with two factors was used to determine the effect of microwave power and processing time on the yield, equivalent weight, degree of methoxylation (DM), galacturonic acid content (GA) and the degree of esterification (DE) of extracted pectin. The results showed that extracted pectin from watermelon rinds using MAE method have yield ranged from 3.925% to 5.766%, with equivalent weight ranged from 1249.702 to 2007.756. Extracted pectin have a DM value ranged from 3.89% to 10.81%. Galacturonic acid content that meets with IPPA standard resulted from extraction condition of 279.3-watt microwave power for 9 min and 12 min. The degree of esterification (DE) value ranged from 56.86% to 85.76%, and this value exhibited a relatively high methoxyl pectin (>50%). The best pectin properties was obtained at a microwave power of 279.3 watts for 12 min.

  16. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  17. Copper-granule-catalyzed microwave-assisted click synthesis of polyphenol dendrimers.

    PubMed

    Lee, Choon Young; Held, Rich; Sharma, Ajit; Baral, Rom; Nanah, Cyprien; Dumas, Dan; Jenkins, Shannon; Upadhaya, Samik; Du, Wenjun

    2013-11-15

    Syringaldehyde- and vanillin-based antioxidant dendrimers were synthesized via microwave-assisted alkyne-azide 1,3-dipolar cycloaddition using copper granules as a catalyst. The use of Cu(I) as a catalyst resulted in copper contaminated dendrimers. To produce copper-free antioxidant dendrimers for biological applications, Cu(I) was substituted with copper granules. Copper granules were ineffective at both room temperature and under reflux conditions (<5% yield). However, they were an excellent catalyst when dendrimer synthesis was performed under microwave irradiation, giving yields up to 94% within 8 h. ICP-mass analysis of the antioxidant dendrimers obtained with this method showed virtually no copper contamination (9 ppm), which was the same as the background level. The synthesized antioxidants, free from copper contamination, demonstrated potent radical scavenging with IC50 values of less than 3 μM in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In comparison, dendrimers synthesized from Cu(I)-catalyzed click chemistry showed a high level of copper contamination (4800 ppm) and no detectable antioxidant activity.

  18. Microwave Assisted Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    McKee, John; Caron, David; Jemiolo, Andrew; Scime, Earl

    2017-10-01

    The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed in both Ar and He. While small enhancement of ion lines is seen in Ar, ion lines not normally present in He are observed during microwave injection. U.S. National Science Foundation Grant No. PHY-1360278.

  19. Extraction and characterization of holocellulose fibers by microwave-assisted selective liquefaction of bamboo

    Treesearch

    Jiulong Xie; Chung Hse; Todd F. Shupe; Hui Pan; Tingxing Hu

    2016-01-01

    Microwave-assisted selective liquefaction was proposed and used as a novel method for the isolation of holocellulose fibers. The results showed that the bamboo lignin component and extractives were almost completely removed by using a liquefaction process at 120 8C for 9 min, and the residual lignin and extractives in the solid residue were as low as 0.65% and 0.49%,...

  20. A Student-Centered First-Semester Introductory Organic Laboratory Curriculum Facilitated by Microwave-Assisted Synthesis (MAOS)

    ERIC Educational Resources Information Center

    Russell, Cianán B.; Mason, Jeremy D.; Bean, Theodore G.; Murphree, S. Shaun

    2014-01-01

    An instructional laboratory curriculum for a first-semester introductory organic chemistry course has been developed using microwave-assisted organic synthesis (MAOS). Taking advantage of short reaction times, materials were developed to facilitate collaborative experimental design, analysis, and debriefing of results during the normal laboratory…

  1. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata.

    PubMed

    Joseph, Siby; Mathew, Beena

    2015-02-05

    Herein, we report a simple microwave assisted method for the green synthesis of silver and gold nanoparticles by the reduction of aqueous metal salt solutions using leaf extract of the medicinal plant Aerva lanata. UV-vis., FTIR, XRD, and HR-TEM studies were conducted to assure the formation of nanoparticles. XRD studies clearly confirmed the crystalline nature of the synthesized nanoparticles. From the HR-TEM images, the silver nanoparticles (AgNPs) were found to be more or less spherical and gold nanoparticles (AuNPs) were observed to be of different morphology with an average diameter of 18.62nm for silver and 17.97nm for gold nanoparticles. In order to evaluate the effect of microwave heating upon rate of formation, the synthesis was also conducted under ambient condition without the assistance of microwave radiation and the former method was found to be much faster than the later. The synthesized nanoparticles were used as nanocatalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nanosize Fe x O y @SBA-3: A Comparative Study Between Conventional and Microwave Assisted Synthesis.

    PubMed

    Barik, Sunita; Badamali, Sushanta K; Sahoo, Sagarika; Behera, Nandakishor; Dapurkar, Sudhir E

    2018-01-01

    The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.

  3. Fast microwave-assisted extraction of rotenone for its quantification in seeds of yam bean (Pachyrhizus sp.).

    PubMed

    Lautié, Emmanuelle; Rasse, Catherine; Rozet, Eric; Mourgues, Claire; Vanhelleputte, Jean-Paul; Quetin-Leclercq, Joëlle

    2013-02-01

    The aim of this study was to find if fast microwave-assisted extraction could be an alternative to the conventional Soxhlet extraction for the quantification of rotenone in yam bean seeds by SPE and HPLC-UV. For this purpose, an experimental design was used to determine the optimal conditions of the microwave extraction. Then the values of the quantification on three accessions from two different species of yam bean seeds were compared using the two different kinds of extraction. A microwave extraction of 11 min at 55°C using methanol/dichloromethane (50:50) allowed rotenone extraction either equivalently or more efficiently than the 8-h-Soxhlet extraction method and was less sensitive to moisture content. The selectivity, precision, trueness, accuracy, and limit of quantification of the method with microwave extraction were also demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Segmented media and medium damping in microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyu; Zhu, Jian-Gang

    2018-05-01

    In this paper, we present a methodology of segmented media stack design for microwave assisted magnetic recording. Through micro-magnetic modeling, it is demonstrated that an optimized media segmentation is able to yield high signal-to-noise ratio even with limited ac field power. With proper segmentation, the ac field power could be utilized more efficiently and this can alleviate the requirement for medium damping which has been previously considered a critical limitation. The micro-magnetic modeling also shows that with segmentation optimization, recording signal-to-noise ratio can have very little dependence on damping for different recording linear densities.

  5. Application of Ionic Liquids in the Microwave-Assisted Extraction of Proanthocyanidins from Larix gmelini Bark

    PubMed Central

    Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang

    2012-01-01

    Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036

  6. Magnetization Switching of a Co /Pt Multilayered Perpendicular Nanomagnet Assisted by a Microwave Field with Time-Varying Frequency

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2018-05-01

    Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.

  7. TiO{sub 2} synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, K.F.; Maul, J.; Albuquerque, A.R.

    2014-02-15

    In this study, a microwave assisted solvothermal method was used to synthesize TiO{sub 2} with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed aftermore » 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another.« less

  8. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization.

    PubMed

    Lefsih, Khalef; Giacomazza, Daniela; Dahmoune, Farid; Mangione, Maria Rosalia; Bulone, Donatella; San Biagio, Pier Luigi; Passantino, Rosa; Costa, Maria Assunta; Guarrasi, Valeria; Madani, Khodir

    2017-04-15

    Optimization of microwave-assisted extraction (MAE) of water-soluble pectin (WSP) from Opuntia ficus indica cladodes was performed using Response Surface Methodology. The effect of extraction time (X 1 ), microwave power (X 2 ), pH (X 3 ) and solid-to-liquid ratio (X 4 ) on the extraction yield was examined. The optimum conditions of MAE were as follows: X 1 =2.15min; X 2 =517W; X 3 =2.26 and X 4 =2g/30.6mL. The maximum obtained yield of pectin extraction was 12.57%. Total carbohydrate content of WSP is about 95.5% including 34.4% of Galacturonic acid. Pectin-related proteins represent only the 0.66% of WSP mass. HPSEC and light scattering analyses reveal that WSP is mostly constituted of high molecular pectin and FTIR measurements show that the microwave treatment does not alter the chemical structure of WSP, in which Galacturonic acid content and yield are 34.4% and 4.33%, respectively. Overall, application of MAE can give rise to high quality pectin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds

    USDA-ARS?s Scientific Manuscript database

    Several parameters of Microwave-assisted extraction (MAE) including extraction time, extraction temperature, ethanol concentration and solid-liquid ratio were selected to describe the MAE processing. The silybin content, measured by an UV-Vis spectrophotometry, was considered as the silymarin yield....

  10. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  11. Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process.

    PubMed

    Liu, Bo; Li, Song; Zhao, Yongjun; Wu, Wenfei; Zhang, Xuxiang; Gu, Xueyuan; Li, Ruihua; Yang, Shaogui

    2010-04-15

    A microwave assisted zero-valent iron oxidation process was studied in order to investigate the synergetic effects of MW irradiation on Fe/EDTA system (Fe/EDTA/MW) treated 4-nitrophenol (4-NP) from aqueous solution. The results indicated that the thermal effect of microwave improved the removal effect of 4-NP and TOC through raising the temperature of the system, as well as the non-thermal effect generated by the interaction between the microwave and the Fe resulting in an increase in the hydrophobic character of Fe surface. During the degradation of 4-NP in Fe/EDTA/MW system, the optimum value for MW power, Fe, EDTA dosage was 400 W, 2 g and 0.4 mM, respectively. The possible pathway for degrading the 4-NP was proposed based on GC/MS and HPLC analysis of the degradation intermediates. The concentration change course of the main bio-refractory by-products, the aminophenol formed in the degradation of 4-NP suggested a more efficient degradation and mineralization in Fe/EDTA/MW system. Finally, BOD(5)/COD(Cr) of the solution increased from 0.237 to 0.635 after reaction for 18 min, indicating that the biodegradability of wastewater was greatly improved by Fe/EDTA/MW system and would benefit to further treatment by biochemical methods. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  12. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn{sub 2}S{sub 4} microspheres and their visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhixin, E-mail: czx@fzu.edu.cn; Analysis and Test Center, Fuzhou University, Fuzhou 350002; Li Danzhen

    Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{submore » 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.« less

  13. Analysis of polycyclic aromatic hydrocarbons in sediment reference materials by microwave-assisted extraction.

    PubMed

    Shu, Y Y; Lao, R C; Chiu, C H; Turle, R

    2000-12-01

    The microwave-assisted extraction (MAE) of polycyclic aromatic hydrocarbons (PAHs) from harbor sediment reference material EC-1, marine sediment reference material HS-2 and PAH-spiked river bed soil was conducted. The extraction conditions for EC-1 were carried out at 70 degrees C and 100 degrees C under pressure in closed vessels with cyclohexane acetone (1:1), cyclohexane-water (3:1), hexane acetone (1:1), and hexane-water (3:1) for 10 min. A comparison between MAE and a 16-h Soxhlet extraction (SX) method showed that both techniques gave comparable results with certified values. MAE has advantages over the currently used Soxhlet technique due to a faster extraction time and lower quantity of solvent used. The consumption of organic solvent of the microwave method was less than one-tenth compared to Soxhlet.

  14. Microwave-assisted intramolecular dehydrogenative Diels-Alder reactions for the synthesis of functionalized naphthalenes/solvatochromic dyes.

    PubMed

    Kocsis, Laura S; Benedetti, Erica; Brummond, Kay M

    2013-04-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.

  15. Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes

    PubMed Central

    Kocsis, Laura S.; Benedetti, Erica; Brummond, Kay M.

    2013-01-01

    Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields. PMID:23609566

  16. Micro-PIXE and micro-RBS characterization of micropores in porous silicon prepared using microwave-assisted hydrofluoric acid etching.

    PubMed

    Ahmad, Muthanna; Grime, Geoffrey W

    2013-04-01

    Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

  17. Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis.

    PubMed

    Caglar, Yasemin; Gorgun, Kamuran; Aksoy, Seval

    2015-03-05

    ZnO nanopowders were synthesized via microwave-assisted hydrothermal method at different deposition (microwave irradiation) times and pH values. The effects of pH and deposition (microwave irradiation) time on the crystalline structure and orientation of the ZnO nanopowders have been investigated by X-ray diffraction (XRD) study. XRD observations showed that the crystalline quality of ZnO nanopowders increased with increasing pH value. The crystallite size and texture coefficient values of ZnO nanopowders were calculated. The structural quality of ZnO nanopowder was improved by deposition parameters. Field emission scanning electron microscope (FESEM) was used to analyze the surface morphology of the ZnO nanopowders. Microwave irradiation time and pH value showed a significant effect on the surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Performance evaluation of a high-pressure microwave-assisted flow digestion system for juice and milk sample preparation.

    PubMed

    Marques, Thiago L; Wiltsche, Helmar; Nóbrega, Joaquim A; Winkler, Monika; Knapp, Günter

    2017-07-01

    Acid digestion is usually required for metal determination in food samples. However, this step is usually performed in batch mode which is time consuming, labor intensive, and may lead to sample contamination. Flow digestion can overcome these limitations. In this work, the performance of a high-pressure microwave-assisted flow digestion system with a large volume reactor was evaluated for liquid samples high in sugar and fat (fruit juice and milk). The digestions were carried out in a coiled perfluoroalkoxy (PFA) tube reactor (13.5 mL) installed inside an autoclave pressurized with 40 bar nitrogen. The system was operated at 500 W microwave power and 5.0 mL min -1 carrier flow rate. Digestion conditions were optimized with phenylalanine, as this substance is known to be difficult to digest completely. The combinations of HCl or H 2 O 2 with HNO 3 increased the digestion efficiency of phenylalanine, and the residual carbon content (RCC) was around 50% when 6.0% V/V HCl or H 2 O 2 was used in combination with 32% V/V HNO 3 . Juice samples were digested with 3.7 mol L -1 HNO 3 and 0.3 mol L -1 HCl, and the RCC was 16 and 29% for apple and mango juices, respectively. Concentrated HNO 3 (10.5 mol L -1 ) was successfully applied for digesting milk samples, and the RCCs were 23 and 25% for partially skimmed and whole milk, respectively. Accuracy and precision of the flow digestion procedure were compared with reference digestions using batch mode closed vessel microwave-assisted digestion and no statistically significant differences were encountered at the 95% confidence level. Graphical abstract Application of a high-pressure microwave-assisted flow digestion system for fruit juice and milk sample preparation.

  19. Microwave Assisted Synthesis of Biorelevant Benzazoles.

    PubMed

    Seth, Kapileswar; Purohit, Priyank; Chakraborti, Asit K

    2017-01-01

    The benzazole scaffolds are present in various therapeutic agents and have been recognized as the essential pharmacophore for diverse biological activities. These have generated interest and necessity to develop efficient synthetic methods of these privileged classes of compounds to generate new therapeutic leads for various diseases. The biological activities of the benzazoles and efforts towards their synthesis have been summarized in a few review articles. In view of these, the aim of this review is to provide an account of the developments that have taken place in the synthesis of biorelevant benzazoles under microwave irradiation as the application of microwave heating has long been recognized as a green chemistry tool for speedy generation of synthetic targets. Attention has been focused to those literature reports wherein the use of microwave irradiation is the key step in the formation of the heterocyclic ring system or in functionalization of the benzazole ring system to generate the essential pharmacophoric feature. The convenient and economic way to synthesize these privileged class of heterocycles through the use of microwave irradiation that would be beneficial for the drug discovery scientist to synthesize biologically active benzazoles and provide access to wide range of reactions for the synthesis of benzazoles constitute the theme of this review. Examples have been drawn wherein the use of microwave heating offers distinct advantage in terms of improved product yields and reduction of reaction time as compared to those observed for the synthesis under conventional heating. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Determination of cobalt species in nutritional supplements using ICP-OES after microwave-assisted extraction and solid-phase extraction.

    PubMed

    Bartosiak, Magdalena; Jankowski, Krzysztof; Giersz, Jacek

    2018-06-05

    Cobalt content (as vitamin B 12 and inorganic cobalt) in two nutritional supplements, namely Spirulina platensis and Saccharomyces cerevisiae known as a "superfood", has been determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Several sample pre-treatment protocols have been applied and compared. Microwave-assisted acid digestion efficiently decomposed all cobalt-containing compounds, thus allowed obtaining total cobalt content in supplements examined. Vitamin B 12 was extracted from the samples with acetate buffer and potassium cyanide solution exposed to mild microwave radiation for 30 min, and cyanocobalamin was separated from the extract by on-column solid phase extraction using C-18 modified silica bed. About 100% of cobalt species was extracted using the triple microwave-assisted extraction procedure. Total cobalt content was 20-fold greater in Spirulina tablets than the declared cobalamin content (as Co). The ICP-OES method precision was about 3% and detection limit was 1.9 and 2.7 ng Co mL -1 for inorganic cobalt or cyanocobalamin, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Microwave-assisted rapid synthesis of birnessite-type MnO{sub 2} nanoparticles for high performance supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiong; Miao, Wang; Li, Chen

    Highlights: • Birnessite-type MnO{sub 2} nanoparticles were prepared by the microwave-assisted reflux. • The microwave reaction duration was only 5 min. • A specific capacitance of 329 F g{sup −1} was obtained for birnessite-type MnO{sub 2}. - Abstract: Birnessite-type MnO{sub 2} nanoparticles have been successfully synthesized by the microwave-assisted reflux as short as 5 min. The microstructure and morphology of the products were characterized by X-ray diffraction, N{sub 2} adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy. The electrochemical properties of the as-prepared MnO{sub 2} as an electrode material for supercapacitor were investigated by cyclic voltammetry and galvanostatic charge-discharge measurementsmore » in 1 M Na{sub 2}SO{sub 4} electrolyte, and a high specific capacitance of 329 F g{sup −1} was achieved at a current density of 0.2 A g{sup −1}. The specific capacitance retention was 92% after 1000 cycles at 2 A g{sup −1}, suggesting that it is a promising electrode material for supercapacitors.« less

  2. A sensitive and efficient method for trace analysis of some phenolic compounds using simultaneous derivatization and air-assisted liquid-liquid microextraction from human urine and plasma samples followed by gas chromatography-nitrogen phosphorous detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar

    2015-12-01

    In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A3/B2 Polyamidation Monomer Set.

    PubMed

    Choi, Yujin; Jo, Seongho; Chae, Ari; Kim, Young Kwang; Park, Jeong Eun; Lim, Donggun; Park, Sung Young; In, Insik

    2017-08-23

    Highly fluorescent and amphiphilic carbon quantum dots (CQDs) were prepared by microwave-assisted pyrolysis of citric acid and 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), which functioned as an A 3 and B 2 polyamidation type monomer set. Gram quantities of fluorescent CQDs were easily obtained within 5 min of microwave heating using a household microwave oven. Because of the dual role of TTDDA, both as a constituting monomer and as a surface passivation agent, TTDDA-based CQDs showed a high fluorescence quantum yield of 29% and amphiphilic solubility in various polar and nonpolar solvents. These properties enable the wide application of TTDDA-based CQDs as nontoxic bioimaging agents, nanofillers for polymer composites, and down-converting layers for enhancing the efficiency of Si solar cells.

  4. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth.

    PubMed

    Xu, Wei; Chu, Kedan; Li, Huang; Zhang, Yuqin; Zheng, Haiyin; Chen, Ruilan; Chen, Lidian

    2012-12-03

    An ionic liquids (IL)-based microwave-assisted approach for extraction and determination of flavonoids from Bauhinia championii (Benth.) Benth. was proposed for the first time. Several ILs with different cations and anions and the microwave-assisted extraction (MAE) conditions, including sample particle size, extraction time and liquid-solid ratio, were investigated. Two M 1-butyl-3-methylimidazolium bromide ([bmim] Br) solution with 0.80 M HCl was selected as the optimal solvent. Meanwhile the optimized conditions a ratio of liquid to material of 30:1, and the extraction for 10 min at 70 °C. Compared with conventional heat-reflux extraction (CHRE) and the regular MAE, IL-MAE exhibited a higher extraction yield and shorter extraction time (from 1.5 h to 10 min). The optimized extraction samples were analysed by LC-MS/MS. IL extracts of Bauhinia championii (Benth.)Benth consisted mainly of flavonoids, among which myricetin, quercetin and kaempferol, β-sitosterol, triacontane and hexacontane were identified. The study indicated that IL-MAE was an efficient and rapid method with simple sample preparation. LC-MS/MS was also used to determine the chemical composition of the ethyl acetate/MAE extract of Bauhinia championii (Benth.) Benth, and it maybe become a rapid method to determine the composition of new plant extracts.

  5. A Derivatization and Validation Strategy for Determining the Spatial Localization of Endogenous Amine Metabolites in Tissues using MALDI Imaging Mass Spectrometry

    PubMed Central

    Manier, M. Lisa; Spraggins, Jeffrey M.; Reyzer, Michelle L.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid (FA) as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MSn imaging mass spectrometry. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. PMID:25044893

  6. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae.

    PubMed

    Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei

    2016-10-17

    Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.

  7. Morphological evolution of Bi2Se3 nanocrystalline materials synthesized by microwave assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, M. M.; Singh, D.; Gangrade, M.; Venkatesh, R.; Deshpande, U. P.; Phase, D. M.; Ganesan, V.

    2018-04-01

    Structural, morphological and spectroscopic properties of Bi2Se3 nanoparticles synthesized by microwave assisted solvothermal method were investigated systematically. A controlled synthesis of different morphologies by a small variation in synthesis procedure is demonstrated. Powder X-ray diffraction (XRD) confirmed the formation of single phase. Crystallite and particle size reductions were studied with XRD and AFM (Atomic Force Microscopy). Different morphologies such as hexagonal nanoflakes with cross section of around˜6µm, nanoflower and octahedral agglomerated crystals of nearly ˜60 nm size have been observed in scanning electron microscope while varying the microwave assisted synthesis procedures. A significant blue shift observed in diffuse reflectance spectroscopy evidences the energy gap tuning as a result of morphological evolution. The difference in morphology observed in this three fast, facile and scalable synthesis is advantageous for tuning the thermoelectric figure of merit and for probing the surface states of these topological insulators. Low temperature resistivity remains similar for all three variants depicting a 2D character as evidenced by a -lnT term of localization.

  8. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying.

    PubMed

    Trirattanapikul, W; Phoungchandang, S

    2014-12-01

    The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.

  9. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains.

    PubMed

    Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G

    2015-02-15

    A new microwave-assisted extraction (MAE) method has been investigated for the extraction of phenolic compounds from rice grains. The experimental conditions studied included temperature (125-175°C), microwave power (500-1000W), time (5-15min), solvent (10-90% EtOAc in MeOH) and solvent-to-sample ratio (10:1 to 20:1). The extraction variables were optimised by the response surface methodology. Extraction temperature and solvent were found to have a highly significant effect on the response value (p<0.0005) and the extraction time also had a significant effect (p<0.05). The optimised MAE conditions were as follows: extraction temperature 185°C, microwave power 1000W, extraction time 20min, solvent 100% MeOH, and solvent-to-sample ratio 10:1. The developed method had a high precision (in terms of CV: 5.3% for repeatability and 5.5% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of phenolic compounds in a wide variety of rice grains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparative study on conventional, ultrasonication and microwave assisted extraction of γ-oryzanol from rice bran.

    PubMed

    Kumar, Pramod; Yadav, Devbrat; Kumar, Pradyuman; Panesar, Paramjeet Singh; Bunkar, Durga Shankar; Mishra, Diwaker; Chopra, H K

    2016-04-01

    In present study, conventional, ultrasonic and microwave assisted extraction methods were compared with the aim of optimizing best fitting solvent and method, solvent concentration and digestion time for high yield of γ-oryzanol from rice bran. Petroleum ether, hexane and methanol were used to prepare extracts. Extraction yield were evaluated for giving high crude oil yield, total phenolic content (TPC) and γ-oryzanol content. Gas chromatography-mass spectrophotometry was used for the determination of γ-oryzanol concentration. The highest concentration of γ-oryzanol was detected in methanolic extracts of microwave treatment (85.0 ppm) followed by ultrasonication (82.0 ppm) and conventional extraction method (73.5 ppm). Concentration of γ-oryzanol present in the extracts was found to be directly proportional to the total phenolic content. A combination of 80 % methanolic concentration and 55 minutes digestion time of microwave treatment yielded the best extraction method for TPC and thus γ-oryzanol (105 ppm).

  11. Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans.

    PubMed

    Li, Na; Wu, Lijie; Nian, Li; Song, Ying; Lei, Lei; Yang, Xiao; Wang, Kun; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei

    2015-09-01

    Non-polar solvent dynamic microwave assisted extraction was firstly applied to the treatment of high-fat soybean samples. In the dispersive micro-solid-phase extraction (D-µ-SPE), the herbicides in the high-fat extract were directly adsorbed on metal-organic frameworks MIL-101(Cr). The effects of several experimental parameters, including extraction solvent, microwave absorption medium, microwave power, volume and flow rate of extraction solvent, amount of MIL-101(Cr), and D-µ-SPE time, were investigated. At the optimal conditions, the limits of detection for the herbicides ranged from 1.56 to 2.00 μg kg(-1). The relative recoveries of the herbicides were in the range of 91.1-106.7%, and relative standard deviations were equal to or lower than 6.7%. The present method was simple, rapid and effective. A large amount of fat was also removed. This method was demonstrated to be suitable for treatment of high-fat samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Profitable ultrasonic assisted microwave disintegration of sludge biomass: Modelling of biomethanation and energy parameter analysis.

    PubMed

    Kavitha, S; Rajesh Banu, J; Kumar, Gopalakrishnan; Kaliappan, S; Yeom, Ick Tae

    2018-04-01

    In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan.

    PubMed

    dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo

    2016-03-15

    A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Determination of fat-soluble vitamins in vegetable oils through microwave-assisted high-performance liquid chromatography.

    PubMed

    Carballo, Silvia; Prats, Soledad; Maestre, Salvador; Todolí, José-Luis

    2015-04-01

    In this manuscript, a study of the effect of microwave radiation on the high-performance liquid chromatography separation of tocopherols and vitamin K1 was conducted. The novelty of the application was the use of a relatively low polarity mobile phase in which the dielectric heating effect was minimized to evaluate the nonthermal effect of the microwave radiation over the separation process. Results obtained show that microwave-assisted high-performance liquid chromatography had a shorter analysis time from 31.5 to 13.3 min when the lowest microwave power was used. Moreover, narrower peaks were obtained; hence the separation was more efficient maintaining or even increasing the resolution between the peaks. This result confirms that the increase in mobile phase temperature is not the only variable for improving the separation process but also other nonthermal processes must intervene. Fluorescence detection demonstrated better signal-to-noise compared to photodiode arrayed detection mainly due to the independent effect of microwave pulses on the baseline noise, but photodiode array detection was finally chosen as it allowed a simultaneous detection of nonfluorescent compounds. Finally, a determination of the content of the vitamin E homologs was carried out in different vegetable oils. Results were coherent with those found in the literature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass

    Treesearch

    Junfeng Feng; Chungyun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3 g catalyst per 18 g methanol and 2 g bamboo at 160 °C with 10 min. Approximately 78–86 wt%...

  16. Microwave assisted tandem reactions for the synthesis of 2-hydrazolyl-4-thiazolidinones

    PubMed Central

    Saiz, Cecilia; Pizzo, Chiara; Manta, Eduardo; Wipf, Peter; Mahler, S. Graciela

    2009-01-01

    A tandem method for the synthesis of 2-hydrazolyl-4-thiazolidinones (5) from commercially available materials in a 3 component reaction has been developed. The reaction connects aldehydes, thiosemicarbazides and maleic anhydride, effectively assisted by microwave irradiation. The synthesis of a new type of compound, 2-hydrazolyl-5,5-diphenyl-4-thiazolidinone (7), obtained by treatment of thiosemicarbazone with benzil in basic media is also reported. HOMO/LUMO energies, orbital coefficients and charge distribution were used to explain the proposed reaction mechanism. PMID:19756224

  17. Microwave-assisted domino and multicomponent reactions with cyclic acylketenes: expeditious syntheses of oxazinones and oxazindiones.

    PubMed

    Presset, Marc; Coquerel, Yoann; Rodriguez, Jean

    2009-12-17

    The microwave-assisted Wolff rearrangement of cyclic 2-diazo-1,3-diketones in the presence of aldehydes and primary amines provides a straightforward access to functionalized bi- and pentacyclic oxazinones following an unprecedented three-component domino reaction. Alternatively, in the presence of acyl azides, an efficient Curtius/Wolff/hetero-Diels-Alder sequence allows the direct synthesis of oxazindiones.

  18. A Review of Microwave-Assisted Reactions for Biodiesel Production.

    PubMed

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-06-15

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  19. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.

  20. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives.

    PubMed

    Zhang, Wang; Qiu, Ling-Guang; Yuan, Yu-Peng; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2012-06-30

    Covalent organic frameworks (COFs) are a new generation of porous materials constructed from light elements linked by strong covalent bonds. Herein we present rapid preparation of highly fluorescent nanoparticles of a new type of COF, i.e. melamine-based porous polymeric network SNW-1, by a microwave-assisted synthesis route. Although the synthesis of SNW-1 has to be carried out at 180°C for 3d under conventional reflux conditions, SNW-1 nanoparticles could be obtained in 6h by using such a microwave-assisted method. The results obtained have clearly demonstrated that microwave-assisted synthesis is a simple yet highly efficient approach to nanoscale COFs or other porous polymeric materials. Remarkably, the as-synthesized SNW-1 nanoparticles exhibit extremely high sensitivity and selectivity, as well as fast response to nitroaromatic explosives such as 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (Tetryl) and picric acid (PA) without interference by common organic solvents, which is due to the nanoscaled size and unique hierarchical porosity of such fluorescence-based sensing material. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. MICROWAVE-ASSISTED PREPARATION OF 1-BUTYL-3-METHYLIMIDAZOLIUM TETRACHLOROGALLATE AND ITS CATALYTIC USE IN ACETAL FORMATION UNDER MILD CONDITIONS

    EPA Science Inventory

    1-Butyl-3-methylimidazolium tetrachlorogallate, [bmim][GaCl4], prepared via microwave-assisted protocol, is found to be an active catalyst for the efficient acetalization of aldehydes under mild conditions.

  2. A Review of Microwave-Assisted Reactions for Biodiesel Production

    PubMed Central

    Nomanbhay, Saifuddin; Ong, Mei Yin

    2017-01-01

    The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536

  3. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  4. Tandem MS Analysis of Selenamide-Derivatized Peptide Ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao

    2011-09-01

    Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.

  5. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman's reagent and monobromobimane.

    PubMed

    Sneller, F E; van Heerwaarden, L M; Koevoets, P L; Vooijs, R; Schat, H; Verkleij, J A

    2000-09-01

    Phytochelatins (PCs) are a family of thiol-rich peptides, with the general structure (gamma-Glu-Cys)(n)()-Gly, with n = 2-11, induced in plants upon exposure to excessive amounts of heavy metals and some metalloids, such as arsenic. Two types of PC analyses are currently used, i.e., acid extraction and separation on HPLC with either precolumn derivatization (pH 8.2) with monobromobimane (mBBr) or postcolumn derivatization (pH 7.8) with Ellman's reagent [5, 5'-dithiobis(2-nitrobenzoic acid), DTNB]. Although both methods were satisfactory for analysis of Cd-induced PCs, formation of (RS)(3)-As complexes during extraction of As-induced PCs rendered the DTNB method useless. This paper shows that precolumn derivatization with mBBr, during which the (RS)(3)-As complexes are disrupted, provides a qualitative and quantitative analysis of both Cd- and As-induced PCs. In addition, derivatization efficiencies of both methods for the oligomers with n = 2-4 (PC(2)(-)(4)) are compared. Derivatization efficiency decreased from 71.8% and 81.4% for mBBr and DTNB derivatization, respectively, for PC(2) to 27.4% and 50.2% for PC(4). This decrease is most likely due to steric hindrance. Correction of measured thiol concentration is therefore advised for better quantification of PC concentrations in plant material.

  6. Microwave-assisted synthesis and electrochemical evaluation of VO 2 (B) nanostructures

    DOE PAGES

    Ashton, Thomas E.; Borras, David Hevia; Iadecola, Antonella; ...

    2015-12-01

    Understanding how intercalation materials change during electrochemical operation is paramount to optimising their behaviour and function and in situ characterisation methods allow us to observe these changes without sample destruction. Here, we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave assisted route which exhibits a larger electrochemical capacity (232 mAh g -1) compared to VO 2 (B) prepared by a solvothermal route (197 mAh g -1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during batterymore » operation.« less

  7. Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment.

    PubMed

    Rodrigues, Tigressa Helena Soares; Rocha, Maria Valderez Ponte; de Macedo, Gorete Ribeiro; Gonçalves, Luciana R B

    2011-07-01

    In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L(-1) of NaOH (372 ± 12 and 355 ± 37 mg g(glucan)(-1) ) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15-30 min) and microwave power (600-900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU g (CAB-M) (-1) ) increased glucose concentration to 15 g L(-1). The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L(-1) and 1.41 g L(-1) h(-1), respectively.

  8. Development of new UV-vis spectroscopic microwave-assisted method for determination of glucose in pharmaceutical samples

    NASA Astrophysics Data System (ADS)

    Mabood, Fazal; Hussain, Z.; Haq, H.; Arian, M. B.; Boqué, R.; Khan, K. M.; Hussain, K.; Jabeen, F.; Hussain, J.; Ahmed, M.; Alharasi, A.; Naureen, Z.; Hussain, H.; Khan, A.; Perveen, S.

    2016-01-01

    A new UV-Visible spectroscopic method assisted with microwave for the determination of glucose in pharmaceutical formulations was developed. In this study glucose solutions were oxidized by ammonium molybdate in the presence of microwave energy and reacted with aniline to produce a colored solution. Optimum conditions of the reaction including wavelength, temperature, and pH of the medium and relative concentration ratio of the reactants were investigated. It was found that the optimal wavelength for the reaction is 610 nm, the optimal reaction time is 80 s, the optimal reaction temperature is 160 °C, the optimal reaction pH is 4, and the optimal concentration ratio aniline/ammonium molybdate solution was found to be 1:1. The limits of detection and quantification of the method are 0.82 and 2.75 ppm for glucose solution, respectively. The use of microwaves improved the speed of the method while the use of aniline improved the sensitivity of the method by shifting the wavelength.

  9. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    PubMed Central

    Ibarra-Hernández, Adriana

    2018-01-01

    Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D) different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A). These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation. PMID:29438280

  10. Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles.

    PubMed

    Ma, Jun; Tai, Guo'an; Guo, Wanlin

    2010-03-01

    Ag-doped CdS nanoparticles were synthesized by an ultrasound-assisted microwave synthesis method. The X-ray diffraction patterns reveal a structural evolution from cubic to hexagonal with increasing molar ratios of Ag(+)/Cd(2+) from 0% to 5%. It shows that the Ag-doped hexagonal CdS nanoparticles are polycrystal. The X-ray photoelectron spectroscopy of the CdS nanoparticles doping with 5% Ag(+) shows that the doped Ag in CdS is metallic. Simultaneously, the characteristic Raman peaks of the CdS nanoparticles enhance with increasing Ag(+) concentrations. The photocatalytic activity of different Ag-doped samples show a reasonable change due to different ratios of Ag which doped into CdS. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    PubMed

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p < 0.001) and 0.9704 (p < 0.01). Optimum extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  12. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  13. Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.

    PubMed

    Borkowska-Burnecka, J

    2000-11-01

    Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.

  14. A simple one-step ultrasonic-assisted extraction and derivatization method coupling to high-performance liquid chromatographyfor the determination of ε-aminocaproic acid and amino acids in cosmetics.

    PubMed

    Du, Yuanqi; Xia, Ling; Xiao, Xiaohua; Li, Gongke; Chen, Xiaoguang

    2018-06-15

    Nowadays, the safety of cosmetics is a widespread concern. Amines are common cosmetic additives. Some of them such as amino acids are beneficial. Another kind of amines, however, ε-aminocaproic acid (EACA) is prohibited to add into cosmetics for its adverse reactions. In this study, a simple, rapid, sensitive and eco-friendly one-step ultrasonic-assisted extraction and derivatization (UAE-D) method was developed for determination of EACA and amino acids in cosmetics by coupling with high-performance liquid chromatography (HPLC). By using this sample preparation method, extraction and derivatization of EACA and amino acids were finished in one step in ultrasound field. During this procedure, 4-fluoro-7-nitrobenzofurazan (NBD-F)was applied as derivatization reagent. The extraction conditions including the amount of NBD-F, extraction and derivatization temperature, the ultrasonic vibration time and pH value of the aqueous phase were evaluated. Meanwhile, the extraction mechanism was investigated. Under optimized conditions, the method detection limits were 0.086-0.15 μg/L, and method quantitation limits were 0.29-0.47 μg/L with RSDs less than 3.7% (n = 3). The recoveries of EACA and amino acids obtained from cosmetic samples were in range from 76.9% to 122.3%. Amino acids were found in all selected samples and quantified in range from 1.9 ± 0.9 to 677.2 ± 17.9 μg/kg. And EACA was found and quantified with the contents of 1284.3 ± 22.1 μg/kg in a toner sample. This UAE-D-HPLC method shortened and simplified the sample pretreatment as well as enhanced the sensitivity of analytical method. In our record, only 10 min was needed for the total sample preparation process. And the method detection limits were two orders of magnitude less than literature reports. Furthermore, we reduced the consumption of solvent and minimized the usage of organic solvents, which made our method moving towards green analytical chemistry. In brief, our UAE

  15. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying.

    PubMed

    Cao, Xiaohuang; Zhang, Min; Qian, He; Mujumdar, Arun S

    2017-06-01

    An online temperature-detection-assisted control system of microwave-assisted pulse-spouted vacuum drying was newly developed. By using this system, temperature control can be automatically and continuously adjusted based on the detection of drying temperature and preset temperature. Various strategies for constant temperature control, linear temperature control and three-step temperature control were applied to drying carrot cubes. Drying kinetics and the quality of various temperature-controlled strategies online are evaluated for the new drying technology as well as its suitability as an alternative drying method. Drying time in 70 °C mode 1 had the shortest drying time and lowest energy consumption in all modes. A suitable colour, highest re-hydration ratio and fracture-hardness, and longest drying time occurred in 30-40-50 °C mode 3. The number of hot spots was reduced in 40-50-60 °C mode 3. Acceptable carrot snacks were obtained in 50-60-70 °C mode 3 and 70 °C mode 2. All temperature curves showed that the actual temperatures followed the preset temperatures appropriately. With this system, a linear temperature-controlled strategy and a three-step temperature-controlled strategy can improve product quality and heating non-uniformity compared to constant temperature control, but need greater energy consumption and longer drying time. A temperature-detection-assisted control system was developed for providing various drying strategies as a suitable alternative in making a snack product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Microwave-assisted cationic polymerization of palm olein and their urea inclusion products

    NASA Astrophysics Data System (ADS)

    Soegijono, Bambang; Farid, Muhamad; Alim Mas'ud, Zainal

    2018-01-01

    Cationic polymerization is affected by the relative amount of unsaturated bond (C=C) in the compound. The enrichment of an unsaturated triglyceride fraction from oils may be performed using urea inclusion techniques. In this study, palm olein was enriched-unsaturated fraction using urea-methanol system. The palm olein and its urea-inclusion products were cationic polymerized with ethereal boron trifluoride catalyst and followed by irradiation using a commercial microwave (microwave-assisted). The microwave irradiated products were cured at 110 °C for 24 hours. Fatty acid composition of the palm olein and its urea-inclusion products were analyzed by gas chromatography. Iodine numbers, functional groups, and ultraviolet absorption spectra of all palm olein origin, urea inclusion products and polymerization products were analyzed using titrimetric, ultraviolet spectrophotometric, and Fourier Transform infrared spectrophotometric methods. Differential scanning calorimetric (DSC) was used to observe the thermal characteristics of the polymer. Urea-inclusion process increased the unsaturated fatty acid components as indicated by the increased iodine number, intensity of alkene band absorptions in the infrared spectra, and the absorbance of the ultraviolet spectra. The polymer formation is converting the C=C group to C-C, which is indicated by the opposite of the urea inclusion process. The curing process results in reformation of new C=C bonds that were similar to that of the urea inclusion process. The DSC thermogram curve shows that the enrichment process improves the thermal stability of the polymer formed.

  17. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2016-07-01

    Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.

  18. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  19. Microwave-assisted Stille-coupling of steroidal substrates.

    PubMed

    Skoda-Földes, Rita; Pfeiffer, Péter; Horváth, Judit; Tuba, Zoltán; Kollár, László

    2002-07-01

    Steroidal dienes were synthesised by Stille-coupling of the corresponding alkenyl iodides with vinyltributyltin under microwave irradiation in a domestic microwave oven in drastically reduced reaction times. Rate acceleration was observed also in the one-pot Stille-coupling-Diels-Alder reaction of 17-iodo-5alpha-androst-16-ene. Stereoselectivity of cycloaddition was slightly improved with diethyl maleate as the dienophile, compared to that achieved with thermal heating.

  20. Sensitive, accurate and rapid detection of trace aliphatic amines in environmental samples with ultrasonic-assisted derivatization microextraction using a new fluorescent reagent for high performance liquid chromatography.

    PubMed

    Chen, Guang; Liu, Jianjun; Liu, Mengge; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-07-25

    A new fluorescent reagent, 1-(1H-imidazol-1-yl)-2-(2-phenyl-1H-phenanthro[9,10-d]imidazol-1-yl)ethanone (IPPIE), is synthesized, and a simple pretreatment based on ultrasonic-assisted derivatization microextraction (UDME) with IPPIE is proposed for the selective derivatization of 12 aliphatic amines (C1: methylamine-C12: dodecylamine) in complex matrix samples (irrigation water, river water, waste water, cultivated soil, riverbank soil and riverbed soil). Under the optimal experimental conditions (solvent: ACN-HCl, catalyst: none, molar ratio: 4.3, time: 8 min and temperature: 80°C), micro amount of sample (40 μL; 5mg) can be pretreated in only 10 min, with no preconcentration, evaporation or other additional manual operations required. The interfering substances (aromatic amines, aliphatic alcohols and phenols) get the derivatization yields of <5%, causing insignificant matrix effects (<4%). IPPIE-analyte derivatives are separated by high performance liquid chromatography (HPLC) and quantified by fluorescence detection (FD). The very low instrumental detection limits (IDL: 0.66-4.02 ng/L) and method detection limits (MDL: 0.04-0.33 ng/g; 5.96-45.61 ng/L) are achieved. Analytes are further identified from adjacent peaks by on-line ion trap mass spectrometry (MS), thereby avoiding additional operations for impurities. With this UDME-HPLC-FD-MS method, the accuracy (-0.73-2.12%), precision (intra-day: 0.87-3.39%; inter-day: 0.16-4.12%), recovery (97.01-104.10%) and sensitivity were significantly improved. Successful applications in environmental samples demonstrate the superiority of this method in the sensitive, accurate and rapid determination of trace aliphatic amines in micro amount of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Characterization of dicarboxylic naphthenic acid fraction compounds utilizing amide derivatization: Proof of concept.

    PubMed

    Kovalchik, Kevin A; MacLennan, Matthew S; Peru, Kerry M; Ajaero, Chukwuemeka; McMartin, Dena W; Headley, John V; Chen, David D Y

    2017-12-30

    The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization

  2. Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis.

    PubMed

    Lu, Chunxia; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Xie, Jun; Liu, Bo

    2012-01-01

    Ionic liquid was used as extraction solvents and applied to the extraction of tannins from Galla chinensis in the simultaneous ultrasonic- and microwave-assisted extraction (UMAE) technique. Several parameters of UMAE were optimised, and the results were compared with of the conventional extraction techniques. Under optimal conditions, the content of tannins was 630.2 ± 12.1 mg g⁻¹. Compared with the conventional heat-reflux extraction, maceration extraction, regular ultrasound- and microwave-assisted extraction, the proposed approach exhibited higher efficiency (11.7-22.0% enhanced) and shorter extraction time (from 6 h to 1 min). The tannins were then identified by ultraperformance liquid chromatography tandem mass spectrometry. This study suggests that ionic liquid-based UMAE is an efficient, rapid, simple and green sample preparation technique.

  3. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Gopal; Sen, Ravindra; Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com

    2015-08-28

    Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were successfully prepared by microwave-assisted combustion method (MWAC) using citric Electron acid as a chelating agent. NiFe{sub 2}O{sub 4} nanoparticles were characterized by X-ray diffraction (XRD) pattern, Scanning Microscopy (SEM), Fourier transform infrared (FTIR) and UV-Visible techniques. XRD analysis revealed that NiFe{sub 2}O{sub 4} nanoparticles have spinel cubic structure with the average crystalline size of 26.38 nm. SEM analysis revealed random and porous structural morphology of particles and FTIR showed absorption bands related to octahedral and tetrahedral sites, in the range 400–600cm{sup −1} which strongly favor the formation of NiFe{sub 2}O{sub 4} nanoparticles. The opticalmore » band gap is determined by UV Visible method and found to be 5.4 eV.« less

  4. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    PubMed

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-08

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction.

    PubMed

    Martino, Emanuela; Ramaiola, Ilaria; Urbano, Mariangela; Bracco, Francesco; Collina, Simona

    2006-09-01

    Soxhlet extraction, ultrasound-assisted extraction (USAE) and microwaves-assisted extraction (MAE) in closed system have been investigated to determine the content of coumarin, o-coumaric and melilotic acids in flowering tops of Melilotus officinalis. The extracts were analyzed with an appropriate HPLC procedure. The reproducibility of extraction and of chromatographic analysis was proved. Taking into account the extraction yield, the cost and the time, we studied the effects of extraction variables on the yield of the above-mentioned compounds. Better results were obtained with MAE (50% v/v aqueous ethanol, two heating cycles of 5 min, 50 degrees C). On the basis of the ratio extraction yield/extraction time, we therefore propose MAE as the most efficient method.

  6. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities.

    PubMed

    Hu, Bin; Li, Cheng; Zhang, Zhiqing; Zhao, Qing; Zhu, Yadong; Su, Zhao; Chen, Yizi

    2017-09-15

    Microwave-assisted extraction (MAE) of oil from silkworm pupae was firstly performed in the present research. The response surface methodology was applied to optimize the parameters for MAE. The yield of oil by MAE was 30.16% under optimal conditions of a mixed solvent consisting of ethanol and n-hexane (1:1, v/v), microwave power (360W), liquid to solid ratio (7.5/1mL/g), microwave time (29min). Moreover, oil extracted by MAE was quantitatively (yield) and qualitatively (fatty acid profile) similar to those obtained using Soxhlet extraction (SE), but oil extracted by MAE exhibited favourable physicochemical properties and oxidation stability. Additionally, oil extracted by MAE had a higher content of total phenolic, and it showed stronger antioxidant activities. Scanning electron microscopy revealed that microwave technique efficiently promoted the release of oil by breaking down the cell structure of silkworm pupae. Therefore, MAE can be an effective method for the silkworm pupal oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Urchin-like CdS/ZrO2 nanocomposite prepared by microwave-assisted hydrothermal combined with ion-exchange and its multimode photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Lili; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi; Dong, Xue

    2014-12-01

    A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer-Emmett-Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.

  8. Optimization of microwave-assisted extraction of hydrocarbons in marine sediments: comparison with the Soxhlet extraction method.

    PubMed

    Vázquez Blanco, E; López Mahía, P; Muniategui Lorenzo, S; Prada Rodríguez, D; Fernández Fernández, E

    2000-02-01

    Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane (1:1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.

  9. In situ derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in Parkinson's rat brain microdialysates by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    He, Yongrui; Zhao, Xian-En; Zhu, Shuyun; Wei, Na; Sun, Jing; Zhou, Yubi; Liu, Shu; Liu, Zhiqiang; Chen, Guang; Suo, Yourui; You, Jinmao

    2016-08-05

    Simultaneous monitoring of several neurotransmitters (NTs) linked to Parkinson's disease (PD) has important scientific significance for PD related pathology, pharmacology and drug screening. A new simple, fast and sensitive analytical method, based on in situ derivatization-ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) in a single step, has been proposed for the quantitative determination of catecholamines and their biosynthesis precursors and metabolites in rat brain microdialysates. The method involved the rapid injection of the mixture of low toxic bromobenzene (extractant) and acetonitrile (dispersant), which containing commercial Lissamine rhodamine B sulfonyl chloride (LRSC) as derivatization reagent, into the aqueous phase of sample and buffer, and the following in situ DUADLLME procedure. After centrifugation, 50μL of the sedimented phase (bromobenzene) was directly injected for ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection in multiple reaction monitoring (MRM) mode. This interesting combination brought the advantages of speediness, simpleness, low matrix effects and high sensitivity in an effective way. Parameters of in situ DUADLLME and UHPLC-MS/MS conditions were all optimized in detail. The optimum conditions of in situ DUADLLME were found to be 30μL of microdialysates, 150μL of acetonitrile containing LRSC, 50μL of bromobenzene and 800μL of NaHCO3-Na2CO3 buffer (pH 10.5) for 3.0min at 37°C. Under the optimized conditions, good linearity was observed with LODs (S/N>3) and LOQs (S/N>10) of LRSC derivatized-NTs in the range of 0.002-0.004 and 0.007-0.015 nmol/L, respectively. It also brought good precision (3.2-12.8%, peak area CVs%), accuracy (94.2-108.6%), recovery (94.5-105.5%) and stability (3.8-8.1%, peak area CVs%) results. Moreover, LRSC derivatization significantly improved chromatographic resolution and MS detection sensitivity of NTs when compared with the

  10. Microwave-assisted extraction of jujube polysaccharide: Optimization, purification and functional characterization.

    PubMed

    Rostami, Hosein; Gharibzahedi, Seyed Mohammad Taghi

    2016-06-05

    The operational parameters involved in microwave-assisted extraction (MAE) of jujube polysaccharide including microwave power, water to raw material ratio and extraction temperature and time were optimized by RSM. MAE at 400W, 75°C, 60 min, using 30 g water/g powdered jujube was the best condition for maximum yield (9.02%) of polysaccharide. Two novel water-soluble polysaccharides (JCP-1 and JCP-2) with average molecular weights of 9.1×10(4)-1.5×10(5)Da in term of the symmetrical narrow peaks were identified using the analytical purification procedures. The JCP-1 and JCP-2 mainly composed of glucose, arabinose, galactose and rhamnose in molar ratios of 1.4:2.1:4.2:0.9 and 1.2:1.8:4.1:1.1, respectively. The use of 1.5% JCP-1 led to a high emulsifying stability (95.5%) in a model oil-in-water type emulsion with a reduced surface tension (44.1 mN/m) and droplet size (1.32 μm), and an increased apparent viscosity (0.13 Pas) during 21-day cold storage. The antioxidant activities were increased in dose-dependent manners (25-200 μg/mL). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up.

    PubMed

    Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh

    2017-04-15

    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds.

    PubMed

    Pimentel-Moral, Sandra; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Arráez-Román, David; Martínez-Férez, Antonio; Segura-Carretero, Antonio

    2018-07-15

    H. sabdariffa has demonstrated positive results against chronic diseases due to the presence of phytochemicals, mainly phenolic compounds. The extraction process of bioactive compounds increases the efficient collection of extracts with high bioactivity. Microwave-Assisted Extraction (MAE) constituted a "green technology" widely employed for plant matrix. In this work, the impact of temperature (50-150 °C), composition of extraction solvent (15-75% EtOH) and extraction time (5-20 min) on the extraction yield and individual compounds concentrations were evaluated. Furthermore, the characterization of 16 extracts obtained was performed by HPLC-ESI-TOF-MS. The results showed that 164 °C, 12.5 min, 45% ethanol was the best extraction condition, although glycoside flavonoids were degraded. Besides that, the optimal conditions for extraction yield were 164 °C, 60% ethanol and 22 min. Thus, temperature and solvent concentration have demonstrated to be potential factors in MAE for obtaining bioactive compounds from H. sabdariffa. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Microwave-assisted extraction of lipid from fish waste

    NASA Astrophysics Data System (ADS)

    Rahimi, M. A.; Omar, R.; Ethaib, S.; Siti Mazlina, M. K.; Awang Biak, D. R.; Nor Aisyah, R.

    2017-06-01

    Processing fish waste for extraction of value added products such as protein, lipid, gelatin, amino acids, collagen and oil has become one of the most intriguing researches due to its valuable properties. In this study the extraction of lipid from sardine fish waste was carried out using microwave-assisted extraction (MAE) and compared with Soxhlets and Hara and Radin methods. A mixture of two organic solvents isopropanol/hexane and distilled water were used for MAE and Hara and Radin methods. Meanwhile, Soxhlet method utilized only hexane as solvent. The results show that the higher yield of lipid 80.5 mg/g was achieved using distilled water in MAE method at 10 min extraction time. Soxhlet extraction method only produced 46.6 mg/g of lipid after 4 hours of extraction time. Lowest yield of lipid was found at 15.8 mg/g using Hara and Radin method. Based on aforementioned results, it can be concluded MAE method is superior compared to the Soxhlet and Hara and Radin methods which make it an attractive route to extract lipid from fish waste.

  14. Microwave-assisted hydrodistillation of essential oil from rosemary.

    PubMed

    Karakaya, Sibel; El, Sedef Nehir; Karagozlu, Nural; Sahin, Serpil; Sumnu, Gulum; Bayramoglu, Beste

    2014-06-01

    Effects of microwave assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) methods on yield, composition, specific gravity, refractive index, and antioxidant and antimicrobial activities of essential oil of Rosmarinus officinalis L were studied. The main aroma compounds of rosemary essential oil were found as 1,8-cineole and camphor. Trolox equivalent antioxidant capacity (TEAC) values for essential oils extracted by MAHD and HD were 1.52 mM/ml oil and 1.95 mM/ml oil, respectively. DPPH radical scavenging activity of the oils obtained by MAHD and HD were found as 60.55% and 51.04% respectively. Inhibitory effects of essential oils obtained by two methods on linoleic acid peroxidation were almost the same. Essential oils obtained by two methods inhibited growth of Esherichia coli O157:H7, Salmonella typhimurium NRRLE 4463 and Listeria monocytogenes Scott A with the same degree. However, inhibitory activity of essential oil obtained by MAHD on Staphylococcus aureus 6538P was stronger than that of obtained by HD (p < 0.05).

  15. Microwave-assisted boron and nitrogen co-doped reduced graphene oxide as a transparent conductive electrode

    NASA Astrophysics Data System (ADS)

    Umrao, Sima; Mishra, Himanshu; Srivastava, Anchal; Lee, Sungjoo

    2017-07-01

    A crystalline Boron (B)- and Nitrogen (N)-co-doped microwave-assisted reduced graphene oxide (BNMRGO) film was investigated as a potential transparent conducting electrode (TCE) material. X-ray diffraction results revealed the good crystallinity of the BNMRGO film, and the presence of a (0004) reflection plane indicated the formation of a few small domains of hexagonal boron nitride in the microwave assisted reduced graphene oxide (MRGO) sheets under the co-doping process. Raman and X-ray photoelectron spectroscopic results indicated a reduction of sp3 carbon centers upon co-doping. The ID/IG ratio decreased after co-doping from 0.89 to 0.24, indicating a low average defect density of ˜1.01 × 1010 cm-2. Optoelectronic characterization of the BNMRGO film on a glass substrate revealed a high optical transparency of 82% at 550 nm and a low sheet resistance (Rsh) of 355 Ω/sq, which was lower than that observed from the MRGO sheets (Rsh = 719 Ω/sq). BNMRGO provided a ratio between the direct conductivity (σdc) to the optical conductivity (σoc), that is, the figure of merit of a TCE material, of 5.96. Overall, this work paves the way toward developing a manufacturable TCE.

  16. MICROWAVE-ASSISTED PREPARATION OF DIALKYLIMIDAZOLIUM TETRACHLOROALUMINATES AND THEIR USE AS CATALYSTS IN THE SOLVENT-FREE TETRAHYDROPYRANYLATION OF ALCOHOLS AND PHENOLS

    EPA Science Inventory

    Microwave-assisted preparation of dialkylimidazolium tetrachloroaluminates and their application as recyclable catalysts for the efficient and eco-friendly protection of alcohols as tetrahydropyranyl (THP) ethers are described; the same catalyst can also be utilized for the depro...

  17. Microwave-assisted synthesis of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    She, Xiao; Zhang, Xinmin; Liu, Jingya

    2015-10-15

    Highlights: • Mn{sub 3}O{sub 4}@rGO nanocomposites were prepared by one-step microwave-assisted method. • The growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide occurred simultaneously. • Specific capacitance of the nanocomposite is higher than those of rGO and Mn{sub 3}O{sub 4}. • The nanocomposites have good rate capability and cycling stability. - ABSTRACT: One-step microwave-assisted synthetic route for the fabrication of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide (Mn{sub 3}O{sub 4}@rGO) nanocomposites has been demonstrated. The morphological structures of the nanocomposites are characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analyses (TGA), and scanningmore » electron microscopy (SEM), respectively. All of the results indicate that the microwave-assisted synthesis results in the growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide simultaneously in ethylene glycol-water system. The specific capacitance of the as-prepared Mn{sub 3}O{sub 4}@rGO nanocomposite is higher than those of rGO and pure Mn{sub 3}O{sub 4}, which indicates the synergetic interaction between rGO and Mn{sub 3}O{sub 4}. The nanocomposites also have good rate capability and cycling stability in electrochemical experiments. This facile technique may be extended to the large scale and cost effective production of other composites based on graphene and metal oxide for many applications.« less

  18. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  19. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  20. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces.

  1. The Use of Mouse Models of Breast Cancer and Quantitative Image Analysis to Evaluate Hormone Receptor Antigenicity after Microwave-assisted Formalin Fixation

    PubMed Central

    Engelberg, Jesse A.; Giberson, Richard T.; Young, Lawrence J.T.; Hubbard, Neil E.

    2014-01-01

    Microwave methods of fixation can dramatically shorten fixation times while preserving tissue structure; however, it remains unclear if adequate tissue antigenicity is preserved. To assess and validate antigenicity, robust quantitative methods and animal disease models are needed. We used two mouse mammary models of human breast cancer to evaluate microwave-assisted and standard 24-hr formalin fixation. The mouse models expressed four antigens prognostic for breast cancer outcome: estrogen receptor, progesterone receptor, Ki67, and human epidermal growth factor receptor 2. Using pathologist evaluation and novel methods of quantitative image analysis, we measured and compared the quality of antigen preservation, percentage of positive cells, and line plots of cell intensity. Visual evaluations by pathologists established that the amounts and patterns of staining were similar in tissues fixed by the different methods. The results of the quantitative image analysis provided a fine-grained evaluation, demonstrating that tissue antigenicity is preserved in tissues fixed using microwave methods. Evaluation of the results demonstrated that a 1-hr, 150-W fixation is better than a 45-min, 150-W fixation followed by a 15-min, 650-W fixation. The results demonstrated that microwave-assisted formalin fixation can standardize fixation times to 1 hr and produce immunohistochemistry that is in every way commensurate with longer conventional fixation methods. PMID:24682322

  2. Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model.

    PubMed

    Patrick, Jennifer L; Elliott, Gloria D; Comizzoli, Pierre

    2017-11-01

    Characterizing the resilience of mammalian cells to non-physiological conditions is necessary to develop preservation and long-term storage strategies at low or ambient temperatures. Using the domestic cat model, the objective of the study was to characterize structural integrity (morphology and DNA damage) as well as functional properties (sperm aster formation and embryo formation after sperm injection) of spermatozoa after microwave-assisted drying to a moisture content compatible with storage in a glassy state at supra-zero temperatures. In Experiment 1, cat epididymal spermatozoa were porated with hemolysin and dried (using a commercial microwave oven set to 20% power) in the presence of trehalose for up to 50 min in a low humidity environment (11%) before measuring moisture content and sample temperature. In Experiment 2, morphology and DNA integrity were evaluated in sperm dried for up to 30 min (using the same method as above) versus fresh spermatozoa. In Experiment 3, the functionality of sperm dried for 30 min versus fresh sperm cells was evaluated after injection into oocytes based on sperm aster formation (5 h post-injection) and embryo development in vitro over 7 days. Moisture contents compatible with dry state storage were reached after 30 min of microwave-assisted drying. After rehydration, sperm morphology was not affected and the percentages of cells with damaged DNA (∼6.5%) was similar to the fresh controls. Sperm aster diameters appeared to be generally smaller for dried-rehydrated cells compared to the fresh controls. This observation was consistent with a lower proportion of blastocyst formation after injection with dried spermatozoa (6.5%) compared to fresh spermatozoa (15%). However, the blastocyst quality based on the total blastomere number was not affected by the sperm treatment. This is the first and encouraging report in any species so far demonstrating that spermatozoa can be dried using microwaves without causing irreversible

  3. Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.

    PubMed

    Rosi, Luca; Bartoli, Mattia; Frediani, Marco

    2018-03-01

    Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    NASA Astrophysics Data System (ADS)

    Moura, K. F.; Maul, J.; Albuquerque, A. R.; Casali, G. P.; Longo, E.; Keyson, D.; Souza, A. G.; Sambrano, J. R.; Santos, I. M. G.

    2014-02-01

    In this study, a microwave assisted solvothermal method was used to synthesize TiO2 with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min.

  5. Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s.

    PubMed

    Hoogenboom, Richard; Leenen, Mark A M; Huang, Haiying; Fustin, Charles-André; Gohy, Jean-François; Schubert, Ulrich S

    2006-01-01

    Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-"soy alkyl"-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1 H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.

  6. A NOVEL HIGH-SPEED METHOD FOR THE GENERATION OF 4-ARYLDIHYDROPYRIMIDINE COMPOUND LIBRARIES USING A MICROWAVE-ASSISTED BIGINELLI CONDENSATION PROTOCOL -

    EPA Science Inventory

    In this presentation we report the application of microwave assisted chemistry to the parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones employing a solventless Biginelli multicomponent condensation protocol. The novel method employs neat mixtures of B-ketoesters, aryl ...

  7. Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling.

    PubMed

    Melucci, Manuela; Barbarella, Giovanna; Sotgiu, Giovanna

    2002-12-13

    The purpose of this study was to obtain a rapid, efficient, and environmentally friendly methodology for the synthesis of highly pure thiophene oligomers. The solvent-free, microwave-assisted coupling of thienyl boronic acids and esters with thienyl bromides, using aluminum oxide as the solid support, allowed us to rapidly check the reaction trends on changing times, temperature, catalyst, and base and easily optimize the experimental conditions to obtain the targeted product in fair amounts. This procedure offers a novel, general, and very rapid route to the preparation of soluble thiophene oligomers. Thus, for example, quaterthiophene was obtained in 6 min by reaction of 2-bromo-2,2'-bithiophene with bis(pinacolato)diboron (isolated yield 65%), whereas quinquethiophene was obtained in 11 min by reaction of dibromoterthiophene with thienylboronic acid (isolated yield 74%). The synthesis of new chiral 2,2'-bithiophenes is reported. The detailed analysis of the byproducts of some reactions allowed us to elucidate a few aspects of reaction mechanisms. While the use of microwaves proved to be very convenient for the coupling between conventional thienyl moieties, the same was not true for the coupling of thienyl rings to thienyl-S,S-dioxide moieties. Indeed, in this case, the targeted product was obtained in low yields because of the competitive, accelerated, Diels-Alder reaction that affords a variety of condensation products.

  8. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  9. Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Liang, Jiyuan; Qu, Tingting; Kun, Xiang; Zhang, Yu; Chen, Shanyong; Cao, Yuan-Cheng; Xie, Mingjiang; Guo, Xuefeng

    2018-04-01

    Biomass-derived carbon (BDCs) materials are receiving extensive attention as electrode materials for energy storage because of the considerable economic value offering possibility for practical applications, but the electrochemical capacitance of BDCs are usually relatively low resulted from limited electric double layer capacitance. Herein, an oxygen-rich porous carbon (KMAC) was fabricated through a rapid and convenient microwave assisted carbonization and KOH activation of camellia oleifera shell. The obtained KMAC possesses three-dimensional porous architecture, large surface area (1229 m2/g) and rich oxygen functionalities (C/O ratio of 1.66). As the electrode materials for supercapacitor, KMAC exhibits superior supercapacitive performances as compared to the activated carbon (KAC) derived from direct carbonization/KOH activation method in 2.0 M H2SO4 (315 F/g vs. 202 F/g) and 6.0 M KOH (251 F/g vs. 214 F/g) electrolyte due to the rich oxygen-containing functional groups on the surface of porous carbon resulted from the developed microwave-assisted carbonization/activation approach.

  10. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOEpatents

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  11. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  12. Can electromagnetic fields influence the structure and enzymatic digest of proteins? A critical evaluation of microwave-assisted proteomics protocols

    PubMed Central

    Damm, Markus; Nusshold, Christoph; Cantillo, David; Rechberger, Gerald N.; Gruber, Karl; Sattler, Wolfgang; Kappe, C. Oliver

    2012-01-01

    This study reevaluates the putative advantages of microwave-assisted tryptic digests compared to conventionally heated protocols performed at the same temperature. An initial investigation of enzyme stability in a temperature range of 37–80 °C demonstrated that trypsin activity declines sharply at temperatures above 60 °C, regardless if microwave dielectric heating or conventional heating is employed. Tryptic digests of three proteins of different size (bovine serum albumin, cytochrome c and β-casein) were thus performed at 37 °C and 50 °C using both microwave and conventional heating applying accurate internal fiber-optic probe reaction temperature measurements. The impact of the heating method on protein degradation and peptide fragment generation was analyzed by SDS-PAGE and MALDI-TOF-MS. Time-dependent tryptic digestion of the three proteins and subsequent analysis of the corresponding cleavage products by MALDI-TOF provided virtually identical results for both microwave and conventional heating. In addition, the impact of electromagnetic field strength on the tertiary structure of trypsin and BSA was evaluated by molecular mechanics calculations. These simulations revealed that the applied field in a typical laboratory microwave reactor is 3–4 orders of magnitude too low to induce conformational changes in proteins or enzymes. PMID:22889711

  13. Physicochemical properties and biological activities of DEAE-derivatized Sphingomonas gellan.

    PubMed

    Yoo, Sang-Ho; Lee, Kyung Hee; Lee, Ji-Soo; Cha, Jaeho; Park, Cheon Seok; Lee, Hyeon Gyu

    2005-08-10

    Physicochemical characteristics and biological activities of Sphingomonas gellan (S-gellan) were investigated. The S-gellan weight fractions of Glc and GlcUA were 0.45 and 0.25, respectively, and the molar ratio of Glc:Rha:GlcUA was approximately 4:2:3. The S-gellan was chemically derivatized with diethylaminoethyl chloride-HCl (DEAE-HCl), and the resulting modified S-gellan contained both positive and negative charges. The elemental and IR analyses were conducted to confirm the successful incorporation of DEAE groups into S-gellan. A large increase in nitrogen fraction was observed from the derivatized S-gellan by elemental analysis. The IR absorption bands induced by C-H, C-N, and C-O-C stretching were noticeable at 2950, 1310-1380, and 1000-1150 cm(-1), respectively, resulting from the DEAE substitution. The characteristic CH3 and CH2 peaks originated from the DEAE group were detected in the 1H NMR spectrum of the derivatized S-gellan as well. The solubility of native S-gellan was improved almost twice from 40% to 75% after DEAE derivatization, while water holding capacity (WHC) drastically decreased from 10026% to 245%. Oil binding capacity (OBC) of S-gellan also significantly dropped from 1528% to 331% after the derivatization. The bile acid binding capacity of S-gellan was indirectly determined by measuring the holding capability of cholic acid inside the dialysis membrane (MWCO 12,000-14,000 Da). Once S-gellan was DEAE derivatized, there was substantial increase in the cholic acid retardation index (CRI). Up to 9 h of dialysis, the derivatized S-gellan released 29.3% less of cholic acid compared to the control group that did not contain S-gellan. From these results of the improved water solubility and stronger bile acid binding capacity, it would be suggested that the DEAE-derivatized S-gellan has more advantages than gellan itself for functional food applications.

  14. The Microwave Assisted Composite Manufacturing and Repair (MACMAR) Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Terrier, Douglas; Clayton, Ronald G.; Worthy, Erica; Sosa, Edward

    2015-01-01

    The inherent microwave property of carbon nanotubes (CNTs) generates the thermal energy required to induce reversible polymerization of the matrix in these self-healing composites. Microwaves will be used to demonstrate advanced composite manufacturing and repair using self-healing composites.

  15. Effects of head field and AC field on magnetization reversal for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Kase, Aina; Akagi, Fumiko; Yoshida, Kazuetsu

    2018-05-01

    Microwave assisted magnetic recording (MAMR) is a promising recording method for achieving high recording densities in hard disk drives. In MAMR, the AC field from a spin-torque oscillator (STO) assists the head field with magnetization reversal in a medium. Therefore, the relationship between the head field and the AC field is very important. In this study, the effects of the head field and the AC field on magnetization reversal were analyzed using a micromagnetic simulator that takes the magnetic interactions between a single-pole type (SPT) write-head, an exchange coupled composite (ECC) medium, and the STO into account. As a result, the magnetization reversal was assisted not just by the y-component of the AC field (Hstoy) but also by the y-component of the head field (Hhy) in the medium. The Hhy over 100 kA/m with a frequency of about 15.5 GHz induced the magnetic resonance. The large Hhy was produced by the field from the STO to the SPT head.

  16. Ionic-liquid-based ultrasound/microwave-assisted extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize (Zea mays L.) seedlings.

    PubMed

    Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang

    2015-01-01

    We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mathematical modeling and Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum spores during continuous microwave-assisted pasteurization

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to develop a mathematical method to simulate the internal temperature history of products processed in a prototype microwave-assisted pasteurization system (MAPS) developed by Washington State University. Two products (10 oz. beef meatball trays and 16 oz. salmon fill...

  18. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review.

    PubMed

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2018-01-10

    Microwave heating has been applied in the drying of high-value solids as it affords a number of advantages, including shorter drying time and better product quality. Freeze-drying at cryogenic temperature and extremely low pressure provides the advantage of high product quality, but at very high capital and operating costs due partly to very long drying time. Freeze-drying coupled with a microwave heat source speeds up the drying rate and yields good quality products provided the operating unit is designed and operated to achieve the potential for an absence of hot spot developments. This review is a survey of recent developments in the modeling and experimental results on microwave-assisted freeze-drying (MFD) over the past decade. Owing to the high costs involved, so far all applications are limited to small-scale operations for the drying of high-value foods such as fruits and vegetables. In order to promote industrial-scale applications for a broader range of products further research and development efforts are needed to offset the current limitations of the process. The needs and opportunities for future research and developments are outlined.

  19. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  20. Microwave-assisted rapid synthesis of methyl 2,4,5-trimethoxyphenylpropionate, a metabolite of Cordia alliodora.

    PubMed

    Sinha, A K; Joshi, B P; Sharma, A; Kumar, J K; Kaul, V K

    2003-12-01

    Microwave assisted condensation of asaronaldehyde (2) with malonic acid in piperidine-AcOH provides 2,4,5-trimethoxycinnamic acid (3) in 87% yield within 4 min, which upon further reduction with PdCl2- HCOOH-aq. NaOH gives 3-(2,4,5-trimethoxy)phenyl propionic acid (4) in 88% yield within 3 min. Esterification of 4 with MeOH-H+ gives methyl 2,4,5-trimethoxyphenylpropionate (1), a metabolite of Cordia alliodora, in 94% yield within 3 min (overall 69% yield).

  1. Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust.

    PubMed

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Wang, Siqi; Fan, Shiyang; Zhou, Shuqiong

    2016-12-01

    Catalpa sawdust, a promising biofuel production biomass, was pretreated by microwave-water, -NaOH, and -Ca(OH) 2 to enhance enzymatic digestibility. After 48h enzymatic hydrolysis, microwave-Ca(OH) 2 pretreated sample showed the highest reducing sugar yield. The content of hemicellulose and lignin in catalpa sawdust decreased after microwave-alkali pretreatment. SEM observation showed that the catalpa sawdust surface with microwave-Ca(OH) 2 pretreatment suffered the most serious erosion. Crystallinity index of catalpa sawdust increased after all three kinds of pretreatment. The optimum conditions of microwave-Ca(OH) 2 pretreatment were particle size of 40mesh, Ca(OH) 2 dosage of 2.25% (w/v), microwave power of 400W, pretreatment time of 6min, enzyme loading of 175FPU/g, and hydrolysis time of 96h, and the reducing sugar yield of microwave-Ca(OH) 2 pretreated catalpa sawdust reached 402.73mg/g, which increased by 682.15% compared with that of raw catalpa sawdust. The catalpa sawdust with microwave-Ca(OH) 2 pretreatment is promising for biofuel production with great potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Microwave-Assisted Synthesis of Goethite Nanoparticles Used for Removal of Cr(VI) from Aqueous Solution

    PubMed Central

    Kynicky, Jindrich; Adam, Vojtech

    2017-01-01

    The microwave-assisted synthesis of goethite nanoparticles has been studied. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA) and Brunauer–Emmett–Teller (BET) method. Goethite rod-like nanoparticles have been successfully synthesized in 10 min of microwave treating at 100 °C. Particle size is in the range from 30 to 60 nm in width and from 200 to 350 nm in length. BET analysis indicated that the surface area of the product is 158.31 m2g−1. The feasibility of Cr(VI) removal fromaqueous solution depends on the pH of the solution and contact time. The maximum adsorptionis reached at pH 4.0 and 540 min of contact time. The adsorption kinetics was analyzedby the pseudo-first- and second-order models and the results reveal that the adsorption process obeys the pseudo-second-order model. The adsorption data were fitted well with the Langmuir adsorption isotherm. PMID:28773142

  3. Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms

    NASA Astrophysics Data System (ADS)

    Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid

    2018-06-01

    We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.

  4. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system.

    PubMed

    Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin

    2016-11-20

    This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel.

    PubMed

    Golmakani, Mohammad-Taghi; Moayyedi, Mahsa

    2015-11-01

    Dried and fresh peels of Citrus limon were subjected to microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME), respectively. A comparison was made between MAHD and SFME with the conventional hydrodistillation (HD) method in terms of extraction kinetic, chemical composition, and antioxidant activity. Higher yield results from higher extraction rates by microwaves and could be due to a synergy of two transfer phenomena: mass and heat acting in the same way. Gas chromatography/mass spectrometry (GC/MS) analysis did not indicate any noticeable differences between the constituents of essential oils obtained by MAHD and SFME, in comparison with HD. Antioxidant analysis of the extracted essential oils indicated that microwave irradiation did not have adverse effects on the radical scavenging activity of the extracted essential oils. The results of this study suggest that MAHD and SFME can be termed as green technologies because of their less energy requirements per ml of essential oil extraction.

  6. Microwave-assisted extraction and mild saponification for determination of organochlorine pesticides in oyster samples.

    PubMed

    Carro, N; García, I; Ignacio, M-C; Llompart, M; Yebra, M-C; Mouteira, A

    2002-10-01

    A sample-preparation procedure (extraction and saponification) using microwave energy is proposed for determination of organochlorine pesticides in oyster samples. A Plackett-Burman factorial design has been used to optimize the microwave-assisted extraction and mild saponification on a freeze dried sample spiked with a mixture of aldrin, endrin, dieldrin, heptachlor, heptachorepoxide, isodrin, transnonachlor, p, p'-DDE, and p, p'-DDD. Six variables: solvent volume, extraction time, extraction temperature, amount of acetone (%) in the extractant solvent, amount of sample, and volume of NaOH solution were considered in the optimization process. The results show that the amount of sample is statistically significant for dieldrin, aldrin, p, p'-DDE, heptachlor, and transnonachlor and solvent volume for dieldrin, aldrin, and p, p'-DDE. The volume of NaOH solution is statistically significant for aldrin and p, p'-DDE only. Extraction temperature and extraction time seem to be the main factors determining the efficiency of extraction process for isodrin and p, p'-DDE, respectively. The optimized procedure was compared with conventional Soxhlet extraction.

  7. Catalytic activity of CuOn-La2O3/gamma-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater.

    PubMed

    Bi, Xiaoyi; Wang, Peng; Jiang, Hong

    2008-06-15

    In order to develop a catalyst with high activity and stability for microwave assisted ClO2 catalytic oxidation, we prepared CuOn-La2O3/gamma-Al2O3 by impregnation-deposition method, and determined its properties using BET, XRF, XPS and chemical analysis techniques. The test results show that, better thermal ability of gamma-Al2O3 and high loading of Cu in the catalyst can be achieved by adding La2O3. The microwave assisted ClO2 catalytic oxidation process with CuOn-La2O3/gamma-Al2O3 used as catalyst was also investigated, and the results show that the catalyst has an excellent catalytic activity in treating synthetic wastewater containing 100 mg/L phenol, and 91.66% of phenol and 50.35% of total organic carbon (TOC) can be removed under the optimum process conditions. Compared with no catalyst process, CuOn-La2O3/gamma-Al2O3 can effectively degrade contaminants in short reaction time and with low oxidant dosage, extensive pH range. The comparison of phenol removal efficiency in the different process indicates that microwave irradiation and catalyst work together to oxidize phenol effectively. It can therefore be concluded from results and discussion that CuOn-La2O3/gamma-Al2O3 is a suitable catalyst in microwave assisted ClO2 catalytic oxidation process.

  8. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  9. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  10. Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacin.

    PubMed

    Doreth, Maria; Löbmann, Korbinian; Priemel, Petra; Grohganz, Holger; Taylor, Robert; Holm, René; Lopez de Diego, Heidi; Rades, Thomas

    2018-01-01

    In situ amorphization is an approach that enables a phase transition of a crystalline drug to its amorphous form immediately prior to administration. In this study, three different polyvinylpyrrolidones (PVP K12, K17 and K25) were selected to investigate the influence of the molecular weight of the polymer on the degree of amorphization of the model drug indomethacin (IND) upon microwaving. Powder mixtures of crystalline IND and the respective PVP were compacted at 1:2 (w/w) IND:PVP ratios, stored at 54% RH and subsequently microwaved with a total energy input of 90 or 180kJ. After storage, all compacts had a similar moisture content (∼10% (w/w)). Upon microwaving with an energy input of 180kJ, 58±4% of IND in IND:PVP K12 compacts was amorphized, whereas 31±8% of IND was amorphized by an energy input of 90kJ. The drug stayed fully crystalline in all IND:PVP K17 and IND:PVP K25 compacts. After plasticization by moisture, PVP K12 reached a T g below ambient temperature (16±2°C) indicating that the T g of the plasticized polymer is a key factor for the success of in situ amorphization. DSC analysis showed that the amorphized drug was part of a ternary glass solution consisting of IND, PVP K12 and water. In dissolution tests, IND:PVP K12 compacts showed a delayed initial drug release due to a lack of compact disintegration, but reached a higher total drug release eventually. In summary, this study showed that the microwave assisted in situ amorphization was highly dependent on the T g of the plasticized polymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay. Green Chemistry in the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Wucka, Paul R.; Lyons, Thomas W.

    2006-01-01

    A detailed investigation of the clay-catalyzed condensation of sesamol and other phenols with 3-methyl-2-butenal to give methylenedioxyprecocene (MDP) and other chromenes is presented. The clay-catalyzed microwave-assisted condensation of sesamol with 3-methyl-2-butenal is appropriate for incorporation into undergraduate organic laboratory…

  12. Controlling the size and magnetic properties of nano CoFe2O4 by microwave assisted co-precipitation method

    NASA Astrophysics Data System (ADS)

    Prabhakaran, T.; Mangalaraja, R. V.; Denardin, Juliano C.

    2018-02-01

    In this report, cobalt ferrite nanoparticles synthesized using microwave assisted co-precipitation method was reported. Efforts have been made to control the particles size, distribution, morphology and magnetic properties of cobalt ferrite nanoparticles by varying the concentration of NaOH solution and microwave irradiation time. It was observed that the rate of nucleation and crystal growth was influenced by the tuning parameters. In that way, the average crystallite size of single phase cobalt ferrite nanoparticles was controlled within 9-11 and 10-12 nm with an increase of base concentration and microwave irradiation time, respectively. A narrow size distribution of nearly spherical nanoparticles was achieved through the present procedure. A soft ferromagnetism at room temperature with the considerable saturation magnetization of 58.4 emu g-1 and coercivity of 262.7 Oe was obtained for the cobalt ferrites synthesized with 2.25 M of NaOH solution for 3 and 7 min of microwave irradiation time, respectively. The cobalt ferrite nanoparticles synthesized with a shorter reaction time of 3-7 min was found to be advantageous over other methods that involved conventional heating procedures and longer reaction time to achieve the better magnetic properties for the technological applications.

  13. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGES

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; ...

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  14. Hot water bath treatments assisted by microwave energy to delay postharvest ripening and decay in strawberries (Fragaria × ananassa).

    PubMed

    Villa-Rojas, Rossana; López-Malo, Aurelio; Sosa-Morales, María Elena

    2011-09-01

    A lab-scale approach using microwave (MW)-assisted hot water treatments was developed and tested to assess the potential of this heating method to delay postharvest ripening and decay in strawberries. Strawberries (Fragaria × ananassa) immersed in water were exposed to microwaves at a frequency of 2450 MHz for 3 min at 514 W or 1 min 50 s at 763 W to reach an average temperature of 43.8 ± 0.6 °C at the fruit centre. Another batch was treated in hot water at 45 °C for 15 min, and a final batch was not treated (control). After 9 days of refrigerated storage (3 °C and 90% relative humidity), all heat-treated strawberries showed significant retention of quality parameters such as colour and firmness and significantly lower yeast and mould populations (P < 0.05). Strawberries subjected to MW-assisted hot water treatments showed significantly better retention of lightness compared with conventionally treated berries. A short (1 min 50 s) treatment at 763 W was the best choice to prevent strawberry decay. Copyright © 2011 Society of Chemical Industry.

  15. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    PubMed

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  16. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination.

    PubMed

    Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2009-08-15

    The feasibility of microwave energy to assist the solubilisation of edible seaweed samples by tetramethylammonium hydroxide (TMAH) has been investigated to extract iodine and bromine. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used as a multi-element detector. Variables affecting the microwave assisted extraction/solubilisation (temperature, TMAH volume, ramp time and hold time) were firstly screened by applying a fractional factorial design (2(5-1)+2), resolution V and 2 centre points. When extracting both halogens, results showed statistical significance (confidence interval of 95%) for TMAH volume and temperature, and also for the two order interaction between both variables. Therefore, these two variables were finally optimized by a 2(2)+star orthogonal central composite design with 5 centre points and 2 replicates, and optimum values of 200 degrees C and 10 mL for temperature and TMAH volume, respectively, were found. The extraction time (ramp and hold times) was found statistically non-significant, and values of 10 and 5 min were chosen for the ramp time and the hold time, respectively. This means a fast microwave heating cycle. Repeatability of the over-all procedure has been found to be 6% for both elements, while iodine and bromine concentrations of 24.6 and 19.9 ng g(-1), respectively, were established for the limit of detection. Accuracy of the method was assessed by analyzing the NIES-09 (Sargasso, Sargassum fulvellum) certified reference material (CRM) and the iodine and bromine concentrations found have been in good agreement with the indicative values for this CRM. Finally, the method was applied to several edible dried and canned seaweed samples.

  17. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  18. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  19. Iron(II)-catalyzed amidation of aldehydes with iminoiodinanes at room temperature and under microwave-assisted conditions.

    PubMed

    Ton, Thi My Uyen; Tejo, Ciputra; Tania, Stefani; Chang, Joyce Wei Wei; Chan, Philip Wai Hong

    2011-06-17

    A method for the amidation of aldehydes with PhI=NTs/PhI=NNs as the nitrogen source and an inexpensive iron(II) chloride + pyridine as the in situ formed precatalyst under mild conditions at room temperature or microwave assisted conditions is described. The reaction was operationally straightforward and accomplished in moderate to excellent product yields (20-99%) and with complete chemoselectivity with the new C-N bond forming only at the formylic C-H bond in substrates containing other reactive functional groups. By utilizing microwave irradiation, comparable product yields and short reaction times of 1 h could be accomplished. The mechanism is suggested to involve insertion of a putative iron-nitrene/imido group to the formylic C-H bond of the substrate via a H-atom abstraction/radical rebound pathway mediated by the precatalyst [Fe(py)(4)Cl(2)] generated in situ from reaction of FeCl(2) with pyridine.

  20. Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: a novel solution to the exothermicity problem.

    PubMed

    Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2013-10-01

    There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.

  1. Optimization of microwave-assisted extraction with saponification (MAES) for the determination of polybrominated flame retardants in aquaculture samples.

    PubMed

    Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R

    2008-08-01

    The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01.

  2. The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene

    PubMed Central

    2013-01-01

    The microwave-assisted nanocomposite synthesis of metal nanoparticles on graphene or graphite oxide was introduced in this research. With microwave assistance, the Pt nanoparticles on graphene/graphite oxide were successfully produced in the ionic liquid of 2-hydroxyethanaminium formate [HOCH2CH2NH3][HCO2]. On graphene/graphite oxide, the sizes of Pt nanoparticles were about 5 to 30 nm from transmitted electron microscopy (TEM) results. The crystalline Pt structures were examined by X-ray diffraction (XRD). Since hydrogenation of styrene is one of the important well-known chemical reactions, herein, we demonstrated then the catalytic hydrogenation capability of the Pt nanoparticles on graphene/graphite oxide for the nanocomposite to compare with that of the commercial catalysts (Pt/C and Pd/C, 10 wt.% metal catalysts on activated carbon from Strem chemicals, Inc.). The conversions with the Pt nanoparticles on graphene are >99% from styrene to ethyl benzene at 100°C and under 140 psi H2 atmosphere. However, ethyl cyclohexane could be found as a side product at 100°C and under 1,520 psi H2 atmosphere utilizing the same nanocomposite catalyst. PMID:24103100

  3. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  4. [Analysis of methylmercury in biological guano by the optimized atomic fluorescence spectrometry coupled with microwave assisted extraction].

    PubMed

    Chen, Qian-Qian; Liu, Xiao-Dong; Sun, Li-Guang; Jiang, Shan; Yan, Hong; Liu, Yi; Luo, Yu-Han; Huang, Jing

    2011-01-01

    The analytical method for the determination of methylmercury in seabird excrements was established using atomic fluorescence spectrometry coupled with microwave-assisted extraction In general, temperature and hydrochloric amount are the most important influencing factors on the extraction of MeHg in the samples, and the present paper optimized these two parameters. The result showed that 120 degrees C and 200 microL 6 mol x L(-1) hydrochloric acid are the best extraction conditions. Under these experimental conditions, the relative standard deviation (RSD) values of reduplicative analyses on standard reference material (human hair powder) and the same seabird excrement sample were 0.74% and 6.61% respectively, and their percent recoveries were over 90%. The combination of microwave-assisted extraction and atomic fluorescence spectrometry has many advantages such as simple operation, high sensitivity, low detection limit and low cost, therefore, it is suitable for rapid separation and analysis of trace methylmercury composition in the biological guanos. Using this method, we analyzed the methylmercury contents in the ancient and fresh seabird droppings taken from Xisha Islands of South China Sea, and the result showed that the Xisha guanos were rich in methylmercury and the large input of seabird guanos will cause serious environmental contamination in the remote island ecosystem of Xisha Islands.

  5. Physicochemical characterization of microwave assisted synthesis of silver nanoparticles using Aloe Vera (Aloe barbadensis)

    NASA Astrophysics Data System (ADS)

    Kuponiyi, Abiola John

    Biosynthesis of silver nanoparticles (AgNP) using different biological extracts is gaining recognition for its numerous applications in different disciplines. Although different approaches (physical and chemical) have been used for the synthesis of AgNP, the green chemistry method is most preferable because of its high efficacy, cost effectiveness, and environmental benignity. Aloe Vera (AV) contains chemical compounds (anthraquinones) that are known to possess antibacterial, antivirus and anticancer properties and the extract is a good chemical reduction agent for AgNP. Hence, it was hypothesized that a microwave assisted synthesis will produce highly concentrated, homogeneous, stable and biologically active AgNP. Thus, the main objective of the study was to evaluate the effect of microwave assisted synthesis of AgNP, the effect of pulse laser treatment on size reduction of a microwave synthesized AgNP, and the physicochemical characterization of AgNP synthesized with Aloe Vera water and ethanol extract. The experiment was conducted in two phases. Phase 1 was first conducted to optimize the experimental variables, thus establishing the optimum variables to apply in the second phase. The experiment in Phase 1 was conducted using three-factor factorial experimental design comprised of the following factors: 1) Extraction Solvent, 2) Heating Methods, 3) pH; and their corresponding levels were water and ethanol, conventional and microwave, pH (7, 8, 10 and 12), respectively. All synthesis was conducted at constant temperature of 80°C. Phase II experimental treatments were Laser ablation (0, 5, and 10 min) and Storage time (Week 1, 2 & 3). The Phase I of the results showed that increased AgNP concentrations were significantly (p < 0.05) influenced by synthesis time, hence, (15 min) gave the highest concentration. The solvent type, heating methods and pH had a significant effect (p < 0.05) on the concentration AgNP. Hence, ethanol extract (99.2 ppm), microwave method

  6. Simultaneous derivatization and lighter-than-water air-assisted liquid-liquid microextraction using a homemade device for the extraction and preconcentration of some parabens in different samples.

    PubMed

    Farajzadeh, Mir Ali; Aghdam, Mehri Bakhshizadeh; Mogaddam, Mohammad Reza Afshar; Nabil, Ali Akbar Alizadeh

    2018-06-06

    Simultaneous derivatization and air-assisted liquid-liquid microextraction using an organic solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p-xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90-2.7 and 3.0-6.1 ng mL -1 , respectively. The enrichment and enhancement factors were in the ranges of 370-430 and 489-660, respectively. The method precision, expressed as the relative standard deviation, was within the ranges of 4-6% (n = 6) and 4-9% (n = 4) for intra- and inter-day precisions, respectively. The proposed method was successfully used for the determination of methyl-, ethyl-, and propyl parabens in cosmetic, hygiene, and food samples, and personal care products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  8. A comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method: Molecule structure and antioxidant activities evaluation.

    PubMed

    Wang, Junlong; Zhang, Ji; Wang, Xiaofang; Zhao, Baotang; Wu, Yiqian; Yao, Jian

    2009-12-01

    The conventional extraction methods for polysaccharides were time-consuming, laborious and energy-consuming. Microwave-assisted extraction (MAE) technique was employed for the extraction of Artemisia sphaerocephala polysaccharides (ASP), which is a traditional Chinese food. The extracting parameters were optimized by Box-Behnken design. In microwave heating process, a decrease in molecular weight (M(w)) was detected in SEC-LLS measurement. A d(f) value of 2.85 indicated ASP using MAE exhibited as a sphere conformation of branched clusters in aqueous solution. Furthermore, it showed stronger antioxidant activities compared with hot water extraction. The data obtained showed that the molecular weights played a more important role in antioxidant activities.

  9. Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons.

    PubMed

    Navarro, P; Cortazar, E; Bartolomé, L; Deusto, M; Raposo, J C; Zuloaga, O; Arana, G; Etxebarria, N

    2006-09-22

    The feasibility of different clean-up procedures was studied for the determination of polycyclic aromatic hydrocarbons (PAHs) in biota samples such as oysters, mussels and fish liver. In this sense, once the samples were extracted--essentially with acetone and in a microwave system--and before they could be analysed by gas chromatography-mass spectrometry (GC-MS), three different approaches were studied for the clean-up step: solid phase extraction (SPE), microwave-assisted saponification (MAS) and gel permeation chromatography (GPC). The main aim of this work was to maximise the recoveries of PAHs and to minimise the presence of interfering compounds in the last extract. In the case of SPE, Florisil cartridges of 1, 2 and 5 g, and silica cartridges of 5 g were studied. In that case, and with oysters and mussels, microwave-assisted extraction and 5 g Florisil cartridges provided good results. In addition, the concentrations obtained for Standard Reference Material (SRM) NIST 2977 (mussel tissue) were in good agreement with the certified values. In the case of microwave-assisted saponification, the extracts were not as clean as those obtained with 5 g Florisil and this fact lead to overestimate the concentration of the heaviest PAHs. Finally, the cleanest extracts were obtained by GPC. The method was successfully applied to mussels, oysters and hake liver, and the results obtained for NIST 2977 (mussel tissue) were within the confidence interval of the certified reference material for most of the certified analytes.

  10. Physicochemical and biological characteristics of DEAE-derivatized PS7 biopolymer of Beijerinckia indica.

    PubMed

    Lee, Kyung Hee; Yoo, Sang-Ho; Baek, Seung Hee; Lee, Hyeon Gyu

    2007-07-01

    Physicochemical and biological characteristics of the exopolysaccharide, PS7, produced from Beijerinckia indica were investigated. The PS7 weight fractions of Glc and GlcUA were 0.45 and 0.25, respectively, and the molar ratio of Glc:Rha:GalUA was approximately 5:1:1.3. The PS7 was chemically derivatized with diethylaminoethyl chloride-HCl (DEAE-HCl), and the resulting modified PS7 contained both positive and negative charges. The elemental and IR analyses were conducted to confirm the successful incorporation of DEAE groups into PS7. Large increase in nitrogen fraction was observed from the derivatized PS7 by elemental analysis. The characteristic CH(3) and CH(2) peaks originated from DEAE group were detected in (1)H NMR spectrum of the derivatized PS7 as well. Solubility of native PS7 was improved almost twice from 40 to 75% after DEAE-derivatization, while water holding capacity (WHC) drastically decreased from 10,026 to 245%. Oil binding capacity (OBC) of PS7 also significantly dropped from 1528 to 331% after the derivatization. The [eta] values of native and derivatized PS7 were 27.6 and 0.31 dL/g at 25 degrees C, respectively, which means that the DEAE-derivatization significantly decreased the [eta] of PS7. The bile acid binding capacity of PS7 was indirectly determined by measuring the holding capability of cholic acid inside the dialysis membrane. When PS7 was DEAE-derivatized, there was substantial decrease in the cholic acid retardation index (CRI). Up to 8-9h of dialysis, the derivatized PS7 hold 8.6% less of cholic acid compared to native one.

  11. Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities.

    PubMed

    C, Senthil Kumar; M, Sivakumar; K, Ruckmani

    2016-11-01

    Response Surface Methodology (RSM) was used to optimize the parameters for microwave-assisted extraction of polysaccharides from Cyphomandra betacea. The results showed a good fit with a second-order polynomial equation that was statistically acceptable at P<0.05. Optimal conditions for the extraction of polysaccharides were: extraction time, 2h; microwave power, 400W; extraction temperature, 60°C; and ratio of raw material to water 1:40 (g/mL). Under the optimized conditions, the yield of polysaccharides was found to be relatively high (about 36.52%). The in vitro biological activities of antioxidant and antitumor were evaluated. The IC 50 value of polysaccharides was found to be 3mg/mL. The percentage of Cell viability was determined by MTT assay. Our results showed that polysaccharides inhibited proliferation of MCF-7 (Breast carcinoma), A549 (Human lung carcinoma) and HepG2 (Liver carcinoma) with an IC 50 of 0.23mg/mL, 0.17mg/mL and 0.62mg/mL respectively after 48h incubation. Polysaccharides were shown to promote apoptosis as seen in the nuclear morphological examination study using acridine orange (AO) and ethidium bromide (EB) staining. This is the first report on the effects of polysaccharides extracted from Cyphomandra betacea which exhibited stronger antioxidant and antitumor activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006; Li, Li, E-mail: qqhrll@163.com

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly.more » Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic

  13. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2017-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces.

  14. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    Lansiquot, Carisse; Boone-Kukoyi, Zainab; Shortt, Raquel; Thompson, Nishone; Ajifa, Hillary; Kioko, Bridgit; Constance, Edward Ned; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2018-01-01

    The use of indium tin oxide (ITO) and focused monomode microwave heating for the ultra-rapid crystallization of L-alanine (a model amino acid) is reported. Commercially available ITO dots (< 5 mm) attached to blank poly(methyl)methacrylate (PMMA, 5 cm in diameter with 21-well silicon isolators: referred to as the iCrystal plates) were found to withstand prolonged microwave heating during crystallization experiments. Crystallization of L-alanine was performed at room temperature (a control experiment), with the use of two microwave sources: a 2.45 GHz conventional microwave (900 W, power level 1, a control experiment) and 8 GHz (20 W) solid state, monomode microwave source with an applicator tip that focuses the microwave field to a 5-mm cavity. Initial appearance of L-alanine crystals and on iCrystal plates with ITO dots took 47 ± 2.9 min, 12 ± 7.6 min and 1.5 ± 0.5 min at room temperature, using a conventional microwave and focused monomode microwave heating, respectively. Complete evaporation of the solvent using the focused microwaves was achieved in 3.2 ± 0.5 min, which is ~52-fold and ~172-fold faster than that observed at room temperature and using conventional microwave heating, respectively. The size and number of L-alanine crystals was dependent on the type of the 21-well iCrystal plates and the microwave heating method: 33 crystals of 585 ± 137 μm in size at room temperature > 37 crystals of 542 ± 100 μm in size with conventional microwave heating > 331 crystals of 311 ± 190 μm in size with focused monomode microwave. FTIR, optical microscopy and powder X-ray diffraction analysis showed that the chemical composition and crystallinity of the L-alanine crystals did not change when exposed to microwave heating and ITO surfaces. In addition, theoretical simulations for the binding of L-alanine molecules to ITO and other metals showed the predicted nature of hydrogen bonds formed between L-alanine and these surfaces. PMID:29657884

  15. Optimization of the Microwave-Assisted Ethanosolv Extraction of Lignocellulosic Compounds from the Bagasse of Agave angustifolia Haw Using the Response Methodology.

    PubMed

    Hernández, Yuliana Rosas; García Serrano, Luz Arcelia; Maruri, Daniel Tapia; Jiménez Aparicio, Antonio Ruperto; Camacho Díaz, Brenda Hildeliza; Arenas Ocampo, Martha Lucía

    2018-04-04

    The main objective of this work was to optimize the process of fractionation of the bagasse of Agave angustifolia Haw, applying organosolv assisted with microwaves. The DCC was used to evaluate the effect of independent variables such as ethanol concentration (40, 50, and 60%) and reaction time (1, 1.5, and 2 h) on yield, cellulose and lignin percentages. Lignocellulosic fractions (F1 and F2) were obtained by means of organosolv assisted with microwave in an open system (atmospheric pressure) and a closed system (controlled pressure). The lignocellulosic fractions were microstructurally characterized. The highest extraction yields (70.39%) were reached in the open system at 50% ethanol for 1.5 h. The highest percentages of LK (5.05%) were obtained in the closed system at 60% ethanol for 2 h. The SEM photomicrograph showed that the microstructure of F1 was retained even after treatment with 60% ethanol for 2 h, and the exposure of the fibrillar part was observed obtaining the disposition of pectin.

  16. Microwave assisted synthesis of bridgehead alkenes.

    PubMed

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J

    2011-04-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels-Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times, and lower reaction temperatures provide a general and efficient route to this interesting class of molecules.

  17. Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach.

    PubMed

    Valdés, Arantzazu; Vidal, Lorena; Beltrán, Ana; Canals, Antonio; Garrigós, María Carmen

    2015-06-10

    A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box-Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.

  18. Conventional and microwave assisted synthesis of pyrazolone Mannich bases possessing anti-inflammatory, analgesic, ulcerogenic effect and antimicrobial properties.

    PubMed

    Sivakumar, Kullampalayam Krishnasamy; Rajasekaran, Aiyalu; Senthilkumar, Palaniappan; Wattamwar, Prasad P

    2014-07-01

    In the present study, an efficient synthesis of some Mannich base of 5-methyl-2-[(2-oxo-2H-chromen-3-yl)carbonyl]-2,4-dihydro-3H-pyrazol-3-one (4a-j) have been described by using conventional and non-conventional (microwave) techniques. Microwave assisted reactions showed that require shorter reaction time and good yield. The newly synthesized compounds were screened for their anti-inflammatory, analgesic activity, antioxidant, and antibacterial effects were compared with standard drug. Among the compounds studied, compound (4f) showing nearly equipotent anti-inflammatory and analgesic activity than the standard drug (indomethacin), along with minimum ulcerogenic index. Compounds (4b and 4i) showing 1.06 times more active than ciprofloxacin against tested Gram-negative bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Microwave Assisted Synthesis of Bridgehead Alkenes

    PubMed Central

    Cleary, Leah; Yoo, Hoseong; Shea, Kenneth J.

    2011-01-01

    A new, concise method to synthesize triene precursors for the type 2 intramolecular Diels–Alder reaction has been developed. Microwave irradiation of the trienes provides a convenient method for the synthesis of bridgehead alkenes. Higher yields, shorter reaction times and lower reaction temperatures provide a general and efficient route to this interesting class of molecules. PMID:21384818

  20. Microwave-Assisted Synthesis, Microstructure, and Magnetic Properties of Rare-Earth Cobaltites.

    PubMed

    Gutiérrez Seijas, Julia; Prado-Gonjal, Jesús; Ávila Brande, David; Terry, Ian; Morán, Emilio; Schmidt, Rainer

    2017-01-03

    The series of perovskite rare-earth (RE) doped cobaltites (RE)CoO 3 (RE = La-Dy) was prepared by microwave-assisted synthesis. The crystal structure undergoes a change of symmetry depending on the size of the RE cation. LaCoO 3 is rhombohedral, S.G. R3̅c (No. 167), while, for the rest of the RE series (Pr-Dy), the symmetry is orthorhombic, S.G. Pnma (No. 62). The crystal structure obtained by X-ray diffraction was confirmed by high-resolution transmission electron microscopy, which yielded a good match between experimental and simulated images. It is further shown that the well-known magnetism in LaCoO 3 , which involves a thermally induced Co 3+ (d 6 ) low spin to intermediate or high spin state transition, is strongly modified by the RE cation, and a rich variety of magnetic order has been detected across the series.

  1. Pb(core)/ZnO(shell) nanowires obtained by microwave-assisted method

    PubMed Central

    2011-01-01

    In this study, Pb-filled ZnO nanowires [Pb(core)/ZnO(shell)] were synthesized by a simple and novel one-step vapor transport and condensation method by microwave-assisted decomposition of zinc ferrite. The synthesis was performed using a conventional oven at 1000 W and 5 min of treatment. After synthesis, a spongy white cotton-like material was obtained in the condensation zone of the reaction system. HRTEM analysis revealed that product consists of a Pb-(core) with (fcc) cubic structure that preferentially grows in the [111] direction and a hexagonal wurtzite ZnO-(Shell) that grows in the [001] direction. Nanowire length was more than 5 μm and a statistical analysis determined that the shell and core diameters were 21.00 ± 3.00 and 4.00 ± 1.00 nm, respectively. Experimental, structural details, and synthesis mechanism are discussed in this study. PMID:21985637

  2. Microwave assisted combustion synthesis of nanocrystalline CoFe2O4 for LPG sensing

    NASA Astrophysics Data System (ADS)

    Chaudhari, Prashant; Acharya, S. A.; Darunkar, S. S.; Gaikwad, V. M.

    2015-08-01

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe2O4. The process takes only a few minutes to obtain as-synthesized CoFe2O4. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe2O4 prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe2O4 thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  3. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  4. Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin.

    PubMed

    Li, Huiyu; Xu, Yuan; Ding, Jie; Zhao, Li; Zhou, Tianyu; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-01-10

    Uniform N- and S-co-doped carbon dots (NSCDs) with fluorescence quantum yields of up to 64% were synthesized via a one-step microwave-assisted method. Ammonium citrate and L-cysteine act as precursors, and synthesis is completed in 2.5 min using a 750 W microwave oven to give a 62% yield. The NSCDs show bright blue fluorescence (with excitation/emission peaks at 353/426 nm) and have narrow size distribution. On exposure to levofloxacin (LEV), the emission maximum shifts to 499 nm. This effect was used to design ratiometric (2-wavelength) assays for LEV. The fluorometric method (based on measurement of the fluorescence intensity ratio at 499 and 426 nm) has a detection limit of 5.1 μg·L -1 (3σ/k) and a linear range that extends from 0.01 to 70 mg·L -1 . The method was applied to the determination of LEV in three kinds of spiked water samples and has recoveries in the range from 98.6 to 106.8%. The fluorescent probe described here is highly selective and sensitive. Graphical Abstract Highly luminescent N- and S-co-doped carbon dots were synthesized using AC (ammonium citrate) and Cys (L-cysteine) by microwave-assisted method, and were applied to the visual and ratiometric fluorescence determination of LEV (levofloxacin).

  5. GREENER SYNTHESIS OF HETEROCYCLIC COMPOUNDS USING MICROWAVE IRRADIATION

    EPA Science Inventory

    An introduction of our interest in the microwave-assisted greener synthesis of a variety of heterocyclic compounds will be presented. It involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports, such as alumina, sili...

  6. Microwave-assisted solvothermal synthesis of hierarchical TiO2 microspheres for efficient electro-field-assisted-photocatalytic removal of tributyltin in tannery wastewater.

    PubMed

    Zhao, Yang; Huang, Zhiding; Chang, Wenkai; Wei, Chao; Feng, Xugen; Ma, Lin; Qi, Xiaoxia; Li, Zenghe

    2017-07-01

    Organotin compounds have been widely used in recent decades, however, the residential tributyltin (TBT) in environment has potential harmful effects on human health due to the disruption of endocrine system even at trace level. Herein, this work reports on an effective electro-field-assisted-photocatalytic technique for removal of TBT by applying an electric field to photocatalysis of as-prepared hierarchical TiO 2 microspheres. The synthesis of catalytic materials is based on a self-assembly process induced by microwave-assisted solvothermal reaction. Hierarchical TiO 2 microspheres consisting of nanowires can be obtained in short time with this facile method and possess high surface area and superior optical properties. As the catalyst, it was found that the reaction rate constant of electro-field-assisted-photocatalytic removal (0.0488 min -1 ) of TBT exhibited almost a 9 fold improvement as compared to that of photocatalysis (0.0052 min -1 ). The proposed mechanism of electro-field-assisted-photocatalytic removal of TBT was verified by using 117 Sn-enriched TBT spike solution as an isotopic tracer. In addition, varying impacts from some key reaction conditions, such as voltage of potential, pH value and the presence of Cr and formaldehyde were also discussed. The overall satisfactory TBT removal performance of the proposed electro-field-assisted-photocatalysis procedure with hierarchical TiO 2 microspheres, which was validated using actual tannery wastewater samples from three different kinds of tanning procedures. These attributes suggest that this electro-field-assisted-photocatalysis may have broad applications for the treatment of tannery wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Process optimisation of microwave-assisted extraction of peony ( Paeonia suffruticosa Andr .) seed oil using hexane-ethanol mixture and its characterisation

    Treesearch

    Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao

    2016-01-01

    Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...

  8. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production.

    PubMed

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-06

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g(-1) at 1.25 A g(-1)) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h(-1).

  9. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g-1 at 1.25 A g-1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h-1.

  10. Microwave-assisted synthesis and critical analysis for YBa2Cu3O6+δ nanoparticles

    NASA Astrophysics Data System (ADS)

    Chhaganlal Gandhi, Ashish; Lin, Jauyn Grace

    2018-05-01

    A new cost effective scheme of a microwave-assisted sol–gel route followed by a short annealing time is proposed to synthesize YBCO nanoparticles (NPs) of various sizes. The advanced techniques of synchrotron radiation x-ray diffraction (SRXRD) and electron spin resonance (ESR) are used to analyze the size effects on their magnetic/superconducting properties. The major interesting finding is that the size of YBCO NPs could confine the amount of oxygen content and consequently change the superconducting transition temperature (T C ) of YBCO NPs. The ESR result demonstrates a sensitive probe to characterize surface defects in the oxygen-deficient YBCO NPs.

  11. Solid-Phase and Microwave-Assisted Syntheses of 2,5-Diketopiperazines: Small Molecules with Great Potential

    PubMed Central

    O'Neill, J.C.; Blackwell, H. E.

    2008-01-01

    Diketopiperazines (DKPs) are a well-known class of heterocycles that have recently emerged as a promising biologically active scaffold. Solid-phase organic synthesis has become an important tool in the combinatorial exploration of these privileged structures, expediting the synthesis and, therefore, the discovery of active compounds. To date, certain DKPs have shown potent activities against a range of diseases and biological phenomena, including bacterial infections, various cancers, asthma, infertility, premature labor, and HIV. Recent applications of solid-phase DKP synthesis, with a particular focus on cyclative cleavage and microwave-assisted reactions, are highlighted herein. PMID:18288948

  12. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Ham, Jason E.

    2014-12-01

    A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butylhydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OHrad) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  13. Extraction of Maltol from Fraser Fir: A Comparison of Microwave-Assisted Extraction and Conventional Heating Protocols for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Koch, Andrew S.; Chimento, Clio A.; Berg, Allison N.; Mughal, Farah D.; Spencer, Jean-Paul; Hovland, Douglas E.; Mbadugha, Bessie; Hovland, Allan K.; Eller, Leah R.

    2015-01-01

    Two methods for the extraction of maltol from Fraser fir needles are performed and compared in this two-week experiment. A traditional benchtop extraction using dichloromethane is compared to a microwave-assisted extraction using aqueous ethanol. Students perform both procedures and weigh the merits of each technique. In doing so, students see a…

  14. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. © 2011 Institute of Food Technologists®

  15. Controlled Microwave Heating Accelerates Rolling Circle Amplification

    PubMed Central

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same. PMID:26348227

  16. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    PubMed

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  17. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS).

    PubMed

    Horikoshi, Satoshi; Watanabe, Tomoki; Narita, Atsushi; Suzuki, Yumiko; Serpone, Nick

    2018-03-26

    Organic reactions driven by microwaves have been subjected for several years to some enigmatic phenomenon referred to as the microwave effect, an effect often mentioned in microwave chemistry but seldom understood. We identify this microwave effect as an electromagnetic wave effect that influences many chemical reactions. In this article, we demonstrate its existence using three different types of microwave generators with dissimilar oscillation characteristics. We show that this effect is operative in photocatalyzed TiO 2 reactions; it negatively influences electro-conductive catalyzed reactions, and yet has but a negligible effect on organic syntheses. The relationship between this electromagnetic wave effect and chemical reactions is elucidated from such energetic considerations as the photon energy and the reactions' activation energies.

  18. Polymerization of tellurophene derivatives via microwave-assisted palladium-catalyzed ipso-arylative polymerization**

    PubMed Central

    Park, Young S.; Wu, Qin; Nam, Chang-Yong; Grubbs, Robert B.

    2014-01-01

    We report the synthesis of a tellurophene-containing low bandgap polymer, PDPPTe2T, via microwave-assisted palladium-catalyzed ipso-arylative polymerization of 2,5-bis[(α-hydroxy-α,α-diphenyl)methyl]tellurophene with a diketopyrrolopyrrole (DPP) monomer. Compared with the corresponding thiophene analog, PDPPTe2T absorbs light of longer wavelengths and has a smaller bandgap. Bulk heterojunction solar cells prepared from PDPPTe2T and PC71BM show PCE values of up to 4.4%. External quantum efficiency measurements show that PDPPTe2T produces photocurrent at wavelengths up to 1 μm. DFT calculations suggest that the atomic substitution from sulfur to tellurium increases electronic coupling to decrease the length of the carbon-carbon bonds between the tellurophene and thiophene rings, which results in the red-shift in absorption upon substitution of tellurium for sulfur. PMID:25145499

  19. Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.

    PubMed

    Zhang, Weimin; Chen, Jun; Swiegers, Gerhard F; Ma, Zi-Feng; Wallace, Gordon G

    2010-02-01

    Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions. The supporting single-wall carbon nanotubes (SWNTs), functionalized with carboxyl groups, were studied by thermogravimetric analysis (TGA), cyclic voltammetry (CV), and Raman spectroscopy. The loading level, morphology, and crystallinity of the Pt/SWNT catalysts were determined using TGA, SEM, and XRD. The electrochemically active catalytic surface area of the Pt/FCNT catalysts was 72.9 m(2)/g-Pt.

  20. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides

    PubMed Central

    Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787

  1. Microwave-assisted extraction and pharmacological evaluation of polysaccharides from Posidonia oceanica.

    PubMed

    Ben Salem, Yosra; Abdelhamid, Amal; Mkadmini Hammi, Khaoula; Le Cerf, Didier; Bouraoui, Abderrahman; Majdoub, Hatem

    2017-10-01

    Microwave-assisted extraction was employed for the isolation of polysaccharides from Posidonia oceanica (PPO). The extracting parameters were optimized adopting response surface methodology. The highest polysaccharide yield (2.55 ± 0.09%), which is in concordance with the predicted value (2.76%), was obtained under the following conditions: extraction time 60 s, liquid-solid ratio of 50:1 (mL/g) and power of 800 W. This polysaccharide, with molecular weight of 524 KDa, characterized by gas chromatography-mass spectrometry showed that PPO was mainly composed of galactose, glucose, and arabinose with molar percentages 25.38, 24.37, and 21.64%, respectively. The pharmacological evaluation of PPO using animal models at the dose of 100 mg/kg indicated a significant anti-inflammatory activity with a percentage of inhibition of edema of 54.65% and a significant antinociceptive activity with 78.91% inhibition of writhing for peripheral analgesic activity and an increase in the hot plate reaction time for central analgesic activity.

  2. Microwave-Assisted Synthesis of Nanomaterials and Nanocomposites

    EPA Science Inventory

    The aqueous preparation of nanoparticles using vitamins B1 and B2, and vitamin C which can function both as reducing and capping agents prompted us accomplished the bulk syntheses of Ag and Fe nanorods using polyethylene glycol (PEG) under microwave (MW) irradiation conditions; t...

  3. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    PubMed Central

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g−1 at 1.25 A g−1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h−1. PMID:24389929

  4. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Microwave assisted UV electrodeless discharge lamp photochemical degradation of 4-chlorophenol in aquatic solutions].

    PubMed

    Ai, Zhi-hui; Jiang, Jun-qing; Yang, Peng; Zhou, Tao; Lu, Xiao-hua

    2004-07-01

    A microwave assisted UV electrodeless discharge lamp system (MW/UV) was used for photo-degradation of 4CP simulated wastewater. In order to evaluate the degradation efficiency of 4CP, UV spectrophotometry and ion chromatography were used for determination of 4CP and Cl- respectively. The degradation rate in MW/UV system was higher than that in the UV system within 120min, which were 52.40% and 21.56% respectively. The degradation efficiency was improved by increasing pH value of the solution, aerating O2 gas, enhancing light intensity, or adding H2O2 oxidant. The degradation of 4CP under MW/UV accords with the first order kinetics equation.

  6. 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane.

    PubMed

    Sood, Rakhi; Donnadio, Anna; Giancola, Stefano; Kreisz, Aurélien; Jones, Deborah J; Cavaliere, Sara

    2016-07-06

    Microwave heating holds all the aces regarding development of effective and environmentally friendly methods to perform chemical transformations. Coupling the benefits of microwave-enhanced chemistry with highly reliable copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry paves the way for a rapid and efficient synthesis procedure to afford high performance thermoplastic materials. We describe herein fast and high yielding synthesis of 1,2,3-triazole-functionalized polysulfone through microwave-assisted CuAAC as well as explore their potential as phosphoric acid doped polymer electrolyte membranes (PEM) for high temperature PEM fuel cells. Polymers with various degrees of substitution of the side-chain functionality of 1,4-substituted 1,2,3-triazole with alkyl and aryl pendant structures are prepared by sequential chloromethylation, azidation, and microwave-assisted CuAAC using a range of alkynes (1-pentyne, 1-nonyne, and phenylacetylene). The completeness of reaction at each step and the purity of the clicked polymers were confirmed by (1)H-(13)C NMR, DOSY-NMR and FTIR-ATR spectroscopies. The thermal and thermochemical properties of the modified polymers were characterized by differential scanning calorimetry and thermogravimetric analysis coupled with mass spectroscopy (TG-MS), respectively. TG-MS analysis demonstrated that the commencement of the thermal degradation takes place with the decomposition of the triazole ring while its substituents have critical influence on the initiation temperature. Polysulfone functionalized with 4-phenyl-1,2,3-triazole demonstrates significantly higher Tg, Td, and elastic modulus than the ones bearing 4-propyl-1,2,3-triazole and 4-heptyl-1,2,3-triazole groups. After doping with phosphoric acid, the functionalized polymers with acid doping level of 5 show promising performance with high proton conductivity in anhydrous conditions (in the range of 27-35 mS/cm) and satisfactorily high elastic modulus (in the range

  7. Characteristics of the microwave pyrolysis and microwave CO2-assisted gasification of dewatered sewage sludge.

    PubMed

    Chun, Young Nam; Jeong, Byeo Ri

    2017-07-28

    Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NO x , were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NO x precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.

  8. Optomechanical detection of weak microwave signals with the assistance of a plasmonic wave

    NASA Astrophysics Data System (ADS)

    Nejad, A. Asghari; Askari, H. R.; Baghshahi, H. R.

    2018-05-01

    Entanglement between optical fields and microwave signals can be used as a quantum optical sensing technique to detect received microwave signals from a low-reflecting object which is encompassed by a bright thermal environment. Here, we introduce and analyze an optomechanical system for detecting weak reflected microwave signals from an object of low reflectivity. In our system, coupling and consequently entanglement between microwave and optical photons are achieved by means of a plasmonic wave. The main problem that can be moderated in the field of quantum optical sensing of weak microwave signals is suppressing the destructive effect of high temperatures on the entanglement between microwave signals and optical photons. For this purpose, we will show that our system can perform at high temperatures as well as low ones. It will be shown that the presence of the plasmonic wave can reduce the destructive effect of the thermal noises on the entanglement between microwave and optical photons. Also, we will show that the optomechanical interaction is vital to create an appropriate entanglement between microwave and optical photons.

  9. Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction.

    PubMed

    Xu, Jingjing; Zhang, Ruifang; Lu, Shiyao; Liu, Huan; Li, Zhaoyang; Zhang, Xinyu; Ding, Shujiang

    2018-07-27

    A facile and ultrafast microwave-assisted thermolysis approach has been adopted to synthesize hierarchical nitrogen-doped carbon within a very short time. The precursor PANI@carbon felt composite was pyrolyzed in microwave oven for different time (10, 20, 30, 40, 50 s) and denoted as NC-X (X = 10, 20, 30, 40, 50). As for NC-30, nitrogen-doping content is obtained up to 3.62 at% with striking enrichment of pyridinic N as high as 45% of the total nitrogen content. Raman analysis indicates the extent graphitization level for the resultant NC-30 and the relative intensity I D /I G was 1.26. High nitrogen-doping content and graphitization level provide effective active sites and efficient electron transfer channel. The resultant NC-30 exhibits pronounced ORR activity with an onset potential of 0.94 V (versus RHE), half-wave potential of 0.80 V and diffusion limiting current density of -5.23 mA cm -2 , comparable to those of the commercial Pt/C. It also shows enhanced stability with current retention of 98.3% over 7.5 h as well as superior tolerance against methanol. The simple preparation and excellent ORR performance of NC-30 suggest its promising practical application.

  10. An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni).

    PubMed

    Jaitak, Vikas; Bikram Singh, Bandna; Kaul, V K

    2009-01-01

    Stevioside and rebaudioside-A are major low-calorie diterpene steviol glycosides in the leaves of Stevia rebaudiana. They are widely used as natural sweeteners for diabetic patients, but the long extraction procedures required and the optimisation of product yield present challenging problems. To develop a rapid and effective methodology for the extraction of stevioside and rebaudioside-A from S. rebaudiana leaves and to compare yields using different extraction techniques. Dried and powdered leaves of S. rebaudiana were extracted by conventional, ultrasound and microwave-assisted extraction techniques using methanol, ethanol and water as single solvents as well as in binary mixtures. Conventional cold extraction was performed at 25 degrees C for 12 h while ultrasound extraction was carried out at temperature of 35 +/- 5 degrees C for 30 min. Microwave-assisted extraction (MAE) was carried out at a power level of 80 W for 1 min at 50 degrees C. MAE yielded 8.64 and 2.34% of stevioside and rebaudioside-A, respectively, while conventional and ultrasound techniques yielded 6.54 and 1.20%, and 4.20 and 1.98% of stevioside and rebaudioside-A, respectively. A rapid and efficient method has been developed for the extraction of stevioside and rebaudioside-A in optimum yields using MAE procedure. This method has the advantage of rapid extraction and fast screening of a large number of S. rebaudiana samples for assessment of planting material. MAE saves considerable time, energy and has implications in the quality assessment of stevioside and rebaudioside-A prior to their industrial production from the leaves of S. rebaudiana. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: Effect on physiochemical structure and enzymatic saccharification.

    PubMed

    Moodley, Preshanthan; Kana, E B Gueguim

    2017-07-01

    This paper presents a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt to enhance enzymatic saccharification. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl 2 and MA-FeCl 3 were developed with high coefficients of determination (R 2 >0.8) and optimized. Maximum reducing sugar yield of 0.406g/g was obtained with 2M FeCl 3 at 700W for 3.5min. Scanning electron microscopy (SEM), Fourier Transform Infrared analysis (FTIR) and X-ray diffraction (XRD) showed major changes in lignocellulosic structure after MA-FeCl 3 pretreatment with 71.5% hemicellulose solubilization. This regime was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl 3 conditions. A 2-fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass. Copyright © 2017. Published by Elsevier Ltd.

  13. ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application

    NASA Astrophysics Data System (ADS)

    Ashok, CH.; Venkateswara Rao, K.

    2014-12-01

    The nanocomposite rods shows well known properties compared with nano structured materials for various applications like light-emitting diodes, electron field emitters, solar cells, optoelectronics, sensors, transparent conductors and fabrication of nano devices. Present paper investigates the properties of ZnO/TiO2 nanocomposite rods. The bi component of ZnO/TiO2 nanocomposite rods was synthesized by microwave-assisted method which is very simple, rapid and uniform in heating. The frequency of microwaves 2.45 GHz was used and temperature maintained 180 °C. Zinc acetate and titanium isopropoxide precursors were used in the preparation. The obtained ZnO/TiO2 nanocomposite rods were annealed at 500 °C and 600 °C. ZnO/TiO2 nanocomposite rods have been characterized by X-ray Diffraction (XRD) for average crystallite size and phase of the composite material, Particle Size Analyser (PSA) for average particle size, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) for morphology study, Energy Dispersive X-ray Spectrometry (EDX) for elemental analysis, and Thermal Gravimetric and Differential Thermal Analysis (TG-DTA) for thermal property.

  14. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    PubMed

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  15. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers.

    PubMed

    Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica

    2017-06-01

    This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.

  16. Effects of moisture content in cigar tobacco on nicotine extraction. Similarity between soxhlet and focused open-vessel microwave-assisted techniques.

    PubMed

    Ng, Lay-Keow; Hupé, Michel

    2003-09-05

    The effects of tobacco moisture on nicotine yield were investigated in this study. Soxhlet and microwave-assisted techniques were used to extract nicotine from cigar fillers of varying moisture contents (5-20%), using a polar (methanol) and a non-polar (isooctane) solvent. The extracts were analyzed by a gas chromatograph equipped with a flame-ionization detector. For both extraction techniques, higher nicotine yields were consistently obtained with methanol than with isooctane from the same samples. Solubility of nicotine salts in methanol but not in isooctane is the major cause of this observation. Moreover, pronounced effects of the tobacco moisture content on extraction efficiency were observed with isooctane but not with methanol. For microwave assisted extraction (MAE) with isooctane, nicotine yield increased from 3 to 70% as the moisture level in tobacco was raised from 3 to 13%, and leveled off thereafter. Similar observations were made with Soxhlet extraction. While MAE results were rationalized by the known cell-rupture process, a mechanism based on the interaction between the solvents and the structural components of the plant cells has been proposed to account for the observations made with Soxhlet extraction.

  17. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  18. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution.

    PubMed

    Ta, Na; Hong, Jun; Liu, Tingfeng; Sun, Cheng

    2006-11-02

    The present study investigates the degradation of atrazine (2-chloro-4-(ethyl amino)-6-isopropyl amino-s-triazine) in aqueous solution by a developed new method, namely by means of a microwave-assisted electrodeless discharge mercury lamp (MW-EDML). An experimental design was conducted to assess the influence of various parameters: pH value, initial concentration, amount of EDML, initial volume and coexisted solvent. Atrazine was degraded completely by EDML in a relatively short time (i.e. t(1/2)=1.2 min for 10 mg/l). Additionally, the identification of main degradation products during atrazine degradation process was conducted by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). This study proposes the degradation mechanism including four possible pathways for atrazine degradation according to the degradation products.

  19. Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS.

    PubMed

    Wang, Qiang; Zhu, Lingyan; Chen, Meng; Ma, Xinxin; Wang, Xiaolei; Xia, Junchao

    2017-02-01

    Bisphenol analogues are a group of chemicals which are being widely applied in industrial and household products owing to regulations on bisphenol A (BPA) in many countries. In this study, an analytical method, including extraction from complex environmental matrices, clean-up using solid phase extraction (SPE) and following-up derivatization prior to gas chromatography coupled with mass spectrometry (GC-MS), was developed to analyze seven commonly used bisphenols in sediment. Five kinds of extraction solvents, four kinds of SPE cartridges, and four kinds of SPE eluting solvents were individually tested for their performances; and the conditions for derivatizing were also optimized. Finally, C 18 cartridge was determined as the SPE cartridge and methanol was selected as extracting and eluting solvent. Acetic anhydride (AA) was used as derivatizing agent and reaction took 20 min at room temperature. The method was used successfully to measure the seven bisphenol compounds in sediment samples from Taihu Lake, China. BPA, bisphenol F and bisphenol S were detected in all sediment samples, with concentrations in the range of 3.94-33.2; 0.503-3.28 and 0.323-27.3 ng g -1 dw. Other compounds were detected at low frequencies or not detected. We provided a convenient, reliable, and sensitive method to analyze bisphenol compounds in complex environmental samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microwave- and ultrasound-assisted extraction of vanillin and its quantification by high-performance liquid chromatography in Vanilla planifolia.

    PubMed

    Sharma, Anuj; Verma, Subash Chandra; Saxena, Nisha; Chadda, Neetu; Singh, Narendra Pratap; Sinha, Arun Kumar

    2006-03-01

    Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).

  1. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae).

    PubMed

    Barrera Vázquez, M F; Comini, L R; Martini, R E; Núñez Montoya, S C; Bottini, S; Cabrera, J L

    2014-03-01

    This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator

    PubMed Central

    Long, Yun; Zhou, Linjie; Wang, Jian

    2016-01-01

    Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305

  3. Microwave-assisted extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin: a potential biomarker.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C

    2009-01-01

    To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.

  4. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    PubMed

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  5. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    PubMed Central

    Figiel, Adam; Michalska, Anna

    2016-01-01

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845

  6. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  7. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination.

    PubMed

    Mogolodi Dimpe, K; Mpupa, Anele; Nomngongo, Philiswa N

    2018-01-05

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL -1 and 1.7μgL -1 , respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg -1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microwave assisted synthesis for A2E and development of LC-ESI-MS method for quantification of ocular bisretinoids in human retina.

    PubMed

    Kotnala, A; Senthilkumari, S; Halder, N; Kumar, A; Velpandian, T

    2018-01-15

    To develop a microwave assisted method for the rapid synthesis of A2E and also to develop a method to quantify N-retinylidene-N-retinylethanolamine(A2E), all-trans retinal dimer (ATRD), A2-glycerophospho ethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE) and monofuran A2E (MFA2E) in age matched retina. The development of microwave assisted synthesis of A2E, its purification and characterization for its utility in quantification in human retina. The semi-quantitative method development using LC-ESI-MS, LC-ESI-MS/MS and LC-APCI-MS/MS from pooled macula and peripheral retina for the bisretinoid analysis has been done. Maximum A2E conversion using microwave assisted process took place at 80°C for 45min with a yield of 55.01%. Highly sensitive and specific mass spectrometric method was developed using reverse phase C-18 separation with positive electrospray ionization and positive atmospheric phase chemical ionization of tandom mass spectrometry. A gradient mobile phase separation was achieved using water and methanol with 0.1% TFA. Multiple reaction monitoring acquisition for ESI and APCI was performed at ATRD m/z 551.2/522.2, A2GPE m/z 746.4/729.5, A2DHPEm/z 594.4/576.5, MFA2E m/z 608.2/591.2, A2E m/z 592.4/418.2. Method was validated using LC-ESI-SIM mode to determine selectivity, linearity, sensitivity, precision and accuracy. An attempt towards optimization of the synthetic procedure of A2E was made so as to reduce the lengthy reaction time without compromising the yield. Developed method was capable enough for the detection of low level of bisretinids in retina. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    NASA Astrophysics Data System (ADS)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  10. Microwave-Assisted Hydantoins Synthesis on Solid Support

    ERIC Educational Resources Information Center

    Coursindel, Thibault; Martinez, Jean; Parrot, Isabelle

    2010-01-01

    In this laboratory activity, students are introduced to a three-step synthesis of hydantoin (imidazolidine-2,4-dione), a moiety that is found in many biologically active compounds. Using a microwave oven and solid-support technology, this synthetic experiment is designed for masters-degree candidates working in organic chemistry or upper-level…

  11. Microwave-assisted synthesis of transition metal phosphide

    DOEpatents

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  12. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 2-Naphthalenthiol derivatization followed by dispersive liquid-liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography.

    PubMed

    Faraji, Mohammad; Hamdamali, Mohammadrezza; Aryanasab, Fezzeh; Shabanian, Meisam

    2018-07-13

    In this research, an ultrasonic-assisted extraction followed by 2-naphthalenthiol derivatization and dispersive liquid-liquid microextraction of acrylamide (AA) was developed as simple and sensitive sample preparation method for AA in bread and biscuit samples using high performance liquid chromatography. Influence of derivatization and microextraction parameters were evaluated and optimized. Results showed that the derivatization of AA leads to improve its hydrophobicity and chromatographic behavior. Under optimum conditions of derivatization and microextraction, the method yielded a linear calibration curve ranging from 10 to 1000 μg L -1 with a determination coefficient (R 2 ) of 0.9987. Limit of detection (LOD) and limit of quantification (LOQ) were 3.0 and 9.0 μg L -1 , respectively. Intra-day (n = 6) and inter-day (n = 3) precisions based on relative standard deviation percent (RSD%) for extraction and determination of AA at 50 and 500 μg L -1 levels were less than 9.0%. Finally, the performance of proposed method was investigated for determination of AA in some bread and biscuit samples, and satisfactory results were obtained (relative recovery ≥ 90%). Copyright © 2018. Published by Elsevier B.V.

  14. Complexity and Challenges in Noncontact High Temperature Measurements in Microwave-Assisted Catalytic Reactors

    PubMed Central

    2017-01-01

    The complexity and challenges in noncontact temperature measurements inside microwave-heated catalytic reactors are presented in this paper. A custom-designed microwave cavity has been used to focus the microwave field on the catalyst and enable monitoring of the temperature field in 2D. A methodology to study the temperature distribution in the catalytic bed by using a thermal camera in combination with a thermocouple for a heterogeneous catalytic reaction (methane dry reforming) under microwave heating has been demonstrated. The effects of various variables that affect the accuracy of temperature recordings are discussed in detail. The necessity of having at least one contact sensor, such as a thermocouple, or some other microwave transparent sensor, is recommended to keep track of the temperature changes occurring in the catalytic bed during the reaction under microwave heating. PMID:29170599

  15. Bit patterned media with composite structure for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Eibagi, Nasim

    Patterned magnetic nano-structures are under extensive research due to their interesting emergent physics and promising applications in high-density magnetic data storage, through magnetic logic to bio-magnetic functionality. Bit-patterned media is an example of such structures which is a leading candidate to reach magnetic densities which cannot be achieved by conventional magnetic media. Patterned arrays of complex heterostructures such as exchange-coupled composites are studied in this thesis as a potential for next generation of magnetic recording media. Exchange-coupled composites have shown new functionality and performance advantages in magnetic recording and bit patterned media provide unique capability to implement such architectures. Due to unique resonant properties of such structures, their possible application in spin transfer torque memory and microwave assisted switching is also studied. This dissertation is divided into seven chapters. The first chapter covers the history of magnetic recording, the need to increase magnetic storage density, and the challenges in the field. The second chapter introduces basic concepts of magnetism. The third chapter explains the fabrication methods for thin films and various lithographic techniques that were used to pattern the devices under study for this thesis. The fourth chapter introduces the exchanged coupled system with the structure of [Co/Pd] / Fe / [Co/Pd], where the thickness of Fe is varied, and presents the magnetic properties of such structures using conventional magnetometers. The fifth chapter goes beyond what is learned in the fourth chapter and utilizes polarized neutron reflectometry to study the vertical exchange coupling and reversal mechanism in patterned structures with such structure. The sixth chapter explores the dynamic properties of the patterned samples, and their reversal mechanism under microwave field. The final chapter summarizes the results and describes the prospects for future

  16. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  17. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.

    PubMed

    Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C

    2017-02-15

    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.

  18. Fast preparation of flower-like Bi{sub 4}Ge{sub 3}O{sub 12} microstructures via a microwave-assisted hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Qian; Zhang, Lei; Chen, Xue-Tai, E-mail: xtchen@netra.nju.edu.cn

    In the present paper, we report a facile and fast microwave-assisted solution-phase approach for the preparation of flower-like bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}) microstructures, employing bismuth nitrate pentahydrate (Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O) and germanium dioxide (GeO{sub 2}) as starting materials. The phase and morphology of the products were characterized by powder X-ray diffraction, X-ray photoelectron spectrum, energy dispersive spectrometry, and scanning electron microscopy. Some control experiments have been carried out to reveal the influencing factors involved in the formation, which suggested that reaction time, reaction temperature, the volume of ammonia and glycerol play crucial roles in the formation ofmore » the flower-like Bi{sub 4}Ge{sub 3}O{sub 12}. The optical absorption property of the product has been investigated. - Highlights: Black-Right-Pointing-Pointer Flower-like Bi4Ge3O12 was synthesized via a microwave-assisted solution route. Black-Right-Pointing-Pointer The phases and morphologies of the product have been characterized. Black-Right-Pointing-Pointer The optical property of the product has been studied.« less

  19. Plasma-assisted CO2 conversion: optimizing performance via microwave power modulation

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Silva, Tiago; Chen, Guoxing; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony

    2018-04-01

    Significant improvement in the energy efficiency of plasma-assisted CO2 conversion is achieved with applied power modulation in a surfaguide microwave discharge. The obtained values of CO2 conversion and energy efficiency are, respectively, 0.23 and 0.33 for a 0.95 CO2  +  0.05 N2 gas mixture. Analysis of the energy relaxation mechanisms shows that power modulation can potentially affect the vibrational-translational energy exchange in plasma. In our case, however, this mechanism does not play a major role, likely due to the low degree of plasma non-equilibrium in the considered pressure range. Instead, the gas residence time in the discharge active zone together with plasma pulse duration are found to be the main factors affecting the CO2 conversion efficiency at low plasma pulse repetition rates. This effect is confirmed experimentally by the in situ time-resolved two-photon absorption laser-induced fluorescence measurements of CO molecular density produced in the discharge as a result of CO2 decomposition.

  20. Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment.

    PubMed

    Chen, Cong; Boldor, Dorin; Aita, Giovanna; Walker, Michelle

    2012-04-01

    The efficiency of a batch microwave-assisted ammonia heating system was investigated as pretreatment for sweet sorghum bagasse and its effect on porosity, chemical composition, particle size, enzymatic hydrolysis and fermentation into ethanol evaluated. Sorghum bagasse, fractionated into three particle size groups (9.5-18, 4-6 and 1-2mm), was pretreated with ammonium hydroxide (28% v/v solution) and water at a ratio of 1:0.5:8 at 100, 115, 130, 145 and 160°C for 1h. Simon's stain method revealed an increase in the porosity of the biomass compared to untreated biomass. The most lignin removal (46%) was observed at 160°C. About 90% of the cellulose and 73% of the hemicellulose remained within the bagasse. The best glucose yields and ethanol yields (from glucose only) among all different pretreatment conditions averaged 42/100g dry biomass and 21/100g dry biomass, respectively with 1-2mm sorghum bagasse pretreated at 130°C for 1h. Published by Elsevier Ltd.

  1. Cationic pentaheteroaryls as selective G-quadruplex ligands by solvent-free microwave-assisted synthesis.

    PubMed

    Petenzi, Michele; Verga, Daniela; Largy, Eric; Hamon, Florian; Doria, Filippo; Teulade-Fichou, Marie-Paule; Guédin, Aurore; Mergny, Jean-Louis; Mella, Mariella; Freccero, Mauro

    2012-11-05

    We report herein a solvent-free and microwaved-assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4-oxadiazole moieties (1-7). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4-FID) and CD spectroscopy. Among the G-quadruplexes considered, attention was focused on telomeric repeats together with the proto-oncogenic c-kit sequences and the c-myc oncogene promoter. Compound 1, and to a lesser extent 2 and 5, preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole (TOxaPy), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids.

    PubMed

    García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana

    2018-04-14

    A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct-Coupled Plasma-Assisted Combustion Using a Microwave Waveguide Torch

    DTIC Science & Technology

    2011-12-01

    enhance combustion by coupling an atmospheric plasma dis- charge to a premixed methane/air flame. The absorbed microwave power ranges from 60 to 150 W...The plasma system allows for complete access of the plasma- enhanced flame for laser and optical diagnostics 0093-3813/$26.00 © 2011 IEEE Report...microwave waveguide is used to initiate and enhance combustion by coupling an atmospheric plasma discharge to a premixed methane/air flame. The

  4. Optimality in Microwave-Assisted Drying of Aloe Vera ( Aloe barbadensis Miller) Gel using Response Surface Methodology and Artificial Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Das, Chandan; Das, Arijit; Kumar Golder, Animes

    2016-10-01

    The present work illustrates the Microwave-Assisted Drying (MWAD) characteristic of aloe vera gel combined with process optimization and artificial neural network modeling. The influence of microwave power (160-480 W), gel quantity (4-8 g) and drying time (1-9 min) on the moisture ratio was investigated. The drying of aloe gel exhibited typical diffusion-controlled characteristics with a predominant interaction between input power and drying time. Falling rate period was observed for the entire MWAD of aloe gel. Face-centered Central Composite Design (FCCD) developed a regression model to evaluate their effects on moisture ratio. The optimal MWAD conditions were established as microwave power of 227.9 W, sample amount of 4.47 g and 5.78 min drying time corresponding to the moisture ratio of 0.15. A computer-stimulated Artificial Neural Network (ANN) model was generated for mapping between process variables and the desired response. `Levenberg-Marquardt Back Propagation' algorithm with 3-5-1 architect gave the best prediction, and it showed a clear superiority over FCCD.

  5. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    PubMed

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  6. Purification of Derivatized Oligosaccharides by Solid Phase Extraction for Glycomic Analysis

    PubMed Central

    Zhang, Qiwei; Li, Henghui; Feng, Xiaojun; Liu, Bi-Feng; Liu, Xin

    2014-01-01

    Profiling of glycans released from proteins is very complex and important. To enhance the detection sensitivity, chemical derivatization is required for the analysis of carbohydrates. Due to the interference of excess reagents, a simple and reliable purification method is usually necessary for the derivatized oligosaccharides. Various SPE based methods have been applied for the clean-up process. To demonstrate the differences among these methods, seven types of self-packed SPE cartridges were systematically compared in this study. The optimized conditions were determined for each type of cartridge and it was found that microcrystalline cellulose was the most appropriate SPE material for the purification of derivatized oligosaccharide. Normal phase HPLC analysis of the derivatized maltoheptaose was realized with a detection limit of 0.12 pmol (S N−1 = 3) and a recovery over 70%. With the optimized SPE method, relative quantification analysis of N-glycans from model glycoproteins were carried out accurately and over 40 N-glycans from human serum samples were determined regardless of the isomers. Due to the high stability and sensitivity, microcrystalline cellulose cartridge showed potential applications in glycomics analysis. PMID:24705408

  7. Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera

    NASA Astrophysics Data System (ADS)

    Shanmugalingam, A.; Murugesan, A.

    2018-05-01

    This study reports adsorption of Cr(VI) ions from aqueous solution using activated carbon that was prepared from stems of Leucas aspera. Eight hundred and fifty watts power of microwave radiation, 12 min of radiation time, 60% of ZnCl2 solution and 24 h of impregnation time are the optimal parameters to prepare efficient carbon effective activated carbon. It was designated as MWLAC (Microwave assisted Zinc chloride activated Leucas aspera carbon). Various adsorption characteristics such as dose of the adsorbent, agitation time, initial Cr(VI) ion concentration, pH of the solution and temperature on adsorption were studied for removal of Cr(VI) ions from aqueous solution by batch mode. Also the equilibrium adsorption was analyzed by the Langmuir, Freundlich, Tempkin and D-R isotherm models. The order of best describing isotherms was given based on R2 value. The pseudo-second-order kinetic model best fitted with the Cr(VI) adsorption data. Thermodynamic parameters were also determined and results suggest that the adsorption process is a spontaneous, endothermic and proceeded with increased randomness.

  8. Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Rani, Suman; Ahlawat, Neetu; Punia, R.; Kundu, R. S.; Ahlawat, N.

    2016-05-01

    In this present work, CaCu3Ti4O12 (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.

  9. α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis.

    PubMed

    Sun, Tuan-Wei; Zhu, Ying-Jie; Qi, Chao; Ding, Guan-Jun; Chen, Feng; Wu, Jin

    2016-02-01

    α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm. The effects of the microwave solvothermal temperature and EA amount on the morphology of the precursor were investigated. The as-prepared α-Fe2O3 HHMSs exhibit a good photocatalytic activity for the degradation of salicylic acid, and are promising for the application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. One drop chemical derivatization--DESI-MS analysis for metabolite structure identification.

    PubMed

    Lubin, Arnaud; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2015-07-01

    Structural elucidation of metabolites is an important part during the discovery and development process of new pharmaceutical drugs. Liquid Chromatography (LC) in combination with Mass Spectrometry (MS) is usually the technique of choice for structural identification but cannot always provide precise structural identification of the studied metabolite (e.g. site of hydroxylation and site of glucuronidation). In order to identify those metabolites, different approaches are used combined with MS data including nuclear magnetic resonance, hydrogen/deuterium exchange and chemical derivatization followed by LC-MS. Those techniques are often time-consuming and/or require extra sample pre-treatment. In this paper, a fast and easy to set up tool using desorption electrospray ionization-MS for metabolite identification is presented. In the developed method, analytes in solution are simply dried on a glass plate with printed Teflon spots and then a single drop of derivatization mixture is added. Once the spot is dried, the derivatized compound is analyzed. Six classic chemical derivatizations were adjusted to work as a one drop reaction and applied on a list of compounds with relevant functional groups. Subsequently, two successive reactions on a single spot of amoxicillin were tested and the methodology described was successfully applied on an in vitro incubated alprazolam metabolite. All reactions and analyses were performed within an hour and gave useful structural information by derivatizing functional groups, making the method a time-saving and efficient tool for metabolite identification if used in addition or in some cases as an alternative to common methods. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties.

    PubMed

    Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M

    2017-06-24

    Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.

  12. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.

    Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less

  13. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis

    DOE PAGES

    Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.; ...

    2018-01-13

    Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less

  14. Decrystallization of Crystals Using Gold “Nano-Bullets” and the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    PubMed Central

    Thompson, Nishone; Boone-Kukoyi, Zainab; Shortt, Raquel; Lansiquot, Carisse; Kioko, Bridgit; Bonyi, Enock; Toker, Salih; Ozturk, Birol; Aslan, Kadir

    2017-01-01

    Gout is caused by the overproduction of uric acid and the inefficient metabolism of dietary purines in humans. Current treatments of gout, which include anti-inflammatory drugs, cyclooxygenase-2 inhibitors, and systemic glucocorticoids, have harmful side-effects. Our research laboratory has recently introduced an innovative approach for the decrystallization of biological and chemical crystals using the Metal-Assisted and Microwave-Accelerated Evaporative Decrystallization (MAMAD) technique. In the MAMAD technique, microwave energy is used to heat and activate gold nanoparticles that behave as “nano-bullets” to rapidly disrupt the crystal structure of biological crystals placed on planar surfaces. In this study, crystals of various sizes and compositions were studied as models for tophaceous gout at different stages (i.e., uric acid as small crystals (~10–100 μm) and L-alanine as medium (~300 μm) and large crystals (~4400 μm). Our results showed that the use of the MAMAD technique resulted in the reduction of the size and number of uric acid and L-alanine crystals up to >40% when exposed to intermittent microwave heating (up to 20 W power at 8 GHz) in the presence of 20 nm gold nanoparticles up to 120 s. This study demonstrates that the MAMAD technique can be potentially used as an alternative therapeutic method for the treatment of gout by effective decrystallization of large crystals, similar in size to those that often occur in gout. PMID:27763557

  15. A microwave plasma torch and its applications

    NASA Astrophysics Data System (ADS)

    Uhm, H. S.; Hong, Y. C.; Shin, D. H.

    2006-05-01

    A portable microwave plasma torch at atmospheric pressure by making use of magnetrons operated at 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used in various areas including commercial, environmental and military applications. For example, perfluorocompounds (PFCs), which have long lifetimes and serious global warming implications, are widely used during plasma etching and plasma-assisted chamber cleaning processes in chemical vapour deposition systems. The microwave torch effectively eliminates PFCs. Efficient decomposition of toluene gas indicates the effectiveness of volatile organic compound eliminations from industrial emission and the elimination of airborne chemical and biological warfare agents. The microwave torch has been used to synthesize carbon nanotubes in an on-line system, thereby providing the opportunity of mass production of the nanotubes. There are other applications of the microwave plasma torch.

  16. Microwave-assisted water extraction of green tea polyphenols.

    PubMed

    Nkhili, Ezzohra; Tomao, Valerie; El Hajji, Hakima; El Boustani, Es-Seddik; Chemat, Farid; Dangles, Olivier

    2009-01-01

    Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. To develop a microwave-assisted water extraction (MWE) of green tea polyphenols. MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC-MS analysis) and antioxidant activity of the extracts. By MWE (80 degrees C, 30 min), the flavanol content of the extract reached 97.46 (+/- 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (+/- 0.08) by CWE (80 degrees C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (+/- 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (+/- 0.26) mg/g by CWE. MWE appears more efficient than CWE at both 80 and 100 degrees C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100 degrees C typically affords higher yields in total phenols, MWE at 80 degrees C appears more convenient for the extraction of the green tea-specific and chemically sensitive flavanols.

  17. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction

    PubMed Central

    Tajti, Ádám; Ádám, Anna; Csontos, István; Karaghiosoff, Konstantin; Czugler, Mátyás; Ábrányi-Balogh, Péter

    2017-01-01

    A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair. PMID:28179951

  18. Ultrasound/microwave-assisted solid-liquid-solid dispersive extraction with high-performance liquid chromatography coupled to tandem mass spectrometry for the determination of neonicotinoid insecticides in Dendrobium officinale.

    PubMed

    Zheng, Shuilian; Wu, Huizhen; Li, Zuguang; Wang, Jianmei; Zhang, Hu; Qian, Mingrong

    2015-01-01

    A one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction procedure was used for the simultaneous determination of eight neonicotinoids (dinotefuran, nitenpyram, thiamethoxam, clothianidin, imidacloprid, acetamiprid, thiacloprid, imidaclothiz) in dried Dendrobium officinale by liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in multiple reaction monitoring mode. The samples were quickly extracted by acetonitrile and cleaned up by the mixed dispersing sorbents including primary secondary amine, C18 , and carbon-GCB. Parameters that could influence the ultrasound/microwave-assisted extraction efficiency such as microwave irradiation power, ultrasound irradiation power, temperature, and solvent were investigated. Recovery studies were performing well (70.4-113.7%) at three examined spiking levels (10, 50, and 100 μg/kg). Meanwhile, the limits of quantification for the neonicotinoids ranged from 0.87 to 1.92 μg/kg. The method showed good linearity in the concentration range of 1-100 μg/L with correlation coefficients >0.99. This quick and useful analytical method could provide a basis for monitoring neonicotinoid insecticide residues in herbs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fluorination, Defluorination, Derivatization and Solvation of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Margrave, John L.

    1999-10-01

    Direct fluorination has been used to create fluoronanotubes which have active sites for derivatizing carbon nanotubes. A new technique using hydrazine and its derivatives has been used for defluorination of fluoronanotubes. The products include N2 and HF. Fluorinated species can be derivatized with R-Li or Grignard Reagents to form inorganic fluorides and derivatized products e.g., methyl, butyl or hexyl-nanotubes, (NH2)x-nanotubes, etc. Mass-spectra IR and Raman spectra along with electron microprobe analyses have been utilized, along with AFM, SEM and TEM to characterize the products. ``Fluorotubes" can be solvated as individual tubes in various alcohol solvents via ultrasonication. These solutions persist long enough (over a week) to permit solution phase chemistry to be carried out on the fluorotubes. For example, the solvated fluorotubes can be precipitated out of solution with hydrazine to yield normal, unfluorinated SWNTs or they can be reacted with sodium methoxide to yield methoxylated SWNTs.

  20. Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs).

    PubMed

    Visentin, Sonja; Medana, Claudio; Barge, Alessandro; Giancotti, Valeria; Cravotto, Giancarlo

    2010-05-21

    The application of microwaves as an efficient form of volumetric heating to promote organic reactions was recognized in the mid-1980 s. It has a much longer history in the food research and industry where microwave irradiation was studied in depth to optimize food browning and the development of desirable flavours from Maillard reactions. The microwave-promoted Maillard reaction is a challenging synthetic method to generate molecular diversity in a straightforward way. In this paper we present a new rapid and efficient one-pot procedure for the preparation of pentosidine and other AGEs under microwave irradiation.

  1. Rapid and solvent-saving liquefaction of woody biomass using microwave-ultrasonic assisted technology.

    PubMed

    Lu, Zexiang; Wu, Zhengguo; Fan, Liwei; Zhang, Hui; Liao, Yiqiang; Zheng, Deyong; Wang, Siqun

    2016-01-01

    A novel process to rapidly liquefy sawdust using reduced quantities of solvent, was successfully carried out via microwave-ultrasonic assisted technology (MUAT) in a sulphuric acid/polyethylene glycol 400-glycerol catalytic system. The influences of some key parameters on the liquefaction yield were investigated. The results showed that compared with traditional liquefaction, the introduction of MUAT allowed the solvent dosage to be halved and shortened the liquefaction time from 60 to 20 min. The liquefaction yield reached 91% under the optimal conditions. However, the influence on the yield of some parameters such as catalyst concentration, was similar to that of traditional liquefaction, indicating that the application of MUAT possibly only intensified heat and mass transfer rather than altering either the degradation mechanism or pathway. The introduction of MUAT as a process intensification technology has good industrial application potential for woody biomass liquefaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. On-matrix Derivatization for Dynamic Headspace Sampling of Nonvolatile Surface Residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Wahl, Jon H.

    2012-09-01

    The goal of this study is to extend sampling by the field and laboratory emission cell (FLEC) purge-and-trap technique to applications that target nonvolatile residues. On-matrix derivatization of residues to render analytes stable and more volatile is explored to achieve this goal. Results show that on-matrix derivatizations of nerve agent hydrolysis products (monoalkyl methylphosphonic acids and methylphosphonic acid [MPA]) with diazomethane were successful on glass and painted wallboard (at the 10-µg level). It also was successful on the more difficult concrete (at the 500-µg level) and carpet (at the 20-µg level) substrates that cannot be successfully sampled using swipe techniques.more » Analysis of additional chemical warfare (CW)-associated residues can be approached by on-matrix derivatization with trifluoroacetic anhydride (TFAA). For example, amines (used as stabilizers or present as decomposition products of the nerve agent VX) or thiodiglycol (hydrolysis product of sulfur mustard) could be sampled as their TFAA derivatives from glass, painted wallboard, and concrete (at the 40-µg level), as well as carpet (at the 80-µg level) surfaces. Although the amine and thiodiglycol are semi-volatile and could be sampled directly, derivatization improves the recovery and chromatographic behavior of these analytes.« less

  3. On-matrix derivatization for dynamic headspace sampling of nonvolatile surface residues.

    PubMed

    Harvey, Scott D; Wahl, Jon H

    2012-09-21

    The goal of this study is to extend sampling by the field and laboratory emission cell (FLEC) dynamic headspace technique to applications that target nonvolatile residues. On-matrix derivatization of residues to render analytes stable and more volatile is explored to achieve this goal. Results show that on-matrix derivatizations of nerve agent hydrolysis products (monoalkyl methylphosphonic acids and methylphosphonic acid [MPA]) with diazomethane were successful on glass and painted wallboard (at the 10-μg level). It also was successful on the more difficult concrete (at the 500-μg level) and carpet (at the 20-μg level), substrates that cannot be successfully sampled using swipe techniques. Analysis of additional chemical warfare (CW)-associated residues can be approached by on-matrix derivatization with trifluoroacetic anhydride (TFAA). For example, amines (used as stabilizers or present as decomposition products of the nerve agent VX) or thiodiglycol (hydrolysis product of sulfur mustard) could be sampled as their TFAA derivatives from glass, painted wallboard, and concrete (at the 40-μg level), as well as carpet (at the 80-μg level) surfaces. Although the amine and thiodiglycol are semi-volatile and could be sampled directly, derivatization improves the recovery and chromatographic behavior of these analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    NASA Astrophysics Data System (ADS)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-12-01

    Microwave assisted hydrothermal process of synthesis of ZnO-GO nanocomposite by using ZnCl2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide-graphene oxide (ZnO-GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO-GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV-vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic performance legitimate to the efficient photosensitized electron injection and repressed electron recombination due to electron transfer process with GO as electron collector and transporter dependent on the proportion of GO in ZnO/GO composite.

  5. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    PubMed

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine.

    PubMed

    Ponnusamy, Vinoth Kumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Wan-Tran; Jen, Jen-Fon

    2014-03-01

    In this study, a simple and fast microwave assisted chemical reduction method for the preparation of graphene nanosheet/polyethyleneimine/gold nanoparticle (GNS/PEI/AuNP) composite was developed. PEI, a cationic polymer, was used both as a non-covalent functionalizing agent for the graphene oxide nanosheets (GONSs) through electrostatic interactions in the aqueous medium and also as a stabilizing agent for the formation of AuNPs on PEI wrapped GNSs. This preparation method involves a simple mixing step followed by a simultaneous microwave assisted chemical reduction of the GONSs and gold ions. The prepared composite exhibits the dispersion of high density AuNPs which were densely decorated on the large surface area of the PEI wrapped GNS. X-ray photoelectron spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, field-emission scanning electron microscopy with energy dispersive X-ray spectroscopy, and thermo-gravimetric analysis, were used to characterize the properties of the resultant composite. The prepared GNS/PEI/AuNP composite film exhibited excellent electrocatalytical activity towards the selective determination of dopamine in the presence of ascorbic acid, which showed potential application in electrochemical sensors. The applicability of the presented sensor was also demonstrated for the determination of dopamine in human urine samples. © 2013 Elsevier B.V. All rights reserved.

  7. ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.

    PubMed

    Juranović Cindrić, Iva; Krizman, Ivona; Zeiner, Michaela; Kampić, Štefica; Medunić, Gordana; Stingeder, Gerhard

    2012-12-15

    The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 μg g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 μg g(-1) for Zn, 0.7-2.8 μg g(-1) for Sr. The range of Mn in peel 4-6 μg g(-1) is higher compared to whole apple from 0.7 to 1.7 μg g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 μg g(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation.

    PubMed

    Bo, Longli; Quan, Xie; Wang, Xiaochang; Chen, Shuo

    2008-08-30

    Granular activated carbon-supported platinum (Pt/GAC) catalysts were prepared by microwave irradiation and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Pt particles dispersing onto the surface of GAC could be penetrated by microwave and acted as "reaction centre" in the degradations of p-nitrophenol (PNP) and pentachlorophenol (PCP) in aqueous solution by microwave-assisted catalytic oxidation. The reaction was carried out through a packed bed reactor under ambient pressure and continuous flow mode. Under the conditions of microwave power 400 W, influent flow 6.4 mL min(-1) and air flow 120 mL min(-1), phenolic solutions with high concentration (initial concentrations of PNP and PCP solutions were 1469 and 1,454 mg L(-1), respectively) were treated effectively by Pt/GAC, 86% PNP and 90% PCP were degraded and total organic carbon (TOC) removal reached 85% and 71%, respectively. Compared with GAC, loaded Pt apparently accelerated oxidative reaction so that Pt/GAC had a better degrading and mineralizing efficiencies for PNP. Hydraulic retention time was only 16 min in experiment, which was shortened greatly compared with catalytic wet air oxidation. Pyrolysis and oxidation of phenolic pollutants occurred simultaneously on the surface of Pt/GAC by microwave irradiation.

  9. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties.

    PubMed

    Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin

    2017-03-01

    Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

  10. Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles.

    PubMed

    Tzeng, Yan-Kai; Chang, Cheng-Chun; Huang, Chien-Ning; Wu, Chih-Che; Han, Chau-Chung; Chang, Huan-Cheng

    2008-09-01

    A streamlined protocol has been developed to accelerate, simplify, and enhance matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) of neutral underivatized glycans released from glycoproteins. It involved microwave-assisted enzymatic digestion and release of glycans, followed by rapid removal of proteins and peptides with carboxylated/oxidized diamond nanoparticles, and finally treating the analytes with NaOH before mixing them with acidic matrix (such as 2,5-dihydroxybenzoic acid) to suppress the formation of both peptide and potassiated oligosaccharide ions in MS analysis. The advantages of this protocol were demonstrated with MALDI-TOF-MS of N-linked glycans released from ovalbumin and ribonuclease B.

  11. Development of a compound-specific isotope analysis method for acetone via 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Wen, Sheng; Feng, Yanli; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Bi, Xinhui

    2004-01-01

    A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone. Copyright (c) 2004 John Wiley & Sons, Ltd.

  12. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    NASA Technical Reports Server (NTRS)

    Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  13. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from walnut flour using response surface methodology.

    PubMed

    Luo, Yan; Wu, Wanxing; Chen, Dan; Lin, Yuping; Ma, Yage; Chen, Chaoyin; Zhao, Shenglan

    2017-12-01

    Walnut is a traditional food as well as a traditional medicine recorded in the Chinese Pharmacopoeia; however, the large amounts of walnut flour (WF) generated in walnut oil production have not been well utilized. This study maximized the total polyphenolic yield (TPY) from the walnut flour (WF) by optimizing simultaneous ultrasound/microwave-assisted hydroalcoholic extraction (SUMAE). Response surface methodology was used to optimize the processing parameters for the TPY, including microwave power (20-140 W), ultrasonic power (75-525 W), extraction temperature (25-55 °C), and time (0.5-9.5 min). The polyphenol components were analysed by LC-MS. A second-order polynomial model satisfactorily fit the experimental TPY data (R 2  = 0.9932, P < 0.0001 and R adj 2     = 0.9868). The optimized quick extraction conditions were microwave power 294.38 W, ultrasonic power 93.5 W, temperature 43.38 °C and time 4.33 min, with a maximum TPY of 34.91 mg GAE/g, which was a rapid extraction. The major phenolic components in the WF extracts were glansreginin A, ellagic acid, and gallic acid with peak areas of 22.15%, 14.99% and 10.96%, respectively, which might be used as functional components for health food, cosmetics and medicines. The results indicated that walnut flour, a waste product from the oil industry, was a rich source of polyphenolic compounds and thus could be used as a high-value functional food ingredient.

  14. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies).

    PubMed

    Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo

    2004-06-17

    A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.

  15. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu

    2018-03-01

    Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.

  16. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: Theoretical and experimental analysis.

    PubMed

    S, Suganya; P, Senthil Kumar; A, Saravanan; P, Sundar Rajan; C, Ravikumar

    2017-03-01

    In this research, the microwave assistance has been employed for the preparation of novel material from agro/natural bio-waste i.e. sawdust, for the effective removal of methylene blue (MB) dye from aqueous solution. The characterization of the newly prepared microwave assisted sawdust (MASD) material was performed by using FTIR, SEM and XRD analyses. In order to obtain the maximum removal of MB dye from wastewater, the adsorption experimental parameters such as initial dye concentration, contact time, solution pH and adsorbent dosage were optimized by trial and error approach. The obtained experimental results were applied to the different theoretical models to predict the system behaviour. The optimum conditions for the maximum removal MB dye from aqueous solution for an initial MB dye concentration of 25mg/L was calculated as: adsorbent dose of 3g/L, contact time of 90min, solution pH of 7.0 and at the temperature of 30°C. Freundlich and pseudo-second order models was best obeyed with the studied experimental data. Langmuir maximum monolayer adsorption capacity of MASD for MB dye removal was calculated as 58.14mg of MB dye/g of MASD. Adsorption diffusion model stated that the present adsorption system was controlled by intraparticle diffusion model. The obtained results proposed that, novel MASD was considered to be an effective and low-cost adsorbent material for the removal of dye from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rapid determination of collagen in meat-based foods by microwave hydrolysis of proteins and HPAEC-PAD analysis of 4-hydroxyproline.

    PubMed

    Messia, M C; Di Falco, T; Panfili, G; Marconi, E

    2008-10-01

    A rapid microwave procedure for protein hydrolysis coupled with High Performance Anion Exchange Chromatography and Pulsed Amperometric Detection (HPAEC-PAD) was developed to quantify the amino acid 4-hydroxyproline in meat and meat-based products. This innovative approach was successfully applied to determine collagen content (4-hydroxyproline×8) as the index quality of meat material employed in the preparation of typical meat sausages ("Mortadella di Bologna PGI" and "Salamini italiani alla cacciatora PDO") and fresh filled pastas. Microwave hydrolysis showed a precision and accuracy similar to traditional hydrolysis (RSD% from 0.0 to 6.4; relative error 1.4-10.0%) with a reduction in the hydrolysis time from 24h to 20min. HPAEC-PAD allowed detection of 4-hydroxyproline without pre or post-column derivatization and the use of non-toxic eluents.

  18. One-step microwave-assisted colloidal synthesis of hybrid silver oxide/silver nanoparticles: characterization and catalytic study

    NASA Astrophysics Data System (ADS)

    Prakoso, S. P.; Taufik, A.; Saleh, R.

    2017-04-01

    This study reports the characterization and catalytic activities of silver-oxide/silver nanoparticles (Ag2O/Ag NPs) synthesized by microwave-assisted colloidal method in the presence of anionic sodium dodecyl sulfate (SDS) surfactant. To promote different contents of silver in silver oxide, the volume ratio (VR) of ethylene glycol (EG) was varied (VR: 10% to 14%) in relation to the total volume of distilled water solvent. The plasmonic resonance of Ag2O/Ag NPs could be detected around a wavelength of 350 nm, and it is suggested that Ag2O/Ag NPs were successfully formed in the colloid solution following exposure to microwaves. Additionally, the growth rate for each crystal phase within Ag2O and Ag was influenced by an increase of EG as revealed by x-ray diffraction patterns. The morphology, average diameter, and uniformity of Ag2O/Ag NPs were studied simultaneously by transmission electron microscopy. Infrared absorption measurement of Ag2O/Ag NPs confirmed the existence of SDS surfactant as a protective agent. Based on the characterization data, Ag2O/Ag NPs synthesized using this technique exhibited good properties, with high-yield production of NPs. The photocatalytic experiments demonstrate the key role of the crystal phase of Ag2O/Ag NPs in photocatalytic efficiency.

  19. Microwave-assisted template-free synthesis of butterfly-like CuO through Cu2Cl(OH)3 precursor and the electrochemical sensing property

    NASA Astrophysics Data System (ADS)

    Xie, Hanjie; Zhu, Lianjie; Zheng, Wenjun; Zhang, Jing; Gao, Fubo; Wang, Yan

    2016-11-01

    An energy-efficient and environmentally friendly microwave-assisted method was adopted for synthesis of butterfly-like CuO assembled by nanosheets through a Cu2Cl(OH)3 precursor, using no template. Formation mechanism of the butterfly-like CuO was explored and discussed systematically for the first time on the basis of both experimental results and crystal structure transformations in atomic level. The electrochemical sensing properties of the butterfly-like CuO modified electrode to ascorbic acid (AA) were studied for the first time. The results reveal that Cu(OH)2 nanowires were formed once the Cu2+ ions, located in between two CuO4 parallelogram chains of a Cu2Cl(OH)3 precursor, dissolve into the solution as Cu(OH)42- complex ions after ion exchange reactions and simultaneous assemble along a axis. Upon microwave irradiation, the adjacent CuO4 parallelogram chains of the Cu(OH)2 nanowires dehydrate and assemble along c axis, forming CuO nanosheets with (002) as the main exposed facet, which were further assembled to butterfly-like CuO under the action of microwave field, suggesting that microwave field functions like a 'directing agent'. The butterfly-like CuO modified electrode shows good electrochemical sensing properties to AA with a low detecting limit, short response time and wide linear response range.

  20. Site-specific protein labeling with PRIME and chelation-assisted Click chemistry

    PubMed Central

    Uttamapinant, Chayasith; Sanchez, Mateo I.; Liu, Daniel S.; Yao, Jennifer Z.; White, Katharine A.; Grecian, Scott; Clarke, Scott; Gee, Kyle R.; Ting, Alice Y.

    2016-01-01

    This protocol describes an efficient method to site-specifically label cell-surface or purified proteins with chemical probes in two steps: PRobe Incorporation Mediated by Enzymes (PRIME) followed by chelation-assisted copper-catalyzed azide-alkyne cycloaddition (CuAAC). In the PRIME step, Escherichia coli lipoic acid ligase site-specifically attaches a picolyl azide derivative to a 13-amino acid recognition sequence that has been genetically fused onto the protein of interest. Proteins bearing picolyl azide are chemoselectively derivatized with an alkyne-probe conjugate by chelation-assisted CuAAC in the second step. We describe herein the optimized protocols to synthesize picolyl azide, perform PRIME labeling, and achieve CuAAC derivatization of picolyl azide on live cells, fixed cells, and purified proteins. Reagent preparations, including synthesis of picolyl azide probes and expression of lipoic acid ligase, take 12 d, while the procedure to perform site-specific picolyl azide ligation and CuAAC on cells or on purified proteins takes 40 min-3 h. PMID:23887180

  1. An overview of heavy-atom derivatization of protein crystals

    PubMed Central

    Pike, Ashley C. W.; Garman, Elspeth F.; Krojer, Tobias; von Delft, Frank; Carpenter, Elisabeth P.

    2016-01-01

    Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative. PMID:26960118

  2. Microwave Hydrothermal Synthesis of Reduced Graphene Oxide: Effects of Microwave Power and Irradiation Time

    NASA Astrophysics Data System (ADS)

    Agusu, La; Ode Ahmad, La; Anggara, Desna; Alimin; Mitsudo, Seitaro; Fujii, Yutaka; Kikuchi, Hiromitsu

    2018-04-01

    Reduced graphene oxide has been synthesihzed by one-pot microwave assisted hydrothermal method. Effects of microwave power and irradiation time to its crystal structure and electrical conductivity were investigated. Here, graphene oxide, firstly, were synthesized by modified hummers method and subsequently mixed with Zn as a reducing agent. Then it was transferred to modified domestic microwave oven (800 watts) with glass distiller equipment for completely reduction process. Three different power levels (240, 400, 630 watts) and two cases of irradiation times (20 and 40 minutes) were treated. XRD study shows that irradiation time variation is more effective than the variation of power level. Power level of 270 watts and for 40 minutes microwave irradiation are enough for producing estimated bilayer rGO with graphene interlayer of ~0.4 nm. Bilayer graphene and water molecule (~0.3 nm) may vibrate the same manner and perhaps they are accepting the same temperature. Graphene seems to be re-arranged in unspecified way among the thermal pressure, temperature gradient and/or water surface tension between graphene and water induced by microwave, in order to achieve thermal equilibrium through out the system The electrical conductivity rGO/PVA (60/40 %w) paper are ranging from 15.6 to 43.4 mS/cm.

  3. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis

    NASA Astrophysics Data System (ADS)

    Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.

    2017-10-01

    We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.

  4. Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.

  5. Microwave-assisted routes for rapid and efficient modification of layered perovskites.

    PubMed

    Akbarian-Tefaghi, S; Wiley, J B

    2018-02-27

    Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.

  6. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    PubMed

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  7. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Takayama, S.; Sano, S.

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process ofmore » zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)« less

  8. Mass spectrometer having a derivatized sample presentation apparatus

    DOEpatents

    Nelson, Randall W.

    2000-07-25

    A mass spectrometer having a derivatized sample presentation apparatus is provided. The sample presentation apparatus has a complex bound to the surface of the sample presentation apparatus. This complex includes a molecule which may chemically modify a biomolecule.

  9. Microwave-assisted extraction of herbacetin diglucoside from flax (Linum usitatissimum L.) seed cakes and its quantification using an RP-HPLC-UV system.

    PubMed

    Fliniaux, Ophélie; Corbin, Cyrielle; Ramsay, Aina; Renouard, Sullivan; Beejmohun, Vickram; Doussot, Joël; Falguières, Annie; Ferroud, Clotilde; Lamblin, Frédéric; Lainé, Eric; Roscher, Albrecht; Grand, Eric; Mesnard, François; Hano, Christophe

    2014-03-10

    Flax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid. In this context, the development and validation of a new approach using microwave-assisted extraction (MAE) of HDG from flaxseed cakes followed by quantification with a reverse-phase HPLC system with UV detection was purposed. The experimental parameters affecting the HDG extraction yield, such as microwave power, extraction time and sodium hydroxide concentration, from the lignan macromolecule were optimized. A maximum HDG concentration of 5.76 mg/g DW in flaxseed cakes was measured following an irradiation time of 6 min, for a microwave power of 150 W using a direct extraction in 0.1 M NaOH in 70% (v/v) aqueous methanol. The optimized method was proven to be rapid and reliable in terms of precision, repeatability, stability and accuracy for the extraction of HDG. Comparison with a conventional extraction method demonstrated that MAE is more effective and less time-consuming.

  10. Determination of Diacetyl in Beer by a Precolumn Derivatization-HPLC-UV Method Using 4-(2,3-Dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a Derivatizing Reagent.

    PubMed

    Wang, Ji-Yu; Wang, Xin-Jie; Hui, Xian; Hua, Shui-Hong; Li, Heng; Gao, Wen-Yun

    2017-03-29

    Diacetyl is an important flavoring compound in many foods, especially in beer. In the present study, we developed and validated a new precolumn derivatization HPLC-UV method for the determination of diacetyl using 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a novel derivatizing reagent. After derivatization with the reagent at a pH value 4.0 at ambient temperature for 10 min, diacetyl was analyzed on an ODS column and detected at 254 nm. The results show that the correlation coefficient of the method is 0.9991 in the range of 0.10 to 100.0 μM diacetyl, and the limit of detection is 0.02 μM. The method was further evaluated in the analysis of beer samples with the recoveries ranging from 94.4 to 102.6% and RSDs from 1.36 to 3.33%. The concentrations of diacetyl in 8 beer samples were determined in the range of 0.19 to 0.42 μM. The method established in this study may be well suitable for the determination of diacetyl in beer.

  11. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination.

    PubMed

    Bhardwaj, Abhishek K; Shukla, Abhishek; Mishra, Rohit K; Singh, S C; Mishra, Vani; Uttam, K N; Singh, Mohan P; Sharma, Shivesh; Gopal, R

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R 2 ranging from ∼0.928-0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages.

  12. Power and Time Dependent Microwave Assisted Fabrication of Silver Nanoparticles Decorated Cotton (SNDC) Fibers for Bacterial Decontamination

    PubMed Central

    Bhardwaj, Abhishek K.; Shukla, Abhishek; Mishra, Rohit K.; Singh, S. C.; Mishra, Vani; Uttam, K. N.; Singh, Mohan P.; Sharma, Shivesh; Gopal, R.

    2017-01-01

    Plasmonic nanoparticles (NPs) such as silver and gold have fascinating optical properties due to their enhanced optical sensitivity at a wavelength corresponding to their surface plasmon resonance (SPR) absorption. Present work deals with the fabrication of silver nanoparticles decorated cotton (SNDC) fibers as a cheap and efficient point of contact disinfectant. SNDC fibers were fabricated by a simple microwave assisted route. The microwave power and irradiation time were controlled to optimize size and density of silver nanoparticles (SNPs) on textile fibers. As prepared cotton fabric was characterized for ATR-FTIR, UV-VIS diffuse reflectance, SEM and TEM investigations. Size of SNPs as well as total density of silver atoms on fabric gets increased with the increase of microwave power from 100 W to 600 W. The antibacterial efficacy of SNPs extracted from SNDC fibers was found to be more effective against Gram-negative bacteria than Gram-positive bacteria with MIC 38.5 ± 0.93 μg/mL against Salmonella typhimurium MTCC-98 and 125 ± 2.12 μg/mL against Staphylococcus aureus MTCC-737, a linear correlation coefficient with R2 ranging from ∼0.928–0.935 was also observed. About >50% death cells were observed through Propidium Iodide (PI) internalization after treatment of SNPs extracted from SNDC fibers with concentration 31.25 μg/mL. Generation of ROS and free radical has also been observed which leads to cell death. Excellent Escherichia coli deactivation efficacy suggested that SNDC fibers could be used as potentially safe disinfectants for cleaning of medical equipment, hand, wound, water and preservation of food and beverages. PMID:28316594

  13. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves.

    PubMed

    Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing

    2016-03-01

    Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties

    PubMed Central

    Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin

    2017-01-01

    Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737

  15. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less

  16. A simple and rapid microwave-assisted hematoxylin and eosin staining method using 1,1,1 trichloroethane as a dewaxing and a clearing agent.

    PubMed

    Temel, S G; Noyan, S; Cavusoglu, I; Kahveci, Z

    2005-01-01

    The use and practicability of microwave-assisted staining procedures in routine histopathology has been well established for more than 17 years. In the study reported here, we aimed to examine an alternative approach that would shorten the duration of dewaxing and clearing steps of hematoxylin and eosin (H & E) staining of paraffin sections by using a microwave oven. Although xylene is one of the most popular dewaxing and clearing agents, its flammability restricts its use in a microwave oven; thus we preferred 1,1,1 trichloroethane, which is not flammable, as the dewaxing and clearing agent in the present study. In Group I and Group II (control groups), intestine was processed with xylene and 1,1,1 trichloroethane, respectively. The sections were then stained with H & E according to the conventional staining protocol at room temperature and subdivided into two groups according to the duration of dewaxing and clearing in xylene. In Groups III and IV (experimental groups) similar tissues were processed with xylene and 1,1,1 trichloroethane, respectively; however, sections from these groups were divided into four subgroups to study the period required for dewaxing and clearing in 1,1,1 trichloroethane, then stained with H & E in the microwave oven at 360 W for 30 sec. Our conventional H & E staining procedure, which includes dewaxing, staining and clearing of sections, requires approximately 90 min, while our method using 1,1,1 trichloroethane and microwave heating required only 2 min. Our alternative method for H & E staining not only reduced the procedure time significantly, but also yielded staining quality equal or superior to those stained the conventional way. Our results suggest that 1,1,1 trichloroethane can be used effectively and safely as a dewaxing and clearing agent for H & E staining in a microwave oven.

  17. DEXTRON TEMPLATED MICROWAVE-ASSISTED SYNTHESIS OF POROUS TITANIUM DIOXIDE

    EPA Science Inventory

    An alternative route to the preparation and formation of porous titania powders and carbon coated titania using microwave radiation is described. Inexpensive dextrose was chosen as capping agent or template in view of its high water solubility when compared to other sugar templat...

  18. SYNTHESIS OF HIGHLY FLUORINATED CHLOROFORMATES AND THEIR USE AS DERIVATIZING AGENTS FOR HYDROPHILIC COMPOUNDS AND DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A rapid, safe and efficient procedure was developed to synthesize perfluorinated chloroformates in the small scale generally required to perform analytical derivatizations. This new family of derivatizing agents allows straightforward derivatization of highly polar compounds, co...

  19. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals.

    PubMed

    Ania, C O; Parra, J B; Menéndez, J A; Pis, J J

    2007-08-01

    The purpose of this work was to explore the application of microwaves for the regeneration of activated carbons spent with salicylic acid, a metabolite of a common analgesic frequently found in wastewater from the pharmaceutical industry. The exhausted carbon was treated in a quartz reactor by microwave irradiation at 2450 MHz at different temperatures and atmospheres, the regeneration efficiency being highly dependent on the operating conditions. Quantitative desorption of the pollutant was achieved at high temperature and oxidizing atmosphere, with regeneration efficiencies as high as 99% after six cycles. The stripping efficiency was superior to 95% at high temperatures and decreased at 450 degrees C. The incomplete desorption of the adsorbate at low temperature was further confirmed by the changes in the porosity observed by N2 and CO2 adsorption isotherms. Hence, micropores remain blocked which results in a reduction in loading capacities in successive cycles.

  20. Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Tsodikov, M. V.; Ellert, O. G.; Nikolaev, S. A.; Arapova, O. V.; Bukhtenko, O. V.; Maksimov, Yu. V.; Kirdyankin, D. I.; Vasil'kov, A. Yu.

    2018-03-01

    Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-C nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the CO2 atmosphere, dry reforming takes place to give syngas with the CO/H2 ratio of 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90-94%. [Figure not available: see fulltext.

  1. GREENER AND CONTROLLED SYNTHESIS OF NOBLE NANOSTRUCTURES IN AQUEOUS MEDIA USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted spontaneous reduction of gold salts is described using sugar solutions such as alpha-D-glucose, sucrose and maltose, etc. The expeditious reactions are conducted in aqueous media using microwave irradiation wherein the reduction occurs within 30 to 60 seconds ...

  2. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples.

    PubMed

    Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming

    2014-12-01

    An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction.

    PubMed

    Pena, M Teresa; Pensado, Luis; Casais, M Carmen; Mejuto, M Carmen; Cela, Rafael

    2007-04-01

    A microwave-assisted sample preparation (MASP) procedure was developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and soil samples. The procedure involved the simultaneous microwave-assisted extraction of PAHs with n-hexane and the hydrolysis of samples with methanolic potassium hydroxide. Because of the complex nature of the samples, the extracts were submitted to further cleaning with silica and Florisil solid-phase extraction cartridges connected in series. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, were considered in the study. Quantification limits obtained for all of these compounds (between 0.4 and 14.8 microg kg(-1) dry mass) were well below of the limits recommended in the USA and EU. Overall recovery values ranged from 60 to 100%, with most losses being due to evaporation in the solvent exchange stages of the procedure, although excellent extraction recoveries were obtained. Validation of the accuracy was carried out with BCR-088 (sewage sludge) and BCR-524 (contaminated industrial soil) reference materials.

  4. Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.

    PubMed

    Schwarz, S; Csuk, R; Rauter, A P

    2014-04-21

    Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.

  5. Determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products by ultrasound-assisted dispersive liquid-liquid microextraction combined with derivatization and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Lv, Tao; Zhao, Xian-En; Zhu, Shuyun; Qu, Fei; Song, Cuihua; You, Jinmao; Suo, Yourui

    2014-10-01

    A novel hyphenated method based on ultrasound-assisted dispersive liquid-liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4-octylphenol, and 4-nonylphenol by high-performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0-400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5-1.2 ng/kg and 0.01-0.04 μg/kg, respectively. Relative standard deviations of intra- and inter-day precision for retention time and peak area are in the range of 0.47-2.31 and 2.76-8.79%, respectively. Accuracy is satisfactory in the range of 81.5-118.7%. Relative standard deviations of repeatability are in the range of 0.35-1.43 and 2.36-4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4-octylphenol, and 4-nonylphenol are 170.5, 240.3, and 283.2, respectively. The results of recovery and matrix effect are in the range of 82.7-114.9 and 92.0-109.0%, respectively. The proposed method has been applied to the determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products with much higher sensitivity than many other methods. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. One-step microwave-assisted synthesis of water-dispersible Fe3O4 magnetic nanoclusters for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John

    2017-10-01

    To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.

  7. Rapid microwave assisted synthesis of YIn1-xMnxO3 blue pigments: Synthesis, microstructure and optical properties

    NASA Astrophysics Data System (ADS)

    Zhou, Yuncheng; Jiang, Peng; Kuang, Jianlei; Yang, Xueshan; Cao, Wenbin

    2018-07-01

    The YIn1-xMnxO3 (0.1 ≤x ≤ 0.5) blue pigment samples are successfully prepared through a sol-gel process followed by microwave assisted sintering process. All the samples are shown single phases in the X-ray diffraction results. In the morphology study from scanning electronic microscope, the samples are composed of loosely connected small particles. The oxidation state of Mn is confirmed to be 3 + from the results of X-ray photonelectronic scan. The optical properties are characterized by UV-Visible spectrum and UV-visible-NIR spectrum. The samples exhibit intense blue color and they show small absorption in infrared region.

  8. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition

    PubMed Central

    Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.

    2016-01-01

    Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014

  9. Comparison of two derivatization methods for the analysis of short chain fatty acids in the ambient aerosol using GC-MS

    NASA Astrophysics Data System (ADS)

    Kim, G.; Jeon, S.

    2016-12-01

    Fatty acids are one of the important compound classes in the polar organic fraction of ambient aerosols. Among them, short chain fatty acids play a significant role in the atmospheric transformation processes. For short-chain acids, the bottleneck of analysis has been the difficulty of sample preparation due to the high solubility and volatility. To overcome this problem, derivatization of polar organic fraction is widely used with silylation reagents to increase the resolution and sensitivity. Two different derivatization procedures; (1) using the tertbutyldimethylsilyl (TBDMS) derivatization and (2) the headspace-solid phase microextraction (HS-SPME) with in-fiber derivatization are compared using gas chromatography-mass spectrometry (GC-MS). At the second method, simultaneous derivatization and extraction were performed by a poly acrylate (PA) coated fiber doped with pyrenyldiazomethane (PDAM). We investigated the chromatographic property and relative sensitivities of each individual short chain acids according to two different derivatization procedures. For the method validation, the linearity, recovery and method detection limit (MDL) were compared. Also, two derivatization methods were applied to the ambient aerosol samples and evaluated with respect to the effectiveness.

  10. Accurate determination of sulfur in gasoline and related fuel samples using isotope dilution ICP-MS with direct sample injection and microwave-assisted digestion.

    PubMed

    Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G

    2004-09-01

    Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.

  11. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    ERIC Educational Resources Information Center

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  12. Coaxial cable Bragg grating assisted microwave coupler.

    PubMed

    Huang, Jie; Wei, Tao; Fan, Jun; Xiao, Hai

    2014-01-01

    This paper reports a microwave coupler based on two parallel coaxial cable Bragg gratings fabricated by drilling U-grooves across the cables at periodic distance along the cable direction. Electromagnetic field couplings between two cables were observed at discrete frequencies through both near and far ends detections. The coupling frequency and strength can be precisely controlled by varying the grating period and length. The coupling bandwidth may also be controlled through specific grating design. The device physics was also described through transfer matrix which matched well with the experimental results.

  13. Determination of 3-Monochloropropane-1,2-diol and 2-Monochloropropane-1,3-diol (MCPD) Esters and Glycidyl Esters by Microwave Extraction in Different Foodstuffs.

    PubMed

    Marc, Corinne; Drouard-Pascarel, Valérie; Rétho, Cécile; Janvion, Patrice; Saltron, Frédéric

    2016-06-01

    This paper describes a method for the determination of 3-monochloropropane-1,2-diol and 2-monochloropropane-1,3-diol (MCPD) esters and glycidyl esters in various foodstuffs, which are isolated using microwave extraction. The next step is based on alkaline-catalyzed ester cleavage. The released glycidol is transformed into monobromopropanediol (MBPD). All compounds are derivatized in free diols (MCPD and MBPD) with phenylboronic acid and analyzed by gas chromatography-mass spectrometry (GC-MS). The method was validated for oils with a limit of quantitation (LOQ) of 0.1 mg/kg, for chips and crisps with a LOQ of 0.02 mg/kg, and for infant formula with a LOQ of 0.0025 mg/L. Recoveries of each sample were controlled by standard addition on extracts before derivatization. Quantitation was performed by the addition of isotopically labeled glycidyl and 3-monochloropropane-1,2-diol (3-MCPD) esters.

  14. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants.

    PubMed

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing; Chen, Yu-Bo; Shi, Yu-Ting; Li, Rong-Rong

    2017-09-15

    Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Low-power microwave-mediated heating for microchip-based PCR.

    PubMed

    Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P

    2013-09-07

    Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system.

  16. Utilizing commercial microwave for rapid and effective immunostaining.

    PubMed

    Owens, Katrina; Park, Ji H; Kristian, Tibor

    2013-09-30

    There is an accumulating literature demonstrating the application of microwaves across a wide spectrum of histological techniques. Although exposure to microwaves for short periods resulted in substantial acceleration of all procedures this technique still is not adopted widely. In part, this may be due to concerns over solutions that will avoid induction of thermal damage to the tissue when using standard microwave. Here, we offer a cooling setup that can be used with conventional microwave ovens. We utilized dry ice for effective cooling during microwave irradiation of tissue samples. To prevent overheating, the cups with tissue during exposure to microwaves were surrounded with powdered dry ice. Since the dry ice does not touch the walls of the cups, freezing is prevented. Overheating is avoided by alternating the microwave treatment with 1-2 min time periods when the cups are cooled outside of the microwave oven. This technique was used on mouse brain sections that were immunostained with microglia-specific CD68 antiserum and astrocyte labeling GFAP antibody. Both standard and microwave-assisted immonolabeling gave comparable results visualizing cells with fine processes and low background signal. Short incubation time in the microwave requires high concentrations of antibody for tissue immunostaining. We show that by prolonging the microwaving procedure we were able to reduce the antibody concentration to the levels used in standard immunostaining protocol. In summary, our technique gives a possibility to use a conventional microwave for rapid and effective immunolabeling resulting in reduced amount of antibody required for satisfactory immunostaining. Published by Elsevier B.V.

  17. Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides.

    PubMed

    Zhou, Long; Santomauro, Fabio; Fan, Jiajun; Macquarrie, Duncan; Clark, James; Chuck, Christopher J; Budarin, Vitaliy

    2017-09-21

    Generally, biorefineries convert lignocellulosic biomass into a range of biofuels and further value added chemicals. However, conventional biorefinery processes focus mainly on the cellulose and hemicellulose fractions and therefore produce only low quality lignin, which is commonly burnt to provide process heat. To make full use of the biomass, more attention needs to be focused on novel separation techniques, where high quality lignin can be isolated that is suitable for further valorisation into aromatic chemicals and fuel components. In this paper, three types of lignocellulosic biomass (softwood, hardwood and herbaceous biomass) were processed by microwave-assisted acidolysis to produce high quality lignin. The lignin from the softwood was isolated largely intact in the solid residue after acidolysis. For example, a 10 min microwave-assisted acidolysis treatment produced lignin with a purity of 93% and in a yield of 82%, which is superior to other conventional separation methods reported. Furthermore, py-GC/MS analysis proved that the isolated lignin retained the original structure of native lignin in the feedstock without severe chemical modification. This is a large advantage, and the purified lignin is suitable for further chemical processing. To assess the suitability of this methodology as part of a biorefinery system, the aqueous phase, produced after acidolysis of the softwood, was characterised and assessed for its suitability for fermentation. The broth contained some mono- and di-saccharides but mainly contained organic acids, oligosaccharides and furans. While this is unsuitable for S. cerevisiae and other common ethanol producing yeasts, two oleaginous yeasts with known inhibitor tolerances were selected: Cryptococcus curvatus and Metschnikowia pulcherrima. Both yeasts could grow on the broth, and demonstrated suitable catabolism of the oligosaccharides and inhibitors over 7 days. In addition, both yeasts were shown to be able to produce an oil

  18. The Successful Diagnosis and Typing of Systemic Amyloidosis Using A Microwave-Assisted Filter-Aided Fast Sample Preparation Method and LC/MS/MS Analysis

    PubMed Central

    Zou, Lili; Shen, Kaini; Zhong, Dingrong; Zhou, Daobin; Sun, Wei; Li, Jian

    2015-01-01

    Laser microdissection followed by mass spectrometry has been successfully used for amyloid typing. However, sample contamination can interfere with proteomic analysis, and overnight digestion limits the analytical throughput. Moreover, current quantitative analysis methods are based on the spectrum count, which ignores differences in protein length and may lead to misdiagnoses. Here, we developed a microwave-assisted filter-aided sample preparation (maFASP) method that can efficiently remove contaminants with a 10-kDa cutoff ultrafiltration unit and can accelerate the digestion process with the assistance of a microwave. Additionally, two parameters (P- and D-scores) based on the exponentially modified protein abundance index were developed to define the existence of amyloid deposits and those causative proteins with the greatest abundance. Using our protocol, twenty cases of systemic amyloidosis that were well-typed according to clinical diagnostic standards (training group) and another twenty-four cases without subtype diagnoses (validation group) were analyzed. Using this approach, sample preparation could be completed within four hours. We successfully subtyped 100% of the cases in the training group, and the diagnostic success rate in the validation group was 91.7%. This maFASP-aided proteomic protocol represents an efficient approach for amyloid diagnosis and subtyping, particularly for serum-contaminated samples. PMID:25984759

  19. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.

    PubMed

    Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa

    2014-10-01

    A chloroform-free novel process for the efficient production of biodiesel from wet microalgae is proposed. Crude biodiesel is produced through extraction with hexane after microwave-assisted transesterification (EHMT) of lipids in wet microalgae. Effects of different parameters, including reaction temperature, reaction time, methanol dosage, and catalyst dosage, on fatty acids methyl esters (FAMEs) yield are investigated. The yield of FAME extracted into the hexane from the wet microalgae is increased 6-fold after the transesterification of lipids. The yield of FAME obtained through EHMT of lipids in wet microalgae is comparable to that obtained through direct transesterification of dried microalgae biomass with chloroform; however, FAME content in crude biodiesel obtained through EHMT is 86.74%, while that in crude biodiesel obtained through the chloroform-based process is 75.93%. EHMT ensures that polar pigments present in microalgae are not extracted into crude biodiesel, which leads to a 50% reduction in nitrogen content in crude biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass.

    PubMed

    Feng, Junfeng; Hse, Chungyun; Yang, Zhongzhi; Wang, Kui; Jiang, Jianchun; Xu, Junming

    2017-11-01

    Directional microwave-assisted liquefaction and stepwise extraction are introduced for producing platform chemicals: aromatics and monosaccharides. When sulfuric acid was used as a catalyst, a 45% monosaccharides yield and a 29% aromatics yield were obtained from bamboo with 0.3g catalyst per 18g methanol and 2g bamboo at 160°C with 10min. Approximately 78-86wt% of the six biomass materials were converted into liquid products. After the stepwise extraction and precipitation process, the yields of monosaccharide derivatives and three phenolic compound fractions were 39-45% and 28-32%, respectively. Monosaccharides from holocellulose collected with a high purity of methyl glycosides were higher than 90%. Aromatic derivatives with different weight-molecular distributions were separated into three fractions with more than 80% phenolics. As their similar chemical properties within each fraction, platform chemicals have great commercial potential for producing high-quality chemicals and biofuels using mild upgrading conditions. Copyright © 2017. Published by Elsevier Ltd.

  1. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    PubMed

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    PubMed

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  3. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite-alumina nanocomposites.

    PubMed

    Radha, G; Balakumar, S; Venkatesan, Balaji; Vellaichamy, Elangovan

    2015-05-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)-alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Microwave-assisted extraction (MAE) of bioactive saponin from mahogany seed (Swietenia mahogany Jacq)

    NASA Astrophysics Data System (ADS)

    Waziiroh, E.; Harijono; Kamilia, K.

    2018-03-01

    Mahogany is frequently used for medicines for cancer, tumor, and diabetes, as it contains saponin and flavonoid. Saponin is a complex glycosydic compound consisted of triterpenoids or steroids. Saponin can be extracted from a plant by using a solvent extraction. Microwave Assisted Extraction (MAE) is a non-conventional extraction method that use micro waves in the process. This research was conducted by a Complete Random Design with two factors which were extraction time (120, 150, and 180 seconds) and solvent ratio (10:1, 15:1, and 20:1 v/w). The best treatment of MAE were the solvent ratio 15:1 (v/w) for 180 seconds. The best treatment resulting crude saponin extract yield of 41.46%, containing 11.53% total saponins, and 49.17% of antioxidant activity. Meanwhile, the treatment of maceration method were the solvent ratio 20:1 (v/w) for 48 hours resulting 39.86% yield of saponin crude extract, 9.26% total saponins and 56.23% of antioxidant activity. The results showed MAE was more efficient (less time of extraction and solvent amount) than maceration method.

  5. A novel approach for the quantitation of carbohydrates in mash, wort, and beer with RP-HPLC using 1-naphthylamine for precolumn derivatization.

    PubMed

    Rakete, Stefan; Glomb, Marcus A

    2013-04-24

    A novel universal method for the determination of reducing mono-, di-, and oligosaccharides in complex matrices on RP-HPLC using 1-naphthylamine for precolumn derivatization with sodium cyanoborhydride was established to study changes in the carbohydrate profile during beer brewing. Fluorescence and mass spectrometric detection enabled very sensitive analyses of beer-relevant carbohydrates. Mass spectrometry additionally allowed the identification of the molecular weight and thereby the degree of polymerization of unknown carbohydrates. Thus, carbohydrates with up to 16 glucose units were detected. Comparison demonstrated that the novel method was superior to fluorophore-assisted carbohydrate electrophoresis (FACE). The results proved the HPLC method clearly to be more powerful in regard to sensitivity and resolution. Analogous to FACE, this method was designated fluorophore-assisted carbohydrate HPLC (FAC-HPLC).

  6. Quantification of phytochelatins in Chlamydomonas reinhardtii using ferrocene-based derivatization.

    PubMed

    Bräutigam, Anja; Bomke, Susanne; Pfeifer, Thorben; Karst, Uwe; Krauss, Gerd-Joachim; Wesenberg, Dirk

    2010-08-01

    A method for the identification and quantification of canonic and isoforms of phytochelatins (PCs) from Chlamydomonas reinhardtii was developed. After disulfide reduction with tris(2-carboxyethyl)phosphine (TCEP) PCs were derivatized with ferrocenecarboxylic acid (2-maleimidoyl)ethylamide (FMEA) in order to avoid oxidation of the free thiol functions during analysis. Liquid chromatography (LC) coupled to electrospray mass spectrometry (ESI-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) was used for rapid and quantitative analysis of the precolumn derivatized PCs. PC(2-4), CysGSH, CysPC(2-4), CysPC(2)desGly, CysPC(2)Glu and CysPC(2)Ala were determined in the algal samples depending on the exposure of the cells to cadmium ions.

  7. LC-MSn Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    PubMed Central

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-01-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MSn. The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MSn fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MSn experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MSn methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications. PMID:21953261

  8. Microwave-Mediated Synthesis of Lophine: Developing a Mechanism to Explain a Product

    ERIC Educational Resources Information Center

    Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H.

    2006-01-01

    The microwave-mediated preparation of lophine (2,4,5-triphenylimidazole) is described. This experiment allows for an introduction to the emerging technology of microwave-assisted organic synthesis while providing an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the…

  9. Unlocking Potentials of Microwaves for Food Safety and Quality

    PubMed Central

    Tang, Juming

    2015-01-01

    Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. PMID:26242920

  10. Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor.

    PubMed

    Pandey, Sadanand; Ramontja, James

    2016-08-01

    Grafting method, through microwave radiation procedure is extremely productive in terms of time consumption, cost effectiveness and environmental friendliness. In this study, conductive and thermally stable composite (mwXG-g-PANi) was synthesized by grafting of aniline (ANi) on to xanthan gum (XG) using catalytic weight of initiator, ammonium peroxydisulfate in the process of microwave irradiation in an aqueous medium. The synthesis of mwXG-g-PANi were confirm by FTIR, XRD, TGA, and SEM. The influence of altering the microwave power, exposure time of microwave, concentration of monomer and the amount of initiator of graft polymerization were studied over the grafting parameters, for example, grafting percentage (%G) and grafting efficiency (%E). The maximum %G and %E achieved was 172 and 74.13 respectively. The outcome demonstrates that the microwave irradiation strategy can increase the reaction rate by 72 times over the conventional method. Electrical conductivity of XG and mwXG-g-PANi composite film was performed. The fabricated grafted sample film were then examined for the chemical sensor. The mwXG-g-PANi, effectively integrated and handled, are NH3 sensitive and exhibit a rapid sensing in presence of NH3 vapor. Chemiresistive NH3 sensors with superior room temperature sensing performance were produced with sensor response of 905 at 1ppb and 90% recovery within few second. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effect of microwave-assisted sintering on dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.

    2016-05-23

    In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It wasmore » observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.« less

  12. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    PubMed

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MALDI-MS SCREENING FOR PSEUDOURIDINE IN MIXTURES OF SMALL RNAS BY CHEMICAL DERIVATIZATION, RNASE DIGESTION AND SIGNATURE PRODUCTS

    PubMed Central

    Durairaj, Anita; Limbach, Patrick A.

    2010-01-01

    We have developed a method to screen for pseudouridines in complex mixtures of small RNAs using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). First, the unfractionated crude mixture of tRNAs is digested to completion with an endoribonuclease, such as RNase T1, and the digestion products are examined using MALDI-MS. Individual RNAs are identified by their signature digestion products, which arise through the detection of unique mass values after nuclease digestion. Next, the endonuclease digest is derivatized using N-cyclohexyl-N’-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CMCT), which selectively modifies all pseudouridine, thiouridine and 2-methylthio-6-isopentenyladenosine nucleosides. MALDI-MS determination of the CMCT-derivatized endonuclease digest reveals the presence of pseudouridine through a 252 Da mass increase over the underivatized digest. Proof-of-concept experiments were conducted using a mixture of Escherichia coli transfer RNAs and endoribonucleases T1 and A. More than 80% of the expected pseudouridines from this mixture were detected using this screening approach, even on a unfractionated sample of tRNAs. This approach should be particularly useful in the identification of putative pseudouridine synthases through detection of their target RNAs and can provide insight into specific small RNAs that may contain pseudouridine. PMID:18973194

  14. Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors

    PubMed Central

    Mi, Cong-Cong; Tian, Zhen-huang; Han, Bao-fu; Mao, Chuan-bin; Xu, Shu-kun

    2012-01-01

    Polyethyleneimine (PEI) functionalized multicolor luminescent LaF3 nanoparticles were synthesized via a novel microwave-assisted method, which can achieve fast and uniform heating under eco-friendly and energy efficient conditions. The as-prepared nanoparticles possess a pure hexagonal structure with an average size of about 12 nm. When doped with different ions (Tb3+ and Eu3+), the morphology and structure of the nanoparticles were not changed, whereas the optical properties varied with doped ions and their molar ratio, and as a result emission of four different colors (green, yellow, orange and red) were achieved by simply switching the types of doping ions (Eu3+ versus Tb3 +) and the molar ratio of the two doping ions. PMID:22879690

  15. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  16. Focused microwave irradiation-assisted immunohistochemistry to study effects of ketamine on phospho-ERK expression in the mouse brain.

    PubMed

    Fernandes, Alda; Li, Yu-Wen

    2017-09-01

    Ketamine produces rapid and long-lasting antidepressant effects in depressive patients. Preclinical studies demonstrate that ketamine stimulates AMPA receptor transmission and activates BDNF/TrkB-Akt/ERK-mTOR signaling cascades, leading to a sustained increase in synaptic protein synthesis and strengthening of synaptic plasticity, a potential mechanism underlying the antidepressant effects. The purpose of this study was to develop an immunohistochemistry (IHC) assay to map the distribution of extracellular signal-regulated kinase (ERK) phosphorylation in the mouse brain in response to systemic ketamine treatment. We established a focused microwave irradiation-assisted IHC assay to detect phosphorylated (phospho) proteins including phospho-ERK, phospho- cAMP-response- element-binding protein (CREB), phospho- glutamate receptor 1 (GluR1) and phospho- calcium/calmodulin-dependent protein kinase II (CaMKII) with greater sensitivity and reproducibility in comparison to conventional IHC methods. A single dose of ketamine produced a robust, dose- and time-dependent increase in phospho-ERK immunoreactive (phospho-ERK-ir) neurons in the medial prefrontal cortex (mPFC) and the central nucleus of the amygdala. Phospho-ERK-ir neurons in the mPFC were primarily located in the prelimbic and anterior cingulate subregions with the morphology resembling pyramidal neurons. An increase in phospho-ERK-ir was also observed in the brainstem dorsal raphe nucleus and locus coeruleus. The NMDA GluN2B subtype receptor antagonist Ro 25-6981 increased phospho-ERK expression in the brain in a similar pattern as ketamine. In summary, we have established a sensitive and reliable focused microwave irradiation-assisted IHC assay, and defined the activation pattern of ERK, in response to systemic ketamine and Ro 25-6981 treatment, in brain regions that are potentially responsible for mediating the antidepressant effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Compact microwave re-entrant cavity applicator for plasma-assisted combustion.

    PubMed

    Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.

  18. Compact microwave re-entrant cavity applicator for plasma-assisted combustion

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes

    2009-05-01

    The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.

  19. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, Jr., Harold D.; Janney, Mark A.; Ferber, Mattison K.

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  20. Microwave furnace having microwave compatible dilatometer

    DOEpatents

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.